Datasets:
dataset_info:
- config_name: raw
features:
- name: image
dtype: image
- name: source
dtype: string
- name: width
dtype: int16
- name: height
dtype: int16
- name: dept
dtype: int8
- name: segmented
dtype: int8
- name: objects
list:
- name: name
dtype:
class_label:
names:
'0': zebra
'1': tree
'2': nude
'3': crucifixion
'4': scroll
'5': head
'6': swan
'7': shield
'8': lily
'9': mouse
'10': knight
'11': dragon
'12': horn
'13': dog
'14': palm
'15': tiara
'16': helmet
'17': sheep
'18': deer
'19': person
'20': sword
'21': rooster
'22': bear
'23': halo
'24': lion
'25': monkey
'26': prayer
'27': crown of thorns
'28': elephant
'29': zucchetto
'30': unicorn
'31': holy shroud
'32': cat
'33': apple
'34': banana
'35': chalice
'36': bird
'37': eagle
'38': pegasus
'39': crown
'40': camauro
'41': saturno
'42': arrow
'43': dove
'44': centaur
'45': horse
'46': hands
'47': skull
'48': orange
'49': monk
'50': trumpet
'51': key of heaven
'52': fish
'53': cow
'54': angel
'55': devil
'56': book
'57': stole
'58': butterfly
'59': serpent
'60': judith
'61': mitre
'62': banner
'63': donkey
'64': shepherd
'65': boat
'66': god the father
'67': crozier
'68': jug
'69': lance
- name: pose
dtype:
class_label:
names:
'0': stand
'1': sit
'2': partial
'3': Unspecified
'4': squats
'5': lie
'6': bend
'7': fall
'8': walk
'9': push
'10': pray
'11': undefined
'12': kneel
'13': unrecognize
'14': unknown
'15': other
'16': ride
- name: diffult
dtype: int32
- name: xmin
dtype: float64
- name: ymin
dtype: float64
- name: xmax
dtype: float64
- name: ymax
dtype: float64
splits:
- name: train
num_bytes: 9046918
num_examples: 15156
download_size: 18160510195
dataset_size: 9046918
- config_name: coco
features:
- name: image
dtype: image
- name: source
dtype: string
- name: width
dtype: int16
- name: height
dtype: int16
- name: dept
dtype: int8
- name: segmented
dtype: int8
- name: objects
list:
- name: category_id
dtype:
class_label:
names:
'0': zebra
'1': tree
'2': nude
'3': crucifixion
'4': scroll
'5': head
'6': swan
'7': shield
'8': lily
'9': mouse
'10': knight
'11': dragon
'12': horn
'13': dog
'14': palm
'15': tiara
'16': helmet
'17': sheep
'18': deer
'19': person
'20': sword
'21': rooster
'22': bear
'23': halo
'24': lion
'25': monkey
'26': prayer
'27': crown of thorns
'28': elephant
'29': zucchetto
'30': unicorn
'31': holy shroud
'32': cat
'33': apple
'34': banana
'35': chalice
'36': bird
'37': eagle
'38': pegasus
'39': crown
'40': camauro
'41': saturno
'42': arrow
'43': dove
'44': centaur
'45': horse
'46': hands
'47': skull
'48': orange
'49': monk
'50': trumpet
'51': key of heaven
'52': fish
'53': cow
'54': angel
'55': devil
'56': book
'57': stole
'58': butterfly
'59': serpent
'60': judith
'61': mitre
'62': banner
'63': donkey
'64': shepherd
'65': boat
'66': god the father
'67': crozier
'68': jug
'69': lance
- name: image_id
dtype: string
- name: area
dtype: int64
- name: bbox
sequence: float32
length: 4
- name: segmentation
list:
list: float32
- name: iscrowd
dtype: bool
- name: image_id
dtype: string
splits:
- name: train
num_bytes: 8285204
num_examples: 15156
download_size: 18160510195
dataset_size: 8285204
license: cc-by-nc-2.0
task_categories:
- object-detection
- image-classification
tags:
- lam
- art
- historical
pretty_name: 'DEArt: Dataset of European Art'
size_categories:
- 10K<n<100K
Dataset Card for DEArt: Dataset of European Art
Table of Contents
- Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage:
- Repository: https://doi.org/10.5281/zenodo.6984525
- Paper: https://arxiv.org/abs/2211.01226
- Leaderboard:
- Point of Contact:
Dataset Summary
Large datasets that were made publicly available to the research community over the last 20 years have been a key enabling factor for the advances in deep learning algorithms for NLP or computer vision. These datasets are generally pairs of aligned image / manually annotated metadata, where images are photographs of everyday life. Scholarly and historical content, on the other hand, treat subjects that are not necessarily popular to a general audience, they may not always contain a large number of data points, and new data may be difficult or impossible to collect. Some exceptions do exist, for instance, scientific or health data, but this is not the case for cultural heritage (CH). The poor performance of the best models in computer vision - when tested over artworks - coupled with the lack of extensively annotated datasets for CH, and the fact that artwork images depict objects and actions not captured by photographs, indicate that a CH-specific dataset would be highly valuable for this community. We propose DEArt, at this point primarily an object detection and pose classification dataset meant to be a reference for paintings between the XIIth and the XVIIIth centuries. It contains more than 15000 images, about 80% non-iconic, aligned with manual annotations for the bounding boxes identifying all instances of 69 classes as well as 12 possible poses for boxes identifying human-like objects. Of these, more than 50 classes are CH-specific and thus do not appear in other datasets; these reflect imaginary beings, symbolic entities and other categories related to art. Additionally, existing datasets do not include pose annotations. Our results show that object detectors for the cultural heritage domain can achieve a level of precision comparable to state-of-art models for generic images via transfer learning.
Supported Tasks and Leaderboards
[More Information Needed]
Dataset Structure
Data Instances
[More Information Needed]
COCO
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1019x1680>,
'source': 'Europeana Collection',
'width': 1019,
'height': 1680,
'dept': 3,
'segmented': None,
'image_id': '0',
'annotations': [{'category_id': 40,
'image_id': '0',
'area': 131460,
'bbox': [259.0, 166.0, 420.0, 313.0],
'segmentation': [],
'iscrowd': False},
{'category_id': 19,
'image_id': '0',
'area': 624338,
'bbox': [115.0, 354.0, 767.0, 814.0],
'segmentation': [],
'iscrowd': False},
{'category_id': 15,
'image_id': '0',
'area': 17688,
'bbox': [445.0, 1170.0, 134.0, 132.0],
'segmentation': [],
'iscrowd': False},
{'category_id': 51,
'image_id': '0',
'area': 12194,
'bbox': [354.0, 1196.0, 91.0, 134.0],
'segmentation': [],
'iscrowd': False},
{'category_id': 51,
'image_id': '0',
'area': 14883,
'bbox': [580.0, 1203.0, 121.0, 123.0],
'segmentation': [],
'iscrowd': False},
{'category_id': 57,
'image_id': '0',
'area': 359870,
'bbox': [203.0, 642.0, 679.0, 530.0],
'segmentation': [],
'iscrowd': False}]}
Data Fields
[More Information Needed]
Data Splits
[More Information Needed]
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
[More Information Needed]
Citation Information
[More Information Needed]
Contributions
Thanks to @github-username for adding this dataset.