repo_id
stringlengths
15
89
file_path
stringlengths
27
180
content
stringlengths
1
2.23M
__index_level_0__
int64
0
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/oneformer/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = { "configuration_oneformer": ["ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "OneFormerConfig"], "processing_oneformer": ["OneFormerProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["image_processing_oneformer"] = ["OneFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_oneformer"] = [ "ONEFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "OneFormerForUniversalSegmentation", "OneFormerModel", "OneFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_oneformer import ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, OneFormerConfig from .processing_oneformer import OneFormerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_oneformer import OneFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_oneformer import ( ONEFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, OneFormerForUniversalSegmentation, OneFormerModel, OneFormerPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/oneformer/image_processing_oneformer.py
# coding=utf-8 # Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for OneFormer.""" import json import os import warnings from typing import Any, Dict, Iterable, List, Optional, Set, Tuple, Union import numpy as np from huggingface_hub import hf_hub_download from huggingface_hub.utils import RepositoryNotFoundError from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( PaddingMode, get_resize_output_image_size, pad, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, get_image_size, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, TensorType, is_torch_available, is_torch_tensor, logging, ) logger = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn # Copied from transformers.models.detr.image_processing_detr.max_across_indices def max_across_indices(values: Iterable[Any]) -> List[Any]: """ Return the maximum value across all indices of an iterable of values. """ return [max(values_i) for values_i in zip(*values)] # Copied from transformers.models.detr.image_processing_detr.get_max_height_width def get_max_height_width( images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None ) -> List[int]: """ Get the maximum height and width across all images in a batch. """ if input_data_format is None: input_data_format = infer_channel_dimension_format(images[0]) if input_data_format == ChannelDimension.FIRST: _, max_height, max_width = max_across_indices([img.shape for img in images]) elif input_data_format == ChannelDimension.LAST: max_height, max_width, _ = max_across_indices([img.shape for img in images]) else: raise ValueError(f"Invalid channel dimension format: {input_data_format}") return (max_height, max_width) # Copied from transformers.models.detr.image_processing_detr.make_pixel_mask def make_pixel_mask( image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: """ Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding. Args: image (`np.ndarray`): Image to make the pixel mask for. output_size (`Tuple[int, int]`): Output size of the mask. """ input_height, input_width = get_image_size(image, channel_dim=input_data_format) mask = np.zeros(output_size, dtype=np.int64) mask[:input_height, :input_width] = 1 return mask # Copied from transformers.models.detr.image_processing_detr.binary_mask_to_rle def binary_mask_to_rle(mask): """ Converts given binary mask of shape `(height, width)` to the run-length encoding (RLE) format. Args: mask (`torch.Tensor` or `numpy.array`): A binary mask tensor of shape `(height, width)` where 0 denotes background and 1 denotes the target segment_id or class_id. Returns: `List`: Run-length encoded list of the binary mask. Refer to COCO API for more information about the RLE format. """ if is_torch_tensor(mask): mask = mask.numpy() pixels = mask.flatten() pixels = np.concatenate([[0], pixels, [0]]) runs = np.where(pixels[1:] != pixels[:-1])[0] + 1 runs[1::2] -= runs[::2] return list(runs) # Copied from transformers.models.detr.image_processing_detr.convert_segmentation_to_rle def convert_segmentation_to_rle(segmentation): """ Converts given segmentation map of shape `(height, width)` to the run-length encoding (RLE) format. Args: segmentation (`torch.Tensor` or `numpy.array`): A segmentation map of shape `(height, width)` where each value denotes a segment or class id. Returns: `List[List]`: A list of lists, where each list is the run-length encoding of a segment / class id. """ segment_ids = torch.unique(segmentation) run_length_encodings = [] for idx in segment_ids: mask = torch.where(segmentation == idx, 1, 0) rle = binary_mask_to_rle(mask) run_length_encodings.append(rle) return run_length_encodings # Copied from transformers.models.detr.image_processing_detr.remove_low_and_no_objects def remove_low_and_no_objects(masks, scores, labels, object_mask_threshold, num_labels): """ Binarize the given masks using `object_mask_threshold`, it returns the associated values of `masks`, `scores` and `labels`. Args: masks (`torch.Tensor`): A tensor of shape `(num_queries, height, width)`. scores (`torch.Tensor`): A tensor of shape `(num_queries)`. labels (`torch.Tensor`): A tensor of shape `(num_queries)`. object_mask_threshold (`float`): A number between 0 and 1 used to binarize the masks. Raises: `ValueError`: Raised when the first dimension doesn't match in all input tensors. Returns: `Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]`: The `masks`, `scores` and `labels` without the region < `object_mask_threshold`. """ if not (masks.shape[0] == scores.shape[0] == labels.shape[0]): raise ValueError("mask, scores and labels must have the same shape!") to_keep = labels.ne(num_labels) & (scores > object_mask_threshold) return masks[to_keep], scores[to_keep], labels[to_keep] # Copied from transformers.models.detr.image_processing_detr.check_segment_validity def check_segment_validity(mask_labels, mask_probs, k, mask_threshold=0.5, overlap_mask_area_threshold=0.8): # Get the mask associated with the k class mask_k = mask_labels == k mask_k_area = mask_k.sum() # Compute the area of all the stuff in query k original_area = (mask_probs[k] >= mask_threshold).sum() mask_exists = mask_k_area > 0 and original_area > 0 # Eliminate disconnected tiny segments if mask_exists: area_ratio = mask_k_area / original_area if not area_ratio.item() > overlap_mask_area_threshold: mask_exists = False return mask_exists, mask_k # Copied from transformers.models.detr.image_processing_detr.compute_segments def compute_segments( mask_probs, pred_scores, pred_labels, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.8, label_ids_to_fuse: Optional[Set[int]] = None, target_size: Tuple[int, int] = None, ): height = mask_probs.shape[1] if target_size is None else target_size[0] width = mask_probs.shape[2] if target_size is None else target_size[1] segmentation = torch.zeros((height, width), dtype=torch.int32, device=mask_probs.device) segments: List[Dict] = [] if target_size is not None: mask_probs = nn.functional.interpolate( mask_probs.unsqueeze(0), size=target_size, mode="bilinear", align_corners=False )[0] current_segment_id = 0 # Weigh each mask by its prediction score mask_probs *= pred_scores.view(-1, 1, 1) mask_labels = mask_probs.argmax(0) # [height, width] # Keep track of instances of each class stuff_memory_list: Dict[str, int] = {} for k in range(pred_labels.shape[0]): pred_class = pred_labels[k].item() should_fuse = pred_class in label_ids_to_fuse # Check if mask exists and large enough to be a segment mask_exists, mask_k = check_segment_validity( mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold ) if mask_exists: if pred_class in stuff_memory_list: current_segment_id = stuff_memory_list[pred_class] else: current_segment_id += 1 # Add current object segment to final segmentation map segmentation[mask_k] = current_segment_id segment_score = round(pred_scores[k].item(), 6) segments.append( { "id": current_segment_id, "label_id": pred_class, "was_fused": should_fuse, "score": segment_score, } ) if should_fuse: stuff_memory_list[pred_class] = current_segment_id return segmentation, segments # Copied from transformers.models.maskformer.image_processing_maskformer.convert_segmentation_map_to_binary_masks def convert_segmentation_map_to_binary_masks( segmentation_map: "np.ndarray", instance_id_to_semantic_id: Optional[Dict[int, int]] = None, ignore_index: Optional[int] = None, reduce_labels: bool = False, ): if reduce_labels and ignore_index is None: raise ValueError("If `reduce_labels` is True, `ignore_index` must be provided.") if reduce_labels: segmentation_map = np.where(segmentation_map == 0, ignore_index, segmentation_map - 1) # Get unique ids (class or instance ids based on input) all_labels = np.unique(segmentation_map) # Drop background label if applicable if ignore_index is not None: all_labels = all_labels[all_labels != ignore_index] # Generate a binary mask for each object instance binary_masks = [(segmentation_map == i) for i in all_labels] binary_masks = np.stack(binary_masks, axis=0) # (num_labels, height, width) # Convert instance ids to class ids if instance_id_to_semantic_id is not None: labels = np.zeros(all_labels.shape[0]) for label in all_labels: class_id = instance_id_to_semantic_id[label + 1 if reduce_labels else label] labels[all_labels == label] = class_id - 1 if reduce_labels else class_id else: labels = all_labels return binary_masks.astype(np.float32), labels.astype(np.int64) def get_oneformer_resize_output_image_size( image: np.ndarray, size: Union[int, Tuple[int, int], List[int], Tuple[int]], max_size: Optional[int] = None, default_to_square: bool = True, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> tuple: """ Computes the output size given the desired size. Args: image (`np.ndarray`): The input image. size (`int` or `Tuple[int, int]` or `List[int]` or `Tuple[int]`): The size of the output image. max_size (`int`, *optional*): The maximum size of the output image. default_to_square (`bool`, *optional*, defaults to `True`): Whether to default to square if no size is provided. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If unset, will use the inferred format from the input. Returns: `Tuple[int, int]`: The output size. """ output_size = get_resize_output_image_size( input_image=image, size=size, default_to_square=default_to_square, max_size=max_size, input_data_format=input_data_format, ) return output_size def prepare_metadata(class_info): metadata = {} class_names = [] thing_ids = [] for key, info in class_info.items(): metadata[key] = info["name"] class_names.append(info["name"]) if info["isthing"]: thing_ids.append(int(key)) metadata["thing_ids"] = thing_ids metadata["class_names"] = class_names return metadata def load_metadata(repo_id, class_info_file): fname = os.path.join("" if repo_id is None else repo_id, class_info_file) if not os.path.exists(fname) or not os.path.isfile(fname): if repo_id is None: raise ValueError(f"Could not file {fname} locally. repo_id must be defined if loading from the hub") # We try downloading from a dataset by default for backward compatibility try: fname = hf_hub_download(repo_id, class_info_file, repo_type="dataset") except RepositoryNotFoundError: fname = hf_hub_download(repo_id, class_info_file) with open(fname, "r") as f: class_info = json.load(f) return class_info class OneFormerImageProcessor(BaseImageProcessor): r""" Constructs a OneFormer image processor. The image processor can be used to prepare image(s), task input(s) and optional text inputs and targets for the model. This image processor inherits from [`BaseImageProcessor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the input to a certain `size`. size (`int`, *optional*, defaults to 800): Resize the input to the given size. Only has an effect if `do_resize` is set to `True`. If size is a sequence like `(width, height)`, output size will be matched to this. If size is an int, smaller edge of the image will be matched to this number. i.e, if `height > width`, then image will be rescaled to `(size * height / width, size)`. resample (`int`, *optional*, defaults to `Resampling.BILINEAR`): An optional resampling filter. This can be one of `PIL.Image.Resampling.NEAREST`, `PIL.Image.Resampling.BOX`, `PIL.Image.Resampling.BILINEAR`, `PIL.Image.Resampling.HAMMING`, `PIL.Image.Resampling.BICUBIC` or `PIL.Image.Resampling.LANCZOS`. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the input to a certain `scale`. rescale_factor (`float`, *optional*, defaults to `1/ 255`): Rescale the input by the given factor. Only has an effect if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `True`): Whether or not to normalize the input with mean and standard deviation. image_mean (`int`, *optional*, defaults to `[0.485, 0.456, 0.406]`): The sequence of means for each channel, to be used when normalizing images. Defaults to the ImageNet mean. image_std (`int`, *optional*, defaults to `[0.229, 0.224, 0.225]`): The sequence of standard deviations for each channel, to be used when normalizing images. Defaults to the ImageNet std. ignore_index (`int`, *optional*): Label to be assigned to background pixels in segmentation maps. If provided, segmentation map pixels denoted with 0 (background) will be replaced with `ignore_index`. do_reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to decrement all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by `ignore_index`. repo_path (`str`, *optional*, defaults to `"shi-labs/oneformer_demo"`): Path to hub repo or local directory containing the JSON file with class information for the dataset. If unset, will look for `class_info_file` in the current working directory. class_info_file (`str`, *optional*): JSON file containing class information for the dataset. See `shi-labs/oneformer_demo/cityscapes_panoptic.json` for an example. num_text (`int`, *optional*): Number of text entries in the text input list. """ model_input_names = ["pixel_values", "pixel_mask", "task_inputs"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_rescale: bool = True, rescale_factor: float = 1 / 255, do_normalize: bool = True, image_mean: Union[float, List[float]] = None, image_std: Union[float, List[float]] = None, ignore_index: Optional[int] = None, do_reduce_labels: bool = False, repo_path: Optional[str] = "shi-labs/oneformer_demo", class_info_file: str = None, num_text: Optional[int] = None, **kwargs, ): if "max_size" in kwargs: self._max_size = kwargs.pop("max_size") else: self._max_size = 1333 size = size if size is not None else {"shortest_edge": 800, "longest_edge": self._max_size} size = get_size_dict(size, max_size=self._max_size, default_to_square=False) if "reduce_labels" in kwargs: warnings.warn( "The `reduce_labels` argument is deprecated and will be removed in v4.27. " "Please use `do_reduce_labels` instead.", FutureWarning, ) do_reduce_labels = kwargs.pop("reduce_labels") if class_info_file is None: raise ValueError("You must provide a `class_info_file`") super().__init__(**kwargs) self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD self.ignore_index = ignore_index self.do_reduce_labels = do_reduce_labels self.class_info_file = class_info_file self.repo_path = repo_path self.metadata = prepare_metadata(load_metadata(repo_path, class_info_file)) self.num_text = num_text def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BILINEAR, data_format=None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize the image to the given size. Size can be min_size (scalar) or `(height, width)` tuple. If size is an int, smaller edge of the image will be matched to this number. """ if "max_size" in kwargs: warnings.warn( "The `max_size` parameter is deprecated and will be removed in v4.27. " "Please specify in `size['longest_edge'] instead`.", FutureWarning, ) max_size = kwargs.pop("max_size") else: max_size = None size = get_size_dict(size, max_size=max_size, default_to_square=False) if "shortest_edge" in size and "longest_edge" in size: size, max_size = size["shortest_edge"], size["longest_edge"] elif "height" in size and "width" in size: size = (size["height"], size["width"]) max_size = None else: raise ValueError( "Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got" f" {size.keys()}." ) size = get_oneformer_resize_output_image_size( image=image, size=size, max_size=max_size, default_to_square=False, input_data_format=input_data_format ) image = resize( image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format ) return image # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale def rescale( self, image: np.ndarray, rescale_factor: float, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Rescale the image by the given factor. image = image * rescale_factor. Args: image (`np.ndarray`): Image to rescale. rescale_factor (`float`): The value to use for rescaling. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the input image. If unset, is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. """ return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format) # Copied from transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor.convert_segmentation_map_to_binary_masks def convert_segmentation_map_to_binary_masks( self, segmentation_map: "np.ndarray", instance_id_to_semantic_id: Optional[Dict[int, int]] = None, ignore_index: Optional[int] = None, reduce_labels: bool = False, ): reduce_labels = reduce_labels if reduce_labels is not None else self.reduce_labels ignore_index = ignore_index if ignore_index is not None else self.ignore_index return convert_segmentation_map_to_binary_masks( segmentation_map=segmentation_map, instance_id_to_semantic_id=instance_id_to_semantic_id, ignore_index=ignore_index, reduce_labels=reduce_labels, ) def __call__(self, images, task_inputs=None, segmentation_maps=None, **kwargs) -> BatchFeature: return self.preprocess(images, task_inputs=task_inputs, segmentation_maps=segmentation_maps, **kwargs) def _preprocess( self, image: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): if do_resize: image = self.resize(image, size=size, resample=resample, input_data_format=input_data_format) if do_rescale: image = self.rescale(image, rescale_factor=rescale_factor, input_data_format=input_data_format) if do_normalize: image = self.normalize(image, mean=image_mean, std=image_std, input_data_format=input_data_format) return image def _preprocess_image( self, image: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """Preprocesses a single image.""" # All transformations expect numpy arrays. image = to_numpy_array(image) if is_scaled_image(image) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: input_data_format = infer_channel_dimension_format(image) image = self._preprocess( image=image, do_resize=do_resize, size=size, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, input_data_format=input_data_format, ) if data_format is not None: image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) return image def _preprocess_mask( self, segmentation_map: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """Preprocesses a single mask.""" segmentation_map = to_numpy_array(segmentation_map) # Add channel dimension if missing - needed for certain transformations if segmentation_map.ndim == 2: added_channel_dim = True segmentation_map = segmentation_map[None, ...] input_data_format = ChannelDimension.FIRST else: added_channel_dim = False if input_data_format is None: input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1) # TODO: (Amy) # Remork segmentation map processing to include reducing labels and resizing which doesn't # drop segment IDs > 255. segmentation_map = self._preprocess( image=segmentation_map, do_resize=do_resize, resample=PILImageResampling.NEAREST, size=size, do_rescale=False, do_normalize=False, input_data_format=input_data_format, ) # Remove extra channel dimension if added for processing if added_channel_dim: segmentation_map = segmentation_map.squeeze(0) return segmentation_map def preprocess( self, images: ImageInput, task_inputs: Optional[List[str]] = None, segmentation_maps: Optional[ImageInput] = None, instance_id_to_semantic_id: Optional[Dict[int, int]] = None, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, ignore_index: Optional[int] = None, do_reduce_labels: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> BatchFeature: if "pad_and_return_pixel_mask" in kwargs: warnings.warn( "The `pad_and_return_pixel_mask` argument is deprecated and will be removed in v4.27", FutureWarning, ) if "reduce_labels" in kwargs: warnings.warn( "The `reduce_labels` argument is deprecated and will be removed in a v4.27. Please use" " `do_reduce_labels` instead.", FutureWarning, ) if do_reduce_labels is not None: raise ValueError( "You cannot use both `reduce_labels` and `do_reduce_labels` arguments. Please use" " `do_reduce_labels` instead." ) do_reduce_labels = kwargs.pop("reduce_labels") if task_inputs is None: # Default value task_inputs = ["panoptic"] do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False, max_size=self._max_size) resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std ignore_index = ignore_index if ignore_index is not None else self.ignore_index do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels if do_resize is not None and size is None: raise ValueError("If `do_resize` is True, `size` must be provided.") if do_rescale is not None and rescale_factor is None: raise ValueError("If `do_rescale` is True, `rescale_factor` must be provided.") if do_normalize is not None and (image_mean is None or image_std is None): raise ValueError("If `do_normalize` is True, `image_mean` and `image_std` must be provided.") if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if segmentation_maps is not None and not valid_images(segmentation_maps): raise ValueError( "Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) images = make_list_of_images(images) if segmentation_maps is not None: segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2) if segmentation_maps is not None and len(images) != len(segmentation_maps): raise ValueError("Images and segmentation maps must have the same length.") images = [ self._preprocess_image( image, do_resize=do_resize, size=size, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, data_format=data_format, input_data_format=input_data_format, ) for image in images ] if segmentation_maps is not None: segmentation_maps = [ self._preprocess_mask(segmentation_map, do_resize, size, input_data_format=input_data_format) for segmentation_map in segmentation_maps ] encoded_inputs = self.encode_inputs( images, task_inputs, segmentation_maps, instance_id_to_semantic_id, ignore_index, do_reduce_labels, return_tensors, input_data_format=input_data_format, ) return encoded_inputs # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._pad_image def _pad_image( self, image: np.ndarray, output_size: Tuple[int, int], constant_values: Union[float, Iterable[float]] = 0, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Pad an image with zeros to the given size. """ input_height, input_width = get_image_size(image, channel_dim=input_data_format) output_height, output_width = output_size pad_bottom = output_height - input_height pad_right = output_width - input_width padding = ((0, pad_bottom), (0, pad_right)) padded_image = pad( image, padding, mode=PaddingMode.CONSTANT, constant_values=constant_values, data_format=data_format, input_data_format=input_data_format, ) return padded_image # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.pad def pad( self, images: List[np.ndarray], constant_values: Union[float, Iterable[float]] = 0, return_pixel_mask: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> BatchFeature: """ Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width in the batch and optionally returns their corresponding pixel mask. Args: image (`np.ndarray`): Image to pad. constant_values (`float` or `Iterable[float]`, *optional*): The value to use for the padding if `mode` is `"constant"`. return_pixel_mask (`bool`, *optional*, defaults to `True`): Whether to return a pixel mask. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ pad_size = get_max_height_width(images, input_data_format=input_data_format) padded_images = [ self._pad_image( image, pad_size, constant_values=constant_values, data_format=data_format, input_data_format=input_data_format, ) for image in images ] data = {"pixel_values": padded_images} if return_pixel_mask: masks = [ make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format) for image in images ] data["pixel_mask"] = masks return BatchFeature(data=data, tensor_type=return_tensors) def get_semantic_annotations(self, label, num_class_obj): annotation_classes = label["classes"] annotation_masks = label["masks"] texts = ["a semantic photo"] * self.num_text classes = [] masks = [] for idx in range(len(annotation_classes)): class_id = annotation_classes[idx] mask = annotation_masks[idx] if not np.all(mask is False): if class_id not in classes: cls_name = self.metadata[str(class_id)] classes.append(class_id) masks.append(mask) num_class_obj[cls_name] += 1 else: idx = classes.index(class_id) masks[idx] += mask masks[idx] = np.clip(masks[idx], 0, 1) num = 0 for i, cls_name in enumerate(self.metadata["class_names"]): if num_class_obj[cls_name] > 0: for _ in range(num_class_obj[cls_name]): if num >= len(texts): break texts[num] = f"a photo with a {cls_name}" num += 1 classes = np.array(classes) masks = np.array(masks) return classes, masks, texts def get_instance_annotations(self, label, num_class_obj): annotation_classes = label["classes"] annotation_masks = label["masks"] texts = ["an instance photo"] * self.num_text classes = [] masks = [] for idx in range(len(annotation_classes)): class_id = annotation_classes[idx] mask = annotation_masks[idx] if class_id in self.metadata["thing_ids"]: if not np.all(mask is False): cls_name = self.metadata[str(class_id)] classes.append(class_id) masks.append(mask) num_class_obj[cls_name] += 1 num = 0 for i, cls_name in enumerate(self.metadata["class_names"]): if num_class_obj[cls_name] > 0: for _ in range(num_class_obj[cls_name]): if num >= len(texts): break texts[num] = f"a photo with a {cls_name}" num += 1 classes = np.array(classes) masks = np.array(masks) return classes, masks, texts def get_panoptic_annotations(self, label, num_class_obj): annotation_classes = label["classes"] annotation_masks = label["masks"] texts = ["an panoptic photo"] * self.num_text classes = [] masks = [] for idx in range(len(annotation_classes)): class_id = annotation_classes[idx] mask = annotation_masks[idx].data if not np.all(mask is False): cls_name = self.metadata[str(class_id)] classes.append(class_id) masks.append(mask) num_class_obj[cls_name] += 1 num = 0 for i, cls_name in enumerate(self.metadata["class_names"]): if num_class_obj[cls_name] > 0: for _ in range(num_class_obj[cls_name]): if num >= len(texts): break texts[num] = f"a photo with a {cls_name}" num += 1 classes = np.array(classes) masks = np.array(masks) return classes, masks, texts def encode_inputs( self, pixel_values_list: List[ImageInput], task_inputs: List[str], segmentation_maps: ImageInput = None, instance_id_to_semantic_id: Optional[Union[List[Dict[int, int]], Dict[int, int]]] = None, ignore_index: Optional[int] = None, reduce_labels: bool = False, return_tensors: Optional[Union[str, TensorType]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """ Pad images up to the largest image in a batch and create a corresponding `pixel_mask`. OneFormer addresses semantic segmentation with a mask classification paradigm, thus input segmentation maps will be converted to lists of binary masks and their respective labels. Let's see an example, assuming `segmentation_maps = [[2,6,7,9]]`, the output will contain `mask_labels = [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]` (four binary masks) and `class_labels = [2,6,7,9]`, the labels for each mask. Args: pixel_values_list (`List[ImageInput]`): List of images (pixel values) to be padded. Each image should be a tensor of shape `(channels, height, width)`. task_inputs (`List[str]`): List of task values. segmentation_maps (`ImageInput`, *optional*): The corresponding semantic segmentation maps with the pixel-wise annotations. (`bool`, *optional*, defaults to `True`): Whether or not to pad images up to the largest image in a batch and create a pixel mask. If left to the default, will return a pixel mask that is: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). instance_id_to_semantic_id (`List[Dict[int, int]]` or `Dict[int, int]`, *optional*): A mapping between object instance ids and class ids. If passed, `segmentation_maps` is treated as an instance segmentation map where each pixel represents an instance id. Can be provided as a single dictionary with a global/dataset-level mapping or as a list of dictionaries (one per image), to map instance ids in each image separately. return_tensors (`str` or [`~file_utils.TensorType`], *optional*): If set, will return tensors instead of NumPy arrays. If set to `'pt'`, return PyTorch `torch.Tensor` objects. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred from the input image. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **pixel_values** -- Pixel values to be fed to a model. - **pixel_mask** -- Pixel mask to be fed to a model (when `=True` or if `pixel_mask` is in `self.model_input_names`). - **mask_labels** -- Optional list of mask labels of shape `(labels, height, width)` to be fed to a model (when `annotations` are provided). - **class_labels** -- Optional list of class labels of shape `(labels)` to be fed to a model (when `annotations` are provided). They identify the labels of `mask_labels`, e.g. the label of `mask_labels[i][j]` if `class_labels[i][j]`. - **text_inputs** -- Optional list of text string entries to be fed to a model (when `annotations` are provided). They identify the binary masks present in the image. """ ignore_index = self.ignore_index if ignore_index is None else ignore_index reduce_labels = self.do_reduce_labels if reduce_labels is None else reduce_labels pixel_values_list = [to_numpy_array(pixel_values) for pixel_values in pixel_values_list] if input_data_format is None: input_data_format = infer_channel_dimension_format(pixel_values_list[0]) pad_size = get_max_height_width(pixel_values_list, input_data_format=input_data_format) encoded_inputs = self.pad( pixel_values_list, return_tensors=return_tensors, input_data_format=input_data_format ) annotations = None if segmentation_maps is not None: segmentation_maps = map(np.array, segmentation_maps) annotations = [] for idx, segmentation_map in enumerate(segmentation_maps): # Use instance2class_id mapping per image if isinstance(instance_id_to_semantic_id, list): instance_id = instance_id_to_semantic_id[idx] else: instance_id = instance_id_to_semantic_id # Use instance2class_id mapping per image masks, classes = self.convert_segmentation_map_to_binary_masks( segmentation_map, instance_id, ignore_index=ignore_index, reduce_labels=reduce_labels ) annotations.append({"masks": masks, "classes": classes}) if annotations is not None: mask_labels = [] class_labels = [] text_inputs = [] num_class_obj = {} for cls_name in self.metadata["class_names"]: num_class_obj[cls_name] = 0 for i, label in enumerate(annotations): task = task_inputs[i] if task == "semantic": classes, masks, texts = self.get_semantic_annotations(label, num_class_obj) elif task == "instance": classes, masks, texts = self.get_instance_annotations(label, num_class_obj) elif task == "panoptic": classes, masks, texts = self.get_panoptic_annotations(label, num_class_obj) else: raise ValueError(f"{task} was not expected, expected `semantic`, `instance` or `panoptic`") # we cannot batch them since they don't share a common class size masks = [mask[None, ...] for mask in masks] masks = [ self._pad_image(image=mask, output_size=pad_size, constant_values=ignore_index) for mask in masks ] masks = np.concatenate(masks, axis=0) mask_labels.append(torch.from_numpy(masks)) class_labels.append(torch.from_numpy(classes).long()) text_inputs.append(texts) encoded_inputs["mask_labels"] = mask_labels encoded_inputs["class_labels"] = class_labels encoded_inputs["text_inputs"] = text_inputs # This needs to be tokenized before sending to the model. encoded_inputs["task_inputs"] = [f"the task is {task_input}" for task_input in task_inputs] return encoded_inputs # Copied from transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor.post_process_semantic_segmentation def post_process_semantic_segmentation( self, outputs, target_sizes: Optional[List[Tuple[int, int]]] = None ) -> "torch.Tensor": """ Converts the output of [`MaskFormerForInstanceSegmentation`] into semantic segmentation maps. Only supports PyTorch. Args: outputs ([`MaskFormerForInstanceSegmentation`]): Raw outputs of the model. target_sizes (`List[Tuple[int, int]]`, *optional*): List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested final size (height, width) of each prediction. If left to None, predictions will not be resized. Returns: `List[torch.Tensor]`: A list of length `batch_size`, where each item is a semantic segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each `torch.Tensor` correspond to a semantic class id. """ class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, num_classes+1] masks_queries_logits = outputs.masks_queries_logits # [batch_size, num_queries, height, width] # Remove the null class `[..., :-1]` masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1] masks_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width] # Semantic segmentation logits of shape (batch_size, num_classes, height, width) segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs) batch_size = class_queries_logits.shape[0] # Resize logits and compute semantic segmentation maps if target_sizes is not None: if batch_size != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) semantic_segmentation = [] for idx in range(batch_size): resized_logits = torch.nn.functional.interpolate( segmentation[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False ) semantic_map = resized_logits[0].argmax(dim=0) semantic_segmentation.append(semantic_map) else: semantic_segmentation = segmentation.argmax(dim=1) semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation def post_process_instance_segmentation( self, outputs, task_type: str = "instance", is_demo: bool = True, threshold: float = 0.5, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.8, target_sizes: Optional[List[Tuple[int, int]]] = None, return_coco_annotation: Optional[bool] = False, ): """ Converts the output of [`OneFormerForUniversalSegmentationOutput`] into image instance segmentation predictions. Only supports PyTorch. Args: outputs ([`OneFormerForUniversalSegmentationOutput`]): The outputs from [`OneFormerForUniversalSegmentationOutput`]. task_type (`str`, *optional)*, defaults to "instance"): The post processing depends on the task token input. If the `task_type` is "panoptic", we need to ignore the stuff predictions. is_demo (`bool`, *optional)*, defaults to `True`): Whether the model is in demo mode. If true, use threshold to predict final masks. threshold (`float`, *optional*, defaults to 0.5): The probability score threshold to keep predicted instance masks. mask_threshold (`float`, *optional*, defaults to 0.5): Threshold to use when turning the predicted masks into binary values. overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8): The overlap mask area threshold to merge or discard small disconnected parts within each binary instance mask. target_sizes (`List[Tuple]`, *optional*): List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested final size (height, width) of each prediction in batch. If left to None, predictions will not be resized. return_coco_annotation (`bool`, *optional)*, defaults to `False`): Whether to return predictions in COCO format. Returns: `List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys: - **segmentation** -- a tensor of shape `(height, width)` where each pixel represents a `segment_id`, set to `None` if no mask if found above `threshold`. If `target_sizes` is specified, segmentation is resized to the corresponding `target_sizes` entry. - **segments_info** -- A dictionary that contains additional information on each segment. - **id** -- an integer representing the `segment_id`. - **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`. - **was_fused** -- a boolean, `True` if `label_id` was in `label_ids_to_fuse`, `False` otherwise. Multiple instances of the same class / label were fused and assigned a single `segment_id`. - **score** -- Prediction score of segment with `segment_id`. """ class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, num_classes+1] masks_queries_logits = outputs.masks_queries_logits # [batch_size, num_queries, height, width] device = masks_queries_logits.device batch_size = class_queries_logits.shape[0] num_queries = class_queries_logits.shape[1] num_classes = class_queries_logits.shape[-1] - 1 # Loop over items in batch size results: List[Dict[str, torch.Tensor]] = [] for i in range(batch_size): # [Q, K] scores = torch.nn.functional.softmax(class_queries_logits[i], dim=-1)[:, :-1] labels = torch.arange(num_classes, device=device).unsqueeze(0).repeat(num_queries, 1).flatten(0, 1) # scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False) scores_per_image, topk_indices = scores.flatten(0, 1).topk(num_queries, sorted=False) labels_per_image = labels[topk_indices] topk_indices = torch.div(topk_indices, num_classes, rounding_mode="floor") # mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1) mask_pred = masks_queries_logits[i][topk_indices] # Only consider scores with confidence over [threshold] for demo if is_demo: keep = scores_per_image > threshold scores_per_image = scores_per_image[keep] labels_per_image = labels_per_image[keep] mask_pred = mask_pred[keep] # if this is panoptic segmentation, we only keep the "thing" classes if task_type == "panoptic": keep = torch.zeros_like(scores_per_image).bool() for i, lab in enumerate(labels_per_image): keep[i] = lab in self.metadata["thing_ids"] scores_per_image = scores_per_image[keep] labels_per_image = labels_per_image[keep] mask_pred = mask_pred[keep] if mask_pred.shape[0] <= 0: height, width = target_sizes[i] if target_sizes is not None else mask_pred.shape[1:] segmentation = torch.zeros((height, width)) - 1 results.append({"segmentation": segmentation, "segments_info": []}) continue if "ade20k" in self.class_info_file and not is_demo and "instance" in task_type: for i in range(labels_per_image.shape[0]): labels_per_image[i] = self.metadata["thing_ids"].index(labels_per_image[i].item()) # Get segmentation map and segment information of batch item target_size = target_sizes[i] if target_sizes is not None else None segmentation, segments = compute_segments( mask_pred, scores_per_image, labels_per_image, mask_threshold, overlap_mask_area_threshold, set(), target_size, ) # Return segmentation map in run-length encoding (RLE) format if return_coco_annotation: segmentation = convert_segmentation_to_rle(segmentation) results.append({"segmentation": segmentation, "segments_info": segments}) return results # Copied from transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor.post_process_panoptic_segmentation def post_process_panoptic_segmentation( self, outputs, threshold: float = 0.5, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.8, label_ids_to_fuse: Optional[Set[int]] = None, target_sizes: Optional[List[Tuple[int, int]]] = None, ) -> List[Dict]: """ Converts the output of [`MaskFormerForInstanceSegmentationOutput`] into image panoptic segmentation predictions. Only supports PyTorch. Args: outputs ([`MaskFormerForInstanceSegmentationOutput`]): The outputs from [`MaskFormerForInstanceSegmentation`]. threshold (`float`, *optional*, defaults to 0.5): The probability score threshold to keep predicted instance masks. mask_threshold (`float`, *optional*, defaults to 0.5): Threshold to use when turning the predicted masks into binary values. overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8): The overlap mask area threshold to merge or discard small disconnected parts within each binary instance mask. label_ids_to_fuse (`Set[int]`, *optional*): The labels in this state will have all their instances be fused together. For instance we could say there can only be one sky in an image, but several persons, so the label ID for sky would be in that set, but not the one for person. target_sizes (`List[Tuple]`, *optional*): List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested final size (height, width) of each prediction in batch. If left to None, predictions will not be resized. Returns: `List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys: - **segmentation** -- a tensor of shape `(height, width)` where each pixel represents a `segment_id`, set to `None` if no mask if found above `threshold`. If `target_sizes` is specified, segmentation is resized to the corresponding `target_sizes` entry. - **segments_info** -- A dictionary that contains additional information on each segment. - **id** -- an integer representing the `segment_id`. - **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`. - **was_fused** -- a boolean, `True` if `label_id` was in `label_ids_to_fuse`, `False` otherwise. Multiple instances of the same class / label were fused and assigned a single `segment_id`. - **score** -- Prediction score of segment with `segment_id`. """ if label_ids_to_fuse is None: logger.warning("`label_ids_to_fuse` unset. No instance will be fused.") label_ids_to_fuse = set() class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, num_classes+1] masks_queries_logits = outputs.masks_queries_logits # [batch_size, num_queries, height, width] batch_size = class_queries_logits.shape[0] num_labels = class_queries_logits.shape[-1] - 1 mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width] # Predicted label and score of each query (batch_size, num_queries) pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1) # Loop over items in batch size results: List[Dict[str, TensorType]] = [] for i in range(batch_size): mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects( mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels ) # No mask found if mask_probs_item.shape[0] <= 0: height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:] segmentation = torch.zeros((height, width)) - 1 results.append({"segmentation": segmentation, "segments_info": []}) continue # Get segmentation map and segment information of batch item target_size = target_sizes[i] if target_sizes is not None else None segmentation, segments = compute_segments( mask_probs=mask_probs_item, pred_scores=pred_scores_item, pred_labels=pred_labels_item, mask_threshold=mask_threshold, overlap_mask_area_threshold=overlap_mask_area_threshold, label_ids_to_fuse=label_ids_to_fuse, target_size=target_size, ) results.append({"segmentation": segmentation, "segments_info": segments}) return results
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/oneformer/convert_to_hf_oneformer.py
# coding=utf-8 # Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert OneFormer checkpoints from the original repository. URL: https://github.com/SHI-Labs/OneFormer""" import os import sys from argparse import ArgumentParser from dataclasses import dataclass from pathlib import Path from pprint import pformat from typing import Any, Dict, Iterator, List, Set, Tuple import requests import torch import torchvision.transforms as T from PIL import Image from torch import Tensor, nn try: from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.data import MetadataCatalog from detectron2.projects.deeplab import add_deeplab_config except ImportError: pass from transformers import CLIPTokenizer, DinatConfig, SwinConfig from transformers.models.oneformer.image_processing_oneformer import OneFormerImageProcessor from transformers.models.oneformer.modeling_oneformer import ( OneFormerConfig, OneFormerForUniversalSegmentation, OneFormerForUniversalSegmentationOutput, OneFormerModel, OneFormerModelOutput, ) from transformers.models.oneformer.processing_oneformer import OneFormerProcessor from transformers.utils import logging StateDict = Dict[str, Tensor] logging.set_verbosity_info() logger = logging.get_logger() torch.manual_seed(0) class TrackedStateDict: def __init__(self, to_track: Dict): """This class "tracks" a python dictionary by keeping track of which item is accessed. Args: to_track (Dict): The dictionary we wish to track """ self.to_track = to_track self._seen: Set[str] = set() def __getitem__(self, key: str) -> Any: return self.to_track[key] def __setitem__(self, key: str, item: Any): self._seen.add(key) self.to_track[key] = item def diff(self) -> List[str]: """This method returns a set difference between the keys in the tracked state dict and the one we have access so far. This is an effective method to check if we have update all the keys Returns: List[str]: List of keys not yet updated """ return set(self.to_track.keys()) - self._seen def copy(self) -> Dict: # proxy the call to the internal dictionary return self.to_track.copy() # Image to verify the result def prepare_img(): url = "https://praeclarumjj3.github.io/files/coco.jpeg" img_data = requests.get(url, stream=True).raw im = Image.open(img_data) return im @dataclass class Args: """Fake command line arguments needed by oneformer/detectron2 implementation""" config_file: str def setup_cfg(args: Args): # load config from file and command-line arguments cfg = get_cfg() add_deeplab_config(cfg) add_common_config(cfg) add_oneformer_config(cfg) add_swin_config(cfg) add_dinat_config(cfg) cfg.merge_from_file(args.config_file) cfg.freeze() return cfg class OriginalOneFormerConfigToOursConverter: def __call__(self, original_config: object, is_swin: bool) -> OneFormerConfig: model = original_config.MODEL dataset_catalog = MetadataCatalog.get(original_config.DATASETS.TEST_PANOPTIC[0]) id2label = dict(enumerate(dataset_catalog.stuff_classes)) label2id = {label: idx for idx, label in id2label.items()} if is_swin: if model.SWIN.EMBED_DIM == 96: backbone_config = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224", drop_path_rate=model.SWIN.DROP_PATH_RATE, out_features=["stage1", "stage2", "stage3", "stage4"], ) elif model.SWIN.EMBED_DIM == 192: backbone_config = SwinConfig.from_pretrained( "microsoft/swin-large-patch4-window12-384", drop_path_rate=model.SWIN.DROP_PATH_RATE, out_features=["stage1", "stage2", "stage3", "stage4"], ) else: raise ValueError(f"embed dim {model.SWIN.EMBED_DIM} not supported for Swin!") else: backbone_config = DinatConfig.from_pretrained( "shi-labs/dinat-large-11x11-in22k-in1k-384", dilations=model.DiNAT.DILATIONS, kernel_size=model.DiNAT.KERNEL_SIZE, out_features=["stage1", "stage2", "stage3", "stage4"], ) config: OneFormerConfig = OneFormerConfig( backbone_config=backbone_config, output_attentions=True, output_hidden_states=True, return_dict=True, ignore_value=model.SEM_SEG_HEAD.IGNORE_VALUE, num_classes=model.SEM_SEG_HEAD.NUM_CLASSES, num_queries=model.ONE_FORMER.NUM_OBJECT_QUERIES, no_object_weight=model.ONE_FORMER.NO_OBJECT_WEIGHT, class_weight=model.ONE_FORMER.CLASS_WEIGHT, mask_weight=model.ONE_FORMER.MASK_WEIGHT, dice_weight=model.ONE_FORMER.DICE_WEIGHT, contrastive_weight=model.ONE_FORMER.CONTRASTIVE_WEIGHT, contrastive_temperature=model.ONE_FORMER.CONTRASTIVE_TEMPERATURE, train_num_points=model.ONE_FORMER.TRAIN_NUM_POINTS, oversample_ratio=model.ONE_FORMER.OVERSAMPLE_RATIO, importance_sample_ratio=model.ONE_FORMER.IMPORTANCE_SAMPLE_RATIO, init_std=0.02, init_xavier_std=1.0, layer_norm_eps=1e-05, is_training=False, use_auxiliary_loss=model.ONE_FORMER.DEEP_SUPERVISION, output_auxiliary_logits=True, strides=[4, 8, 16, 32], task_seq_len=original_config.INPUT.TASK_SEQ_LEN, max_seq_len=original_config.INPUT.MAX_SEQ_LEN, text_encoder_width=model.TEXT_ENCODER.WIDTH, text_encoder_context_length=model.TEXT_ENCODER.CONTEXT_LENGTH, text_encoder_num_layers=model.TEXT_ENCODER.NUM_LAYERS, text_encoder_vocab_size=model.TEXT_ENCODER.VOCAB_SIZE, text_encoder_proj_layers=model.TEXT_ENCODER.PROJ_NUM_LAYERS, text_encoder_n_ctx=model.TEXT_ENCODER.N_CTX, conv_dim=model.SEM_SEG_HEAD.CONVS_DIM, mask_dim=model.SEM_SEG_HEAD.MASK_DIM, hidden_dim=model.ONE_FORMER.HIDDEN_DIM, norm=model.SEM_SEG_HEAD.NORM, encoder_layers=model.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS, encoder_feedforward_dim=1024, decoder_layers=model.ONE_FORMER.DEC_LAYERS, use_task_norm=model.ONE_FORMER.USE_TASK_NORM, num_attention_heads=model.ONE_FORMER.NHEADS, dropout=model.ONE_FORMER.DROPOUT, dim_feedforward=model.ONE_FORMER.DIM_FEEDFORWARD, pre_norm=model.ONE_FORMER.PRE_NORM, enforce_input_proj=model.ONE_FORMER.ENFORCE_INPUT_PROJ, query_dec_layers=model.ONE_FORMER.CLASS_DEC_LAYERS, common_stride=model.SEM_SEG_HEAD.COMMON_STRIDE, id2label=id2label, label2id=label2id, ) return config class OriginalOneFormerConfigToProcessorConverter: def __call__(self, original_config: object, model_repo: str) -> OneFormerProcessor: model = original_config.MODEL model_input = original_config.INPUT dataset_catalog = MetadataCatalog.get(original_config.DATASETS.TEST_PANOPTIC[0]) if "ade20k" in model_repo: class_info_file = "ade20k_panoptic.json" elif "coco" in model_repo: class_info_file = "coco_panoptic.json" elif "cityscapes" in model_repo: class_info_file = "cityscapes_panoptic.json" else: raise ValueError("Invalid Dataset!") image_processor = OneFormerImageProcessor( image_mean=(torch.tensor(model.PIXEL_MEAN) / 255).tolist(), image_std=(torch.tensor(model.PIXEL_STD) / 255).tolist(), size=model_input.MIN_SIZE_TEST, max_size=model_input.MAX_SIZE_TEST, num_labels=model.SEM_SEG_HEAD.NUM_CLASSES, ignore_index=dataset_catalog.ignore_label, class_info_file=class_info_file, ) tokenizer = CLIPTokenizer.from_pretrained(model_repo) return OneFormerProcessor( image_processor=image_processor, tokenizer=tokenizer, task_seq_length=original_config.INPUT.TASK_SEQ_LEN, max_seq_length=original_config.INPUT.MAX_SEQ_LEN, ) class OriginalOneFormerCheckpointToOursConverter: def __init__(self, original_model: nn.Module, config: OneFormerConfig): self.original_model = original_model self.config = config def pop_all(self, renamed_keys: List[Tuple[str, str]], dst_state_dict: StateDict, src_state_dict: StateDict): for src_key, dst_key in renamed_keys: dst_state_dict[dst_key] = src_state_dict.pop(src_key) # Swin Backbone def replace_swin_backbone(self, dst_state_dict: StateDict, src_state_dict: StateDict, config: OneFormerConfig): dst_prefix: str = "pixel_level_module.encoder" src_prefix: str = "backbone" renamed_keys = [ ( f"{src_prefix}.patch_embed.proj.weight", f"{dst_prefix}.embeddings.patch_embeddings.projection.weight", ), (f"{src_prefix}.patch_embed.proj.bias", f"{dst_prefix}.embeddings.patch_embeddings.projection.bias"), (f"{src_prefix}.patch_embed.norm.weight", f"{dst_prefix}.embeddings.norm.weight"), (f"{src_prefix}.patch_embed.norm.bias", f"{dst_prefix}.embeddings.norm.bias"), ] num_layers = len(config.backbone_config.depths) for layer_idx in range(num_layers): for block_idx in range(config.backbone_config.depths[layer_idx]): renamed_keys.extend( [ # src, dst ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.weight", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.bias", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.bias", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_bias_table", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_bias_table", ), ] ) # now we need to handle the attentions # read in weights + bias of input projection layer of cross-attention src_att_weight = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight"] src_att_bias = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias"] size = src_att_weight.shape[0] offset = size // 3 dst_state_dict[ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.weight" ] = src_att_weight[:offset, :] dst_state_dict[ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.bias" ] = src_att_bias[:offset] dst_state_dict[ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.weight" ] = src_att_weight[offset : offset * 2, :] dst_state_dict[ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.bias" ] = src_att_bias[offset : offset * 2] dst_state_dict[ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.weight" ] = src_att_weight[-offset:, :] dst_state_dict[ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.bias" ] = src_att_bias[-offset:] # let's pop them src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight") src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias") # proj renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.weight", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.bias", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.bias", ), ] ) # second norm renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.weight", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.bias", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.bias", ), ] ) # mlp renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.weight", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.bias", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.bias", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.weight", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.bias", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.bias", ), ] ) renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_index", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_index", ) ] ) if layer_idx < num_layers - 1: # patch merging renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.downsample.reduction.weight", f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.reduction.weight", ), ( f"{src_prefix}.layers.{layer_idx}.downsample.norm.weight", f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.norm.weight", ), ( f"{src_prefix}.layers.{layer_idx}.downsample.norm.bias", f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.norm.bias", ), ] ) # hidden states norms renamed_keys.extend( [ ( f"{src_prefix}.norm{layer_idx}.weight", f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.weight", ), ( f"{src_prefix}.norm{layer_idx}.bias", f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.bias", ), ] ) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) # Dinat Backbone def replace_dinat_backbone(self, dst_state_dict: StateDict, src_state_dict: StateDict, config: OneFormerConfig): dst_prefix: str = "pixel_level_module.encoder" src_prefix: str = "backbone" def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str): return [ (f"{src_prefix}.weight", f"{dst_prefix}.weight"), (f"{src_prefix}.bias", f"{dst_prefix}.bias"), ] renamed_keys = rename_keys_for_weight_bias(f"{src_prefix}.patch_embed.norm", f"{dst_prefix}.embeddings.norm") for i in range(2): renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.patch_embed.proj.{i}", f"{dst_prefix}.embeddings.patch_embeddings.projection.{i}", ) ) num_layers = len(config.backbone_config.depths) for layer_idx in range(num_layers): for block_idx in range(config.backbone_config.depths[layer_idx]): renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.norm1", f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.layernorm_before", ) ) renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.norm2", f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.layernorm_after", ) ) renamed_keys.extend( [ # src, dst ( f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.rpb", f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.rpb", ), ] ) # now we need to handle the attentions # read in weights + bias of input projection layer of cross-attention src_att_weight = src_state_dict[f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.weight"] src_att_bias = src_state_dict[f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.bias"] size = src_att_weight.shape[0] offset = size // 3 dst_state_dict[ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.query.weight" ] = src_att_weight[:offset, :] dst_state_dict[ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.query.bias" ] = src_att_bias[:offset] dst_state_dict[ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.key.weight" ] = src_att_weight[offset : offset * 2, :] dst_state_dict[ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.key.bias" ] = src_att_bias[offset : offset * 2] dst_state_dict[ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.value.weight" ] = src_att_weight[-offset:, :] dst_state_dict[ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.value.bias" ] = src_att_bias[-offset:] # let's pop them src_state_dict.pop(f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.weight") src_state_dict.pop(f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.bias") # proj renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.proj", f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.output.dense", ) ) # mlp renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.mlp.fc1", f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.intermediate.dense", ) ) renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.mlp.fc2", f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.output.dense", ) ) if layer_idx < num_layers - 1: # patch merging renamed_keys.extend( [ ( f"{src_prefix}.levels.{layer_idx}.downsample.reduction.weight", f"{dst_prefix}.encoder.levels.{layer_idx}.downsample.reduction.weight", ), ( f"{src_prefix}.levels.{layer_idx}.downsample.norm.weight", f"{dst_prefix}.encoder.levels.{layer_idx}.downsample.norm.weight", ), ( f"{src_prefix}.levels.{layer_idx}.downsample.norm.bias", f"{dst_prefix}.encoder.levels.{layer_idx}.downsample.norm.bias", ), ] ) # hidden states norms renamed_keys.extend( [ ( f"{src_prefix}.norm{layer_idx}.weight", f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.weight", ), ( f"{src_prefix}.norm{layer_idx}.bias", f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.bias", ), ] ) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) # Backbone + Pixel Decoder def replace_pixel_module(self, dst_state_dict: StateDict, src_state_dict: StateDict, is_swin: bool): dst_prefix: str = "pixel_level_module.decoder" src_prefix: str = "sem_seg_head.pixel_decoder" if is_swin: self.replace_swin_backbone(dst_state_dict, src_state_dict, self.config) else: self.replace_dinat_backbone(dst_state_dict, src_state_dict, self.config) def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str): return [ (f"{src_prefix}.weight", f"{dst_prefix}.weight"), (f"{src_prefix}.bias", f"{dst_prefix}.bias"), ] def rename_keys_for_self_attn(src_prefix: str, dst_prefix: str): self_attn_keys = [] self_attn_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.attention_weights", f"{dst_prefix}.attention_weights") ) self_attn_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.output_proj", f"{dst_prefix}.output_proj") ) self_attn_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.sampling_offsets", f"{dst_prefix}.sampling_offsets") ) self_attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.value_proj", f"{dst_prefix}.value_proj")) return self_attn_keys def rename_keys_for_encoder_layer(src_prefix: str, dst_prefix: str): encoder_keys = [] encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear1", f"{dst_prefix}.fc1")) encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear2", f"{dst_prefix}.fc2")) encoder_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.norm1", f"{dst_prefix}.self_attn_layer_norm") ) encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm2", f"{dst_prefix}.final_layer_norm")) encoder_keys.extend(rename_keys_for_self_attn(f"{src_prefix}.self_attn", f"{dst_prefix}.self_attn")) return encoder_keys # convolution layer for final features renamed_keys = [ (f"{src_prefix}.adapter_1.weight", f"{dst_prefix}.adapter_1.0.weight"), (f"{src_prefix}.adapter_1.norm.weight", f"{dst_prefix}.adapter_1.1.weight"), (f"{src_prefix}.adapter_1.norm.bias", f"{dst_prefix}.adapter_1.1.bias"), ] renamed_keys.extend( [ (f"{src_prefix}.layer_1.weight", f"{dst_prefix}.layer_1.0.weight"), (f"{src_prefix}.layer_1.norm.weight", f"{dst_prefix}.layer_1.1.weight"), (f"{src_prefix}.layer_1.norm.bias", f"{dst_prefix}.layer_1.1.bias"), ] ) # proj layers for i in range(3): for j in range(2): renamed_keys.extend( [ (f"{src_prefix}.input_proj.{i}.{j}.weight", f"{dst_prefix}.input_projections.{i}.{j}.weight"), (f"{src_prefix}.input_proj.{i}.{j}.bias", f"{dst_prefix}.input_projections.{i}.{j}.bias"), ] ) renamed_keys.extend([(f"{src_prefix}.transformer.level_embed", f"{dst_prefix}.level_embed")]) # layers for layer_idx in range(self.config.encoder_layers): renamed_keys.extend( rename_keys_for_encoder_layer( f"{src_prefix}.transformer.encoder.layers.{layer_idx}", f"{dst_prefix}.encoder.layers.{layer_idx}" ) ) # proj renamed_keys.extend( [ (f"{src_prefix}.mask_features.weight", f"{dst_prefix}.mask_projection.weight"), (f"{src_prefix}.mask_features.bias", f"{dst_prefix}.mask_projection.bias"), ] ) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) # Transformer Decoder def replace_keys_qkv_transformer_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "transformer_module.decoder.layers" src_prefix: str = "sem_seg_head.predictor" for i in range(self.config.decoder_layers - 1): # read in weights + bias of input projection layer of self-attention in_proj_weight = src_state_dict.pop( f"{src_prefix}.transformer_self_attention_layers.{i}.self_attn.in_proj_weight" ) in_proj_bias = src_state_dict.pop( f"{src_prefix}.transformer_self_attention_layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.q_proj.weight"] = in_proj_weight[:256, :] dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.q_proj.bias"] = in_proj_bias[:256] dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.k_proj.weight"] = in_proj_weight[256:512, :] dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.k_proj.bias"] = in_proj_bias[256:512] dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.v_proj.weight"] = in_proj_weight[-256:, :] dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.v_proj.bias"] = in_proj_bias[-256:] def replace_transformer_module(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "transformer_module" src_prefix: str = "sem_seg_head.predictor" def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str): return [ (f"{src_prefix}.weight", f"{dst_prefix}.weight"), (f"{src_prefix}.bias", f"{dst_prefix}.bias"), ] def rename_keys_for_attn(src_prefix: str, dst_prefix: str): attn_keys = [ (f"{src_prefix}.in_proj_bias", f"{dst_prefix}.in_proj_bias"), (f"{src_prefix}.in_proj_weight", f"{dst_prefix}.in_proj_weight"), ] attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.out_proj", f"{dst_prefix}.out_proj")) return attn_keys def rename_keys_for_self_attn(src_prefix: str, dst_prefix: str): attn_keys = [] attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.out_proj", f"{dst_prefix}.out_proj")) return attn_keys def rename_keys_for_query_transformer_layer(src_prefix: str, dst_prefix: str): query_transformer_layer_keys = [] query_transformer_layer_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.linear1", f"{dst_prefix}.linear1") ) query_transformer_layer_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.linear2", f"{dst_prefix}.linear2") ) query_transformer_layer_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.norm1", f"{dst_prefix}.norm1") ) query_transformer_layer_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.norm2", f"{dst_prefix}.norm2") ) query_transformer_layer_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.norm3", f"{dst_prefix}.norm3") ) query_transformer_layer_keys.extend( rename_keys_for_attn(f"{src_prefix}.self_attn", f"{dst_prefix}.self_attn") ) query_transformer_layer_keys.extend( rename_keys_for_attn(f"{src_prefix}.multihead_attn", f"{dst_prefix}.multihead_attn") ) return query_transformer_layer_keys def rename_keys_for_cross_attn_layer(src_prefix: str, dst_prefix: str): cross_attn_layer_keys = [] cross_attn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm", f"{dst_prefix}.norm")) cross_attn_layer_keys.extend( rename_keys_for_attn(f"{src_prefix}.multihead_attn", f"{dst_prefix}.multihead_attn") ) return cross_attn_layer_keys def rename_keys_for_self_attn_layer(src_prefix: str, dst_prefix: str): self_attn_layer_keys = [] self_attn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm", f"{dst_prefix}.norm")) self_attn_layer_keys.extend( rename_keys_for_self_attn(f"{src_prefix}.self_attn", f"{dst_prefix}.self_attn") ) return self_attn_layer_keys def rename_keys_for_ffn_layer(src_prefix: str, dst_prefix: str): ffn_layer_keys = [] ffn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear1", f"{dst_prefix}.linear1")) ffn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear2", f"{dst_prefix}.linear2")) ffn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm", f"{dst_prefix}.norm")) return ffn_layer_keys def rename_keys_for_transformer_decoder_layer(src_prefix: str, dst_prefix: str, idx: int): transformer_decoder_layer_keys = [] transformer_decoder_layer_keys.extend( rename_keys_for_cross_attn_layer( f"{src_prefix}.transformer_cross_attention_layers.{idx}", f"{dst_prefix}.{idx}.cross_attn" ) ) transformer_decoder_layer_keys.extend( rename_keys_for_self_attn_layer( f"{src_prefix}.transformer_self_attention_layers.{idx}", f"{dst_prefix}.{idx}.self_attn" ) ) transformer_decoder_layer_keys.extend( rename_keys_for_ffn_layer(f"{src_prefix}.transformer_ffn_layers.{idx}", f"{dst_prefix}.{idx}.ffn") ) return transformer_decoder_layer_keys # positional embedding for object queries renamed_keys = [ (f"{src_prefix}.query_embed.weight", f"{dst_prefix}.queries_embedder.weight"), (f"{src_prefix}.level_embed.weight", f"{dst_prefix}.level_embed.weight"), ] # norm renamed_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.decoder_norm", f"{dst_prefix}.decoder.decoder_norm") ) # proj renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.class_input_proj", f"{dst_prefix}.decoder.query_input_projection" ) ) renamed_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.class_embed", f"{dst_prefix}.decoder.class_embed") ) for i in range(3): renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.mask_embed.layers.{i}", f"{dst_prefix}.decoder.mask_embed.layers.{i}.0" ) ) # norm renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.class_transformer.decoder.norm", f"{dst_prefix}.decoder.query_transformer.decoder.norm" ) ) # transformer to update queries with task tokens for i in range(self.config.query_dec_layers): renamed_keys.extend( rename_keys_for_query_transformer_layer( f"{src_prefix}.class_transformer.decoder.layers.{i}", f"{dst_prefix}.decoder.query_transformer.decoder.layers.{i}", ) ) # decoder layers for i in range(self.config.decoder_layers - 1): renamed_keys.extend( rename_keys_for_transformer_decoder_layer( f"{src_prefix}", f"{dst_prefix}.decoder.layers", i, ) ) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) self.replace_keys_qkv_transformer_decoder(dst_state_dict, src_state_dict) def replace_task_mlp(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "task_encoder" src_prefix: str = "task_mlp" def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str): return [ (f"{src_prefix}.weight", f"{dst_prefix}.weight"), (f"{src_prefix}.bias", f"{dst_prefix}.bias"), ] renamed_keys = [] for i in range(2): renamed_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.layers.{i}", f"{dst_prefix}.task_mlp.layers.{i}.0") ) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) def replace_text_projector(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "text_mapper.text_projector" src_prefix: str = "text_projector" def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str): return [ (f"{src_prefix}.weight", f"{dst_prefix}.weight"), (f"{src_prefix}.bias", f"{dst_prefix}.bias"), ] renamed_keys = [] for i in range(self.config.text_encoder_config["text_encoder_proj_layers"]): renamed_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.layers.{i}", f"{dst_prefix}.{i}.0")) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) def replace_text_mapper(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "text_mapper.text_encoder" src_prefix: str = "text_encoder" self.replace_text_projector(dst_state_dict, src_state_dict) def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str): return [ (f"{src_prefix}.weight", f"{dst_prefix}.weight"), (f"{src_prefix}.bias", f"{dst_prefix}.bias"), ] def rename_keys_for_attn(src_prefix: str, dst_prefix: str): attn_keys = [ (f"{src_prefix}.in_proj_bias", f"{dst_prefix}.in_proj_bias"), (f"{src_prefix}.in_proj_weight", f"{dst_prefix}.in_proj_weight"), ] attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.out_proj", f"{dst_prefix}.out_proj")) return attn_keys def rename_keys_for_layer(src_prefix: str, dst_prefix: str): resblock_keys = [] resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.mlp.c_fc", f"{dst_prefix}.mlp.fc1")) resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.mlp.c_proj", f"{dst_prefix}.mlp.fc2")) resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.ln_1", f"{dst_prefix}.layer_norm1")) resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.ln_2", f"{dst_prefix}.layer_norm2")) resblock_keys.extend(rename_keys_for_attn(f"{src_prefix}.attn", f"{dst_prefix}.self_attn")) return resblock_keys renamed_keys = [ ("prompt_ctx.weight", "text_mapper.prompt_ctx.weight"), ] renamed_keys.extend( [ (f"{src_prefix}.positional_embedding", f"{dst_prefix}.positional_embedding"), (f"{src_prefix}.token_embedding.weight", f"{dst_prefix}.token_embedding.weight"), ] ) renamed_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.ln_final", f"{dst_prefix}.ln_final")) for i in range(self.config.text_encoder_config["text_encoder_num_layers"]): renamed_keys.extend( rename_keys_for_layer( f"{src_prefix}.transformer.resblocks.{i}", f"{dst_prefix}.transformer.layers.{i}" ) ) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) def convert(self, oneformer: OneFormerModel, is_swin: bool) -> OneFormerModel: dst_state_dict = TrackedStateDict(oneformer.state_dict()) src_state_dict = self.original_model.state_dict() self.replace_pixel_module(dst_state_dict, src_state_dict, is_swin) self.replace_transformer_module(dst_state_dict, src_state_dict) self.replace_task_mlp(dst_state_dict, src_state_dict) if self.config.is_training: self.replace_text_mapper(dst_state_dict, src_state_dict) logger.info(f"Missed keys are {pformat(dst_state_dict.diff())}") logger.info(f"Not copied keys are {pformat(src_state_dict.keys())}") logger.info("🙌 Done") oneformer.load_state_dict(dst_state_dict) return oneformer @staticmethod def using_dirs(checkpoints_dir: Path, config_dir: Path) -> Iterator[Tuple[object, Path, Path]]: checkpoints: List[Path] = checkpoints_dir.glob("**/*.pth") for checkpoint in checkpoints: logger.info(f"💪 Converting {checkpoint.stem}") # find associated config file config: Path = config_dir / f"{checkpoint.stem}.yaml" yield config, checkpoint def post_process_sem_seg_output(outputs: OneFormerForUniversalSegmentationOutput, target_size: Tuple[int, int]): # class_queries_logits has shape [BATCH, QUERIES, CLASSES + 1] class_queries_logits = outputs.class_queries_logits # masks_queries_logits has shape [BATCH, QUERIES, HEIGHT, WIDTH] masks_queries_logits = outputs.masks_queries_logits if target_size is not None: masks_queries_logits = torch.nn.functional.interpolate( masks_queries_logits, size=target_size, mode="bilinear", align_corners=False, ) # remove the null class `[..., :-1]` masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1] # mask probs has shape [BATCH, QUERIES, HEIGHT, WIDTH] masks_probs = masks_queries_logits.sigmoid() # now we want to sum over the queries, # $ out_{c,h,w} = \sum_q p_{q,c} * m_{q,h,w} $ # where $ softmax(p) \in R^{q, c} $ is the mask classes # and $ sigmoid(m) \in R^{q, h, w}$ is the mask probabilities # b(atch)q(uery)c(lasses), b(atch)q(uery)h(eight)w(idth) segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs) return segmentation def test( original_model, our_model: OneFormerForUniversalSegmentation, processor: OneFormerProcessor, model_repo: str, ): def _preprocess_text(text_list=None, max_length=77): if text_list is None: raise ValueError("tokens cannot be None.") tokens = tokenizer(text_list, padding="max_length", max_length=max_length, truncation=True) attention_masks, input_ids = tokens["attention_mask"], tokens["input_ids"] token_inputs = [] for attn_mask, input_id in zip(attention_masks, input_ids): token = torch.tensor(attn_mask) * torch.tensor(input_id) token_inputs.append(token.unsqueeze(0)) token_inputs = torch.cat(token_inputs, dim=0) return token_inputs with torch.no_grad(): tokenizer = CLIPTokenizer.from_pretrained(model_repo) original_model = original_model.eval() our_model = our_model.eval() im = prepare_img() tr = T.Compose( [ T.Resize((640, 640)), T.ToTensor(), T.Normalize( mean=torch.tensor([123.675, 116.280, 103.530]) / 255.0, std=torch.tensor([58.395, 57.120, 57.375]) / 255.0, ), ], ) x = tr(im).unsqueeze(0) task_input = ["the task is semantic"] task_token = _preprocess_text(task_input, max_length=processor.task_seq_length) original_model_backbone_features = original_model.backbone(x.clone()) our_model_output: OneFormerModelOutput = our_model.model(x.clone(), task_token, output_hidden_states=True) for original_model_feature, our_model_feature in zip( original_model_backbone_features.values(), our_model_output.encoder_hidden_states ): assert torch.allclose( original_model_feature, our_model_feature, atol=3e-3 ), "The backbone features are not the same." mask_features, _, multi_scale_features, _, _ = original_model.sem_seg_head.pixel_decoder.forward_features( original_model_backbone_features ) original_pixel_decoder_features = [] original_pixel_decoder_features.append(mask_features) for i in range(len(multi_scale_features)): original_pixel_decoder_features.append(multi_scale_features[i]) for original_model_feature, our_model_feature in zip( original_pixel_decoder_features, our_model_output.pixel_decoder_hidden_states ): assert torch.allclose( original_model_feature, our_model_feature, atol=3e-4 ), "The pixel decoder feature are not the same" tr_complete = T.Compose( [ T.Resize((640, 640)), T.ToTensor(), ], ) y = (tr_complete(im) * 255.0).to(torch.int).float() # let's test the full model original_model_out = original_model([{"image": y.clone(), "task": "The task is semantic"}]) original_segmentation = original_model_out[0]["sem_seg"] our_model_out: OneFormerForUniversalSegmentationOutput = our_model( x.clone(), task_token, output_hidden_states=True ) our_segmentation = post_process_sem_seg_output(our_model_out, target_size=(640, 640))[0] assert torch.allclose( original_segmentation, our_segmentation, atol=1e-3 ), "The segmentation image is not the same." logger.info("✅ Test passed!") def get_name(checkpoint_file: Path): model_name_raw: str = checkpoint_file.stem backbone = "swin" if "swin" in model_name_raw else "dinat" dataset = "" if "coco" in model_name_raw: dataset = "coco" elif "ade20k" in model_name_raw: dataset = "ade20k" elif "cityscapes" in model_name_raw: dataset = "cityscapes" else: raise ValueError( f"{model_name_raw} must be wrong since we didn't find 'coco' or 'ade20k' or 'cityscapes' in it " ) backbone_types = ["tiny", "large"] backbone_type = list(filter(lambda x: x in model_name_raw, backbone_types))[0] model_name = f"oneformer_{dataset}_{backbone}_{backbone_type}" return model_name if __name__ == "__main__": parser = ArgumentParser( description=( "Command line to convert the original oneformer models (with swin backbone) to transformers" " implementation." ) ) parser.add_argument( "--checkpoints_dir", type=Path, help=( "A directory containing the model's checkpoints. The directory has to have the following structure:" " structure: <DIR_NAME>/<DATASET_NAME>/<CONFIG_NAME>.pth; where <CONFIG_NAME> name must follow the" " following nomenclature nomenclature: oneformer_<DATASET_NAME>_<BACKBONE>_<BACKBONE_TYPE>" ), ) parser.add_argument( "--configs_dir", type=Path, help=( "A directory containing the model's configs, see detectron2 doc. The directory has to have the following" " structure: <DIR_NAME>/<DATASET_NAME>/<CONFIG_NAME>.yaml; where <CONFIG_NAME> name must follow the" " following nomenclature nomenclature: oneformer_<DATASET_NAME>_<BACKBONE>_<BACKBONE_TYPE>" ), ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=Path, help="Path to the folder to output PyTorch models.", ) parser.add_argument( "--oneformer_dir", required=True, type=Path, help=( "A path to OneFormer's original implementation directory. You can download from here: " "https://github.com/SHI-Labs/OneFormer" ), ) args = parser.parse_args() checkpoints_dir: Path = args.checkpoints_dir config_dir: Path = args.configs_dir save_directory: Path = args.pytorch_dump_folder_path oneformer_dir: Path = args.oneformer_dir # append the path to the parents to oneformer dir sys.path.append(str(oneformer_dir.parent)) # and import what's needed from OneFormer.oneformer import add_common_config, add_dinat_config, add_oneformer_config, add_swin_config from OneFormer.oneformer.oneformer_model import OneFormer as OriginalOneFormer if not save_directory.exists(): save_directory.mkdir(parents=True) for config_file, checkpoint_file in OriginalOneFormerCheckpointToOursConverter.using_dirs( checkpoints_dir, config_dir ): processor = OriginalOneFormerConfigToProcessorConverter()( setup_cfg(Args(config_file=config_file)), os.path.join("shi-labs", config_file.stem) ) original_config = setup_cfg(Args(config_file=config_file)) oneformer_kwargs = OriginalOneFormer.from_config(original_config) original_model = OriginalOneFormer(**oneformer_kwargs).eval() DetectionCheckpointer(original_model).load(str(checkpoint_file)) is_swin = "swin" in config_file.stem config: OneFormerConfig = OriginalOneFormerConfigToOursConverter()(original_config, is_swin) oneformer = OneFormerModel(config=config).eval() converter = OriginalOneFormerCheckpointToOursConverter(original_model, config) oneformer = converter.convert(oneformer, is_swin) oneformer_for_universal_segmentation = OneFormerForUniversalSegmentation(config=config).eval() oneformer_for_universal_segmentation.model = oneformer test( original_model, oneformer_for_universal_segmentation, processor, os.path.join("shi-labs", config_file.stem), ) model_name = get_name(checkpoint_file) logger.info(f"🪄 Saving {model_name}") processor.save_pretrained(save_directory / model_name) oneformer_for_universal_segmentation.save_pretrained(save_directory / model_name) processor.push_to_hub( repo_id=os.path.join("shi-labs", config_file.stem), commit_message="Add configs", use_temp_dir=True, ) oneformer_for_universal_segmentation.push_to_hub( repo_id=os.path.join("shi-labs", config_file.stem), commit_message="Add model", use_temp_dir=True, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/layoutlmv3/feature_extraction_layoutlmv3.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Feature extractor class for LayoutLMv3. """ import warnings from ...utils import logging from .image_processing_layoutlmv3 import LayoutLMv3ImageProcessor logger = logging.get_logger(__name__) class LayoutLMv3FeatureExtractor(LayoutLMv3ImageProcessor): def __init__(self, *args, **kwargs) -> None: warnings.warn( "The class LayoutLMv3FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv3ImageProcessor instead.", FutureWarning, ) super().__init__(*args, **kwargs)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/layoutlmv3/tokenization_layoutlmv3_fast.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fast tokenization class for LayoutLMv3. It overwrites 2 methods of the slow tokenizer class, namely _batch_encode_plus and _encode_plus, in which the Rust tokenizer is used. """ import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import ( BatchEncoding, EncodedInput, PaddingStrategy, PreTokenizedInput, TensorType, TextInput, TextInputPair, TruncationStrategy, ) from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import add_end_docstrings, logging from .tokenization_layoutlmv3 import ( LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING, LayoutLMv3Tokenizer, ) logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/raw/main/vocab.json", "microsoft/layoutlmv3-large": "https://huggingface.co/microsoft/layoutlmv3-large/raw/main/vocab.json", }, "merges_file": { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/raw/main/merges.txt", "microsoft/layoutlmv3-large": "https://huggingface.co/microsoft/layoutlmv3-large/raw/main/merges.txt", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "microsoft/layoutlmv3-base": 512, "microsoft/layoutlmv3-large": 512, } class LayoutLMv3TokenizerFast(PreTrainedTokenizerFast): r""" Construct a "fast" LayoutLMv3 tokenizer (backed by HuggingFace's *tokenizers* library). Based on BPE. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (RoBERTa tokenizer detect beginning of words by the preceding space). trim_offsets (`bool`, *optional*, defaults to `True`): Whether the post processing step should trim offsets to avoid including whitespaces. cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): The bounding box to use for the special [CLS] token. sep_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): The bounding box to use for the special [SEP] token. pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): The bounding box to use for the special [PAD] token. pad_token_label (`int`, *optional*, defaults to -100): The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's CrossEntropyLoss. only_label_first_subword (`bool`, *optional*, defaults to `True`): Whether or not to only label the first subword, in case word labels are provided. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = LayoutLMv3Tokenizer def __init__( self, vocab_file=None, merges_file=None, tokenizer_file=None, errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=True, trim_offsets=True, cls_token_box=[0, 0, 0, 0], sep_token_box=[0, 0, 0, 0], pad_token_box=[0, 0, 0, 0], pad_token_label=-100, only_label_first_subword=True, **kwargs, ): super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, errors=errors, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, trim_offsets=trim_offsets, cls_token_box=cls_token_box, sep_token_box=sep_token_box, pad_token_box=pad_token_box, pad_token_label=pad_token_label, only_label_first_subword=only_label_first_subword, **kwargs, ) pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) pre_tok_state["add_prefix_space"] = add_prefix_space self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) self.add_prefix_space = add_prefix_space tokenizer_component = "post_processor" tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None) if tokenizer_component_instance: state = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: state["sep"] = tuple(state["sep"]) if "cls" in state: state["cls"] = tuple(state["cls"]) changes_to_apply = False if state.get("add_prefix_space", add_prefix_space) != add_prefix_space: state["add_prefix_space"] = add_prefix_space changes_to_apply = True if state.get("trim_offsets", trim_offsets) != trim_offsets: state["trim_offsets"] = trim_offsets changes_to_apply = True if changes_to_apply: component_class = getattr(processors, state.pop("type")) new_value = component_class(**state) setattr(self.backend_tokenizer, tokenizer_component, new_value) # additional properties self.cls_token_box = cls_token_box self.sep_token_box = sep_token_box self.pad_token_box = pad_token_box self.pad_token_label = pad_token_label self.only_label_first_subword = only_label_first_subword @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.__call__ def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, boxes: Union[List[List[int]], List[List[List[int]]]] = None, word_labels: Optional[Union[List[int], List[List[int]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of sequences with word-level normalized bounding boxes and optional labels. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings (words of a single example or questions of a batch of examples) or a list of list of strings (batch of words). text_pair (`List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence should be a list of strings (pretokenized string). boxes (`List[List[int]]`, `List[List[List[int]]]`): Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale. word_labels (`List[int]`, `List[List[int]]`, *optional*): Word-level integer labels (for token classification tasks such as FUNSD, CORD). """ # Input type checking for clearer error def _is_valid_text_input(t): if isinstance(t, str): # Strings are fine return True elif isinstance(t, (list, tuple)): # List are fine as long as they are... if len(t) == 0: # ... empty return True elif isinstance(t[0], str): # ... list of strings return True elif isinstance(t[0], (list, tuple)): # ... list with an empty list or with a list of strings return len(t[0]) == 0 or isinstance(t[0][0], str) else: return False else: return False if text_pair is not None: # in case text + text_pair are provided, text = questions, text_pair = words if not _is_valid_text_input(text): raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ") if not isinstance(text_pair, (list, tuple)): raise ValueError( "Words must be of type `List[str]` (single pretokenized example), " "or `List[List[str]]` (batch of pretokenized examples)." ) else: # in case only text is provided => must be words if not isinstance(text, (list, tuple)): raise ValueError( "Words must be of type `List[str]` (single pretokenized example), " "or `List[List[str]]` (batch of pretokenized examples)." ) if text_pair is not None: is_batched = isinstance(text, (list, tuple)) else: is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple)) words = text if text_pair is None else text_pair if boxes is None: raise ValueError("You must provide corresponding bounding boxes") if is_batched: if len(words) != len(boxes): raise ValueError("You must provide words and boxes for an equal amount of examples") for words_example, boxes_example in zip(words, boxes): if len(words_example) != len(boxes_example): raise ValueError("You must provide as many words as there are bounding boxes") else: if len(words) != len(boxes): raise ValueError("You must provide as many words as there are bounding boxes") if is_batched: if text_pair is not None and len(text) != len(text_pair): raise ValueError( f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:" f" {len(text_pair)}." ) batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text is_pair = bool(text_pair is not None) return self.batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( text=text, text_pair=text_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.batch_encode_plus def batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], ], is_pair: bool = None, boxes: Optional[List[List[List[int]]]] = None, word_labels: Optional[Union[List[int], List[List[int]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.tokenize def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]: batched_input = [(text, pair)] if pair else [text] encodings = self._tokenizer.encode_batch( batched_input, add_special_tokens=add_special_tokens, is_pretokenized=False, **kwargs ) return encodings[0].tokens @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.encode_plus def encode_plus( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, boxes: Optional[List[List[int]]] = None, word_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated, `__call__` should be used instead. Args: text (`str`, `List[str]`, `List[List[str]]`): The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings. text_pair (`List[str]` or `List[int]`, *optional*): Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a list of list of strings (words of a batch of examples). """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._encode_plus( text=text, boxes=boxes, text_pair=text_pair, word_labels=word_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], ], is_pair: bool = None, boxes: Optional[List[List[List[int]]]] = None, word_labels: Optional[List[List[int]]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, ) -> BatchEncoding: if not isinstance(batch_text_or_text_pairs, list): raise TypeError(f"batch_text_or_text_pairs has to be a list (got {type(batch_text_or_text_pairs)})") # Set the truncation and padding strategy and restore the initial configuration self.set_truncation_and_padding( padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, ) if is_pair: batch_text_or_text_pairs = [(text.split(), text_pair) for text, text_pair in batch_text_or_text_pairs] encodings = self._tokenizer.encode_batch( batch_text_or_text_pairs, add_special_tokens=add_special_tokens, is_pretokenized=True, # we set this to True as LayoutLMv3 always expects pretokenized inputs ) # Convert encoding to dict # `Tokens` has type: Tuple[ # List[Dict[str, List[List[int]]]] or List[Dict[str, 2D-Tensor]], # List[EncodingFast] # ] # with nested dimensions corresponding to batch, overflows, sequence length tokens_and_encodings = [ self._convert_encoding( encoding=encoding, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=True if word_labels is not None else return_offsets_mapping, # we use offsets to create the labels return_length=return_length, verbose=verbose, ) for encoding in encodings ] # Convert the output to have dict[list] from list[dict] and remove the additional overflows dimension # From (variable) shape (batch, overflows, sequence length) to ~ (batch * overflows, sequence length) # (we say ~ because the number of overflow varies with the example in the batch) # # To match each overflowing sample with the original sample in the batch # we add an overflow_to_sample_mapping array (see below) sanitized_tokens = {} for key in tokens_and_encodings[0][0].keys(): stack = [e for item, _ in tokens_and_encodings for e in item[key]] sanitized_tokens[key] = stack sanitized_encodings = [e for _, item in tokens_and_encodings for e in item] # If returning overflowing tokens, we need to return a mapping # from the batch idx to the original sample if return_overflowing_tokens: overflow_to_sample_mapping = [] for i, (toks, _) in enumerate(tokens_and_encodings): overflow_to_sample_mapping += [i] * len(toks["input_ids"]) sanitized_tokens["overflow_to_sample_mapping"] = overflow_to_sample_mapping for input_ids in sanitized_tokens["input_ids"]: self._eventual_warn_about_too_long_sequence(input_ids, max_length, verbose) # create the token boxes token_boxes = [] for batch_index in range(len(sanitized_tokens["input_ids"])): if return_overflowing_tokens: original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index] else: original_index = batch_index token_boxes_example = [] for id, sequence_id, word_id in zip( sanitized_tokens["input_ids"][batch_index], sanitized_encodings[batch_index].sequence_ids, sanitized_encodings[batch_index].word_ids, ): if word_id is not None: if is_pair and sequence_id == 0: token_boxes_example.append(self.pad_token_box) else: token_boxes_example.append(boxes[original_index][word_id]) else: if id == self.cls_token_id: token_boxes_example.append(self.cls_token_box) elif id == self.sep_token_id: token_boxes_example.append(self.sep_token_box) elif id == self.pad_token_id: token_boxes_example.append(self.pad_token_box) else: raise ValueError("Id not recognized") token_boxes.append(token_boxes_example) sanitized_tokens["bbox"] = token_boxes # optionally, create the labels if word_labels is not None: labels = [] for batch_index in range(len(sanitized_tokens["input_ids"])): if return_overflowing_tokens: original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index] else: original_index = batch_index labels_example = [] previous_token_empty = False for id, offset, word_id in zip( sanitized_tokens["input_ids"][batch_index], sanitized_tokens["offset_mapping"][batch_index], sanitized_encodings[batch_index].word_ids, ): if word_id is not None: if self.only_label_first_subword: if offset[0] == 0 and not previous_token_empty: # Use the real label id for the first token of the word, and padding ids for the remaining tokens labels_example.append(word_labels[original_index][word_id]) else: labels_example.append(self.pad_token_label) if offset == (0, 0): previous_token_empty = True else: previous_token_empty = False else: labels_example.append(word_labels[original_index][word_id]) else: labels_example.append(self.pad_token_label) labels.append(labels_example) sanitized_tokens["labels"] = labels # finally, remove offsets if the user didn't want them if not return_offsets_mapping: del sanitized_tokens["offset_mapping"] return BatchEncoding(sanitized_tokens, sanitized_encodings, tensor_type=return_tensors) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast._encode_plus def _encode_plus( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, boxes: Optional[List[List[int]]] = None, word_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[bool] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: # make it a batched input # 2 options: # 1) only text, in case text must be a list of str # 2) text + text_pair, in which case text = str and text_pair a list of str batched_input = [(text, text_pair)] if text_pair else [text] batched_boxes = [boxes] batched_word_labels = [word_labels] if word_labels is not None else None batched_output = self._batch_encode_plus( batched_input, is_pair=bool(text_pair is not None), boxes=batched_boxes, word_labels=batched_word_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) # Return tensor is None, then we can remove the leading batch axis # Overflowing tokens are returned as a batch of output so we keep them in this case if return_tensors is None and not return_overflowing_tokens: batched_output = BatchEncoding( { key: value[0] if len(value) > 0 and isinstance(value[0], list) else value for key, value in batched_output.items() }, batched_output.encodings, ) self._eventual_warn_about_too_long_sequence(batched_output["input_ids"], max_length, verbose) return batched_output # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast._pad def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Pad encoded inputs (on left/right and up to predefined length or max length in the batch) Args: encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ # Load from model defaults if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names required_input = encoded_inputs[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: max_length = len(required_input) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length # Initialize attention mask if not present. if return_attention_mask and "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * len(required_input) if needs_to_be_padded: difference = max_length - len(required_input) if self.padding_side == "right": if return_attention_mask: encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = ( encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference ) if "bbox" in encoded_inputs: encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference if "labels" in encoded_inputs: encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference elif self.padding_side == "left": if return_attention_mask: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ "token_type_ids" ] if "bbox" in encoded_inputs: encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"] if "labels" in encoded_inputs: encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"] if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input else: raise ValueError("Invalid padding strategy:" + str(self.padding_side)) return encoded_inputs # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files) def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id] if token_ids_1 is None: return output return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Args: Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not: make use of token type ids, therefore a list of zeros is returned. token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/layoutlmv3/configuration_layoutlmv3.py
# coding=utf-8 # Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ LayoutLMv3 model configuration""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType logger = logging.get_logger(__name__) LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP = { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json", } class LayoutLMv3Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`LayoutLMv3Model`]. It is used to instantiate an LayoutLMv3 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the LayoutLMv3 [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50265): Vocabulary size of the LayoutLMv3 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`LayoutLMv3Model`]. hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`LayoutLMv3Model`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. max_2d_position_embeddings (`int`, *optional*, defaults to 1024): The maximum value that the 2D position embedding might ever be used with. Typically set this to something large just in case (e.g., 1024). coordinate_size (`int`, *optional*, defaults to `128`): Dimension of the coordinate embeddings. shape_size (`int`, *optional*, defaults to `128`): Dimension of the width and height embeddings. has_relative_attention_bias (`bool`, *optional*, defaults to `True`): Whether or not to use a relative attention bias in the self-attention mechanism. rel_pos_bins (`int`, *optional*, defaults to 32): The number of relative position bins to be used in the self-attention mechanism. max_rel_pos (`int`, *optional*, defaults to 128): The maximum number of relative positions to be used in the self-attention mechanism. max_rel_2d_pos (`int`, *optional*, defaults to 256): The maximum number of relative 2D positions in the self-attention mechanism. rel_2d_pos_bins (`int`, *optional*, defaults to 64): The number of 2D relative position bins in the self-attention mechanism. has_spatial_attention_bias (`bool`, *optional*, defaults to `True`): Whether or not to use a spatial attention bias in the self-attention mechanism. visual_embed (`bool`, *optional*, defaults to `True`): Whether or not to add patch embeddings. input_size (`int`, *optional*, defaults to `224`): The size (resolution) of the images. num_channels (`int`, *optional*, defaults to `3`): The number of channels of the images. patch_size (`int`, *optional*, defaults to `16`) The size (resolution) of the patches. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Example: ```python >>> from transformers import LayoutLMv3Config, LayoutLMv3Model >>> # Initializing a LayoutLMv3 microsoft/layoutlmv3-base style configuration >>> configuration = LayoutLMv3Config() >>> # Initializing a model (with random weights) from the microsoft/layoutlmv3-base style configuration >>> model = LayoutLMv3Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "layoutlmv3" def __init__( self, vocab_size=50265, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-5, pad_token_id=1, bos_token_id=0, eos_token_id=2, max_2d_position_embeddings=1024, coordinate_size=128, shape_size=128, has_relative_attention_bias=True, rel_pos_bins=32, max_rel_pos=128, rel_2d_pos_bins=64, max_rel_2d_pos=256, has_spatial_attention_bias=True, text_embed=True, visual_embed=True, input_size=224, num_channels=3, patch_size=16, classifier_dropout=None, **kwargs, ): super().__init__( vocab_size=vocab_size, hidden_size=hidden_size, num_hidden_layers=num_hidden_layers, num_attention_heads=num_attention_heads, intermediate_size=intermediate_size, hidden_act=hidden_act, hidden_dropout_prob=hidden_dropout_prob, attention_probs_dropout_prob=attention_probs_dropout_prob, max_position_embeddings=max_position_embeddings, type_vocab_size=type_vocab_size, initializer_range=initializer_range, layer_norm_eps=layer_norm_eps, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs, ) self.max_2d_position_embeddings = max_2d_position_embeddings self.coordinate_size = coordinate_size self.shape_size = shape_size self.has_relative_attention_bias = has_relative_attention_bias self.rel_pos_bins = rel_pos_bins self.max_rel_pos = max_rel_pos self.has_spatial_attention_bias = has_spatial_attention_bias self.rel_2d_pos_bins = rel_2d_pos_bins self.max_rel_2d_pos = max_rel_2d_pos self.text_embed = text_embed self.visual_embed = visual_embed self.input_size = input_size self.num_channels = num_channels self.patch_size = patch_size self.classifier_dropout = classifier_dropout class LayoutLMv3OnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.12") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) else: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels"}), ] ) @property def atol_for_validation(self) -> float: return 1e-5 @property def default_onnx_opset(self) -> int: return 12 def generate_dummy_inputs( self, processor: "ProcessorMixin", batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional["TensorType"] = None, num_channels: int = 3, image_width: int = 40, image_height: int = 40, ) -> Mapping[str, Any]: """ Generate inputs to provide to the ONNX exporter for the specific framework Args: processor ([`ProcessorMixin`]): The processor associated with this model configuration. batch_size (`int`, *optional*, defaults to -1): The batch size to export the model for (-1 means dynamic axis). seq_length (`int`, *optional*, defaults to -1): The sequence length to export the model for (-1 means dynamic axis). is_pair (`bool`, *optional*, defaults to `False`): Indicate if the input is a pair (sentence 1, sentence 2). framework (`TensorType`, *optional*, defaults to `None`): The framework (PyTorch or TensorFlow) that the processor will generate tensors for. num_channels (`int`, *optional*, defaults to 3): The number of channels of the generated images. image_width (`int`, *optional*, defaults to 40): The width of the generated images. image_height (`int`, *optional*, defaults to 40): The height of the generated images. Returns: Mapping[str, Any]: holding the kwargs to provide to the model's forward function """ # A dummy image is used so OCR should not be applied setattr(processor.image_processor, "apply_ocr", False) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX batch_size = compute_effective_axis_dimension( batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX token_to_add = processor.tokenizer.num_special_tokens_to_add(is_pair) seq_length = compute_effective_axis_dimension( seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add ) # Generate dummy inputs according to compute batch and sequence dummy_text = [[" ".join([processor.tokenizer.unk_token]) * seq_length]] * batch_size # Generate dummy bounding boxes dummy_bboxes = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) dummy_image = self._generate_dummy_images(batch_size, num_channels, image_height, image_width) inputs = dict( processor( dummy_image, text=dummy_text, boxes=dummy_bboxes, return_tensors=framework, ) ) return inputs
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/layoutlmv3/modeling_layoutlmv3.py
# coding=utf-8 # Copyright 2022 Microsoft Research and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch LayoutLMv3 model.""" import collections import math from typing import Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_layoutlmv3 import LayoutLMv3Config logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "LayoutLMv3Config" LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/layoutlmv3-base", "microsoft/layoutlmv3-large", # See all LayoutLMv3 models at https://huggingface.co/models?filter=layoutlmv3 ] LAYOUTLMV3_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`LayoutLMv3Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ LAYOUTLMV3_MODEL_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] token. See `pixel_values` for `patch_sequence_length`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*): Bounding boxes of each input sequence tokens. Selected in the range `[0, config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1) format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1, y1) represents the position of the lower right corner. Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] token. See `pixel_values` for `patch_sequence_length`. pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Batch of document images. Each image is divided into patches of shape `(num_channels, config.patch_size, config.patch_size)` and the total number of patches (=`patch_sequence_length`) equals to `((height / config.patch_size) * (width / config.patch_size))`. attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] token. See `pixel_values` for `patch_sequence_length`. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] token. See `pixel_values` for `patch_sequence_length`. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] token. See `pixel_values` for `patch_sequence_length`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ LAYOUTLMV3_DOWNSTREAM_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*): Bounding boxes of each input sequence tokens. Selected in the range `[0, config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1) format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1, y1) represents the position of the lower right corner. pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Batch of document images. Each image is divided into patches of shape `(num_channels, config.patch_size, config.patch_size)` and the total number of patches (=`patch_sequence_length`) equals to `((height / config.patch_size) * (width / config.patch_size))`. attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class LayoutLMv3PatchEmbeddings(nn.Module): """LayoutLMv3 image (patch) embeddings. This class also automatically interpolates the position embeddings for varying image sizes.""" def __init__(self, config): super().__init__() image_size = ( config.input_size if isinstance(config.input_size, collections.abc.Iterable) else (config.input_size, config.input_size) ) patch_size = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable) else (config.patch_size, config.patch_size) ) self.patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) self.proj = nn.Conv2d(config.num_channels, config.hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values, position_embedding=None): embeddings = self.proj(pixel_values) if position_embedding is not None: # interpolate the position embedding to the corresponding size position_embedding = position_embedding.view(1, self.patch_shape[0], self.patch_shape[1], -1) position_embedding = position_embedding.permute(0, 3, 1, 2) patch_height, patch_width = embeddings.shape[2], embeddings.shape[3] position_embedding = F.interpolate(position_embedding, size=(patch_height, patch_width), mode="bicubic") embeddings = embeddings + position_embedding embeddings = embeddings.flatten(2).transpose(1, 2) return embeddings class LayoutLMv3TextEmbeddings(nn.Module): """ LayoutLMv3 text embeddings. Same as `RobertaEmbeddings` but with added spatial (layout) embeddings. """ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.coordinate_size) self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.coordinate_size) self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.shape_size) self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.shape_size) def calculate_spatial_position_embeddings(self, bbox): try: left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) except IndexError as e: raise IndexError("The `bbox` coordinate values should be within 0-1000 range.") from e h_position_embeddings = self.h_position_embeddings(torch.clip(bbox[:, :, 3] - bbox[:, :, 1], 0, 1023)) w_position_embeddings = self.w_position_embeddings(torch.clip(bbox[:, :, 2] - bbox[:, :, 0], 0, 1023)) # below is the difference between LayoutLMEmbeddingsV2 (torch.cat) and LayoutLMEmbeddingsV1 (add) spatial_position_embeddings = torch.cat( [ left_position_embeddings, upper_position_embeddings, right_position_embeddings, lower_position_embeddings, h_position_embeddings, w_position_embeddings, ], dim=-1, ) return spatial_position_embeddings def create_position_ids_from_input_ids(self, input_ids, padding_idx): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask)) * mask return incremental_indices.long() + padding_idx def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) def forward( self, input_ids=None, bbox=None, token_type_ids=None, position_ids=None, inputs_embeds=None, ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx).to( input_ids.device ) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings spatial_position_embeddings = self.calculate_spatial_position_embeddings(bbox) embeddings = embeddings + spatial_position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class LayoutLMv3PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LayoutLMv3Config base_model_prefix = "layoutlmv3" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) class LayoutLMv3SelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.has_relative_attention_bias = config.has_relative_attention_bias self.has_spatial_attention_bias = config.has_spatial_attention_bias def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def cogview_attention(self, attention_scores, alpha=32): """ https://arxiv.org/abs/2105.13290 Section 2.4 Stabilization of training: Precision Bottleneck Relaxation (PB-Relax). A replacement of the original nn.Softmax(dim=-1)(attention_scores). Seems the new attention_probs will result in a slower speed and a little bias. Can use torch.allclose(standard_attention_probs, cogview_attention_probs, atol=1e-08) for comparison. The smaller atol (e.g., 1e-08), the better. """ scaled_attention_scores = attention_scores / alpha max_value = scaled_attention_scores.amax(dim=(-1)).unsqueeze(-1) new_attention_scores = (scaled_attention_scores - max_value) * alpha return nn.Softmax(dim=-1)(new_attention_scores) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, rel_pos=None, rel_2d_pos=None, ): mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. # The attention scores QT K/√d could be significantly larger than input elements, and result in overflow. # Changing the computational order into QT(K/√d) alleviates the problem. (https://arxiv.org/pdf/2105.13290.pdf) attention_scores = torch.matmul(query_layer / math.sqrt(self.attention_head_size), key_layer.transpose(-1, -2)) if self.has_relative_attention_bias and self.has_spatial_attention_bias: attention_scores += (rel_pos + rel_2d_pos) / math.sqrt(self.attention_head_size) elif self.has_relative_attention_bias: attention_scores += rel_pos / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in RobertaModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. # Use the trick of the CogView paper to stablize training attention_probs = self.cogview_attention(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.roberta.modeling_roberta.RobertaSelfOutput class LayoutLMv3SelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.layoutlmv2.modeling_layoutlmv2.LayoutLMv2Attention with LayoutLMv2->LayoutLMv3 class LayoutLMv3Attention(nn.Module): def __init__(self, config): super().__init__() self.self = LayoutLMv3SelfAttention(config) self.output = LayoutLMv3SelfOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, rel_pos=None, rel_2d_pos=None, ): self_outputs = self.self( hidden_states, attention_mask, head_mask, output_attentions, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.layoutlmv2.modeling_layoutlmv2.LayoutLMv2Layer with LayoutLMv2->LayoutLMv3 class LayoutLMv3Layer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = LayoutLMv3Attention(config) self.intermediate = LayoutLMv3Intermediate(config) self.output = LayoutLMv3Output(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, rel_pos=None, rel_2d_pos=None, ): self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class LayoutLMv3Encoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([LayoutLMv3Layer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False self.has_relative_attention_bias = config.has_relative_attention_bias self.has_spatial_attention_bias = config.has_spatial_attention_bias if self.has_relative_attention_bias: self.rel_pos_bins = config.rel_pos_bins self.max_rel_pos = config.max_rel_pos self.rel_pos_bias = nn.Linear(self.rel_pos_bins, config.num_attention_heads, bias=False) if self.has_spatial_attention_bias: self.max_rel_2d_pos = config.max_rel_2d_pos self.rel_2d_pos_bins = config.rel_2d_pos_bins self.rel_pos_x_bias = nn.Linear(self.rel_2d_pos_bins, config.num_attention_heads, bias=False) self.rel_pos_y_bias = nn.Linear(self.rel_2d_pos_bins, config.num_attention_heads, bias=False) def relative_position_bucket(self, relative_position, bidirectional=True, num_buckets=32, max_distance=128): ret = 0 if bidirectional: num_buckets //= 2 ret += (relative_position > 0).long() * num_buckets n = torch.abs(relative_position) else: n = torch.max(-relative_position, torch.zeros_like(relative_position)) # now n is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = n < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) ret += torch.where(is_small, n, val_if_large) return ret def _cal_1d_pos_emb(self, position_ids): rel_pos_mat = position_ids.unsqueeze(-2) - position_ids.unsqueeze(-1) rel_pos = self.relative_position_bucket( rel_pos_mat, num_buckets=self.rel_pos_bins, max_distance=self.max_rel_pos, ) rel_pos = self.rel_pos_bias.weight.t()[rel_pos].permute(0, 3, 1, 2) rel_pos = rel_pos.contiguous() return rel_pos def _cal_2d_pos_emb(self, bbox): position_coord_x = bbox[:, :, 0] position_coord_y = bbox[:, :, 3] rel_pos_x_2d_mat = position_coord_x.unsqueeze(-2) - position_coord_x.unsqueeze(-1) rel_pos_y_2d_mat = position_coord_y.unsqueeze(-2) - position_coord_y.unsqueeze(-1) rel_pos_x = self.relative_position_bucket( rel_pos_x_2d_mat, num_buckets=self.rel_2d_pos_bins, max_distance=self.max_rel_2d_pos, ) rel_pos_y = self.relative_position_bucket( rel_pos_y_2d_mat, num_buckets=self.rel_2d_pos_bins, max_distance=self.max_rel_2d_pos, ) rel_pos_x = self.rel_pos_x_bias.weight.t()[rel_pos_x].permute(0, 3, 1, 2) rel_pos_y = self.rel_pos_y_bias.weight.t()[rel_pos_y].permute(0, 3, 1, 2) rel_pos_x = rel_pos_x.contiguous() rel_pos_y = rel_pos_y.contiguous() rel_2d_pos = rel_pos_x + rel_pos_y return rel_2d_pos def forward( self, hidden_states, bbox=None, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, position_ids=None, patch_height=None, patch_width=None, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None rel_pos = self._cal_1d_pos_emb(position_ids) if self.has_relative_attention_bias else None rel_2d_pos = self._cal_2d_pos_emb(bbox) if self.has_spatial_attention_bias else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, output_attentions, rel_pos, rel_2d_pos, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, output_attentions, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, all_hidden_states, all_self_attentions, ] if v is not None ) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaIntermediate class LayoutLMv3Intermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.roberta.modeling_roberta.RobertaOutput class LayoutLMv3Output(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states @add_start_docstrings( "The bare LayoutLMv3 Model transformer outputting raw hidden-states without any specific head on top.", LAYOUTLMV3_START_DOCSTRING, ) class LayoutLMv3Model(LayoutLMv3PreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config if config.text_embed: self.embeddings = LayoutLMv3TextEmbeddings(config) if config.visual_embed: # use the default pre-training parameters for fine-tuning (e.g., input_size) # when the input_size is larger in fine-tuning, we will interpolate the position embeddings in forward self.patch_embed = LayoutLMv3PatchEmbeddings(config) size = int(config.input_size / config.patch_size) self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.pos_embed = nn.Parameter(torch.zeros(1, size * size + 1, config.hidden_size)) self.pos_drop = nn.Dropout(p=0.0) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) if self.config.has_relative_attention_bias or self.config.has_spatial_attention_bias: self.init_visual_bbox(image_size=(size, size)) self.norm = nn.LayerNorm(config.hidden_size, eps=1e-6) self.encoder = LayoutLMv3Encoder(config) self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def init_visual_bbox(self, image_size=(14, 14), max_len=1000): """ Create the bounding boxes for the visual (patch) tokens. """ visual_bbox_x = torch.div( torch.arange(0, max_len * (image_size[1] + 1), max_len), image_size[1], rounding_mode="trunc" ) visual_bbox_y = torch.div( torch.arange(0, max_len * (image_size[0] + 1), max_len), image_size[0], rounding_mode="trunc" ) visual_bbox = torch.stack( [ visual_bbox_x[:-1].repeat(image_size[0], 1), visual_bbox_y[:-1].repeat(image_size[1], 1).transpose(0, 1), visual_bbox_x[1:].repeat(image_size[0], 1), visual_bbox_y[1:].repeat(image_size[1], 1).transpose(0, 1), ], dim=-1, ).view(-1, 4) cls_token_box = torch.tensor([[0 + 1, 0 + 1, max_len - 1, max_len - 1]]) self.visual_bbox = torch.cat([cls_token_box, visual_bbox], dim=0) def calculate_visual_bbox(self, device, dtype, batch_size): visual_bbox = self.visual_bbox.repeat(batch_size, 1, 1) visual_bbox = visual_bbox.to(device).type(dtype) return visual_bbox def forward_image(self, pixel_values): embeddings = self.patch_embed(pixel_values) # add [CLS] token batch_size, seq_len, _ = embeddings.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) embeddings = torch.cat((cls_tokens, embeddings), dim=1) # add position embeddings if self.pos_embed is not None: embeddings = embeddings + self.pos_embed embeddings = self.pos_drop(embeddings) embeddings = self.norm(embeddings) return embeddings @add_start_docstrings_to_model_forward( LAYOUTLMV3_MODEL_INPUTS_DOCSTRING.format("batch_size, token_sequence_length") ) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoProcessor, AutoModel >>> from datasets import load_dataset >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) >>> model = AutoModel.from_pretrained("microsoft/layoutlmv3-base") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> example = dataset[0] >>> image = example["image"] >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> encoding = processor(image, words, boxes=boxes, return_tensors="pt") >>> outputs = model(**encoding) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None: input_shape = input_ids.size() batch_size, seq_length = input_shape device = input_ids.device elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size, seq_length = input_shape device = inputs_embeds.device elif pixel_values is not None: batch_size = len(pixel_values) device = pixel_values.device else: raise ValueError("You have to specify either input_ids or inputs_embeds or pixel_values") if input_ids is not None or inputs_embeds is not None: if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length)), device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) if bbox is None: bbox = torch.zeros(tuple(list(input_shape) + [4]), dtype=torch.long, device=device) embedding_output = self.embeddings( input_ids=input_ids, bbox=bbox, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) final_bbox = final_position_ids = None patch_height = patch_width = None if pixel_values is not None: patch_height, patch_width = ( int(pixel_values.shape[2] / self.config.patch_size), int(pixel_values.shape[3] / self.config.patch_size), ) visual_embeddings = self.forward_image(pixel_values) visual_attention_mask = torch.ones( (batch_size, visual_embeddings.shape[1]), dtype=torch.long, device=device ) if attention_mask is not None: attention_mask = torch.cat([attention_mask, visual_attention_mask], dim=1) else: attention_mask = visual_attention_mask if self.config.has_relative_attention_bias or self.config.has_spatial_attention_bias: if self.config.has_spatial_attention_bias: visual_bbox = self.calculate_visual_bbox(device, dtype=torch.long, batch_size=batch_size) if bbox is not None: final_bbox = torch.cat([bbox, visual_bbox], dim=1) else: final_bbox = visual_bbox visual_position_ids = torch.arange( 0, visual_embeddings.shape[1], dtype=torch.long, device=device ).repeat(batch_size, 1) if input_ids is not None or inputs_embeds is not None: position_ids = torch.arange(0, input_shape[1], device=device).unsqueeze(0) position_ids = position_ids.expand(input_shape) final_position_ids = torch.cat([position_ids, visual_position_ids], dim=1) else: final_position_ids = visual_position_ids if input_ids is not None or inputs_embeds is not None: embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1) else: embedding_output = visual_embeddings embedding_output = self.LayerNorm(embedding_output) embedding_output = self.dropout(embedding_output) elif self.config.has_relative_attention_bias or self.config.has_spatial_attention_bias: if self.config.has_spatial_attention_bias: final_bbox = bbox if self.config.has_relative_attention_bias: position_ids = self.embeddings.position_ids[:, : input_shape[1]] position_ids = position_ids.expand_as(input_ids) final_position_ids = position_ids extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( attention_mask, None, device, dtype=embedding_output.dtype ) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) encoder_outputs = self.encoder( embedding_output, bbox=final_bbox, position_ids=final_position_ids, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, patch_height=patch_height, patch_width=patch_width, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class LayoutLMv3ClassificationHead(nn.Module): """ Head for sentence-level classification tasks. Reference: RobertaClassificationHead """ def __init__(self, config, pool_feature=False): super().__init__() self.pool_feature = pool_feature if pool_feature: self.dense = nn.Linear(config.hidden_size * 3, config.hidden_size) else: self.dense = nn.Linear(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, x): x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ LayoutLMv3 Model with a token classification head on top (a linear layer on top of the final hidden states) e.g. for sequence labeling (information extraction) tasks such as [FUNSD](https://guillaumejaume.github.io/FUNSD/), [SROIE](https://rrc.cvc.uab.es/?ch=13), [CORD](https://github.com/clovaai/cord) and [Kleister-NDA](https://github.com/applicaai/kleister-nda). """, LAYOUTLMV3_START_DOCSTRING, ) class LayoutLMv3ForTokenClassification(LayoutLMv3PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.layoutlmv3 = LayoutLMv3Model(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) if config.num_labels < 10: self.classifier = nn.Linear(config.hidden_size, config.num_labels) else: self.classifier = LayoutLMv3ClassificationHead(config, pool_feature=False) self.init_weights() @add_start_docstrings_to_model_forward( LAYOUTLMV3_DOWNSTREAM_INPUTS_DOCSTRING.format("batch_size, sequence_length") ) @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, pixel_values: Optional[torch.LongTensor] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. Returns: Examples: ```python >>> from transformers import AutoProcessor, AutoModelForTokenClassification >>> from datasets import load_dataset >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) >>> model = AutoModelForTokenClassification.from_pretrained("microsoft/layoutlmv3-base", num_labels=7) >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> example = dataset[0] >>> image = example["image"] >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> word_labels = example["ner_tags"] >>> encoding = processor(image, words, boxes=boxes, word_labels=word_labels, return_tensors="pt") >>> outputs = model(**encoding) >>> loss = outputs.loss >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlmv3( input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, pixel_values=pixel_values, ) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] # only take the text part of the output representations sequence_output = outputs[0][:, :seq_length] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ LayoutLMv3 Model with a span classification head on top for extractive question-answering tasks such as [DocVQA](https://rrc.cvc.uab.es/?ch=17) (a linear layer on top of the text part of the hidden-states output to compute `span start logits` and `span end logits`). """, LAYOUTLMV3_START_DOCSTRING, ) class LayoutLMv3ForQuestionAnswering(LayoutLMv3PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.layoutlmv3 = LayoutLMv3Model(config) self.qa_outputs = LayoutLMv3ClassificationHead(config, pool_feature=False) self.init_weights() @add_start_docstrings_to_model_forward( LAYOUTLMV3_DOWNSTREAM_INPUTS_DOCSTRING.format("batch_size, sequence_length") ) @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, bbox: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.LongTensor] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. Returns: Examples: ```python >>> from transformers import AutoProcessor, AutoModelForQuestionAnswering >>> from datasets import load_dataset >>> import torch >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) >>> model = AutoModelForQuestionAnswering.from_pretrained("microsoft/layoutlmv3-base") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> example = dataset[0] >>> image = example["image"] >>> question = "what's his name?" >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> encoding = processor(image, question, words, boxes=boxes, return_tensors="pt") >>> start_positions = torch.tensor([1]) >>> end_positions = torch.tensor([3]) >>> outputs = model(**encoding, start_positions=start_positions, end_positions=end_positions) >>> loss = outputs.loss >>> start_scores = outputs.start_logits >>> end_scores = outputs.end_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlmv3( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, bbox=bbox, pixel_values=pixel_values, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ LayoutLMv3 Model with a sequence classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for document image classification tasks such as the [RVL-CDIP](https://www.cs.cmu.edu/~aharley/rvl-cdip/) dataset. """, LAYOUTLMV3_START_DOCSTRING, ) class LayoutLMv3ForSequenceClassification(LayoutLMv3PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.layoutlmv3 = LayoutLMv3Model(config) self.classifier = LayoutLMv3ClassificationHead(config, pool_feature=False) self.init_weights() @add_start_docstrings_to_model_forward( LAYOUTLMV3_DOWNSTREAM_INPUTS_DOCSTRING.format("batch_size, sequence_length") ) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, bbox: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.LongTensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: """ Returns: Examples: ```python >>> from transformers import AutoProcessor, AutoModelForSequenceClassification >>> from datasets import load_dataset >>> import torch >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) >>> model = AutoModelForSequenceClassification.from_pretrained("microsoft/layoutlmv3-base") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> example = dataset[0] >>> image = example["image"] >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> encoding = processor(image, words, boxes=boxes, return_tensors="pt") >>> sequence_label = torch.tensor([1]) >>> outputs = model(**encoding, labels=sequence_label) >>> loss = outputs.loss >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlmv3( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, bbox=bbox, pixel_values=pixel_values, ) sequence_output = outputs[0][:, 0, :] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/layoutlmv3/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _import_structure = { "configuration_layoutlmv3": [ "LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv3Config", "LayoutLMv3OnnxConfig", ], "processing_layoutlmv3": ["LayoutLMv3Processor"], "tokenization_layoutlmv3": ["LayoutLMv3Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_layoutlmv3_fast"] = ["LayoutLMv3TokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_layoutlmv3"] = [ "LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv3ForQuestionAnswering", "LayoutLMv3ForSequenceClassification", "LayoutLMv3ForTokenClassification", "LayoutLMv3Model", "LayoutLMv3PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_layoutlmv3"] = [ "TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLayoutLMv3ForQuestionAnswering", "TFLayoutLMv3ForSequenceClassification", "TFLayoutLMv3ForTokenClassification", "TFLayoutLMv3Model", "TFLayoutLMv3PreTrainedModel", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_layoutlmv3"] = ["LayoutLMv3FeatureExtractor"] _import_structure["image_processing_layoutlmv3"] = ["LayoutLMv3ImageProcessor"] if TYPE_CHECKING: from .configuration_layoutlmv3 import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMv3Config, LayoutLMv3OnnxConfig, ) from .processing_layoutlmv3 import LayoutLMv3Processor from .tokenization_layoutlmv3 import LayoutLMv3Tokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmv3_fast import LayoutLMv3TokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmv3 import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMv3ForQuestionAnswering, LayoutLMv3ForSequenceClassification, LayoutLMv3ForTokenClassification, LayoutLMv3Model, LayoutLMv3PreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmv3 import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMv3ForQuestionAnswering, TFLayoutLMv3ForSequenceClassification, TFLayoutLMv3ForTokenClassification, TFLayoutLMv3Model, TFLayoutLMv3PreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmv3 import LayoutLMv3FeatureExtractor from .image_processing_layoutlmv3 import LayoutLMv3ImageProcessor else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/layoutlmv3/tokenization_layoutlmv3.py
# coding=utf-8 # Copyright The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization class for LayoutLMv3. Same as LayoutLMv2, but RoBERTa-like BPE tokenization instead of WordPiece.""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import ( BatchEncoding, EncodedInput, PreTokenizedInput, TextInput, TextInputPair, TruncationStrategy, ) from ...utils import PaddingStrategy, TensorType, add_end_docstrings, logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/raw/main/vocab.json", "microsoft/layoutlmv3-large": "https://huggingface.co/microsoft/layoutlmv3-large/raw/main/vocab.json", }, "merges_file": { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/raw/main/merges.txt", "microsoft/layoutlmv3-large": "https://huggingface.co/microsoft/layoutlmv3-large/raw/main/merges.txt", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "microsoft/layoutlmv3-base": 512, "microsoft/layoutlmv3-large": 512, } LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING = r""" add_special_tokens (`bool`, *optional*, defaults to `True`): Whether or not to encode the sequences with the special tokens relative to their model. padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. stride (`int`, *optional*, defaults to 0): If set to a number along with `max_length`, the overflowing tokens returned when `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence returned to provide some overlap between truncated and overflowing sequences. The value of this argument defines the number of overlapping tokens. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_tensors (`str` or [`~file_utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. """ LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" add_special_tokens (`bool`, *optional*, defaults to `True`): Whether or not to encode the sequences with the special tokens relative to their model. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. stride (`int`, *optional*, defaults to 0): If set to a number along with `max_length`, the overflowing tokens returned when `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence returned to provide some overlap between truncated and overflowing sequences. The value of this argument defines the number of overlapping tokens. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. """ @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) # Copied from transformers.models.roberta.tokenization_roberta.get_pairs def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class LayoutLMv3Tokenizer(PreTrainedTokenizer): r""" Construct a LayoutLMv3 tokenizer. Based on [`RoBERTatokenizer`] (Byte Pair Encoding or BPE). [`LayoutLMv3Tokenizer`] can be used to turn words, word-level bounding boxes and optional word labels to token-level `input_ids`, `attention_mask`, `token_type_ids`, `bbox`, and optional `labels` (for token classification). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. [`LayoutLMv3Tokenizer`] runs end-to-end tokenization: punctuation splitting and wordpiece. It also turns the word-level bounding boxes into token-level bounding boxes. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `True`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (RoBERTa tokenizer detect beginning of words by the preceding space). cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): The bounding box to use for the special [CLS] token. sep_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): The bounding box to use for the special [SEP] token. pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): The bounding box to use for the special [PAD] token. pad_token_label (`int`, *optional*, defaults to -100): The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's CrossEntropyLoss. only_label_first_subword (`bool`, *optional*, defaults to `True`): Whether or not to only label the first subword, in case word labels are provided. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask", "bbox"] def __init__( self, vocab_file, merges_file, errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=True, cls_token_box=[0, 0, 0, 0], sep_token_box=[0, 0, 0, 0], pad_token_box=[0, 0, 0, 0], pad_token_label=-100, only_label_first_subword=True, **kwargs, ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") # additional properties self.cls_token_box = cls_token_box self.sep_token_box = sep_token_box self.pad_token_box = pad_token_box self.pad_token_label = pad_token_label self.only_label_first_subword = only_label_first_subword super().__init__( errors=errors, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, cls_token_box=cls_token_box, sep_token_box=sep_token_box, pad_token_box=pad_token_box, pad_token_label=pad_token_label, only_label_first_subword=only_label_first_subword, **kwargs, ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size def vocab_size(self): return len(self.encoder) # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.get_vocab def get_vocab(self): vocab = dict(self.encoder).copy() vocab.update(self.added_tokens_encoder) return vocab # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.bpe def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._tokenize def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A RoBERTa sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) # If the text starts with a token that should not be split, no space is added before the text in any case. # It's necessary to match the fast tokenization if ( (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()) and sum([text.startswith(no_split_token) for no_split_token in self.added_tokens_encoder]) == 0 ): text = " " + text return (text, kwargs) @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer.__call__ def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, boxes: Union[List[List[int]], List[List[List[int]]]] = None, word_labels: Optional[Union[List[int], List[List[int]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of sequences with word-level normalized bounding boxes and optional labels. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings (words of a single example or questions of a batch of examples) or a list of list of strings (batch of words). text_pair (`List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence should be a list of strings (pretokenized string). boxes (`List[List[int]]`, `List[List[List[int]]]`): Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale. word_labels (`List[int]`, `List[List[int]]`, *optional*): Word-level integer labels (for token classification tasks such as FUNSD, CORD). """ # Input type checking for clearer error def _is_valid_text_input(t): if isinstance(t, str): # Strings are fine return True elif isinstance(t, (list, tuple)): # List are fine as long as they are... if len(t) == 0: # ... empty return True elif isinstance(t[0], str): # ... list of strings return True elif isinstance(t[0], (list, tuple)): # ... list with an empty list or with a list of strings return len(t[0]) == 0 or isinstance(t[0][0], str) else: return False else: return False if text_pair is not None: # in case text + text_pair are provided, text = questions, text_pair = words if not _is_valid_text_input(text): raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ") if not isinstance(text_pair, (list, tuple)): raise ValueError( "Words must be of type `List[str]` (single pretokenized example), " "or `List[List[str]]` (batch of pretokenized examples)." ) else: # in case only text is provided => must be words if not isinstance(text, (list, tuple)): raise ValueError( "Words must be of type `List[str]` (single pretokenized example), " "or `List[List[str]]` (batch of pretokenized examples)." ) if text_pair is not None: is_batched = isinstance(text, (list, tuple)) else: is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple)) words = text if text_pair is None else text_pair if boxes is None: raise ValueError("You must provide corresponding bounding boxes") if is_batched: if len(words) != len(boxes): raise ValueError("You must provide words and boxes for an equal amount of examples") for words_example, boxes_example in zip(words, boxes): if len(words_example) != len(boxes_example): raise ValueError("You must provide as many words as there are bounding boxes") else: if len(words) != len(boxes): raise ValueError("You must provide as many words as there are bounding boxes") if is_batched: if text_pair is not None and len(text) != len(text_pair): raise ValueError( f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:" f" {len(text_pair)}." ) batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text is_pair = bool(text_pair is not None) return self.batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( text=text, text_pair=text_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer.batch_encode_plus def batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], ], is_pair: bool = None, boxes: Optional[List[List[List[int]]]] = None, word_labels: Optional[Union[List[int], List[List[int]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer._batch_encode_plus def _batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], ], is_pair: bool = None, boxes: Optional[List[List[List[int]]]] = None, word_labels: Optional[List[List[int]]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) batch_outputs = self._batch_prepare_for_model( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=return_tensors, verbose=verbose, ) return BatchEncoding(batch_outputs) @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer._batch_prepare_for_model def _batch_prepare_for_model( self, batch_text_or_text_pairs, is_pair: bool = None, boxes: Optional[List[List[int]]] = None, word_labels: Optional[List[List[int]]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_length: bool = False, verbose: bool = True, ) -> BatchEncoding: """ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. Args: batch_ids_pairs: list of tokenized input ids or input ids pairs """ batch_outputs = {} for idx, example in enumerate(zip(batch_text_or_text_pairs, boxes)): batch_text_or_text_pair, boxes_example = example outputs = self.prepare_for_model( batch_text_or_text_pair[0] if is_pair else batch_text_or_text_pair, batch_text_or_text_pair[1] if is_pair else None, boxes_example, word_labels=word_labels[idx] if word_labels is not None else None, add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=None, # we pad in batch afterward return_attention_mask=False, # we pad in batch afterward return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) batch_outputs = self.pad( batch_outputs, padding=padding_strategy.value, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) return batch_outputs @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer.encode def encode( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, boxes: Optional[List[List[int]]] = None, word_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> List[int]: encoded_inputs = self.encode_plus( text=text, text_pair=text_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) return encoded_inputs["input_ids"] @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer.encode_plus def encode_plus( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, boxes: Optional[List[List[int]]] = None, word_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated, `__call__` should be used instead. Args: text (`str`, `List[str]`, `List[List[str]]`): The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings. text_pair (`List[str]` or `List[int]`, *optional*): Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a list of list of strings (words of a batch of examples). """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._encode_plus( text=text, boxes=boxes, text_pair=text_pair, word_labels=word_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer._encode_plus def _encode_plus( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, boxes: Optional[List[List[int]]] = None, word_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast. " "More information on available tokenizers at " "https://github.com/huggingface/transformers/pull/2674" ) return self.prepare_for_model( text=text, text_pair=text_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding=padding_strategy.value, truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def prepare_for_model( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, boxes: Optional[List[List[int]]] = None, word_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, prepend_batch_axis: bool = False, **kwargs, ) -> BatchEncoding: """ Prepares a sequence or a pair of sequences so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *text_pair* different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return overflowing tokens. Such a combination of arguments will raise an error. Word-level `boxes` are turned into token-level `bbox`. If provided, word-level `word_labels` are turned into token-level `labels`. The word label is used for the first token of the word, while remaining tokens are labeled with -100, such that they will be ignored by the loss function. Args: text (`str`, `List[str]`, `List[List[str]]`): The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings. text_pair (`List[str]` or `List[int]`, *optional*): Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a list of list of strings (words of a batch of examples). """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) tokens = [] pair_tokens = [] token_boxes = [] pair_token_boxes = [] labels = [] if text_pair is None: if word_labels is None: # CASE 1: document image classification (training + inference) + CASE 2: token classification (inference) for word, box in zip(text, boxes): if len(word) < 1: # skip empty words continue word_tokens = self.tokenize(word) tokens.extend(word_tokens) token_boxes.extend([box] * len(word_tokens)) else: # CASE 2: token classification (training) for word, box, label in zip(text, boxes, word_labels): if len(word) < 1: # skip empty words continue word_tokens = self.tokenize(word) tokens.extend(word_tokens) token_boxes.extend([box] * len(word_tokens)) if self.only_label_first_subword: # Use the real label id for the first token of the word, and padding ids for the remaining tokens labels.extend([label] + [self.pad_token_label] * (len(word_tokens) - 1)) else: labels.extend([label] * len(word_tokens)) else: # CASE 3: document visual question answering (inference) # text = question # text_pair = words tokens = self.tokenize(text) token_boxes = [self.pad_token_box for _ in range(len(tokens))] for word, box in zip(text_pair, boxes): if len(word) < 1: # skip empty words continue word_tokens = self.tokenize(word) pair_tokens.extend(word_tokens) pair_token_boxes.extend([box] * len(word_tokens)) # Create ids + pair_ids ids = self.convert_tokens_to_ids(tokens) pair_ids = self.convert_tokens_to_ids(pair_tokens) if pair_tokens else None if ( return_overflowing_tokens and truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is not None ): raise ValueError( "Not possible to return overflowing tokens for pair of sequences with the " "`longest_first`. Please select another truncation strategy than `longest_first`, " "for instance `only_second` or `only_first`." ) # Compute the total size of the returned encodings pair = bool(pair_ids is not None) len_ids = len(ids) len_pair_ids = len(pair_ids) if pair else 0 total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0) # Truncation: Handle max sequence length overflowing_tokens = [] overflowing_token_boxes = [] overflowing_labels = [] if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length: ( ids, token_boxes, pair_ids, pair_token_boxes, labels, overflowing_tokens, overflowing_token_boxes, overflowing_labels, ) = self.truncate_sequences( ids, token_boxes, pair_ids=pair_ids, pair_token_boxes=pair_token_boxes, labels=labels, num_tokens_to_remove=total_len - max_length, truncation_strategy=truncation_strategy, stride=stride, ) if return_token_type_ids and not add_special_tokens: raise ValueError( "Asking to return token_type_ids while setting add_special_tokens to False " "results in an undefined behavior. Please set add_special_tokens to True or " "set return_token_type_ids to None." ) # Load from model defaults if return_token_type_ids is None: return_token_type_ids = "token_type_ids" in self.model_input_names if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names encoded_inputs = {} if return_overflowing_tokens: encoded_inputs["overflowing_tokens"] = overflowing_tokens encoded_inputs["overflowing_token_boxes"] = overflowing_token_boxes encoded_inputs["overflowing_labels"] = overflowing_labels encoded_inputs["num_truncated_tokens"] = total_len - max_length # Add special tokens if add_special_tokens: sequence = self.build_inputs_with_special_tokens(ids, pair_ids) token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) token_boxes = [self.cls_token_box] + token_boxes + [self.sep_token_box] if pair_token_boxes: pair_token_boxes = [self.sep_token_box] + pair_token_boxes + [self.sep_token_box] token_boxes = token_boxes + pair_token_boxes if pair else token_boxes if labels: labels = [self.pad_token_label] + labels + [self.pad_token_label] else: sequence = ids + pair_ids if pair else ids token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else []) token_boxes = token_boxes + pair_token_boxes if pair else token_boxes # Build output dictionary encoded_inputs["input_ids"] = sequence encoded_inputs["bbox"] = token_boxes if return_token_type_ids: encoded_inputs["token_type_ids"] = token_type_ids if return_special_tokens_mask: if add_special_tokens: encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids) else: encoded_inputs["special_tokens_mask"] = [0] * len(sequence) if labels: encoded_inputs["labels"] = labels # Check lengths self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose) # Padding if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask: encoded_inputs = self.pad( encoded_inputs, max_length=max_length, padding=padding_strategy.value, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) if return_length: encoded_inputs["length"] = len(encoded_inputs["input_ids"]) batch_outputs = BatchEncoding( encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis ) return batch_outputs # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer.truncate_sequences def truncate_sequences( self, ids: List[int], token_boxes: List[List[int]], pair_ids: Optional[List[int]] = None, pair_token_boxes: Optional[List[List[int]]] = None, labels: Optional[List[int]] = None, num_tokens_to_remove: int = 0, truncation_strategy: Union[str, TruncationStrategy] = "longest_first", stride: int = 0, ) -> Tuple[List[int], List[int], List[int]]: """ Truncates a sequence pair in-place following the strategy. Args: ids (`List[int]`): Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods. token_boxes (`List[List[int]]`): Bounding boxes of the first sequence. pair_ids (`List[int]`, *optional*): Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods. pair_token_boxes (`List[List[int]]`, *optional*): Bounding boxes of the second sequence. labels (`List[int]`, *optional*): Labels of the first sequence (for token classification tasks). num_tokens_to_remove (`int`, *optional*, defaults to 0): Number of tokens to remove using the truncation strategy. truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): The strategy to follow for truncation. Can be: - `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). stride (`int`, *optional*, defaults to 0): If set to a positive number, the overflowing tokens returned will contain some tokens from the main sequence returned. The value of this argument defines the number of additional tokens. Returns: `Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair of sequences (or a batch of pairs) is provided. """ if num_tokens_to_remove <= 0: return ids, token_boxes, pair_ids, pair_token_boxes, labels, [], [], [] if not isinstance(truncation_strategy, TruncationStrategy): truncation_strategy = TruncationStrategy(truncation_strategy) overflowing_tokens = [] overflowing_token_boxes = [] overflowing_labels = [] if truncation_strategy == TruncationStrategy.ONLY_FIRST or ( truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is None ): if len(ids) > num_tokens_to_remove: window_len = min(len(ids), stride + num_tokens_to_remove) overflowing_tokens = ids[-window_len:] overflowing_token_boxes = token_boxes[-window_len:] overflowing_labels = labels[-window_len:] ids = ids[:-num_tokens_to_remove] token_boxes = token_boxes[:-num_tokens_to_remove] labels = labels[:-num_tokens_to_remove] else: error_msg = ( f"We need to remove {num_tokens_to_remove} to truncate the input " f"but the first sequence has a length {len(ids)}. " ) if truncation_strategy == TruncationStrategy.ONLY_FIRST: error_msg = ( error_msg + "Please select another truncation strategy than " f"{truncation_strategy}, for instance 'longest_first' or 'only_second'." ) logger.error(error_msg) elif truncation_strategy == TruncationStrategy.LONGEST_FIRST: logger.warning( "Be aware, overflowing tokens are not returned for the setting you have chosen," f" i.e. sequence pairs with the '{TruncationStrategy.LONGEST_FIRST.value}' " "truncation strategy. So the returned list will always be empty even if some " "tokens have been removed." ) for _ in range(num_tokens_to_remove): if pair_ids is None or len(ids) > len(pair_ids): ids = ids[:-1] token_boxes = token_boxes[:-1] labels = labels[:-1] else: pair_ids = pair_ids[:-1] pair_token_boxes = pair_token_boxes[:-1] elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None: if len(pair_ids) > num_tokens_to_remove: window_len = min(len(pair_ids), stride + num_tokens_to_remove) overflowing_tokens = pair_ids[-window_len:] overflowing_token_boxes = pair_token_boxes[-window_len:] pair_ids = pair_ids[:-num_tokens_to_remove] pair_token_boxes = pair_token_boxes[:-num_tokens_to_remove] else: logger.error( f"We need to remove {num_tokens_to_remove} to truncate the input " f"but the second sequence has a length {len(pair_ids)}. " f"Please select another truncation strategy than {truncation_strategy}, " "for instance 'longest_first' or 'only_first'." ) return ( ids, token_boxes, pair_ids, pair_token_boxes, labels, overflowing_tokens, overflowing_token_boxes, overflowing_labels, ) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer._pad def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Pad encoded inputs (on left/right and up to predefined length or max length in the batch) Args: encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ # Load from model defaults if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names required_input = encoded_inputs[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: max_length = len(required_input) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length # Initialize attention mask if not present. if return_attention_mask and "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * len(required_input) if needs_to_be_padded: difference = max_length - len(required_input) if self.padding_side == "right": if return_attention_mask: encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = ( encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference ) if "bbox" in encoded_inputs: encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference if "labels" in encoded_inputs: encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference elif self.padding_side == "left": if return_attention_mask: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ "token_type_ids" ] if "bbox" in encoded_inputs: encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"] if "labels" in encoded_inputs: encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"] if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input else: raise ValueError("Invalid padding strategy:" + str(self.padding_side)) return encoded_inputs
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/layoutlmv3/image_processing_layoutlmv3.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for LayoutLMv3.""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract logger = logging.get_logger(__name__) def normalize_box(box, width, height): return [ int(1000 * (box[0] / width)), int(1000 * (box[1] / height)), int(1000 * (box[2] / width)), int(1000 * (box[3] / height)), ] def apply_tesseract( image: np.ndarray, lang: Optional[str], tesseract_config: Optional[str], input_data_format: Optional[Union[ChannelDimension, str]] = None, ): """Applies Tesseract OCR on a document image, and returns recognized words + normalized bounding boxes.""" # apply OCR pil_image = to_pil_image(image, input_data_format=input_data_format) image_width, image_height = pil_image.size data = pytesseract.image_to_data(pil_image, lang=lang, output_type="dict", config=tesseract_config) words, left, top, width, height = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates irrelevant_indices = [idx for idx, word in enumerate(words) if not word.strip()] words = [word for idx, word in enumerate(words) if idx not in irrelevant_indices] left = [coord for idx, coord in enumerate(left) if idx not in irrelevant_indices] top = [coord for idx, coord in enumerate(top) if idx not in irrelevant_indices] width = [coord for idx, coord in enumerate(width) if idx not in irrelevant_indices] height = [coord for idx, coord in enumerate(height) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format actual_boxes = [] for x, y, w, h in zip(left, top, width, height): actual_box = [x, y, x + w, y + h] actual_boxes.append(actual_box) # finally, normalize the bounding boxes normalized_boxes = [] for box in actual_boxes: normalized_boxes.append(normalize_box(box, image_width, image_height)) assert len(words) == len(normalized_boxes), "Not as many words as there are bounding boxes" return words, normalized_boxes class LayoutLMv3ImageProcessor(BaseImageProcessor): r""" Constructs a LayoutLMv3 image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to `(size["height"], size["width"])`. Can be overridden by `do_resize` in `preprocess`. size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`): Size of the image after resizing. Can be overridden by `size` in `preprocess`. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image's pixel values by the specified `rescale_value`. Can be overridden by `do_rescale` in `preprocess`. rescale_factor (`float`, *optional*, defaults to 1 / 255): Value by which the image's pixel values are rescaled. Can be overridden by `rescale_factor` in `preprocess`. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`Iterable[float]` or `float`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`Iterable[float]` or `float`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. apply_ocr (`bool`, *optional*, defaults to `True`): Whether to apply the Tesseract OCR engine to get words + normalized bounding boxes. Can be overridden by the `apply_ocr` parameter in the `preprocess` method. ocr_lang (`str`, *optional*): The language, specified by its ISO code, to be used by the Tesseract OCR engine. By default, English is used. Can be overridden by the `ocr_lang` parameter in the `preprocess` method. tesseract_config (`str`, *optional*): Any additional custom configuration flags that are forwarded to the `config` parameter when calling Tesseract. For example: '--psm 6'. Can be overridden by the `tesseract_config` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_rescale: bool = True, rescale_value: float = 1 / 255, do_normalize: bool = True, image_mean: Union[float, Iterable[float]] = None, image_std: Union[float, Iterable[float]] = None, apply_ocr: bool = True, ocr_lang: Optional[str] = None, tesseract_config: Optional[str] = "", **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 224, "width": 224} size = get_size_dict(size) self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_value self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD self.apply_ocr = apply_ocr self.ocr_lang = ocr_lang self.tesseract_config = tesseract_config # Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image to `(size["height"], size["width"])`. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. Returns: `np.ndarray`: The resized image. """ size = get_size_dict(size) if "height" not in size or "width" not in size: raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}") output_size = (size["height"], size["width"]) return resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def preprocess( self, images: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample=None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Union[float, Iterable[float]] = None, image_std: Union[float, Iterable[float]] = None, apply_ocr: bool = None, ocr_lang: Optional[str] = None, tesseract_config: Optional[str] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Desired size of the output image after applying `resize`. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` filters. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image pixel values between [0, 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to apply to the image pixel values. Only has an effect if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `Iterable[float]`, *optional*, defaults to `self.image_mean`): Mean values to be used for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `Iterable[float]`, *optional*, defaults to `self.image_std`): Standard deviation values to be used for normalization. Only has an effect if `do_normalize` is set to `True`. apply_ocr (`bool`, *optional*, defaults to `self.apply_ocr`): Whether to apply the Tesseract OCR engine to get words + normalized bounding boxes. ocr_lang (`str`, *optional*, defaults to `self.ocr_lang`): The language, specified by its ISO code, to be used by the Tesseract OCR engine. By default, English is used. tesseract_config (`str`, *optional*, defaults to `self.tesseract_config`): Any additional custom configuration flags that are forwarded to the `config` parameter when calling Tesseract. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size) resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std apply_ocr = apply_ocr if apply_ocr is not None else self.apply_ocr ocr_lang = ocr_lang if ocr_lang is not None else self.ocr_lang tesseract_config = tesseract_config if tesseract_config is not None else self.tesseract_config images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("If do_normalize is True, image_mean and image_std must be specified.") # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self, "pytesseract") words_batch = [] boxes_batch = [] for image in images: words, boxes = apply_tesseract(image, ocr_lang, tesseract_config, input_data_format=input_data_format) words_batch.append(words) boxes_batch.append(boxes) if do_resize: images = [ self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) for image in images ] if do_rescale: images = [ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images ] if do_normalize: images = [ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] data = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors) if apply_ocr: data["words"] = words_batch data["boxes"] = boxes_batch return data
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/layoutlmv3/modeling_tf_layoutlmv3.py
# coding=utf-8 # Copyright 2022 Microsoft Research and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TF 2.0 LayoutLMv3 model.""" from __future__ import annotations import collections import math from typing import List, Optional, Tuple, Union import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from .configuration_layoutlmv3 import LayoutLMv3Config _CONFIG_FOR_DOC = "LayoutLMv3Config" _DUMMY_INPUT_IDS = [ [7, 6, 1], [1, 2, 0], ] _DUMMY_BBOX = [ [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], [[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]], ] TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/layoutlmv3-base", "microsoft/layoutlmv3-large", # See all LayoutLMv3 models at https://huggingface.co/models?filter=layoutlmv3 ] LARGE_NEGATIVE = -1e8 class TFLayoutLMv3PatchEmbeddings(tf.keras.layers.Layer): """LayoutLMv3 image (patch) embeddings.""" def __init__(self, config: LayoutLMv3Config, **kwargs): super().__init__(**kwargs) patch_sizes = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable) else (config.patch_size, config.patch_size) ) self.proj = tf.keras.layers.Conv2D( filters=config.hidden_size, kernel_size=patch_sizes, strides=patch_sizes, padding="valid", data_format="channels_last", use_bias=True, kernel_initializer=get_initializer(config.initializer_range), name="proj", ) self.hidden_size = config.hidden_size self.num_patches = (config.input_size**2) // (patch_sizes[0] * patch_sizes[1]) self.config = config def call(self, pixel_values: tf.Tensor) -> tf.Tensor: # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. pixel_values = tf.transpose(pixel_values, perm=[0, 2, 3, 1]) embeddings = self.proj(pixel_values) embeddings = tf.reshape(embeddings, (-1, self.num_patches, self.hidden_size)) return embeddings def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "proj", None) is not None: with tf.name_scope(self.proj.name): self.proj.build([None, None, None, self.config.num_channels]) class TFLayoutLMv3TextEmbeddings(tf.keras.layers.Layer): """ LayoutLMv3 text embeddings. Same as `RobertaEmbeddings` but with added spatial (layout) embeddings. """ def __init__(self, config: LayoutLMv3Config, **kwargs): super().__init__(**kwargs) self.word_embeddings = tf.keras.layers.Embedding( config.vocab_size, config.hidden_size, embeddings_initializer=get_initializer(config.initializer_range), name="word_embeddings", ) self.token_type_embeddings = tf.keras.layers.Embedding( config.type_vocab_size, config.hidden_size, embeddings_initializer=get_initializer(config.initializer_range), name="token_type_embeddings", ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.padding_token_index = config.pad_token_id self.position_embeddings = tf.keras.layers.Embedding( config.max_position_embeddings, config.hidden_size, embeddings_initializer=get_initializer(config.initializer_range), name="position_embeddings", ) self.x_position_embeddings = tf.keras.layers.Embedding( config.max_2d_position_embeddings, config.coordinate_size, embeddings_initializer=get_initializer(config.initializer_range), name="x_position_embeddings", ) self.y_position_embeddings = tf.keras.layers.Embedding( config.max_2d_position_embeddings, config.coordinate_size, embeddings_initializer=get_initializer(config.initializer_range), name="y_position_embeddings", ) self.h_position_embeddings = tf.keras.layers.Embedding( config.max_2d_position_embeddings, config.shape_size, embeddings_initializer=get_initializer(config.initializer_range), name="h_position_embeddings", ) self.w_position_embeddings = tf.keras.layers.Embedding( config.max_2d_position_embeddings, config.shape_size, embeddings_initializer=get_initializer(config.initializer_range), name="w_position_embeddings", ) self.max_2d_positions = config.max_2d_position_embeddings self.config = config def calculate_spatial_position_embeddings(self, bbox: tf.Tensor) -> tf.Tensor: try: left_position_ids = bbox[:, :, 0] upper_position_ids = bbox[:, :, 1] right_position_ids = bbox[:, :, 2] lower_position_ids = bbox[:, :, 3] except IndexError as exception: raise IndexError("Bounding box is not of shape (batch_size, seq_length, 4).") from exception try: left_position_embeddings = self.x_position_embeddings(left_position_ids) upper_position_embeddings = self.y_position_embeddings(upper_position_ids) right_position_embeddings = self.x_position_embeddings(right_position_ids) lower_position_embeddings = self.y_position_embeddings(lower_position_ids) except IndexError as exception: raise IndexError( f"The `bbox` coordinate values should be within 0-{self.max_2d_positions} range." ) from exception max_position_id = self.max_2d_positions - 1 h_position_embeddings = self.h_position_embeddings( tf.clip_by_value(bbox[:, :, 3] - bbox[:, :, 1], 0, max_position_id) ) w_position_embeddings = self.w_position_embeddings( tf.clip_by_value(bbox[:, :, 2] - bbox[:, :, 0], 0, max_position_id) ) # LayoutLMv1 sums the spatial embeddings, but LayoutLMv3 concatenates them. spatial_position_embeddings = tf.concat( [ left_position_embeddings, upper_position_embeddings, right_position_embeddings, lower_position_embeddings, h_position_embeddings, w_position_embeddings, ], axis=-1, ) return spatial_position_embeddings def create_position_ids_from_inputs_embeds(self, inputs_embds: tf.Tensor) -> tf.Tensor: """ We are provided embeddings directly. We cannot infer which are padded, so just generate sequential position ids. """ input_shape = tf.shape(inputs_embds) sequence_length = input_shape[1] start_index = self.padding_token_index + 1 end_index = self.padding_token_index + sequence_length + 1 position_ids = tf.range(start_index, end_index, dtype=tf.int32) batch_size = input_shape[0] position_ids = tf.reshape(position_ids, (1, sequence_length)) position_ids = tf.tile(position_ids, (batch_size, 1)) return position_ids def create_position_ids_from_input_ids(self, input_ids: tf.Tensor) -> tf.Tensor: """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_token_index + 1. """ mask = tf.cast(tf.not_equal(input_ids, self.padding_token_index), input_ids.dtype) position_ids = tf.cumsum(mask, axis=1) * mask position_ids = position_ids + self.padding_token_index return position_ids def create_position_ids(self, input_ids: tf.Tensor, inputs_embeds: tf.Tensor) -> tf.Tensor: if input_ids is None: return self.create_position_ids_from_inputs_embeds(inputs_embeds) else: return self.create_position_ids_from_input_ids(input_ids) def call( self, input_ids: tf.Tensor | None = None, bbox: tf.Tensor = None, token_type_ids: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, training: bool = False, ) -> tf.Tensor: if position_ids is None: position_ids = self.create_position_ids(input_ids, inputs_embeds) if input_ids is not None: input_shape = tf.shape(input_ids) else: input_shape = tf.shape(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.zeros(input_shape, dtype=position_ids.dtype) if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.word_embeddings.input_dim) inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings spatial_position_embeddings = self.calculate_spatial_position_embeddings(bbox) embeddings += spatial_position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings, training=training) return embeddings def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "word_embeddings", None) is not None: with tf.name_scope(self.word_embeddings.name): self.word_embeddings.build(None) if getattr(self, "token_type_embeddings", None) is not None: with tf.name_scope(self.token_type_embeddings.name): self.token_type_embeddings.build(None) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) if getattr(self, "position_embeddings", None) is not None: with tf.name_scope(self.position_embeddings.name): self.position_embeddings.build(None) if getattr(self, "x_position_embeddings", None) is not None: with tf.name_scope(self.x_position_embeddings.name): self.x_position_embeddings.build(None) if getattr(self, "y_position_embeddings", None) is not None: with tf.name_scope(self.y_position_embeddings.name): self.y_position_embeddings.build(None) if getattr(self, "h_position_embeddings", None) is not None: with tf.name_scope(self.h_position_embeddings.name): self.h_position_embeddings.build(None) if getattr(self, "w_position_embeddings", None) is not None: with tf.name_scope(self.w_position_embeddings.name): self.w_position_embeddings.build(None) class TFLayoutLMv3SelfAttention(tf.keras.layers.Layer): def __init__(self, config: LayoutLMv3Config, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.attention_score_normaliser = math.sqrt(self.attention_head_size) self.query = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query", ) self.key = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key", ) self.value = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value", ) self.dropout = tf.keras.layers.Dropout(config.attention_probs_dropout_prob) self.has_relative_attention_bias = config.has_relative_attention_bias self.has_spatial_attention_bias = config.has_spatial_attention_bias self.config = config def transpose_for_scores(self, x: tf.Tensor): shape = tf.shape(x) new_shape = ( shape[0], # batch_size shape[1], # seq_length self.num_attention_heads, self.attention_head_size, ) x = tf.reshape(x, new_shape) return tf.transpose(x, perm=[0, 2, 1, 3]) # batch_size, num_heads, seq_length, attention_head_size def cogview_attention(self, attention_scores: tf.Tensor, alpha: Union[float, int] = 32): """ https://arxiv.org/abs/2105.13290 Section 2.4 Stabilization of training: Precision Bottleneck Relaxation (PB-Relax). A replacement of the original tf.keras.layers.Softmax(axis=-1)(attention_scores). Seems the new attention_probs will result in a slower speed and a little bias. Can use tf.debugging.assert_near(standard_attention_probs, cogview_attention_probs, atol=1e-08) for comparison. The smaller atol (e.g., 1e-08), the better. """ scaled_attention_scores = attention_scores / alpha max_value = tf.expand_dims(tf.reduce_max(scaled_attention_scores, axis=-1), axis=-1) new_attention_scores = (scaled_attention_scores - max_value) * alpha return tf.math.softmax(new_attention_scores, axis=-1) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None, head_mask: tf.Tensor | None, output_attentions: bool, rel_pos: tf.Tensor | None = None, rel_2d_pos: tf.Tensor | None = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], Tuple[tf.Tensor, tf.Tensor]]: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(self.query(hidden_states)) # Take the dot product between "query" and "key" to get the raw attention scores. normalised_query_layer = query_layer / self.attention_score_normaliser transposed_key_layer = tf.transpose( key_layer, perm=[0, 1, 3, 2] ) # batch_size, num_heads, attention_head_size, seq_length attention_scores = tf.matmul(normalised_query_layer, transposed_key_layer) if self.has_relative_attention_bias and self.has_spatial_attention_bias: attention_scores += (rel_pos + rel_2d_pos) / self.attention_score_normaliser elif self.has_relative_attention_bias: attention_scores += rel_pos / self.attention_score_normaliser if attention_mask is not None: # Apply the attention mask (is precomputed for all layers in TFLayoutLMv3Model call() function) attention_scores += attention_mask # Normalize the attention scores to probabilities. # Use the trick of CogView paper to stabilize training. attention_probs = self.cogview_attention(attention_scores) attention_probs = self.dropout(attention_probs, training=training) # Mask heads if we want to. if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose( context_layer, perm=[0, 2, 1, 3] ) # batch_size, seq_length, num_heads, attention_head_size shape = tf.shape(context_layer) context_layer = tf.reshape( context_layer, (shape[0], shape[1], self.all_head_size) ) # batch_size, seq_length, num_heads * attention_head_size outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.config.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.config.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.config.hidden_size]) # Copied from models.roberta.modeling_tf_roberta.TFRobertaSelfOutput class TFLayoutLMv3SelfOutput(tf.keras.layers.Layer): def __init__(self, config: LayoutLMv3Config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) class TFLayoutLMv3Attention(tf.keras.layers.Layer): def __init__(self, config: LayoutLMv3Config, **kwargs): super().__init__(**kwargs) self.self_attention = TFLayoutLMv3SelfAttention(config, name="self") self.self_output = TFLayoutLMv3SelfOutput(config, name="output") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None, head_mask: tf.Tensor | None, output_attentions: bool, rel_pos: tf.Tensor | None = None, rel_2d_pos: tf.Tensor | None = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], Tuple[tf.Tensor, tf.Tensor]]: self_outputs = self.self_attention( hidden_states, attention_mask, head_mask, output_attentions, rel_pos, rel_2d_pos, training=training, ) attention_output = self.self_output(self_outputs[0], hidden_states, training=training) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attention", None) is not None: with tf.name_scope(self.self_attention.name): self.self_attention.build(None) if getattr(self, "self_output", None) is not None: with tf.name_scope(self.self_output.name): self.self_output.build(None) # Copied from models.roberta.modeling_tf_bert.TFRobertaIntermediate class TFLayoutLMv3Intermediate(tf.keras.layers.Layer): def __init__(self, config: LayoutLMv3Config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) # Copied from models.roberta.modeling_tf_bert.TFRobertaOutput class TFLayoutLMv3Output(tf.keras.layers.Layer): def __init__(self, config: LayoutLMv3Config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) class TFLayoutLMv3Layer(tf.keras.layers.Layer): def __init__(self, config: LayoutLMv3Config, **kwargs): super().__init__(**kwargs) self.attention = TFLayoutLMv3Attention(config, name="attention") self.intermediate = TFLayoutLMv3Intermediate(config, name="intermediate") self.bert_output = TFLayoutLMv3Output(config, name="output") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None, head_mask: tf.Tensor | None, output_attentions: bool, rel_pos: tf.Tensor | None = None, rel_2d_pos: tf.Tensor | None = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], Tuple[tf.Tensor, tf.Tensor]]: self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos, training=training, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights intermediate_output = self.intermediate(attention_output) layer_output = self.bert_output(intermediate_output, attention_output, training=training) outputs = (layer_output,) + outputs return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "bert_output", None) is not None: with tf.name_scope(self.bert_output.name): self.bert_output.build(None) class TFLayoutLMv3Encoder(tf.keras.layers.Layer): def __init__(self, config: LayoutLMv3Config, **kwargs): super().__init__(**kwargs) self.config = config self.layer = [TFLayoutLMv3Layer(config, name=f"layer.{i}") for i in range(config.num_hidden_layers)] self.has_relative_attention_bias = config.has_relative_attention_bias self.has_spatial_attention_bias = config.has_spatial_attention_bias if self.has_relative_attention_bias: self.rel_pos_bins = config.rel_pos_bins self.max_rel_pos = config.max_rel_pos self.rel_pos_bias = tf.keras.layers.Dense( units=config.num_attention_heads, kernel_initializer=get_initializer(config.initializer_range), use_bias=False, name="rel_pos_bias", ) if self.has_spatial_attention_bias: self.max_rel_2d_pos = config.max_rel_2d_pos self.rel_2d_pos_bins = config.rel_2d_pos_bins self.rel_pos_x_bias = tf.keras.layers.Dense( units=config.num_attention_heads, kernel_initializer=get_initializer(config.initializer_range), use_bias=False, name="rel_pos_x_bias", ) self.rel_pos_y_bias = tf.keras.layers.Dense( units=config.num_attention_heads, kernel_initializer=get_initializer(config.initializer_range), use_bias=False, name="rel_pos_y_bias", ) def relative_position_bucket(self, relative_positions: tf.Tensor, num_buckets: int, max_distance: int): # the negative relative positions are assigned to the interval [0, num_buckets / 2] # we deal with this by assigning absolute relative positions to the interval [0, num_buckets / 2] # and then offsetting the positive relative positions by num_buckets / 2 at the end num_buckets = num_buckets // 2 buckets = tf.abs(relative_positions) # half of the buckets are for exact increments in positions max_exact_buckets = num_buckets // 2 is_small = buckets < max_exact_buckets # the other half of the buckets are for logarithmically bigger bins in positions up to max_distance buckets_log_ratio = tf.math.log(tf.cast(buckets, tf.float32) / max_exact_buckets) distance_log_ratio = math.log(max_distance / max_exact_buckets) buckets_big_offset = ( buckets_log_ratio / distance_log_ratio * (num_buckets - max_exact_buckets) ) # scale is [0, num_buckets - max_exact_buckets] buckets_big = max_exact_buckets + buckets_big_offset # scale is [max_exact_buckets, num_buckets] buckets_big = tf.cast(buckets_big, buckets.dtype) buckets_big = tf.minimum(buckets_big, num_buckets - 1) return (tf.cast(relative_positions > 0, buckets.dtype) * num_buckets) + tf.where( is_small, buckets, buckets_big ) def _cal_pos_emb( self, dense_layer: tf.keras.layers.Dense, position_ids: tf.Tensor, num_buckets: int, max_distance: int, ): rel_pos_matrix = tf.expand_dims(position_ids, axis=-2) - tf.expand_dims(position_ids, axis=-1) rel_pos = self.relative_position_bucket(rel_pos_matrix, num_buckets, max_distance) rel_pos_one_hot = tf.one_hot(rel_pos, depth=num_buckets, dtype=self.compute_dtype) embedding = dense_layer(rel_pos_one_hot) # batch_size, seq_length, seq_length, num_heads --> batch_size, num_heads, seq_length, seq_length embedding = tf.transpose(embedding, [0, 3, 1, 2]) embedding = tf.cast(embedding, dtype=self.compute_dtype) return embedding def _cal_1d_pos_emb(self, position_ids: tf.Tensor): return self._cal_pos_emb(self.rel_pos_bias, position_ids, self.rel_pos_bins, self.max_rel_pos) def _cal_2d_pos_emb(self, bbox: tf.Tensor): position_coord_x = bbox[:, :, 0] # left position_coord_y = bbox[:, :, 3] # bottom rel_pos_x = self._cal_pos_emb( self.rel_pos_x_bias, position_coord_x, self.rel_2d_pos_bins, self.max_rel_2d_pos, ) rel_pos_y = self._cal_pos_emb( self.rel_pos_y_bias, position_coord_y, self.rel_2d_pos_bins, self.max_rel_2d_pos, ) rel_2d_pos = rel_pos_x + rel_pos_y return rel_2d_pos def call( self, hidden_states: tf.Tensor, bbox: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, position_ids: tf.Tensor | None = None, training: bool = False, ) -> Union[ TFBaseModelOutput, Tuple[tf.Tensor], Tuple[tf.Tensor, tf.Tensor], Tuple[tf.Tensor, tf.Tensor, tf.Tensor], ]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None rel_pos = self._cal_1d_pos_emb(position_ids) if self.has_relative_attention_bias else None rel_2d_pos = self._cal_2d_pos_emb(bbox) if self.has_spatial_attention_bias else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, output_attentions, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos, training=training, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if return_dict: return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) else: return tuple( value for value in [hidden_states, all_hidden_states, all_self_attentions] if value is not None ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "rel_pos_bias", None) is not None: with tf.name_scope(self.rel_pos_bias.name): self.rel_pos_bias.build([None, None, self.rel_pos_bins]) if getattr(self, "rel_pos_x_bias", None) is not None: with tf.name_scope(self.rel_pos_x_bias.name): self.rel_pos_x_bias.build([None, None, self.rel_2d_pos_bins]) if getattr(self, "rel_pos_y_bias", None) is not None: with tf.name_scope(self.rel_pos_y_bias.name): self.rel_pos_y_bias.build([None, None, self.rel_2d_pos_bins]) if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFLayoutLMv3MainLayer(tf.keras.layers.Layer): config_class = LayoutLMv3Config def __init__(self, config: LayoutLMv3Config, **kwargs): super().__init__(**kwargs) self.config = config if config.text_embed: self.embeddings = TFLayoutLMv3TextEmbeddings(config, name="embeddings") if config.visual_embed: self.patch_embed = TFLayoutLMv3PatchEmbeddings(config, name="patch_embed") self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob, name="dropout") if config.has_relative_attention_bias or config.has_spatial_attention_bias: image_size = config.input_size // config.patch_size self.init_visual_bbox(image_size=(image_size, image_size)) self.norm = tf.keras.layers.LayerNormalization(epsilon=1e-6, name="norm") self.encoder = TFLayoutLMv3Encoder(config, name="encoder") def build(self, input_shape=None): if self.config.visual_embed: image_size = self.config.input_size // self.config.patch_size self.cls_token = self.add_weight( shape=(1, 1, self.config.hidden_size), initializer="zeros", trainable=True, dtype=tf.float32, name="cls_token", ) self.pos_embed = self.add_weight( shape=(1, image_size * image_size + 1, self.config.hidden_size), initializer="zeros", trainable=True, dtype=tf.float32, name="pos_embed", ) if self.built: return self.built = True if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "patch_embed", None) is not None: with tf.name_scope(self.patch_embed.name): self.patch_embed.build(None) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) if getattr(self, "norm", None) is not None: with tf.name_scope(self.norm.name): self.norm.build([None, None, self.config.hidden_size]) def get_input_embeddings(self) -> tf.keras.layers.Layer: return self.embeddings.word_embeddings def set_input_embeddings(self, value: tf.Variable): self.embeddings.word_embeddings.weight = value # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer._prune_heads def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError def init_visual_bbox(self, image_size: Tuple[int, int], max_len: int = 1000): # We should not hardcode max_len to 1000, but it is done by the reference implementation, # so we keep it for compatibility with the pretrained weights. The more correct approach # would have been to pass on max_len=config.max_2d_position_embeddings - 1. height, width = image_size visual_bbox_x = tf.range(0, max_len * (width + 1), max_len) // width visual_bbox_x = tf.expand_dims(visual_bbox_x, axis=0) visual_bbox_x = tf.tile(visual_bbox_x, [width, 1]) # (width, width + 1) visual_bbox_y = tf.range(0, max_len * (height + 1), max_len) // height visual_bbox_y = tf.expand_dims(visual_bbox_y, axis=1) visual_bbox_y = tf.tile(visual_bbox_y, [1, height]) # (height + 1, height) visual_bbox = tf.stack( [visual_bbox_x[:, :-1], visual_bbox_y[:-1], visual_bbox_x[:, 1:], visual_bbox_y[1:]], axis=-1, ) visual_bbox = tf.reshape(visual_bbox, [-1, 4]) cls_token_box = tf.constant([[1, 1, max_len - 1, max_len - 1]], dtype=tf.int32) self.visual_bbox = tf.concat([cls_token_box, visual_bbox], axis=0) def calculate_visual_bbox(self, batch_size: int, dtype: tf.DType): visual_bbox = tf.expand_dims(self.visual_bbox, axis=0) visual_bbox = tf.tile(visual_bbox, [batch_size, 1, 1]) visual_bbox = tf.cast(visual_bbox, dtype=dtype) return visual_bbox def embed_image(self, pixel_values: tf.Tensor) -> tf.Tensor: embeddings = self.patch_embed(pixel_values) # add [CLS] token batch_size = tf.shape(embeddings)[0] cls_tokens = tf.tile(self.cls_token, [batch_size, 1, 1]) embeddings = tf.concat([cls_tokens, embeddings], axis=1) # add position embeddings if getattr(self, "pos_embed", None) is not None: embeddings += self.pos_embed embeddings = self.norm(embeddings) return embeddings def get_extended_attention_mask(self, attention_mask: tf.Tensor) -> tf.Tensor: # Adapted from transformers.modelling_utils.ModuleUtilsMixin.get_extended_attention_mask n_dims = len(attention_mask.shape) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if n_dims == 3: extended_attention_mask = tf.expand_dims(attention_mask, axis=1) elif n_dims == 2: # Provided a padding mask of dimensions [batch_size, seq_length]. # Make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]. extended_attention_mask = tf.expand_dims(attention_mask, axis=1) # (batch_size, 1, seq_length) extended_attention_mask = tf.expand_dims(extended_attention_mask, axis=1) # (batch_size, 1, 1, seq_length) else: raise ValueError(f"Wrong shape for attention_mask (shape {attention_mask.shape}).") # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, self.compute_dtype) extended_attention_mask = (1.0 - extended_attention_mask) * LARGE_NEGATIVE return extended_attention_mask def get_head_mask(self, head_mask: tf.Tensor | None) -> Union[tf.Tensor, List[tf.Tensor | None]]: if head_mask is None: return [None] * self.config.num_hidden_layers n_dims = tf.rank(head_mask) if n_dims == 1: # Gets a tensor with masks for each head (H). head_mask = tf.expand_dims(head_mask, axis=0) # 1, num_heads head_mask = tf.expand_dims(head_mask, axis=0) # 1, 1, num_heads head_mask = tf.expand_dims(head_mask, axis=-1) # 1, 1, num_heads, 1 head_mask = tf.expand_dims(head_mask, axis=-1) # 1, 1, num_heads, 1, 1 head_mask = tf.tile( head_mask, [self.config.num_hidden_layers, 1, 1, 1, 1] ) # seq_length, 1, num_heads, 1, 1 elif n_dims == 2: # Gets a tensor with masks for each layer (L) and head (H). head_mask = tf.expand_dims(head_mask, axis=1) # seq_length, 1, num_heads head_mask = tf.expand_dims(head_mask, axis=-1) # seq_length, 1, num_heads, 1 head_mask = tf.expand_dims(head_mask, axis=-1) # seq_length, 1, num_heads, 1, 1 elif n_dims != 5: raise ValueError(f"Wrong shape for head_mask (shape {head_mask.shape}).") assert tf.rank(head_mask) == 5, f"Got head_mask rank of {tf.rank(head_mask)}, but require 5." head_mask = tf.cast(head_mask, self.compute_dtype) return head_mask @unpack_inputs def call( self, input_ids: tf.Tensor | None = None, bbox: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, pixel_values: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[ TFBaseModelOutput, Tuple[tf.Tensor], Tuple[tf.Tensor, tf.Tensor], Tuple[tf.Tensor, tf.Tensor, tf.Tensor], ]: # This method can be called with a variety of modalities: # 1. text + layout # 2. text + layout + image # 3. image # The complexity of this method is mostly just due to handling of these different modalities. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if input_ids is not None: input_shape = tf.shape(input_ids) batch_size = input_shape[0] seq_length = input_shape[1] elif inputs_embeds is not None: input_shape = tf.shape(inputs_embeds) batch_size = input_shape[0] seq_length = input_shape[1] elif pixel_values is not None: batch_size = tf.shape(pixel_values)[0] else: raise ValueError("You have to specify either input_ids or inputs_embeds or pixel_values") # Determine which integer dtype to use. if input_ids is not None: int_dtype = input_ids.dtype elif bbox is not None: int_dtype = bbox.dtype elif attention_mask is not None: int_dtype = attention_mask.dtype elif token_type_ids is not None: int_dtype = token_type_ids.dtype else: int_dtype = tf.int32 if input_ids is not None or inputs_embeds is not None: if attention_mask is None: attention_mask = tf.ones((batch_size, seq_length), dtype=int_dtype) if token_type_ids is None: token_type_ids = tf.zeros((batch_size, seq_length), dtype=int_dtype) if bbox is None: bbox = tf.zeros((batch_size, seq_length, 4), dtype=int_dtype) embedding_output = self.embeddings( input_ids=input_ids, bbox=bbox, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, training=training, ) final_bbox = None final_position_ids = None if pixel_values is not None: # embed image visual_embeddings = self.embed_image(pixel_values) # calculate attention mask visual_attention_mask = tf.ones((batch_size, tf.shape(visual_embeddings)[1]), dtype=int_dtype) if attention_mask is None: attention_mask = visual_attention_mask else: attention_mask = tf.concat([attention_mask, visual_attention_mask], axis=1) # calculate bounding boxes if self.config.has_spatial_attention_bias: visual_bbox = self.calculate_visual_bbox(batch_size, int_dtype) if bbox is None: final_bbox = visual_bbox else: final_bbox = tf.concat([bbox, visual_bbox], axis=1) # calculate position IDs if self.config.has_relative_attention_bias or self.config.has_spatial_attention_bias: visual_position_ids = tf.range(0, tf.shape(visual_embeddings)[1], dtype=int_dtype) visual_position_ids = tf.expand_dims(visual_position_ids, axis=0) visual_position_ids = tf.tile(visual_position_ids, [batch_size, 1]) if input_ids is not None or inputs_embeds is not None: position_ids = tf.expand_dims(tf.range(0, seq_length, dtype=int_dtype), axis=0) position_ids = tf.tile(position_ids, [batch_size, 1]) final_position_ids = tf.concat([position_ids, visual_position_ids], axis=1) else: final_position_ids = visual_position_ids # calculate embeddings if input_ids is None and inputs_embeds is None: embedding_output = visual_embeddings else: embedding_output = tf.concat([embedding_output, visual_embeddings], axis=1) embedding_output = self.LayerNorm(embedding_output) embedding_output = self.dropout(embedding_output, training=training) elif self.config.has_relative_attention_bias or self.config.has_spatial_attention_bias: if self.config.has_relative_attention_bias: position_ids = tf.expand_dims(tf.range(0, seq_length, dtype=int_dtype), axis=0) position_ids = tf.tile(position_ids, [batch_size, 1]) final_position_ids = position_ids if self.config.has_spatial_attention_bias: final_bbox = bbox extended_attention_mask = self.get_extended_attention_mask(attention_mask) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape batch_size x num_heads x seq_length x seq_length # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask) encoder_outputs = self.encoder( embedding_output, bbox=final_bbox, position_ids=final_position_ids, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return TFBaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) return TFBaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class TFLayoutLMv3PreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LayoutLMv3Config base_model_prefix = "layoutlmv3" @property def input_signature(self): sig = super().input_signature sig["bbox"] = tf.TensorSpec((None, None, 4), tf.int32, name="bbox") return sig LAYOUTLMV3_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`LayoutLMv3Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ LAYOUTLMV3_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] token. See `pixel_values` for `patch_sequence_length`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) bbox (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length, 4)`, *optional*): Bounding boxes of each input sequence tokens. Selected in the range `[0, config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1) format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1, y1) represents the position of the lower right corner. Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] token. See `pixel_values` for `patch_sequence_length`. pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Batch of document images. Each image is divided into patches of shape `(num_channels, config.patch_size, config.patch_size)` and the total number of patches (=`patch_sequence_length`) equals to `((height / config.patch_size) * (width / config.patch_size))`. attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] token. See `pixel_values` for `patch_sequence_length`. [What are attention masks?](../glossary#attention-mask) token_type_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] token. See `pixel_values` for `patch_sequence_length`. [What are token type IDs?](../glossary#token-type-ids) position_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] token. See `pixel_values` for `patch_sequence_length`. [What are position IDs?](../glossary#position-ids) head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare LayoutLMv3 Model transformer outputting raw hidden-states without any specific head on top.", LAYOUTLMV3_START_DOCSTRING, ) class TFLayoutLMv3Model(TFLayoutLMv3PreTrainedModel): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"position_ids"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.layoutlmv3 = TFLayoutLMv3MainLayer(config, name="layoutlmv3") @unpack_inputs @add_start_docstrings_to_model_forward(LAYOUTLMV3_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: tf.Tensor | None = None, bbox: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, pixel_values: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[ TFBaseModelOutput, Tuple[tf.Tensor], Tuple[tf.Tensor, tf.Tensor], Tuple[tf.Tensor, tf.Tensor, tf.Tensor], ]: r""" Returns: Examples: ```python >>> from transformers import AutoProcessor, TFAutoModel >>> from datasets import load_dataset >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) >>> model = TFAutoModel.from_pretrained("microsoft/layoutlmv3-base") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> example = dataset[0] >>> image = example["image"] >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> encoding = processor(image, words, boxes=boxes, return_tensors="tf") >>> outputs = model(**encoding) >>> last_hidden_states = outputs.last_hidden_state ```""" outputs = self.layoutlmv3( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layoutlmv3", None) is not None: with tf.name_scope(self.layoutlmv3.name): self.layoutlmv3.build(None) class TFLayoutLMv3ClassificationHead(tf.keras.layers.Layer): """ Head for sentence-level classification tasks. Reference: RobertaClassificationHead """ def __init__(self, config: LayoutLMv3Config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, activation="tanh", kernel_initializer=get_initializer(config.initializer_range), name="dense", ) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = tf.keras.layers.Dropout( classifier_dropout, name="dropout", ) self.out_proj = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj", ) self.config = config def call(self, inputs: tf.Tensor, training: bool = False) -> tf.Tensor: outputs = self.dropout(inputs, training=training) outputs = self.dense(outputs) outputs = self.dropout(outputs, training=training) outputs = self.out_proj(outputs) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ LayoutLMv3 Model with a sequence classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for document image classification tasks such as the [RVL-CDIP](https://www.cs.cmu.edu/~aharley/rvl-cdip/) dataset. """, LAYOUTLMV3_START_DOCSTRING, ) class TFLayoutLMv3ForSequenceClassification(TFLayoutLMv3PreTrainedModel, TFSequenceClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"position_ids"] def __init__(self, config: LayoutLMv3Config, **kwargs): super().__init__(config, **kwargs) self.config = config self.layoutlmv3 = TFLayoutLMv3MainLayer(config, name="layoutlmv3") self.classifier = TFLayoutLMv3ClassificationHead(config, name="classifier") @unpack_inputs @add_start_docstrings_to_model_forward(LAYOUTLMV3_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, labels: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, bbox: tf.Tensor | None = None, pixel_values: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[ TFSequenceClassifierOutput, Tuple[tf.Tensor], Tuple[tf.Tensor, tf.Tensor], Tuple[tf.Tensor, tf.Tensor, tf.Tensor], Tuple[tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor], ]: """ Returns: Examples: ```python >>> from transformers import AutoProcessor, TFAutoModelForSequenceClassification >>> from datasets import load_dataset >>> import tensorflow as tf >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) >>> model = TFAutoModelForSequenceClassification.from_pretrained("microsoft/layoutlmv3-base") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> example = dataset[0] >>> image = example["image"] >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> encoding = processor(image, words, boxes=boxes, return_tensors="tf") >>> sequence_label = tf.convert_to_tensor([1]) >>> outputs = model(**encoding, labels=sequence_label) >>> loss = outputs.loss >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlmv3( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, bbox=bbox, pixel_values=pixel_values, training=training, ) sequence_output = outputs[0][:, 0, :] logits = self.classifier(sequence_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layoutlmv3", None) is not None: with tf.name_scope(self.layoutlmv3.name): self.layoutlmv3.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build(None) @add_start_docstrings( """ LayoutLMv3 Model with a token classification head on top (a linear layer on top of the final hidden states) e.g. for sequence labeling (information extraction) tasks such as [FUNSD](https://guillaumejaume.github.io/FUNSD/), [SROIE](https://rrc.cvc.uab.es/?ch=13), [CORD](https://github.com/clovaai/cord) and [Kleister-NDA](https://github.com/applicaai/kleister-nda). """, LAYOUTLMV3_START_DOCSTRING, ) class TFLayoutLMv3ForTokenClassification(TFLayoutLMv3PreTrainedModel, TFTokenClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"position_ids"] def __init__(self, config: LayoutLMv3Config, **kwargs): super().__init__(config, **kwargs) self.num_labels = config.num_labels self.layoutlmv3 = TFLayoutLMv3MainLayer(config, name="layoutlmv3") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob, name="dropout") if config.num_labels < 10: self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier", ) else: self.classifier = TFLayoutLMv3ClassificationHead(config, name="classifier") self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(LAYOUTLMV3_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: tf.Tensor | None = None, bbox: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, labels: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, pixel_values: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[ TFTokenClassifierOutput, Tuple[tf.Tensor], Tuple[tf.Tensor, tf.Tensor], Tuple[tf.Tensor, tf.Tensor, tf.Tensor], Tuple[tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor], ]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. Returns: Examples: ```python >>> from transformers import AutoProcessor, TFAutoModelForTokenClassification >>> from datasets import load_dataset >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) >>> model = TFAutoModelForTokenClassification.from_pretrained("microsoft/layoutlmv3-base", num_labels=7) >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> example = dataset[0] >>> image = example["image"] >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> word_labels = example["ner_tags"] >>> encoding = processor(image, words, boxes=boxes, word_labels=word_labels, return_tensors="tf") >>> outputs = model(**encoding) >>> loss = outputs.loss >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlmv3( input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, pixel_values=pixel_values, training=training, ) if input_ids is not None: input_shape = tf.shape(input_ids) else: input_shape = tf.shape(inputs_embeds)[:-1] seq_length = input_shape[1] # only take the text part of the output representations sequence_output = outputs[0][:, :seq_length] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layoutlmv3", None) is not None: with tf.name_scope(self.layoutlmv3.name): self.layoutlmv3.build(None) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ LayoutLMv3 Model with a span classification head on top for extractive question-answering tasks such as [DocVQA](https://rrc.cvc.uab.es/?ch=17) (a linear layer on top of the text part of the hidden-states output to compute `span start logits` and `span end logits`). """, LAYOUTLMV3_START_DOCSTRING, ) class TFLayoutLMv3ForQuestionAnswering(TFLayoutLMv3PreTrainedModel, TFQuestionAnsweringLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"position_ids"] def __init__(self, config: LayoutLMv3Config, **kwargs): super().__init__(config, **kwargs) self.num_labels = config.num_labels self.layoutlmv3 = TFLayoutLMv3MainLayer(config, name="layoutlmv3") self.qa_outputs = TFLayoutLMv3ClassificationHead(config, name="qa_outputs") @unpack_inputs @add_start_docstrings_to_model_forward(LAYOUTLMV3_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, start_positions: tf.Tensor | None = None, end_positions: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, bbox: tf.Tensor | None = None, pixel_values: tf.Tensor | None = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[ TFQuestionAnsweringModelOutput, Tuple[tf.Tensor], Tuple[tf.Tensor, tf.Tensor], Tuple[tf.Tensor, tf.Tensor, tf.Tensor], Tuple[tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor], ]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. Returns: Examples: ```python >>> from transformers import AutoProcessor, TFAutoModelForQuestionAnswering >>> from datasets import load_dataset >>> import tensorflow as tf >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) >>> model = TFAutoModelForQuestionAnswering.from_pretrained("microsoft/layoutlmv3-base") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> example = dataset[0] >>> image = example["image"] >>> question = "what's his name?" >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> encoding = processor(image, question, words, boxes=boxes, return_tensors="tf") >>> start_positions = tf.convert_to_tensor([1]) >>> end_positions = tf.convert_to_tensor([3]) >>> outputs = model(**encoding, start_positions=start_positions, end_positions=end_positions) >>> loss = outputs.loss >>> start_scores = outputs.start_logits >>> end_scores = outputs.end_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlmv3( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, bbox=bbox, pixel_values=pixel_values, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output, training=training) start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1) start_logits = tf.squeeze(input=start_logits, axis=-1) end_logits = tf.squeeze(input=end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions, "end_position": end_positions} loss = self.hf_compute_loss(labels, logits=(start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layoutlmv3", None) is not None: with tf.name_scope(self.layoutlmv3.name): self.layoutlmv3.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build(None)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/layoutlmv3/processing_layoutlmv3.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for LayoutLMv3. """ import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class LayoutLMv3Processor(ProcessorMixin): r""" Constructs a LayoutLMv3 processor which combines a LayoutLMv3 image processor and a LayoutLMv3 tokenizer into a single processor. [`LayoutLMv3Processor`] offers all the functionalities you need to prepare data for the model. It first uses [`LayoutLMv3ImageProcessor`] to resize and normalize document images, and optionally applies OCR to get words and normalized bounding boxes. These are then provided to [`LayoutLMv3Tokenizer`] or [`LayoutLMv3TokenizerFast`], which turns the words and bounding boxes into token-level `input_ids`, `attention_mask`, `token_type_ids`, `bbox`. Optionally, one can provide integer `word_labels`, which are turned into token-level `labels` for token classification tasks (such as FUNSD, CORD). Args: image_processor (`LayoutLMv3ImageProcessor`, *optional*): An instance of [`LayoutLMv3ImageProcessor`]. The image processor is a required input. tokenizer (`LayoutLMv3Tokenizer` or `LayoutLMv3TokenizerFast`, *optional*): An instance of [`LayoutLMv3Tokenizer`] or [`LayoutLMv3TokenizerFast`]. The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "LayoutLMv3ImageProcessor" tokenizer_class = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__(self, image_processor=None, tokenizer=None, **kwargs): feature_extractor = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", FutureWarning, ) feature_extractor = kwargs.pop("feature_extractor") image_processor = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(image_processor, tokenizer) def __call__( self, images, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, boxes: Union[List[List[int]], List[List[List[int]]]] = None, word_labels: Optional[Union[List[int], List[List[int]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> BatchEncoding: """ This method first forwards the `images` argument to [`~LayoutLMv3ImageProcessor.__call__`]. In case [`LayoutLMv3ImageProcessor`] was initialized with `apply_ocr` set to `True`, it passes the obtained words and bounding boxes along with the additional arguments to [`~LayoutLMv3Tokenizer.__call__`] and returns the output, together with resized and normalized `pixel_values`. In case [`LayoutLMv3ImageProcessor`] was initialized with `apply_ocr` set to `False`, it passes the words (`text`/``text_pair`) and `boxes` specified by the user along with the additional arguments to [`~LayoutLMv3Tokenizer.__call__`] and returns the output, together with resized and normalized `pixel_values`. Please refer to the docstring of the above two methods for more information. """ # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor features = self.image_processor(images=images, return_tensors=return_tensors) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(text, str): text = [text] # add batch dimension (as the image processor always adds a batch dimension) text_pair = features["words"] encoded_inputs = self.tokenizer( text=text if text is not None else features["words"], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features["boxes"], word_labels=word_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, return_tensors=return_tensors, **kwargs, ) # add pixel values images = features.pop("pixel_values") if return_overflowing_tokens is True: images = self.get_overflowing_images(images, encoded_inputs["overflow_to_sample_mapping"]) encoded_inputs["pixel_values"] = images return encoded_inputs def get_overflowing_images(self, images, overflow_to_sample_mapping): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image images_with_overflow = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(images_with_overflow) != len(overflow_to_sample_mapping): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f" {len(images_with_overflow)} and {len(overflow_to_sample_mapping)}" ) return images_with_overflow def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def feature_extractor_class(self): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", FutureWarning, ) return self.image_processor_class @property def feature_extractor(self): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", FutureWarning, ) return self.image_processor
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/convnextv2/configuration_convnextv2.py
# coding=utf-8 # Copyright 2023 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ConvNeXTV2 model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices logger = logging.get_logger(__name__) CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class ConvNextV2Config(BackboneConfigMixin, PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ConvNextV2Model`]. It is used to instantiate an ConvNeXTV2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ConvNeXTV2 [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. patch_size (`int`, optional, defaults to 4): Patch size to use in the patch embedding layer. num_stages (`int`, optional, defaults to 4): The number of stages in the model. hidden_sizes (`List[int]`, *optional*, defaults to `[96, 192, 384, 768]`): Dimensionality (hidden size) at each stage. depths (`List[int]`, *optional*, defaults to `[3, 3, 9, 3]`): Depth (number of blocks) for each stage. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. drop_path_rate (`float`, *optional*, defaults to 0.0): The drop rate for stochastic depth. out_features (`List[str]`, *optional*): If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. (depending on how many stages the model has). If unset and `out_indices` is set, will default to the corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. out_indices (`List[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. If unset and `out_features` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. Example: ```python >>> from transformers import ConvNeXTV2Config, ConvNextV2Model >>> # Initializing a ConvNeXTV2 convnextv2-tiny-1k-224 style configuration >>> configuration = ConvNeXTV2Config() >>> # Initializing a model (with random weights) from the convnextv2-tiny-1k-224 style configuration >>> model = ConvNextV2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "convnextv2" def __init__( self, num_channels=3, patch_size=4, num_stages=4, hidden_sizes=None, depths=None, hidden_act="gelu", initializer_range=0.02, layer_norm_eps=1e-12, drop_path_rate=0.0, image_size=224, out_features=None, out_indices=None, **kwargs, ): super().__init__(**kwargs) self.num_channels = num_channels self.patch_size = patch_size self.num_stages = num_stages self.hidden_sizes = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes self.depths = [3, 3, 9, 3] if depths is None else depths self.hidden_act = hidden_act self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.drop_path_rate = drop_path_rate self.image_size = image_size self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=out_indices, stage_names=self.stage_names )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/convnextv2/modeling_tf_convnextv2.py
# coding=utf-8 # Copyright 2023 Meta Platforms Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 ConvNextV2 model.""" from __future__ import annotations from typing import List, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPooling, TFBaseModelOutputWithPoolingAndNoAttention, TFImageClassifierOutputWithNoAttention, ) from ...modeling_tf_utils import ( TFModelInputType, TFPreTrainedModel, TFSequenceClassificationLoss, get_initializer, keras_serializable, unpack_inputs, ) from ...tf_utils import shape_list from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_convnextv2 import ConvNextV2Config logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "ConvNextV2Config" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/convnextv2-tiny-1k-224" _EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "facebook/convnextv2-tiny-1k-224" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/convnextv2-tiny-1k-224", # See all ConvNextV2 models at https://huggingface.co/models?filter=convnextv2 ] # Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextDropPath with ConvNext->ConvNextV2 class TFConvNextV2DropPath(tf.keras.layers.Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). References: (1) github.com:rwightman/pytorch-image-models """ def __init__(self, drop_path: float, **kwargs): super().__init__(**kwargs) self.drop_path = drop_path def call(self, x: tf.Tensor, training=None): if training: keep_prob = 1 - self.drop_path shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1) random_tensor = keep_prob + tf.random.uniform(shape, 0, 1) random_tensor = tf.floor(random_tensor) return (x / keep_prob) * random_tensor return x class TFConvNextV2GRN(tf.keras.layers.Layer): """GRN (Global Response Normalization) layer""" def __init__(self, config: ConvNextV2Config, dim: int, **kwargs): super().__init__(**kwargs) self.dim = dim def build(self, input_shape: tf.TensorShape = None): # PT's `nn.Parameters` must be mapped to a TF layer weight to inherit the same name hierarchy (and vice-versa) self.weight = self.add_weight( name="weight", shape=(1, 1, 1, self.dim), initializer=tf.keras.initializers.Zeros(), ) self.bias = self.add_weight( name="bias", shape=(1, 1, 1, self.dim), initializer=tf.keras.initializers.Zeros(), ) return super().build(input_shape) def call(self, hidden_states: tf.Tensor): global_features = tf.norm(hidden_states, ord="euclidean", axis=(1, 2), keepdims=True) norm_features = global_features / (tf.reduce_mean(global_features, axis=-1, keepdims=True) + 1e-6) hidden_states = self.weight * (hidden_states * norm_features) + self.bias + hidden_states return hidden_states # Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextEmbeddings with ConvNext->ConvNextV2 class TFConvNextV2Embeddings(tf.keras.layers.Layer): """This class is comparable to (and inspired by) the SwinEmbeddings class found in src/transformers/models/swin/modeling_swin.py. """ def __init__(self, config: ConvNextV2Config, **kwargs): super().__init__(**kwargs) self.patch_embeddings = tf.keras.layers.Conv2D( filters=config.hidden_sizes[0], kernel_size=config.patch_size, strides=config.patch_size, name="patch_embeddings", kernel_initializer=get_initializer(config.initializer_range), bias_initializer=tf.keras.initializers.Zeros(), ) self.layernorm = tf.keras.layers.LayerNormalization(epsilon=1e-6, name="layernorm") self.num_channels = config.num_channels self.config = config def call(self, pixel_values): if isinstance(pixel_values, dict): pixel_values = pixel_values["pixel_values"] tf.debugging.assert_equal( shape_list(pixel_values)[1], self.num_channels, message="Make sure that the channel dimension of the pixel values match with the one set in the configuration.", ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels) pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) embeddings = self.patch_embeddings(pixel_values) embeddings = self.layernorm(embeddings) return embeddings def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "patch_embeddings", None) is not None: with tf.name_scope(self.patch_embeddings.name): self.patch_embeddings.build([None, None, None, self.config.num_channels]) if getattr(self, "layernorm", None) is not None: with tf.name_scope(self.layernorm.name): self.layernorm.build([None, None, None, self.config.hidden_sizes[0]]) class TFConvNextV2Layer(tf.keras.layers.Layer): """This corresponds to the `Block` class in the original implementation. There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C, H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back The authors used (2) as they find it slightly faster in PyTorch. Since we already permuted the inputs to follow NHWC ordering, we can just apply the operations straight-away without the permutation. Args: config (`ConvNextV2Config`): Model configuration class. dim (`int`): Number of input channels. drop_path (`float`, defaults to 0.0): Stochastic depth rate. """ def __init__(self, config: ConvNextV2Config, dim: int, drop_path: float = 0.0, **kwargs): super().__init__(**kwargs) self.dim = dim self.config = config self.dwconv = tf.keras.layers.Conv2D( filters=dim, kernel_size=7, padding="same", groups=dim, kernel_initializer=get_initializer(config.initializer_range), bias_initializer=tf.keras.initializers.Zeros(), name="dwconv", ) # depthwise conv self.layernorm = tf.keras.layers.LayerNormalization( epsilon=1e-6, name="layernorm", ) self.pwconv1 = tf.keras.layers.Dense( units=4 * dim, kernel_initializer=get_initializer(config.initializer_range), bias_initializer=tf.keras.initializers.Zeros(), name="pwconv1", ) # pointwise/1x1 convs, implemented with linear layers self.act = get_tf_activation(config.hidden_act) self.grn = TFConvNextV2GRN(config, 4 * dim, dtype=tf.float32, name="grn") self.pwconv2 = tf.keras.layers.Dense( units=dim, kernel_initializer=get_initializer(config.initializer_range), bias_initializer=tf.keras.initializers.Zeros(), name="pwconv2", ) # Using `layers.Activation` instead of `tf.identity` to better control `training` # behaviour. self.drop_path = ( TFConvNextV2DropPath(drop_path, name="drop_path") if drop_path > 0.0 else tf.keras.layers.Activation("linear", name="drop_path") ) def call(self, hidden_states, training=False): input = hidden_states x = self.dwconv(hidden_states) x = self.layernorm(x) x = self.pwconv1(x) x = self.act(x) x = self.grn(x) x = self.pwconv2(x) x = self.drop_path(x, training=training) x = input + x return x def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dwconv", None) is not None: with tf.name_scope(self.dwconv.name): self.dwconv.build([None, None, None, self.dim]) if getattr(self, "layernorm", None) is not None: with tf.name_scope(self.layernorm.name): self.layernorm.build([None, None, None, self.dim]) if getattr(self, "pwconv1", None) is not None: with tf.name_scope(self.pwconv1.name): self.pwconv1.build([None, None, self.dim]) if getattr(self, "grn", None) is not None: with tf.name_scope(self.grn.name): self.grn.build(None) if getattr(self, "pwconv2", None) is not None: with tf.name_scope(self.pwconv2.name): self.pwconv2.build([None, None, 4 * self.dim]) if getattr(self, "drop_path", None) is not None: with tf.name_scope(self.drop_path.name): self.drop_path.build(None) # Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextStage with ConvNext->ConvNextV2 class TFConvNextV2Stage(tf.keras.layers.Layer): """ConvNextV2 stage, consisting of an optional downsampling layer + multiple residual blocks. Args: config (`ConvNextV2V2Config`): Model configuration class. in_channels (`int`): Number of input channels. out_channels (`int`): Number of output channels. depth (`int`): Number of residual blocks. drop_path_rates(`List[float]`): Stochastic depth rates for each layer. """ def __init__( self, config: ConvNextV2Config, in_channels: int, out_channels: int, kernel_size: int = 2, stride: int = 2, depth: int = 2, drop_path_rates: Optional[List[float]] = None, **kwargs, ): super().__init__(**kwargs) if in_channels != out_channels or stride > 1: self.downsampling_layer = [ tf.keras.layers.LayerNormalization( epsilon=1e-6, name="downsampling_layer.0", ), # Inputs to this layer will follow NHWC format since we # transposed the inputs from NCHW to NHWC in the `TFConvNextV2Embeddings` # layer. All the outputs throughout the model will be in NHWC # from this point on until the output where we again change to # NCHW. tf.keras.layers.Conv2D( filters=out_channels, kernel_size=kernel_size, strides=stride, kernel_initializer=get_initializer(config.initializer_range), bias_initializer=tf.keras.initializers.Zeros(), name="downsampling_layer.1", ), ] else: self.downsampling_layer = [tf.identity] drop_path_rates = drop_path_rates or [0.0] * depth self.layers = [ TFConvNextV2Layer( config, dim=out_channels, drop_path=drop_path_rates[j], name=f"layers.{j}", ) for j in range(depth) ] self.in_channels = in_channels self.out_channels = out_channels self.stride = stride def call(self, hidden_states): for layer in self.downsampling_layer: hidden_states = layer(hidden_states) for layer in self.layers: hidden_states = layer(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None) if self.in_channels != self.out_channels or self.stride > 1: with tf.name_scope(self.downsampling_layer[0].name): self.downsampling_layer[0].build([None, None, None, self.in_channels]) with tf.name_scope(self.downsampling_layer[1].name): self.downsampling_layer[1].build([None, None, None, self.in_channels]) class TFConvNextV2Encoder(tf.keras.layers.Layer): def __init__(self, config: ConvNextV2Config, **kwargs): super().__init__(**kwargs) self.stages = [] drop_path_rates = tf.linspace(0.0, config.drop_path_rate, sum(config.depths)) drop_path_rates = tf.split(drop_path_rates, config.depths) drop_path_rates = [x.numpy().tolist() for x in drop_path_rates] prev_chs = config.hidden_sizes[0] for i in range(config.num_stages): out_chs = config.hidden_sizes[i] stage = TFConvNextV2Stage( config, in_channels=prev_chs, out_channels=out_chs, stride=2 if i > 0 else 1, depth=config.depths[i], drop_path_rates=drop_path_rates[i], name=f"stages.{i}", ) self.stages.append(stage) prev_chs = out_chs def call( self, hidden_states: tf.Tensor, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, TFBaseModelOutputWithNoAttention]: all_hidden_states = () if output_hidden_states else None for i, layer_module in enumerate(self.stages): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) hidden_states = layer_module(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return TFBaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states) def build(self, input_shape=None): for stage in self.stages: with tf.name_scope(stage.name): stage.build(None) @keras_serializable class TFConvNextV2MainLayer(tf.keras.layers.Layer): config_class = ConvNextV2Config def __init__(self, config: ConvNextV2Config, **kwargs): super().__init__(**kwargs) self.config = config self.embeddings = TFConvNextV2Embeddings(config, name="embeddings") self.encoder = TFConvNextV2Encoder(config, name="encoder") self.layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") # We are setting the `data_format` like so because from here on we will revert to the # NCHW output format self.pooler = tf.keras.layers.GlobalAvgPool2D(data_format="channels_last") @unpack_inputs def call( self, pixel_values: TFModelInputType | None = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output = self.embeddings(pixel_values, training=training) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) last_hidden_state = encoder_outputs[0] # Change to NCHW output format have uniformity in the modules pooled_output = self.pooler(last_hidden_state) last_hidden_state = tf.transpose(last_hidden_state, perm=(0, 3, 1, 2)) pooled_output = self.layernorm(pooled_output) # Change the other hidden state outputs to NCHW as well if output_hidden_states: hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]]) if not return_dict: hidden_states = hidden_states if output_hidden_states else () return (last_hidden_state, pooled_output) + hidden_states return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "layernorm", None) is not None: with tf.name_scope(self.layernorm.name): self.layernorm.build([None, self.config.hidden_sizes[-1]]) class TFConvNextV2PreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ConvNextV2Config base_model_prefix = "convnextv2" main_input_name = "pixel_values" CONVNEXTV2_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`ConvNextV2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ CONVNEXTV2_INPUTS_DOCSTRING = r""" Args: pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]`, `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to `True`. """ @add_start_docstrings( "The bare ConvNextV2 model outputting raw features without any specific head on top.", CONVNEXTV2_START_DOCSTRING, ) class TFConvNextV2Model(TFConvNextV2PreTrainedModel): def __init__(self, config: ConvNextV2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.convnextv2 = TFConvNextV2MainLayer(config, name="convnextv2") @unpack_inputs @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def call( self, pixel_values: TFModelInputType | None = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") outputs = self.convnextv2( pixel_values=pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return outputs[:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state, pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "convnextv2", None) is not None: with tf.name_scope(self.convnextv2.name): self.convnextv2.build(None) @add_start_docstrings( """ ConvNextV2 Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, CONVNEXTV2_START_DOCSTRING, ) class TFConvNextV2ForImageClassification(TFConvNextV2PreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: ConvNextV2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.convnextv2 = TFConvNextV2MainLayer(config, name="convnextv2") # Classifier head self.classifier = tf.keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), bias_initializer=tf.keras.initializers.Zeros(), name="classifier", ) @unpack_inputs @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=TFImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def call( self, pixel_values: TFModelInputType | None = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFImageClassifierOutputWithNoAttention, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") outputs = self.convnextv2( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFImageClassifierOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "convnextv2", None) is not None: with tf.name_scope(self.convnextv2.name): self.convnextv2.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_sizes[-1]])
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/convnextv2/__init__.py
# flake8: noqa # There's no way to ignore "F401 '...' imported but unused" warnings in this # module, but to preserve other warnings. So, don't check this module at all. # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_tf_available, ) _import_structure = { "configuration_convnextv2": [ "CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextV2Config", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_convnextv2"] = [ "CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextV2ForImageClassification", "ConvNextV2Model", "ConvNextV2PreTrainedModel", "ConvNextV2Backbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_convnextv2"] = [ "TFConvNextV2ForImageClassification", "TFConvNextV2Model", "TFConvNextV2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnextv2 import ( CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextV2Config, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnextv2 import ( CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextV2Backbone, ConvNextV2ForImageClassification, ConvNextV2Model, ConvNextV2PreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnextv2 import ( TFConvNextV2ForImageClassification, TFConvNextV2Model, TFConvNextV2PreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/convnextv2/modeling_convnextv2.py
# coding=utf-8 # Copyright 2023 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch ConvNextV2 model.""" from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_convnextv2 import ConvNextV2Config logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "ConvNextV2Config" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/convnextv2-tiny-1k-224" _EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "facebook/convnextv2-tiny-1k-224" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/convnextv2-tiny-1k-224", # See all ConvNextV2 models at https://huggingface.co/models?filter=convnextv2 ] # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->ConvNextV2 class ConvNextV2DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class ConvNextV2GRN(nn.Module): """GRN (Global Response Normalization) layer""" def __init__(self, dim: int): super().__init__() self.weight = nn.Parameter(torch.zeros(1, 1, 1, dim)) self.bias = nn.Parameter(torch.zeros(1, 1, 1, dim)) def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: # Compute and normalize global spatial feature maps global_features = torch.norm(hidden_states, p=2, dim=(1, 2), keepdim=True) norm_features = global_features / (global_features.mean(dim=-1, keepdim=True) + 1e-6) hidden_states = self.weight * (hidden_states * norm_features) + self.bias + hidden_states return hidden_states # Copied from transformers.models.convnext.modeling_convnext.ConvNextLayerNorm with ConvNext->ConvNextV2 class ConvNextV2LayerNorm(nn.Module): r"""LayerNorm that supports two data formats: channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). """ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): super().__init__() self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.eps = eps self.data_format = data_format if self.data_format not in ["channels_last", "channels_first"]: raise NotImplementedError(f"Unsupported data format: {self.data_format}") self.normalized_shape = (normalized_shape,) def forward(self, x: torch.Tensor) -> torch.Tensor: if self.data_format == "channels_last": x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) elif self.data_format == "channels_first": input_dtype = x.dtype x = x.float() u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = x.to(dtype=input_dtype) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x # Copied from transformers.models.convnext.modeling_convnext.ConvNextEmbeddings with ConvNext->ConvNextV2 class ConvNextV2Embeddings(nn.Module): """This class is comparable to (and inspired by) the SwinEmbeddings class found in src/transformers/models/swin/modeling_swin.py. """ def __init__(self, config): super().__init__() self.patch_embeddings = nn.Conv2d( config.num_channels, config.hidden_sizes[0], kernel_size=config.patch_size, stride=config.patch_size ) self.layernorm = ConvNextV2LayerNorm(config.hidden_sizes[0], eps=1e-6, data_format="channels_first") self.num_channels = config.num_channels def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: num_channels = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) embeddings = self.patch_embeddings(pixel_values) embeddings = self.layernorm(embeddings) return embeddings class ConvNextV2Layer(nn.Module): """This corresponds to the `Block` class in the original implementation. There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C, H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back The authors used (2) as they find it slightly faster in PyTorch. Args: config ([`ConvNextV2Config`]): Model configuration class. dim (`int`): Number of input channels. drop_path (`float`): Stochastic depth rate. Default: 0.0. """ def __init__(self, config, dim, drop_path=0): super().__init__() # depthwise conv self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) self.layernorm = ConvNextV2LayerNorm(dim, eps=1e-6) # pointwise/1x1 convs, implemented with linear layers self.pwconv1 = nn.Linear(dim, 4 * dim) self.act = ACT2FN[config.hidden_act] self.grn = ConvNextV2GRN(4 * dim) self.pwconv2 = nn.Linear(4 * dim, dim) self.drop_path = ConvNextV2DropPath(drop_path) if drop_path > 0.0 else nn.Identity() def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: input = hidden_states x = self.dwconv(hidden_states) # (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels) x = x.permute(0, 2, 3, 1) x = self.layernorm(x) x = self.pwconv1(x) x = self.act(x) x = self.grn(x) x = self.pwconv2(x) # (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width) x = x.permute(0, 3, 1, 2) x = input + self.drop_path(x) return x # Copied from transformers.models.convnext.modeling_convnext.ConvNextStage with ConvNeXT->ConvNeXTV2, ConvNext->ConvNextV2 class ConvNextV2Stage(nn.Module): """ConvNeXTV2 stage, consisting of an optional downsampling layer + multiple residual blocks. Args: config ([`ConvNextV2Config`]): Model configuration class. in_channels (`int`): Number of input channels. out_channels (`int`): Number of output channels. depth (`int`): Number of residual blocks. drop_path_rates(`List[float]`): Stochastic depth rates for each layer. """ def __init__(self, config, in_channels, out_channels, kernel_size=2, stride=2, depth=2, drop_path_rates=None): super().__init__() if in_channels != out_channels or stride > 1: self.downsampling_layer = nn.Sequential( ConvNextV2LayerNorm(in_channels, eps=1e-6, data_format="channels_first"), nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride), ) else: self.downsampling_layer = nn.Identity() drop_path_rates = drop_path_rates or [0.0] * depth self.layers = nn.Sequential( *[ConvNextV2Layer(config, dim=out_channels, drop_path=drop_path_rates[j]) for j in range(depth)] ) def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: hidden_states = self.downsampling_layer(hidden_states) hidden_states = self.layers(hidden_states) return hidden_states # Copied from transformers.models.convnext.modeling_convnext.ConvNextEncoder with ConvNext->ConvNextV2 class ConvNextV2Encoder(nn.Module): def __init__(self, config): super().__init__() self.stages = nn.ModuleList() drop_path_rates = [ x.tolist() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths)).split(config.depths) ] prev_chs = config.hidden_sizes[0] for i in range(config.num_stages): out_chs = config.hidden_sizes[i] stage = ConvNextV2Stage( config, in_channels=prev_chs, out_channels=out_chs, stride=2 if i > 0 else 1, depth=config.depths[i], drop_path_rates=drop_path_rates[i], ) self.stages.append(stage) prev_chs = out_chs def forward( self, hidden_states: torch.FloatTensor, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, BaseModelOutputWithNoAttention]: all_hidden_states = () if output_hidden_states else None for i, layer_module in enumerate(self.stages): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) hidden_states = layer_module(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=hidden_states, hidden_states=all_hidden_states, ) # Copied from transformers.models.convnext.modeling_convnext.ConvNextPreTrainedModel with ConvNext->ConvNextV2, convnext->convnextv2 class ConvNextV2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ConvNextV2Config base_model_prefix = "convnextv2" main_input_name = "pixel_values" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) CONVNEXTV2_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ConvNextV2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ CONVNEXTV2_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`ConvNextImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare ConvNextV2 model outputting raw features without any specific head on top.", CONVNEXTV2_START_DOCSTRING, ) # Copied from transformers.models.convnext.modeling_convnext.ConvNextModel with CONVNEXT->CONVNEXTV2, ConvNext->ConvNextV2 class ConvNextV2Model(ConvNextV2PreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embeddings = ConvNextV2Embeddings(config) self.encoder = ConvNextV2Encoder(config) # final layernorm layer self.layernorm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: torch.FloatTensor = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output = self.embeddings(pixel_values) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] # global average pooling, (N, C, H, W) -> (N, C) pooled_output = self.layernorm(last_hidden_state.mean([-2, -1])) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ ConvNextV2 Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, CONVNEXTV2_START_DOCSTRING, ) # Copied from transformers.models.convnext.modeling_convnext.ConvNextForImageClassification with CONVNEXT->CONVNEXTV2,ConvNext->ConvNextV2,convnext->convnextv2 class ConvNextV2ForImageClassification(ConvNextV2PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.convnextv2 = ConvNextV2Model(config) # Classifier head self.classifier = ( nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: torch.FloatTensor = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.convnextv2(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states, ) @add_start_docstrings( """ ConvNeXT V2 backbone, to be used with frameworks like DETR and MaskFormer. """, CONVNEXTV2_START_DOCSTRING, ) # Copied from transformers.models.convnext.modeling_convnext.ConvNextBackbone with CONVNEXT->CONVNEXTV2,ConvNext->ConvNextV2,facebook/convnext-tiny-224->facebook/convnextv2-tiny-1k-224 class ConvNextV2Backbone(ConvNextV2PreTrainedModel, BackboneMixin): def __init__(self, config): super().__init__(config) super()._init_backbone(config) self.embeddings = ConvNextV2Embeddings(config) self.encoder = ConvNextV2Encoder(config) self.num_features = [config.hidden_sizes[0]] + config.hidden_sizes # Add layer norms to hidden states of out_features hidden_states_norms = {} for stage, num_channels in zip(self._out_features, self.channels): hidden_states_norms[stage] = ConvNextV2LayerNorm(num_channels, data_format="channels_first") self.hidden_states_norms = nn.ModuleDict(hidden_states_norms) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> BackboneOutput: """ Returns: Examples: ```python >>> from transformers import AutoImageProcessor, AutoBackbone >>> import torch >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> processor = AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224") >>> model = AutoBackbone.from_pretrained("facebook/convnextv2-tiny-1k-224") >>> inputs = processor(image, return_tensors="pt") >>> outputs = model(**inputs) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) embedding_output = self.embeddings(pixel_values) outputs = self.encoder( embedding_output, output_hidden_states=True, return_dict=return_dict, ) hidden_states = outputs.hidden_states if return_dict else outputs[1] feature_maps = () for stage, hidden_state in zip(self.stage_names, hidden_states): if stage in self.out_features: hidden_state = self.hidden_states_norms[stage](hidden_state) feature_maps += (hidden_state,) if not return_dict: output = (feature_maps,) if output_hidden_states: output += (hidden_states,) return output return BackboneOutput( feature_maps=feature_maps, hidden_states=hidden_states if output_hidden_states else None, attentions=None, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/convnextv2/convert_convnextv2_to_pytorch.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ConvNeXTV2 checkpoints from the original repository. URL: https://github.com/facebookresearch/ConvNeXt""" import argparse import json import os import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextImageProcessor, ConvNextV2Config, ConvNextV2ForImageClassification from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_convnextv2_config(checkpoint_url): config = ConvNextV2Config() if "atto" in checkpoint_url: depths = [2, 2, 6, 2] hidden_sizes = [40, 80, 160, 320] if "femto" in checkpoint_url: depths = [2, 2, 6, 2] hidden_sizes = [48, 96, 192, 384] if "pico" in checkpoint_url: depths = [2, 2, 6, 2] hidden_sizes = [64, 128, 256, 512] if "nano" in checkpoint_url: depths = [2, 2, 8, 2] hidden_sizes = [80, 160, 320, 640] if "tiny" in checkpoint_url: depths = [3, 3, 9, 3] hidden_sizes = [96, 192, 384, 768] if "base" in checkpoint_url: depths = [3, 3, 27, 3] hidden_sizes = [128, 256, 512, 1024] if "large" in checkpoint_url: depths = [3, 3, 27, 3] hidden_sizes = [192, 384, 768, 1536] if "huge" in checkpoint_url: depths = [3, 3, 27, 3] hidden_sizes = [352, 704, 1408, 2816] num_labels = 1000 filename = "imagenet-1k-id2label.json" expected_shape = (1, 1000) repo_id = "huggingface/label-files" config.num_labels = num_labels id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} config.hidden_sizes = hidden_sizes config.depths = depths return config, expected_shape def rename_key(name): if "downsample_layers.0.0" in name: name = name.replace("downsample_layers.0.0", "embeddings.patch_embeddings") if "downsample_layers.0.1" in name: name = name.replace("downsample_layers.0.1", "embeddings.norm") # we rename to layernorm later on if "downsample_layers.1.0" in name: name = name.replace("downsample_layers.1.0", "stages.1.downsampling_layer.0") if "downsample_layers.1.1" in name: name = name.replace("downsample_layers.1.1", "stages.1.downsampling_layer.1") if "downsample_layers.2.0" in name: name = name.replace("downsample_layers.2.0", "stages.2.downsampling_layer.0") if "downsample_layers.2.1" in name: name = name.replace("downsample_layers.2.1", "stages.2.downsampling_layer.1") if "downsample_layers.3.0" in name: name = name.replace("downsample_layers.3.0", "stages.3.downsampling_layer.0") if "downsample_layers.3.1" in name: name = name.replace("downsample_layers.3.1", "stages.3.downsampling_layer.1") if "stages" in name and "downsampling_layer" not in name: # stages.0.0. for instance should be renamed to stages.0.layers.0. name = name[: len("stages.0")] + ".layers" + name[len("stages.0") :] if "gamma" in name: name = name.replace("gamma", "weight") if "beta" in name: name = name.replace("beta", "bias") if "stages" in name: name = name.replace("stages", "encoder.stages") if "norm" in name: name = name.replace("norm", "layernorm") if "head" in name: name = name.replace("head", "classifier") return name # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im def convert_preprocessor(checkpoint_url): if "224" in checkpoint_url: size = 224 crop_pct = 224 / 256 elif "384" in checkpoint_url: size = 384 crop_pct = None else: size = 512 crop_pct = None return ConvNextImageProcessor( size=size, crop_pct=crop_pct, image_mean=[0.485, 0.456, 0.406], image_std=[0.229, 0.224, 0.225], resample=PILImageResampling.BICUBIC, ) @torch.no_grad() def convert_convnextv2_checkpoint(checkpoint_url, pytorch_dump_folder_path, save_model, push_to_hub): """ Copy/paste/tweak model's weights to our ConvNeXTV2 structure. """ print("Downloading original model from checkpoint...") # define ConvNeXTV2 configuration based on URL config, expected_shape = get_convnextv2_config(checkpoint_url) # load original state_dict from URL state_dict = torch.hub.load_state_dict_from_url(checkpoint_url)["model"] print("Converting model parameters...") # rename keys for key in state_dict.copy().keys(): val = state_dict.pop(key) state_dict[rename_key(key)] = val # add prefix to all keys expect classifier head for key in state_dict.copy().keys(): val = state_dict.pop(key) if not key.startswith("classifier"): key = "convnextv2." + key state_dict[key] = val # load HuggingFace model model = ConvNextV2ForImageClassification(config) model.load_state_dict(state_dict) model.eval() # Check outputs on an image, prepared by ConvNextImageProcessor preprocessor = convert_preprocessor(checkpoint_url) inputs = preprocessor(images=prepare_img(), return_tensors="pt") logits = model(**inputs).logits # note: the logits below were obtained without center cropping if checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_atto_1k_224_ema.pt": expected_logits = torch.tensor([-0.3930, 0.1747, -0.5246, 0.4177, 0.4295]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_femto_1k_224_ema.pt": expected_logits = torch.tensor([-0.1727, -0.5341, -0.7818, -0.4745, -0.6566]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_pico_1k_224_ema.pt": expected_logits = torch.tensor([-0.0333, 0.1563, -0.9137, 0.1054, 0.0381]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_nano_1k_224_ema.pt": expected_logits = torch.tensor([-0.1744, -0.1555, -0.0713, 0.0950, -0.1431]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_tiny_1k_224_ema.pt": expected_logits = torch.tensor([0.9996, 0.1966, -0.4386, -0.3472, 0.6661]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_base_1k_224_ema.pt": expected_logits = torch.tensor([-0.2553, -0.6708, -0.1359, 0.2518, -0.2488]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_large_1k_224_ema.pt": expected_logits = torch.tensor([-0.0673, -0.5627, -0.3753, -0.2722, 0.0178]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_huge_1k_224_ema.pt": expected_logits = torch.tensor([-0.6377, -0.7458, -0.2150, 0.1184, -0.0597]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_224_ema.pt": expected_logits = torch.tensor([1.0799, 0.2322, -0.8860, 1.0219, 0.6231]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_384_ema.pt": expected_logits = torch.tensor([0.3766, 0.4917, -1.1426, 0.9942, 0.6024]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_224_ema.pt": expected_logits = torch.tensor([0.4220, -0.6919, -0.4317, -0.2881, -0.6609]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_384_ema.pt": expected_logits = torch.tensor([0.1082, -0.8286, -0.5095, 0.4681, -0.8085]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_224_ema.pt": expected_logits = torch.tensor([-0.2419, -0.6221, 0.2176, -0.0980, -0.7527]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_384_ema.pt": expected_logits = torch.tensor([0.0391, -0.4371, 0.3786, 0.1251, -0.2784]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_224_ema.pt": expected_logits = torch.tensor([-0.0504, 0.5636, -0.1729, -0.6507, -0.3949]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_384_ema.pt": expected_logits = torch.tensor([0.3560, 0.9486, 0.3149, -0.2667, -0.5138]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_384_ema.pt": expected_logits = torch.tensor([-0.2469, -0.4550, -0.5853, -0.0810, 0.0309]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_512_ema.pt": expected_logits = torch.tensor([-0.3090, 0.0802, -0.0682, -0.1979, -0.2826]) else: raise ValueError(f"Unknown URL: {checkpoint_url}") assert torch.allclose(logits[0, :5], expected_logits, atol=1e-3) assert logits.shape == expected_shape print("Model outputs match the original results!") if save_model: print("Saving model to local...") # Create folder to save model if not os.path.isdir(pytorch_dump_folder_path): os.mkdir(pytorch_dump_folder_path) model.save_pretrained(pytorch_dump_folder_path) preprocessor.save_pretrained(pytorch_dump_folder_path) model_name = "convnextv2" if "atto" in checkpoint_url: model_name += "-atto" if "femto" in checkpoint_url: model_name += "-femto" if "pico" in checkpoint_url: model_name += "-pico" if "nano" in checkpoint_url: model_name += "-nano" elif "tiny" in checkpoint_url: model_name += "-tiny" elif "base" in checkpoint_url: model_name += "-base" elif "large" in checkpoint_url: model_name += "-large" elif "huge" in checkpoint_url: model_name += "-huge" if "22k" in checkpoint_url and "1k" not in checkpoint_url: model_name += "-22k" elif "22k" in checkpoint_url and "1k" in checkpoint_url: model_name += "-22k-1k" elif "1k" in checkpoint_url: model_name += "-1k" if "224" in checkpoint_url: model_name += "-224" elif "384" in checkpoint_url: model_name += "-384" elif "512" in checkpoint_url: model_name += "-512" if push_to_hub: print(f"Pushing {model_name} to the hub...") model.push_to_hub(model_name) preprocessor.push_to_hub(model_name) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_atto_1k_224_ema.pt", type=str, help="URL of the original ConvNeXTV2 checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image preprocessor to the hub") args = parser.parse_args() convert_convnextv2_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/instructblip/modeling_instructblip.py
# coding=utf-8 # Copyright 2023 The Salesforce Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch InstructBLIP model.""" import math from dataclasses import dataclass from typing import Any, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPooling, BaseModelOutputWithPoolingAndCrossAttentions, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ..auto import AutoModelForCausalLM, AutoModelForSeq2SeqLM from .configuration_instructblip import InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "Salesforce/instructblip-flan-t5-xl" INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ "Salesforce/instructblip-flan-t5-xl", # See all InstructBLIP models at https://huggingface.co/models?filter=instructblip ] @dataclass # Copied from transformers.models.blip_2.modeling_blip_2.Blip2ForConditionalGenerationModelOutput with Blip2->InstructBlip class InstructBlipForConditionalGenerationModelOutput(ModelOutput): """ Class defining the outputs of [`InstructBlipForConditionalGeneration`]. Args: loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Language modeling loss from the language model. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head of the language model. vision_outputs (`BaseModelOutputWithPooling`): Outputs of the vision encoder. qformer_outputs (`BaseModelOutputWithPoolingAndCrossAttentions`): Outputs of the Q-Former (Querying Transformer). language_model_outputs (`CausalLMOutputWithPast` or `Seq2SeqLMOutput`): Outputs of the language model. """ loss: Optional[Tuple[torch.FloatTensor]] = None logits: Optional[Tuple[torch.FloatTensor]] = None vision_outputs: Optional[torch.FloatTensor] = None qformer_outputs: Optional[Tuple[torch.FloatTensor]] = None language_model_outputs: Optional[Tuple[torch.FloatTensor]] = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["vision_outputs", "qformer_outputs", "language_model_outputs"] else getattr(self, k).to_tuple() for k in self.keys() ) # Copied from transformers.models.blip.modeling_blip.BlipVisionEmbeddings with Blip->InstructBlip class InstructBlipVisionEmbeddings(nn.Module): def __init__(self, config: InstructBlipVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim)) self.patch_embedding = nn.Conv2d( in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim)) def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: batch_size = pixel_values.shape[0] target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) embeddings = embeddings + self.position_embedding[:, : embeddings.size(1), :].to(target_dtype) return embeddings # Copied from transformers.models.blip_2.modeling_blip_2.Blip2Attention with Blip2->InstructBlip class InstructBlipAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = nn.Dropout(config.attention_dropout) # small tweak here compared to CLIP, no bias here self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=False) if config.qkv_bias: q_bias = nn.Parameter(torch.zeros(self.embed_dim)) v_bias = nn.Parameter(torch.zeros(self.embed_dim)) else: q_bias = None v_bias = None if q_bias is not None: qkv_bias = torch.cat((q_bias, torch.zeros_like(v_bias, requires_grad=False), v_bias)) self.qkv.bias = nn.Parameter(qkv_bias) self.projection = nn.Linear(self.embed_dim, self.embed_dim) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = hidden_states.size() mixed_qkv = self.qkv(hidden_states) mixed_qkv = mixed_qkv.reshape(bsz, tgt_len, 3, self.num_heads, embed_dim // self.num_heads).permute( 2, 0, 3, 1, 4 ) query_states, key_states, value_states = mixed_qkv[0], mixed_qkv[1], mixed_qkv[2] # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) attention_scores = attention_scores * self.scale # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3) new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,) context_layer = context_layer.reshape(new_context_layer_shape) output = self.projection(context_layer) outputs = (output, attention_probs) if output_attentions else (output, None) return outputs # Copied from transformers.models.blip.modeling_blip.BlipMLP class InstructBlipMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states # Copied from transformers.models.blip.modeling_blip.BlipEncoderLayer with Blip->InstructBlip class InstructBlipEncoderLayer(nn.Module): def __init__(self, config: InstructBlipConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = InstructBlipAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = InstructBlipMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, head_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = hidden_states + residual residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = hidden_states + residual outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class InstructBlipPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = InstructBlipConfig base_model_prefix = "blip" supports_gradient_checkpointing = True _no_split_modules = [ "InstructBlipQFormerEmbeddings", "InstructBlipAttention", "InstructBlipQFormerMultiHeadAttention", "InstructBlipQFormerSelfOutput", ] _keep_in_fp32_modules = [] # Copied from transformers.models.blip_2.modeling_blip_2.Blip2PreTrainedModel._init_weights with Blip2->InstructBlip def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_range if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=factor) if hasattr(module, "bias") and module.bias is not None: module.bias.data.zero_() if isinstance(module, InstructBlipVisionEmbeddings): if hasattr(self.config, "vision_config"): factor = self.config.vision_config.initializer_range nn.init.trunc_normal_(module.position_embedding, mean=0.0, std=factor) nn.init.trunc_normal_(module.class_embedding, mean=0.0, std=factor) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() INSTRUCTBLIP_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`InstructBlipConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ INSTRUCTBLIP_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`InstructBlipProcessor`]. See [`InstructBlipProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ INSTRUCTBLIP_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`InstructBlipProcessor`]. See [`InstructBlipProcessor.__call__`] for details. qformer_input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of input sequence tokens in the vocabulary of the Q-Former. Input tokens can optionally be provided to serve as text prompt, which the Q-Former model will encode. Indices can be obtained using [`InstructBlipProcessor`]. See [`InstructBlipProcessor.__call__`] for details. [What are input IDs?](../glossary#input-ids) qformer_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of input sequence tokens in the vocabulary of the language model. Input tokens can optionally be provided to serve as text prompt, which the language model can continue. Indices can be obtained using [`InstructBlipProcessor`]. See [`InstructBlipProcessor.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary of the language model. Only relevant in case an encoder-decoder language model (like T5) is used. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. Only relevant in case an encoder-decoder language model (like T5) is used. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.blip.modeling_blip.BlipEncoder with Blip->InstructBlip class InstructBlipEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`InstructBlipEncoderLayer`]. Args: config (`InstructBlipConfig`): The corresponding vision configuration for the `InstructBlipEncoder`. """ def __init__(self, config: InstructBlipConfig): super().__init__() self.config = config self.layers = nn.ModuleList([InstructBlipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Embedded representation of the inputs. Should be float, not int tokens. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) # Copied from transformers.models.blip.modeling_blip.BlipVisionModel with Blip->InstructBlip, BLIP->INSTRUCTBLIP class InstructBlipVisionModel(InstructBlipPreTrainedModel): main_input_name = "pixel_values" config_class = InstructBlipVisionConfig def __init__(self, config: InstructBlipVisionConfig): super().__init__(config) self.config = config embed_dim = config.hidden_size self.embeddings = InstructBlipVisionEmbeddings(config) self.encoder = InstructBlipEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.post_init() @add_start_docstrings_to_model_forward(INSTRUCTBLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=InstructBlipVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.post_layernorm(last_hidden_state) pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def get_input_embeddings(self): return self.embeddings class InstructBlipQFormerMultiHeadAttention(nn.Module): def __init__(self, config, is_cross_attention=False): super().__init__() self.config = config if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( "The hidden size (%d) is not a multiple of the number of attention heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) if is_cross_attention: self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size) self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size) else: self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.save_attention = False def save_attn_gradients(self, attn_gradients): self.attn_gradients = attn_gradients def get_attn_gradients(self): return self.attn_gradients def save_attention_map(self, attention_map): self.attention_map = attention_map def get_attention_map(self): return self.attention_map def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) mixed_query_layer = self.query(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) attention_scores_dtype = attention_scores.dtype if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores).to(attention_scores_dtype) if is_cross_attention and self.save_attention: self.save_attention_map(attention_probs) attention_probs.register_hook(self.save_attn_gradients) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs_dropped = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs_dropped = attention_probs_dropped * head_mask context_layer = torch.matmul(attention_probs_dropped, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->InstructBlipQFormer class InstructBlipQFormerSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.blip_2.modeling_blip_2.Blip2QFormerAttention with Blip2->InstructBlip class InstructBlipQFormerAttention(nn.Module): def __init__(self, config, is_cross_attention=False): super().__init__() self.attention = InstructBlipQFormerMultiHeadAttention(config, is_cross_attention) self.output = InstructBlipQFormerSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.attention( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->InstructBlipQFormer class InstructBlipQFormerIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->InstructBlipQFormer class InstructBlipQFormerOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class InstructBlipQFormerLayer(nn.Module): def __init__(self, config, layer_idx): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = InstructBlipQFormerAttention(config) self.layer_idx = layer_idx if layer_idx % config.cross_attention_frequency == 0: self.crossattention = InstructBlipQFormerAttention(config, is_cross_attention=True) self.has_cross_attention = True else: self.has_cross_attention = False self.intermediate = InstructBlipQFormerIntermediate(config) self.output = InstructBlipQFormerOutput(config) self.intermediate_query = InstructBlipQFormerIntermediate(config) self.output_query = InstructBlipQFormerOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, query_length=0, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] if query_length > 0: query_attention_output = attention_output[:, :query_length, :] if self.has_cross_attention: if encoder_hidden_states is None: raise ValueError("encoder_hidden_states must be given for cross-attention layers") cross_attention_outputs = self.crossattention( query_attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions=output_attentions, ) query_attention_output = cross_attention_outputs[0] # add cross attentions if we output attention weights outputs = outputs + cross_attention_outputs[1:-1] layer_output = apply_chunking_to_forward( self.feed_forward_chunk_query, self.chunk_size_feed_forward, self.seq_len_dim, query_attention_output, ) if attention_output.shape[1] > query_length: layer_output_text = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output[:, query_length:, :], ) layer_output = torch.cat([layer_output, layer_output_text], dim=1) else: layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output, ) outputs = (layer_output,) + outputs outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output def feed_forward_chunk_query(self, attention_output): intermediate_output = self.intermediate_query(attention_output) layer_output = self.output_query(intermediate_output, attention_output) return layer_output # Copied from transformers.models.blip_2.modeling_blip_2.Blip2QFormerEncoder with Blip2->InstructBlip class InstructBlipQFormerEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList( [InstructBlipQFormerLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, query_length=0, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions else None next_decoder_cache = () if use_cache else None for i in range(self.config.num_hidden_layers): layer_module = self.layer[i] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if getattr(self.config, "gradient_checkpointing", False) and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, query_length, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if layer_module.has_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) class InstructBlipQFormerEmbeddings(nn.Module): """Construct the embeddings from word and position embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.config = config def forward( self, input_ids=None, position_ids=None, query_embeds=None, past_key_values_length=0, ): if input_ids is not None: seq_length = input_ids.size()[1] else: seq_length = 0 if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length].clone() if input_ids is not None: embeddings = self.word_embeddings(input_ids) if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids.to(embeddings.device)) embeddings = embeddings + position_embeddings if query_embeds is not None: embeddings = torch.cat((query_embeds, embeddings), dim=1) else: embeddings = query_embeds embeddings = embeddings.to(self.layernorm.weight.dtype) embeddings = self.layernorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class InstructBlipQFormerModel(InstructBlipPreTrainedModel): """ Querying Transformer (Q-Former), used in InstructBLIP. Slightly modified from BLIP-2 as it also takes the instruction as input. """ def __init__(self, config: InstructBlipQFormerConfig): super().__init__(config) self.config = config self.embeddings = InstructBlipQFormerEmbeddings(config) self.encoder = InstructBlipQFormerEncoder(config) self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def get_extended_attention_mask( self, attention_mask: torch.Tensor, input_shape: Tuple[int], device: torch.device, has_query: bool = False, ) -> torch.Tensor: """ Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: attention_mask (`torch.Tensor`): Mask with ones indicating tokens to attend to, zeros for tokens to ignore. input_shape (`Tuple[int]`): The shape of the input to the model. device: (`torch.device`): The device of the input to the model. Returns: `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. """ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: # Provided a padding mask of dimensions [batch_size, seq_length] # - the model is an encoder, so make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError( f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})", ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def forward( self, input_ids: torch.LongTensor, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, query_embeds: Optional[torch.Tensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of: shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None and query_embeds is None: raise ValueError("You have to specify query_embeds when input_ids is None") # past_key_values_length past_key_values_length = ( past_key_values[0][0].shape[2] - self.config.query_length if past_key_values is not None else 0 ) query_length = query_embeds.shape[1] if query_embeds is not None else 0 embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, query_embeds=query_embeds, past_key_values_length=past_key_values_length, ) input_shape = embedding_output.size()[:-1] batch_size, seq_length = input_shape device = embedding_output.device if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_hidden_states is not None: if isinstance(encoder_hidden_states, list): encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size() else: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if isinstance(encoder_attention_mask, list): encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask] elif encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, query_length=query_length, ) sequence_output = encoder_outputs[0] pooled_output = sequence_output[:, 0, :] if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( """ InstructBLIP Model for generating text given an image and an optional text prompt. The model consists of a vision encoder, Querying Transformer (Q-Former) and a language model. One can optionally pass `input_ids` to the model, which serve as a text prompt, to make the language model continue the prompt. Otherwise, the language model starts generating text from the [BOS] (beginning-of-sequence) token. """, INSTRUCTBLIP_START_DOCSTRING, ) class InstructBlipForConditionalGeneration(InstructBlipPreTrainedModel): config_class = InstructBlipConfig main_input_name = "pixel_values" def __init__(self, config: InstructBlipConfig): super().__init__(config) self.vision_model = InstructBlipVisionModel(config.vision_config) self.query_tokens = nn.Parameter(torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size)) self.qformer = InstructBlipQFormerModel(config.qformer_config) self.language_projection = nn.Linear(config.qformer_config.hidden_size, config.text_config.hidden_size) if config.use_decoder_only_language_model: language_model = AutoModelForCausalLM.from_config(config.text_config) else: language_model = AutoModelForSeq2SeqLM.from_config(config.text_config) if language_model._no_split_modules is not None: self._no_split_modules.extend(language_model._no_split_modules) if language_model._keep_in_fp32_modules is not None: self._keep_in_fp32_modules.extend(language_model._keep_in_fp32_modules) self.language_model = language_model # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.language_model.get_input_embeddings() def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) def set_output_embeddings(self, new_embeddings): self.language_model.set_output_embeddings(new_embeddings) def get_output_embeddings(self) -> nn.Module: return self.language_model.get_output_embeddings() def get_encoder(self): return self.language_model.get_encoder() def get_decoder(self): return self.language_model.get_decoder() def _tie_weights(self): if not self.config.use_decoder_only_language_model: self.language_model.encoder.embed_tokens = self.language_model.shared self.language_model.decoder.embed_tokens = self.language_model.shared def _preprocess_accelerate(self): r""" Some pre-processing hacks to make the model `accelerate` compatible. Check https://github.com/huggingface/transformers/pull/21707 for more details. """ hf_device_map = self.hf_device_map if len(hf_device_map) > 1 and "language_model" not in hf_device_map and torch.cuda.device_count() > 1: # warn users about unexpected behavior when using multi-GPU + InstructBLIP + `accelerate`. logger.warning( "The `language_model` is not in the `hf_device_map` dictionary and you are running your script" " in a multi-GPU environment. this may lead to unexpected behavior when using `accelerate`." " Please pass a `device_map` that contains `language_model` to remove this warning." " Please refer to https://github.com/huggingface/blog/blob/main/accelerate-large-models.md for" " more details on creating a `device_map` for large models.", ) if hasattr(self.language_model, "_hf_hook"): self.language_model._hf_hook.io_same_device = True # For `generate` compatibility @add_start_docstrings_to_model_forward(INSTRUCTBLIP_INPUTS_DOCSTRING) @replace_return_docstrings( output_type=InstructBlipForConditionalGenerationModelOutput, config_class=InstructBlipVisionConfig ) def forward( self, pixel_values: torch.FloatTensor, qformer_input_ids: torch.FloatTensor, qformer_attention_mask: Optional[torch.LongTensor] = None, input_ids: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, InstructBlipForConditionalGenerationModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Returns: Examples: ```python >>> from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration >>> import torch >>> from PIL import Image >>> import requests >>> model = InstructBlipForConditionalGeneration.from_pretrained("Salesforce/instructblip-vicuna-7b") >>> processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b") >>> device = "cuda" if torch.cuda.is_available() else "cpu" >>> model.to(device) # doctest: +IGNORE_RESULT >>> url = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" >>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB") >>> prompt = "What is unusual about this image?" >>> inputs = processor(images=image, text=prompt, return_tensors="pt").to(device) >>> outputs = model.generate( ... **inputs, ... do_sample=False, ... num_beams=5, ... max_length=256, ... min_length=1, ... top_p=0.9, ... repetition_penalty=1.5, ... length_penalty=1.0, ... temperature=1, ... ) >>> generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip() >>> print(generated_text) The unusual aspect of this image is that a man is ironing clothes on the back of a yellow SUV, which is parked in the middle of a busy city street. This is an unconventional approach to ironing clothes, as it requires the man to balance himself and his ironing equipment on top of the vehicle while navigating through traffic. Additionally, the presence of taxis and other vehicles in the scene further emphasizes the unusual nature of this situation. ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict # step 1: forward the images through the vision encoder, # to get image embeddings of shape (batch_size, seq_len, hidden_size) vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[0] # step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device) # difference with BLIP-2 here: we also feed the instruction prompt to the Q-Former query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) query_attention_mask = torch.ones(query_tokens.size()[:-1], dtype=torch.long, device=image_embeds.device) if qformer_attention_mask is None: qformer_attention_mask = torch.ones_like(qformer_input_ids) qformer_attention_mask = torch.cat([query_attention_mask, qformer_attention_mask], dim=1) query_outputs = self.qformer( input_ids=qformer_input_ids, attention_mask=qformer_attention_mask, query_embeds=query_tokens, encoder_hidden_states=image_embeds, encoder_attention_mask=image_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) query_output = query_outputs[0][:, : query_tokens.size(1), :] # step 3: use the language model, conditioned on the query outputs and the prompt language_model_inputs = self.language_projection(query_output) language_model_attention_mask = torch.ones( language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device ) inputs_embeds = self.language_model.get_input_embeddings()(input_ids) inputs_embeds = torch.cat([language_model_inputs, inputs_embeds.to(language_model_inputs.device)], dim=1) if attention_mask is None: attention_mask = torch.ones_like(input_ids) attention_mask = torch.cat([language_model_attention_mask.to(attention_mask.device), attention_mask], dim=1) if self.config.use_decoder_only_language_model: outputs = self.language_model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs.logits if return_dict else outputs[0] loss = None # we compute the loss here since we need to take into account the sequence length of the query embeds if labels is not None: labels = labels.to(logits.device) logits = logits[:, -labels.size(1) :, :] # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous().to(logits.device) # Flatten the tokens loss_fct = CrossEntropyLoss(reduction="mean") loss = loss_fct(shift_logits.view(-1, self.config.text_config.vocab_size), shift_labels.view(-1)) else: outputs = self.language_model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, ) loss = outputs.loss if return_dict else outputs[0] logits = outputs.logits if return_dict else outputs[1] if not return_dict: output = (logits, vision_outputs, query_outputs, outputs) return ((loss,) + output) if loss is not None else output return InstructBlipForConditionalGenerationModelOutput( loss=loss, logits=logits, vision_outputs=vision_outputs, qformer_outputs=query_outputs, language_model_outputs=outputs, ) @torch.no_grad() def generate( self, pixel_values: torch.FloatTensor, qformer_input_ids: Optional[torch.LongTensor] = None, qformer_attention_mask: Optional[torch.LongTensor] = None, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, **generate_kwargs, ) -> torch.LongTensor: """ Overrides `generate` function to be able to use the model as a conditional generator. Args: pixel_values (`torch.FloatTensor` of shape (batch_size, num_channels, height, width)): Input images to be processed. qformer_input_ids (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*): The sequence used as a prompt to be fed to the Q-Former module. qformer_attention_mask (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*): Mask to avoid performing attention on padding token indices. input_ids (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*): The sequence used as a prompt for the generation. attention_mask (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*): Mask to avoid performing attention on padding token indices. Returns: captions (list): A list of strings of length batch_size * num_captions. """ if hasattr(self, "hf_device_map"): # preprocess for `accelerate` self._preprocess_accelerate() batch_size = pixel_values.shape[0] image_embeds = self.vision_model(pixel_values, return_dict=True).last_hidden_state image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device) query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) query_attention_mask = torch.ones(query_tokens.size()[:-1], dtype=torch.long, device=image_embeds.device) if qformer_attention_mask is None: qformer_attention_mask = torch.ones_like(qformer_input_ids) qformer_attention_mask = torch.cat([query_attention_mask, qformer_attention_mask], dim=1) query_outputs = self.qformer( input_ids=qformer_input_ids, attention_mask=qformer_attention_mask, query_embeds=query_tokens, encoder_hidden_states=image_embeds, encoder_attention_mask=image_attention_mask, return_dict=True, ) query_output = query_outputs.last_hidden_state[:, : query_tokens.size(1), :] language_model_inputs = self.language_projection(query_output) language_attention_mask = torch.ones( language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device ) if input_ids is None: input_ids = ( torch.LongTensor([[self.config.text_config.bos_token_id]]) .repeat(batch_size, 1) .to(image_embeds.device) ) if attention_mask is None: attention_mask = torch.ones_like(input_ids) attention_mask = torch.cat([language_attention_mask, attention_mask.to(language_attention_mask.device)], dim=1) # concatenate query embeddings with prompt embeddings inputs_embeds = self.get_input_embeddings()(input_ids) inputs_embeds = torch.cat([language_model_inputs, inputs_embeds.to(language_model_inputs.device)], dim=1) outputs = self.language_model.generate( inputs_embeds=inputs_embeds, attention_mask=attention_mask, **generate_kwargs, ) # the InstructBLIP authors used inconsistent tokenizer/model files during training, # with the tokenizer's bos token being set to </s> which has ID=2, # whereas the model's text config has bos token id = 0 if self.config.text_config.architectures[0] == "LLaMAForCausalLM": if isinstance(outputs, torch.Tensor): outputs[outputs == 0] = 2 else: outputs.sequences[outputs.sequences == 0] = 2 return outputs
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/instructblip/processing_instructblip.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for InstructBLIP. Largely copy of Blip2Processor with addition of a tokenizer for the Q-Former. """ import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class InstructBlipProcessor(ProcessorMixin): r""" Constructs an InstructBLIP processor which wraps a BLIP image processor and a LLaMa/T5 tokenizer into a single processor. [`InstructBlipProcessor`] offers all the functionalities of [`BlipImageProcessor`] and [`AutoTokenizer`]. See the docstring of [`~BlipProcessor.__call__`] and [`~BlipProcessor.decode`] for more information. Args: image_processor (`BlipImageProcessor`): An instance of [`BlipImageProcessor`]. The image processor is a required input. tokenizer (`AutoTokenizer`): An instance of ['PreTrainedTokenizer`]. The tokenizer is a required input. qformer_tokenizer (`AutoTokenizer`): An instance of ['PreTrainedTokenizer`]. The Q-Former tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "BlipImageProcessor" tokenizer_class = "AutoTokenizer" def __init__(self, image_processor, tokenizer, qformer_tokenizer): super().__init__(image_processor, tokenizer) # add QFormer tokenizer self.qformer_tokenizer = qformer_tokenizer def __call__( self, images: ImageInput = None, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_token_type_ids: bool = False, return_length: bool = False, verbose: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> BatchFeature: """ This method uses [`BlipImageProcessor.__call__`] method to prepare image(s) for the model, and [`BertTokenizerFast.__call__`] to prepare text for the model. Please refer to the docstring of the above two methods for more information. """ if images is None and text is None: raise ValueError("You have to specify at least images or text.") encoding = BatchFeature() if text is not None: text_encoding = self.tokenizer( text=text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_token_type_ids=return_token_type_ids, return_length=return_length, verbose=verbose, return_tensors=return_tensors, **kwargs, ) encoding.update(text_encoding) qformer_text_encoding = self.qformer_tokenizer( text=text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_token_type_ids=return_token_type_ids, return_length=return_length, verbose=verbose, return_tensors=return_tensors, **kwargs, ) encoding["qformer_input_ids"] = qformer_text_encoding.pop("input_ids") encoding["qformer_attention_mask"] = qformer_text_encoding.pop("attention_mask") if images is not None: image_encoding = self.image_processor(images, return_tensors=return_tensors) encoding.update(image_encoding) return encoding # Copied from transformers.models.blip.processing_blip.BlipProcessor.batch_decode with BertTokenizerFast->PreTrainedTokenizer def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.blip.processing_blip.BlipProcessor.decode with BertTokenizerFast->PreTrainedTokenizer def decode(self, *args, **kwargs): """ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) # overwrite to save the Q-Former tokenizer in a separate folder def save_pretrained(self, save_directory, **kwargs): if os.path.isfile(save_directory): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file") os.makedirs(save_directory, exist_ok=True) qformer_tokenizer_path = os.path.join(save_directory, "qformer_tokenizer") self.qformer_tokenizer.save_pretrained(qformer_tokenizer_path) return super().save_pretrained(save_directory, **kwargs) # overwrite to load the Q-Former tokenizer from a separate folder @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): qformer_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="qformer_tokenizer") args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs) args.append(qformer_tokenizer) return cls(*args)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/instructblip/__init__.py
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _import_structure = { "configuration_instructblip": [ "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "InstructBlipConfig", "InstructBlipQFormerConfig", "InstructBlipVisionConfig", ], "processing_instructblip": ["InstructBlipProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_instructblip"] = [ "INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "InstructBlipQFormerModel", "InstructBlipPreTrainedModel", "InstructBlipForConditionalGeneration", "InstructBlipVisionModel", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/instructblip/configuration_instructblip.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ InstructBLIP model configuration""" import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING logger = logging.get_logger(__name__) INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class InstructBlipVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`InstructBlipVisionModel`]. It is used to instantiate a InstructBLIP vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration defaults will yield a similar configuration to that of the InstructBLIP [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 1408): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 6144): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 39): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 14): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported. to 1e-5): The epsilon used by the layer normalization layers. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 1e-10): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries and values in the self-attention layers. Example: ```python >>> from transformers import InstructBlipVisionConfig, InstructBlipVisionModel >>> # Initializing a InstructBlipVisionConfig with Salesforce/instruct-blip-flan-t5 style configuration >>> configuration = InstructBlipVisionConfig() >>> # Initializing a InstructBlipVisionModel (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration >>> model = InstructBlipVisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "instructblip_vision_model" def __init__( self, hidden_size=1408, intermediate_size=6144, num_hidden_layers=39, num_attention_heads=16, image_size=224, patch_size=14, hidden_act="gelu", layer_norm_eps=1e-6, attention_dropout=0.0, initializer_range=1e-10, qkv_bias=True, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.patch_size = patch_size self.image_size = image_size self.initializer_range = initializer_range self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.qkv_bias = qkv_bias @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type") == "instructblip": config_dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class InstructBlipQFormerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`InstructBlipQFormerModel`]. It is used to instantiate a InstructBLIP Querying Transformer (Q-Former) model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the InstructBLIP [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Note that [`InstructBlipQFormerModel`] is very similar to [`BertLMHeadModel`] with interleaved cross-attention. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the Q-Former model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling the model. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). cross_attention_frequency (`int`, *optional*, defaults to 2): The frequency of adding cross-attention to the Transformer layers. encoder_hidden_size (`int`, *optional*, defaults to 1408): The hidden size of the hidden states for cross-attention. Examples: ```python >>> from transformers import InstructBlipQFormerConfig, InstructBlipQFormerModel >>> # Initializing a InstructBLIP Salesforce/instruct-blip-flan-t5 style configuration >>> configuration = InstructBlipQFormerConfig() >>> # Initializing a model (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration >>> model = InstructBlipQFormerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "instructblip_qformer" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, position_embedding_type="absolute", cross_attention_frequency=2, encoder_hidden_size=1408, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.cross_attention_frequency = cross_attention_frequency self.encoder_hidden_size = encoder_hidden_size @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type") == "instructblip": config_dict = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class InstructBlipConfig(PretrainedConfig): r""" [`InstructBlipConfig`] is the configuration class to store the configuration of a [`InstructBlipForConditionalGeneration`]. It is used to instantiate a InstructBLIP model according to the specified arguments, defining the vision model, Q-Former model and language model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the InstructBLIP [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vision_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`InstructBlipVisionConfig`]. qformer_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`InstructBlipQFormerConfig`]. text_config (`dict`, *optional*): Dictionary of configuration options used to initialize any [`PretrainedConfig`]. num_query_tokens (`int`, *optional*, defaults to 32): The number of query tokens passed through the Transformer. kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import ( ... InstructBlipVisionConfig, ... InstructBlipQFormerConfig, ... OPTConfig, ... InstructBlipConfig, ... InstructBlipForConditionalGeneration, ... ) >>> # Initializing a InstructBlipConfig with Salesforce/instruct-blip-flan-t5 style configuration >>> configuration = InstructBlipConfig() >>> # Initializing a InstructBlipForConditionalGeneration (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration >>> model = InstructBlipForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # We can also initialize a InstructBlipConfig from a InstructBlipVisionConfig, InstructBlipQFormerConfig and any PretrainedConfig >>> # Initializing InstructBLIP vision, InstructBLIP Q-Former and language model configurations >>> vision_config = InstructBlipVisionConfig() >>> qformer_config = InstructBlipQFormerConfig() >>> text_config = OPTConfig() >>> config = InstructBlipConfig.from_text_vision_configs(vision_config, qformer_config, text_config) ```""" model_type = "instructblip" def __init__(self, vision_config=None, qformer_config=None, text_config=None, num_query_tokens=32, **kwargs): super().__init__(**kwargs) if vision_config is None: vision_config = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values.") if qformer_config is None: qformer_config = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.") if text_config is None: text_config = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`).") self.vision_config = InstructBlipVisionConfig(**vision_config) self.qformer_config = InstructBlipQFormerConfig(**qformer_config) text_model_type = text_config["model_type"] if "model_type" in text_config else "opt" self.text_config = CONFIG_MAPPING[text_model_type](**text_config) self.tie_word_embeddings = self.text_config.tie_word_embeddings self.is_encoder_decoder = self.text_config.is_encoder_decoder self.num_query_tokens = num_query_tokens self.qformer_config.encoder_hidden_size = self.vision_config.hidden_size self.use_decoder_only_language_model = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES self.initializer_factor = 1.0 self.initializer_range = 0.02 @classmethod def from_vision_qformer_text_configs( cls, vision_config: InstructBlipVisionConfig, qformer_config: InstructBlipQFormerConfig, text_config: PretrainedConfig, **kwargs, ): r""" Instantiate a [`InstructBlipConfig`] (or a derived class) from a InstructBLIP vision model, Q-Former and language model configurations. Returns: [`InstructBlipConfig`]: An instance of a configuration object """ return cls( vision_config=vision_config.to_dict(), qformer_config=qformer_config.to_dict(), text_config=text_config.to_dict(), **kwargs, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/instructblip/convert_instructblip_original_to_pytorch.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Convert InstructBLIP checkpoints from the original repository. URL: https://github.com/salesforce/LAVIS/tree/main/projects/instructblip """ import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, T5Config, T5TokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def load_demo_image(): url = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") return image # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(config): rename_keys = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding")) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding")) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight")) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias")) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight")) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias")) for i in range(config.vision_config.num_hidden_layers): rename_keys.append((f"visual_encoder.blocks.{i}.norm1.weight", f"vision_model.encoder.layers.{i}.layer_norm1.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.norm1.bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias")) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.weight", f"vision_model.encoder.layers.{i}.layer_norm2.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias")) rename_keys.append((f"visual_encoder.blocks.{i}.attn.qkv.weight", f"vision_model.encoder.layers.{i}.self_attn.qkv.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.weight", f"vision_model.encoder.layers.{i}.self_attn.projection.weight",)) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.bias", f"vision_model.encoder.layers.{i}.self_attn.projection.bias")) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.weight", f"vision_model.encoder.layers.{i}.mlp.fc1.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias")) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.weight", f"vision_model.encoder.layers.{i}.mlp.fc2.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias")) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.embeddings.layernorm.weight")) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.embeddings.layernorm.bias")) # fmt: on return rename_keys def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val def read_in_q_v_bias(state_dict, config): for i in range(config.vision_config.num_hidden_layers): # read in original q and v biases q_bias = state_dict.pop(f"visual_encoder.blocks.{i}.attn.q_bias") v_bias = state_dict.pop(f"visual_encoder.blocks.{i}.attn.v_bias") # next, set bias in the state dict qkv_bias = torch.cat((q_bias, torch.zeros_like(v_bias, requires_grad=False), v_bias)) state_dict[f"vision_model.encoder.layers.{i}.self_attn.qkv.bias"] = qkv_bias def get_blip2_config(model_name): image_size = 364 if "coco" in model_name else 224 vision_config = InstructBlipVisionConfig(image_size=image_size).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: text_config = T5Config.from_pretrained("google/flan-t5-xl", dense_act_fn="gelu", bos_token_id=1).to_dict() elif "t5-xxl" in model_name: text_config = T5Config.from_pretrained("google/flan-t5-xxl", dense_act_fn="gelu", bos_token_id=1).to_dict() elif "vicuna-7b" in model_name: text_config = LlamaConfig.from_pretrained("decapoda-research/llama-7b-hf", vocab_size=32001).to_dict() elif "vicuna-13b" in model_name: text_config = LlamaConfig.from_pretrained("decapoda-research/llama-13b-hf", vocab_size=32001).to_dict() else: raise ValueError("Model name not supported") # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 qformer_config = InstructBlipQFormerConfig(vocab_size=30523).to_dict() config = InstructBlipConfig(vision_config=vision_config, text_config=text_config, qformer_config=qformer_config) return config, image_size @torch.no_grad() def convert_blip2_checkpoint(model_name, pytorch_dump_folder_path=None, push_to_hub=False): """ Copy/paste/tweak model's weights to Transformers design. """ qformer_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased", truncation_side="left") qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"}) if "t5" in model_name: tokenizer = T5TokenizerFast.from_pretrained("google/flan-t5-xl", truncation_side="left") elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) tokenizer = LlamaTokenizerFast.from_pretrained( "huggyllama/llama-7b", truncation_side="left", bos_token="</s>", unk_token="</s>" ) tokenizer.add_special_tokens({"pad_token": "[PAD]"}) config, image_size = get_blip2_config(model_name) hf_model = InstructBlipForConditionalGeneration(config).eval() model_name_to_original = { "instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"), "instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"), "instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"), "instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"), } name, type = model_name_to_original[model_name] # load original model print("Loading original model...") hf_model_device = "cuda:1" if torch.cuda.is_available() else "cpu" lavis_device = "cuda:2" if torch.cuda.is_available() else "cpu" original_model, vis_processors, _ = load_model_and_preprocess( name=name, model_type=type, is_eval=True, device=lavis_device ) original_model.eval() print("Done!") # update state dict keys state_dict = original_model.state_dict() rename_keys = create_rename_keys(config) for src, dest in rename_keys: rename_key(state_dict, src, dest) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): val = state_dict.pop(key) if key.startswith("Qformer.bert"): key = key.replace("Qformer.bert", "qformer") if "attention.self" in key: key = key.replace("self", "attention") if "llm_proj" in key: key = key.replace("llm_proj", "language_projection") if "t5_proj" in key: key = key.replace("t5_proj", "language_projection") if key.startswith("llm_model"): key = key.replace("llm_model", "language_model") if key.startswith("t5"): key = key.replace("t5", "language") state_dict[key] = val # read in qv biases read_in_q_v_bias(state_dict, config) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(state_dict, strict=True) image = load_demo_image() prompt = "What is unusual about this image?" # create processor image_processor = BlipImageProcessor( size={"height": image_size, "width": image_size}, image_mean=OPENAI_CLIP_MEAN, image_std=OPENAI_CLIP_STD ) processor = InstructBlipProcessor( image_processor=image_processor, tokenizer=tokenizer, qformer_tokenizer=qformer_tokenizer, ) inputs = processor(images=image, text=prompt, return_tensors="pt").to(hf_model_device) # make sure processor creates exact same pixel values original_pixel_values = vis_processors["eval"](image).unsqueeze(0).to(lavis_device) pixel_values = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device), pixel_values) original_model.to(lavis_device) hf_model.to(hf_model_device) with torch.no_grad(): if "vicuna" in model_name: original_logits = original_model({"image": original_pixel_values, "text_input": [prompt]}).logits logits = hf_model(**inputs).logits else: original_logits = original_model( {"image": original_pixel_values, "text_input": [prompt], "text_output": ["\n"]} ).logits label_input_ids = tokenizer("\n", return_tensors="pt").input_ids.to(hf_model_device) labels = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id, -100) logits = hf_model(**inputs, labels=labels).logits print("First values of original logits:", original_logits[0, :3, :3]) print("First values of HF logits:", logits[0, :3, :3]) # assert values assert original_logits.shape == logits.shape atol = 1e-4 if "vicuna" in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device), logits, atol=atol) print("Looks ok!") print("Generating with original model...") original_outputs = original_model.generate({"image": original_pixel_values, "prompt": prompt}, num_beams=5) # important: we need to cast the weights of the HF model to the appropriate type print("Generating with HF model...") outputs = hf_model.generate( **inputs, do_sample=False, num_beams=5, max_length=256, min_length=1, top_p=0.9, repetition_penalty=1.5, length_penalty=1.0, temperature=1, ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? outputs[outputs == 0] = 2 print("Original generation:", original_outputs) output_text = processor.batch_decode(outputs, skip_special_tokens=True) output_text = [text.strip() for text in output_text] print("HF generation:", output_text) if pytorch_dump_folder_path is not None: processor.save_pretrained(pytorch_dump_folder_path) hf_model.save_pretrained(pytorch_dump_folder_path) if push_to_hub: processor.push_to_hub(f"Salesforce/{model_name}") hf_model.push_to_hub(f"Salesforce/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() choices = [ "instructblip-vicuna-7b", "instructblip-vicuna-13b", "instructblip-flan-t5-xl", "instructblip-flan-t5-xxl", ] parser.add_argument( "--model_name", default="instructblip-flan-t5-xl", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) args = parser.parse_args() convert_blip2_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/poolformer/feature_extraction_poolformer.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for PoolFormer.""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor logger = logging.get_logger(__name__) class PoolFormerFeatureExtractor(PoolFormerImageProcessor): def __init__(self, *args, **kwargs) -> None: warnings.warn( "The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PoolFormerImageProcessor instead.", FutureWarning, ) super().__init__(*args, **kwargs)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/poolformer/configuration_poolformer.py
# coding=utf-8 # Copyright 2022 Sea AI Labs and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PoolFormer model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class PoolFormerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of [`PoolFormerModel`]. It is used to instantiate a PoolFormer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the PoolFormer [sail/poolformer_s12](https://huggingface.co/sail/poolformer_s12) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of channels in the input image. patch_size (`int`, *optional*, defaults to 16): The size of the input patch. stride (`int`, *optional*, defaults to 16): The stride of the input patch. pool_size (`int`, *optional*, defaults to 3): The size of the pooling window. mlp_ratio (`float`, *optional*, defaults to 4.0): The ratio of the number of channels in the output of the MLP to the number of channels in the input. depths (`list`, *optional*, defaults to `[2, 2, 6, 2]`): The depth of each encoder block. hidden_sizes (`list`, *optional*, defaults to `[64, 128, 320, 512]`): The hidden sizes of each encoder block. patch_sizes (`list`, *optional*, defaults to `[7, 3, 3, 3]`): The size of the input patch for each encoder block. strides (`list`, *optional*, defaults to `[4, 2, 2, 2]`): The stride of the input patch for each encoder block. padding (`list`, *optional*, defaults to `[2, 1, 1, 1]`): The padding of the input patch for each encoder block. num_encoder_blocks (`int`, *optional*, defaults to 4): The number of encoder blocks. drop_path_rate (`float`, *optional*, defaults to 0.0): The dropout rate for the dropout layers. hidden_act (`str`, *optional*, defaults to `"gelu"`): The activation function for the hidden layers. use_layer_scale (`bool`, *optional*, defaults to `True`): Whether to use layer scale. layer_scale_init_value (`float`, *optional*, defaults to 1e-05): The initial value for the layer scale. initializer_range (`float`, *optional*, defaults to 0.02): The initializer range for the weights. Example: ```python >>> from transformers import PoolFormerConfig, PoolFormerModel >>> # Initializing a PoolFormer sail/poolformer_s12 style configuration >>> configuration = PoolFormerConfig() >>> # Initializing a model (with random weights) from the sail/poolformer_s12 style configuration >>> model = PoolFormerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "poolformer" def __init__( self, num_channels=3, patch_size=16, stride=16, pool_size=3, mlp_ratio=4.0, depths=[2, 2, 6, 2], hidden_sizes=[64, 128, 320, 512], patch_sizes=[7, 3, 3, 3], strides=[4, 2, 2, 2], padding=[2, 1, 1, 1], num_encoder_blocks=4, drop_path_rate=0.0, hidden_act="gelu", use_layer_scale=True, layer_scale_init_value=1e-5, initializer_range=0.02, **kwargs, ): self.num_channels = num_channels self.patch_size = patch_size self.stride = stride self.padding = padding self.pool_size = pool_size self.hidden_sizes = hidden_sizes self.mlp_ratio = mlp_ratio self.depths = depths self.patch_sizes = patch_sizes self.strides = strides self.num_encoder_blocks = num_encoder_blocks self.drop_path_rate = drop_path_rate self.hidden_act = hidden_act self.use_layer_scale = use_layer_scale self.layer_scale_init_value = layer_scale_init_value self.initializer_range = initializer_range super().__init__(**kwargs) class PoolFormerOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def atol_for_validation(self) -> float: return 2e-3
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/poolformer/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = { "configuration_poolformer": [ "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PoolFormerConfig", "PoolFormerOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_poolformer"] = ["PoolFormerFeatureExtractor"] _import_structure["image_processing_poolformer"] = ["PoolFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_poolformer"] = [ "POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "PoolFormerForImageClassification", "PoolFormerModel", "PoolFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/poolformer/modeling_poolformer.py
# coding=utf-8 # Copyright 2022 Sea AI Lab and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch PoolFormer model.""" import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "PoolFormerConfig" # Base docstring _CHECKPOINT_FOR_DOC = "sail/poolformer_s12" _EXPECTED_OUTPUT_SHAPE = [1, 512, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "sail/poolformer_s12" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->PoolFormer class PoolFormerDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class PoolFormerEmbeddings(nn.Module): """ Construct Patch Embeddings. """ def __init__(self, hidden_size, num_channels, patch_size, stride, padding, norm_layer=None): super().__init__() patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) stride = stride if isinstance(stride, collections.abc.Iterable) else (stride, stride) padding = padding if isinstance(padding, collections.abc.Iterable) else (padding, padding) self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=stride, padding=padding) self.norm = norm_layer(hidden_size) if norm_layer else nn.Identity() def forward(self, pixel_values): embeddings = self.projection(pixel_values) embeddings = self.norm(embeddings) return embeddings class PoolFormerGroupNorm(nn.GroupNorm): """ Group Normalization with 1 group. Input: tensor in shape [B, C, H, W] """ def __init__(self, num_channels, **kwargs): super().__init__(1, num_channels, **kwargs) class PoolFormerPooling(nn.Module): def __init__(self, pool_size): super().__init__() self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) def forward(self, hidden_states): return self.pool(hidden_states) - hidden_states class PoolFormerOutput(nn.Module): def __init__(self, config, dropout_prob, hidden_size, intermediate_size): super().__init__() self.conv1 = nn.Conv2d(hidden_size, intermediate_size, 1) self.conv2 = nn.Conv2d(intermediate_size, hidden_size, 1) self.drop = PoolFormerDropPath(dropout_prob) if isinstance(config.hidden_act, str): self.act_fn = ACT2FN[config.hidden_act] else: self.act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.conv1(hidden_states) hidden_states = self.act_fn(hidden_states) hidden_states = self.drop(hidden_states) hidden_states = self.conv2(hidden_states) hidden_states = self.drop(hidden_states) return hidden_states class PoolFormerLayer(nn.Module): """This corresponds to the 'PoolFormerBlock' class in the original implementation.""" def __init__(self, config, num_channels, pool_size, hidden_size, intermediate_size, drop_path): super().__init__() self.pooling = PoolFormerPooling(pool_size) self.output = PoolFormerOutput(config, drop_path, hidden_size, intermediate_size) self.before_norm = PoolFormerGroupNorm(num_channels) self.after_norm = PoolFormerGroupNorm(num_channels) # Useful for training neural nets self.drop_path = PoolFormerDropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.use_layer_scale = config.use_layer_scale if config.use_layer_scale: self.layer_scale_1 = nn.Parameter( config.layer_scale_init_value * torch.ones((num_channels)), requires_grad=True ) self.layer_scale_2 = nn.Parameter( config.layer_scale_init_value * torch.ones((num_channels)), requires_grad=True ) def forward(self, hidden_states): if self.use_layer_scale: pooling_output = self.pooling(self.before_norm(hidden_states)) scaled_op = self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * pooling_output # First residual connection hidden_states = hidden_states + self.drop_path(scaled_op) outputs = () layer_output = self.output(self.after_norm(hidden_states)) scaled_op = self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * layer_output # Second residual connection output = hidden_states + self.drop_path(scaled_op) outputs = (output,) + outputs return outputs else: pooling_output = self.drop_path(self.pooling(self.before_norm(hidden_states))) # First residual connection hidden_states = pooling_output + hidden_states outputs = () # Second residual connection inside the PoolFormerOutput block layer_output = self.drop_path(self.output(self.after_norm(hidden_states))) output = hidden_states + layer_output outputs = (output,) + outputs return outputs class PoolFormerEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config # stochastic depth decay rule dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] # patch embeddings embeddings = [] for i in range(config.num_encoder_blocks): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i], stride=config.strides[i], padding=config.padding[i], num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1], hidden_size=config.hidden_sizes[i], ) ) self.patch_embeddings = nn.ModuleList(embeddings) # Transformer blocks blocks = [] cur = 0 for i in range(config.num_encoder_blocks): # each block consists of layers layers = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i]): layers.append( PoolFormerLayer( config, num_channels=config.hidden_sizes[i], pool_size=config.pool_size, hidden_size=config.hidden_sizes[i], intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio), drop_path=dpr[cur + j], ) ) blocks.append(nn.ModuleList(layers)) self.block = nn.ModuleList(blocks) def forward(self, pixel_values, output_hidden_states=False, return_dict=True): all_hidden_states = () if output_hidden_states else None hidden_states = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings, self.block)): embedding_layer, block_layer = layers # Get patch embeddings from hidden_states hidden_states = embedding_layer(hidden_states) # Send the embeddings through the blocks for _, blk in enumerate(block_layer): layer_outputs = blk(hidden_states) hidden_states = layer_outputs[0] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states) class PoolFormerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = PoolFormerConfig base_model_prefix = "poolformer" main_input_name = "pixel_values" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) POOLFORMER_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ POOLFORMER_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. """ @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.", POOLFORMER_START_DOCSTRING, ) class PoolFormerModel(PoolFormerPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.encoder = PoolFormerEncoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(POOLFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") encoder_outputs = self.encoder( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, ) class PoolFormerFinalPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) def forward(self, hidden_states): output = self.dense(hidden_states) return output @add_start_docstrings( """ PoolFormer Model transformer with an image classification head on top """, POOLFORMER_START_DOCSTRING, ) class PoolFormerForImageClassification(PoolFormerPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.poolformer = PoolFormerModel(config) # Final norm self.norm = PoolFormerGroupNorm(config.hidden_sizes[-1]) # Classifier head self.classifier = ( nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(POOLFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.poolformer( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(self.norm(sequence_output).mean([-2, -1])) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/poolformer/convert_poolformer_original_to_pytorch.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert PoolFormer checkpoints from the original repository. URL: https://github.com/sail-sg/poolformer""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def replace_key_with_offset(key, offset, original_name, new_name): """ Replaces the key by subtracting the offset from the original layer number """ to_find = original_name.split(".")[0] key_list = key.split(".") orig_block_num = int(key_list[key_list.index(to_find) - 2]) layer_num = int(key_list[key_list.index(to_find) - 1]) new_block_num = orig_block_num - offset key = key.replace(f"{orig_block_num}.{layer_num}.{original_name}", f"block.{new_block_num}.{layer_num}.{new_name}") return key def rename_keys(state_dict): new_state_dict = OrderedDict() total_embed_found, patch_emb_offset = 0, 0 for key, value in state_dict.items(): if key.startswith("network"): key = key.replace("network", "poolformer.encoder") if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias") and "patch_embed" not in key: patch_emb_offset += 1 to_replace = key[: key.find("proj")] key = key.replace(to_replace, f"patch_embeddings.{total_embed_found}.") key = key.replace("proj", "projection") if key.endswith("bias"): total_embed_found += 1 if "patch_embeddings" in key: key = "poolformer.encoder." + key if "mlp.fc1" in key: key = replace_key_with_offset(key, patch_emb_offset, "mlp.fc1", "output.conv1") if "mlp.fc2" in key: key = replace_key_with_offset(key, patch_emb_offset, "mlp.fc2", "output.conv2") if "norm1" in key: key = replace_key_with_offset(key, patch_emb_offset, "norm1", "before_norm") if "norm2" in key: key = replace_key_with_offset(key, patch_emb_offset, "norm2", "after_norm") if "layer_scale_1" in key: key = replace_key_with_offset(key, patch_emb_offset, "layer_scale_1", "layer_scale_1") if "layer_scale_2" in key: key = replace_key_with_offset(key, patch_emb_offset, "layer_scale_2", "layer_scale_2") if "head" in key: key = key.replace("head", "classifier") new_state_dict[key] = value return new_state_dict # We will verify our results on a COCO image def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) return image @torch.no_grad() def convert_poolformer_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path): """ Copy/paste/tweak model's weights to our PoolFormer structure. """ # load default PoolFormer configuration config = PoolFormerConfig() # set attributes based on model_name repo_id = "huggingface/label-files" size = model_name[-3:] config.num_labels = 1000 filename = "imagenet-1k-id2label.json" expected_shape = (1, 1000) # set config attributes id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} if size == "s12": config.depths = [2, 2, 6, 2] config.hidden_sizes = [64, 128, 320, 512] config.mlp_ratio = 4.0 crop_pct = 0.9 elif size == "s24": config.depths = [4, 4, 12, 4] config.hidden_sizes = [64, 128, 320, 512] config.mlp_ratio = 4.0 crop_pct = 0.9 elif size == "s36": config.depths = [6, 6, 18, 6] config.hidden_sizes = [64, 128, 320, 512] config.mlp_ratio = 4.0 config.layer_scale_init_value = 1e-6 crop_pct = 0.9 elif size == "m36": config.depths = [6, 6, 18, 6] config.hidden_sizes = [96, 192, 384, 768] config.mlp_ratio = 4.0 config.layer_scale_init_value = 1e-6 crop_pct = 0.95 elif size == "m48": config.depths = [8, 8, 24, 8] config.hidden_sizes = [96, 192, 384, 768] config.mlp_ratio = 4.0 config.layer_scale_init_value = 1e-6 crop_pct = 0.95 else: raise ValueError(f"Size {size} not supported") # load image processor image_processor = PoolFormerImageProcessor(crop_pct=crop_pct) # Prepare image image = prepare_img() pixel_values = image_processor(images=image, return_tensors="pt").pixel_values logger.info(f"Converting model {model_name}...") # load original state dict state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu")) # rename keys state_dict = rename_keys(state_dict) # create HuggingFace model and load state dict model = PoolFormerForImageClassification(config) model.load_state_dict(state_dict) model.eval() # Define image processor image_processor = PoolFormerImageProcessor(crop_pct=crop_pct) pixel_values = image_processor(images=prepare_img(), return_tensors="pt").pixel_values # forward pass outputs = model(pixel_values) logits = outputs.logits # define expected logit slices for different models if size == "s12": expected_slice = torch.tensor([-0.3045, -0.6758, -0.4869]) elif size == "s24": expected_slice = torch.tensor([0.4402, -0.1374, -0.8045]) elif size == "s36": expected_slice = torch.tensor([-0.6080, -0.5133, -0.5898]) elif size == "m36": expected_slice = torch.tensor([0.3952, 0.2263, -1.2668]) elif size == "m48": expected_slice = torch.tensor([0.1167, -0.0656, -0.3423]) else: raise ValueError(f"Size {size} not supported") # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3], expected_slice, atol=1e-2) # finally, save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...") Path(pytorch_dump_folder_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_name", default="poolformer_s12", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) args = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/poolformer/image_processing_poolformer.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for PoolFormer.""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( get_resize_output_image_size, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL logger = logging.get_logger(__name__) class PoolFormerImageProcessor(BaseImageProcessor): r""" Constructs a PoolFormer image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by `do_resize` in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): Size of the image after resizing. Can be overridden by `size` in the `preprocess` method. If crop_pct is unset: - size is `{"height": h, "width": w}`: the image is resized to `(h, w)`. - size is `{"shortest_edge": s}`: the shortest edge of the image is resized to s whilst maintaining the aspect ratio. If crop_pct is set: - size is `{"height": h, "width": w}`: the image is resized to `(int(floor(h/crop_pct)), int(floor(w/crop_pct)))` - size is `{"height": c, "width": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)` whilst maintaining the aspect ratio. - size is `{"shortest_edge": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)` whilst maintaining the aspect ratio. crop_pct (`float`, *optional*, defaults to 0.9): Percentage of the image to crop from the center. Can be overridden by `crop_pct` in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `True`): Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image is padded with 0's and then center cropped. Can be overridden by `do_center_crop` in the `preprocess` method. crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`): Size of the image after applying center crop. Only has an effect if `do_center_crop` is set to `True`. Can be overridden by the `crop_size` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, crop_pct: int = 0.9, resample: PILImageResampling = PILImageResampling.BICUBIC, do_center_crop: bool = True, crop_size: Dict[str, int] = None, rescale_factor: Union[int, float] = 1 / 255, do_rescale: bool = True, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"shortest_edge": 224} size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size, param_name="crop_size") self.do_resize = do_resize self.size = size self.crop_pct = crop_pct self.resample = resample self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD def resize( self, image: np.ndarray, size: Dict[str, int], crop_pct: Optional[float] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image. If crop_pct is unset: - size is `{"height": h, "width": w}`: the image is resized to `(h, w)`. - size is `{"shortest_edge": s}`: the shortest edge of the image is resized to s whilst maintaining the aspect ratio. if crop_pct is set: - size is `{"height": h, "width": w}`: the image is resized to `(int(floor(h/crop_pct)), int(floor(w/crop_pct)))` - size is `{"height": c, "width": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)` whilst maintaining the aspect ratio. - size is `{"shortest_edge": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)` whilst maintaining the aspect ratio. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. crop_pct (`float`, *optional*): Percentage of the image that will be cropped from the center. If set, the image is resized resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use when resizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ size = get_size_dict(size, default_to_square=False) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}") if crop_pct is not None: if "shortest_edge" in size: scale_size = int(size["shortest_edge"] / crop_pct) elif "height" in size and "width" in size: if size["height"] == size["width"]: scale_size = int(size["height"] / crop_pct) else: scale_size = (int(size["height"] / crop_pct), int(size["width"] / crop_pct)) else: raise ValueError("Invalid size for resize: {}".format(size)) output_size = get_resize_output_image_size( image, size=scale_size, default_to_square=False, input_data_format=input_data_format ) else: if "shortest_edge" in size: output_size = get_resize_output_image_size( image, size=size["shortest_edge"], default_to_square=False, input_data_format=input_data_format ) elif "height" in size and "width" in size: output_size = (size["height"], size["width"]) else: raise ValueError("Invalid size for resize: {}".format(size)) return resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def preprocess( self, images: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, crop_pct: int = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after applying resize. crop_pct (`float`, *optional*, defaults to `self.crop_pct`): Percentage of the image to crop. Only has an effect if `do_resize` is set to `True`. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the image after applying center crop. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize crop_pct = crop_pct if crop_pct is not None else self.crop_pct resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size") images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_center_crop and crop_pct is None: raise ValueError("Crop_pct must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_resize: images = [ self.resize( image=image, size=size, crop_pct=crop_pct, resample=resample, input_data_format=input_data_format ) for image in images ] if do_center_crop: images = [ self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images ] if do_rescale: images = [ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images ] if do_normalize: images = [ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 MobileBERT model.""" from __future__ import annotations import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPooling, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFNextSentencePredictorOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFMaskedLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFNextSentencePredictionLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_mobilebert import MobileBertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/mobilebert-uncased" _CONFIG_FOR_DOC = "MobileBertConfig" # TokenClassification docstring _CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "vumichien/mobilebert-finetuned-ner" _TOKEN_CLASS_EXPECTED_OUTPUT = "['I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC']" _TOKEN_CLASS_EXPECTED_LOSS = 0.03 # QuestionAnswering docstring _CHECKPOINT_FOR_QA = "vumichien/mobilebert-uncased-squad-v2" _QA_EXPECTED_OUTPUT = "'a nice puppet'" _QA_EXPECTED_LOSS = 3.98 _QA_TARGET_START_INDEX = 12 _QA_TARGET_END_INDEX = 13 # SequenceClassification docstring _CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "vumichien/emo-mobilebert" _SEQ_CLASS_EXPECTED_OUTPUT = "'others'" _SEQ_CLASS_EXPECTED_LOSS = "4.72" TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/mobilebert-uncased", # See all MobileBERT models at https://huggingface.co/models?filter=mobilebert ] # Copied from transformers.models.bert.modeling_tf_bert.TFBertPreTrainingLoss class TFMobileBertPreTrainingLoss: """ Loss function suitable for BERT-like pretraining, that is, the task of pretraining a language model by combining NSP + MLM. .. note:: Any label of -100 will be ignored (along with the corresponding logits) in the loss computation. """ def hf_compute_loss(self, labels: tf.Tensor, logits: tf.Tensor) -> tf.Tensor: loss_fn = tf.keras.losses.SparseCategoricalCrossentropy( from_logits=True, reduction=tf.keras.losses.Reduction.NONE ) # Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway unmasked_lm_losses = loss_fn(y_true=tf.nn.relu(labels["labels"]), y_pred=logits[0]) # make sure only labels that are not equal to -100 # are taken into account for the loss computation lm_loss_mask = tf.cast(labels["labels"] != -100, dtype=unmasked_lm_losses.dtype) masked_lm_losses = unmasked_lm_losses * lm_loss_mask reduced_masked_lm_loss = tf.reduce_sum(masked_lm_losses) / tf.reduce_sum(lm_loss_mask) # Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway unmasked_ns_loss = loss_fn(y_true=tf.nn.relu(labels["next_sentence_label"]), y_pred=logits[1]) ns_loss_mask = tf.cast(labels["next_sentence_label"] != -100, dtype=unmasked_ns_loss.dtype) masked_ns_loss = unmasked_ns_loss * ns_loss_mask reduced_masked_ns_loss = tf.reduce_sum(masked_ns_loss) / tf.reduce_sum(ns_loss_mask) return tf.reshape(reduced_masked_lm_loss + reduced_masked_ns_loss, (1,)) class TFMobileBertIntermediate(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense(config.intermediate_size, name="dense") if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.true_hidden_size]) class TFLayerNorm(tf.keras.layers.LayerNormalization): def __init__(self, feat_size, *args, **kwargs): self.feat_size = feat_size super().__init__(*args, **kwargs) def build(self, input_shape=None): super().build([None, None, self.feat_size]) class TFNoNorm(tf.keras.layers.Layer): def __init__(self, feat_size, epsilon=None, **kwargs): super().__init__(**kwargs) self.feat_size = feat_size def build(self, input_shape): self.bias = self.add_weight("bias", shape=[self.feat_size], initializer="zeros") self.weight = self.add_weight("weight", shape=[self.feat_size], initializer="ones") super().build(input_shape) def call(self, inputs: tf.Tensor): return inputs * self.weight + self.bias NORM2FN = {"layer_norm": TFLayerNorm, "no_norm": TFNoNorm} class TFMobileBertEmbeddings(tf.keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.trigram_input = config.trigram_input self.embedding_size = config.embedding_size self.config = config self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.embedding_transformation = tf.keras.layers.Dense(config.hidden_size, name="embedding_transformation") # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = NORM2FN[config.normalization_type]( config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) self.embedded_input_size = self.embedding_size * (3 if self.trigram_input else 1) def build(self, input_shape=None): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.embedding_size], initializer=get_initializer(initializer_range=self.initializer_range), ) with tf.name_scope("token_type_embeddings"): self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.config.type_vocab_size, self.hidden_size], initializer=get_initializer(initializer_range=self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(initializer_range=self.initializer_range), ) if self.built: return self.built = True if getattr(self, "embedding_transformation", None) is not None: with tf.name_scope(self.embedding_transformation.name): self.embedding_transformation.build([None, None, self.embedded_input_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None) def call(self, input_ids=None, position_ids=None, token_type_ids=None, inputs_embeds=None, training=False): """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if self.trigram_input: # From the paper MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited # Devices (https://arxiv.org/abs/2004.02984) # # The embedding table in BERT models accounts for a substantial proportion of model size. To compress # the embedding layer, we reduce the embedding dimension to 128 in MobileBERT. # Then, we apply a 1D convolution with kernel size 3 on the raw token embedding to produce a 512 # dimensional output. inputs_embeds = tf.concat( [ tf.pad(inputs_embeds[:, 1:], ((0, 0), (0, 1), (0, 0))), inputs_embeds, tf.pad(inputs_embeds[:, :-1], ((0, 0), (1, 0), (0, 0))), ], axis=2, ) if self.trigram_input or self.embedding_size != self.hidden_size: inputs_embeds = self.embedding_transformation(inputs_embeds) if position_ids is None: position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = inputs_embeds + position_embeds + token_type_embeds final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings class TFMobileBertSelfAttention(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads}" ) self.num_attention_heads = config.num_attention_heads self.output_attentions = config.output_attentions assert config.hidden_size % config.num_attention_heads == 0 self.attention_head_size = int(config.true_hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = tf.keras.layers.Dropout(config.attention_probs_dropout_prob) self.config = config def transpose_for_scores(self, x, batch_size): # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call( self, query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, training=False ): batch_size = shape_list(attention_mask)[0] mixed_query_layer = self.query(query_tensor) mixed_key_layer = self.key(key_tensor) mixed_value_layer = self.value(value_tensor) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = tf.matmul( query_layer, key_layer, transpose_b=True ) # (batch size, num_heads, seq_len_q, seq_len_k) dk = tf.cast(shape_list(key_layer)[-1], dtype=attention_scores.dtype) # scale attention_scores attention_scores = attention_scores / tf.math.sqrt(dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFMobileBertModel call() function) attention_mask = tf.cast(attention_mask, dtype=attention_scores.dtype) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = stable_softmax(attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) context_layer = tf.reshape( context_layer, (batch_size, -1, self.all_head_size) ) # (batch_size, seq_len_q, all_head_size) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.config.true_hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.config.true_hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build( [ None, None, self.config.true_hidden_size if self.config.use_bottleneck_attention else self.config.hidden_size, ] ) class TFMobileBertSelfOutput(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.use_bottleneck = config.use_bottleneck self.dense = tf.keras.layers.Dense( config.true_hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = NORM2FN[config.normalization_type]( config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) if not self.use_bottleneck: self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.config = config def call(self, hidden_states, residual_tensor, training=False): hidden_states = self.dense(hidden_states) if not self.use_bottleneck: hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + residual_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.true_hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None) class TFMobileBertAttention(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.self = TFMobileBertSelfAttention(config, name="self") self.mobilebert_output = TFMobileBertSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, query_tensor, key_tensor, value_tensor, layer_input, attention_mask, head_mask, output_attentions, training=False, ): self_outputs = self.self( query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, training=training ) attention_output = self.mobilebert_output(self_outputs[0], layer_input, training=training) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self", None) is not None: with tf.name_scope(self.self.name): self.self.build(None) if getattr(self, "mobilebert_output", None) is not None: with tf.name_scope(self.mobilebert_output.name): self.mobilebert_output.build(None) class TFOutputBottleneck(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense(config.hidden_size, name="dense") self.LayerNorm = NORM2FN[config.normalization_type]( config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.config = config def call(self, hidden_states, residual_tensor, training=False): layer_outputs = self.dense(hidden_states) layer_outputs = self.dropout(layer_outputs, training=training) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.true_hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None) class TFMobileBertOutput(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.use_bottleneck = config.use_bottleneck self.dense = tf.keras.layers.Dense( config.true_hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = NORM2FN[config.normalization_type]( config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) if not self.use_bottleneck: self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) else: self.bottleneck = TFOutputBottleneck(config, name="bottleneck") self.config = config def call(self, hidden_states, residual_tensor_1, residual_tensor_2, training=False): hidden_states = self.dense(hidden_states) if not self.use_bottleneck: hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + residual_tensor_1) else: hidden_states = self.LayerNorm(hidden_states + residual_tensor_1) hidden_states = self.bottleneck(hidden_states, residual_tensor_2) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None) if getattr(self, "bottleneck", None) is not None: with tf.name_scope(self.bottleneck.name): self.bottleneck.build(None) class TFBottleneckLayer(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense(config.intra_bottleneck_size, name="dense") self.LayerNorm = NORM2FN[config.normalization_type]( config.intra_bottleneck_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) self.config = config def call(self, inputs): hidden_states = self.dense(inputs) hidden_states = self.LayerNorm(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None) class TFBottleneck(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.key_query_shared_bottleneck = config.key_query_shared_bottleneck self.use_bottleneck_attention = config.use_bottleneck_attention self.bottleneck_input = TFBottleneckLayer(config, name="input") if self.key_query_shared_bottleneck: self.attention = TFBottleneckLayer(config, name="attention") def call(self, hidden_states): # This method can return three different tuples of values. These different values make use of bottlenecks, # which are linear layers used to project the hidden states to a lower-dimensional vector, reducing memory # usage. These linear layer have weights that are learned during training. # # If `config.use_bottleneck_attention`, it will return the result of the bottleneck layer four times for the # key, query, value, and "layer input" to be used by the attention layer. # This bottleneck is used to project the hidden. This last layer input will be used as a residual tensor # in the attention self output, after the attention scores have been computed. # # If not `config.use_bottleneck_attention` and `config.key_query_shared_bottleneck`, this will return # four values, three of which have been passed through a bottleneck: the query and key, passed through the same # bottleneck, and the residual layer to be applied in the attention self output, through another bottleneck. # # Finally, in the last case, the values for the query, key and values are the hidden states without bottleneck, # and the residual layer will be this value passed through a bottleneck. bottlenecked_hidden_states = self.bottleneck_input(hidden_states) if self.use_bottleneck_attention: return (bottlenecked_hidden_states,) * 4 elif self.key_query_shared_bottleneck: shared_attention_input = self.attention(hidden_states) return (shared_attention_input, shared_attention_input, hidden_states, bottlenecked_hidden_states) else: return (hidden_states, hidden_states, hidden_states, bottlenecked_hidden_states) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "bottleneck_input", None) is not None: with tf.name_scope(self.bottleneck_input.name): self.bottleneck_input.build(None) if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) class TFFFNOutput(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense(config.true_hidden_size, name="dense") self.LayerNorm = NORM2FN[config.normalization_type]( config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) self.config = config def call(self, hidden_states, residual_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.LayerNorm(hidden_states + residual_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None) class TFFFNLayer(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.intermediate = TFMobileBertIntermediate(config, name="intermediate") self.mobilebert_output = TFFFNOutput(config, name="output") def call(self, hidden_states): intermediate_output = self.intermediate(hidden_states) layer_outputs = self.mobilebert_output(intermediate_output, hidden_states) return layer_outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "mobilebert_output", None) is not None: with tf.name_scope(self.mobilebert_output.name): self.mobilebert_output.build(None) class TFMobileBertLayer(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.use_bottleneck = config.use_bottleneck self.num_feedforward_networks = config.num_feedforward_networks self.attention = TFMobileBertAttention(config, name="attention") self.intermediate = TFMobileBertIntermediate(config, name="intermediate") self.mobilebert_output = TFMobileBertOutput(config, name="output") if self.use_bottleneck: self.bottleneck = TFBottleneck(config, name="bottleneck") if config.num_feedforward_networks > 1: self.ffn = [TFFFNLayer(config, name=f"ffn.{i}") for i in range(config.num_feedforward_networks - 1)] def call(self, hidden_states, attention_mask, head_mask, output_attentions, training=False): if self.use_bottleneck: query_tensor, key_tensor, value_tensor, layer_input = self.bottleneck(hidden_states) else: query_tensor, key_tensor, value_tensor, layer_input = [hidden_states] * 4 attention_outputs = self.attention( query_tensor, key_tensor, value_tensor, layer_input, attention_mask, head_mask, output_attentions, training=training, ) attention_output = attention_outputs[0] s = (attention_output,) if self.num_feedforward_networks != 1: for i, ffn_module in enumerate(self.ffn): attention_output = ffn_module(attention_output) s += (attention_output,) intermediate_output = self.intermediate(attention_output) layer_output = self.mobilebert_output(intermediate_output, attention_output, hidden_states, training=training) outputs = ( (layer_output,) + attention_outputs[1:] + ( tf.constant(0), query_tensor, key_tensor, value_tensor, layer_input, attention_output, intermediate_output, ) + s ) # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "mobilebert_output", None) is not None: with tf.name_scope(self.mobilebert_output.name): self.mobilebert_output.build(None) if getattr(self, "bottleneck", None) is not None: with tf.name_scope(self.bottleneck.name): self.bottleneck.build(None) if getattr(self, "ffn", None) is not None: for layer in self.ffn: with tf.name_scope(layer.name): layer.build(None) class TFMobileBertEncoder(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.layer = [TFMobileBertLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states, attention_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=False, ): all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, head_mask[i], output_attentions, training=training ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) class TFMobileBertPooler(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.do_activate = config.classifier_activation if self.do_activate: self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) self.config = config def call(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] if not self.do_activate: return first_token_tensor else: pooled_output = self.dense(first_token_tensor) return pooled_output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) class TFMobileBertPredictionHeadTransform(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.transform_act_fn = get_tf_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = NORM2FN["layer_norm"](config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm") self.config = config def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None) class TFMobileBertLMPredictionHead(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.transform = TFMobileBertPredictionHeadTransform(config, name="transform") self.config = config def build(self, input_shape=None): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") self.dense = self.add_weight( shape=(self.config.hidden_size - self.config.embedding_size, self.config.vocab_size), initializer="zeros", trainable=True, name="dense/weight", ) self.decoder = self.add_weight( shape=(self.config.vocab_size, self.config.embedding_size), initializer="zeros", trainable=True, name="decoder/weight", ) if self.built: return self.built = True if getattr(self, "transform", None) is not None: with tf.name_scope(self.transform.name): self.transform.build(None) def get_output_embeddings(self): return self def set_output_embeddings(self, value): self.decoder = value self.config.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = tf.matmul(hidden_states, tf.concat([tf.transpose(self.decoder), self.dense], axis=0)) hidden_states = hidden_states + self.bias return hidden_states class TFMobileBertMLMHead(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.predictions = TFMobileBertLMPredictionHead(config, name="predictions") def call(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "predictions", None) is not None: with tf.name_scope(self.predictions.name): self.predictions.build(None) @keras_serializable class TFMobileBertMainLayer(tf.keras.layers.Layer): config_class = MobileBertConfig def __init__(self, config, add_pooling_layer=True, **kwargs): super().__init__(**kwargs) self.config = config self.num_hidden_layers = config.num_hidden_layers self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.embeddings = TFMobileBertEmbeddings(config, name="embeddings") self.encoder = TFMobileBertEncoder(config, name="encoder") self.pooler = TFMobileBertPooler(config, name="pooler") if add_pooling_layer else None def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.fill(input_shape, 1) if token_type_ids is None: token_type_ids = tf.fill(input_shape, 0) embedding_output = self.embeddings(input_ids, position_ids, token_type_ids, inputs_embeds, training=training) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) one_cst = tf.constant(1.0, dtype=embedding_output.dtype) ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.num_hidden_layers encoder_outputs = self.encoder( embedding_output, extended_attention_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=training, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return ( sequence_output, pooled_output, ) + encoder_outputs[1:] return TFBaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None) class TFMobileBertPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileBertConfig base_model_prefix = "mobilebert" @dataclass class TFMobileBertForPreTrainingOutput(ModelOutput): """ Output type of [`TFMobileBertForPreTraining`]. Args: prediction_logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`tf.Tensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None prediction_logits: tf.Tensor = None seq_relationship_logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None MOBILEBERT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`MobileBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MOBILEBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare MobileBert Model transformer outputting raw hidden-states without any specific head on top.", MOBILEBERT_START_DOCSTRING, ) class TFMobileBertModel(TFMobileBertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFBaseModelOutputWithPooling]: outputs = self.mobilebert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) @add_start_docstrings( """ MobileBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel, TFMobileBertPreTrainingLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") self.predictions = TFMobileBertMLMHead(config, name="predictions___cls") self.seq_relationship = TFMobileBertOnlyNSPHead(config, name="seq_relationship___cls") def get_lm_head(self): return self.predictions.predictions def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.predictions.name + "/" + self.predictions.predictions.name @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFMobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, next_sentence_label: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFMobileBertForPreTrainingOutput]: r""" Return: Examples: ```python >>> import tensorflow as tf >>> from transformers import AutoTokenizer, TFMobileBertForPreTraining >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 >>> outputs = model(input_ids) >>> prediction_scores, seq_relationship_scores = outputs[:2] ```""" outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output, pooled_output = outputs[:2] prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: d_labels = {"labels": labels} d_labels["next_sentence_label"] = next_sentence_label total_loss = self.hf_compute_loss(labels=d_labels, logits=(prediction_scores, seq_relationship_score)) if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return TFMobileBertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "predictions", None) is not None: with tf.name_scope(self.predictions.name): self.predictions.build(None) if getattr(self, "seq_relationship", None) is not None: with tf.name_scope(self.seq_relationship.name): self.seq_relationship.build(None) def tf_to_pt_weight_rename(self, tf_weight): if tf_weight == "cls.predictions.decoder.weight": return tf_weight, "mobilebert.embeddings.word_embeddings.weight" else: return (tf_weight,) @add_start_docstrings("""MobileBert Model with a `language modeling` head on top.""", MOBILEBERT_START_DOCSTRING) class TFMobileBertForMaskedLM(TFMobileBertPreTrainedModel, TFMaskedLanguageModelingLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"pooler", r"seq_relationship___cls", r"cls.seq_relationship", ] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert") self.predictions = TFMobileBertMLMHead(config, name="predictions___cls") def get_lm_head(self): return self.predictions.predictions def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, expected_output="'paris'", expected_loss=0.57, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFMaskedLMOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels """ outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.predictions(sequence_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "predictions", None) is not None: with tf.name_scope(self.predictions.name): self.predictions.build(None) def tf_to_pt_weight_rename(self, tf_weight): if tf_weight == "cls.predictions.decoder.weight": return tf_weight, "mobilebert.embeddings.word_embeddings.weight" else: return (tf_weight,) class TFMobileBertOnlyNSPHead(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.seq_relationship = tf.keras.layers.Dense(2, name="seq_relationship") self.config = config def call(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "seq_relationship", None) is not None: with tf.name_scope(self.seq_relationship.name): self.seq_relationship.build([None, None, self.config.hidden_size]) @add_start_docstrings( """MobileBert Model with a `next sentence prediction (classification)` head on top.""", MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForNextSentencePrediction(TFMobileBertPreTrainedModel, TFNextSentencePredictionLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"predictions___cls", r"cls.predictions"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") self.cls = TFMobileBertOnlyNSPHead(config, name="seq_relationship___cls") @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFNextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, next_sentence_label: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFNextSentencePredictorOutput]: r""" Return: Examples: ```python >>> import tensorflow as tf >>> from transformers import AutoTokenizer, TFMobileBertForNextSentencePrediction >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = TFMobileBertForNextSentencePrediction.from_pretrained("google/mobilebert-uncased") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="tf") >>> logits = model(encoding["input_ids"], token_type_ids=encoding["token_type_ids"])[0] ```""" outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] seq_relationship_scores = self.cls(pooled_output) next_sentence_loss = ( None if next_sentence_label is None else self.hf_compute_loss(labels=next_sentence_label, logits=seq_relationship_scores) ) if not return_dict: output = (seq_relationship_scores,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return TFNextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "cls", None) is not None: with tf.name_scope(self.cls.name): self.cls.build(None) @add_start_docstrings( """ MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForSequenceClassification(TFMobileBertPreTrainedModel, TFSequenceClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"predictions___cls", r"seq_relationship___cls", r"cls.predictions", r"cls.seq_relationship", ] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = tf.keras.layers.Dropout(classifier_dropout) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFSequenceClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ MobileBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAnsweringLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"pooler", r"predictions___cls", r"seq_relationship___cls", r"cls.predictions", r"cls.seq_relationship", ] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert") self.qa_outputs = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_QA, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, qa_target_start_index=_QA_TARGET_START_INDEX, qa_target_end_index=_QA_TARGET_END_INDEX, expected_output=_QA_EXPECTED_OUTPUT, expected_loss=_QA_EXPECTED_LOSS, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFQuestionAnsweringModelOutput]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions, "end_position": end_positions} loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ MobileBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForMultipleChoice(TFMobileBertPreTrainedModel, TFMultipleChoiceLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"predictions___cls", r"seq_relationship___cls", r"cls.predictions", r"cls.seq_relationship", ] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward( MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFMultipleChoiceModelOutput]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None flat_inputs_embeds = ( tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) outputs = self.mobilebert( flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask, flat_inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ MobileBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForTokenClassification(TFMobileBertPreTrainedModel, TFTokenClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"pooler", r"predictions___cls", r"seq_relationship___cls", r"cls.predictions", r"cls.seq_relationship", ] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert") classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = tf.keras.layers.Dropout(classifier_dropout) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT, expected_loss=_TOKEN_CLASS_EXPECTED_LOSS, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFTokenClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size])
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/mobilebert/configuration_mobilebert.py
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MobileBERT model configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/config.json" } class MobileBertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MobileBertModel`] or a [`TFMobileBertModel`]. It is used to instantiate a MobileBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MobileBERT [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the MobileBERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MobileBertModel`] or [`TFMobileBertModel`]. hidden_size (`int`, *optional*, defaults to 512): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 4): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 512): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`MobileBertModel`] or [`TFMobileBertModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. pad_token_id (`int`, *optional*, defaults to 0): The ID of the token in the word embedding to use as padding. embedding_size (`int`, *optional*, defaults to 128): The dimension of the word embedding vectors. trigram_input (`bool`, *optional*, defaults to `True`): Use a convolution of trigram as input. use_bottleneck (`bool`, *optional*, defaults to `True`): Whether to use bottleneck in BERT. intra_bottleneck_size (`int`, *optional*, defaults to 128): Size of bottleneck layer output. use_bottleneck_attention (`bool`, *optional*, defaults to `False`): Whether to use attention inputs from the bottleneck transformation. key_query_shared_bottleneck (`bool`, *optional*, defaults to `True`): Whether to use the same linear transformation for query&key in the bottleneck. num_feedforward_networks (`int`, *optional*, defaults to 4): Number of FFNs in a block. normalization_type (`str`, *optional*, defaults to `"no_norm"`): The normalization type in MobileBERT. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Examples: ```python >>> from transformers import MobileBertConfig, MobileBertModel >>> # Initializing a MobileBERT configuration >>> configuration = MobileBertConfig() >>> # Initializing a model (with random weights) from the configuration above >>> model = MobileBertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` Attributes: pretrained_config_archive_map (Dict[str, str]): A dictionary containing all the available pre-trained checkpoints. """ pretrained_config_archive_map = MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP model_type = "mobilebert" def __init__( self, vocab_size=30522, hidden_size=512, num_hidden_layers=24, num_attention_heads=4, intermediate_size=512, hidden_act="relu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, embedding_size=128, trigram_input=True, use_bottleneck=True, intra_bottleneck_size=128, use_bottleneck_attention=False, key_query_shared_bottleneck=True, num_feedforward_networks=4, normalization_type="no_norm", classifier_activation=True, classifier_dropout=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.embedding_size = embedding_size self.trigram_input = trigram_input self.use_bottleneck = use_bottleneck self.intra_bottleneck_size = intra_bottleneck_size self.use_bottleneck_attention = use_bottleneck_attention self.key_query_shared_bottleneck = key_query_shared_bottleneck self.num_feedforward_networks = num_feedforward_networks self.normalization_type = normalization_type self.classifier_activation = classifier_activation if self.use_bottleneck: self.true_hidden_size = intra_bottleneck_size else: self.true_hidden_size = hidden_size self.classifier_dropout = classifier_dropout # Copied from transformers.models.bert.configuration_bert.BertOnnxConfig with Bert->MobileBert class MobileBertOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
# MIT License # # Copyright (c) 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and github/lonePatient # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import math import os import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, MultipleChoiceModelOutput, NextSentencePredictorOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_mobilebert import MobileBertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/mobilebert-uncased" _CONFIG_FOR_DOC = "MobileBertConfig" # TokenClassification docstring _CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "mrm8488/mobilebert-finetuned-ner" _TOKEN_CLASS_EXPECTED_OUTPUT = "['I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC']" _TOKEN_CLASS_EXPECTED_LOSS = 0.03 # QuestionAnswering docstring _CHECKPOINT_FOR_QA = "csarron/mobilebert-uncased-squad-v2" _QA_EXPECTED_OUTPUT = "'a nice puppet'" _QA_EXPECTED_LOSS = 3.98 _QA_TARGET_START_INDEX = 12 _QA_TARGET_END_INDEX = 13 # SequenceClassification docstring _CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "lordtt13/emo-mobilebert" _SEQ_CLASS_EXPECTED_OUTPUT = "'others'" _SEQ_CLASS_EXPECTED_LOSS = "4.72" MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = ["google/mobilebert-uncased"] def load_tf_weights_in_mobilebert(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.replace("ffn_layer", "ffn") name = name.replace("FakeLayerNorm", "LayerNorm") name = name.replace("extra_output_weights", "dense/kernel") name = name.replace("bert", "mobilebert") name = name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) try: assert ( pointer.shape == array.shape ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) return model class NoNorm(nn.Module): def __init__(self, feat_size, eps=None): super().__init__() self.bias = nn.Parameter(torch.zeros(feat_size)) self.weight = nn.Parameter(torch.ones(feat_size)) def forward(self, input_tensor: torch.Tensor) -> torch.Tensor: return input_tensor * self.weight + self.bias NORM2FN = {"layer_norm": nn.LayerNorm, "no_norm": NoNorm} class MobileBertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.trigram_input = config.trigram_input self.embedding_size = config.embedding_size self.hidden_size = config.hidden_size self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) embed_dim_multiplier = 3 if self.trigram_input else 1 embedded_input_size = self.embedding_size * embed_dim_multiplier self.embedding_transformation = nn.Linear(embedded_input_size, config.hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if self.trigram_input: # From the paper MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited # Devices (https://arxiv.org/abs/2004.02984) # # The embedding table in BERT models accounts for a substantial proportion of model size. To compress # the embedding layer, we reduce the embedding dimension to 128 in MobileBERT. # Then, we apply a 1D convolution with kernel size 3 on the raw token embedding to produce a 512 # dimensional output. inputs_embeds = torch.cat( [ nn.functional.pad(inputs_embeds[:, 1:], [0, 0, 0, 1, 0, 0], value=0.0), inputs_embeds, nn.functional.pad(inputs_embeds[:, :-1], [0, 0, 1, 0, 0, 0], value=0.0), ], dim=2, ) if self.trigram_input or self.embedding_size != self.hidden_size: inputs_embeds = self.embedding_transformation(inputs_embeds) # Add positional embeddings and token type embeddings, then layer # normalize and perform dropout. position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class MobileBertSelfAttention(nn.Module): def __init__(self, config): super().__init__() self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.true_hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.true_hidden_size, self.all_head_size) self.key = nn.Linear(config.true_hidden_size, self.all_head_size) self.value = nn.Linear( config.true_hidden_size if config.use_bottleneck_attention else config.hidden_size, self.all_head_size ) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, query_tensor: torch.Tensor, key_tensor: torch.Tensor, value_tensor: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(query_tensor) mixed_key_layer = self.key(key_tensor) mixed_value_layer = self.value(value_tensor) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class MobileBertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.use_bottleneck = config.use_bottleneck self.dense = nn.Linear(config.true_hidden_size, config.true_hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size, eps=config.layer_norm_eps) if not self.use_bottleneck: self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: layer_outputs = self.dense(hidden_states) if not self.use_bottleneck: layer_outputs = self.dropout(layer_outputs) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs class MobileBertAttention(nn.Module): def __init__(self, config): super().__init__() self.self = MobileBertSelfAttention(config) self.output = MobileBertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, query_tensor: torch.Tensor, key_tensor: torch.Tensor, value_tensor: torch.Tensor, layer_input: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, ) -> Tuple[torch.Tensor]: self_outputs = self.self( query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, ) # Run a linear projection of `hidden_size` then add a residual # with `layer_input`. attention_output = self.output(self_outputs[0], layer_input) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class MobileBertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.true_hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class OutputBottleneck(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.true_hidden_size, config.hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: layer_outputs = self.dense(hidden_states) layer_outputs = self.dropout(layer_outputs) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs class MobileBertOutput(nn.Module): def __init__(self, config): super().__init__() self.use_bottleneck = config.use_bottleneck self.dense = nn.Linear(config.intermediate_size, config.true_hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size) if not self.use_bottleneck: self.dropout = nn.Dropout(config.hidden_dropout_prob) else: self.bottleneck = OutputBottleneck(config) def forward( self, intermediate_states: torch.Tensor, residual_tensor_1: torch.Tensor, residual_tensor_2: torch.Tensor ) -> torch.Tensor: layer_output = self.dense(intermediate_states) if not self.use_bottleneck: layer_output = self.dropout(layer_output) layer_output = self.LayerNorm(layer_output + residual_tensor_1) else: layer_output = self.LayerNorm(layer_output + residual_tensor_1) layer_output = self.bottleneck(layer_output, residual_tensor_2) return layer_output class BottleneckLayer(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intra_bottleneck_size) self.LayerNorm = NORM2FN[config.normalization_type](config.intra_bottleneck_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: layer_input = self.dense(hidden_states) layer_input = self.LayerNorm(layer_input) return layer_input class Bottleneck(nn.Module): def __init__(self, config): super().__init__() self.key_query_shared_bottleneck = config.key_query_shared_bottleneck self.use_bottleneck_attention = config.use_bottleneck_attention self.input = BottleneckLayer(config) if self.key_query_shared_bottleneck: self.attention = BottleneckLayer(config) def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]: # This method can return three different tuples of values. These different values make use of bottlenecks, # which are linear layers used to project the hidden states to a lower-dimensional vector, reducing memory # usage. These linear layer have weights that are learned during training. # # If `config.use_bottleneck_attention`, it will return the result of the bottleneck layer four times for the # key, query, value, and "layer input" to be used by the attention layer. # This bottleneck is used to project the hidden. This last layer input will be used as a residual tensor # in the attention self output, after the attention scores have been computed. # # If not `config.use_bottleneck_attention` and `config.key_query_shared_bottleneck`, this will return # four values, three of which have been passed through a bottleneck: the query and key, passed through the same # bottleneck, and the residual layer to be applied in the attention self output, through another bottleneck. # # Finally, in the last case, the values for the query, key and values are the hidden states without bottleneck, # and the residual layer will be this value passed through a bottleneck. bottlenecked_hidden_states = self.input(hidden_states) if self.use_bottleneck_attention: return (bottlenecked_hidden_states,) * 4 elif self.key_query_shared_bottleneck: shared_attention_input = self.attention(hidden_states) return (shared_attention_input, shared_attention_input, hidden_states, bottlenecked_hidden_states) else: return (hidden_states, hidden_states, hidden_states, bottlenecked_hidden_states) class FFNOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.true_hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: layer_outputs = self.dense(hidden_states) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs class FFNLayer(nn.Module): def __init__(self, config): super().__init__() self.intermediate = MobileBertIntermediate(config) self.output = FFNOutput(config) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: intermediate_output = self.intermediate(hidden_states) layer_outputs = self.output(intermediate_output, hidden_states) return layer_outputs class MobileBertLayer(nn.Module): def __init__(self, config): super().__init__() self.use_bottleneck = config.use_bottleneck self.num_feedforward_networks = config.num_feedforward_networks self.attention = MobileBertAttention(config) self.intermediate = MobileBertIntermediate(config) self.output = MobileBertOutput(config) if self.use_bottleneck: self.bottleneck = Bottleneck(config) if config.num_feedforward_networks > 1: self.ffn = nn.ModuleList([FFNLayer(config) for _ in range(config.num_feedforward_networks - 1)]) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, ) -> Tuple[torch.Tensor]: if self.use_bottleneck: query_tensor, key_tensor, value_tensor, layer_input = self.bottleneck(hidden_states) else: query_tensor, key_tensor, value_tensor, layer_input = [hidden_states] * 4 self_attention_outputs = self.attention( query_tensor, key_tensor, value_tensor, layer_input, attention_mask, head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] s = (attention_output,) outputs = self_attention_outputs[1:] # add self attentions if we output attention weights if self.num_feedforward_networks != 1: for i, ffn_module in enumerate(self.ffn): attention_output = ffn_module(attention_output) s += (attention_output,) intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output, hidden_states) outputs = ( (layer_output,) + outputs + ( torch.tensor(1000), query_tensor, key_tensor, value_tensor, layer_input, attention_output, intermediate_output, ) + s ) return outputs class MobileBertEncoder(nn.Module): def __init__(self, config): super().__init__() self.layer = nn.ModuleList([MobileBertLayer(config) for _ in range(config.num_hidden_layers)]) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, head_mask[i], output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class MobileBertPooler(nn.Module): def __init__(self, config): super().__init__() self.do_activate = config.classifier_activation if self.do_activate: self.dense = nn.Linear(config.hidden_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] if not self.do_activate: return first_token_tensor else: pooled_output = self.dense(first_token_tensor) pooled_output = torch.tanh(pooled_output) return pooled_output class MobileBertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = NORM2FN["layer_norm"](config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class MobileBertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = MobileBertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.dense = nn.Linear(config.vocab_size, config.hidden_size - config.embedding_size, bias=False) self.decoder = nn.Linear(config.embedding_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.transform(hidden_states) hidden_states = hidden_states.matmul(torch.cat([self.decoder.weight.t(), self.dense.weight], dim=0)) hidden_states += self.decoder.bias return hidden_states class MobileBertOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = MobileBertLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores class MobileBertPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = MobileBertLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output: torch.Tensor, pooled_output: torch.Tensor) -> Tuple[torch.Tensor]: prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class MobileBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileBertConfig pretrained_model_archive_map = MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST load_tf_weights = load_tf_weights_in_mobilebert base_model_prefix = "mobilebert" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, (nn.LayerNorm, NoNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) @dataclass class MobileBertForPreTrainingOutput(ModelOutput): """ Output type of [`MobileBertForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None MOBILEBERT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MOBILEBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MobileBert Model transformer outputting raw hidden-states without any specific head on top.", MOBILEBERT_START_DOCSTRING, ) class MobileBertModel(MobileBertPreTrainedModel): """ https://arxiv.org/pdf/2004.02984.pdf """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = MobileBertEmbeddings(config) self.encoder = MobileBertEncoder(config) self.pooler = MobileBertPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, MOBILEBERT_START_DOCSTRING, ) class MobileBertForPreTraining(MobileBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config) self.cls = MobileBertPreTrainingHeads(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddigs): self.cls.predictions.decoder = new_embeddigs def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: # resize dense output embedings at first self.cls.predictions.dense = self._get_resized_lm_head( self.cls.predictions.dense, new_num_tokens=new_num_tokens, transposed=True ) return super().resize_token_embeddings(new_num_tokens=new_num_tokens) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=MobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, next_sentence_label: Optional[torch.LongTensor] = None, output_attentions: Optional[torch.FloatTensor] = None, output_hidden_states: Optional[torch.FloatTensor] = None, return_dict: Optional[torch.FloatTensor] = None, ) -> Union[Tuple, MobileBertForPreTrainingOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Examples: ```python >>> from transformers import AutoTokenizer, MobileBertForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = MobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) >>> # Batch size 1 >>> outputs = model(input_ids) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return MobileBertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings("""MobileBert Model with a `language modeling` head on top.""", MOBILEBERT_START_DOCSTRING) class MobileBertForMaskedLM(MobileBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config, add_pooling_layer=False) self.cls = MobileBertOnlyMLMHead(config) self.config = config # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddigs): self.cls.predictions.decoder = new_embeddigs def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: # resize dense output embedings at first self.cls.predictions.dense = self._get_resized_lm_head( self.cls.predictions.dense, new_num_tokens=new_num_tokens, transposed=True ) return super().resize_token_embeddings(new_num_tokens=new_num_tokens) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, expected_output="'paris'", expected_loss=0.57, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class MobileBertOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output: torch.Tensor) -> torch.Tensor: seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score @add_start_docstrings( """MobileBert Model with a `next sentence prediction (classification)` head on top.""", MOBILEBERT_START_DOCSTRING, ) class MobileBertForNextSentencePrediction(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config) self.cls = MobileBertOnlyNSPHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, NextSentencePredictorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`. - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Examples: ```python >>> from transformers import AutoTokenizer, MobileBertForNextSentencePrediction >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = MobileBertForNextSentencePrediction.from_pretrained("google/mobilebert-uncased") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> loss = outputs.loss >>> logits = outputs.logits ```""" if "next_sentence_label" in kwargs: warnings.warn( "The `next_sentence_label` argument is deprecated and will be removed in a future version, use" " `labels` instead.", FutureWarning, ) labels = kwargs.pop("next_sentence_label") return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] seq_relationship_score = self.cls(pooled_output) next_sentence_loss = None if labels is not None: loss_fct = CrossEntropyLoss() next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), labels.view(-1)) if not return_dict: output = (seq_relationship_score,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return NextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, MOBILEBERT_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification with Bert->MobileBert all-casing class MobileBertForSequenceClassification(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.mobilebert = MobileBertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, MOBILEBERT_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering with Bert->MobileBert all-casing class MobileBertForQuestionAnswering(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mobilebert = MobileBertModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_QA, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, qa_target_start_index=_QA_TARGET_START_INDEX, qa_target_end_index=_QA_TARGET_END_INDEX, expected_output=_QA_EXPECTED_OUTPUT, expected_loss=_QA_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, MOBILEBERT_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertForMultipleChoice with Bert->MobileBert all-casing class MobileBertForMultipleChoice(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, MOBILEBERT_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertForTokenClassification with Bert->MobileBert all-casing class MobileBertForTokenClassification(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mobilebert = MobileBertModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT, expected_loss=_TOKEN_CLASS_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/mobilebert/tokenization_mobilebert_fast.py
# coding=utf-8 # # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for MobileBERT.""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"mobilebert-uncased": 512} PRETRAINED_INIT_CONFIGURATION = {} # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast with BERT->MobileBERT,Bert->MobileBert class MobileBertTokenizerFast(PreTrainedTokenizerFast): r""" Construct a "fast" MobileBERT tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. clean_text (`bool`, *optional*, defaults to `True`): Whether or not to clean the text before tokenization by removing any control characters and replacing all whitespaces by the classic one. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original MobileBERT). wordpieces_prefix (`str`, *optional*, defaults to `"##"`): The prefix for subwords. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES slow_tokenizer_class = MobileBertTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, do_lower_case=True, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): super().__init__( vocab_file, tokenizer_file=tokenizer_file, do_lower_case=do_lower_case, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kwargs, ) normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase", do_lower_case) != do_lower_case or normalizer_state.get("strip_accents", strip_accents) != strip_accents or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars ): normalizer_class = getattr(normalizers, normalizer_state.pop("type")) normalizer_state["lowercase"] = do_lower_case normalizer_state["strip_accents"] = strip_accents normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state) self.do_lower_case = do_lower_case def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A MobileBERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id] if token_ids_1 is not None: output += token_ids_1 + [self.sep_token_id] return output def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A MobileBERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/mobilebert/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_mobilebert_fast"] = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_mobilebert"] = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_mobilebert"] = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/mobilebert/convert_mobilebert_original_tf_checkpoint_to_pytorch.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, mobilebert_config_file, pytorch_dump_path): # Initialise PyTorch model config = MobileBertConfig.from_json_file(mobilebert_config_file) print(f"Building PyTorch model from configuration: {config}") model = MobileBertForPreTraining(config) # Load weights from tf checkpoint model = load_tf_weights_in_mobilebert(model, config, tf_checkpoint_path) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}") torch.save(model.state_dict(), pytorch_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/mobilebert/tokenization_mobilebert.py
# coding=utf-8 # # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for MobileBERT.""" import collections import os import unicodedata from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"} } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"mobilebert-uncased": 512} PRETRAINED_INIT_CONFIGURATION = {} # Copied from transformers.models.bert.tokenization_bert.load_vocab def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab # Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens # Copied from transformers.models.bert.tokenization_bert.BertTokenizer with BERT->MobileBERT,Bert->MobileBert class MobileBertTokenizer(PreTrainedTokenizer): r""" Construct a MobileBERT tokenizer. Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. do_basic_tokenize (`bool`, *optional*, defaults to `True`): Whether or not to do basic tokenization before WordPiece. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original MobileBERT). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = MobileBertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, ) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) super().__init__( do_lower_case=do_lower_case, do_basic_tokenize=do_basic_tokenize, never_split=never_split, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kwargs, ) @property def do_lower_case(self): return self.basic_tokenizer.do_lower_case @property def vocab_size(self): return len(self.vocab) def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) def _tokenize(self, text, split_special_tokens=False): split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize( text, never_split=self.all_special_tokens if not split_special_tokens else None ): # If the token is part of the never_split set if token in self.basic_tokenizer.never_split: split_tokens.append(token) else: split_tokens += self.wordpiece_tokenizer.tokenize(token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace(" ##", "").strip() return out_string def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A MobileBERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A MobileBERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) # Copied from transformers.models.bert.tokenization_bert.BasicTokenizer class BasicTokenizer(object): """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). do_split_on_punc (`bool`, *optional*, defaults to `True`): In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions. """ def __init__( self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None, do_split_on_punc=True, ): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents self.do_split_on_punc = do_split_on_punc def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) # prevents treating the same character with different unicode codepoints as different characters unicode_normalized_text = unicodedata.normalize("NFC", text) orig_tokens = whitespace_tokenize(unicode_normalized_text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if not self.do_split_on_punc or (never_split is not None and text in never_split): return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) # Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer class WordpieceTokenizer(object): """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/unispeech_sat/configuration_unispeech_sat.py
# coding=utf-8 # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ UniSpeechSat model configuration""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class UniSpeechSatConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`UniSpeechSatModel`]. It is used to instantiate an UniSpeechSat model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the UniSpeechSat [microsoft/unispeech-sat-base-100h-libri-ft](https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32): Vocabulary size of the UniSpeechSat model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`UniSpeechSatModel`]. Vocabulary size of the model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward method of [`UniSpeechSatModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. activation_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for activations inside the fully connected layer. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. feat_proj_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for output of the feature encoder. feat_quantizer_dropout (`float`, *optional*, defaults to 0.0): The dropout probabilitiy for the output of the feature encoder that's used by the quantizer. final_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the final projection layer of [`UniSpeechSatForCTC`]. layerdrop (`float`, *optional*, defaults to 0.1): The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. feat_extract_norm (`str`, *optional*, defaults to `"group"`): The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D convolutional layers. feat_extract_activation (`str, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the 1D convolutional layers of the feature extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`): A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers. conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`): A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 2, 2)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The length of *conv_kernel* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_bias (`bool`, *optional*, defaults to `False`): Whether the 1D convolutional layers have a bias. num_conv_pos_embeddings (`int`, *optional*, defaults to 128): Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional embeddings layer. num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): Number of groups of 1D convolutional positional embeddings layer. do_stable_layer_norm (`bool`, *optional*, defaults to `False`): Whether to apply *stable* layer norm architecture of the Transformer encoder. `do_stable_layer_norm is True` corresponds to applying layer norm before the attention layer, whereas `do_stable_layer_norm is False` corresponds to applying layer norm after the attention layer. apply_spec_augment (`bool`, *optional*, defaults to `True`): Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see [SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition](https://arxiv.org/abs/1904.08779). mask_time_prob (`float`, *optional*, defaults to 0.05): Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_time_length (`int`, *optional*, defaults to 10): Length of vector span along the time axis. mask_time_min_masks (`int`, *optional*, defaults to 2): The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < mask_time_min_masks'' mask_feature_prob (`float`, *optional*, defaults to 0.0): Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_feature_length (`int`, *optional*, defaults to 10): Length of vector span along the feature axis. mask_feature_min_masks (`int`, *optional*, defaults to 0): The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks'' num_codevectors_per_group (`int`, *optional*, defaults to 320): Number of entries in each quantization codebook (group). num_codevector_groups (`int`, *optional*, defaults to 2): Number of codevector groups for product codevector quantization. contrastive_logits_temperature (`float`, *optional*, defaults to 0.1): The temperature *kappa* in the contrastive loss. num_negatives (`int`, *optional*, defaults to 100): Number of negative samples for the contrastive loss. codevector_dim (`int`, *optional*, defaults to 256): Dimensionality of the quantized feature vectors. proj_codevector_dim (`int`, *optional*, defaults to 256): Dimensionality of the final projection of both the quantized and the transformer features. diversity_loss_weight (`int`, *optional*, defaults to 0.1): The weight of the codebook diversity loss component. ctc_loss_reduction (`str`, *optional*, defaults to `"mean"`): Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an instance of [`UniSpeechSatForCTC`]. ctc_zero_infinity (`bool`, *optional*, defaults to `False`): Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance of [`UniSpeechSatForCTC`]. use_weighted_layer_sum (`bool`, *optional*, defaults to `False`): Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an instance of [`UniSpeechSatForSequenceClassification`]. classifier_proj_size (`int`, *optional*, defaults to 256): Dimensionality of the projection before token mean-pooling for classification. tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`): A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN* module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers. tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the *XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*. tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`): A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the *XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*. xvector_output_dim (`int`, *optional*, defaults to 512): Dimensionality of the *XVector* embedding vectors. pad_token_id (`int`, *optional*, defaults to 0): The id of the padding token. bos_token_id (`int`, *optional*, defaults to 1): The id of the "beginning-of-sequence" token. eos_token_id (`int`, *optional*, defaults to 2): The id of the "end-of-sequence" token. num_clusters (`int`, *optional*, defaults to 504): Number of clusters for weak labeling. Only relevant when using an instance of [`UniSpeechSatForPreTraining`]. Example: ```python >>> from transformers import UniSpeechSatModel, UniSpeechSatConfig >>> # Initializing a UniSpeechSat microsoft/unispeech-sat-base-100h-libri-ft style configuration >>> configuration = UniSpeechSatConfig() >>> # Initializing a model from the microsoft/unispeech-sat-base-100h-libri-ft style configuration >>> model = UniSpeechSatModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "unispeech-sat" def __init__( self, vocab_size=32, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout=0.1, activation_dropout=0.1, attention_dropout=0.1, feat_proj_dropout=0.0, feat_quantizer_dropout=0.0, final_dropout=0.1, layerdrop=0.1, initializer_range=0.02, layer_norm_eps=1e-5, feat_extract_norm="group", feat_extract_activation="gelu", conv_dim=(512, 512, 512, 512, 512, 512, 512), conv_stride=(5, 2, 2, 2, 2, 2, 2), conv_kernel=(10, 3, 3, 3, 3, 2, 2), conv_bias=False, num_conv_pos_embeddings=128, num_conv_pos_embedding_groups=16, do_stable_layer_norm=False, apply_spec_augment=True, mask_time_prob=0.05, mask_time_length=10, mask_time_min_masks=2, mask_feature_prob=0.0, mask_feature_length=10, mask_feature_min_masks=0, num_codevectors_per_group=320, num_codevector_groups=2, contrastive_logits_temperature=0.1, num_negatives=100, codevector_dim=256, proj_codevector_dim=256, diversity_loss_weight=0.1, ctc_loss_reduction="mean", ctc_zero_infinity=False, use_weighted_layer_sum=False, classifier_proj_size=256, tdnn_dim=(512, 512, 512, 512, 1500), tdnn_kernel=(5, 3, 3, 1, 1), tdnn_dilation=(1, 2, 3, 1, 1), xvector_output_dim=512, pad_token_id=0, bos_token_id=1, eos_token_id=2, num_clusters=504, **kwargs, ): super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id) self.hidden_size = hidden_size self.feat_extract_norm = feat_extract_norm self.feat_extract_activation = feat_extract_activation self.conv_dim = list(conv_dim) self.conv_stride = list(conv_stride) self.conv_kernel = list(conv_kernel) self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_feat_extract_layers = len(self.conv_dim) self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.num_attention_heads = num_attention_heads self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.feat_proj_dropout = feat_proj_dropout self.final_dropout = final_dropout self.layerdrop = layerdrop self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.vocab_size = vocab_size self.num_clusters = num_clusters self.do_stable_layer_norm = do_stable_layer_norm self.use_weighted_layer_sum = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 self.apply_spec_augment = apply_spec_augment self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.mask_time_min_masks = mask_time_min_masks self.mask_feature_prob = mask_feature_prob self.mask_feature_length = mask_feature_length self.mask_feature_min_masks = mask_feature_min_masks # parameters for pretraining with codevector quantized representations self.num_codevectors_per_group = num_codevectors_per_group self.num_codevector_groups = num_codevector_groups self.contrastive_logits_temperature = contrastive_logits_temperature self.feat_quantizer_dropout = feat_quantizer_dropout self.num_negatives = num_negatives self.codevector_dim = codevector_dim self.proj_codevector_dim = proj_codevector_dim self.diversity_loss_weight = diversity_loss_weight # ctc loss self.ctc_loss_reduction = ctc_loss_reduction self.ctc_zero_infinity = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. self.classifier_proj_size = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. self.tdnn_dim = list(tdnn_dim) self.tdnn_kernel = list(tdnn_kernel) self.tdnn_dilation = list(tdnn_dilation) self.xvector_output_dim = xvector_output_dim @property def inputs_to_logits_ratio(self): return functools.reduce(operator.mul, self.conv_stride, 1)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/unispeech_sat/convert_unispeech_original_s3prl_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Hubert checkpoint.""" import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, Wav2Vec2FeatureExtractor, logging, ) logging.set_verbosity_info() logger = logging.get_logger(__name__) def convert_classification(base_model_name, hf_config, downstream_dict): model = UniSpeechSatForSequenceClassification.from_pretrained(base_model_name, config=hf_config) model.projector.weight.data = downstream_dict["projector.weight"] model.projector.bias.data = downstream_dict["projector.bias"] model.classifier.weight.data = downstream_dict["model.post_net.linear.weight"] model.classifier.bias.data = downstream_dict["model.post_net.linear.bias"] return model def convert_diarization(base_model_name, hf_config, downstream_dict): model = UniSpeechSatForAudioFrameClassification.from_pretrained(base_model_name, config=hf_config) model.classifier.weight.data = downstream_dict["model.linear.weight"] model.classifier.bias.data = downstream_dict["model.linear.bias"] return model def convert_xvector(base_model_name, hf_config, downstream_dict): model = UniSpeechSatForXVector.from_pretrained(base_model_name, config=hf_config) model.projector.weight.data = downstream_dict["connector.weight"] model.projector.bias.data = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel): model.tdnn[i].kernel.weight.data = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] model.tdnn[i].kernel.bias.data = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] model.feature_extractor.weight.data = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] model.feature_extractor.bias.data = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] model.classifier.weight.data = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] model.classifier.bias.data = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] model.objective.weight.data = downstream_dict["objective.W"] return model @torch.no_grad() def convert_s3prl_checkpoint(base_model_name, config_path, checkpoint_path, model_dump_path): """ Copy/paste/tweak model's weights to transformers design. """ checkpoint = torch.load(checkpoint_path, map_location="cpu") downstream_dict = checkpoint["Downstream"] hf_config = UniSpeechSatConfig.from_pretrained(config_path) hf_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( base_model_name, return_attention_mask=True, do_normalize=False ) arch = hf_config.architectures[0] if arch.endswith("ForSequenceClassification"): hf_model = convert_classification(base_model_name, hf_config, downstream_dict) elif arch.endswith("ForAudioFrameClassification"): hf_model = convert_diarization(base_model_name, hf_config, downstream_dict) elif arch.endswith("ForXVector"): hf_model = convert_xvector(base_model_name, hf_config, downstream_dict) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}") if hf_config.use_weighted_layer_sum: hf_model.layer_weights.data = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(model_dump_path) hf_model.save_pretrained(model_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") args = parser.parse_args() convert_s3prl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/unispeech_sat/__init__.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _import_structure = { "configuration_unispeech_sat": ["UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechSatConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_unispeech_sat"] = [ "UNISPEECH_SAT_PRETRAINED_MODEL_ARCHIVE_LIST", "UniSpeechSatForAudioFrameClassification", "UniSpeechSatForCTC", "UniSpeechSatForPreTraining", "UniSpeechSatForSequenceClassification", "UniSpeechSatForXVector", "UniSpeechSatModel", "UniSpeechSatPreTrainedModel", ] if TYPE_CHECKING: from .configuration_unispeech_sat import UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechSatConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech_sat import ( UNISPEECH_SAT_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechSatForAudioFrameClassification, UniSpeechSatForCTC, UniSpeechSatForPreTraining, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, UniSpeechSatModel, UniSpeechSatPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/unispeech_sat/convert_unispeech_sat_original_pytorch_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert UniSpeechSat checkpoint.""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() logger = logging.get_logger(__name__) MAPPING = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } TOP_LEVEL_KEYS = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def set_recursively(hf_pointer, key, value, full_name, weight_type): for attribute in key.split("."): hf_pointer = getattr(hf_pointer, attribute) if weight_type is not None: hf_shape = getattr(hf_pointer, weight_type).shape else: hf_shape = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": hf_pointer.weight.data = value elif weight_type == "weight_g": hf_pointer.weight_g.data = value elif weight_type == "weight_v": hf_pointer.weight_v.data = value elif weight_type == "bias": hf_pointer.bias.data = value else: hf_pointer.data = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") def recursively_load_weights(fairseq_model, hf_model): unused_weights = [] fairseq_dict = fairseq_model.state_dict() feature_extractor = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): is_used = False if "conv_layers" in name: load_conv_layer( name, value, feature_extractor, unused_weights, hf_model.config.feat_extract_norm == "group", ) is_used = True else: for key, mapped_key in MAPPING.items(): mapped_key = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if "layer_norm_for_extract" in name and (".".join(name.split(".")[:-1]) != key): # special case since naming is very similar continue is_used = True if "*" in mapped_key: layer_index = name.split(key)[0].split(".")[-2] mapped_key = mapped_key.replace("*", layer_index) if "weight_g" in name: weight_type = "weight_g" elif "weight_v" in name: weight_type = "weight_v" elif "bias" in name: weight_type = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj weight_type = "weight" else: weight_type = None set_recursively(hf_model, mapped_key, value, name, weight_type) continue if not is_used: unused_weights.append(name) logger.warning(f"Unused weights: {unused_weights}") def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm): name = full_name.split("conv_layers.")[-1] items = name.split(".") layer_id = int(items[0]) type_id = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.bias.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.weight.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") else: unused_weights.append(full_name) @torch.no_grad() def convert_unispeech_sat_checkpoint( checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True ): """ Copy/paste/tweak model's weights to transformers design. """ if config_path is not None: config = UniSpeechSatConfig.from_pretrained(config_path) else: config = UniSpeechSatConfig() dict_path = "" if is_finetuned: hf_wav2vec = UniSpeechSatForCTC(config) else: hf_wav2vec = UniSpeechSatForPreTraining(config) model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/")[:-1])} ) model = model[0].eval() recursively_load_weights(model, hf_wav2vec) hf_wav2vec.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) args = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
# coding=utf-8 # Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch UniSpeechSat model.""" import math import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...integrations.deepspeed import is_deepspeed_zero3_enabled from ...modeling_outputs import ( BaseModelOutput, CausalLMOutput, SequenceClassifierOutput, TokenClassifierOutput, Wav2Vec2BaseModelOutput, XVectorOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_unispeech_sat import UniSpeechSatConfig logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 2 # General docstring _CONFIG_FOR_DOC = "UniSpeechSatConfig" # Base docstring _CHECKPOINT_FOR_DOC = "microsoft/unispeech-sat-base-100h-libri-ft" _EXPECTED_OUTPUT_SHAPE = [1, 292, 768] # CTC docstring _CTC_EXPECTED_OUTPUT = "'MISTER QUILDER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'" _CTC_EXPECTED_LOSS = 39.88 # Frame class docstring _FRAME_CLASS_CHECKPOINT = "microsoft/unispeech-sat-base-plus-sd" _FRAME_EXPECTED_OUTPUT = [0, 0] # Speaker Verification docstring _XVECTOR_CHECKPOINT = "microsoft/unispeech-sat-base-plus-sv" _XVECTOR_EXPECTED_OUTPUT = 0.97 UNISPEECH_SAT_PRETRAINED_MODEL_ARCHIVE_LIST = [ # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat ] @dataclass class UniSpeechSatForPreTrainingOutput(ModelOutput): """ Output type of [`UniSpeechSatForPreTrainingOutput`], with potential hidden states and attentions. Args: loss (*optional*, returned when model is in train mode, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss. projected_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked projected quantized states. projected_quantized_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive target vectors for contrastive loss. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None projected_states: torch.FloatTensor = None projected_quantized_states: torch.FloatTensor = None codevector_perplexity: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None # Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[torch.LongTensor] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: The shape for which to compute masks. This should be of a tuple of size 2 where the first element is the batch size and the second element is the length of the axis to span. mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of independently generated mask spans of length `mask_length` is computed by `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the actual percentage will be smaller. mask_length: size of the mask min_masks: minimum number of masked spans attention_mask: A (right-padded) attention mask which independently shortens the feature axis of each batch dimension. """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" f" and `sequence_length`: {sequence_length}`" ) # epsilon is used for probabilistic rounding epsilon = np.random.rand(1).item() def compute_num_masked_span(input_length): """Given input length, compute how many spans should be masked""" num_masked_span = int(mask_prob * input_length / mask_length + epsilon) num_masked_span = max(num_masked_span, min_masks) # make sure num masked span <= sequence_length if num_masked_span * mask_length > sequence_length: num_masked_span = sequence_length // mask_length # make sure num_masked span is also <= input_length - (mask_length - 1) if input_length - (mask_length - 1) < num_masked_span: num_masked_span = max(input_length - (mask_length - 1), 0) return num_masked_span # compute number of masked spans in batch input_lengths = ( attention_mask.sum(-1).detach().tolist() if attention_mask is not None else [sequence_length for _ in range(batch_size)] ) # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) spec_aug_mask_idxs = [] max_num_masked_span = compute_num_masked_span(sequence_length) if max_num_masked_span == 0: return spec_aug_mask for input_length in input_lengths: # compute num of masked spans for this input num_masked_span = compute_num_masked_span(input_length) # get random indices to mask spec_aug_mask_idx = np.random.choice( np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False ) # pick first sampled index that will serve as a dummy index to pad vector # to ensure same dimension for all batches due to probabilistic rounding # Picking first sample just pads those vectors twice. if len(spec_aug_mask_idx) == 0: # this case can only happen if `input_length` is strictly smaller then # `sequence_length` in which case the last token has to be a padding # token which we can use as a dummy mask id dummy_mask_idx = sequence_length - 1 else: dummy_mask_idx = spec_aug_mask_idx[0] spec_aug_mask_idx = np.concatenate( [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] ) spec_aug_mask_idxs.append(spec_aug_mask_idx) spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to( spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) ) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) # add offset to the starting indexes so that indexes now create a span offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( batch_size, max_num_masked_span * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # ensure that we cannot have indices larger than sequence_length if spec_aug_mask_idxs.max() > sequence_length - 1: spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) return spec_aug_mask # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->UniSpeechSat class UniSpeechSatNoLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->UniSpeechSat class UniSpeechSatLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->UniSpeechSat class UniSpeechSatGroupNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->UniSpeechSat class UniSpeechSatPositionalConvEmbedding(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=config.num_conv_pos_embeddings, padding=config.num_conv_pos_embeddings // 2, groups=config.num_conv_pos_embedding_groups, ) weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm if is_deepspeed_zero3_enabled(): import deepspeed with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): self.conv = weight_norm(self.conv, name="weight", dim=2) deepspeed.zero.register_external_parameter(self, self.conv.weight_v) deepspeed.zero.register_external_parameter(self, self.conv.weight_g) else: self.conv = weight_norm(self.conv, name="weight", dim=2) self.padding = UniSpeechSatSamePadLayer(config.num_conv_pos_embeddings) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = hidden_states.transpose(1, 2) hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->UniSpeechSat class UniSpeechSatSamePadLayer(nn.Module): def __init__(self, num_conv_pos_embeddings): super().__init__() self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def forward(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, :, : -self.num_pad_remove] return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->UniSpeechSat class UniSpeechSatFeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" def __init__(self, config): super().__init__() if config.feat_extract_norm == "group": conv_layers = [UniSpeechSatGroupNormConvLayer(config, layer_id=0)] + [ UniSpeechSatNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) ] elif config.feat_extract_norm == "layer": conv_layers = [ UniSpeechSatLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers) ] else: raise ValueError( f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" ) self.conv_layers = nn.ModuleList(conv_layers) self.gradient_checkpointing = False self._requires_grad = True def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def forward(self, input_values): hidden_states = input_values[:, None] # make sure hidden_states require grad for gradient_checkpointing if self._requires_grad and self.training: hidden_states.requires_grad = True for conv_layer in self.conv_layers: if self._requires_grad and self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( conv_layer.__call__, hidden_states, ) else: hidden_states = conv_layer(hidden_states) return hidden_states class UniSpeechSatFeatureExtractor(UniSpeechSatFeatureEncoder): def __init__(self, config): super().__init__(config) warnings.warn( f"The class `{self.__class__.__name__}` has been depreciated " "and will be removed in Transformers v5. " f"Use `{self.__class__.__bases__[0].__name__}` instead.", FutureWarning, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->UniSpeechSat class UniSpeechSatFeatureProjection(nn.Module): def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.dropout = nn.Dropout(config.feat_proj_dropout) def forward(self, hidden_states): # non-projected hidden states are needed for quantization norm_hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states, norm_hidden_states # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->UniSpeechSat class UniSpeechSatAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[UniSpeechSatConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->UniSpeechSat class UniSpeechSatFeedForward(nn.Module): def __init__(self, config): super().__init__() self.intermediate_dropout = nn.Dropout(config.activation_dropout) self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) self.output_dropout = nn.Dropout(config.hidden_dropout) def forward(self, hidden_states): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayer with Wav2Vec2->UniSpeechSat class UniSpeechSatEncoderLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = UniSpeechSatAttention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = UniSpeechSatFeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states, attention_mask=None, output_attentions=False): attn_residual = hidden_states hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states + self.feed_forward(hidden_states) hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2AttnAdapterLayer with Wav2Vec2->UniSpeechSat class UniSpeechSatAttnAdapterLayer(nn.Module): def __init__(self, config): """ Implements adapter modules directly with 3D tensor weight as parameters and without using ModuleList to speed up training throughput. """ super().__init__() self.input_dim = config.adapter_attn_dim self.hidden_dim = config.hidden_size self.norm = nn.LayerNorm(self.hidden_dim) self.linear_1 = nn.Linear(self.hidden_dim, self.input_dim) self.act_fn = nn.ReLU() self.linear_2 = nn.Linear(self.input_dim, self.hidden_dim) def forward(self, hidden_states: torch.FloatTensor): hidden_states = self.norm(hidden_states) hidden_states = self.linear_1(hidden_states) hidden_states = self.act_fn(hidden_states) hidden_states = self.linear_2(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayerStableLayerNorm with Wav2Vec2->UniSpeechSat class UniSpeechSatEncoderLayerStableLayerNorm(nn.Module): def __init__(self, config): super().__init__() self.attention = UniSpeechSatAttention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = UniSpeechSatFeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if getattr(config, "adapter_attn_dim", None) is not None: self.adapter_layer = UniSpeechSatAttnAdapterLayer(config) else: self.adapter_layer = None def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ): attn_residual = hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states)) if self.adapter_layer is not None: hidden_states = hidden_states + self.adapter_layer(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Encoder with Wav2Vec2->UniSpeechSat class UniSpeechSatEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = UniSpeechSatPositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList([UniSpeechSatEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens output 0 expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) hidden_states[~expand_attention_mask] = 0 # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderStableLayerNorm with Wav2Vec2->UniSpeechSat class UniSpeechSatEncoderStableLayerNorm(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = UniSpeechSatPositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList( [UniSpeechSatEncoderLayerStableLayerNorm(config) for _ in range(config.num_hidden_layers)] ) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens are not attended to expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) hidden_states[~expand_attention_mask] = 0 # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync # XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class UniSpeechSatGumbelVectorQuantizer(nn.Module): """ Vector quantization using gumbel softmax. See [CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information. """ def __init__(self, config): super().__init__() self.num_groups = config.num_codevector_groups self.num_vars = config.num_codevectors_per_group if config.codevector_dim % self.num_groups != 0: raise ValueError( f"`config.codevector_dim {config.codevector_dim} must be divisible by `config.num_codevector_groups`" f" {self.num_groups} for concatenation" ) # storage for codebook variables (codewords) self.codevectors = nn.Parameter( torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups) ) self.weight_proj = nn.Linear(config.hidden_size, self.num_groups * self.num_vars) # can be decayed for training self.temperature = 2 @staticmethod def _compute_perplexity(probs, mask=None): marginal_probs = probs.mean(dim=0) perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum() return perplexity def forward(self, hidden_states): batch_size, sequence_length, hidden_size = hidden_states.shape # project to codevector dim hidden_states = self.weight_proj(hidden_states) hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1) if self.training: # sample code vector probs via gumbel in differentiateable way codevector_probs = nn.functional.gumbel_softmax( hidden_states.float(), tau=self.temperature, hard=True ).type_as(hidden_states) # compute perplexity codevector_soft_dist = torch.softmax( hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1 ) perplexity = self._compute_perplexity(codevector_soft_dist) else: # take argmax in non-differentiable way # comptute hard codevector distribution (one hot) codevector_idx = hidden_states.argmax(dim=-1) codevector_probs = hidden_states.new_zeros(*hidden_states.shape).scatter_( -1, codevector_idx.view(-1, 1), 1.0 ) codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1) perplexity = self._compute_perplexity(codevector_probs) codevector_probs = codevector_probs.view(batch_size * sequence_length, -1) # use probs to retrieve codevectors codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1) codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1) return codevectors, perplexity class UniSpeechSatPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = UniSpeechSatConfig base_model_prefix = "unispeech_sat" main_input_name = "input_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" # gumbel softmax requires special init if isinstance(module, UniSpeechSatGumbelVectorQuantizer): module.weight_proj.weight.data.normal_(mean=0.0, std=1) module.weight_proj.bias.data.zero_() nn.init.uniform_(module.codevectors) elif isinstance(module, UniSpeechSatPositionalConvEmbedding): nn.init.normal_( module.conv.weight, mean=0, std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), ) nn.init.constant_(module.conv.bias, 0) elif isinstance(module, UniSpeechSatFeatureProjection): k = math.sqrt(1 / module.projection.in_features) nn.init.uniform_(module.projection.weight, a=-k, b=k) nn.init.uniform_(module.projection.bias, a=-k, b=k) elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the convolutional layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) return input_lengths def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor): # Effectively attention_mask.sum(-1), but not inplace to be able to run # on inference mode. non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths).to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask UNISPEECH_SAT_START_DOCSTRING = r""" UniSpeechSat was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.). This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`UniSpeechSatConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ UNISPEECH_SAT_INPUTS_DOCSTRING = r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) <Tip warning={true}> `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == True`. For all models whose processor has `config.return_attention_mask == False`, such as [microsoft/unispeech-sat-base-100h-libri-ft](https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft), `attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly different results depending on whether `input_values` is padded or not. </Tip> output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare UniSpeechSat Model transformer outputting raw hidden-states without any specific head on top.", UNISPEECH_SAT_START_DOCSTRING, ) class UniSpeechSatModel(UniSpeechSatPreTrainedModel): def __init__(self, config: UniSpeechSatConfig): super().__init__(config) self.config = config self.feature_extractor = UniSpeechSatFeatureEncoder(config) self.feature_projection = UniSpeechSatFeatureProjection(config) self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) if config.do_stable_layer_norm: self.encoder = UniSpeechSatEncoderStableLayerNorm(config) else: self.encoder = UniSpeechSatEncoder(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states @add_start_docstrings_to_model_forward(UNISPEECH_SAT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Wav2Vec2BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Wav2Vec2BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask) hidden_states, extract_features = self.feature_projection(extract_features) hidden_states = self._mask_hidden_states( hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask ) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if not return_dict: return (hidden_states, extract_features) + encoder_outputs[1:] return Wav2Vec2BaseModelOutput( last_hidden_state=hidden_states, extract_features=extract_features, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings("""UniSpeechSat Model with a quantizer and `VQ` head on top.""", UNISPEECH_SAT_START_DOCSTRING) class UniSpeechSatForPreTraining(UniSpeechSatPreTrainedModel): def __init__(self, config: UniSpeechSatConfig): super().__init__(config) self.unispeech_sat = UniSpeechSatModel(config) self.dropout_features = nn.Dropout(config.feat_quantizer_dropout) self.quantizer = UniSpeechSatGumbelVectorQuantizer(config) self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim) self.project_hid = nn.Linear(config.hidden_size, config.proj_codevector_dim) self.dropout = nn.Dropout(config.final_dropout) self.speaker_proj = nn.Linear(config.hidden_size, config.codevector_dim) self.label_embeddings_concat = nn.Parameter(torch.FloatTensor(config.num_clusters, config.codevector_dim)) self.label_embeddings_concat.data.zero_() self.layer_norm_for_extract = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if self.config.do_stable_layer_norm: self.layer_norm_for_extract.requires_grad = False # Initialize weights and apply final processing self.post_init() def set_gumbel_temperature(self, temperature: int): """ Set the Gumbel softmax temperature to a given value. Only necessary for training """ self.quantizer.temperature = temperature def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2.feature_extractor._freeze_parameters() @staticmethod def compute_contrastive_logits( target_features: torch.FloatTensor, negative_features: torch.FloatTensor, predicted_features: torch.FloatTensor, temperature: int = 1, ): """ Compute logits for contrastive loss based using cosine similarity as the distance measure between `[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied. """ target_features = torch.cat([target_features, negative_features], dim=0) logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1) logits = logits.type_as(target_features) # apply temperature logits = logits / temperature return logits @add_start_docstrings_to_model_forward(UNISPEECH_SAT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=UniSpeechSatForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, UniSpeechSatForPreTrainingOutput]: r""" Returns: Example: ```python >>> import torch >>> from transformers import AutoFeatureExtractor, UniSpeechSatForPreTraining >>> from transformers.models.unispeech_sat.modeling_unispeech_sat import _compute_mask_indices >>> feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/unispeech-sat-base") >>> model = UniSpeechSatForPreTraining.from_pretrained("microsoft/unispeech-sat-base") >>> # TODO: Add full pretraining example ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.unispeech_sat( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) transformer_features = outputs[0] # quantize all (unmasked) extracted features and project to final vq dim extract_features = self.dropout_features(outputs[1]) # TODO(PVP) - add pretraining logic and add to tests logits = extract_features loss = quantized_features = codevector_perplexity = None # layer normalization (has no effect when `config.do_stable_layer_norm == False`) # extract_features = self.layer_norm_for_extract(extract_features) # quantized_features, codevector_perplexity = self.quantizer(extract_features) # # project quantized features twice # quantized_features = self.project_q(quantized_features) # quantized_features = self.project_hid(quantized_features) # # loss = None # logits = quantized_features if not return_dict: if loss is not None: return (loss, logits, transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return (logits, transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return UniSpeechSatForPreTrainingOutput( loss=loss, logits=logits, projected_states=transformer_features, projected_quantized_states=quantized_features, codevector_perplexity=codevector_perplexity, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """UniSpeechSat Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", UNISPEECH_SAT_START_DOCSTRING, """ target_lang (`str`, *optional*): Language id of adapter weights. Adapter weights are stored in the format adapter.<lang>.safetensors or adapter.<lang>.bin. Only relevant when using an instance of [`UniSpeechSatForCTC`] with adapters. Uses 'eng' by default. """, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->UniSpeechSat, wav2vec2->unispeech_sat, WAV_2_VEC_2->UNISPEECH_SAT class UniSpeechSatForCTC(UniSpeechSatPreTrainedModel): def __init__(self, config, target_lang: Optional[str] = None): super().__init__(config) self.unispeech_sat = UniSpeechSatModel(config) self.dropout = nn.Dropout(config.final_dropout) self.target_lang = target_lang if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that " "does not define the vocabulary size of the language model head. Please " "instantiate the model as follows: `UniSpeechSatForCTC.from_pretrained(..., vocab_size=vocab_size)`. " "or define `vocab_size` of your model's configuration." ) output_hidden_size = ( config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size ) self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() def tie_weights(self): """ This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when passing `target_lang=...` to `from_pretrained(...)`. This method is **not** supposed to be called by the user and is prone to be changed in the future. """ # Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to # correctly load adapter layers for UniSpeechSat so that we do not have to introduce a new API to # [`PreTrainedModel`]. While slightly hacky, UniSpeechSat never has to tie input and output embeddings, so that it is # ok to repurpose this function here. target_lang = self.target_lang if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None: raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.") elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None: logger.info("By default `target_lang` is set to 'eng'.") elif target_lang is not None: self.load_adapter(target_lang, force_load=True) def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.unispeech_sat.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.unispeech_sat.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(UNISPEECH_SAT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.unispeech_sat( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: if labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( """ UniSpeechSat Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting. """, UNISPEECH_SAT_START_DOCSTRING, ) class UniSpeechSatForSequenceClassification(UniSpeechSatPreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Sequence classification does not support the use of UniSpeechSat adapters (config.add_adapter=True)" ) self.unispeech_sat = UniSpeechSatModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_extractor def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_encoder with wav2vec2->unispeech_sat def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.unispeech_sat.feature_extractor._freeze_parameters() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_base_model with wav2vec2->unispeech_sat def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.unispeech_sat.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(UNISPEECH_SAT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->UniSpeechSat, wav2vec2->unispeech_sat def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.unispeech_sat( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = hidden_states.mean(dim=1) else: padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) hidden_states[~padding_mask] = 0.0 pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ UniSpeech-SAT Model with a frame classification head on top for tasks like Speaker Diarization. """, UNISPEECH_SAT_START_DOCSTRING, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification with Wav2Vec2->UniSpeechSat, wav2vec2->unispeech_sat, WAV_2_VEC_2->UNISPEECH_SAT class UniSpeechSatForAudioFrameClassification(UniSpeechSatPreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Audio frame classification does not support the use of UniSpeechSat adapters (config.add_adapter=True)" ) self.unispeech_sat = UniSpeechSatModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.num_labels = config.num_labels self.init_weights() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.unispeech_sat.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.unispeech_sat.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(UNISPEECH_SAT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_FRAME_CLASS_CHECKPOINT, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_FRAME_EXPECTED_OUTPUT, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.unispeech_sat( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] logits = self.classifier(hidden_states) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.AMSoftmaxLoss class AMSoftmaxLoss(nn.Module): def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): super(AMSoftmaxLoss, self).__init__() self.scale = scale self.margin = margin self.num_labels = num_labels self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True) self.loss = nn.CrossEntropyLoss() def forward(self, hidden_states, labels): labels = labels.flatten() weight = nn.functional.normalize(self.weight, dim=0) hidden_states = nn.functional.normalize(hidden_states, dim=1) cos_theta = torch.mm(hidden_states, weight) psi = cos_theta - self.margin onehot = nn.functional.one_hot(labels, self.num_labels) logits = self.scale * torch.where(onehot.bool(), psi, cos_theta) loss = self.loss(logits, labels) return loss # Copied from transformers.models.wav2vec2.modeling_wav2vec2.TDNNLayer class TDNNLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id] self.out_conv_dim = config.tdnn_dim[layer_id] self.kernel_size = config.tdnn_kernel[layer_id] self.dilation = config.tdnn_dilation[layer_id] self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim) self.activation = nn.ReLU() def forward(self, hidden_states): hidden_states = hidden_states.unsqueeze(1) hidden_states = nn.functional.unfold( hidden_states, (self.kernel_size, self.in_conv_dim), stride=(1, self.in_conv_dim), dilation=(self.dilation, 1), ) hidden_states = hidden_states.transpose(1, 2) hidden_states = self.kernel(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states @add_start_docstrings( """ UniSpeech-SAT Model with an XVector feature extraction head on top for tasks like Speaker Verification. """, UNISPEECH_SAT_START_DOCSTRING, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector with Wav2Vec2->UniSpeechSat, wav2vec2->unispeech_sat, WAV_2_VEC_2->UNISPEECH_SAT class UniSpeechSatForXVector(UniSpeechSatPreTrainedModel): def __init__(self, config): super().__init__(config) self.unispeech_sat = UniSpeechSatModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0]) tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))] self.tdnn = nn.ModuleList(tdnn_layers) self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim) self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim) self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels) self.init_weights() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.unispeech_sat.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.unispeech_sat.parameters(): param.requires_grad = False def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the TDNN layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size in self.config.tdnn_kernel: input_lengths = _conv_out_length(input_lengths, kernel_size, 1) return input_lengths @add_start_docstrings_to_model_forward(UNISPEECH_SAT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_XVECTOR_CHECKPOINT, output_type=XVectorOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_XVECTOR_EXPECTED_OUTPUT, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, XVectorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.unispeech_sat( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) for tdnn_layer in self.tdnn: hidden_states = tdnn_layer(hidden_states) # Statistic Pooling if attention_mask is None: mean_features = hidden_states.mean(dim=1) std_features = hidden_states.std(dim=1) else: feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1)) tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths) mean_features = [] std_features = [] for i, length in enumerate(tdnn_output_lengths): mean_features.append(hidden_states[i, :length].mean(dim=0)) std_features.append(hidden_states[i, :length].std(dim=0)) mean_features = torch.stack(mean_features) std_features = torch.stack(std_features) statistic_pooling = torch.cat([mean_features, std_features], dim=-1) output_embeddings = self.feature_extractor(statistic_pooling) logits = self.classifier(output_embeddings) loss = None if labels is not None: loss = self.objective(logits, labels) if not return_dict: output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return XVectorOutput( loss=loss, logits=logits, embeddings=output_embeddings, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/efficientnet/convert_efficientnet_to_pytorch.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert EfficientNet checkpoints from the original repository. URL: https://github.com/keras-team/keras/blob/v2.11.0/keras/applications/efficientnet.py""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) model_classes = { "b0": efficientnet.EfficientNetB0, "b1": efficientnet.EfficientNetB1, "b2": efficientnet.EfficientNetB2, "b3": efficientnet.EfficientNetB3, "b4": efficientnet.EfficientNetB4, "b5": efficientnet.EfficientNetB5, "b6": efficientnet.EfficientNetB6, "b7": efficientnet.EfficientNetB7, } CONFIG_MAP = { "b0": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 224, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 240, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 1408, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 260, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 1536, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 300, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 1792, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 380, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2048, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 456, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 2304, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 528, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 2560, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 600, "dropout_rate": 0.5, "dw_padding": [18], }, } def get_efficientnet_config(model_name): config = EfficientNetConfig() config.hidden_dim = CONFIG_MAP[model_name]["hidden_dim"] config.width_coefficient = CONFIG_MAP[model_name]["width_coef"] config.depth_coefficient = CONFIG_MAP[model_name]["depth_coef"] config.image_size = CONFIG_MAP[model_name]["image_size"] config.dropout_rate = CONFIG_MAP[model_name]["dropout_rate"] config.depthwise_padding = CONFIG_MAP[model_name]["dw_padding"] repo_id = "huggingface/label-files" filename = "imagenet-1k-id2label.json" config.num_labels = 1000 id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} return config # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im def convert_image_processor(model_name): size = CONFIG_MAP[model_name]["image_size"] preprocessor = EfficientNetImageProcessor( size={"height": size, "width": size}, image_mean=[0.485, 0.456, 0.406], image_std=[0.47853944, 0.4732864, 0.47434163], do_center_crop=False, ) return preprocessor # here we list all keys to be renamed (original name on the left, our name on the right) def rename_keys(original_param_names): block_names = [v.split("_")[0].split("block")[1] for v in original_param_names if v.startswith("block")] block_names = sorted(set(block_names)) num_blocks = len(block_names) block_name_mapping = {b: str(i) for b, i in zip(block_names, range(num_blocks))} rename_keys = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight")) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight")) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias")) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean")) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var")) for b in block_names: hf_b = block_name_mapping[b] rename_keys.append((f"block{b}_expand_conv/kernel:0", f"encoder.blocks.{hf_b}.expansion.expand_conv.weight")) rename_keys.append((f"block{b}_expand_bn/gamma:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.weight")) rename_keys.append((f"block{b}_expand_bn/beta:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.bias")) rename_keys.append( (f"block{b}_expand_bn/moving_mean:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") ) rename_keys.append( (f"block{b}_expand_bn/moving_variance:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") ) rename_keys.append( (f"block{b}_dwconv/depthwise_kernel:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") ) rename_keys.append((f"block{b}_bn/gamma:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight")) rename_keys.append((f"block{b}_bn/beta:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias")) rename_keys.append( (f"block{b}_bn/moving_mean:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") ) rename_keys.append( (f"block{b}_bn/moving_variance:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") ) rename_keys.append((f"block{b}_se_reduce/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight")) rename_keys.append((f"block{b}_se_reduce/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias")) rename_keys.append((f"block{b}_se_expand/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.weight")) rename_keys.append((f"block{b}_se_expand/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.bias")) rename_keys.append( (f"block{b}_project_conv/kernel:0", f"encoder.blocks.{hf_b}.projection.project_conv.weight") ) rename_keys.append((f"block{b}_project_bn/gamma:0", f"encoder.blocks.{hf_b}.projection.project_bn.weight")) rename_keys.append((f"block{b}_project_bn/beta:0", f"encoder.blocks.{hf_b}.projection.project_bn.bias")) rename_keys.append( (f"block{b}_project_bn/moving_mean:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_mean") ) rename_keys.append( (f"block{b}_project_bn/moving_variance:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_var") ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight")) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight")) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias")) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean")) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var")) key_mapping = {} for item in rename_keys: if item[0] in original_param_names: key_mapping[item[0]] = "efficientnet." + item[1] key_mapping["predictions/kernel:0"] = "classifier.weight" key_mapping["predictions/bias:0"] = "classifier.bias" return key_mapping def replace_params(hf_params, tf_params, key_mapping): for key, value in tf_params.items(): if "normalization" in key: continue hf_key = key_mapping[key] if "_conv" in key and "kernel" in key: new_hf_value = torch.from_numpy(value).permute(3, 2, 0, 1) elif "depthwise_kernel" in key: new_hf_value = torch.from_numpy(value).permute(2, 3, 0, 1) elif "kernel" in key: new_hf_value = torch.from_numpy(np.transpose(value)) else: new_hf_value = torch.from_numpy(value) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(new_hf_value) @torch.no_grad() def convert_efficientnet_checkpoint(model_name, pytorch_dump_folder_path, save_model, push_to_hub): """ Copy/paste/tweak model's weights to our EfficientNet structure. """ # Load original model original_model = model_classes[model_name]( include_top=True, weights="imagenet", input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation="softmax", ) tf_params = original_model.trainable_variables tf_non_train_params = original_model.non_trainable_variables tf_params = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: tf_params[param.name] = param.numpy() tf_param_names = list(tf_params.keys()) # Load HuggingFace model config = get_efficientnet_config(model_name) hf_model = EfficientNetForImageClassification(config).eval() hf_params = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters...") key_mapping = rename_keys(tf_param_names) replace_params(hf_params, tf_params, key_mapping) # Initialize preprocessor and preprocess input image preprocessor = convert_image_processor(model_name) inputs = preprocessor(images=prepare_img(), return_tensors="pt") # HF model inference hf_model.eval() with torch.no_grad(): outputs = hf_model(**inputs) hf_logits = outputs.logits.detach().numpy() # Original model inference original_model.trainable = False image_size = CONFIG_MAP[model_name]["image_size"] img = prepare_img().resize((image_size, image_size), resample=PIL.Image.NEAREST) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) original_logits = original_model.predict(x) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(original_logits, hf_logits, atol=1e-3), "The predicted logits are not the same." print("Model outputs match!") if save_model: # Create folder to save model if not os.path.isdir(pytorch_dump_folder_path): os.mkdir(pytorch_dump_folder_path) # Save converted model and image processor hf_model.save_pretrained(pytorch_dump_folder_path) preprocessor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: # Push model and image processor to hub print(f"Pushing converted {model_name} to the hub...") model_name = f"efficientnet-{model_name}" preprocessor.push_to_hub(model_name) hf_model.push_to_hub(model_name) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") args = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/efficientnet/configuration_efficientnet.py
# coding=utf-8 # Copyright 2023 Google Research, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ EfficientNet model configuration""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json", } class EfficientNetConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`EfficientNetModel`]. It is used to instantiate an EfficientNet model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the EfficientNet [google/efficientnet-b7](https://huggingface.co/google/efficientnet-b7) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. image_size (`int`, *optional*, defaults to 600): The input image size. width_coefficient (`float`, *optional*, defaults to 2.0): Scaling coefficient for network width at each stage. depth_coefficient (`float`, *optional*, defaults to 3.1): Scaling coefficient for network depth at each stage. depth_divisor `int`, *optional*, defaults to 8): A unit of network width. kernel_sizes (`List[int]`, *optional*, defaults to `[3, 3, 5, 3, 5, 5, 3]`): List of kernel sizes to be used in each block. in_channels (`List[int]`, *optional*, defaults to `[32, 16, 24, 40, 80, 112, 192]`): List of input channel sizes to be used in each block for convolutional layers. out_channels (`List[int]`, *optional*, defaults to `[16, 24, 40, 80, 112, 192, 320]`): List of output channel sizes to be used in each block for convolutional layers. depthwise_padding (`List[int]`, *optional*, defaults to `[]`): List of block indices with square padding. strides (`List[int]`, *optional*, defaults to `[1, 2, 2, 2, 1, 2, 1]`): List of stride sizes to be used in each block for convolutional layers. num_block_repeats (`List[int]`, *optional*, defaults to `[1, 2, 2, 3, 3, 4, 1]`): List of the number of times each block is to repeated. expand_ratios (`List[int]`, *optional*, defaults to `[1, 6, 6, 6, 6, 6, 6]`): List of scaling coefficient of each block. squeeze_expansion_ratio (`float`, *optional*, defaults to 0.25): Squeeze expansion ratio. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`, `"selu", `"gelu_new"`, `"silu"` and `"mish"` are supported. hiddem_dim (`int`, *optional*, defaults to 1280): The hidden dimension of the layer before the classification head. pooling_type (`str` or `function`, *optional*, defaults to `"mean"`): Type of final pooling to be applied before the dense classification head. Available options are [`"mean"`, `"max"`] initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. batch_norm_eps (`float`, *optional*, defaults to 1e-3): The epsilon used by the batch normalization layers. batch_norm_momentum (`float`, *optional*, defaults to 0.99): The momentum used by the batch normalization layers. dropout_rate (`float`, *optional*, defaults to 0.5): The dropout rate to be applied before final classifier layer. drop_connect_rate (`float`, *optional*, defaults to 0.2): The drop rate for skip connections. Example: ```python >>> from transformers import EfficientNetConfig, EfficientNetModel >>> # Initializing a EfficientNet efficientnet-b7 style configuration >>> configuration = EfficientNetConfig() >>> # Initializing a model (with random weights) from the efficientnet-b7 style configuration >>> model = EfficientNetModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "efficientnet" def __init__( self, num_channels: int = 3, image_size: int = 600, width_coefficient: float = 2.0, depth_coefficient: float = 3.1, depth_divisor: int = 8, kernel_sizes: List[int] = [3, 3, 5, 3, 5, 5, 3], in_channels: List[int] = [32, 16, 24, 40, 80, 112, 192], out_channels: List[int] = [16, 24, 40, 80, 112, 192, 320], depthwise_padding: List[int] = [], strides: List[int] = [1, 2, 2, 2, 1, 2, 1], num_block_repeats: List[int] = [1, 2, 2, 3, 3, 4, 1], expand_ratios: List[int] = [1, 6, 6, 6, 6, 6, 6], squeeze_expansion_ratio: float = 0.25, hidden_act: str = "swish", hidden_dim: int = 2560, pooling_type: str = "mean", initializer_range: float = 0.02, batch_norm_eps: float = 0.001, batch_norm_momentum: float = 0.99, dropout_rate: float = 0.5, drop_connect_rate: float = 0.2, **kwargs, ): super().__init__(**kwargs) self.num_channels = num_channels self.image_size = image_size self.width_coefficient = width_coefficient self.depth_coefficient = depth_coefficient self.depth_divisor = depth_divisor self.kernel_sizes = kernel_sizes self.in_channels = in_channels self.out_channels = out_channels self.depthwise_padding = depthwise_padding self.strides = strides self.num_block_repeats = num_block_repeats self.expand_ratios = expand_ratios self.squeeze_expansion_ratio = squeeze_expansion_ratio self.hidden_act = hidden_act self.hidden_dim = hidden_dim self.pooling_type = pooling_type self.initializer_range = initializer_range self.batch_norm_eps = batch_norm_eps self.batch_norm_momentum = batch_norm_momentum self.dropout_rate = dropout_rate self.drop_connect_rate = drop_connect_rate self.num_hidden_layers = sum(num_block_repeats) * 4 class EfficientNetOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def atol_for_validation(self) -> float: return 1e-5
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/efficientnet/__init__.py
# flake8: noqa # There's no way to ignore "F401 '...' imported but unused" warnings in this # module, but to preserve other warnings. So, don't check this module at all. # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = { "configuration_efficientnet": [ "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientNetConfig", "EfficientNetOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["image_processing_efficientnet"] = ["EfficientNetImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_efficientnet"] = [ "EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientNetForImageClassification", "EfficientNetModel", "EfficientNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/efficientnet/modeling_efficientnet.py
# coding=utf-8 # Copyright 2023 Google Research, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch EfficientNet model.""" import math from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_efficientnet import EfficientNetConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "EfficientNetConfig" # Base docstring _CHECKPOINT_FOR_DOC = "google/efficientnet-b7" _EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "google/efficientnet-b7" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/efficientnet-b7", # See all EfficientNet models at https://huggingface.co/models?filter=efficientnet ] EFFICIENTNET_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`EfficientNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ EFFICIENTNET_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`AutoImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ def round_filters(config: EfficientNetConfig, num_channels: int): r""" Round number of filters based on depth multiplier. """ divisor = config.depth_divisor num_channels *= config.width_coefficient new_dim = max(divisor, int(num_channels + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_dim < 0.9 * num_channels: new_dim += divisor return int(new_dim) def correct_pad(kernel_size: Union[int, Tuple], adjust: bool = True): r""" Utility function to get the tuple padding value for the depthwise convolution. Args: kernel_size (`int` or `tuple`): Kernel size of the convolution layers. adjust (`bool`, *optional*, defaults to `True`): Adjusts padding value to apply to right and bottom sides of the input. """ if isinstance(kernel_size, int): kernel_size = (kernel_size, kernel_size) correct = (kernel_size[0] // 2, kernel_size[1] // 2) if adjust: return (correct[1] - 1, correct[1], correct[0] - 1, correct[0]) else: return (correct[1], correct[1], correct[0], correct[0]) class EfficientNetEmbeddings(nn.Module): r""" A module that corresponds to the stem module of the original work. """ def __init__(self, config: EfficientNetConfig): super().__init__() self.out_dim = round_filters(config, 32) self.padding = nn.ZeroPad2d(padding=(0, 1, 0, 1)) self.convolution = nn.Conv2d( config.num_channels, self.out_dim, kernel_size=3, stride=2, padding="valid", bias=False ) self.batchnorm = nn.BatchNorm2d(self.out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum) self.activation = ACT2FN[config.hidden_act] def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: features = self.padding(pixel_values) features = self.convolution(features) features = self.batchnorm(features) features = self.activation(features) return features class EfficientNetDepthwiseConv2d(nn.Conv2d): def __init__( self, in_channels, depth_multiplier=1, kernel_size=3, stride=1, padding=0, dilation=1, bias=True, padding_mode="zeros", ): out_channels = in_channels * depth_multiplier super().__init__( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=in_channels, bias=bias, padding_mode=padding_mode, ) class EfficientNetExpansionLayer(nn.Module): r""" This corresponds to the expansion phase of each block in the original implementation. """ def __init__(self, config: EfficientNetConfig, in_dim: int, out_dim: int, stride: int): super().__init__() self.expand_conv = nn.Conv2d( in_channels=in_dim, out_channels=out_dim, kernel_size=1, padding="same", bias=False, ) self.expand_bn = nn.BatchNorm2d(num_features=out_dim, eps=config.batch_norm_eps) self.expand_act = ACT2FN[config.hidden_act] def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: # Expand phase hidden_states = self.expand_conv(hidden_states) hidden_states = self.expand_bn(hidden_states) hidden_states = self.expand_act(hidden_states) return hidden_states class EfficientNetDepthwiseLayer(nn.Module): r""" This corresponds to the depthwise convolution phase of each block in the original implementation. """ def __init__( self, config: EfficientNetConfig, in_dim: int, stride: int, kernel_size: int, adjust_padding: bool, ): super().__init__() self.stride = stride conv_pad = "valid" if self.stride == 2 else "same" padding = correct_pad(kernel_size, adjust=adjust_padding) self.depthwise_conv_pad = nn.ZeroPad2d(padding=padding) self.depthwise_conv = EfficientNetDepthwiseConv2d( in_dim, kernel_size=kernel_size, stride=stride, padding=conv_pad, bias=False ) self.depthwise_norm = nn.BatchNorm2d( num_features=in_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum ) self.depthwise_act = ACT2FN[config.hidden_act] def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: # Depthwise convolution if self.stride == 2: hidden_states = self.depthwise_conv_pad(hidden_states) hidden_states = self.depthwise_conv(hidden_states) hidden_states = self.depthwise_norm(hidden_states) hidden_states = self.depthwise_act(hidden_states) return hidden_states class EfficientNetSqueezeExciteLayer(nn.Module): r""" This corresponds to the Squeeze and Excitement phase of each block in the original implementation. """ def __init__(self, config: EfficientNetConfig, in_dim: int, expand_dim: int, expand: bool = False): super().__init__() self.dim = expand_dim if expand else in_dim self.dim_se = max(1, int(in_dim * config.squeeze_expansion_ratio)) self.squeeze = nn.AdaptiveAvgPool2d(output_size=1) self.reduce = nn.Conv2d( in_channels=self.dim, out_channels=self.dim_se, kernel_size=1, padding="same", ) self.expand = nn.Conv2d( in_channels=self.dim_se, out_channels=self.dim, kernel_size=1, padding="same", ) self.act_reduce = ACT2FN[config.hidden_act] self.act_expand = nn.Sigmoid() def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: inputs = hidden_states hidden_states = self.squeeze(hidden_states) hidden_states = self.reduce(hidden_states) hidden_states = self.act_reduce(hidden_states) hidden_states = self.expand(hidden_states) hidden_states = self.act_expand(hidden_states) hidden_states = torch.mul(inputs, hidden_states) return hidden_states class EfficientNetFinalBlockLayer(nn.Module): r""" This corresponds to the final phase of each block in the original implementation. """ def __init__( self, config: EfficientNetConfig, in_dim: int, out_dim: int, stride: int, drop_rate: float, id_skip: bool ): super().__init__() self.apply_dropout = stride == 1 and not id_skip self.project_conv = nn.Conv2d( in_channels=in_dim, out_channels=out_dim, kernel_size=1, padding="same", bias=False, ) self.project_bn = nn.BatchNorm2d( num_features=out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum ) self.dropout = nn.Dropout(p=drop_rate) def forward(self, embeddings: torch.FloatTensor, hidden_states: torch.FloatTensor) -> torch.Tensor: hidden_states = self.project_conv(hidden_states) hidden_states = self.project_bn(hidden_states) if self.apply_dropout: hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + embeddings return hidden_states class EfficientNetBlock(nn.Module): r""" This corresponds to the expansion and depthwise convolution phase of each block in the original implementation. Args: config ([`EfficientNetConfig`]): Model configuration class. in_dim (`int`): Number of input channels. out_dim (`int`): Number of output channels. stride (`int`): Stride size to be used in convolution layers. expand_ratio (`int`): Expand ratio to set the output dimensions for the expansion and squeeze-excite layers. kernel_size (`int`): Kernel size for the depthwise convolution layer. drop_rate (`float`): Dropout rate to be used in the final phase of each block. id_skip (`bool`): Whether to apply dropout and sum the final hidden states with the input embeddings during the final phase of each block. Set to `True` for the first block of each stage. adjust_padding (`bool`): Whether to apply padding to only right and bottom side of the input kernel before the depthwise convolution operation, set to `True` for inputs with odd input sizes. """ def __init__( self, config: EfficientNetConfig, in_dim: int, out_dim: int, stride: int, expand_ratio: int, kernel_size: int, drop_rate: float, id_skip: bool, adjust_padding: bool, ): super().__init__() self.expand_ratio = expand_ratio self.expand = True if self.expand_ratio != 1 else False expand_in_dim = in_dim * expand_ratio if self.expand: self.expansion = EfficientNetExpansionLayer( config=config, in_dim=in_dim, out_dim=expand_in_dim, stride=stride ) self.depthwise_conv = EfficientNetDepthwiseLayer( config=config, in_dim=expand_in_dim if self.expand else in_dim, stride=stride, kernel_size=kernel_size, adjust_padding=adjust_padding, ) self.squeeze_excite = EfficientNetSqueezeExciteLayer( config=config, in_dim=in_dim, expand_dim=expand_in_dim, expand=self.expand ) self.projection = EfficientNetFinalBlockLayer( config=config, in_dim=expand_in_dim if self.expand else in_dim, out_dim=out_dim, stride=stride, drop_rate=drop_rate, id_skip=id_skip, ) def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: embeddings = hidden_states # Expansion and depthwise convolution phase if self.expand_ratio != 1: hidden_states = self.expansion(hidden_states) hidden_states = self.depthwise_conv(hidden_states) # Squeeze and excite phase hidden_states = self.squeeze_excite(hidden_states) hidden_states = self.projection(embeddings, hidden_states) return hidden_states class EfficientNetEncoder(nn.Module): r""" Forward propogates the embeddings through each EfficientNet block. Args: config ([`EfficientNetConfig`]): Model configuration class. """ def __init__(self, config: EfficientNetConfig): super().__init__() self.config = config self.depth_coefficient = config.depth_coefficient def round_repeats(repeats): # Round number of block repeats based on depth multiplier. return int(math.ceil(self.depth_coefficient * repeats)) num_base_blocks = len(config.in_channels) num_blocks = sum(round_repeats(n) for n in config.num_block_repeats) curr_block_num = 0 blocks = [] for i in range(num_base_blocks): in_dim = round_filters(config, config.in_channels[i]) out_dim = round_filters(config, config.out_channels[i]) stride = config.strides[i] kernel_size = config.kernel_sizes[i] expand_ratio = config.expand_ratios[i] for j in range(round_repeats(config.num_block_repeats[i])): id_skip = True if j == 0 else False stride = 1 if j > 0 else stride in_dim = out_dim if j > 0 else in_dim adjust_padding = False if curr_block_num in config.depthwise_padding else True drop_rate = config.drop_connect_rate * curr_block_num / num_blocks block = EfficientNetBlock( config=config, in_dim=in_dim, out_dim=out_dim, stride=stride, kernel_size=kernel_size, expand_ratio=expand_ratio, drop_rate=drop_rate, id_skip=id_skip, adjust_padding=adjust_padding, ) blocks.append(block) curr_block_num += 1 self.blocks = nn.ModuleList(blocks) self.top_conv = nn.Conv2d( in_channels=out_dim, out_channels=round_filters(config, 1280), kernel_size=1, padding="same", bias=False, ) self.top_bn = nn.BatchNorm2d( num_features=config.hidden_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum ) self.top_activation = ACT2FN[config.hidden_act] def forward( self, hidden_states: torch.FloatTensor, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> BaseModelOutputWithNoAttention: all_hidden_states = (hidden_states,) if output_hidden_states else None for block in self.blocks: hidden_states = block(hidden_states) if output_hidden_states: all_hidden_states += (hidden_states,) hidden_states = self.top_conv(hidden_states) hidden_states = self.top_bn(hidden_states) hidden_states = self.top_activation(hidden_states) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=hidden_states, hidden_states=all_hidden_states, ) class EfficientNetPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = EfficientNetConfig base_model_prefix = "efficientnet" main_input_name = "pixel_values" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) @add_start_docstrings( "The bare EfficientNet model outputting raw features without any specific head on top.", EFFICIENTNET_START_DOCSTRING, ) class EfficientNetModel(EfficientNetPreTrainedModel): def __init__(self, config: EfficientNetConfig): super().__init__(config) self.config = config self.embeddings = EfficientNetEmbeddings(config) self.encoder = EfficientNetEncoder(config) # Final pooling layer if config.pooling_type == "mean": self.pooler = nn.AvgPool2d(config.hidden_dim, ceil_mode=True) elif config.pooling_type == "max": self.pooler = nn.MaxPool2d(config.hidden_dim, ceil_mode=True) else: raise ValueError(f"config.pooling must be one of ['mean', 'max'] got {config.pooling}") # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(EFFICIENTNET_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: torch.FloatTensor = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output = self.embeddings(pixel_values) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # Apply pooling last_hidden_state = encoder_outputs[0] pooled_output = self.pooler(last_hidden_state) # Reshape (batch_size, 1280, 1 , 1) -> (batch_size, 1280) pooled_output = pooled_output.reshape(pooled_output.shape[:2]) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ EfficientNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, EFFICIENTNET_START_DOCSTRING, ) class EfficientNetForImageClassification(EfficientNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.efficientnet = EfficientNetModel(config) # Classifier head self.dropout = nn.Dropout(p=config.dropout_rate) self.classifier = nn.Linear(config.hidden_dim, self.num_labels) if self.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(EFFICIENTNET_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: torch.FloatTensor = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.efficientnet(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = outputs.pooler_output if return_dict else outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/efficientnet/image_processing_efficientnet.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for EfficientNet.""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL logger = logging.get_logger(__name__) class EfficientNetImageProcessor(BaseImageProcessor): r""" Constructs a EfficientNet image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by `do_resize` in `preprocess`. size (`Dict[str, int]` *optional*, defaults to `{"height": 346, "width": 346}`): Size of the image after `resize`. Can be overridden by `size` in `preprocess`. resample (`PILImageResampling` filter, *optional*, defaults to 0): Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`. do_center_crop (`bool`, *optional*, defaults to `False`): Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image is padded with 0's and then center cropped. Can be overridden by `do_center_crop` in `preprocess`. crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 289, "width": 289}`): Desired output size when applying center-cropping. Can be overridden by `crop_size` in `preprocess`. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. rescale_offset (`bool`, *optional*, defaults to `False`): Whether to rescale the image between [-scale_range, scale_range] instead of [0, scale_range]. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. include_top (`bool`, *optional*, defaults to `True`): Whether to rescale the image again. Should be set to True if the inputs are used for image classification. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PIL.Image.NEAREST, do_center_crop: bool = False, crop_size: Dict[str, int] = None, rescale_factor: Union[int, float] = 1 / 255, rescale_offset: bool = False, do_rescale: bool = True, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, include_top: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 346, "width": 346} size = get_size_dict(size) crop_size = crop_size if crop_size is not None else {"height": 289, "width": 289} crop_size = get_size_dict(crop_size, param_name="crop_size") self.do_resize = do_resize self.size = size self.resample = resample self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.rescale_offset = rescale_offset self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD self.include_top = include_top # Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.NEAREST def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.NEAREST, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image to `(size["height"], size["width"])`. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.NEAREST`): `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.NEAREST`. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. Returns: `np.ndarray`: The resized image. """ size = get_size_dict(size) if "height" not in size or "width" not in size: raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}") output_size = (size["height"], size["width"]) return resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def rescale( self, image: np.ndarray, scale: Union[int, float], offset: bool = True, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ): """ Rescale an image by a scale factor. If `offset` is `True`, the image has its values rescaled by `scale` and then offset by 1. If `scale` is 1/127.5, the image is rescaled between [-1, 1]. image = image * scale - 1 If `offset` is `False`, and `scale` is 1/255, the image is rescaled between [0, 1]. image = image * scale Args: image (`np.ndarray`): Image to rescale. scale (`int` or `float`): Scale to apply to the image. offset (`bool`, *optional*): Whether to scale the image in both negative and positive directions. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ rescaled_image = rescale( image, scale=scale, data_format=data_format, input_data_format=input_data_format, **kwargs ) if offset: rescaled_image = rescaled_image - 1 return rescaled_image def preprocess( self, images: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample=None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_rescale: bool = None, rescale_factor: float = None, rescale_offset: bool = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, include_top: bool = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after `resize`. resample (`PILImageResampling`, *optional*, defaults to `self.resample`): PILImageResampling filter to use if resizing the image Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be padded with zeros and then cropped do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. rescale_offset (`bool`, *optional*, defaults to `self.rescale_offset`): Whether to rescale the image between [-scale_range, scale_range] instead of [0, scale_range]. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation. include_top (`bool`, *optional*, defaults to `self.include_top`): Rescales the image again for image classification if set to True. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - `None`: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor rescale_offset = rescale_offset if rescale_offset is not None else self.rescale_offset do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std include_top = include_top if include_top is not None else self.include_top size = size if size is not None else self.size size = get_size_dict(size) crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size") images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_resize: images = [ self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) for image in images ] if do_center_crop: images = [ self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images ] if do_rescale: images = [ self.rescale( image=image, scale=rescale_factor, offset=rescale_offset, input_data_format=input_data_format ) for image in images ] if do_normalize: images = [ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] if include_top: images = [ self.normalize(image=image, mean=0, std=image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/ernie_m/tokenization_ernie_m.py
# coding=utf-8 # Copyright 2023 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Ernie-M.""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} RESOURCE_FILES_NAMES = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "ernie-m-base": 514, "ernie-m-large": 514, } PRETRAINED_INIT_CONFIGURATION = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } # Adapted from paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer class ErnieMTokenizer(PreTrainedTokenizer): r""" Constructs a Ernie-M tokenizer. It uses the `sentencepiece` tools to cut the words to sub-words. Args: sentencepiece_model_file (`str`): The file path of sentencepiece model. vocab_file (`str`, *optional*): The file path of the vocabulary. do_lower_case (`str`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. unk_token (`str`, *optional*, defaults to `"[UNK]"`): A special token representing the `unknown (out-of-vocabulary)` token. An unknown token is set to be `unk_token` inorder to be converted to an ID. sep_token (`str`, *optional*, defaults to `"[SEP]"`): A special token separating two different sentences in the same input. pad_token (`str`, *optional*, defaults to `"[PAD]"`): A special token used to make arrays of tokens the same size for batching purposes. cls_token (`str`, *optional*, defaults to `"[CLS]"`): A special token used for sequence classification. It is the last token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): A special token representing a masked token. This is the token used in the masked language modeling task which the model tries to predict the original unmasked ones. """ # Ernie-M model doesn't have token_type embedding. model_input_names: List[str] = ["input_ids"] vocab_files_names = VOCAB_FILES_NAMES pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP resource_files_names = RESOURCE_FILES_NAMES def __init__( self, sentencepiece_model_ckpt, vocab_file=None, do_lower_case=False, encoding="utf8", unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.do_lower_case = do_lower_case self.sentencepiece_model_ckpt = sentencepiece_model_ckpt self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(sentencepiece_model_ckpt) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: self.vocab = self.load_vocab(filepath=vocab_file) else: self.vocab = {self.sp_model.id_to_piece(id): id for id in range(self.sp_model.get_piece_size())} self.reverse_vocab = {v: k for k, v in self.vocab.items()} super().__init__( do_lower_case=do_lower_case, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, vocab_file=vocab_file, encoding=encoding, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) def get_offset_mapping(self, text): if text is None: return None split_tokens = self.tokenize(text) normalized_text, char_mapping = "", [] for i, ch in enumerate(text): if ch in self.SP_CHAR_MAPPING: ch = self.SP_CHAR_MAPPING.get(ch) else: ch = unicodedata.normalize("NFKC", ch) if self.is_whitespace(ch): continue normalized_text += ch char_mapping.extend([i] * len(ch)) text, token_mapping, offset = normalized_text, [], 0 if self.do_lower_case: text = text.lower() for token in split_tokens: if token[:1] == "▁": token = token[1:] start = text[offset:].index(token) + offset end = start + len(token) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1)) offset = end return token_mapping @property def vocab_size(self): return len(self.vocab) def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.sentencepiece_model_ckpt) def clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" return "".join((self.SP_CHAR_MAPPING.get(c, c) for c in text)) def _tokenize(self, text, enable_sampling=False, nbest_size=64, alpha=0.1): """Tokenize a string.""" if self.sp_model_kwargs.get("enable_sampling") is True: enable_sampling = True if self.sp_model_kwargs.get("alpha") is not None: alpha = self.sp_model_kwargs.get("alpha") if self.sp_model_kwargs.get("nbest_size") is not None: nbest_size = self.sp_model_kwargs.get("nbest_size") if not enable_sampling: pieces = self.sp_model.EncodeAsPieces(text) else: pieces = self.sp_model.SampleEncodeAsPieces(text, nbest_size, alpha) new_pieces = [] for pi, piece in enumerate(pieces): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(SPIECE_UNDERLINE) and pi != 0: new_pieces.append(SPIECE_UNDERLINE) continue else: continue lst_i = 0 for i, chunk in enumerate(piece): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(chunk) or self.is_punct(chunk): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i]) new_pieces.append(chunk) lst_i = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i]) lst_i = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i]) lst_i = i if len(piece) > lst_i: new_pieces.append(piece[lst_i:]) return new_pieces def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (strings for sub-words) in a single string.""" out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string def convert_ids_to_string(self, ids): """ Converts a sequence of tokens (strings for sub-words) in a single string. """ tokens = self.convert_ids_to_tokens(ids) out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning def _convert_token_to_id(self, token): return self.vocab.get(token, self.vocab.get(self.unk_token)) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.reverse_vocab.get(index, self.unk_token) def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): r""" Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An ErnieM sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of input_id with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] _cls = [self.cls_token_id] _sep = [self.sep_token_id] return _cls + token_ids_0 + _sep + _sep + token_ids_1 + _sep def build_offset_mapping_with_special_tokens(self, offset_mapping_0, offset_mapping_1=None): r""" Build offset map from a pair of offset map by concatenating and adding offsets of special tokens. An Ernie-M offset_mapping has the following format: - single sequence: `(0,0) X (0,0)` - pair of sequences: `(0,0) A (0,0) (0,0) B (0,0)` Args: offset_mapping_ids_0 (`List[tuple]`): List of char offsets to which the special tokens will be added. offset_mapping_ids_1 (`List[tuple]`, *optional*): Optional second list of wordpiece offsets for offset mapping pairs. Returns: `List[tuple]`: List of wordpiece offsets with the appropriate offsets of special tokens. """ if offset_mapping_1 is None: return [(0, 0)] + offset_mapping_0 + [(0, 0)] return [(0, 0)] + offset_mapping_0 + [(0, 0), (0, 0)] + offset_mapping_1 + [(0, 0)] def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False): r""" Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `encode` method. Args: token_ids_0 (`List[int]`): List of ids of the first sequence. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`str`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: The list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_0] if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create the token type IDs corresponding to the sequences passed. [What are token type IDs?](../glossary#token-type-ids) Should be overridden in a subclass if the model has a special way of building: those. Args: token_ids_0 (`List[int]`): The first tokenized sequence. token_ids_1 (`List[int]`, *optional*): The second tokenized sequence. Returns: `List[int]`: The token type ids. """ # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_1 is None: # [CLS] X [SEP] return (len(token_ids_0) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(token_ids_0) + 1) + [1] * (len(token_ids_1) + 3) def is_ch_char(self, char): """ is_ch_char """ if "\u4e00" <= char <= "\u9fff": return True return False def is_alpha(self, char): """ is_alpha """ if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def is_punct(self, char): """ is_punct """ if char in ",;:.?!~,;:。?!《》【】": return True return False def is_whitespace(self, char): """ is whitespace """ if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(char) == 1: cat = unicodedata.category(char) if cat == "Zs": return True return False def load_vocab(self, filepath): token_to_idx = {} with io.open(filepath, "r", encoding="utf-8") as f: for index, line in enumerate(f): token = line.rstrip("\n") token_to_idx[token] = int(index) return token_to_idx def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 tokenizer_model_file = os.path.join(save_directory, "sentencepiece.bpe.model") with open(tokenizer_model_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (vocab_file,)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/ernie_m/configuration_ernie_m.py
# coding=utf-8 # Copyright 2023 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ErnieM model configuration""" # Adapted from original paddlenlp repository.(https://github.com/PaddlePaddle/PaddleNLP/blob/develop/paddlenlp/transformers/ernie_m/configuration.py) from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig ERNIE_M_PRETRAINED_CONFIG_ARCHIVE_MAP = { "susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json", "susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json", } class ErnieMConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ErnieMModel`]. It is used to instantiate a Ernie-M model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the `Ernie-M` [susnato/ernie-m-base_pytorch](https://huggingface.co/susnato/ernie-m-base_pytorch) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 250002): Vocabulary size of `inputs_ids` in [`ErnieMModel`]. Also is the vocab size of token embedding matrix. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`ErnieMModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the embedding layer, encoder layers and pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the feed-forward (ff) layer in the encoder. Input tensors to feed-forward layers are firstly projected from hidden_size to intermediate_size, and then projected back to hidden_size. Typically intermediate_size is larger than hidden_size. hidden_act (`str`, *optional*, defaults to `"gelu"`): The non-linear activation function in the feed-forward layer. `"gelu"`, `"relu"` and any other torch supported activation functions are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings and encoder. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability used in `MultiHeadAttention` in all encoder layers to drop some attention target. max_position_embeddings (`int`, *optional*, defaults to 514): The maximum value of the dimensionality of position encoding, which dictates the maximum supported length of an input sequence. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the normal initializer for initializing all weight matrices. The index of padding token in the token vocabulary. pad_token_id (`int`, *optional*, defaults to 1): Padding token id. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. act_dropout (`float`, *optional*, defaults to 0.0): This dropout probability is used in `ErnieMEncoderLayer` after activation. A normal_initializer initializes weight matrices as normal distributions. See `ErnieMPretrainedModel._init_weights()` for how weights are initialized in `ErnieMModel`. """ model_type = "ernie_m" attribute_map: Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self, vocab_size: int = 250002, hidden_size: int = 768, num_hidden_layers: int = 12, num_attention_heads: int = 12, intermediate_size: int = 3072, hidden_act: str = "gelu", hidden_dropout_prob: float = 0.1, attention_probs_dropout_prob: float = 0.1, max_position_embeddings: int = 514, initializer_range: float = 0.02, pad_token_id: int = 1, layer_norm_eps: float = 1e-05, classifier_dropout=None, act_dropout=0.0, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.classifier_dropout = classifier_dropout self.act_dropout = act_dropout
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/ernie_m/__init__.py
# Copyright 2023 The HuggingFace and Baidu Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available _import_structure = { "configuration_ernie_m": ["ERNIE_M_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieMConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_ernie_m"] = ["ErnieMTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_ernie_m"] = [ "ERNIE_M_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieMForMultipleChoice", "ErnieMForQuestionAnswering", "ErnieMForSequenceClassification", "ErnieMForTokenClassification", "ErnieMModel", "ErnieMPreTrainedModel", "ErnieMForInformationExtraction", ] if TYPE_CHECKING: from .configuration_ernie_m import ERNIE_M_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_ernie_m import ErnieMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie_m import ( ERNIE_M_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieMForInformationExtraction, ErnieMForMultipleChoice, ErnieMForQuestionAnswering, ErnieMForSequenceClassification, ErnieMForTokenClassification, ErnieMModel, ErnieMPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/ernie_m/modeling_ernie_m.py
# coding=utf-8 # Copyright 2023 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch ErnieM model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn, tensor from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_ernie_m import ErnieMConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "susnato/ernie-m-base_pytorch" _CONFIG_FOR_DOC = "ErnieMConfig" _TOKENIZER_FOR_DOC = "ErnieMTokenizer" ERNIE_M_PRETRAINED_MODEL_ARCHIVE_LIST = [ "susnato/ernie-m-base_pytorch", "susnato/ernie-m-large_pytorch", # See all ErnieM models at https://huggingface.co/models?filter=ernie_m ] # Adapted from paddlenlp.transformers.ernie_m.modeling.ErnieEmbeddings class ErnieMEmbeddings(nn.Module): """Construct the embeddings from word and position embeddings.""" def __init__(self, config): super().__init__() self.hidden_size = config.hidden_size self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=config.pad_token_id ) self.layer_norm = nn.LayerNorm(normalized_shape=config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(p=config.hidden_dropout_prob) self.padding_idx = config.pad_token_id def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.LongTensor] = None, past_key_values_length: int = 0, ) -> torch.Tensor: if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if position_ids is None: input_shape = inputs_embeds.size()[:-1] ones = torch.ones(input_shape, dtype=torch.int64, device=inputs_embeds.device) seq_length = torch.cumsum(ones, dim=1) position_ids = seq_length - ones if past_key_values_length > 0: position_ids = position_ids + past_key_values_length # to mimic paddlenlp implementation position_ids += 2 position_embeddings = self.position_embeddings(position_ids) embeddings = inputs_embeds + position_embeddings embeddings = self.layer_norm(embeddings) embeddings = self.dropout(embeddings) return embeddings # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->ErnieM,self.value->self.v_proj,self.key->self.k_proj,self.query->self.q_proj class ErnieMSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.q_proj = nn.Linear(config.hidden_size, self.all_head_size) self.k_proj = nn.Linear(config.hidden_size, self.all_head_size) self.v_proj = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.q_proj(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.k_proj(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.v_proj(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.k_proj(hidden_states)) value_layer = self.transpose_for_scores(self.v_proj(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.k_proj(hidden_states)) value_layer = self.transpose_for_scores(self.v_proj(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in ErnieMModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs class ErnieMAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self_attn = ErnieMSelfAttention(config, position_embedding_type=position_embedding_type) self.out_proj = nn.Linear(config.hidden_size, config.hidden_size) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self_attn.num_attention_heads, self.self_attn.attention_head_size, self.pruned_heads ) # Prune linear layers self.self_attn.q_proj = prune_linear_layer(self.self_attn.q_proj, index) self.self_attn.k_proj = prune_linear_layer(self.self_attn.k_proj, index) self.self_attn.v_proj = prune_linear_layer(self.self_attn.v_proj, index) self.out_proj = prune_linear_layer(self.out_proj, index, dim=1) # Update hyper params and store pruned heads self.self_attn.num_attention_heads = self.self_attn.num_attention_heads - len(heads) self.self_attn.all_head_size = self.self_attn.attention_head_size * self.self_attn.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self_attn( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.out_proj(self_outputs[0]) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class ErnieMEncoderLayer(nn.Module): def __init__(self, config): super().__init__() # to mimic paddlenlp implementation dropout = 0.1 if config.hidden_dropout_prob is None else config.hidden_dropout_prob act_dropout = config.hidden_dropout_prob if config.act_dropout is None else config.act_dropout self.self_attn = ErnieMAttention(config) self.linear1 = nn.Linear(config.hidden_size, config.intermediate_size) self.dropout = nn.Dropout(act_dropout) self.linear2 = nn.Linear(config.intermediate_size, config.hidden_size) self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) if isinstance(config.hidden_act, str): self.activation = ACT2FN[config.hidden_act] else: self.activation = config.hidden_act def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = True, ): residual = hidden_states if output_attentions: hidden_states, attention_opt_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, head_mask=head_mask, past_key_value=past_key_value, output_attentions=output_attentions, ) else: hidden_states = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, head_mask=head_mask, past_key_value=past_key_value, output_attentions=output_attentions, ) hidden_states = residual + self.dropout1(hidden_states) hidden_states = self.norm1(hidden_states) residual = hidden_states hidden_states = self.linear1(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.linear2(hidden_states) hidden_states = residual + self.dropout2(hidden_states) hidden_states = self.norm2(hidden_states) if output_attentions: return hidden_states, attention_opt_weights else: return hidden_states class ErnieMEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layers = nn.ModuleList([ErnieMEncoderLayer(config) for _ in range(config.num_hidden_layers)]) def forward( self, input_embeds: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: hidden_states = () if output_hidden_states else None attentions = () if output_attentions else None output = input_embeds if output_hidden_states: hidden_states = hidden_states + (output,) for i, layer in enumerate(self.layers): layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None output, opt_attn_weights = layer( hidden_states=output, attention_mask=attention_mask, head_mask=layer_head_mask, past_key_value=past_key_value, ) if output_hidden_states: hidden_states = hidden_states + (output,) if output_attentions: attentions = attentions + (opt_attn_weights,) last_hidden_state = output if not return_dict: return tuple(v for v in [last_hidden_state, hidden_states, attentions] if v is not None) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=last_hidden_state, hidden_states=hidden_states, attentions=attentions ) # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->ErnieM class ErnieMPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class ErnieMPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ErnieMConfig base_model_prefix = "ernie_m" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) ERNIE_M_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ErnieMConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ ERNIE_M_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`ErnieMTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare ErnieM Model transformer outputting raw hidden-states without any specific head on top.", ERNIE_M_START_DOCSTRING, ) class ErnieMModel(ErnieMPreTrainedModel): def __init__(self, config, add_pooling_layer=True): super(ErnieMModel, self).__init__(config) self.initializer_range = config.initializer_range self.embeddings = ErnieMEmbeddings(config) self.encoder = ErnieMEncoder(config) self.pooler = ErnieMPooler(config) if add_pooling_layer else None self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layers[layer].self_attn.prune_heads(heads) @add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[tensor] = None, position_ids: Optional[tensor] = None, attention_mask: Optional[tensor] = None, head_mask: Optional[tensor] = None, inputs_embeds: Optional[tensor] = None, past_key_values: Optional[Tuple[Tuple[tensor]]] = None, use_cache: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], BaseModelOutputWithPoolingAndCrossAttentions]: if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time.") # init the default bool value output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) past_key_values_length = 0 if past_key_values is not None: past_key_values_length = past_key_values[0][0].shape[2] # Adapted from paddlenlp.transformers.ernie_m.ErnieMModel if attention_mask is None: attention_mask = (input_ids == self.config.pad_token_id).to(torch.float32) attention_mask *= torch.finfo(attention_mask.dtype).min if past_key_values is not None: batch_size = past_key_values[0][0].shape[0] past_mask = torch.zeros([batch_size, 1, 1, past_key_values_length], dtype=attention_mask.dtype) attention_mask = torch.concat([past_mask, attention_mask], dim=-1) # For 2D attention_mask from tokenizer elif attention_mask.ndim == 2: attention_mask = attention_mask.to(torch.float32) attention_mask = 1.0 - attention_mask attention_mask *= torch.finfo(attention_mask.dtype).min extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(1) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, past_key_values=past_key_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: sequence_output = encoder_outputs[0] pooler_output = self.pooler(sequence_output) if self.pooler is not None else None return (sequence_output, pooler_output) + encoder_outputs[1:] sequence_output = encoder_outputs["last_hidden_state"] pooler_output = self.pooler(sequence_output) if self.pooler is not None else None hidden_states = None if not output_hidden_states else encoder_outputs["hidden_states"] attentions = None if not output_attentions else encoder_outputs["attentions"] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooler_output, hidden_states=hidden_states, attentions=attentions, ) @add_start_docstrings( """ErnieM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.""", ERNIE_M_START_DOCSTRING, ) class ErnieMForSequenceClassification(ErnieMPreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification.__init__ with Bert->ErnieM,bert->ernie_m def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.ernie_m = ErnieMModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.Tensor]] = None, use_cache: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = True, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple[torch.FloatTensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ernie_m( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, past_key_values=past_key_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ErnieM Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.""", ERNIE_M_START_DOCSTRING, ) class ErnieMForMultipleChoice(ErnieMPreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForMultipleChoice.__init__ with Bert->ErnieM,bert->ernie_m def __init__(self, config): super().__init__(config) self.ernie_m = ErnieMModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.FloatTensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.ernie_m( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ErnieM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.""", ERNIE_M_START_DOCSTRING, ) class ErnieMForTokenClassification(ErnieMPreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForTokenClassification.__init__ with Bert->ErnieM,bert->ernie_m def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.ernie_m = ErnieMModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.Tensor]] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = True, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple[torch.FloatTensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ernie_m( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, past_key_values=past_key_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ErnieM Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).""", ERNIE_M_START_DOCSTRING, ) class ErnieMForQuestionAnswering(ErnieMPreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering.__init__ with Bert->ErnieM,bert->ernie_m def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.ernie_m = ErnieMModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.FloatTensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ernie_m( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ErnieMForInformationExtraction is a Ernie-M Model with two linear layer on top of the hidden-states output to compute `start_prob` and `end_prob`, designed for Universal Information Extraction.""", ERNIE_M_START_DOCSTRING, ) # Copied from paddlenlp.transformers.ernie_m.modeling.UIEM class ErnieMForInformationExtraction(ErnieMPreTrainedModel): def __init__(self, config): super(ErnieMForInformationExtraction, self).__init__(config) self.ernie_m = ErnieMModel(config) self.linear_start = nn.Linear(config.hidden_size, 1) self.linear_end = nn.Linear(config.hidden_size, 1) self.sigmoid = nn.Sigmoid() self.post_init() @add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.FloatTensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for position (index) for computing the start_positions loss. Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) for computing the end_positions loss. Position outside of the sequence are not taken into account for computing the loss. """ result = self.ernie_m( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if return_dict: sequence_output = result.last_hidden_state elif not return_dict: sequence_output = result[0] start_logits = self.linear_start(sequence_output) start_logits = start_logits.squeeze(-1) end_logits = self.linear_end(sequence_output) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = BCEWithLogitsLoss() start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: return tuple( i for i in [total_loss, start_logits, end_logits, result.hidden_states, result.attentions] if i is not None ) return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=result.hidden_states, attentions=result.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/realm/tokenization_realm_fast.py
# coding=utf-8 # Copyright 2022 The REALM authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast Tokenization classes for REALM.""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", }, "tokenizer_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json" ), "google/realm-orqa-nq-openqa": ( "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-nq-reader": ( "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-openqa": ( "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-reader": ( "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json" ), }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "google/realm-cc-news-pretrained-embedder": 512, "google/realm-cc-news-pretrained-encoder": 512, "google/realm-cc-news-pretrained-scorer": 512, "google/realm-cc-news-pretrained-openqa": 512, "google/realm-orqa-nq-openqa": 512, "google/realm-orqa-nq-reader": 512, "google/realm-orqa-wq-openqa": 512, "google/realm-orqa-wq-reader": 512, } PRETRAINED_INIT_CONFIGURATION = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } class RealmTokenizerFast(PreTrainedTokenizerFast): r""" Construct a "fast" REALM tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. [`RealmTokenizerFast`] is identical to [`BertTokenizerFast`] and runs end-to-end tokenization: punctuation splitting and wordpiece. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. clean_text (`bool`, *optional*, defaults to `True`): Whether or not to clean the text before tokenization by removing any control characters and replacing all whitespaces by the classic one. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). wordpieces_prefix (`str`, *optional*, defaults to `"##"`): The prefix for subwords. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES slow_tokenizer_class = RealmTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, do_lower_case=True, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): super().__init__( vocab_file, tokenizer_file=tokenizer_file, do_lower_case=do_lower_case, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kwargs, ) normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase", do_lower_case) != do_lower_case or normalizer_state.get("strip_accents", strip_accents) != strip_accents or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars ): normalizer_class = getattr(normalizers, normalizer_state.pop("type")) normalizer_state["lowercase"] = do_lower_case normalizer_state["strip_accents"] = strip_accents normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state) self.do_lower_case = do_lower_case def batch_encode_candidates(self, text, **kwargs): r""" Encode a batch of text or text pair. This method is similar to regular __call__ method but has the following differences: 1. Handle additional num_candidate axis. (batch_size, num_candidates, text) 2. Always pad the sequences to *max_length*. 3. Must specify *max_length* in order to stack packs of candidates into a batch. - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: text (`List[List[str]]`): The batch of sequences to be encoded. Each sequence must be in this format: (batch_size, num_candidates, text). text_pair (`List[List[str]]`, *optional*): The batch of sequences to be encoded. Each sequence must be in this format: (batch_size, num_candidates, text). **kwargs: Keyword arguments of the __call__ method. Returns: [`BatchEncoding`]: Encoded text or text pair. Example: ```python >>> from transformers import RealmTokenizerFast >>> # batch_size = 2, num_candidates = 2 >>> text = [["Hello world!", "Nice to meet you!"], ["The cute cat.", "The adorable dog."]] >>> tokenizer = RealmTokenizerFast.from_pretrained("google/realm-cc-news-pretrained-encoder") >>> tokenized_text = tokenizer.batch_encode_candidates(text, max_length=10, return_tensors="pt") ```""" # Always using a fixed sequence length to encode in order to stack candidates into a batch. kwargs["padding"] = PaddingStrategy.MAX_LENGTH batch_text = text batch_text_pair = kwargs.pop("text_pair", None) return_tensors = kwargs.pop("return_tensors", None) output_data = { "input_ids": [], "attention_mask": [], "token_type_ids": [], } for idx, candidate_text in enumerate(batch_text): if batch_text_pair is not None: candidate_text_pair = batch_text_pair[idx] else: candidate_text_pair = None encoded_candidates = super().__call__(candidate_text, candidate_text_pair, return_tensors=None, **kwargs) encoded_input_ids = encoded_candidates.get("input_ids") encoded_attention_mask = encoded_candidates.get("attention_mask") encoded_token_type_ids = encoded_candidates.get("token_type_ids") if encoded_input_ids is not None: output_data["input_ids"].append(encoded_input_ids) if encoded_attention_mask is not None: output_data["attention_mask"].append(encoded_attention_mask) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(encoded_token_type_ids) output_data = {key: item for key, item in output_data.items() if len(item) != 0} return BatchEncoding(output_data, tensor_type=return_tensors) def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A REALM sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id] if token_ids_1 is not None: output += token_ids_1 + [self.sep_token_id] return output def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A REALM sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/realm/configuration_realm.py
# coding=utf-8 # Copyright 2022 The REALM authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ REALM model configuration.""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) REALM_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class RealmConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of 1. [`RealmEmbedder`] 2. [`RealmScorer`] 3. [`RealmKnowledgeAugEncoder`] 4. [`RealmRetriever`] 5. [`RealmReader`] 6. [`RealmForOpenQA`] It is used to instantiate an REALM model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the REALM [google/realm-cc-news-pretrained-embedder](https://huggingface.co/google/realm-cc-news-pretrained-embedder) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the REALM model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`RealmEmbedder`], [`RealmScorer`], [`RealmKnowledgeAugEncoder`], or [`RealmReader`]. hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. retriever_proj_size (`int`, *optional*, defaults to 128): Dimension of the retriever(embedder) projection. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. num_candidates (`int`, *optional*, defaults to 8): Number of candidates inputted to the RealmScorer or RealmKnowledgeAugEncoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`RealmEmbedder`], [`RealmScorer`], [`RealmKnowledgeAugEncoder`], or [`RealmReader`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. span_hidden_size (`int`, *optional*, defaults to 256): Dimension of the reader's spans. max_span_width (`int`, *optional*, defaults to 10): Max span width of the reader. reader_layer_norm_eps (`float`, *optional*, defaults to 1e-3): The epsilon used by the reader's layer normalization layers. reader_beam_size (`int`, *optional*, defaults to 5): Beam size of the reader. reader_seq_len (`int`, *optional*, defaults to 288+32): Maximum sequence length of the reader. num_block_records (`int`, *optional*, defaults to 13353718): Number of block records. searcher_beam_size (`int`, *optional*, defaults to 5000): Beam size of the searcher. Note that when eval mode is enabled, *searcher_beam_size* will be the same as *reader_beam_size*. Example: ```python >>> from transformers import RealmConfig, RealmEmbedder >>> # Initializing a REALM realm-cc-news-pretrained-* style configuration >>> configuration = RealmConfig() >>> # Initializing a model (with random weights) from the google/realm-cc-news-pretrained-embedder style configuration >>> model = RealmEmbedder(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "realm" def __init__( self, vocab_size=30522, hidden_size=768, retriever_proj_size=128, num_hidden_layers=12, num_attention_heads=12, num_candidates=8, intermediate_size=3072, hidden_act="gelu_new", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, span_hidden_size=256, max_span_width=10, reader_layer_norm_eps=1e-3, reader_beam_size=5, reader_seq_len=320, # 288 + 32 num_block_records=13353718, searcher_beam_size=5000, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) # Common config self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.retriever_proj_size = retriever_proj_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_candidates = num_candidates self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.layer_norm_eps = layer_norm_eps # Reader config self.span_hidden_size = span_hidden_size self.max_span_width = max_span_width self.reader_layer_norm_eps = reader_layer_norm_eps self.reader_beam_size = reader_beam_size self.reader_seq_len = reader_seq_len # Retrieval config self.num_block_records = num_block_records self.searcher_beam_size = searcher_beam_size
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/realm/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _import_structure = { "configuration_realm": ["REALM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RealmConfig"], "tokenization_realm": ["RealmTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_realm_fast"] = ["RealmTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_realm"] = [ "REALM_PRETRAINED_MODEL_ARCHIVE_LIST", "RealmEmbedder", "RealmForOpenQA", "RealmKnowledgeAugEncoder", "RealmPreTrainedModel", "RealmReader", "RealmScorer", "load_tf_weights_in_realm", ] _import_structure["retrieval_realm"] = ["RealmRetriever"] if TYPE_CHECKING: from .configuration_realm import REALM_PRETRAINED_CONFIG_ARCHIVE_MAP, RealmConfig from .tokenization_realm import RealmTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_realm import RealmTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_realm import ( REALM_PRETRAINED_MODEL_ARCHIVE_LIST, RealmEmbedder, RealmForOpenQA, RealmKnowledgeAugEncoder, RealmPreTrainedModel, RealmReader, RealmScorer, load_tf_weights_in_realm, ) from .retrieval_realm import RealmRetriever else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/realm/modeling_realm.py
# coding=utf-8 # Copyright 2022 The REALM authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch REALM model.""" import math import os from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, MaskedLMOutput, ModelOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_realm import RealmConfig logger = logging.get_logger(__name__) _EMBEDDER_CHECKPOINT_FOR_DOC = "google/realm-cc-news-pretrained-embedder" _ENCODER_CHECKPOINT_FOR_DOC = "google/realm-cc-news-pretrained-encoder" _SCORER_CHECKPOINT_FOR_DOC = "google/realm-cc-news-pretrained-scorer" _CONFIG_FOR_DOC = "RealmConfig" REALM_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/realm-cc-news-pretrained-embedder", "google/realm-cc-news-pretrained-encoder", "google/realm-cc-news-pretrained-scorer", "google/realm-cc-news-pretrained-openqa", "google/realm-orqa-nq-openqa", "google/realm-orqa-nq-reader", "google/realm-orqa-wq-openqa", "google/realm-orqa-wq-reader", # See all REALM models at https://huggingface.co/models?filter=realm ] def load_tf_weights_in_realm(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): if isinstance(model, RealmReader) and "reader" not in name: logger.info(f"Skipping {name} as it is not {model.__class__.__name__}'s parameter") continue # For pretrained openqa reader if (name.startswith("bert") or name.startswith("cls")) and isinstance(model, RealmForOpenQA): name = name.replace("bert/", "reader/realm/") name = name.replace("cls/", "reader/cls/") # For pretrained encoder if (name.startswith("bert") or name.startswith("cls")) and isinstance(model, RealmKnowledgeAugEncoder): name = name.replace("bert/", "realm/") # For finetuned reader if name.startswith("reader"): reader_prefix = "" if isinstance(model, RealmReader) else "reader/" name = name.replace("reader/module/bert/", f"{reader_prefix}realm/") name = name.replace("reader/module/cls/", f"{reader_prefix}cls/") name = name.replace("reader/dense/", f"{reader_prefix}qa_outputs/dense_intermediate/") name = name.replace("reader/dense_1/", f"{reader_prefix}qa_outputs/dense_output/") name = name.replace("reader/layer_normalization", f"{reader_prefix}qa_outputs/layer_normalization") # For embedder and scorer if name.startswith("module/module/module/"): # finetuned embedder_prefix = "" if isinstance(model, RealmEmbedder) else "embedder/" name = name.replace("module/module/module/module/bert/", f"{embedder_prefix}realm/") name = name.replace("module/module/module/LayerNorm/", f"{embedder_prefix}cls/LayerNorm/") name = name.replace("module/module/module/dense/", f"{embedder_prefix}cls/dense/") name = name.replace("module/module/module/module/cls/predictions/", f"{embedder_prefix}cls/predictions/") name = name.replace("module/module/module/bert/", f"{embedder_prefix}realm/") name = name.replace("module/module/module/cls/predictions/", f"{embedder_prefix}cls/predictions/") elif name.startswith("module/module/"): # pretrained embedder_prefix = "" if isinstance(model, RealmEmbedder) else "embedder/" name = name.replace("module/module/LayerNorm/", f"{embedder_prefix}cls/LayerNorm/") name = name.replace("module/module/dense/", f"{embedder_prefix}cls/dense/") name = name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) try: assert ( pointer.shape == array.shape ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) return model # Copied from transformers.models.bert.modeling_bert.BertEmbeddings with Bert->Realm class RealmEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, past_key_values_length: int = 0, ) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Realm class RealmSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in RealmModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Realm class RealmSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Realm class RealmAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = RealmSelfAttention(config, position_embedding_type=position_embedding_type) self.output = RealmSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Realm class RealmIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Realm class RealmOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Realm class RealmLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = RealmAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = RealmAttention(config, position_embedding_type="absolute") self.intermediate = RealmIntermediate(config) self.output = RealmOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Realm class RealmEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([RealmLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Realm class RealmPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output @dataclass class RealmEmbedderOutput(ModelOutput): """ Outputs of [`RealmEmbedder`] models. Args: projected_score (`torch.FloatTensor` of shape `(batch_size, config.retriever_proj_size)`): Projected score. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ projected_score: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class RealmScorerOutput(ModelOutput): """ Outputs of [`RealmScorer`] models. Args: relevance_score (`torch.FloatTensor` of shape `(batch_size, config.num_candidates)`): The relevance score of document candidates (before softmax). query_score (`torch.FloatTensor` of shape `(batch_size, config.retriever_proj_size)`): Query score derived from the query embedder. candidate_score (`torch.FloatTensor` of shape `(batch_size, config.num_candidates, config.retriever_proj_size)`): Candidate score derived from the embedder. """ relevance_score: torch.FloatTensor = None query_score: torch.FloatTensor = None candidate_score: torch.FloatTensor = None @dataclass class RealmReaderOutput(ModelOutput): """ Outputs of [`RealmReader`] models. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `start_positions`, `end_positions`, `has_answers` are provided): Total loss. retriever_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `start_positions`, `end_positions`, `has_answers` are provided): Retriever loss. reader_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `start_positions`, `end_positions`, `has_answers` are provided): Reader loss. retriever_correct (`torch.BoolTensor` of shape `(config.searcher_beam_size,)`, *optional*): Whether or not an evidence block contains answer. reader_correct (`torch.BoolTensor` of shape `(config.reader_beam_size, num_candidates)`, *optional*): Whether or not a span candidate contains answer. block_idx (`torch.LongTensor` of shape `()`): The index of the retrieved evidence block in which the predicted answer is most likely. candidate (`torch.LongTensor` of shape `()`): The index of the retrieved span candidates in which the predicted answer is most likely. start_pos (`torch.IntTensor` of shape `()`): Predicted answer starting position in *RealmReader*'s inputs. end_pos (`torch.IntTensor` of shape `()`): Predicted answer ending position in *RealmReader*'s inputs. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: torch.FloatTensor = None retriever_loss: torch.FloatTensor = None reader_loss: torch.FloatTensor = None retriever_correct: torch.BoolTensor = None reader_correct: torch.BoolTensor = None block_idx: torch.LongTensor = None candidate: torch.LongTensor = None start_pos: torch.int32 = None end_pos: torch.int32 = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class RealmForOpenQAOutput(ModelOutput): """ Outputs of [`RealmForOpenQA`] models. Args: reader_output (`dict`): Reader output. predicted_answer_ids (`torch.LongTensor` of shape `(answer_sequence_length)`): Predicted answer ids. """ reader_output: dict = None predicted_answer_ids: torch.LongTensor = None class RealmPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class RealmLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = RealmPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states class RealmOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = RealmLMPredictionHead(config) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores class RealmScorerProjection(nn.Module): def __init__(self, config): super().__init__() self.predictions = RealmLMPredictionHead(config) self.dense = nn.Linear(config.hidden_size, config.retriever_proj_size) self.LayerNorm = nn.LayerNorm(config.retriever_proj_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class RealmReaderProjection(nn.Module): def __init__(self, config): super().__init__() self.config = config self.dense_intermediate = nn.Linear(config.hidden_size, config.span_hidden_size * 2) self.dense_output = nn.Linear(config.span_hidden_size, 1) self.layer_normalization = nn.LayerNorm(config.span_hidden_size, eps=config.reader_layer_norm_eps) self.relu = nn.ReLU() def forward(self, hidden_states, block_mask): def span_candidates(masks): """ Generate span candidates. Args: masks: <bool> [num_retrievals, max_sequence_len] Returns: starts: <int32> [num_spans] ends: <int32> [num_spans] span_masks: <int32> [num_retrievals, num_spans] whether spans locate in evidence block. """ _, max_sequence_len = masks.shape def _spans_given_width(width): current_starts = torch.arange(max_sequence_len - width + 1, device=masks.device) current_ends = torch.arange(width - 1, max_sequence_len, device=masks.device) return current_starts, current_ends starts, ends = zip(*(_spans_given_width(w + 1) for w in range(self.config.max_span_width))) # [num_spans] starts = torch.cat(starts, 0) ends = torch.cat(ends, 0) # [num_retrievals, num_spans] start_masks = torch.index_select(masks, dim=-1, index=starts) end_masks = torch.index_select(masks, dim=-1, index=ends) span_masks = start_masks * end_masks return starts, ends, span_masks def mask_to_score(mask, dtype=torch.float32): return (1.0 - mask.type(dtype)) * torch.finfo(dtype).min # [reader_beam_size, max_sequence_len, span_hidden_size * 2] hidden_states = self.dense_intermediate(hidden_states) # [reader_beam_size, max_sequence_len, span_hidden_size] start_projection, end_projection = hidden_states.chunk(2, dim=-1) candidate_starts, candidate_ends, candidate_mask = span_candidates(block_mask) candidate_start_projections = torch.index_select(start_projection, dim=1, index=candidate_starts) candidate_end_projections = torch.index_select(end_projection, dim=1, index=candidate_ends) candidate_hidden = candidate_start_projections + candidate_end_projections # [reader_beam_size, num_candidates, span_hidden_size] candidate_hidden = self.relu(candidate_hidden) # [reader_beam_size, num_candidates, span_hidden_size] candidate_hidden = self.layer_normalization(candidate_hidden) # [reader_beam_size, num_candidates] reader_logits = self.dense_output(candidate_hidden).squeeze(-1) # [reader_beam_size, num_candidates] reader_logits += mask_to_score(candidate_mask, dtype=reader_logits.dtype) return reader_logits, candidate_starts, candidate_ends REALM_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RealmConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ REALM_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class RealmPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = RealmConfig load_tf_weights = load_tf_weights_in_realm base_model_prefix = "realm" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _flatten_inputs(self, *inputs): """Flatten inputs' shape to (-1, input_shape[-1])""" flattened_inputs = [] for tensor in inputs: if tensor is None: flattened_inputs.append(None) else: input_shape = tensor.shape if len(input_shape) > 2: tensor = tensor.view((-1, input_shape[-1])) flattened_inputs.append(tensor) return flattened_inputs class RealmBertModel(RealmPreTrainedModel): """ Same as the original BertModel but remove docstrings. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = RealmEmbeddings(config) self.encoder = RealmEncoder(config) self.pooler = RealmPooler(config) if add_pooling_layer else None # Weights initialization is mostly managed by other Realm models, # but we also have them initialized here to keep a consistency. self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( "The embedder of REALM outputting projected score that will be used to calculate relevance score.", REALM_START_DOCSTRING, ) class RealmEmbedder(RealmPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.realm = RealmBertModel(self.config) self.cls = RealmScorerProjection(self.config) self.post_init() def get_input_embeddings(self): return self.realm.embeddings.word_embeddings def set_input_embeddings(self, value): self.realm.embeddings.word_embeddings = value @add_start_docstrings_to_model_forward(REALM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=RealmEmbedderOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, RealmEmbedderOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, RealmEmbedder >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/realm-cc-news-pretrained-embedder") >>> model = RealmEmbedder.from_pretrained("google/realm-cc-news-pretrained-embedder") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> projected_score = outputs.projected_score ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict realm_outputs = self.realm( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # [batch_size, hidden_size] pooler_output = realm_outputs[1] # [batch_size, retriever_proj_size] projected_score = self.cls(pooler_output) if not return_dict: return (projected_score,) + realm_outputs[2:4] else: return RealmEmbedderOutput( projected_score=projected_score, hidden_states=realm_outputs.hidden_states, attentions=realm_outputs.attentions, ) @add_start_docstrings( "The scorer of REALM outputting relevance scores representing the score of document candidates (before softmax).", REALM_START_DOCSTRING, ) class RealmScorer(RealmPreTrainedModel): r""" Args: query_embedder ([`RealmEmbedder`]): Embedder for input sequences. If not specified, it will use the same embedder as candidate sequences. """ def __init__(self, config, query_embedder=None): super().__init__(config) self.embedder = RealmEmbedder(self.config) self.query_embedder = query_embedder if query_embedder is not None else self.embedder self.post_init() @add_start_docstrings_to_model_forward(REALM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=RealmScorerOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, candidate_input_ids: Optional[torch.LongTensor] = None, candidate_attention_mask: Optional[torch.FloatTensor] = None, candidate_token_type_ids: Optional[torch.LongTensor] = None, candidate_inputs_embeds: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, RealmScorerOutput]: r""" candidate_input_ids (`torch.LongTensor` of shape `(batch_size, num_candidates, sequence_length)`): Indices of candidate input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) candidate_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_candidates, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) candidate_token_type_ids (`torch.LongTensor` of shape `(batch_size, num_candidates, sequence_length)`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) candidate_inputs_embeds (`torch.FloatTensor` of shape `(batch_size * num_candidates, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `candidate_input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *candidate_input_ids* indices into associated vectors than the model's internal embedding lookup matrix. Returns: Example: ```python >>> import torch >>> from transformers import AutoTokenizer, RealmScorer >>> tokenizer = AutoTokenizer.from_pretrained("google/realm-cc-news-pretrained-scorer") >>> model = RealmScorer.from_pretrained("google/realm-cc-news-pretrained-scorer", num_candidates=2) >>> # batch_size = 2, num_candidates = 2 >>> input_texts = ["How are you?", "What is the item in the picture?"] >>> candidates_texts = [["Hello world!", "Nice to meet you!"], ["A cute cat.", "An adorable dog."]] >>> inputs = tokenizer(input_texts, return_tensors="pt") >>> candidates_inputs = tokenizer.batch_encode_candidates(candidates_texts, max_length=10, return_tensors="pt") >>> outputs = model( ... **inputs, ... candidate_input_ids=candidates_inputs.input_ids, ... candidate_attention_mask=candidates_inputs.attention_mask, ... candidate_token_type_ids=candidates_inputs.token_type_ids, ... ) >>> relevance_score = outputs.relevance_score ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None and inputs_embeds is None: raise ValueError("You have to specify either input_ids or input_embeds.") if candidate_input_ids is None and candidate_inputs_embeds is None: raise ValueError("You have to specify either candidate_input_ids or candidate_inputs_embeds.") query_outputs = self.query_embedder( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # [batch_size * num_candidates, candidate_seq_len] (flattened_input_ids, flattened_attention_mask, flattened_token_type_ids) = self._flatten_inputs( candidate_input_ids, candidate_attention_mask, candidate_token_type_ids ) candidate_outputs = self.embedder( flattened_input_ids, attention_mask=flattened_attention_mask, token_type_ids=flattened_token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=candidate_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # [batch_size, retriever_proj_size] query_score = query_outputs[0] # [batch_size * num_candidates, retriever_proj_size] candidate_score = candidate_outputs[0] # [batch_size, num_candidates, retriever_proj_size] candidate_score = candidate_score.view(-1, self.config.num_candidates, self.config.retriever_proj_size) # [batch_size, num_candidates] relevance_score = torch.einsum("bd,bnd->bn", query_score, candidate_score) if not return_dict: return relevance_score, query_score, candidate_score return RealmScorerOutput( relevance_score=relevance_score, query_score=query_score, candidate_score=candidate_score ) @add_start_docstrings( "The knowledge-augmented encoder of REALM outputting masked language model logits and marginal log-likelihood" " loss.", REALM_START_DOCSTRING, ) class RealmKnowledgeAugEncoder(RealmPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder"] def __init__(self, config): super().__init__(config) self.realm = RealmBertModel(self.config) self.cls = RealmOnlyMLMHead(self.config) self.post_init() def get_input_embeddings(self): return self.realm.embeddings.word_embeddings def set_input_embeddings(self, value): self.realm.embeddings.word_embeddings = value def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward( REALM_INPUTS_DOCSTRING.format("batch_size, num_candidates, sequence_length") ) @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, relevance_score: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, mlm_mask: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" relevance_score (`torch.FloatTensor` of shape `(batch_size, num_candidates)`, *optional*): Relevance score derived from RealmScorer, must be specified if you want to compute the masked language modeling loss. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` mlm_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid calculating joint loss on certain positions. If not specified, the loss will not be masked. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. Returns: Example: ```python >>> import torch >>> from transformers import AutoTokenizer, RealmKnowledgeAugEncoder >>> tokenizer = AutoTokenizer.from_pretrained("google/realm-cc-news-pretrained-encoder") >>> model = RealmKnowledgeAugEncoder.from_pretrained( ... "google/realm-cc-news-pretrained-encoder", num_candidates=2 ... ) >>> # batch_size = 2, num_candidates = 2 >>> text = [["Hello world!", "Nice to meet you!"], ["The cute cat.", "The adorable dog."]] >>> inputs = tokenizer.batch_encode_candidates(text, max_length=10, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict (flattened_input_ids, flattened_attention_mask, flattened_token_type_ids) = self._flatten_inputs( input_ids, attention_mask, token_type_ids ) joint_outputs = self.realm( flattened_input_ids, attention_mask=flattened_attention_mask, token_type_ids=flattened_token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # [batch_size * num_candidates, joint_seq_len, hidden_size] joint_output = joint_outputs[0] # [batch_size * num_candidates, joint_seq_len, vocab_size] prediction_scores = self.cls(joint_output) # [batch_size, num_candidates] candidate_score = relevance_score masked_lm_loss = None if labels is not None: if candidate_score is None: raise ValueError( "You have to specify `relevance_score` when `labels` is specified in order to compute loss." ) batch_size, seq_length = labels.size() if mlm_mask is None: mlm_mask = torch.ones_like(labels, dtype=torch.float32) else: mlm_mask = mlm_mask.type(torch.float32) # Compute marginal log-likelihood loss_fct = CrossEntropyLoss(reduction="none") # -100 index = padding token # [batch_size * num_candidates * joint_seq_len, vocab_size] mlm_logits = prediction_scores.view(-1, self.config.vocab_size) # [batch_size * num_candidates * joint_seq_len] mlm_targets = labels.tile(1, self.config.num_candidates).view(-1) # [batch_size, num_candidates, joint_seq_len] masked_lm_log_prob = -loss_fct(mlm_logits, mlm_targets).view( batch_size, self.config.num_candidates, seq_length ) # [batch_size, num_candidates, 1] candidate_log_prob = candidate_score.log_softmax(-1).unsqueeze(-1) # [batch_size, num_candidates, joint_seq_len] joint_gold_log_prob = candidate_log_prob + masked_lm_log_prob # [batch_size, joint_seq_len] marginal_gold_log_probs = joint_gold_log_prob.logsumexp(1) # [] masked_lm_loss = -torch.nansum(torch.sum(marginal_gold_log_probs * mlm_mask) / torch.sum(mlm_mask)) if not return_dict: output = (prediction_scores,) + joint_outputs[2:4] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=joint_outputs.hidden_states, attentions=joint_outputs.attentions, ) @add_start_docstrings("The reader of REALM.", REALM_START_DOCSTRING) class RealmReader(RealmPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.realm = RealmBertModel(config) self.cls = RealmOnlyMLMHead(config) self.qa_outputs = RealmReaderProjection(config) self.post_init() @add_start_docstrings_to_model_forward(REALM_INPUTS_DOCSTRING.format("reader_beam_size, sequence_length")) @replace_return_docstrings(output_type=RealmReaderOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, relevance_score: Optional[torch.FloatTensor] = None, block_mask: Optional[torch.BoolTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, has_answers: Optional[torch.BoolTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, RealmReaderOutput]: r""" relevance_score (`torch.FloatTensor` of shape `(searcher_beam_size,)`, *optional*): Relevance score, which must be specified if you want to compute the logits and marginal log loss. block_mask (`torch.BoolTensor` of shape `(searcher_beam_size, sequence_length)`, *optional*): The mask of the evidence block, which must be specified if you want to compute the logits and marginal log loss. start_positions (`torch.LongTensor` of shape `(searcher_beam_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(searcher_beam_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. has_answers (`torch.BoolTensor` of shape `(searcher_beam_size,)`, *optional*): Whether or not the evidence block has answer(s). Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if relevance_score is None: raise ValueError("You have to specify `relevance_score` to calculate logits and loss.") if block_mask is None: raise ValueError("You have to specify `block_mask` to separate question block and evidence block.") if token_type_ids.size(1) < self.config.max_span_width: raise ValueError("The input sequence length must be greater than or equal to config.max_span_width.") outputs = self.realm( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # [reader_beam_size, joint_seq_len, hidden_size] sequence_output = outputs[0] # [reader_beam_size, num_candidates], [num_candidates], [num_candidates] reader_logits, candidate_starts, candidate_ends = self.qa_outputs( sequence_output, block_mask[0 : self.config.reader_beam_size] ) # [searcher_beam_size, 1] retriever_logits = torch.unsqueeze(relevance_score[0 : self.config.reader_beam_size], -1) # [reader_beam_size, num_candidates] reader_logits += retriever_logits # [] predicted_block_index = torch.argmax(torch.max(reader_logits, dim=1).values) # [] predicted_candidate = torch.argmax(torch.max(reader_logits, dim=0).values) # [1] predicted_start = torch.index_select(candidate_starts, dim=0, index=predicted_candidate) # [1] predicted_end = torch.index_select(candidate_ends, dim=0, index=predicted_candidate) total_loss = None retriever_loss = None reader_loss = None retriever_correct = None reader_correct = None if start_positions is not None and end_positions is not None and has_answers is not None: def compute_correct_candidates(candidate_starts, candidate_ends, gold_starts, gold_ends): """Compute correct span.""" # [reader_beam_size, num_answers, num_candidates] is_gold_start = torch.eq( torch.unsqueeze(torch.unsqueeze(candidate_starts, 0), 0), torch.unsqueeze(gold_starts, -1) ) is_gold_end = torch.eq( torch.unsqueeze(torch.unsqueeze(candidate_ends, 0), 0), torch.unsqueeze(gold_ends, -1) ) # [reader_beam_size, num_candidates] return torch.any(torch.logical_and(is_gold_start, is_gold_end), 1) def marginal_log_loss(logits, is_correct): """Loss based on the negative marginal log-likelihood.""" def mask_to_score(mask, dtype=torch.float32): return (1.0 - mask.type(dtype)) * torch.finfo(dtype).min # [] log_numerator = torch.logsumexp(logits + mask_to_score(is_correct, dtype=logits.dtype), dim=-1) log_denominator = torch.logsumexp(logits, dim=-1) return log_denominator - log_numerator # sometimes the start/end positions are outside our model inputs, we ignore these terms # `-1` is reserved for no answer. ignored_index = sequence_output.size(1) start_positions = start_positions.clamp(-1, ignored_index) end_positions = end_positions.clamp(-1, ignored_index) retriever_correct = has_answers any_retriever_correct = torch.any(retriever_correct) reader_correct = compute_correct_candidates( candidate_starts=candidate_starts, candidate_ends=candidate_ends, gold_starts=start_positions[0 : self.config.reader_beam_size], gold_ends=end_positions[0 : self.config.reader_beam_size], ) any_reader_correct = torch.any(reader_correct) retriever_loss = marginal_log_loss(relevance_score, retriever_correct) reader_loss = marginal_log_loss(reader_logits.view(-1), reader_correct.view(-1)) retriever_loss *= any_retriever_correct.type(torch.float32) reader_loss *= any_reader_correct.type(torch.float32) total_loss = (retriever_loss + reader_loss).mean() if not return_dict: output = (predicted_block_index, predicted_candidate, predicted_start, predicted_end) + outputs[2:] return ( ((total_loss, retriever_loss, reader_loss, retriever_correct, reader_correct) + output) if total_loss is not None else output ) return RealmReaderOutput( loss=total_loss, retriever_loss=retriever_loss, reader_loss=reader_loss, retriever_correct=retriever_correct, reader_correct=reader_correct, block_idx=predicted_block_index, candidate=predicted_candidate, start_pos=predicted_start, end_pos=predicted_end, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) REALM_FOR_OPEN_QA_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token (should not be used in this model by design). [What are token type IDs?](../glossary#token-type-ids) answer_ids (`list` of shape `(num_answers, answer_length)`, *optional*): Answer ids for computing the marginal log-likelihood loss. Indices should be in `[-1, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-1` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "`RealmForOpenQA` for end-to-end open domain question answering.", REALM_START_DOCSTRING, ) class RealmForOpenQA(RealmPreTrainedModel): def __init__(self, config, retriever=None): super().__init__(config) self.embedder = RealmEmbedder(config) self.reader = RealmReader(config) self.register_buffer( "block_emb", torch.zeros(()).new_empty( size=(config.num_block_records, config.retriever_proj_size), dtype=torch.float32, device=torch.device("cpu"), ), ) self.retriever = retriever self.post_init() @property def searcher_beam_size(self): if self.training: return self.config.searcher_beam_size return self.config.reader_beam_size def block_embedding_to(self, device): """Send `self.block_emb` to a specific device. Args: device (`str` or `torch.device`): The device to which `self.block_emb` will be sent. """ self.block_emb = self.block_emb.to(device) @add_start_docstrings_to_model_forward(REALM_FOR_OPEN_QA_DOCSTRING.format("1, sequence_length")) @replace_return_docstrings(output_type=RealmForOpenQAOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor], attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, answer_ids: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, RealmForOpenQAOutput]: r""" Returns: Example: ```python >>> import torch >>> from transformers import RealmForOpenQA, RealmRetriever, AutoTokenizer >>> retriever = RealmRetriever.from_pretrained("google/realm-orqa-nq-openqa") >>> tokenizer = AutoTokenizer.from_pretrained("google/realm-orqa-nq-openqa") >>> model = RealmForOpenQA.from_pretrained("google/realm-orqa-nq-openqa", retriever=retriever) >>> question = "Who is the pioneer in modern computer science?" >>> question_ids = tokenizer([question], return_tensors="pt") >>> answer_ids = tokenizer( ... ["alan mathison turing"], ... add_special_tokens=False, ... return_token_type_ids=False, ... return_attention_mask=False, ... ).input_ids >>> reader_output, predicted_answer_ids = model(**question_ids, answer_ids=answer_ids, return_dict=False) >>> predicted_answer = tokenizer.decode(predicted_answer_ids) >>> loss = reader_output.loss ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and input_ids.shape[0] != 1: raise ValueError("The batch_size of the inputs must be 1.") question_outputs = self.embedder( input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, return_dict=True ) # [1, projection_size] question_projection = question_outputs[0] # CPU computation starts. # [1, block_emb_size] batch_scores = torch.einsum("BD,QD->QB", self.block_emb, question_projection.to(self.block_emb.device)) # [1, searcher_beam_size] _, retrieved_block_ids = torch.topk(batch_scores, k=self.searcher_beam_size, dim=-1) # [searcher_beam_size] retrieved_block_ids = retrieved_block_ids.squeeze() # [searcher_beam_size, projection_size] retrieved_block_emb = torch.index_select(self.block_emb, dim=0, index=retrieved_block_ids) # CPU computation ends. # Retrieve possible answers has_answers, start_pos, end_pos, concat_inputs = self.retriever( retrieved_block_ids.cpu(), input_ids, answer_ids, max_length=self.config.reader_seq_len ) concat_inputs = concat_inputs.to(self.reader.device) block_mask = concat_inputs.special_tokens_mask.type(torch.bool).to(device=self.reader.device) block_mask.logical_not_().logical_and_(concat_inputs.token_type_ids.type(torch.bool)) if has_answers is not None: has_answers = torch.tensor(has_answers, dtype=torch.bool, device=self.reader.device) start_pos = torch.tensor(start_pos, dtype=torch.long, device=self.reader.device) end_pos = torch.tensor(end_pos, dtype=torch.long, device=self.reader.device) # [searcher_beam_size] retrieved_logits = torch.einsum( "D,BD->B", question_projection.squeeze(), retrieved_block_emb.to(self.reader.device) ) reader_output = self.reader( input_ids=concat_inputs.input_ids[0 : self.config.reader_beam_size], attention_mask=concat_inputs.attention_mask[0 : self.config.reader_beam_size], token_type_ids=concat_inputs.token_type_ids[0 : self.config.reader_beam_size], relevance_score=retrieved_logits, block_mask=block_mask, has_answers=has_answers, start_positions=start_pos, end_positions=end_pos, return_dict=True, ) predicted_block = concat_inputs.input_ids[reader_output.block_idx] predicted_answer_ids = predicted_block[reader_output.start_pos : reader_output.end_pos + 1] if not return_dict: return reader_output, predicted_answer_ids return RealmForOpenQAOutput( reader_output=reader_output, predicted_answer_ids=predicted_answer_ids, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/realm/tokenization_realm.py
# coding=utf-8 # Copyright 2022 The REALM authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for REALM.""" import collections import os import unicodedata from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace from ...tokenization_utils_base import BatchEncoding from ...utils import PaddingStrategy, logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "google/realm-cc-news-pretrained-embedder": 512, "google/realm-cc-news-pretrained-encoder": 512, "google/realm-cc-news-pretrained-scorer": 512, "google/realm-cc-news-pretrained-openqa": 512, "google/realm-orqa-nq-openqa": 512, "google/realm-orqa-nq-reader": 512, "google/realm-orqa-wq-openqa": 512, "google/realm-orqa-wq-reader": 512, } PRETRAINED_INIT_CONFIGURATION = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens class RealmTokenizer(PreTrainedTokenizer): r""" Construct a REALM tokenizer. [`RealmTokenizer`] is identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation splitting and wordpiece. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. do_basic_tokenize (`bool`, *optional*, defaults to `True`): Whether or not to do basic tokenization before WordPiece. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = RealmTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, ) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) super().__init__( do_lower_case=do_lower_case, do_basic_tokenize=do_basic_tokenize, never_split=never_split, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kwargs, ) @property def do_lower_case(self): return self.basic_tokenizer.do_lower_case @property def vocab_size(self): return len(self.vocab) def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) def _tokenize(self, text): split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): # If the token is part of the never_split set if token in self.basic_tokenizer.never_split: split_tokens.append(token) else: split_tokens += self.wordpiece_tokenizer.tokenize(token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace(" ##", "").strip() return out_string def batch_encode_candidates(self, text, **kwargs): r""" Encode a batch of text or text pair. This method is similar to regular __call__ method but has the following differences: 1. Handle additional num_candidate axis. (batch_size, num_candidates, text) 2. Always pad the sequences to *max_length*. 3. Must specify *max_length* in order to stack packs of candidates into a batch. - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: text (`List[List[str]]`): The batch of sequences to be encoded. Each sequence must be in this format: (batch_size, num_candidates, text). text_pair (`List[List[str]]`, *optional*): The batch of sequences to be encoded. Each sequence must be in this format: (batch_size, num_candidates, text). **kwargs: Keyword arguments of the __call__ method. Returns: [`BatchEncoding`]: Encoded text or text pair. Example: ```python >>> from transformers import RealmTokenizer >>> # batch_size = 2, num_candidates = 2 >>> text = [["Hello world!", "Nice to meet you!"], ["The cute cat.", "The adorable dog."]] >>> tokenizer = RealmTokenizer.from_pretrained("google/realm-cc-news-pretrained-encoder") >>> tokenized_text = tokenizer.batch_encode_candidates(text, max_length=10, return_tensors="pt") ```""" # Always using a fixed sequence length to encode in order to stack candidates into a batch. kwargs["padding"] = PaddingStrategy.MAX_LENGTH batch_text = text batch_text_pair = kwargs.pop("text_pair", None) return_tensors = kwargs.pop("return_tensors", None) output_data = { "input_ids": [], "attention_mask": [], "token_type_ids": [], } for idx, candidate_text in enumerate(batch_text): if batch_text_pair is not None: candidate_text_pair = batch_text_pair[idx] else: candidate_text_pair = None encoded_candidates = super().__call__(candidate_text, candidate_text_pair, return_tensors=None, **kwargs) encoded_input_ids = encoded_candidates.get("input_ids") encoded_attention_mask = encoded_candidates.get("attention_mask") encoded_token_type_ids = encoded_candidates.get("token_type_ids") if encoded_input_ids is not None: output_data["input_ids"].append(encoded_input_ids) if encoded_attention_mask is not None: output_data["attention_mask"].append(encoded_attention_mask) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(encoded_token_type_ids) output_data = {key: item for key, item in output_data.items() if len(item) != 0} return BatchEncoding(output_data, tensor_type=return_tensors) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A REALM sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A REALM sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) class BasicTokenizer(object): """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). """ def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) orig_tokens = whitespace_tokenize(text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if never_split is not None and text in never_split: return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) class WordpieceTokenizer(object): """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/realm/retrieval_realm.py
# coding=utf-8 # Copyright 2022 The REALM authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """REALM Retriever model implementation.""" import os from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ... import AutoTokenizer from ...utils import logging _REALM_BLOCK_RECORDS_FILENAME = "block_records.npy" logger = logging.get_logger(__name__) def convert_tfrecord_to_np(block_records_path: str, num_block_records: int) -> np.ndarray: import tensorflow.compat.v1 as tf blocks_dataset = tf.data.TFRecordDataset(block_records_path, buffer_size=512 * 1024 * 1024) blocks_dataset = blocks_dataset.batch(num_block_records, drop_remainder=True) np_record = next(blocks_dataset.take(1).as_numpy_iterator()) return np_record class ScaNNSearcher: """Note that ScaNNSearcher cannot currently be used within the model. In future versions, it might however be included.""" def __init__( self, db, num_neighbors, dimensions_per_block=2, num_leaves=1000, num_leaves_to_search=100, training_sample_size=100000, ): """Build scann searcher.""" from scann.scann_ops.py.scann_ops_pybind import builder as Builder builder = Builder(db=db, num_neighbors=num_neighbors, distance_measure="dot_product") builder = builder.tree( num_leaves=num_leaves, num_leaves_to_search=num_leaves_to_search, training_sample_size=training_sample_size ) builder = builder.score_ah(dimensions_per_block=dimensions_per_block) self.searcher = builder.build() def search_batched(self, question_projection): retrieved_block_ids, _ = self.searcher.search_batched(question_projection.detach().cpu()) return retrieved_block_ids.astype("int64") class RealmRetriever: """The retriever of REALM outputting the retrieved evidence block and whether the block has answers as well as answer positions." Parameters: block_records (`np.ndarray`): A numpy array which cantains evidence texts. tokenizer ([`RealmTokenizer`]): The tokenizer to encode retrieved texts. """ def __init__(self, block_records, tokenizer): super().__init__() self.block_records = block_records self.tokenizer = tokenizer def __call__(self, retrieved_block_ids, question_input_ids, answer_ids, max_length=None, return_tensors="pt"): retrieved_blocks = np.take(self.block_records, indices=retrieved_block_ids, axis=0) question = self.tokenizer.decode(question_input_ids[0], skip_special_tokens=True) text = [] text_pair = [] for retrieved_block in retrieved_blocks: text.append(question) text_pair.append(retrieved_block.decode()) concat_inputs = self.tokenizer( text, text_pair, padding=True, truncation=True, return_special_tokens_mask=True, max_length=max_length ) concat_inputs_tensors = concat_inputs.convert_to_tensors(return_tensors) if answer_ids is not None: return self.block_has_answer(concat_inputs, answer_ids) + (concat_inputs_tensors,) else: return (None, None, None, concat_inputs_tensors) @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *init_inputs, **kwargs): if os.path.isdir(pretrained_model_name_or_path): block_records_path = os.path.join(pretrained_model_name_or_path, _REALM_BLOCK_RECORDS_FILENAME) else: block_records_path = hf_hub_download( repo_id=pretrained_model_name_or_path, filename=_REALM_BLOCK_RECORDS_FILENAME, **kwargs ) block_records = np.load(block_records_path, allow_pickle=True) tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, *init_inputs, **kwargs) return cls(block_records, tokenizer) def save_pretrained(self, save_directory): # save block records np.save(os.path.join(save_directory, _REALM_BLOCK_RECORDS_FILENAME), self.block_records) # save tokenizer self.tokenizer.save_pretrained(save_directory) def block_has_answer(self, concat_inputs, answer_ids): """check if retrieved_blocks has answers.""" has_answers = [] start_pos = [] end_pos = [] max_answers = 0 for input_id in concat_inputs.input_ids: input_id_list = input_id.tolist() # Check answers between two [SEP] tokens first_sep_idx = input_id_list.index(self.tokenizer.sep_token_id) second_sep_idx = first_sep_idx + 1 + input_id_list[first_sep_idx + 1 :].index(self.tokenizer.sep_token_id) start_pos.append([]) end_pos.append([]) for answer in answer_ids: for idx in range(first_sep_idx + 1, second_sep_idx): if answer[0] == input_id_list[idx]: if input_id_list[idx : idx + len(answer)] == answer: start_pos[-1].append(idx) end_pos[-1].append(idx + len(answer) - 1) if len(start_pos[-1]) == 0: has_answers.append(False) else: has_answers.append(True) if len(start_pos[-1]) > max_answers: max_answers = len(start_pos[-1]) # Pad -1 to max_answers for start_pos_, end_pos_ in zip(start_pos, end_pos): if len(start_pos_) < max_answers: padded = [-1] * (max_answers - len(start_pos_)) start_pos_ += padded end_pos_ += padded return has_answers, start_pos, end_pos
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/encodec/modeling_encodec.py
# coding=utf-8 # Copyright 2023 Meta Platforms, Inc. and affiliates, and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch EnCodec model.""" import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_encodec import EncodecConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "EncodecConfig" ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/encodec_24khz", "facebook/encodec_48khz", # See all EnCodec models at https://huggingface.co/models?filter=encodec ] @dataclass class EncodecOutput(ModelOutput): """ Args: audio_codes (`torch.FloatTensor` of shape `(batch_size, nb_chunks, chunk_length)`, *optional*): Discret code embeddings computed using `model.encode`. audio_values (`torch.FlaotTensor` of shape `(batch_size, sequence_length)`, *optional*) Decoded audio values, obtained using the decoder part of Encodec. """ audio_codes: torch.FloatTensor = None audio_values: torch.FloatTensor = None @dataclass class EncodecEncoderOutput(ModelOutput): """ Args: audio_codes (`torch.FloatTensor` of shape `(batch_size, nb_chunks, chunk_length)`, *optional*): Discret code embeddings computed using `model.encode`. audio_scales (`torch.Tensor` of shape `(batch_size, nb_chunks)`, *optional*): Scaling factor for each `audio_codes` input. This is used to unscale each chunk of audio when decoding. """ audio_codes: torch.FloatTensor = None audio_scales: torch.FloatTensor = None @dataclass class EncodecDecoderOutput(ModelOutput): """ Args: audio_values (`torch.FloatTensor` of shape `(batch_size, segment_length)`, *optional*): Decoded audio values, obtained using the decoder part of Encodec. """ audio_values: torch.FloatTensor = None class EncodecConv1d(nn.Module): """Conv1d with asymmetric or causal padding and normalization.""" def __init__( self, config, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, dilation: int = 1 ): super().__init__() self.causal = config.use_causal_conv self.pad_mode = config.pad_mode self.norm_type = config.norm_type if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}' ) # warn user on unusual setup between dilation and stride if stride > 1 and dilation > 1: logger.warning( "EncodecConv1d has been initialized with stride > 1 and dilation > 1" f" (kernel_size={kernel_size} stride={stride}, dilation={dilation})." ) self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, dilation=dilation) if self.norm_type == "weight_norm": self.conv = nn.utils.weight_norm(self.conv) elif self.norm_type == "time_group_norm": self.norm = nn.GroupNorm(1, out_channels) @staticmethod def _get_extra_padding_for_conv1d( hidden_states: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0 ) -> int: """See `pad_for_conv1d`.""" length = hidden_states.shape[-1] n_frames = (length - kernel_size + padding_total) / stride + 1 ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total) return ideal_length - length @staticmethod def _pad1d(hidden_states: torch.Tensor, paddings: Tuple[int, int], mode: str = "zero", value: float = 0.0): """Tiny wrapper around torch.nn.functional.pad, just to allow for reflect padding on small input. If this is the case, we insert extra 0 padding to the right before the reflection happens. """ length = hidden_states.shape[-1] padding_left, padding_right = paddings if not mode == "reflect": return nn.functional.pad(hidden_states, paddings, mode, value) max_pad = max(padding_left, padding_right) extra_pad = 0 if length <= max_pad: extra_pad = max_pad - length + 1 hidden_states = nn.functional.pad(hidden_states, (0, extra_pad)) padded = nn.functional.pad(hidden_states, paddings, mode, value) end = padded.shape[-1] - extra_pad return padded[..., :end] def forward(self, hidden_states): kernel_size = self.conv.kernel_size[0] stride = self.conv.stride[0] dilation = self.conv.dilation[0] kernel_size = (kernel_size - 1) * dilation + 1 # effective kernel size with dilations padding_total = kernel_size - stride extra_padding = self._get_extra_padding_for_conv1d(hidden_states, kernel_size, stride, padding_total) if self.causal: # Left padding for causal hidden_states = self._pad1d(hidden_states, (padding_total, extra_padding), mode=self.pad_mode) else: # Asymmetric padding required for odd strides padding_right = padding_total // 2 padding_left = padding_total - padding_right hidden_states = self._pad1d( hidden_states, (padding_left, padding_right + extra_padding), mode=self.pad_mode ) hidden_states = self.conv(hidden_states) if self.norm_type == "time_group_norm": hidden_states = self.norm(hidden_states) return hidden_states class EncodecConvTranspose1d(nn.Module): """ConvTranspose1d with asymmetric or causal padding and normalization.""" def __init__(self, config, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1): super().__init__() self.causal = config.use_causal_conv self.trim_right_ratio = config.trim_right_ratio self.norm_type = config.norm_type if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}' ) self.conv = nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride) if config.norm_type == "weight_norm": self.conv = nn.utils.weight_norm(self.conv) elif config.norm_type == "time_group_norm": self.norm = nn.GroupNorm(1, out_channels) if not (self.causal or self.trim_right_ratio == 1.0): raise ValueError("`trim_right_ratio` != 1.0 only makes sense for causal convolutions") def forward(self, hidden_states): kernel_size = self.conv.kernel_size[0] stride = self.conv.stride[0] padding_total = kernel_size - stride hidden_states = self.conv(hidden_states) if self.norm_type == "time_group_norm": hidden_states = self.norm(hidden_states) # We will only trim fixed padding. Extra padding from `pad_for_conv1d` would be # removed at the very end, when keeping only the right length for the output, # as removing it here would require also passing the length at the matching layer # in the encoder. if self.causal: # Trim the padding on the right according to the specified ratio # if trim_right_ratio = 1.0, trim everything from right padding_right = math.ceil(padding_total * self.trim_right_ratio) else: # Asymmetric padding required for odd strides padding_right = padding_total // 2 padding_left = padding_total - padding_right # unpad end = hidden_states.shape[-1] - padding_right hidden_states = hidden_states[..., padding_left:end] return hidden_states class EncodecLSTM(nn.Module): """ LSTM without worrying about the hidden state, nor the layout of the data. Expects input as convolutional layout. """ def __init__(self, config, dimension): super().__init__() self.lstm = nn.LSTM(dimension, dimension, config.num_lstm_layers) def forward(self, hidden_states): hidden_states = hidden_states.permute(2, 0, 1) hidden_states = self.lstm(hidden_states)[0] + hidden_states hidden_states = hidden_states.permute(1, 2, 0) return hidden_states class EncodecResnetBlock(nn.Module): """ Residual block from SEANet model as used by EnCodec. """ def __init__(self, config: EncodecConfig, dim: int, dilations: List[int]): super().__init__() kernel_sizes = (config.residual_kernel_size, 1) if len(kernel_sizes) != len(dilations): raise ValueError("Number of kernel sizes should match number of dilations") hidden = dim // config.compress block = [] for i, (kernel_size, dilation) in enumerate(zip(kernel_sizes, dilations)): in_chs = dim if i == 0 else hidden out_chs = dim if i == len(kernel_sizes) - 1 else hidden block += [nn.ELU()] block += [EncodecConv1d(config, in_chs, out_chs, kernel_size, dilation=dilation)] self.block = nn.ModuleList(block) if config.use_conv_shortcut: self.shortcut = EncodecConv1d(config, dim, dim, kernel_size=1) else: self.shortcut = nn.Identity() def forward(self, hidden_states): residual = hidden_states for layer in self.block: hidden_states = layer(hidden_states) return self.shortcut(residual) + hidden_states class EncodecEncoder(nn.Module): """SEANet encoder as used by EnCodec.""" def __init__(self, config: EncodecConfig): super().__init__() model = [EncodecConv1d(config, config.audio_channels, config.num_filters, config.kernel_size)] scaling = 1 # Downsample to raw audio scale for ratio in reversed(config.upsampling_ratios): current_scale = scaling * config.num_filters # Add residual layers for j in range(config.num_residual_layers): model += [EncodecResnetBlock(config, current_scale, [config.dilation_growth_rate**j, 1])] # Add downsampling layers model += [nn.ELU()] model += [EncodecConv1d(config, current_scale, current_scale * 2, kernel_size=ratio * 2, stride=ratio)] scaling *= 2 model += [EncodecLSTM(config, scaling * config.num_filters)] model += [nn.ELU()] model += [EncodecConv1d(config, scaling * config.num_filters, config.hidden_size, config.last_kernel_size)] self.layers = nn.ModuleList(model) def forward(self, hidden_states): for layer in self.layers: hidden_states = layer(hidden_states) return hidden_states class EncodecDecoder(nn.Module): """SEANet decoder as used by EnCodec.""" def __init__(self, config: EncodecConfig): super().__init__() scaling = int(2 ** len(config.upsampling_ratios)) model = [EncodecConv1d(config, config.hidden_size, scaling * config.num_filters, config.kernel_size)] model += [EncodecLSTM(config, scaling * config.num_filters)] # Upsample to raw audio scale for ratio in config.upsampling_ratios: current_scale = scaling * config.num_filters # Add upsampling layers model += [nn.ELU()] model += [ EncodecConvTranspose1d(config, current_scale, current_scale // 2, kernel_size=ratio * 2, stride=ratio) ] # Add residual layers for j in range(config.num_residual_layers): model += [EncodecResnetBlock(config, current_scale // 2, (config.dilation_growth_rate**j, 1))] scaling //= 2 # Add final layers model += [nn.ELU()] model += [EncodecConv1d(config, config.num_filters, config.audio_channels, config.last_kernel_size)] self.layers = nn.ModuleList(model) def forward(self, hidden_states): for layer in self.layers: hidden_states = layer(hidden_states) return hidden_states class EncodecEuclideanCodebook(nn.Module): """Codebook with Euclidean distance.""" def __init__(self, config: EncodecConfig): super().__init__() embed = torch.zeros(config.codebook_size, config.codebook_dim) self.codebook_size = config.codebook_size self.register_buffer("inited", torch.Tensor([True])) self.register_buffer("cluster_size", torch.zeros(config.codebook_size)) self.register_buffer("embed", embed) self.register_buffer("embed_avg", embed.clone()) def quantize(self, hidden_states): embed = self.embed.t() scaled_states = hidden_states.pow(2).sum(1, keepdim=True) dist = -(scaled_states - 2 * hidden_states @ embed + embed.pow(2).sum(0, keepdim=True)) embed_ind = dist.max(dim=-1).indices return embed_ind def encode(self, hidden_states): shape = hidden_states.shape # pre-process hidden_states = hidden_states.reshape((-1, shape[-1])) # quantize embed_ind = self.quantize(hidden_states) # post-process embed_ind = embed_ind.view(*shape[:-1]) return embed_ind def decode(self, embed_ind): quantize = nn.functional.embedding(embed_ind, self.embed) return quantize class EncodecVectorQuantization(nn.Module): """ Vector quantization implementation. Currently supports only euclidean distance. """ def __init__(self, config: EncodecConfig): super().__init__() self.codebook = EncodecEuclideanCodebook(config) def encode(self, hidden_states): hidden_states = hidden_states.permute(0, 2, 1) embed_in = self.codebook.encode(hidden_states) return embed_in def decode(self, embed_ind): quantize = self.codebook.decode(embed_ind) quantize = quantize.permute(0, 2, 1) return quantize class EncodecResidualVectorQuantizer(nn.Module): """Residual Vector Quantizer.""" def __init__(self, config: EncodecConfig): super().__init__() self.codebook_size = config.codebook_size self.frame_rate = config.frame_rate self.num_quantizers = config.num_quantizers self.layers = nn.ModuleList([EncodecVectorQuantization(config) for _ in range(config.num_quantizers)]) def get_num_quantizers_for_bandwidth(self, bandwidth: Optional[float] = None) -> int: """Return num_quantizers based on specified target bandwidth.""" bw_per_q = math.log2(self.codebook_size) * self.frame_rate num_quantizers = self.num_quantizers if bandwidth is not None and bandwidth > 0.0: num_quantizers = int(max(1, math.floor(bandwidth * 1000 / bw_per_q))) return num_quantizers def encode(self, embeddings: torch.Tensor, bandwidth: Optional[float] = None) -> torch.Tensor: """ Encode a given input tensor with the specified frame rate at the given bandwidth. The RVQ encode method sets the appropriate number of quantizers to use and returns indices for each quantizer. """ num_quantizers = self.get_num_quantizers_for_bandwidth(bandwidth) residual = embeddings all_indices = [] for layer in self.layers[:num_quantizers]: indices = layer.encode(residual) quantized = layer.decode(indices) residual = residual - quantized all_indices.append(indices) out_indices = torch.stack(all_indices) return out_indices def decode(self, codes: torch.Tensor) -> torch.Tensor: """Decode the given codes to the quantized representation.""" quantized_out = torch.tensor(0.0, device=codes.device) for i, indices in enumerate(codes): layer = self.layers[i] quantized = layer.decode(indices) quantized_out = quantized_out + quantized return quantized_out class EncodecPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = EncodecConfig base_model_prefix = "encodec" main_input_name = "input_values" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LSTM): for name, param in module.named_parameters(): if "weight" in name: nn.init.xavier_uniform_(param) elif "bias" in name: nn.init.constant_(param, 0.0) ENCODEC_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`EncodecConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ ENCODEC_INPUTS_DOCSTRING = r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, channels, sequence_length)`, *optional*): Raw audio input converted to Float and padded to the approriate length in order to be encoded using chunks of length self.chunk_length and a stride of `config.chunk_stride`. padding_mask (`torch.BoolTensor` of shape `(batch_size, channels, sequence_length)`, *optional*): Mask to avoid computing scaling factors on padding token indices (can we avoid computing conv on these+). Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. <Tip warning={true}> `padding_mask` should always be passed, unless the input was truncated or not padded. This is because in order to process tensors effectively, the input audio should be padded so that `input_length % stride = step` with `step = chunk_length-stride`. This ensures that all chunks are of the same shape </Tip> bandwidth (`float`, *optional*): The target bandwidth. Must be one of `config.target_bandwidths`. If `None`, uses the smallest possible bandwidth. bandwidth is represented as a thousandth of what it is, e.g. 6kbps bandwidth is represented as `bandwidth == 6.0` audio_codes (`torch.FloatTensor` of shape `(batch_size, nb_chunks, chunk_length)`, *optional*): Discret code embeddings computed using `model.encode`. audio_scales (`torch.Tensor` of shape `(batch_size, nb_chunks)`, *optional*): Scaling factor for each `audio_codes` input. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The EnCodec neural audio codec model.", ENCODEC_START_DOCSTRING, ) class EncodecModel(EncodecPreTrainedModel): def __init__(self, config: EncodecConfig): super().__init__(config) self.config = config self.encoder = EncodecEncoder(config) self.decoder = EncodecDecoder(config) self.quantizer = EncodecResidualVectorQuantizer(config) self.bits_per_codebook = int(math.log2(self.config.codebook_size)) if 2**self.bits_per_codebook != self.config.codebook_size: raise ValueError("The codebook_size must be a power of 2.") # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def _encode_frame( self, input_values: torch.Tensor, bandwidth: float, padding_mask: int ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """ Encodes the given input using the underlying VQVAE. If `config.normalize` is set to `True` the input is first normalized. The padding mask is required to compute the correct scale. """ length = input_values.shape[-1] duration = length / self.config.sampling_rate if self.config.chunk_length_s is not None and duration > 1e-5 + self.config.chunk_length_s: raise RuntimeError(f"Duration of frame ({duration}) is longer than chunk {self.config.chunk_length_s}") scale = None if self.config.normalize: # if the padding is non zero input_values = input_values * padding_mask mono = torch.sum(input_values, 1, keepdim=True) / input_values.shape[1] scale = mono.pow(2).mean(dim=-1, keepdim=True).sqrt() + 1e-8 input_values = input_values / scale embeddings = self.encoder(input_values) codes = self.quantizer.encode(embeddings, bandwidth) codes = codes.transpose(0, 1) return codes, scale def encode( self, input_values: torch.Tensor, padding_mask: torch.Tensor = None, bandwidth: Optional[float] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor, Optional[torch.Tensor]], EncodecEncoderOutput]: """ Encodes the input audio waveform into discrete codes. Args: input_values (`torch.Tensor` of shape `(batch_size, channels, sequence_length)`): Float values of the input audio waveform. padding_mask (`torch.Tensor` of shape `(batch_size, channels, sequence_length)`): Padding mask used to pad the `input_values`. bandwidth (`float`, *optional*): The target bandwidth. Must be one of `config.target_bandwidths`. If `None`, uses the smallest possible bandwidth. bandwidth is represented as a thousandth of what it is, e.g. 6kbps bandwidth is represented as bandwidth == 6.0 Returns: A list of frames containing the discrete encoded codes for the input audio waveform, along with rescaling factors for each chunk when `normalize` is True. Each frames is a tuple `(codebook, scale)`, with `codebook` of shape `[batch_size, num_codebooks, frames]`. """ return_dict = return_dict if return_dict is not None else self.config.return_dict if bandwidth is None: bandwidth = self.config.target_bandwidths[0] if bandwidth not in self.config.target_bandwidths: raise ValueError( f"This model doesn't support the bandwidth {bandwidth}. " f"Select one of {self.config.target_bandwidths}." ) _, channels, input_length = input_values.shape if channels < 1 or channels > 2: raise ValueError(f"Number of audio channels must be 1 or 2, but got {channels}") chunk_length = self.config.chunk_length if chunk_length is None: chunk_length = input_length stride = input_length else: stride = self.config.chunk_stride if padding_mask is None: padding_mask = torch.ones_like(input_values).bool() encoded_frames = [] scales = [] step = chunk_length - stride if (input_length % stride) - step != 0: raise ValueError( "The input length is not properly padded for batched chunked decoding. Make sure to pad the input correctly." ) for offset in range(0, input_length - step, stride): mask = padding_mask[..., offset : offset + chunk_length].bool() frame = input_values[:, :, offset : offset + chunk_length] encoded_frame, scale = self._encode_frame(frame, bandwidth, mask) encoded_frames.append(encoded_frame) scales.append(scale) encoded_frames = torch.stack(encoded_frames) if not return_dict: return (encoded_frames, scales) return EncodecEncoderOutput(encoded_frames, scales) @staticmethod def _linear_overlap_add(frames: List[torch.Tensor], stride: int): # Generic overlap add, with linear fade-in/fade-out, supporting complex scenario # e.g., more than 2 frames per position. # The core idea is to use a weight function that is a triangle, # with a maximum value at the middle of the chunk. # We use this weighting when summing the frames, and divide by the sum of weights # for each positions at the end. Thus: # - if a frame is the only one to cover a position, the weighting is a no-op. # - if 2 frames cover a position: # ... ... # / \/ \ # / /\ \ # S T , i.e. S offset of second frame starts, T end of first frame. # Then the weight function for each one is: (t - S), (T - t), with `t` a given offset. # After the final normalization, the weight of the second frame at position `t` is # (t - S) / (t - S + (T - t)) = (t - S) / (T - S), which is exactly what we want. # # - if more than 2 frames overlap at a given point, we hope that by induction # something sensible happens. if len(frames) == 0: raise ValueError("`frames` cannot be an empty list.") device = frames[0].device dtype = frames[0].dtype shape = frames[0].shape[:-1] total_size = stride * (len(frames) - 1) + frames[-1].shape[-1] frame_length = frames[0].shape[-1] time_vec = torch.linspace(0, 1, frame_length + 2, device=device, dtype=dtype)[1:-1] weight = 0.5 - (time_vec - 0.5).abs() sum_weight = torch.zeros(total_size, device=device, dtype=dtype) out = torch.zeros(*shape, total_size, device=device, dtype=dtype) offset: int = 0 for frame in frames: frame_length = frame.shape[-1] out[..., offset : offset + frame_length] += weight[:frame_length] * frame sum_weight[offset : offset + frame_length] += weight[:frame_length] offset += stride if sum_weight.min() == 0: raise ValueError(f"`sum_weight` minimum element must be bigger than zero: {sum_weight}`") return out / sum_weight def _decode_frame(self, codes: torch.Tensor, scale: Optional[torch.Tensor] = None) -> torch.Tensor: codes = codes.transpose(0, 1) embeddings = self.quantizer.decode(codes) outputs = self.decoder(embeddings) if scale is not None: outputs = outputs * scale.view(-1, 1, 1) return outputs def decode( self, audio_codes: torch.Tensor, audio_scales: torch.Tensor, padding_mask: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor, torch.Tensor], EncodecDecoderOutput]: """ Decodes the given frames into an output audio waveform. Note that the output might be a bit bigger than the input. In that case, any extra steps at the end can be trimmed. Args: audio_codes (`torch.FloatTensor` of shape `(batch_size, nb_chunks, chunk_length)`, *optional*): Discret code embeddings computed using `model.encode`. audio_scales (`torch.Tensor` of shape `(batch_size, nb_chunks)`, *optional*): Scaling factor for each `audio_codes` input. padding_mask (`torch.Tensor` of shape `(batch_size, channels, sequence_length)`): Padding mask used to pad the `input_values`. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ return_dict = return_dict or self.config.return_dict chunk_length = self.config.chunk_length if chunk_length is None: if len(audio_codes) != 1: raise ValueError(f"Expected one frame, got {len(audio_codes)}") audio_values = self._decode_frame(audio_codes[0], audio_scales[0]) else: decoded_frames = [] for frame, scale in zip(audio_codes, audio_scales): frames = self._decode_frame(frame, scale) decoded_frames.append(frames) audio_values = self._linear_overlap_add(decoded_frames, self.config.chunk_stride or 1) # truncate based on padding mask if padding_mask is not None and padding_mask.shape[-1] < audio_values.shape[-1]: audio_values = audio_values[..., : padding_mask.shape[-1]] if not return_dict: return (audio_values,) return EncodecDecoderOutput(audio_values) @add_start_docstrings_to_model_forward(ENCODEC_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=EncodecOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values: torch.Tensor, padding_mask: Optional[torch.Tensor] = None, bandwidth: Optional[float] = None, audio_codes: Optional[torch.Tensor] = None, audio_scales: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor, torch.Tensor], EncodecOutput]: r""" Returns: Examples: ```python >>> from datasets import load_dataset >>> from transformers import AutoProcessor, EncodecModel >>> dataset = load_dataset("ashraq/esc50") >>> audio_sample = dataset["train"]["audio"][0]["array"] >>> model_id = "facebook/encodec_24khz" >>> model = EncodecModel.from_pretrained(model_id) >>> processor = AutoProcessor.from_pretrained(model_id) >>> inputs = processor(raw_audio=audio_sample, return_tensors="pt") >>> outputs = model(**inputs) >>> audio_codes = outputs.audio_codes >>> audio_values = outputs.audio_values ```""" return_dict = return_dict or self.config.return_dict if padding_mask is None: padding_mask = torch.ones_like(input_values).bool() if audio_codes is not None and audio_scales is None: raise ValueError("You specified `audio_codes` but did not specify the `audio_scales`") if audio_scales is not None and audio_codes is None: raise ValueError("You specified `audio_scales` but did not specify the `audio_codes`") if audio_scales is None and audio_codes is None: audio_codes, audio_scales = self.encode(input_values, padding_mask, bandwidth, False) audio_values = self.decode(audio_codes, audio_scales, padding_mask, return_dict=return_dict)[0] if not return_dict: return (audio_codes, audio_values) return EncodecOutput(audio_codes=audio_codes, audio_values=audio_values)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/encodec/configuration_encodec.py
# coding=utf-8 # Copyright 2023 Meta Platforms, Inc. and affiliates, and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ EnCodec model configuration""" import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class EncodecConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of an [`EncodecModel`]. It is used to instantiate a Encodec model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [facebook/encodec_24khz](https://huggingface.co/facebook/encodec_24khz) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: target_bandwidths (`List[float]`, *optional*, defaults to `[1.5, 3.0, 6.0, 12.0, 24.0]`): The range of diffent bandwiths the model can encode audio with. sampling_rate (`int`, *optional*, defaults to 24000): The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz). audio_channels (`int`, *optional*, defaults to 1): Number of channels in the audio data. Either 1 for mono or 2 for stereo. normalize (`bool`, *optional*, defaults to `False`): Whether the audio shall be normalized when passed. chunk_length_s (`float`, *optional*): If defined the audio is pre-processed into chunks of lengths `chunk_length_s` and then encoded. overlap (`float`, *optional*): Defines the overlap between each chunk. It is used to compute the `chunk_stride` using the following formulae : `int((1.0 - self.overlap) * self.chunk_length)`. hidden_size (`int`, *optional*, defaults to 128): Intermediate representation dimension. num_filters (`int`, *optional*, defaults to 32): Number of convolution kernels of first `EncodecConv1d` down sampling layer. num_residual_layers (`int`, *optional*, defaults to 1): Number of residual layers. upsampling_ratios (`Sequence[int]` , *optional*, defaults to `[8, 5, 4, 2]`): Kernel size and stride ratios. The encoder uses downsampling ratios instead of upsampling ratios, hence it will use the ratios in the reverse order to the ones specified here that must match the decoder order. norm_type (`str`, *optional*, defaults to `"weight_norm"`): Normalization method. Should be in `["weight_norm", "time_group_norm"]` kernel_size (`int`, *optional*, defaults to 7): Kernel size for the initial convolution. last_kernel_size (`int`, *optional*, defaults to 7): Kernel size for the last convolution layer. residual_kernel_size (`int`, *optional*, defaults to 3): Kernel size for the residual layers. dilation_growth_rate (`int`, *optional*, defaults to 2): How much to increase the dilation with each layer. use_causal_conv (`bool`, *optional*, defaults to `True`): Whether to use fully causal convolution. pad_mode (`str`, *optional*, defaults to `"reflect"`): Padding mode for the convolutions. compress (`int`, *optional*, defaults to 2): Reduced dimensionality in residual branches (from Demucs v3). num_lstm_layers (`int`, *optional*, defaults to 2): Number of LSTM layers at the end of the encoder. trim_right_ratio (`float`, *optional*, defaults to 1.0): Ratio for trimming at the right of the transposed convolution under the `use_causal_conv = True` setup. If equal to 1.0, it means that all the trimming is done at the right. codebook_size (`int`, *optional*, defaults to 1024): Number of discret codes that make up VQVAE. codebook_dim (`int`, *optional*): Dimension of the codebook vectors. If not defined, uses `hidden_size`. use_conv_shortcut (`bool`, *optional*, defaults to `True`): Whether to use a convolutional layer as the 'skip' connection in the `EncodecResnetBlock` block. If False, an identity function will be used, giving a generic residual connection. Example: ```python >>> from transformers import EncodecModel, EncodecConfig >>> # Initializing a "facebook/encodec_24khz" style configuration >>> configuration = EncodecConfig() >>> # Initializing a model (with random weights) from the "facebook/encodec_24khz" style configuration >>> model = EncodecModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "encodec" def __init__( self, target_bandwidths=[1.5, 3.0, 6.0, 12.0, 24.0], sampling_rate=24_000, audio_channels=1, normalize=False, chunk_length_s=None, overlap=None, hidden_size=128, num_filters=32, num_residual_layers=1, upsampling_ratios=[8, 5, 4, 2], norm_type="weight_norm", kernel_size=7, last_kernel_size=7, residual_kernel_size=3, dilation_growth_rate=2, use_causal_conv=True, pad_mode="reflect", compress=2, num_lstm_layers=2, trim_right_ratio=1.0, codebook_size=1024, codebook_dim=None, use_conv_shortcut=True, **kwargs, ): self.target_bandwidths = target_bandwidths self.sampling_rate = sampling_rate self.audio_channels = audio_channels self.normalize = normalize self.chunk_length_s = chunk_length_s self.overlap = overlap self.hidden_size = hidden_size self.num_filters = num_filters self.num_residual_layers = num_residual_layers self.upsampling_ratios = upsampling_ratios self.norm_type = norm_type self.kernel_size = kernel_size self.last_kernel_size = last_kernel_size self.residual_kernel_size = residual_kernel_size self.dilation_growth_rate = dilation_growth_rate self.use_causal_conv = use_causal_conv self.pad_mode = pad_mode self.compress = compress self.num_lstm_layers = num_lstm_layers self.trim_right_ratio = trim_right_ratio self.codebook_size = codebook_size self.codebook_dim = codebook_dim if codebook_dim is not None else hidden_size self.use_conv_shortcut = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}' ) super().__init__(**kwargs) # This is a property because you might want to change the chunk_length_s on the fly @property def chunk_length(self) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate) # This is a property because you might want to change the chunk_length_s on the fly @property def chunk_stride(self) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1, int((1.0 - self.overlap) * self.chunk_length)) @property def frame_rate(self) -> int: hop_length = np.prod(self.upsampling_ratios) return math.ceil(self.sampling_rate / hop_length) @property def num_quantizers(self) -> int: return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10))
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/encodec/convert_encodec_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert EnCodec checkpoints.""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() logger = logging.get_logger("transformers.models.encodec") MAPPING_QUANTIZER = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } MAPPING_ENCODER = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } MAPPING_ENCODER_48K = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } MAPPING_DECODER = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } MAPPING_DECODER_48K = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } MAPPING_24K = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } MAPPING_48K = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } TOP_LEVEL_KEYS = [] IGNORE_KEYS = [] def set_recursively(hf_pointer, key, value, full_name, weight_type): for attribute in key.split("."): hf_pointer = getattr(hf_pointer, attribute) if weight_type is not None: hf_shape = getattr(hf_pointer, weight_type).shape else: hf_shape = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": hf_pointer.weight.data = value elif weight_type == "weight_g": hf_pointer.weight_g.data = value elif weight_type == "weight_v": hf_pointer.weight_v.data = value elif weight_type == "bias": hf_pointer.bias.data = value elif weight_type == "running_mean": hf_pointer.running_mean.data = value elif weight_type == "running_var": hf_pointer.running_var.data = value elif weight_type == "num_batches_tracked": hf_pointer.num_batches_tracked.data = value elif weight_type == "weight_ih_l0": hf_pointer.weight_ih_l0.data = value elif weight_type == "weight_hh_l0": hf_pointer.weight_hh_l0.data = value elif weight_type == "bias_ih_l0": hf_pointer.bias_ih_l0.data = value elif weight_type == "bias_hh_l0": hf_pointer.bias_hh_l0.data = value elif weight_type == "weight_ih_l1": hf_pointer.weight_ih_l1.data = value elif weight_type == "weight_hh_l1": hf_pointer.weight_hh_l1.data = value elif weight_type == "bias_ih_l1": hf_pointer.bias_ih_l1.data = value elif weight_type == "bias_hh_l1": hf_pointer.bias_hh_l1.data = value else: hf_pointer.data = value logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.") def should_ignore(name, ignore_keys): for key in ignore_keys: if key.endswith(".*"): if name.startswith(key[:-1]): return True elif ".*." in key: prefix, suffix = key.split(".*.") if prefix in name and suffix in name: return True elif key in name: return True return False def recursively_load_weights(orig_dict, hf_model, model_name): unused_weights = [] if model_name == "encodec_24khz" or "encodec_32khz": MAPPING = MAPPING_24K elif model_name == "encodec_48khz": MAPPING = MAPPING_48K else: raise ValueError(f"Unsupported model: {model_name}") for name, value in orig_dict.items(): if should_ignore(name, IGNORE_KEYS): logger.info(f"{name} was ignored") continue is_used = False for key, mapped_key in MAPPING.items(): if "*" in key: prefix, suffix = key.split(".*.") if prefix in name and suffix in name: key = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("embed") and name.endswith("embed_avg"): continue is_used = True if "*" in mapped_key: layer_index = name.split(key)[0].split(".")[-2] mapped_key = mapped_key.replace("*", layer_index) if "weight_g" in name: weight_type = "weight_g" elif "weight_v" in name: weight_type = "weight_v" elif "weight_ih_l0" in name: weight_type = "weight_ih_l0" elif "weight_hh_l0" in name: weight_type = "weight_hh_l0" elif "bias_ih_l0" in name: weight_type = "bias_ih_l0" elif "bias_hh_l0" in name: weight_type = "bias_hh_l0" elif "weight_ih_l1" in name: weight_type = "weight_ih_l1" elif "weight_hh_l1" in name: weight_type = "weight_hh_l1" elif "bias_ih_l1" in name: weight_type = "bias_ih_l1" elif "bias_hh_l1" in name: weight_type = "bias_hh_l1" elif "bias" in name: weight_type = "bias" elif "weight" in name: weight_type = "weight" elif "running_mean" in name: weight_type = "running_mean" elif "running_var" in name: weight_type = "running_var" elif "num_batches_tracked" in name: weight_type = "num_batches_tracked" else: weight_type = None set_recursively(hf_model, mapped_key, value, name, weight_type) continue if not is_used: unused_weights.append(name) logger.warning(f"Unused weights: {unused_weights}") @torch.no_grad() def convert_checkpoint( model_name, checkpoint_path, pytorch_dump_folder_path, config_path=None, repo_id=None, ): """ Copy/paste/tweak model's weights to transformers design. """ if config_path is not None: config = EncodecConfig.from_pretrained(config_path) else: config = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": config.upsampling_ratios = [8, 5, 4, 4] config.target_bandwidths = [2.2] config.num_filters = 64 config.sampling_rate = 32_000 config.codebook_size = 2048 config.use_causal_conv = False config.normalize = False config.use_conv_shortcut = False elif model_name == "encodec_48khz": config.upsampling_ratios = [8, 5, 4, 2] config.target_bandwidths = [3.0, 6.0, 12.0, 24.0] config.sampling_rate = 48_000 config.audio_channels = 2 config.use_causal_conv = False config.norm_type = "time_group_norm" config.normalize = True config.chunk_length_s = 1.0 config.overlap = 0.01 else: raise ValueError(f"Unknown model name: {model_name}") model = EncodecModel(config) feature_extractor = EncodecFeatureExtractor( feature_size=config.audio_channels, sampling_rate=config.sampling_rate, chunk_length_s=config.chunk_length_s, overlap=config.overlap, ) feature_extractor.save_pretrained(pytorch_dump_folder_path) original_checkpoint = torch.load(checkpoint_path) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights original_checkpoint = original_checkpoint["best_state"] recursively_load_weights(original_checkpoint, model, model_name) model.save_pretrained(pytorch_dump_folder_path) if repo_id: print("Pushing to the hub...") feature_extractor.push_to_hub(repo_id) model.push_to_hub(repo_id) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) args = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/encodec/feature_extraction_encodec.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for EnCodec.""" from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging logger = logging.get_logger(__name__) class EncodecFeatureExtractor(SequenceFeatureExtractor): r""" Constructs an EnCodec feature extractor. This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Instantiating a feature extractor with the defaults will yield a similar configuration to that of the [facebook/encodec_24khz](https://huggingface.co/facebook/encodec_24khz) architecture. Args: feature_size (`int`, *optional*, defaults to 1): The feature dimension of the extracted features. Use 1 for mono, 2 for stereo. sampling_rate (`int`, *optional*, defaults to 24000): The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz). padding_value (`float`, *optional*, defaults to 0.0): The value that is used to fill the padding values. chunk_length_s (`float`, *optional*): If defined the audio is pre-processed into chunks of lengths `chunk_length_s` and then encoded. overlap (`float`, *optional*): Defines the overlap between each chunk. It is used to compute the `chunk_stride` using the following formulae : `int((1.0 - self.overlap) * self.chunk_length)`. """ model_input_names = ["input_values", "padding_mask"] def __init__( self, feature_size: int = 1, sampling_rate: int = 24000, padding_value: float = 0.0, chunk_length_s: float = None, overlap: float = None, **kwargs, ): super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs) self.chunk_length_s = chunk_length_s self.overlap = overlap # This is a property because you might want to change the chunk_length_s on the fly @property def chunk_length(self) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate) # This is a property because you might want to change the chunk_length_s on the fly @property def chunk_stride(self) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1, int((1.0 - self.overlap) * self.chunk_length)) def __call__( self, raw_audio: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], padding: Optional[Union[bool, str, PaddingStrategy]] = None, truncation: Optional[bool] = False, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, sampling_rate: Optional[int] = None, ) -> BatchFeature: """ Main method to featurize and prepare for the model one or several sequence(s). Args: raw_audio (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`): The sequence or batch of sequences to be processed. Each sequence can be a numpy array, a list of float values, a list of numpy arrays or a list of list of float values. The numpy array must be of shape `(num_samples,)` for mono audio (`feature_size = 1`), or `(2, num_samples)` for stereo audio (`feature_size = 2`). padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, *optional*, defaults to `False`): Activates truncation to cut input sequences longer than `max_length` to `max_length`. max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. sampling_rate (`int`, *optional*): The sampling rate at which the `audio` input was sampled. It is strongly recommended to pass `sampling_rate` at the forward call to prevent silent errors. """ if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if padding and truncation: raise ValueError("Both padding and truncation were set. Make sure you only set one.") elif padding is None: # by default let's pad the inputs padding = True is_batched = bool( isinstance(raw_audio, (list, tuple)) and (isinstance(raw_audio[0], (np.ndarray, tuple, list))) ) if is_batched: raw_audio = [np.asarray(audio, dtype=np.float32).T for audio in raw_audio] elif not is_batched and not isinstance(raw_audio, np.ndarray): raw_audio = np.asarray(raw_audio, dtype=np.float32) elif isinstance(raw_audio, np.ndarray) and raw_audio.dtype is np.dtype(np.float64): raw_audio = raw_audio.astype(np.float32) # always return batch if not is_batched: raw_audio = [np.asarray(raw_audio).T] # verify inputs are valid for idx, example in enumerate(raw_audio): if example.ndim > 2: raise ValueError(f"Expected input shape (channels, length) but got shape {example.shape}") if self.feature_size == 1 and example.ndim != 1: raise ValueError(f"Expected mono audio but example has {example.shape[-1]} channels") if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f"Expected stereo audio but example has {example.shape[-1]} channels") padded_inputs = None input_values = BatchFeature({"input_values": raw_audio}) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: max_length = min(array.shape[0] for array in raw_audio) nb_step = int(np.floor(max_length / self.chunk_stride)) max_length = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: max_length = max(array.shape[0] for array in raw_audio) nb_step = int(np.ceil(max_length / self.chunk_stride)) max_length = (nb_step - 1) * self.chunk_stride + self.chunk_length padding = "max_length" else: padded_inputs = input_values # normal padding on batch if padded_inputs is None: padded_inputs = self.pad( input_values, max_length=max_length, truncation=truncation, padding=padding, return_attention_mask=padding, ) if padding: padded_inputs["padding_mask"] = padded_inputs.pop("attention_mask") input_values = [] for example in padded_inputs.pop("input_values"): if self.feature_size == 1: example = example[..., None] input_values.append(example.T) padded_inputs["input_values"] = input_values if return_tensors is not None: padded_inputs = padded_inputs.convert_to_tensors(return_tensors) return padded_inputs
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/encodec/__init__.py
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _import_structure = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_encodec"] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/patchtst/__init__.py
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _import_structure = { "configuration_patchtst": [ "PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP", "PatchTSTConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_patchtst"] = [ "PATCHTST_PRETRAINED_MODEL_ARCHIVE_LIST", "PatchTSTModel", "PatchTSTPreTrainedModel", "PatchTSTForPrediction", "PatchTSTForPretraining", "PatchTSTForRegression", "PatchTSTForClassification", ] if TYPE_CHECKING: from .configuration_patchtst import PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP, PatchTSTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_patchtst import ( PATCHTST_PRETRAINED_MODEL_ARCHIVE_LIST, PatchTSTForClassification, PatchTSTForPrediction, PatchTSTForPretraining, PatchTSTForRegression, PatchTSTModel, PatchTSTPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/patchtst/modeling_patchtst.py
# coding=utf-8 # Copyright 2023 IBM & Hugging Face. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch PatchTST model.""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from torch import nn from ...activations import ACT2CLS from ...modeling_outputs import BaseModelOutput from ...modeling_utils import PreTrainedModel from ...time_series_utils import NegativeBinomialOutput, NormalOutput, StudentTOutput from ...utils import ModelOutput, add_start_docstrings, logging from .configuration_patchtst import PatchTSTConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "PatchTSTConfig" PATCHTST_PRETRAINED_MODEL_ARCHIVE_LIST = [ "ibm/patchtst-etth1-pretrain", # See all PatchTST models at https://huggingface.co/models?filter=patchtst ] # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->PatchTST class PatchTSTAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[PatchTSTConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value class PatchTSTBatchNorm(nn.Module): """ Compute batch normalization over the sequence length (time) dimension. """ def __init__(self, config: PatchTSTConfig): super().__init__() self.batchnorm = nn.BatchNorm1d(config.d_model, eps=config.norm_eps) def forward(self, inputs: torch.Tensor): """ Parameters: inputs (`torch.Tensor` of shape `(batch_size, sequence_length, d_model)`): input for Batch norm calculation Returns: `torch.Tensor` of shape `(batch_size, sequence_length, d_model)` """ output = inputs.transpose(1, 2) # output: (batch_size, d_model, sequence_length) output = self.batchnorm(output) return output.transpose(1, 2) def random_masking( inputs: torch.Tensor, mask_ratio: float, unmasked_channel_indices: list = None, channel_consistent_masking: bool = False, mask_value: int = 0, ): """random_masking: Mask the input considering the control variables. Args: inputs (`torch.Tensor` of shape `(batch_size, num_channels, sequence_length, num_features)`): The input tensor to mask. mask_ratio (`float`): Masking ratio applied to mask the input data during random pretraining. It is the number between 0 and 1. unmasked_channel_indices (list, *optional*): Indices of channels that will not be masked. channel_consistent_masking (bool, *optional*, defaults to `False`): When true, masking will be same across all channels of a timeseries. Otherwise, masking positions will vary across channels. mask_value (int, *optional*, defaults to 0): Define the value of masked patches for pretraining. Returns: `tuple(torch.Tensor)`: inputs_mask, masked input, same shape as input Tensor and mask tensor of shape [bs x c x n] """ if mask_ratio < 0 or mask_ratio >= 1: raise ValueError(f"Mask ratio {mask_ratio} has to be between 0 and 1.") batch_size, num_channels, sequence_length, num_features = inputs.shape device = inputs.device len_keep = int(sequence_length * (1 - mask_ratio)) if channel_consistent_masking: noise = torch.rand(batch_size, 1, sequence_length, device=device) # noise in [0, 1], bs x 1 x L noise = noise.repeat(1, num_channels, 1) # bs x num_channels x time else: # noise in [0, 1], bs x num_channels x L noise = torch.rand(batch_size, num_channels, sequence_length, device=device) # mask: [bs x num_channels x num_patch] mask = torch.ones(batch_size, num_channels, sequence_length, device=device) mask[:, :, :len_keep] = 0 # sort noise for each sample ids_shuffle = torch.argsort(noise, dim=-1) # ascend: small is keep, large is remove ids_restore = torch.argsort(ids_shuffle, dim=-1) # ids_restore: [bs x num_channels x L] mask = torch.gather(mask, dim=-1, index=ids_restore) mask = mask.unsqueeze(-1).repeat(1, 1, 1, num_features) # mask: [bs x num_channels x num_patches x patch_length] if unmasked_channel_indices is not None: mask[:, unmasked_channel_indices, :, :] = 0 inputs_mask = inputs.masked_fill(mask.bool(), mask_value) return inputs_mask, mask[..., 0] def forecast_masking( inputs: torch.Tensor, num_forecast_mask_patches: Union[list, int], unmasked_channel_indices: list = None, mask_value: int = 0, ): """Forecast masking that masks the last K patches where K is from the num_forecast_mask_patches. If num_forecast_mask_patches is a list, samples in the batch will be randomly masked by numbers defined in the list. Parameters: inputs (`torch.Tensor`): Input of shape `(bs, num_channels, num_patch, patch_len)` num_forecast_mask_patches (`list`): Number of patches to be masked at the end of each batch sample. e.g. 4 or [3, 5]. unmasked_channel_indices (`list`, *optional*): Indices of channels that are not masked. mask_value (`int`, *optional*, defaults to 0): Values in the masked patches will be filled by `mask_value`. Returns: `tuple(torch.Tensor)`: inputs_mask, masked input, same shape as inputs Tensor and Mask tensor of shape `(bs, num_channels , num_patch)` or `(bs, tsg1, tsg2, num_channels, num_patch)` """ if isinstance(num_forecast_mask_patches, int): num_forecast_mask_patches = [num_forecast_mask_patches] forecast_mask_ratios = [1 for _ in num_forecast_mask_patches] batch_size, num_channels, sequence_length, num_features = inputs.shape mask = torch.zeros(batch_size, num_channels, sequence_length, device=inputs.device) t_list = [] total_length = 0 total_ratio = sum(forecast_mask_ratios) for patch_length, ratio in zip(num_forecast_mask_patches, forecast_mask_ratios): if patch_length <= 0 or patch_length >= sequence_length: raise ValueError( f"num_forecast_mask_patches {patch_length} should be greater than 0 and less than total patches." ) temp_len = int(batch_size * ratio / total_ratio) t_list.append([patch_length, ratio, temp_len]) total_length += temp_len t_list = sorted(t_list, key=lambda x: x[2]) if total_length < batch_size: t_list[0][2] = t_list[0][2] + (batch_size - total_length) elif total_length > batch_size: t_list[-1][2] = t_list[-1][2] + (total_length - batch_size) batch1 = 0 for patch_len, _, temp_len in t_list: batch2 = batch1 + temp_len mask[batch1:batch2, :, -patch_len:] = 1 batch1 = batch2 perm = torch.randperm(mask.shape[0]) mask = mask[perm] mask = mask.unsqueeze(-1).repeat(1, 1, 1, num_features) # mask: [bs x num_channels x num_patch x patch_len] if unmasked_channel_indices is not None: mask[:, unmasked_channel_indices, :, :] = 0 inputs_mask = inputs.masked_fill(mask.bool(), mask_value) return inputs_mask, mask[..., 0] class PatchTSTPatchify(nn.Module): """ A class to patchify the time series sequence into different patches Returns: `torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)` """ def __init__(self, config: PatchTSTConfig): super().__init__() self.sequence_length = config.context_length self.patch_length = config.patch_length self.patch_stride = config.patch_stride if self.sequence_length <= self.patch_length: raise ValueError( f"Sequence length ({self.sequence_length}) has to be greater than the patch length ({self.patch_length})" ) # get the number of patches self.num_patches = (max(self.sequence_length, self.patch_length) - self.patch_length) // self.patch_stride + 1 new_sequence_length = self.patch_length + self.patch_stride * (self.num_patches - 1) self.sequence_start = self.sequence_length - new_sequence_length def forward(self, past_values: torch.Tensor): """ Parameters: past_values (`torch.Tensor` of shape `(batch_size, sequence_length, num_channels)`, *required*): Input for patchification Returns: `torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)` """ sequence_length = past_values.shape[-2] if sequence_length != self.sequence_length: raise ValueError( f"Input sequence length ({sequence_length}) doesn't match model configuration ({self.sequence_length})." ) # output: [bs x new_sequence_length x num_channels] output = past_values[:, self.sequence_start :, :] # output: [bs x num_patches x num_input_channels x patch_length] output = output.unfold(dimension=-2, size=self.patch_length, step=self.patch_stride) # output: [bs x num_input_channels x num_patches x patch_length] output = output.transpose(-2, -3).contiguous() return output class PatchTSTMasking(nn.Module): """ Class to perform random or forecast masking. Parameters: config (`PatchTSTConfig`): model config Returns: x_mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`) Masked patched input mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches)`) Bool tensor indicating True on masked points """ def __init__(self, config: PatchTSTConfig): super().__init__() self.random_mask_ratio = config.random_mask_ratio self.channel_consistent_masking = config.channel_consistent_masking self.mask_type = config.mask_type self.num_forecast_mask_patches = config.num_forecast_mask_patches self.unmasked_channel_indices = config.unmasked_channel_indices self.mask_value = config.mask_value if self.unmasked_channel_indices is not None: self.unmasked_channel_indices = sorted(self.unmasked_channel_indices) def forward(self, patch_input: torch.Tensor): """ Parameters: patch_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`, *required*): Patch input Return: masked_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`) Masked patched input mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches)`) Bool tensor indicating True on masked points """ if self.mask_type == "random": masked_input, mask = random_masking( inputs=patch_input, mask_ratio=self.random_mask_ratio, unmasked_channel_indices=self.unmasked_channel_indices, channel_consistent_masking=self.channel_consistent_masking, mask_value=self.mask_value, ) elif self.mask_type == "forecast": masked_input, mask = forecast_masking( inputs=patch_input, num_forecast_mask_patches=self.num_forecast_mask_patches, unmasked_channel_indices=self.unmasked_channel_indices, mask_value=self.mask_value, ) else: raise ValueError(f"Invalid mask type {self.mask_type}.") # mask: [bs x num_input_channels x num_patch] mask = mask.bool() return masked_input, mask class PatchTSTEncoderLayer(nn.Module): """ PatchTST encoder layer """ def __init__(self, config: PatchTSTConfig): super().__init__() self.channel_attention = config.channel_attention # Multi-Head attention self.self_attn = PatchTSTAttention( embed_dim=config.d_model, num_heads=config.num_attention_heads, dropout=config.attention_dropout, ) # Add & Norm of the sublayer 1 self.dropout_path1 = nn.Dropout(config.path_dropout) if config.path_dropout > 0 else nn.Identity() if config.norm_type == "batchnorm": self.norm_sublayer1 = PatchTSTBatchNorm(config) elif config.norm_type == "layernorm": self.norm_sublayer1 = nn.LayerNorm(config.d_model, eps=config.norm_eps) else: raise ValueError(f"{config.norm_type} is not a supported norm layer type.") # Add & Norm of the sublayer 2 if self.channel_attention: self.dropout_path2 = nn.Dropout(config.path_dropout) if config.path_dropout > 0 else nn.Identity() if config.norm_type == "batchnorm": self.norm_sublayer2 = PatchTSTBatchNorm(config) elif config.norm_type == "layernorm": self.norm_sublayer2 = nn.LayerNorm(config.d_model, eps=config.norm_eps) else: raise ValueError(f"{config.norm_type} is not a supported norm layer type.") # Position-wise Feed-Forward self.ff = nn.Sequential( nn.Linear(config.d_model, config.ffn_dim, bias=config.bias), ACT2CLS[config.activation_function](), nn.Dropout(config.ff_dropout) if config.ff_dropout > 0 else nn.Identity(), nn.Linear(config.ffn_dim, config.d_model, bias=config.bias), ) # Add & Norm of sublayer 3 self.dropout_path3 = nn.Dropout(config.path_dropout) if config.path_dropout > 0 else nn.Identity() if config.norm_type == "batchnorm": self.norm_sublayer3 = PatchTSTBatchNorm(config) elif config.norm_type == "layernorm": self.norm_sublayer3 = nn.LayerNorm(config.d_model, eps=config.norm_eps) else: raise ValueError(f"{config.norm_type} is not a supported norm layer type.") self.pre_norm = config.pre_norm def forward(self, hidden_state: torch.Tensor, output_attentions: Optional[bool] = None): """ Parameters: hidden_state (`torch.Tensor` of shape `(batch_size, num_channels, sequence_length, d_model)`, *required*): Past values of the time series output_attentions (`bool`, *optional*): Whether or not to return the output attention of all layers Return: `torch.Tensor` of shape `(batch_size, num_channels, sequence_length, d_model)` """ batch_size, num_input_channels, sequence_length, d_model = hidden_state.shape # First sublayer: attention across time # hidden_states: [(bs*num_channels) x sequence_length x d_model] hidden_state = hidden_state.view(batch_size * num_input_channels, sequence_length, d_model) if self.pre_norm: ## Norm and Multi-Head attention and Add residual connection attn_output, attn_weights, _ = self.self_attn( hidden_states=self.norm_sublayer1(hidden_state), output_attentions=output_attentions ) # Add: residual connection with residual dropout hidden_state = hidden_state + self.dropout_path1(attn_output) else: ## Multi-Head attention and Add residual connection and Norm - Standard Transformer from BERT attn_output, attn_weights, _ = self.self_attn( hidden_states=hidden_state, output_attentions=output_attentions ) # hidden_states: [(bs*num_channels) x sequence_length x d_model] hidden_state = self.norm_sublayer1(hidden_state + self.dropout_path1(attn_output)) # hidden_state: [bs x num_channels x sequence_length x d_model] hidden_state = hidden_state.reshape(batch_size, num_input_channels, sequence_length, d_model) # second sublayer: attention across variable at any given time if self.channel_attention: # hidden_state: [bs x sequence_length x num_channels x d_model] hidden_state = hidden_state.transpose(2, 1).contiguous() # hidden_state: [(bs*sequence_length) x num_channels x d_model] hidden_state = hidden_state.view(batch_size * sequence_length, num_input_channels, d_model) if self.pre_norm: ## Norm and Multi-Head attention and Add residual connection attn_output, channel_attn_weights, _ = self.self_attn( hidden_states=self.norm_sublayer2(hidden_state), output_attentions=output_attentions ) # Add: residual connection with residual dropout hidden_state = hidden_state + self.dropout_path2(attn_output) else: ## Multi-Head attention and Add residual connection and Norm attn_output, channel_attn_weights, _ = self.self_attn( hidden_states=hidden_state, output_attentions=output_attentions ) # hidden_states: [(bs*sequence_length) x num_channels x d_model] hidden_state = self.norm_sublayer2(hidden_state + self.dropout_path2(attn_output)) # Reshape hidden state # hidden_state: [bs x sequence_length x num_channels x d_model] hidden_state = hidden_state.reshape(batch_size, sequence_length, num_input_channels, d_model) # hidden_state: [bs x num_channels x sequence_length x d_model] hidden_state = hidden_state.transpose(1, 2).contiguous() # Third sublayer: mixing across hidden # hidden_state: [(batch_size*num_channels) x sequence_length x d_model] hidden_state = hidden_state.view(batch_size * num_input_channels, sequence_length, d_model) if self.pre_norm: ## Norm and Position-wise Feed-Forward and Add residual connection # Add: residual connection with residual dropout hidden_state = hidden_state + self.dropout_path3(self.ff(self.norm_sublayer3(hidden_state))) else: ## Position-wise Feed-Forward and Add residual connection and Norm # Add: residual connection with residual dropout hidden_state = self.norm_sublayer3(hidden_state + self.dropout_path3(self.ff(hidden_state))) # [bs x num_channels x sequence_length x d_model] hidden_state = hidden_state.reshape(batch_size, num_input_channels, sequence_length, d_model) outputs = (hidden_state,) if output_attentions: outputs += (attn_weights, channel_attn_weights) if self.channel_attention else (attn_weights,) return outputs class PatchTSTPreTrainedModel(PreTrainedModel): config_class = PatchTSTConfig base_model_prefix = "model" main_input_name = "past_values" supports_gradient_checkpointing = False def _init_weights(self, module): """ Initialize weights """ if isinstance(module, PatchTSTPositionalEncoding): # initialize cls_token if self.config.use_cls_token: nn.init.normal_(module.cls_token, std=0.02) # initialize positional encoding if self.config.positional_encoding_type == "random": nn.init.normal_(module.position_enc, mean=0.0, std=0.1) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, PatchTSTBatchNorm): module.batchnorm.bias.data.zero_() module.batchnorm.weight.data.fill_(1.0) elif isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=self.config.init_std) if module.bias is not None: module.bias.data.zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (PatchTSTEncoder)): module.gradient_checkpointing = value class PatchTSTEmbedding(nn.Module): def __init__(self, config: PatchTSTConfig): super().__init__() self.num_input_channels = config.num_input_channels self.share_embedding = config.share_embedding # Input encoding: projection of feature vectors onto a d-dim vector space if self.share_embedding: self.input_embedding = nn.Linear(config.patch_length, config.d_model) else: self.input_embedding = nn.ModuleList() for _ in range(config.num_input_channels): self.input_embedding.append(nn.Linear(config.patch_length, config.d_model)) def forward(self, patch_input: torch.Tensor): """ Parameters: patch_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`, *required*): Patch input for embedding return: `torch.Tensor` of shape `(batch_size, num_channels, num_patches, d_model)` """ # Input encoding num_input_channels = patch_input.shape[1] if num_input_channels != self.num_input_channels: raise ValueError( f"The defined number of input channels ({self.num_input_channels}) in the config " f"has to be the same as the number of channels in the batch input ({num_input_channels})" ) if self.share_embedding: embeddings = self.input_embedding(patch_input) # x: [bs x num_channels x num_patches x d_model] else: embeddings = [self.input_embedding[i](patch_input[:, i, :, :]) for i in range(num_input_channels)] embeddings = torch.stack(embeddings, dim=1) return embeddings class PatchTSTPositionalEncoding(nn.Module): """ Class for positional encoding """ def __init__(self, config: PatchTSTConfig, num_patches: int): super().__init__() self.use_cls_token = config.use_cls_token self.num_input_channels = config.num_input_channels if config.use_cls_token: # cls_token: [1 x num_input_channels x 1 x d_model] self.cls_token = nn.Parameter(torch.zeros(1, 1, 1, config.d_model)) num_patches += 1 # postional encoding: [num_patches x d_model] self.position_enc = self._init_pe(config, num_patches) # Positional dropout self.positional_dropout = ( nn.Dropout(config.positional_dropout) if config.positional_dropout > 0 else nn.Identity() ) @staticmethod def _init_pe(config: PatchTSTConfig, num_patches: int) -> nn.Parameter: # Positional encoding if config.positional_encoding_type == "random": position_enc = nn.Parameter(torch.randn(num_patches, config.d_model), requires_grad=True) elif config.positional_encoding_type == "sincos": position_enc = torch.zeros(num_patches, config.d_model) position = torch.arange(0, num_patches).unsqueeze(1) div_term = torch.exp(torch.arange(0, config.d_model, 2) * -(math.log(10000.0) / config.d_model)) position_enc[:, 0::2] = torch.sin(position * div_term) position_enc[:, 1::2] = torch.cos(position * div_term) position_enc = position_enc - position_enc.mean() position_enc = position_enc / (position_enc.std() * 10) position_enc = nn.Parameter(position_enc, requires_grad=False) else: raise ValueError( f"{config.positional_encoding_type} is not a valid positional encoder. Available types are 'random' and 'sincos'." ) return position_enc def forward(self, patch_input: torch.Tensor): if self.use_cls_token: # patch_input: [bs x num_channels x num_patches x d_model] patch_input = self.positional_dropout(patch_input + self.position_enc[1:, :]) # append cls token where cls_token: [1 x num_channels x 1 x d_model] cls_token = self.cls_token + self.position_enc[:1, :] # get the same copy of cls_token for all the samples in batch: [bs x num_channels x 1 x d_model] cls_tokens = cls_token.expand(patch_input.shape[0], self.num_input_channels, -1, -1) # hidden_state: [bs x num_channels x (num_patches+1) x d_model] hidden_state = torch.cat((cls_tokens, patch_input), dim=2) else: # hidden_state: [bs x num_channels x num_patches x d_model] hidden_state = self.positional_dropout(patch_input + self.position_enc) return hidden_state class PatchTSTEncoder(PatchTSTPreTrainedModel): """ PatchTST Encoder """ def __init__(self, config: PatchTSTConfig, num_patches: int): super().__init__(config) self.gradient_checkpointing = False # Input embedding: projection of feature vectors onto a d-dim vector space self.embedder = PatchTSTEmbedding(config) # Positional encoding self.positional_encoder = PatchTSTPositionalEncoding(config, num_patches) # Encoder self.layers = nn.ModuleList([PatchTSTEncoderLayer(config) for i in range(config.num_hidden_layers)]) # Initialize weights and apply final processing self.post_init() def forward( self, patch_input: torch.Tensor, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, ) -> BaseModelOutput: """ Parameters: patch_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`, *required*): Past values of the time series output_hidden_states (bool, optional): Indicates if hidden states should be outputted. output_attentions (bool, optional): Indicates if attentions should be outputted. return: `BaseModelOutput` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) # Input embedding patch_input = self.embedder(patch_input) # Positional encoding hidden_state = self.positional_encoder(patch_input) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for encoder_layer in self.layers: if output_hidden_states: encoder_states = encoder_states + (hidden_state,) layer_outputs = encoder_layer(hidden_state=hidden_state, output_attentions=output_attentions) # get hidden state. hidden_state shape is [bs x num_channels x num_patches x d_model] # or [bs x num_channels x (num_patches+1) x d_model] if use cls_token hidden_state = layer_outputs[0] # append attention matrix at each layer if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # return past_values, hidden_states return BaseModelOutput(last_hidden_state=hidden_state, hidden_states=encoder_states, attentions=all_attentions) PATCHTST_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PatchTSTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @dataclass class PatchTSTModelOutput(ModelOutput): """ Base class for model's outputs, with potential hidden states. Parameters: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, patch_length)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, num_channels, height, width)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. mask: (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches)`, *optional*) Bool masked tensor indicating which patches are masked loc: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`, *optional*) Mean of the input data (batch_size, sequence_length, num_channels) over the sequence_length scale: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`, *optional*) Std of the input data (batch_size, sequence_length, num_channels) over the sequence_length patch_input (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, patch_length)`): Patched input to the Transformer """ last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None mask: torch.FloatTensor = None loc: torch.FloatTensor = None scale: torch.FloatTensor = None patch_input: torch.FloatTensor = None @dataclass class PatchTSTForPretrainingOutput(ModelOutput): """ Output type of [`PatchTSTForPretraining`]. Parameters: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): MSE loss. prediction_outputs (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction outputs of the time series modeling heads. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_output: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class PatchTSTForRegressionOutput(ModelOutput): """ Output type of [`PatchTSTForRegression`]. Parameters: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): MSE loss. regression_outputs (`torch.FloatTensor` of shape `(batch_size, num_targets)`): Regression outputs of the time series modeling heads. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None regression_outputs: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class PatchTSTForPredictionOutput(ModelOutput): """ Output type of [`PatchTSTForPrediction`]. Parameters: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): MSE loss. prediction_outputs (`torch.FloatTensor` of shape `(batch_size, prediction_length, -1)`): Prediction outputs of the time series modeling heads. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. loc: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`, *optional*) Mean of the input data (batch_size, sequence_length, num_channels) over the sequence_length scale: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`, *optional*) Std of the input data (batch_size, sequence_length, num_channels) over the sequence_length """ loss: Optional[torch.FloatTensor] = None prediction_outputs: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None loc: torch.FloatTensor = None scale: torch.FloatTensor = None @dataclass class PatchTSTForClassificationOutput(ModelOutput): """ Output type of [`PatchTSTForClassification`]. Parameters: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, num_targets)`): Prediction scores of the PatchTST modeling head (scores before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class SamplePatchTSTOutput(ModelOutput): """ Base class for time series model's predictions outputs that contains the sampled values from the chosen distribution. Parameters: sequences `(batch_size, num_samples, prediction_length, num_targets)`): Sampled values from the chosen distribution. """ sequences: torch.FloatTensor = None # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.nll def nll(input: torch.distributions.Distribution, target: torch.Tensor) -> torch.Tensor: """ Computes the negative log likelihood loss from input distribution with respect to target. """ return -input.log_prob(target) # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.weighted_average def weighted_average(input_tensor: torch.Tensor, weights: Optional[torch.Tensor] = None, dim=None) -> torch.Tensor: """ Computes the weighted average of a given tensor across a given `dim`, masking values associated with weight zero, meaning instead of `nan * 0 = nan` you will get `0 * 0 = 0`. Args: input_tensor (`torch.FloatTensor`): Input tensor, of which the average must be computed. weights (`torch.FloatTensor`, *optional*): Weights tensor, of the same shape as `input_tensor`. dim (`int`, *optional*): The dim along which to average `input_tensor`. Returns: `torch.FloatTensor`: The tensor with values averaged along the specified `dim`. """ if weights is not None: weighted_tensor = torch.where(weights != 0, input_tensor * weights, torch.zeros_like(input_tensor)) sum_weights = torch.clamp(weights.sum(dim=dim) if dim else weights.sum(), min=1.0) return (weighted_tensor.sum(dim=dim) if dim else weighted_tensor.sum()) / sum_weights else: return input_tensor.mean(dim=dim) # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesStdScaler with TimeSeriesTransformer->PatchTST,TimeSeries->PatchTST class PatchTSTStdScaler(nn.Module): """ Standardize features by calculating the mean and scaling along the first dimension, and then normalizes it by subtracting from the mean and dividing by the standard deviation. """ def __init__(self, config: PatchTSTConfig): super().__init__() self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1 self.keepdim = config.keepdim if hasattr(config, "keepdim") else True self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-5 def forward( self, data: torch.Tensor, observed_indicator: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Parameters: data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): input for Batch norm calculation observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`): Calculating the scale on the observed indicator. Returns: tuple of `torch.Tensor` of shapes (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, `(batch_size, 1, num_input_channels)`) """ denominator = observed_indicator.sum(self.dim, keepdim=self.keepdim) denominator = denominator.clamp_min(1.0) loc = (data * observed_indicator).sum(self.dim, keepdim=self.keepdim) / denominator variance = (((data - loc) * observed_indicator) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator scale = torch.sqrt(variance + self.minimum_scale) return (data - loc) / scale, loc, scale # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesMeanScaler with TimeSeriesTransformer->PatchTST,TimeSeries->PatchTST class PatchTSTMeanScaler(nn.Module): """ Computes a scaling factor as the weighted average absolute value along the first dimension, and scales the data accordingly. """ def __init__(self, config: PatchTSTConfig): super().__init__() self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1 self.keepdim = config.keepdim if hasattr(config, "keepdim") else True self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-10 self.default_scale = config.default_scale if hasattr(config, "default_scale") else None def forward( self, data: torch.Tensor, observed_indicator: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Parameters: data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): input for Batch norm calculation observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`): Calculating the scale on the observed indicator. Returns: tuple of `torch.Tensor` of shapes (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, `(batch_size, 1, num_input_channels)`) """ ts_sum = (data * observed_indicator).abs().sum(self.dim, keepdim=True) num_observed = observed_indicator.sum(self.dim, keepdim=True) scale = ts_sum / torch.clamp(num_observed, min=1) # If `default_scale` is provided, we use it, otherwise we use the scale # of the batch. if self.default_scale is None: batch_sum = ts_sum.sum(dim=0) batch_observations = torch.clamp(num_observed.sum(0), min=1) default_scale = torch.squeeze(batch_sum / batch_observations) else: default_scale = self.default_scale * torch.ones_like(scale) # apply default scale where there are no observations scale = torch.where(num_observed > 0, scale, default_scale) # ensure the scale is at least `self.minimum_scale` scale = torch.clamp(scale, min=self.minimum_scale) scaled_data = data / scale if not self.keepdim: scale = scale.squeeze(dim=self.dim) return scaled_data, torch.zeros_like(scale), scale # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesNOPScaler with TimeSeriesTransformer->PatchTST,TimeSeries->PatchTST class PatchTSTNOPScaler(nn.Module): """ Assigns a scaling factor equal to 1 along the first dimension, and therefore applies no scaling to the input data. """ def __init__(self, config: PatchTSTConfig): super().__init__() self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1 self.keepdim = config.keepdim if hasattr(config, "keepdim") else True def forward( self, data: torch.Tensor, observed_indicator: torch.Tensor = None ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Parameters: data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): input for Batch norm calculation Returns: tuple of `torch.Tensor` of shapes (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, `(batch_size, 1, num_input_channels)`) """ scale = torch.ones_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim) loc = torch.zeros_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim) return data, loc, scale class PatchTSTScaler(nn.Module): def __init__(self, config: PatchTSTConfig): super().__init__() if config.scaling == "mean" or config.scaling is True: self.scaler = PatchTSTMeanScaler(config) elif config.scaling == "std": self.scaler = PatchTSTStdScaler(config) else: self.scaler = PatchTSTNOPScaler(config) def forward( self, data: torch.Tensor, observed_indicator: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Parameters: data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): Input for scaler calculation observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`): Calculating the scale on the observed indicator. Returns: tuple of `torch.Tensor` of shapes (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, `(batch_size, 1, um_input_channels)`) """ data, loc, scale = self.scaler(data, observed_indicator) return data, loc, scale @add_start_docstrings( "The bare PatchTST Model outputting raw hidden-states without any specific head.", PATCHTST_START_DOCSTRING, ) class PatchTSTModel(PatchTSTPreTrainedModel): def __init__(self, config: PatchTSTConfig): super().__init__(config) self.scaler = PatchTSTScaler(config) self.patchifier = PatchTSTPatchify(config) self.do_mask_input = config.do_mask_input # get num_patches information from PatchTSTPatchify num_patches = self.patchifier.num_patches if self.do_mask_input: self.masking = PatchTSTMasking(config) else: self.masking = nn.Identity() self.encoder = PatchTSTEncoder(config, num_patches=num_patches) # Initialize weights and apply final processing self.post_init() def forward( self, past_values: torch.Tensor, past_observed_mask: Optional[torch.Tensor] = None, future_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, PatchTSTModelOutput]: r""" Parameters: past_values (`torch.Tensor` of shape `(bs, sequence_length, num_input_channels)`, *required*): Input sequence to the model past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in `[0, 1]`: - 1 for values that are **observed**, - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). future_values (`torch.BoolTensor` of shape `(batch_size, prediction_length, num_input_channels)`, *optional*): Future target values associated with the `past_values` output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers output_attentions (`bool`, *optional*): Whether or not to return the output attention of all layers return_dict (`bool`, *optional*): Whether or not to return a `ModelOutput` instead of a plain tuple. Returns: `PatchTSTModelOutput` or tuple of `torch.Tensor` (if `return_dict`=False or `config.return_dict`=False) Examples: ```python >>> from huggingface_hub import hf_hub_download >>> import torch >>> from transformers import PatchTSTModel >>> file = hf_hub_download( ... repo_id="hf-internal-testing/etth1-hourly-batch", filename="train-batch.pt", repo_type="dataset" ... ) >>> batch = torch.load(file) >>> model = PatchTSTModel.from_pretrained("namctin/patchtst_etth1_pretrain") >>> # during training, one provides both past and future values >>> outputs = model( ... past_values=batch["past_values"], ... future_values=batch["future_values"], ... ) >>> last_hidden_state = outputs.last_hidden_state ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if past_observed_mask is None: past_observed_mask = torch.ones_like(past_values) # x: tensor [bs x sequence_length x num_input_channels] scaled_past_values, loc, scale = self.scaler(past_values, past_observed_mask) # patched_values: [bs x num_input_channels x num_patches x patch_length] for pretrain patched_values = self.patchifier(scaled_past_values) if self.do_mask_input: masked_values, mask = self.masking(patched_values) else: masked_values, mask = self.masking(patched_values), None encoder_output = self.encoder( patch_input=masked_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions ) if not return_dict: outputs = (encoder_output.last_hidden_state, encoder_output.hidden_states, encoder_output.attentions) outputs = outputs + (mask, loc, scale, patched_values) return tuple(v for v in outputs if v is not None) return PatchTSTModelOutput( last_hidden_state=encoder_output.last_hidden_state, hidden_states=encoder_output.hidden_states, attentions=encoder_output.attentions, mask=mask, loc=loc, scale=scale, patch_input=patched_values, ) class PatchTSTMaskPretrainHead(nn.Module): """ Pretraining head for mask modelling """ def __init__(self, config: PatchTSTConfig): super().__init__() self.dropout = nn.Dropout(config.dropout) self.linear = nn.Linear(config.d_model, config.patch_length) self.use_cls_token = config.use_cls_token def forward(self, embedding: torch.Tensor) -> torch.Tensor: """ Parameters: embedding (`torch.Tensor` of shape `(bs, num_channels, num_patches, d_model)` or `(bs, num_channels, num_patches+1, d_model)` if `cls_token` is set to True, *required*): Embedding from the model Returns: `torch.Tensor` of shape `(bs, num_channels, num_patches, d_model)` or `(bs, num_channels, num_patches+1, d_model)` if `cls_token` is set to True """ embedding = self.linear(self.dropout(embedding)) # [bs x num_channels x num_patches x patch_length] if self.use_cls_token: embedding = embedding[:, :, 1:, :] # remove the first cls token return embedding @add_start_docstrings( "The PatchTST for pretrain model.", PATCHTST_START_DOCSTRING, ) class PatchTSTForPretraining(PatchTSTPreTrainedModel): def __init__(self, config: PatchTSTConfig): super().__init__(config) config.do_mask_input = True self.model = PatchTSTModel(config=config) self.head = PatchTSTMaskPretrainHead(config) # Initialize weights and apply final processing self.post_init() def forward( self, past_values: torch.Tensor, past_observed_mask: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, PatchTSTForPretrainingOutput]: r""" Parameters: past_values (`torch.Tensor` of shape `(bs, sequence_length, num_input_channels)`, *required*): Input sequence to the model past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in `[0, 1]`: - 1 for values that are **observed**, - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers output_attentions (`bool`, *optional*): Whether or not to return the output attention of all layers return_dict (`bool`, *optional*): Whether or not to return a `ModelOutput` instead of a plain tuple. Returns: `PatchTSTForPretrainingOutput` or tuple of `torch.Tensor` (if `return_dict`=False or `config.return_dict`=False) Examples: ```python >>> from huggingface_hub import hf_hub_download >>> import torch >>> from transformers import PatchTSTConfig, PatchTSTForPretraining >>> file = hf_hub_download( ... repo_id="hf-internal-testing/etth1-hourly-batch", filename="train-batch.pt", repo_type="dataset" ... ) >>> batch = torch.load(file) >>> # Config for random mask pretraining >>> config = PatchTSTConfig( ... num_input_channels=7, ... context_length=512, ... patch_length=12, ... stride=12, ... mask_type='random', ... random_mask_ratio=0.4, ... use_cls_token=True, ... ) >>> # Config for forecast mask pretraining >>> config = PatchTSTConfig( ... num_input_channels=7, ... context_length=512, ... patch_length=12, ... stride=12, ... mask_type='forecast', ... num_forecast_mask_patches=5, ... use_cls_token=True, ... ) >>> model = PatchTSTForPretraining(config) >>> # during training, one provides both past and future values >>> outputs = model(past_values=batch["past_values"]) >>> loss = outputs.loss >>> loss.backward() ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict # past_values: [bs x num_channels x num_patches x d_model] or # [bs x num_channels x (num_patches+1) x d_model] if use cls_token model_output = self.model( past_values=past_values, past_observed_mask=past_observed_mask, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=True, ) # last_hidden_state: [bs x num_channels x num_patches x patch_length] or # [bs x num_channels x (num_patches+1) x patch_length] if use cls_token x_hat = self.head(model_output.last_hidden_state) # calculate masked_loss loss = nn.MSELoss(reduction="none") loss_val = loss(x_hat, model_output.patch_input) masked_loss = (loss_val.mean(dim=-1) * model_output.mask).sum() / (model_output.mask.sum() + 1e-10) encoder_states = model_output.hidden_states if not return_dict: outputs = (x_hat,) + model_output[1:-4] outputs = (masked_loss,) + outputs if masked_loss is not None else outputs return outputs return PatchTSTForPretrainingOutput( loss=masked_loss, prediction_output=x_hat, hidden_states=encoder_states, attentions=model_output.attentions ) class PatchTSTClassificationHead(nn.Module): def __init__(self, config: PatchTSTConfig): super().__init__() self.use_cls_token = config.use_cls_token self.pooling_type = config.pooling_type self.flatten = nn.Flatten(start_dim=1) self.dropout = nn.Dropout(config.head_dropout) if config.head_dropout > 0 else nn.Identity() self.linear = nn.Linear(config.num_input_channels * config.d_model, config.num_targets) def forward(self, embedding: torch.Tensor): """ Parameters: embedding (`torch.Tensor` of shape `(bs, num_channels, num_patches, d_model)` or `(bs, num_channels, num_patches+1, d_model)` if `cls_token` is set to True, *required*): Embedding from the model Returns: `torch.Tensor` of shape `(bs, num_targets)` """ if self.use_cls_token: # use the first output token, pooled_embedding: bs x num_channels x d_model pooled_embedding = embedding[:, :, 0, :] elif self.pooling_type == "mean": # pooled_embedding: [bs x num_channels x d_model] pooled_embedding = embedding.mean(dim=2) elif self.pooling_type == "max": # pooled_embedding: [bs x num_channels x d_model] pooled_embedding = embedding.max(dim=2) else: raise ValueError(f"pooling operator {self.pooling_type} is not implemented yet") # pooled_embedding: bs x num_channels * d_model pooled_embedding = self.flatten(pooled_embedding) # output: bs x n_classes output = self.linear(self.dropout(pooled_embedding)) return output @add_start_docstrings( "The PatchTST for classification model.", PATCHTST_START_DOCSTRING, ) class PatchTSTForClassification(PatchTSTPreTrainedModel): def __init__(self, config: PatchTSTConfig): super().__init__(config) # Turn off masking if config.do_mask_input: logger.warning("Setting `do_mask_input` parameter to False.") config.do_mask_input = False self.model = PatchTSTModel(config) self.head = PatchTSTClassificationHead(config) # Initialize weights and apply final processing self.post_init() def forward( self, past_values: torch.Tensor, target_values: torch.Tensor = None, past_observed_mask: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, PatchTSTForClassificationOutput]: r""" Parameters: past_values (`torch.Tensor` of shape `(bs, sequence_length, num_input_channels)`, *required*): Input sequence to the model target_values (`torch.Tensor`, *optional*): Labels associates with the `past_values` past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in `[0, 1]`: - 1 for values that are **observed**, - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers output_attentions (`bool`, *optional*): Whether or not to return the output attention of all layers return_dict (`bool`, *optional*): Whether or not to return a `ModelOutput` instead of a plain tuple. Returns: `PatchTSTForClassificationOutput` or tuple of `torch.Tensor` (if `return_dict`=False or `config.return_dict`=False) Examples: ```python >>> from transformers import PatchTSTConfig, PatchTSTForClassification >>> # classification task with two input channel2 and 3 classes >>> config = PatchTSTConfig( ... num_input_channels=2, ... num_targets=3, ... context_length=512, ... patch_length=12, ... stride=12, ... use_cls_token=True, ... ) >>> model = PatchTSTForClassification(config=config) >>> # during inference, one only provides past values >>> past_values = torch.randn(20, 512, 2) >>> outputs = model(past_values=past_values) >>> labels = outputs.prediction_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict model_output = self.model( past_values=past_values, past_observed_mask=past_observed_mask, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=True, ) y_hat = self.head(model_output.last_hidden_state) loss_val = None if target_values is not None: loss = nn.CrossEntropyLoss() loss_val = loss(y_hat, target_values) if not return_dict: outputs = (y_hat,) + model_output[1:-3] outputs = (loss_val,) + outputs if loss_val is not None else outputs return outputs return PatchTSTForClassificationOutput( loss=loss_val, prediction_logits=y_hat, hidden_states=model_output.hidden_states, attentions=model_output.attentions, ) @add_start_docstrings( "The PatchTST for regression Model.", PATCHTST_START_DOCSTRING, ) class PatchTSTPredictionHead(nn.Module): def __init__(self, config: PatchTSTConfig, num_patches, distribution_output=None): super().__init__() self.share_projection = config.share_projection self.num_input_channels = config.num_input_channels self.use_cls_token = config.use_cls_token self.pooling_type = config.pooling_type if self.pooling_type or self.use_cls_token: head_dim = config.d_model else: head_dim = config.d_model * num_patches if not self.share_projection: # if each channel has its own head self.projections = nn.ModuleList() self.dropouts = nn.ModuleList() self.flattens = nn.ModuleList() for i in range(self.num_input_channels): self.flattens.append(nn.Flatten(start_dim=2)) if distribution_output is None: # use linear head self.projections.append(nn.Linear(head_dim, config.prediction_length)) else: # use distribution head self.projections.append(distribution_output.get_parameter_projection(head_dim)) self.dropouts.append(nn.Dropout(config.head_dropout) if config.head_dropout > 0 else nn.Identity()) else: # all the channels share the same head self.flatten = nn.Flatten(start_dim=2) if distribution_output is None: # use linear head self.projection = nn.Linear(head_dim, config.prediction_length) else: # use distribution head self.projection = distribution_output.get_parameter_projection(head_dim) self.dropout = nn.Dropout(config.head_dropout) if config.head_dropout > 0 else nn.Identity() def forward(self, embedding: torch.Tensor): """ Parameters: embedding (`torch.Tensor` of shape `(bs, num_channels, num_patches, d_model)` or `(bs, num_channels, num_patches+1, d_model)` if `cls_token` is set to True, *required*): Embedding from the model Returns: `torch.Tensor` of shape `(bs, forecast_len, num_channels)` """ if self.use_cls_token: # pooled_embedding: [bs x num_channels x d_model] pooled_embedding = embedding[:, :, 0, :] else: if self.pooling_type == "mean": # pooled_embedding: [bs x num_channels x d_model] pooled_embedding = embedding.mean(dim=2) elif self.pooling_type == "max": # pooled_embedding: [bs x num_channels x d_model] pooled_embedding = embedding.max(dim=2) else: # pooled_embedding: [bs x num_channels x num_patches x d_model] pooled_embedding = embedding if not self.share_projection: output = [] for i in range(self.num_input_channels): # pooled_embedding: [bs x (d_model * num_patches)] or [bs x d_model)] pooled_embedding = self.flattens[i](pooled_embedding[:, i, :]) pooled_embedding = self.dropouts[i](pooled_embedding) # pooled_embedding: [bs x forecast_len] # or tuple ([bs x forecast_len], [bs x forecast_len]) if using distribution head pooled_embedding = self.projections[i](pooled_embedding) output.append(pooled_embedding) # output: [bs x num_channels x forecast_len] output = torch.stack(output, dim=1) else: # pooled_embedding: [bs x num_channels x (d_model * num_patches)] or [bs x num_channels x d_model)] pooled_embedding = self.flatten(pooled_embedding) pooled_embedding = self.dropout(pooled_embedding) # output: [bs x num_channels x forecast_len] or # tuple ([bs x num_channels x forecast_len], [bs x num_channels x forecast_len]) if using distribution head output = self.projection(pooled_embedding) if isinstance(output, tuple): # output: ([bs x forecast_len x num_channels], [bs x forecast_len x num_channels]) output = tuple(z.transpose(2, 1) for z in output) else: output = output.transpose(2, 1) # [bs x forecast_len x num_channels] return output @add_start_docstrings( "The PatchTST for prediction model.", PATCHTST_START_DOCSTRING, ) class PatchTSTForPrediction(PatchTSTPreTrainedModel): def __init__(self, config: PatchTSTConfig): super().__init__(config) # Turn off masking if config.do_mask_input: logger.warning("Setting `do_mask_input` parameter to False.") config.do_mask_input = False self.model = PatchTSTModel(config) if config.loss == "mse": self.distribution_output = None else: if config.distribution_output == "student_t": self.distribution_output = StudentTOutput(dim=config.prediction_length) elif config.distribution_output == "normal": self.distribution_output = NormalOutput(dim=config.prediction_length) elif config.distribution_output == "negative_binomial": self.distribution_output = NegativeBinomialOutput(dim=config.prediction_length) else: raise ValueError(f"Unknown distribution output {config.distribution_output}") self.head = PatchTSTPredictionHead( config, self.model.patchifier.num_patches, distribution_output=self.distribution_output ) # Initialize weights and apply final processing self.post_init() def forward( self, past_values: torch.Tensor, past_observed_mask: Optional[torch.Tensor] = None, future_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, PatchTSTForPredictionOutput]: r""" Parameters: past_values (`torch.Tensor` of shape `(bs, sequence_length, num_input_channels)`, *required*): Input sequence to the model past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in `[0, 1]`: - 1 for values that are **observed**, - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). future_values (`torch.Tensor` of shape `(bs, forecast_len, num_input_channels)`, *optional*): Future target values associated with the `past_values` output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers output_attentions (`bool`, *optional*): Whether or not to return the output attention of all layers return_dict (`bool`, *optional*): Whether or not to return a `ModelOutput` instead of a plain tuple. Returns: `PatchTSTForPredictionOutput` or tuple of `torch.Tensor` (if `return_dict`=False or `config.return_dict`=False) Examples: ```python >>> from huggingface_hub import hf_hub_download >>> import torch >>> from transformers import PatchTSTConfig, PatchTSTForPrediction >>> file = hf_hub_download( ... repo_id="hf-internal-testing/etth1-hourly-batch", filename="train-batch.pt", repo_type="dataset" ... ) >>> batch = torch.load(file) >>> # Prediction task with 7 input channels and prediction length is 96 >>> model = PatchTSTForPrediction.from_pretrained("namctin/patchtst_etth1_forecast") >>> # during training, one provides both past and future values >>> outputs = model( ... past_values=batch["past_values"], ... future_values=batch["future_values"], ... ) >>> loss = outputs.loss >>> loss.backward() >>> # during inference, one only provides past values, the model outputs future values >>> outputs = model(past_values=batch["past_values"]) >>> prediction_outputs = outputs.prediction_outputs ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict # get model output model_output = self.model( past_values=past_values, past_observed_mask=past_observed_mask, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=True, ) # get output head y_hat = self.head(model_output.last_hidden_state) loss_val = None if self.distribution_output: y_hat_out = y_hat else: y_hat_out = y_hat * model_output.scale + model_output.loc if future_values is not None: if self.distribution_output: distribution = self.distribution_output.distribution( y_hat, loc=model_output.loc, scale=model_output.scale ) loss_val = nll(distribution, future_values) # take average of the loss loss_val = weighted_average(loss_val) else: loss = nn.MSELoss(reduction="mean") loss_val = loss(y_hat_out, future_values) loc = model_output.loc scale = model_output.scale if not return_dict: outputs = (y_hat_out,) + model_output[1:-1] outputs = (loss_val,) + outputs if loss_val is not None else outputs return outputs return PatchTSTForPredictionOutput( loss=loss_val, prediction_outputs=y_hat_out, hidden_states=model_output.hidden_states, attentions=model_output.attentions, loc=loc, scale=scale, ) def generate( self, past_values: torch.Tensor, past_observed_mask: Optional[torch.Tensor] = None, ) -> SamplePatchTSTOutput: """ Generate sequences of sample predictions from a model with a probability distribution head. Parameters: past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`): Past values of the time series that serves as context in order to predict the future. past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in `[0, 1]`: - 1 for values that are **observed**, - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). Return: [`SamplePatchTSTOutput`] where the outputs `sequences` tensor will have shape `(batch_size, number of samples, prediction_length, 1)` or `(batch_size, number of samples, prediction_length, num_input_channels)` for multivariate predictions. """ # get number of samples num_parallel_samples = self.config.num_parallel_samples # get model output outputs = self( past_values=past_values, future_values=None, past_observed_mask=past_observed_mask, output_hidden_states=False, ) if self.distribution_output: # get distribution distribution = self.distribution_output.distribution( outputs.prediction_outputs, loc=outputs.loc, scale=outputs.scale ) # get samples: list of [bs x forecast_len x num_channels] samples = [distribution.sample() for _ in range(num_parallel_samples)] # samples: [bs x num_samples x forecast_len x num_channels] samples = torch.stack(samples, dim=1) else: samples = outputs.prediction_outputs.unsqueeze(1) return SamplePatchTSTOutput(sequences=samples) class PatchTSTRegressionHead(nn.Module): """ Regression head """ def __init__(self, config: PatchTSTConfig, distribution_output=None): super().__init__() self.y_range = config.output_range self.use_cls_token = config.use_cls_token self.pooling_type = config.pooling_type self.distribution_output = distribution_output head_dim = config.num_input_channels * config.d_model self.flatten = nn.Flatten(start_dim=1) self.dropout = nn.Dropout(config.head_dropout) if config.head_dropout > 0 else nn.Identity() if distribution_output is None: self.projection = nn.Linear(head_dim, config.num_targets) else: self.projection = distribution_output.get_parameter_projection(head_dim) def forward(self, embedding: torch.Tensor): """ Parameters: embedding (`torch.Tensor` of shape `(bs, num_channels, num_patches, d_model)` or `(bs, num_channels, num_patches+1, d_model)` if `cls_token` is set to True, *required*): Embedding from the model Returns: `torch.Tensor` of shape `(bs, output_dim)` """ if self.use_cls_token: # use the first output token, pooled_embedding: [bs x num_channels x d_model] pooled_embedding = embedding[:, :, 0, :] elif self.pooling_type == "mean": # pooled_embedding: [bs x num_channels x d_model] pooled_embedding = embedding.mean(dim=2) elif self.pooling_type == "max": # pooled_embedding: [bs x num_channels x d_model] pooled_embedding = embedding.max(dim=2) else: raise ValueError(f"pooling operator {self.pooling_type} is not implemented yet") # flatten the input # pooled_embedding: bs x (num_channels * d_model) pooled_embedding = self.dropout(self.flatten(pooled_embedding)) # projection # output: bs x output_dim or a tuple of this shape for distribution head output = self.projection(pooled_embedding) # apply sigmoid to bound the output if required if (self.distribution_output is None) & (self.y_range is not None): # linear head output = torch.sigmoid(output) * (self.y_range[1] - self.y_range[0]) + self.y_range[0] return output @add_start_docstrings( "The PatchTST for regression model.", PATCHTST_START_DOCSTRING, ) class PatchTSTForRegression(PatchTSTPreTrainedModel): def __init__(self, config: PatchTSTConfig): super().__init__(config) # Turn off masking if config.do_mask_input: logger.warning("Setting `do_mask_input` parameter to False.") config.do_mask_input = False self.model = PatchTSTModel(config) if config.loss == "mse": self.distribution_output = None else: if config.distribution_output == "student_t": self.distribution_output = StudentTOutput(dim=config.prediction_length * config.num_targets) elif config.distribution_output == "normal": self.distribution_output = NormalOutput(dim=config.prediction_length * config.num_targets) elif config.distribution_output == "negative_binomial": self.distribution_output = NegativeBinomialOutput(dim=config.prediction_length * config.num_targets) else: raise ValueError(f"Unknown distribution output {config.distribution_output}") self.head = PatchTSTRegressionHead(config, self.distribution_output) # Initialize weights and apply final processing self.post_init() def forward( self, past_values: torch.Tensor, target_values: torch.Tensor = None, past_observed_mask: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, PatchTSTForRegressionOutput]: r""" Parameters: past_values (`torch.Tensor` of shape `(bs, sequence_length, num_input_channels)`, *required*): Input sequence to the model target_values (`torch.Tensor` of shape `(bs, num_input_channels)`): Target values associates with the `past_values` past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in `[0, 1]`: - 1 for values that are **observed**, - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers output_attentions (`bool`, *optional*): Whether or not to return the output attention of all layers return_dict (`bool`, *optional*): Whether or not to return a `ModelOutput` instead of a plain tuple. Returns: `PatchTSTForRegressionOutput` or tuple of `torch.Tensor` (if `return_dict`=False or `config.return_dict`=False) Examples: ```python >>> from transformers import PatchTSTConfig, PatchTSTForRegression >>> # Regression task with 6 input channels and regress 2 targets >>> model = PatchTSTForRegression.from_pretrained("namctin/patchtst_etth1_regression") >>> # during inference, one only provides past values, the model outputs future values >>> past_values = torch.randn(20, 512, 6) >>> outputs = model(past_values=past_values) >>> regression_outputs = outputs.regression_outputs ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict model_output = self.model( past_values=past_values, past_observed_mask=past_observed_mask, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=True, ) # get output head. y_hat is of shape [bs x num_targets] or tuple of this shape y_hat = self.head(model_output.last_hidden_state) loss = None if target_values is not None: if self.distribution_output: distribution = self.distribution_output.distribution(y_hat) loss = nll(distribution, target_values) # take average of the loss loss = weighted_average(loss) else: loss = nn.MSELoss(reduction="mean") loss = loss(y_hat, target_values) if not return_dict: outputs = (y_hat,) + model_output[1:-3] outputs = (loss,) + outputs if loss is not None else outputs return outputs return PatchTSTForRegressionOutput( loss=loss, regression_outputs=y_hat, hidden_states=model_output.hidden_states, attentions=model_output.attentions, ) def generate( self, past_values: torch.Tensor, past_observed_mask: Optional[torch.Tensor] = None, ) -> SamplePatchTSTOutput: """ Generate sequences of sample predictions from a model with a probability distribution head. Parameters: past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`): Past values of the time series that serves as context in order to predict the future. past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in `[0, 1]`: - 1 for values that are **observed**, - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). Return: [`SamplePatchTSTOutput`] where the outputs `sequences` tensor will have shape `(batch_size, number of samples, num_targets)`. """ # get number of samples num_parallel_samples = self.config.num_parallel_samples # get model output outputs = self( past_values=past_values, target_values=None, past_observed_mask=past_observed_mask, output_hidden_states=False, ) # get distribution distribution = self.distribution_output.distribution(outputs.regression_outputs) # get samples: list of [bs x num_targets] samples = [distribution.sample() for _ in range(num_parallel_samples)] # samples: [bs x num_samples x num_targets] samples = torch.stack(samples, dim=1) return SamplePatchTSTOutput(sequences=samples)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/patchtst/configuration_patchtst.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PatchTST model configuration""" from typing import List, Optional, Union from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP = { "ibm/patchtst-base": "https://huggingface.co/ibm/patchtst-base/resolve/main/config.json", # See all PatchTST models at https://huggingface.co/ibm/models?filter=patchtst } class PatchTSTConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of an [`PatchTSTModel`]. It is used to instantiate an PatchTST model according to the specified arguments, defining the model architecture. [ibm/patchtst](https://huggingface.co/ibm/patchtst) architecture. Configuration objects inherit from [`PretrainedConfig`] can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_input_channels (`int`, *optional*, defaults to 1): The size of the target variable which by default is 1 for univariate targets. Would be > 1 in case of multivariate targets. context_length (`int`, *optional*, defaults to 32): The context length of the input sequence. distribution_output (`str`, *optional*, defaults to `"student_t"`): The distribution emission head for the model when loss is "nll". Could be either "student_t", "normal" or "negative_binomial". loss (`str`, *optional*, defaults to `"mse"`): The loss function for the model corresponding to the `distribution_output` head. For parametric distributions it is the negative log likelihood ("nll") and for point estimates it is the mean squared error "mse". patch_length (`int`, *optional*, defaults to 1): Define the patch length of the patchification process. patch_stride (`int`, *optional*, defaults to 1): Define the stride of the patchification process. num_hidden_layers (`int`, *optional*, defaults to 3): Number of hidden layers. d_model (`int`, *optional*, defaults to 128): Dimensionality of the transformer layers. num_attention_heads (`int`, *optional*, defaults to 4): Number of attention heads for each attention layer in the Transformer encoder. share_embedding (`bool`, *optional*, defaults to `True`): Sharing the input embedding across all channels. channel_attention (`bool`, *optional*, defaults to `False`): Activate channel attention block in the Transformer to allow channels to attend each other. ffn_dim (`int`, *optional*, defaults to 512): Dimension of the "intermediate" (often named feed-forward) layer in the Transformer encoder. norm_type (`str` , *optional*, defaults to `"batchnorm"`): Normalization at each Transformer layer. Can be `"batchnorm"` or `"layernorm"`. norm_eps (`float`, *optional*, defaults to 1e-05): A value added to the denominator for numerical stability of normalization. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for the attention probabilities. dropout (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the Transformer. positional_dropout (`float`, *optional*, defaults to 0.0): The dropout probability in the positional embedding layer. path_dropout (`float`, *optional*, defaults to 0.0): The dropout path in the residual block. ff_dropout (`float`, *optional*, defaults to 0.0): The dropout probability used between the two layers of the feed-forward networks. bias (`bool`, *optional*, defaults to `True`): Whether to add bias in the feed-forward networks. activation_function (`str`, *optional*, defaults to `"gelu"`): The non-linear activation function (string) in the Transformer.`"gelu"` and `"relu"` are supported. pre_norm (`bool`, *optional*, defaults to `True`): Normalization is applied before self-attention if pre_norm is set to `True`. Otherwise, normalization is applied after residual block. positional_encoding_type (`str`, *optional*, defaults to `"sincos"`): Positional encodings. Options `"random"` and `"sincos"` are supported. use_cls_token (`bool`, *optional*, defaults to `False`): Whether cls token is used. init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated normal weight initialization distribution. share_projection (`bool`, *optional*, defaults to `True`): Sharing the projection layer across different channels in the forecast head. scaling (`Union`, *optional*, defaults to `"std"`): Whether to scale the input targets via "mean" scaler, "std" scaler or no scaler if `None`. If `True`, the scaler is set to "mean". do_mask_input (`bool`, *optional*): Apply masking during the pretraining. mask_type (`str`, *optional*, defaults to `"random"`): Masking type. Only `"random"` and `"forecast"` are currently supported. random_mask_ratio (`float`, *optional*, defaults to 0.5): Masking ratio applied to mask the input data during random pretraining. num_forecast_mask_patches (`int` or `list`, *optional*, defaults to `[2]`): Number of patches to be masked at the end of each batch sample. If it is an integer, all the samples in the batch will have the same number of masked patches. If it is a list, samples in the batch will be randomly masked by numbers defined in the list. This argument is only used for forecast pretraining. channel_consistent_masking (`bool`, *optional*, defaults to `False`): If channel consistent masking is True, all the channels will have the same masking pattern. unmasked_channel_indices (`list`, *optional*): Indices of channels that are not masked during pretraining. Values in the list are number between 1 and `num_input_channels` mask_value (`int`, *optional*, defaults to 0): Values in the masked patches will be filled by `mask_value`. pooling_type (`str`, *optional*, defaults to `"mean"`): Pooling of the embedding. `"mean"`, `"max"` and `None` are supported. head_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for head. prediction_length (`int`, *optional*, defaults to 24): The prediction horizon that the model will output. num_targets (`int`, *optional*, defaults to 1): Number of targets for regression and classification tasks. For classification, it is the number of classes. output_range (`list`, *optional*): Output range for regression task. The range of output values can be set to enforce the model to produce values within a range. num_parallel_samples (`int`, *optional*, defaults to 100): The number of samples is generated in parallel for probabilistic prediction. ```python >>> from transformers import PatchTSTConfig, PatchTSTModel >>> # Initializing an PatchTST configuration with 12 time steps for prediction >>> configuration = PatchTSTConfig(prediction_length=12) >>> # Randomly initializing a model (with random weights) from the configuration >>> model = PatchTSTModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "patchtst" attribute_map = { "hidden_size": "d_model", "num_attention_heads": "num_attention_heads", "num_hidden_layers": "num_hidden_layers", } def __init__( self, # time series specific configuration num_input_channels: int = 1, context_length: int = 32, distribution_output: str = "student_t", loss: str = "mse", # PatchTST arguments patch_length: int = 1, patch_stride: int = 1, # Transformer architecture configuration num_hidden_layers: int = 3, d_model: int = 128, num_attention_heads: int = 4, share_embedding: bool = True, channel_attention: bool = False, ffn_dim: int = 512, norm_type: str = "batchnorm", norm_eps: float = 1e-05, attention_dropout: float = 0.0, dropout: float = 0.0, positional_dropout: float = 0.0, path_dropout: float = 0.0, ff_dropout: float = 0.0, bias: bool = True, activation_function: str = "gelu", pre_norm: bool = True, positional_encoding_type: str = "sincos", use_cls_token: bool = False, init_std: float = 0.02, share_projection: bool = True, scaling: Optional[Union[str, bool]] = "std", # mask pretraining do_mask_input: Optional[bool] = None, mask_type: str = "random", random_mask_ratio: float = 0.5, num_forecast_mask_patches: Optional[Union[List[int], int]] = [2], channel_consistent_masking: Optional[bool] = False, unmasked_channel_indices: Optional[List[int]] = None, mask_value: int = 0, # head pooling_type: str = "mean", head_dropout: float = 0.0, prediction_length: int = 24, num_targets: int = 1, output_range: Optional[List] = None, # distribution head num_parallel_samples: int = 100, **kwargs, ): # time series specific configuration self.context_length = context_length self.num_input_channels = num_input_channels # n_vars self.loss = loss self.distribution_output = distribution_output self.num_parallel_samples = num_parallel_samples # Transformer architecture configuration self.d_model = d_model self.num_attention_heads = num_attention_heads self.ffn_dim = ffn_dim self.num_hidden_layers = num_hidden_layers self.dropout = dropout self.attention_dropout = attention_dropout self.share_embedding = share_embedding self.channel_attention = channel_attention self.norm_type = norm_type self.norm_eps = norm_eps self.positional_dropout = positional_dropout self.path_dropout = path_dropout self.ff_dropout = ff_dropout self.bias = bias self.activation_function = activation_function self.pre_norm = pre_norm self.positional_encoding_type = positional_encoding_type self.use_cls_token = use_cls_token self.init_std = init_std self.scaling = scaling # PatchTST parameters self.patch_length = patch_length self.patch_stride = patch_stride # Mask pretraining self.do_mask_input = do_mask_input self.mask_type = mask_type self.random_mask_ratio = random_mask_ratio # for random masking self.num_forecast_mask_patches = num_forecast_mask_patches # for forecast masking self.channel_consistent_masking = channel_consistent_masking self.unmasked_channel_indices = unmasked_channel_indices self.mask_value = mask_value # general head params self.pooling_type = pooling_type self.head_dropout = head_dropout # For prediction head self.share_projection = share_projection self.prediction_length = prediction_length # For prediction and regression head self.num_parallel_samples = num_parallel_samples # Regression self.num_targets = num_targets self.output_range = output_range super().__init__(**kwargs)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/fastspeech2_conformer/convert_hifigan.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert FastSpeech2Conformer HiFi-GAN checkpoint.""" import argparse from pathlib import Path import torch import yaml from transformers import FastSpeech2ConformerHifiGan, FastSpeech2ConformerHifiGanConfig, logging logging.set_verbosity_info() logger = logging.get_logger("transformers.models.FastSpeech2Conformer") def load_weights(checkpoint, hf_model, config): vocoder_key_prefix = "tts.generator.vocoder." checkpoint = {k.replace(vocoder_key_prefix, ""): v for k, v in checkpoint.items() if vocoder_key_prefix in k} hf_model.apply_weight_norm() hf_model.conv_pre.weight_g.data = checkpoint["input_conv.weight_g"] hf_model.conv_pre.weight_v.data = checkpoint["input_conv.weight_v"] hf_model.conv_pre.bias.data = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates)): hf_model.upsampler[i].weight_g.data = checkpoint[f"upsamples.{i}.1.weight_g"] hf_model.upsampler[i].weight_v.data = checkpoint[f"upsamples.{i}.1.weight_v"] hf_model.upsampler[i].bias.data = checkpoint[f"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates) * len(config.resblock_kernel_sizes)): for j in range(len(config.resblock_dilation_sizes)): hf_model.resblocks[i].convs1[j].weight_g.data = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"] hf_model.resblocks[i].convs1[j].weight_v.data = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"] hf_model.resblocks[i].convs1[j].bias.data = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"] hf_model.resblocks[i].convs2[j].weight_g.data = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"] hf_model.resblocks[i].convs2[j].weight_v.data = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"] hf_model.resblocks[i].convs2[j].bias.data = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"] hf_model.conv_post.weight_g.data = checkpoint["output_conv.1.weight_g"] hf_model.conv_post.weight_v.data = checkpoint["output_conv.1.weight_v"] hf_model.conv_post.bias.data = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() def remap_hifigan_yaml_config(yaml_config_path): with Path(yaml_config_path).open("r", encoding="utf-8") as f: args = yaml.safe_load(f) args = argparse.Namespace(**args) vocoder_type = args.tts_conf["vocoder_type"] if vocoder_type != "hifigan_generator": raise TypeError(f"Vocoder config must be for `hifigan_generator`, but got {vocoder_type}") remapped_dict = {} vocoder_params = args.tts_conf["vocoder_params"] # espnet_config_key -> hf_config_key key_mappings = { "channels": "upsample_initial_channel", "in_channels": "model_in_dim", "resblock_dilations": "resblock_dilation_sizes", "resblock_kernel_sizes": "resblock_kernel_sizes", "upsample_kernel_sizes": "upsample_kernel_sizes", "upsample_scales": "upsample_rates", } for espnet_config_key, hf_config_key in key_mappings.items(): remapped_dict[hf_config_key] = vocoder_params[espnet_config_key] remapped_dict["sampling_rate"] = args.tts_conf["sampling_rate"] remapped_dict["normalize_before"] = False remapped_dict["leaky_relu_slope"] = vocoder_params["nonlinear_activation_params"]["negative_slope"] return remapped_dict @torch.no_grad() def convert_hifigan_checkpoint( checkpoint_path, pytorch_dump_folder_path, yaml_config_path=None, repo_id=None, ): if yaml_config_path is not None: config_kwargs = remap_hifigan_yaml_config(yaml_config_path) config = FastSpeech2ConformerHifiGanConfig(**config_kwargs) else: config = FastSpeech2ConformerHifiGanConfig() model = FastSpeech2ConformerHifiGan(config) orig_checkpoint = torch.load(checkpoint_path) load_weights(orig_checkpoint, model, config) model.save_pretrained(pytorch_dump_folder_path) if repo_id: print("Pushing to the hub...") model.push_to_hub(repo_id) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--yaml_config_path", default=None, type=str, help="Path to config.yaml of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) args = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.yaml_config_path, args.push_to_hub, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py
# coding=utf-8 # Copyright 2023 The HuggingFace Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for FastSpeech2Conformer.""" import json import os from typing import Optional, Tuple import regex from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging, requires_backends logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "espnet/fastspeech2_conformer": "https://huggingface.co/espnet/fastspeech2_conformer/raw/main/vocab.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { # Set to somewhat arbitrary large number as the model input # isn't constrained by the relative positional encoding "espnet/fastspeech2_conformer": 4096, } class FastSpeech2ConformerTokenizer(PreTrainedTokenizer): """ Construct a FastSpeech2Conformer tokenizer. Args: vocab_file (`str`): Path to the vocabulary file. bos_token (`str`, *optional*, defaults to `"<sos/eos>"`): The begin of sequence token. Note that for FastSpeech2, it is the same as the `eos_token`. eos_token (`str`, *optional*, defaults to `"<sos/eos>"`): The end of sequence token. Note that for FastSpeech2, it is the same as the `bos_token`. pad_token (`str`, *optional*, defaults to `"<blank>"`): The token used for padding, for example when batching sequences of different lengths. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. should_strip_spaces (`bool`, *optional*, defaults to `False`): Whether or not to strip the spaces from the list of tokens. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP model_input_names = ["input_ids", "attention_mask"] max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, bos_token="<sos/eos>", eos_token="<sos/eos>", pad_token="<blank>", unk_token="<unk>", should_strip_spaces=False, **kwargs, ): requires_backends(self, "g2p_en") with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) import g2p_en self.g2p = g2p_en.G2p() self.decoder = {v: k for k, v in self.encoder.items()} super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, should_strip_spaces=should_strip_spaces, **kwargs, ) self.should_strip_spaces = should_strip_spaces @property def vocab_size(self): return len(self.decoder) def get_vocab(self): "Returns vocab as a dict" return dict(self.encoder, **self.added_tokens_encoder) def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): # expand symbols text = regex.sub(";", ",", text) text = regex.sub(":", ",", text) text = regex.sub("-", " ", text) text = regex.sub("&", "and", text) # strip unnecessary symbols text = regex.sub(r"[\(\)\[\]\<\>\"]+", "", text) # strip whitespaces text = regex.sub(r"\s+", " ", text) text = text.upper() return text, kwargs def _tokenize(self, text): """Returns a tokenized string.""" # phonemize tokens = self.g2p(text) if self.should_strip_spaces: tokens = list(filter(lambda s: s != " ", tokens)) tokens.append(self.eos_token) return tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) # Override since phonemes cannot be converted back to strings def decode(self, token_ids, **kwargs): logger.warn( "Phonemes cannot be reliably converted to a string due to the one-many mapping, converting to tokens instead." ) return self.convert_ids_to_tokens(token_ids) # Override since phonemes cannot be converted back to strings def convert_tokens_to_string(self, tokens, **kwargs): logger.warn( "Phonemes cannot be reliably converted to a string due to the one-many mapping, returning the tokens." ) return tokens def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: """ Save the vocabulary and special tokens file to a directory. Args: save_directory (`str`): The directory in which to save the vocabulary. Returns: `Tuple(str)`: Paths to the files saved. """ if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.get_vocab(), ensure_ascii=False)) return (vocab_file,) def __getstate__(self): state = self.__dict__.copy() state["g2p"] = None return state def __setstate__(self, d): self.__dict__ = d try: import g2p_en self.g2p = g2p_en.G2p() except ImportError: raise ImportError( "You need to install g2p-en to use FastSpeech2ConformerTokenizer. " "See https://pypi.org/project/g2p-en/ for installation." )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/fastspeech2_conformer/convert_model_with_hifigan.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert FastSpeech2Conformer checkpoint.""" import argparse import torch from transformers import ( FastSpeech2ConformerConfig, FastSpeech2ConformerHifiGan, FastSpeech2ConformerHifiGanConfig, FastSpeech2ConformerModel, FastSpeech2ConformerWithHifiGan, FastSpeech2ConformerWithHifiGanConfig, logging, ) from .convert_fastspeech2_conformer_original_pytorch_checkpoint_to_pytorch import ( convert_espnet_state_dict_to_hf, remap_model_yaml_config, ) from .convert_hifigan import load_weights, remap_hifigan_yaml_config logging.set_verbosity_info() logger = logging.get_logger("transformers.models.FastSpeech2Conformer") def convert_FastSpeech2ConformerWithHifiGan_checkpoint( checkpoint_path, yaml_config_path, pytorch_dump_folder_path, repo_id=None, ): # Prepare the model model_params, *_ = remap_model_yaml_config(yaml_config_path) model_config = FastSpeech2ConformerConfig(**model_params) model = FastSpeech2ConformerModel(model_config) espnet_checkpoint = torch.load(checkpoint_path) hf_compatible_state_dict = convert_espnet_state_dict_to_hf(espnet_checkpoint) model.load_state_dict(hf_compatible_state_dict) # Prepare the vocoder config_kwargs = remap_hifigan_yaml_config(yaml_config_path) vocoder_config = FastSpeech2ConformerHifiGanConfig(**config_kwargs) vocoder = FastSpeech2ConformerHifiGan(vocoder_config) load_weights(espnet_checkpoint, vocoder, vocoder_config) # Prepare the model + vocoder config = FastSpeech2ConformerWithHifiGanConfig.from_sub_model_configs(model_config, vocoder_config) with_hifigan_model = FastSpeech2ConformerWithHifiGan(config) with_hifigan_model.model = model with_hifigan_model.vocoder = vocoder with_hifigan_model.save_pretrained(pytorch_dump_folder_path) if repo_id: print("Pushing to the hub...") with_hifigan_model.push_to_hub(repo_id) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument( "--yaml_config_path", required=True, default=None, type=str, help="Path to config.yaml of model to convert" ) parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output `FastSpeech2ConformerModel` PyTorch model.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) args = parser.parse_args() convert_FastSpeech2ConformerWithHifiGan_checkpoint( args.checkpoint_path, args.yaml_config_path, args.pytorch_dump_folder_path, args.push_to_hub, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/fastspeech2_conformer/__init__.py
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _import_structure = { "configuration_fastspeech2_conformer": [ "FASTSPEECH2_CONFORMER_HIFIGAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "FASTSPEECH2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "FASTSPEECH2_CONFORMER_WITH_HIFIGAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "FastSpeech2ConformerConfig", "FastSpeech2ConformerHifiGanConfig", "FastSpeech2ConformerWithHifiGanConfig", ], "tokenization_fastspeech2_conformer": ["FastSpeech2ConformerTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_fastspeech2_conformer"] = [ "FASTSPEECH2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FastSpeech2ConformerWithHifiGan", "FastSpeech2ConformerHifiGan", "FastSpeech2ConformerModel", "FastSpeech2ConformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fastspeech2_conformer import ( FASTSPEECH2_CONFORMER_HIFIGAN_PRETRAINED_CONFIG_ARCHIVE_MAP, FASTSPEECH2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, FASTSPEECH2_CONFORMER_WITH_HIFIGAN_PRETRAINED_CONFIG_ARCHIVE_MAP, FastSpeech2ConformerConfig, FastSpeech2ConformerHifiGanConfig, FastSpeech2ConformerWithHifiGanConfig, ) from .tokenization_fastspeech2_conformer import FastSpeech2ConformerTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fastspeech2_conformer import ( FASTSPEECH2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FastSpeech2ConformerHifiGan, FastSpeech2ConformerModel, FastSpeech2ConformerPreTrainedModel, FastSpeech2ConformerWithHifiGan, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/fastspeech2_conformer/convert_fastspeech2_conformer_original_pytorch_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert FastSpeech2Conformer checkpoint.""" import argparse import json import re from pathlib import Path from tempfile import TemporaryDirectory import torch import yaml from transformers import ( FastSpeech2ConformerConfig, FastSpeech2ConformerModel, FastSpeech2ConformerTokenizer, logging, ) logging.set_verbosity_info() logger = logging.get_logger("transformers.models.FastSpeech2Conformer") CONFIG_MAPPING = { "adim": "hidden_size", "aheads": "num_attention_heads", "conformer_dec_kernel_size": "decoder_kernel_size", "conformer_enc_kernel_size": "encoder_kernel_size", "decoder_normalize_before": "decoder_normalize_before", "dlayers": "decoder_layers", "dunits": "decoder_linear_units", "duration_predictor_chans": "duration_predictor_channels", "duration_predictor_kernel_size": "duration_predictor_kernel_size", "duration_predictor_layers": "duration_predictor_layers", "elayers": "encoder_layers", "encoder_normalize_before": "encoder_normalize_before", "energy_embed_dropout": "energy_embed_dropout", "energy_embed_kernel_size": "energy_embed_kernel_size", "energy_predictor_chans": "energy_predictor_channels", "energy_predictor_dropout": "energy_predictor_dropout", "energy_predictor_kernel_size": "energy_predictor_kernel_size", "energy_predictor_layers": "energy_predictor_layers", "eunits": "encoder_linear_units", "pitch_embed_dropout": "pitch_embed_dropout", "pitch_embed_kernel_size": "pitch_embed_kernel_size", "pitch_predictor_chans": "pitch_predictor_channels", "pitch_predictor_dropout": "pitch_predictor_dropout", "pitch_predictor_kernel_size": "pitch_predictor_kernel_size", "pitch_predictor_layers": "pitch_predictor_layers", "positionwise_conv_kernel_size": "positionwise_conv_kernel_size", "postnet_chans": "speech_decoder_postnet_units", "postnet_filts": "speech_decoder_postnet_kernel", "postnet_layers": "speech_decoder_postnet_layers", "reduction_factor": "reduction_factor", "stop_gradient_from_energy_predictor": "stop_gradient_from_energy_predictor", "stop_gradient_from_pitch_predictor": "stop_gradient_from_pitch_predictor", "transformer_dec_attn_dropout_rate": "decoder_attention_dropout_rate", "transformer_dec_dropout_rate": "decoder_dropout_rate", "transformer_dec_positional_dropout_rate": "decoder_positional_dropout_rate", "transformer_enc_attn_dropout_rate": "encoder_attention_dropout_rate", "transformer_enc_dropout_rate": "encoder_dropout_rate", "transformer_enc_positional_dropout_rate": "encoder_positional_dropout_rate", "use_cnn_in_conformer": "use_cnn_in_conformer", "use_macaron_style_in_conformer": "use_macaron_style_in_conformer", "use_masking": "use_masking", "use_weighted_masking": "use_weighted_masking", "idim": "input_dim", "odim": "num_mel_bins", "spk_embed_dim": "speaker_embed_dim", "langs": "num_languages", "spks": "num_speakers", } def remap_model_yaml_config(yaml_config_path): with Path(yaml_config_path).open("r", encoding="utf-8") as f: args = yaml.safe_load(f) args = argparse.Namespace(**args) remapped_config = {} model_params = args.tts_conf["text2mel_params"] # espnet_config_key -> hf_config_key, any keys not included are ignored for espnet_config_key, hf_config_key in CONFIG_MAPPING.items(): if espnet_config_key in model_params: remapped_config[hf_config_key] = model_params[espnet_config_key] return remapped_config, args.g2p, args.token_list def convert_espnet_state_dict_to_hf(state_dict): new_state_dict = {} for key in state_dict: if "tts.generator.text2mel." in key: new_key = key.replace("tts.generator.text2mel.", "") if "postnet" in key: new_key = new_key.replace("postnet.postnet", "speech_decoder_postnet.layers") new_key = new_key.replace(".0.weight", ".conv.weight") new_key = new_key.replace(".1.weight", ".batch_norm.weight") new_key = new_key.replace(".1.bias", ".batch_norm.bias") new_key = new_key.replace(".1.running_mean", ".batch_norm.running_mean") new_key = new_key.replace(".1.running_var", ".batch_norm.running_var") new_key = new_key.replace(".1.num_batches_tracked", ".batch_norm.num_batches_tracked") if "feat_out" in key: if "weight" in key: new_key = "speech_decoder_postnet.feat_out.weight" if "bias" in key: new_key = "speech_decoder_postnet.feat_out.bias" if "encoder.embed.0.weight" in key: new_key = new_key.replace("0.", "") if "w_1" in key: new_key = new_key.replace("w_1", "conv1") if "w_2" in key: new_key = new_key.replace("w_2", "conv2") if "predictor.conv" in key: new_key = new_key.replace(".conv", ".conv_layers") pattern = r"(\d)\.(\d)" replacement = ( r"\1.conv" if ("2.weight" not in new_key) and ("2.bias" not in new_key) else r"\1.layer_norm" ) new_key = re.sub(pattern, replacement, new_key) if "pitch_embed" in key or "energy_embed" in key: new_key = new_key.replace("0", "conv") if "encoders" in key: new_key = new_key.replace("encoders", "conformer_layers") new_key = new_key.replace("norm_final", "final_layer_norm") new_key = new_key.replace("norm_mha", "self_attn_layer_norm") new_key = new_key.replace("norm_ff_macaron", "ff_macaron_layer_norm") new_key = new_key.replace("norm_ff", "ff_layer_norm") new_key = new_key.replace("norm_conv", "conv_layer_norm") if "lid_emb" in key: new_key = new_key.replace("lid_emb", "language_id_embedding") if "sid_emb" in key: new_key = new_key.replace("sid_emb", "speaker_id_embedding") new_state_dict[new_key] = state_dict[key] return new_state_dict @torch.no_grad() def convert_FastSpeech2ConformerModel_checkpoint( checkpoint_path, yaml_config_path, pytorch_dump_folder_path, repo_id=None, ): model_params, tokenizer_name, vocab = remap_model_yaml_config(yaml_config_path) config = FastSpeech2ConformerConfig(**model_params) # Prepare the model model = FastSpeech2ConformerModel(config) espnet_checkpoint = torch.load(checkpoint_path) hf_compatible_state_dict = convert_espnet_state_dict_to_hf(espnet_checkpoint) model.load_state_dict(hf_compatible_state_dict) model.save_pretrained(pytorch_dump_folder_path) # Prepare the tokenizer with TemporaryDirectory() as tempdir: vocab = {token: id for id, token in enumerate(vocab)} vocab_file = Path(tempdir) / "vocab.json" with open(vocab_file, "w") as f: json.dump(vocab, f) should_strip_spaces = "no_space" in tokenizer_name tokenizer = FastSpeech2ConformerTokenizer(str(vocab_file), should_strip_spaces=should_strip_spaces) tokenizer.save_pretrained(pytorch_dump_folder_path) if repo_id: print("Pushing to the hub...") model.push_to_hub(repo_id) tokenizer.push_to_hub(repo_id) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument( "--yaml_config_path", required=True, default=None, type=str, help="Path to config.yaml of model to convert" ) parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) args = parser.parse_args() convert_FastSpeech2ConformerModel_checkpoint( args.checkpoint_path, args.yaml_config_path, args.pytorch_dump_folder_path, args.push_to_hub, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
# coding=utf-8 # Copyright 2023 The Espnet authors, IMS Toucan authors, and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch FastSpeech2Conformer model.""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from torch import nn from ...modeling_outputs import BaseModelOutput from ...modeling_utils import PreTrainedModel from ...utils import ModelOutput, add_start_docstrings, logging, replace_return_docstrings from .configuration_fastspeech2_conformer import ( FastSpeech2ConformerConfig, FastSpeech2ConformerHifiGanConfig, FastSpeech2ConformerWithHifiGanConfig, ) logger = logging.get_logger(__name__) FASTSPEECH2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "espnet/fastspeech2_conformer", # See all FastSpeech2Conformer models at https://huggingface.co/models?filter=fastspeech2_conformer ] @dataclass class FastSpeech2ConformerModelOutput(ModelOutput): """ Output type of [`FastSpeech2ConformerModel`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Spectrogram generation loss. spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`): The predicted spectrogram. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. duration_outputs (`torch.LongTensor` of shape `(batch_size, max_text_length + 1)`, *optional*): Outputs of the duration predictor. pitch_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*): Outputs of the pitch predictor. energy_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*): Outputs of the energy predictor. """ loss: Optional[torch.FloatTensor] = None spectrogram: torch.FloatTensor = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None duration_outputs: torch.LongTensor = None pitch_outputs: torch.FloatTensor = None energy_outputs: torch.FloatTensor = None @dataclass class FastSpeech2ConformerWithHifiGanOutput(FastSpeech2ConformerModelOutput): """ Output type of [`FastSpeech2ConformerWithHifiGan`]. Args: waveform (`torch.FloatTensor` of shape `(batch_size, audio_length)`): Speech output as a result of passing the predicted mel spectrogram through the vocoder. loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Spectrogram generation loss. spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`): The predicted spectrogram. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. duration_outputs (`torch.LongTensor` of shape `(batch_size, max_text_length + 1)`, *optional*): Outputs of the duration predictor. pitch_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*): Outputs of the pitch predictor. energy_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*): Outputs of the energy predictor. """ waveform: torch.FloatTensor = None _CONFIG_FOR_DOC = "FastSpeech2ConformerConfig" FASTSPEECH2_CONFORMER_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`FastSpeech2ConformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ HIFIGAN_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`FastSpeech2ConformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ FASTSPEECH2_CONFORMER_WITH_HIFIGAN_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`FastSpeech2ConformerWithHifiGanConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ def length_regulator(encoded_embeddings, duration_labels, speaking_speed=1.0): """ Length regulator for feed-forward Transformer. This is the length regulator module described in `FastSpeech: Fast, Robust and Controllable Text to Speech` https://arxiv.org/pdf/1905.09263.pdf. The length regulator expands char or phoneme-level embedding features to frame-level by repeating each feature based on the corresponding predicted durations. Args: encoded_embeddings (`torch.Tensor` of shape `(batch_size, max_text_length, embedding_dim)`): Batch of sequences of char or phoneme embeddings. duration_labels (`torch.LongTensor` of shape `(batch_size, time)`): Batch of durations of each frame. speaking_speed (`float`, *optional*, defaults to 1.0): Value to control speed of speech. Returns: `torch.Tensor`: Replicated input tensor based on durations (batch_size, time*, embedding_dim). """ if speaking_speed <= 0: raise ValueError("`speaking_speed` must be greater than 0.") elif speaking_speed != 1.0: duration_labels = torch.round(duration_labels.float() * speaking_speed).long() if duration_labels.sum() == 0: duration_labels[duration_labels.sum(dim=1).eq(0)] = 1 # Calculate the maximum length needed max_len = torch.sum(duration_labels, dim=1).max() # Create a padded tensor to hold the results hidden_states = torch.zeros( (encoded_embeddings.size(0), max_len, encoded_embeddings.size(2)), dtype=torch.float, device=encoded_embeddings.device, ) # Loop through the batch and fill in the data for i, (encoded_embedding, target_duration) in enumerate(zip(encoded_embeddings, duration_labels)): repeated = torch.repeat_interleave(encoded_embedding, target_duration, dim=0) hidden_states[i, : repeated.size(0)] = repeated return hidden_states class FastSpeech2ConformerDurationPredictor(nn.Module): """ Duration predictor module. This is a module of duration predictor described in the paper 'FastSpeech: Fast, Robust and Controllable Text to Speech' https://arxiv.org/pdf/1905.09263.pdf The duration predictor predicts a duration of each frame in log domain from the hidden embeddings of encoder. Note: The calculation domain of outputs is different between in `forward` and in `inference`. In `forward`, the outputs are calculated in log domain but in `inference`, those are calculated in linear domain. """ def __init__(self, config: FastSpeech2ConformerConfig): super().__init__() self.conv_layers = nn.ModuleList() self.log_domain_offset = 1.0 for layer_idx in range(config.duration_predictor_layers): num_chans = config.duration_predictor_channels input_channels = config.hidden_size if layer_idx == 0 else num_chans layer = FastSpeech2ConformerPredictorLayer( input_channels, num_chans, config.duration_predictor_kernel_size, config.duration_predictor_dropout_rate, ) self.conv_layers.append(layer) self.linear = nn.Linear(config.duration_predictor_channels, 1) def forward(self, encoder_hidden_states): """ Args: hidden_states (`torch.Tensor` of shape `(batch_size, max_text_length, input_dim)`): Batch of input sequences. padding_masks (`torch.ByteTensor` of shape `(batch_size, max_text_length)`, *optional*): Batch of masks indicating padded part. Returns: `torch.Tensor`: Batch of predicted durations in log domain `(batch_size, max_text_length)`. """ # (batch_size, input_dim, max_text_length) hidden_states = encoder_hidden_states.transpose(1, -1) for layer in self.conv_layers: hidden_states = layer(hidden_states) # NOTE: calculate in log domain, (batch_size, max_text_length) hidden_states = self.linear(hidden_states.transpose(1, -1)).squeeze(-1) if not self.training: # NOTE: calculate in linear domain hidden_states = torch.clamp(torch.round(hidden_states.exp() - self.log_domain_offset), min=0).long() return hidden_states # Copied from transformers.models.speecht5.modeling_speecht5.SpeechT5BatchNormConvLayer class FastSpeech2ConformerBatchNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() if layer_id == 0: in_conv_dim = config.num_mel_bins else: in_conv_dim = config.speech_decoder_postnet_units if layer_id == config.speech_decoder_postnet_layers - 1: out_conv_dim = config.num_mel_bins else: out_conv_dim = config.speech_decoder_postnet_units self.conv = nn.Conv1d( in_conv_dim, out_conv_dim, kernel_size=config.speech_decoder_postnet_kernel, stride=1, padding=(config.speech_decoder_postnet_kernel - 1) // 2, bias=False, ) self.batch_norm = nn.BatchNorm1d(out_conv_dim) if layer_id < config.speech_decoder_postnet_layers - 1: self.activation = nn.Tanh() else: self.activation = None self.dropout = nn.Dropout(config.speech_decoder_postnet_dropout) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.batch_norm(hidden_states) if self.activation is not None: hidden_states = self.activation(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class FastSpeech2ConformerSpeechDecoderPostnet(nn.Module): def __init__(self, config): super().__init__() self.config = config self.feat_out = nn.Linear(config.hidden_size, config.num_mel_bins * config.reduction_factor) self.layers = nn.ModuleList( [FastSpeech2ConformerBatchNormConvLayer(config, i) for i in range(config.speech_decoder_postnet_layers)] ) def forward(self, hidden_states: torch.Tensor): outputs_before_postnet = self.feat_out(hidden_states).view(hidden_states.size(0), -1, self.config.num_mel_bins) layer_output = outputs_before_postnet.transpose(1, 2) for layer in self.layers: layer_output = layer(layer_output) outputs_after_postnet = outputs_before_postnet + layer_output.transpose(1, 2) return outputs_before_postnet, outputs_after_postnet class FastSpeech2ConformerPredictorLayer(nn.Module): def __init__(self, input_channels, num_chans, kernel_size, dropout_rate): super().__init__() self.conv = nn.Conv1d( input_channels, num_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, ) self.activation = nn.ReLU() self.layer_norm = nn.LayerNorm(num_chans) self.dropout = nn.Dropout(dropout_rate) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) # Perform layer norm on dimension 1 hidden_states = hidden_states.transpose(1, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(1, -1) hidden_states = self.dropout(hidden_states) return hidden_states class FastSpeech2ConformerVariancePredictor(nn.Module): def __init__( self, config: FastSpeech2ConformerConfig, num_layers=2, num_chans=384, kernel_size=3, dropout_rate=0.5, ): """ Initilize variance predictor module. Args: input_dim (`int`): Input dimension. num_layers (`int`, *optional*, defaults to 2): Number of convolutional layers. num_chans (`int`, *optional*, defaults to 384): Number of channels of convolutional layers. kernel_size (`int`, *optional*, defaults to 3): Kernel size of convolutional layers. dropout_rate (`float`, *optional*, defaults to 0.5): Dropout rate. """ super().__init__() self.conv_layers = nn.ModuleList() for idx in range(num_layers): input_channels = config.hidden_size if idx == 0 else num_chans layer = FastSpeech2ConformerPredictorLayer(input_channels, num_chans, kernel_size, dropout_rate) self.conv_layers.append(layer) self.linear = nn.Linear(num_chans, 1) def forward(self, encoder_hidden_states, padding_masks=None): """ Calculate forward propagation. Args: encoder_hidden_states (`torch.Tensor` of shape `(batch_size, max_text_length, input_dim)`): Batch of input sequences. padding_masks (`torch.ByteTensor` of shape `(batch_size, max_text_length)`, *optional*): Batch of masks indicating padded part. Returns: Tensor: Batch of predicted sequences `(batch_size, max_text_length, 1)`. """ # (batch_size, input_dim, max_text_length) hidden_states = encoder_hidden_states.transpose(1, -1) for layer in self.conv_layers: hidden_states = layer(hidden_states) hidden_states = self.linear(hidden_states.transpose(1, 2)) if padding_masks is not None: hidden_states = hidden_states.masked_fill(padding_masks, 0.0) return hidden_states class FastSpeech2ConformerVarianceEmbedding(nn.Module): def __init__( self, in_channels=1, out_channels=384, kernel_size=1, padding=0, dropout_rate=0.0, ): super().__init__() self.conv = nn.Conv1d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, padding=padding, ) self.dropout = nn.Dropout(dropout_rate) def forward(self, hidden_states): hidden_states = hidden_states.transpose(1, 2) hidden_states = self.conv(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states class FastSpeech2ConformerAttention(nn.Module): """ Multi-Head attention layer with relative position encoding. Details can be found in https://github.com/espnet/espnet/pull/2816. Paper: https://arxiv.org/abs/1901.02860. """ def __init__(self, config: FastSpeech2ConformerConfig, module_config): """Construct an FastSpeech2ConformerAttention object.""" super().__init__() # We assume d_v always equals dim_key self.num_heads = module_config["num_attention_heads"] self.hidden_size = config.hidden_size self.dim_key = self.hidden_size // self.num_heads self.head_dim = self.hidden_size // self.num_heads self.linear_q = nn.Linear(self.hidden_size, self.hidden_size) self.linear_k = nn.Linear(self.hidden_size, self.hidden_size) self.linear_v = nn.Linear(self.hidden_size, self.hidden_size) self.linear_out = nn.Linear(self.hidden_size, self.hidden_size) self.dropout = nn.Dropout(p=module_config["attention_dropout_rate"]) # linear transformation for positional encoding self.linear_pos = nn.Linear(self.hidden_size, self.hidden_size, bias=False) # these two learnable bias are used in matrix c and matrix d # as described in https://arxiv.org/abs/1901.02860 Section 3.3 self.pos_bias_u = nn.Parameter(torch.Tensor(self.num_heads, self.head_dim)) self.pos_bias_v = nn.Parameter(torch.Tensor(self.num_heads, self.head_dim)) def shift_relative_position_tensor(self, pos_tensor): """ Args: pos_tensor (torch.Tensor of shape (batch_size, head, time1, 2*time1-1)): Input tensor. """ zero_pad = torch.zeros((*pos_tensor.size()[:3], 1), device=pos_tensor.device, dtype=pos_tensor.dtype) pos_tensor_padded = torch.cat([zero_pad, pos_tensor], dim=-1) pos_tensor_padded = pos_tensor_padded.view(*pos_tensor.size()[:2], pos_tensor.size(3) + 1, pos_tensor.size(2)) # only keep the positions from 0 to time2 pos_tensor = pos_tensor_padded[:, :, 1:].view_as(pos_tensor)[:, :, :, : pos_tensor.size(-1) // 2 + 1] return pos_tensor def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, pos_emb: Optional[torch.Tensor] = None, output_attentions: Optional[torch.Tensor] = False, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Compute 'Scaled Dot Product Attention' with rel. positional encoding. Args: hidden_states (`torch.Tensor` of shape `(batch, time2, size)`): Values of the hidden states attention_mask (`torch.Tensor` of shape `(batch, time1, time2)`): Mask tensor. pos_emb (`torch.Tensor` of shape `(batch, 2*time1-1, size)`): Positional embedding tensor. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. Returns: `torch.Tensor`: Output tensor of shape `(batch, time1, d_model)`. """ bsz, q_len, _ = hidden_states.size() query_states = self.linear_q(hidden_states).view(bsz, -1, self.num_heads, self.head_dim) key_states = self.linear_k(hidden_states).view(bsz, -1, self.num_heads, self.head_dim) value_states = self.linear_v(hidden_states).view(bsz, -1, self.num_heads, self.head_dim) bsz_pos = pos_emb.size(0) pos_encoding = self.linear_pos(pos_emb).view(bsz_pos, -1, self.num_heads, self.head_dim) # (batch_size, head, time1, dim_key) query_with_bias_u = (query_states + self.pos_bias_u).transpose(1, 2) # (batch_size, head, time1, dim_key) query_with_bias_v = (query_states + self.pos_bias_v).transpose(1, 2) # compute attention score # first compute matrix a and matrix c # as described in https://arxiv.org/abs/1901.02860 Section 3.3 # (batch_size, head, time1, time2) matrix_ac = torch.matmul(query_with_bias_u, key_states.permute(0, 2, 3, 1)) # compute matrix b and matrix d # (batch_size, head, time1, 2*time1-1) matrix_bd = torch.matmul(query_with_bias_v, pos_encoding.permute(0, 2, 3, 1)) matrix_bd = self.shift_relative_position_tensor(matrix_bd) # (batch_size, head, time1, time2) scores = (matrix_ac + matrix_bd) / math.sqrt(self.dim_key) # Forward attention if attention_mask is not None: expected_size = (bsz, 1, q_len) if attention_mask.size() != expected_size: raise ValueError(f"Attention mask should be of size {expected_size}, but is {attention_mask.size()}") attention_mask = attention_mask.unsqueeze(1).eq(0) min_value = float(torch.finfo(scores.dtype).min) scores = scores.masked_fill(attention_mask, min_value) attn_weights = torch.softmax(scores, dim=-1).masked_fill(attention_mask, 0.0) else: attn_weights = torch.softmax(scores, dim=-1) attn_weights = self.dropout(attn_weights) attn_output = torch.matmul(attn_weights, value_states.transpose(1, 2)) attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, -1) attn_output = self.linear_out(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights class FastSpeech2ConformerConvolutionModule(nn.Module): def __init__(self, config: FastSpeech2ConformerConfig, module_config): super().__init__() # kernel_size should be an odd number for 'SAME' padding channels = config.hidden_size kernel_size = module_config["kernel_size"] self.pointwise_conv1 = nn.Conv1d(channels, 2 * channels, kernel_size=1, stride=1, padding=0, bias=True) self.depthwise_conv = nn.Conv1d( channels, channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2, groups=channels, bias=True ) self.norm = nn.BatchNorm1d(channels) self.pointwise_conv2 = nn.Conv1d(channels, channels, kernel_size=1, stride=1, padding=0, bias=True) def forward(self, hidden_states): """ Compute convolution module. Args: hidden_states (`torch.Tensor` of shape `(batch, time, channels)`): Input tensor. Returns: `torch.Tensor`: Output tensor of shape `(batch, time, channels)`. """ # exchange the temporal dimension and the feature dimension hidden_states = hidden_states.transpose(1, 2) # GLU mechanism, (batch_size, 2*channel, dim) hidden_states = self.pointwise_conv1(hidden_states) # (batch_size, channel, dim) hidden_states = nn.functional.glu(hidden_states, dim=1) # 1D Depthwise Conv hidden_states = self.depthwise_conv(hidden_states) hidden_states = self.norm(hidden_states) hidden_states = hidden_states * torch.sigmoid(hidden_states) hidden_states = self.pointwise_conv2(hidden_states) return hidden_states.transpose(1, 2) class FastSpeech2ConformerEncoderLayer(nn.Module): def __init__(self, config: FastSpeech2ConformerConfig, module_config): super().__init__() # self-attention module definition self.self_attn = FastSpeech2ConformerAttention(config, module_config) # feed-forward module definition self.feed_forward = FastSpeech2ConformerMultiLayeredConv1d(config, module_config) self.macaron_style = config.use_macaron_style_in_conformer if self.macaron_style: self.feed_forward_macaron = FastSpeech2ConformerMultiLayeredConv1d(config, module_config) self.ff_macaron_layer_norm = nn.LayerNorm(config.hidden_size) self.ff_scale = 0.5 else: self.ff_scale = 1.0 # convolution module definition self.use_cnn_module = config.use_cnn_in_conformer if self.use_cnn_module: self.conv_module = FastSpeech2ConformerConvolutionModule(config, module_config) self.conv_layer_norm = nn.LayerNorm(config.hidden_size) self.final_layer_norm = nn.LayerNorm(config.hidden_size) self.ff_layer_norm = nn.LayerNorm(config.hidden_size) self.self_attn_layer_norm = nn.LayerNorm(config.hidden_size) self.dropout = nn.Dropout(module_config["dropout_rate"]) self.size = config.hidden_size self.normalize_before = module_config["normalize_before"] self.concat_after = module_config["concat_after"] if self.concat_after: self.concat_linear = nn.Linear(config.hidden_size + config.hidden_size, config.hidden_size) def forward( self, hidden_states: torch.Tensor, pos_emb: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[torch.Tensor] = False, ): """ Compute encoded features. Args: hidden_states (`torch.Tensor` of shape `(batch, time, size)`): Input tensor. pos_emb (`torch.Tensor` of shape `(1, time, size)`): Positional embeddings tensor. attention_mask (`torch.Tensor` of shape `(batch, time)`): Attention mask tensor for the input. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. Returns: `torch.Tensor`: Output tensor of shape `(batch, time, size)`. """ # whether to use macaron style if self.macaron_style: residual = hidden_states if self.normalize_before: hidden_states = self.ff_macaron_layer_norm(hidden_states) hidden_states = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(hidden_states)) if not self.normalize_before: hidden_states = self.ff_macaron_layer_norm(hidden_states) # multi-headed self-attention module residual = hidden_states if self.normalize_before: hidden_states = self.self_attn_layer_norm(hidden_states) attention_output, attention_scores = self.self_attn( hidden_states, attention_mask=attention_mask, pos_emb=pos_emb, output_attentions=output_attentions ) if self.concat_after: x_concat = torch.cat((hidden_states, attention_output), dim=-1) hidden_states = self.concat_linear(x_concat) hidden_states = residual + hidden_states else: hidden_states = self.dropout(attention_output) hidden_states = residual + hidden_states if not self.normalize_before: hidden_states = self.self_attn_layer_norm(hidden_states) # convolution module if self.use_cnn_module: residual = hidden_states if self.normalize_before: hidden_states = self.conv_layer_norm(hidden_states) hidden_states = self.conv_module(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = residual + hidden_states if not self.normalize_before: hidden_states = self.conv_layer_norm(hidden_states) # feed forward module residual = hidden_states if self.normalize_before: hidden_states = self.ff_layer_norm(hidden_states) hidden_states = self.feed_forward(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = residual + self.ff_scale * hidden_states if not self.normalize_before: hidden_states = self.ff_layer_norm(hidden_states) if self.conv_module is not None: hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attention_scores,) return outputs class FastSpeech2ConformerMultiLayeredConv1d(nn.Module): """ Multi-layered conv1d for Transformer block. This is a module of multi-layered conv1d designed to replace positionwise feed-forward network in Transformer block, which is introduced in 'FastSpeech: Fast, Robust and Controllable Text to Speech' https://arxiv.org/pdf/1905.09263.pdf """ def __init__(self, config: FastSpeech2ConformerConfig, module_config): """ Initialize FastSpeech2ConformerMultiLayeredConv1d module. Args: input_channels (`int`): Number of input channels. hidden_channels (`int`): Number of hidden channels. kernel_size (`int`): Kernel size of conv1d. dropout_rate (`float`): Dropout rate. """ super().__init__() input_channels = config.hidden_size hidden_channels = module_config["linear_units"] kernel_size = config.positionwise_conv_kernel_size self.conv1 = nn.Conv1d(input_channels, hidden_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2) self.conv2 = nn.Conv1d(hidden_channels, input_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2) self.dropout = nn.Dropout(module_config["dropout_rate"]) def forward(self, hidden_states): """ Calculate forward propagation. Args: hidden_states (torch.Tensor): Batch of input tensors (batch_size, time, input_channels). Returns: torch.Tensor: Batch of output tensors (batch_size, time, hidden_channels). """ hidden_states = hidden_states.transpose(-1, 1) hidden_states = self.conv1(hidden_states) hidden_states = torch.relu(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) hidden_states = hidden_states.transpose(-1, 1) return hidden_states class FastSpeech2ConformerRelPositionalEncoding(nn.Module): """ Args: Relative positional encoding module (new implementation). Details can be found in https://github.com/espnet/espnet/pull/2816. See : Appendix Batch in https://arxiv.org/abs/1901.02860 config (`FastSpeech2ConformerConfig`): FastSpeech2ConformerConfig instance. module_config (`dict`): Dictionary containing the encoder or decoder module configuration from the `FastSpeech2ConformerConfig`. """ def __init__(self, config: FastSpeech2ConformerConfig, module_config): """ Construct an PositionalEncoding object. """ super().__init__() self.embed_dim = config.hidden_size self.input_scale = math.sqrt(self.embed_dim) self.dropout = nn.Dropout(p=module_config["positional_dropout_rate"]) self.pos_enc = None self.max_len = 5000 self.extend_pos_enc(torch.tensor(0.0).expand(1, self.max_len)) def extend_pos_enc(self, x): """Reset the positional encodings.""" if self.pos_enc is not None: # self.pos_enc contains both positive and negative parts # the length of self.pos_enc is 2 * input_len - 1 if self.pos_enc.size(1) >= x.size(1) * 2 - 1: if self.pos_enc.dtype != x.dtype or self.pos_enc.device != x.device: self.pos_enc = self.pos_enc.to(dtype=x.dtype, device=x.device) return # Suppose `i` means to the position of query vector and `j` means the # position of key vector. We use position relative positions when keys # are to the left (i>j) and negative relative positions otherwise (i<j). pos_enc_positive = torch.zeros(x.size(1), self.embed_dim) pos_enc_negative = torch.zeros(x.size(1), self.embed_dim) position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) div_term = torch.exp( torch.arange(0, self.embed_dim, 2, dtype=torch.float32) * -(math.log(10000.0) / self.embed_dim) ) pos_enc_positive[:, 0::2] = torch.sin(position * div_term) pos_enc_positive[:, 1::2] = torch.cos(position * div_term) pos_enc_negative[:, 0::2] = torch.sin(-1 * position * div_term) pos_enc_negative[:, 1::2] = torch.cos(-1 * position * div_term) # Reserve the order of positive indices and concat both positive and # negative indices. This is used to support the shifting trick # as in https://arxiv.org/abs/1901.02860 pos_enc_positive = torch.flip(pos_enc_positive, [0]).unsqueeze(0) pos_enc_negative = pos_enc_negative[1:].unsqueeze(0) pos_enc = torch.cat([pos_enc_positive, pos_enc_negative], dim=1) self.pos_enc = pos_enc.to(device=x.device, dtype=x.dtype) def forward(self, feature_representation): """ Args: feature_representation (`torch.Tensor` of shape (batch_size, time, `*`)): Input tensor. Returns: `torch.Tensor`: Encoded tensor (batch_size, time, `*`). """ self.extend_pos_enc(feature_representation) hidden_states = feature_representation * self.input_scale center_idx = self.pos_enc.size(1) // 2 pos_emb = self.pos_enc[:, center_idx - hidden_states.size(1) + 1 : center_idx + hidden_states.size(1)] return self.dropout(hidden_states), self.dropout(pos_emb) class FastSpeech2ConformerEncoder(nn.Module): """ FastSpeech2ConformerEncoder encoder module. Args: config (`FastSpeech2ConformerConfig`): FastSpeech2ConformerConfig instance. module_config (`dict`): Dictionary containing the encoder or decoder module configuration from the `FastSpeech2ConformerConfig`. use_encoder_input_layer (`bool`, *optional*, defaults to `False`): Input layer type. """ def __init__( self, config: FastSpeech2ConformerConfig, module_config, use_encoder_input_layer=False, ): super().__init__() self.embed = None if use_encoder_input_layer: self.embed = nn.Embedding( num_embeddings=config.vocab_size, embedding_dim=config.hidden_size, padding_idx=0 ) self.pos_enc = FastSpeech2ConformerRelPositionalEncoding(config, module_config) self.conformer_layers = nn.ModuleList( [FastSpeech2ConformerEncoderLayer(config, module_config) for _ in range(module_config["layers"])] ) def forward( self, input_tensor: torch.LongTensor, attention_mask: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = False, return_dict: Optional[bool] = None, ): """ Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. Returns: `torch.Tensor`: Output tensor of shape `(batch, time, attention_dim)`. """ feature_representation = input_tensor if self.embed is not None: feature_representation = self.embed(feature_representation) hidden_states, pos_emb = self.pos_enc(feature_representation) all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for conformer_layer in self.conformer_layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = conformer_layer(hidden_states, pos_emb, attention_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions ) class FastSpeech2ConformerLoss(nn.Module): def __init__(self, config: FastSpeech2ConformerConfig): super().__init__() use_masking = config.use_masking use_weighted_masking = config.use_weighted_masking if use_masking and use_weighted_masking: raise ValueError("Either use_masking or use_weighted_masking can be True, but not both.") self.use_masking = use_masking self.use_weighted_masking = use_weighted_masking # define criterions reduction = "none" if self.use_weighted_masking else "mean" self.l1_criterion = nn.L1Loss(reduction=reduction) self.mse_criterion = nn.MSELoss(reduction=reduction) self.duration_criterion = nn.MSELoss(reduction=reduction) self.log_domain_offset = 1.0 def forward( self, outputs_after_postnet, outputs_before_postnet, duration_outputs, pitch_outputs, energy_outputs, spectrogram_labels, duration_labels, pitch_labels, energy_labels, duration_mask, spectrogram_mask, ): """ Args: outputs_after_postnet (`torch.Tensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`): Batch of outputs after postnet. outputs_before_postnet (`torch.Tensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`): Batch of outputs before postnet. duration_outputs (`torch.LongTensor` of shape `(batch_size, max_text_length)`): Batch of outputs of duration predictor. pitch_outputs (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`): Batch of outputs of pitch predictor. energy_outputs (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`): Batch of outputs of energy predictor. spectrogram_labels (`torch.Tensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`): Batch of target features. duration_labels (`torch.LongTensor` of shape `(batch_size, max_text_length)`): Batch of durations. pitch_labels (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`): Batch of target token-averaged pitch. energy_labels (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`): Batch of target token-averaged energy. duration_mask (`torch.LongTensor`): Mask used to discern which values the duration loss should be calculated for. spectrogram_mask (`torch.LongTensor`): Mask used to discern which values the spectrogam loss should be calculated for. Returns: `tuple(torch.FloatTensor)`: Tuple of tensors containing, in order, the L1 loss value, duration predictor loss value, pitch predictor loss value, and energy predictor loss value. """ pitch_and_energy_masks = duration_mask.unsqueeze(-1) # apply mask to remove padded part if self.use_masking: outputs_before_postnet = outputs_before_postnet.masked_select(spectrogram_mask) if outputs_after_postnet is not None: outputs_after_postnet = outputs_after_postnet.masked_select(spectrogram_mask) spectrogram_labels = spectrogram_labels.masked_select(spectrogram_mask) duration_outputs = duration_outputs.masked_select(duration_mask) duration_labels = duration_labels.masked_select(duration_mask) pitch_outputs = pitch_outputs.masked_select(pitch_and_energy_masks) energy_outputs = energy_outputs.masked_select(pitch_and_energy_masks) pitch_labels = pitch_labels.masked_select(pitch_and_energy_masks) energy_labels = energy_labels.masked_select(pitch_and_energy_masks) # calculate loss l1_loss = self.l1_criterion(outputs_before_postnet, spectrogram_labels) if outputs_after_postnet is not None: l1_loss = l1_loss + self.l1_criterion(outputs_after_postnet, spectrogram_labels) duration_labels = torch.log(duration_labels.float() + self.log_domain_offset) duration_loss = self.duration_criterion(duration_outputs, duration_labels) pitch_loss = self.mse_criterion(pitch_outputs, pitch_labels) energy_loss = self.mse_criterion(energy_outputs, energy_labels) # make weighted mask and apply it if self.use_weighted_masking: spectrogram_mask = nn.functional.pad( spectrogram_mask.transpose(1, 2), [0, spectrogram_labels.size(1) - spectrogram_mask.size(1), 0, 0, 0, 0], value=False, ).transpose(1, 2) out_weights = spectrogram_mask.float() / spectrogram_mask.sum(dim=1, keepdim=True).float() out_weights /= spectrogram_labels.size(0) * spectrogram_labels.size(2) duration_weights = duration_mask.float() / duration_mask.sum(dim=1, keepdim=True).float() duration_weights /= duration_labels.size(0) # apply weight l1_loss = l1_loss.mul(out_weights).masked_select(spectrogram_mask).sum() duration_loss = duration_loss.mul(duration_weights).masked_select(duration_mask).sum() pitch_weights = duration_weights.unsqueeze(-1) pitch_loss = pitch_loss.mul(pitch_weights).masked_select(pitch_and_energy_masks).sum() energy_loss = energy_loss.mul(pitch_weights).masked_select(pitch_and_energy_masks).sum() return l1_loss + duration_loss + pitch_loss + energy_loss class FastSpeech2ConformerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = FastSpeech2ConformerConfig base_model_prefix = "fastspeech2_conformer" main_input_name = "input_ids" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.LayerNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: key = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-key, b=key) elif isinstance(module, nn.Embedding): module.weight.data.normal_() if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, FastSpeech2ConformerAttention): nn.init.xavier_uniform_(module.pos_bias_u) nn.init.xavier_uniform_(module.pos_bias_v) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, FastSpeech2ConformerEncoder): module.gradient_checkpointing = value @add_start_docstrings( """FastSpeech2Conformer Model.""", FASTSPEECH2_CONFORMER_START_DOCSTRING, ) class FastSpeech2ConformerModel(FastSpeech2ConformerPreTrainedModel): """ FastSpeech 2 module. This is a module of FastSpeech 2 described in 'FastSpeech 2: Fast and High-Quality End-to-End Text to Speech' https://arxiv.org/abs/2006.04558. Instead of quantized pitch and energy, we use token-averaged value introduced in FastPitch: Parallel Text-to-speech with Pitch Prediction. The encoder and decoder are Conformers instead of regular Transformers. """ def __init__(self, config: FastSpeech2ConformerConfig): super().__init__(config) self.config = config # store hyperparameters self.vocab_size = config.vocab_size self.num_mel_bins = config.num_mel_bins self.hidden_size = config.hidden_size self.reduction_factor = config.reduction_factor self.stop_gradient_from_pitch_predictor = config.stop_gradient_from_pitch_predictor self.stop_gradient_from_energy_predictor = config.stop_gradient_from_energy_predictor self.multilingual_model = config.num_languages is not None and config.num_languages > 1 if self.multilingual_model: self.language_id_embedding = torch.nn.Embedding(config.num_languages, self.hidden_size) self.multispeaker_model = config.num_speakers is not None and config.num_speakers > 1 if self.multispeaker_model: self.speaker_id_embedding = torch.nn.Embedding(config.num_speakers, config.hidden_size) self.speaker_embed_dim = config.speaker_embed_dim if self.speaker_embed_dim: self.projection = nn.Linear(config.hidden_size + self.speaker_embed_dim, config.hidden_size) self.encoder = FastSpeech2ConformerEncoder(config, config.encoder_config, use_encoder_input_layer=True) self.duration_predictor = FastSpeech2ConformerDurationPredictor(config) self.pitch_predictor = FastSpeech2ConformerVariancePredictor( config, num_layers=config.pitch_predictor_layers, num_chans=config.pitch_predictor_channels, kernel_size=config.pitch_predictor_kernel_size, dropout_rate=config.pitch_predictor_dropout, ) # continuous pitch + FastPitch style avg self.pitch_embed = FastSpeech2ConformerVarianceEmbedding( out_channels=self.hidden_size, kernel_size=config.pitch_embed_kernel_size, padding=(config.pitch_embed_kernel_size - 1) // 2, dropout_rate=config.pitch_embed_dropout, ) self.energy_predictor = FastSpeech2ConformerVariancePredictor( config, num_layers=config.energy_predictor_layers, num_chans=config.energy_predictor_channels, kernel_size=config.energy_predictor_kernel_size, dropout_rate=config.energy_predictor_dropout, ) # continuous energy + FastPitch style avg self.energy_embed = FastSpeech2ConformerVarianceEmbedding( out_channels=self.hidden_size, kernel_size=config.energy_embed_kernel_size, padding=(config.energy_embed_kernel_size - 1) // 2, dropout_rate=config.energy_embed_dropout, ) # The decoder is an encoder self.decoder = FastSpeech2ConformerEncoder(config, config.decoder_config, use_encoder_input_layer=False) self.speech_decoder_postnet = FastSpeech2ConformerSpeechDecoderPostnet(config) self.criterion = FastSpeech2ConformerLoss(config) self.post_init() @replace_return_docstrings(output_type=FastSpeech2ConformerModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor, attention_mask: Optional[torch.LongTensor] = None, spectrogram_labels: Optional[torch.FloatTensor] = None, duration_labels: Optional[torch.LongTensor] = None, pitch_labels: Optional[torch.FloatTensor] = None, energy_labels: Optional[torch.FloatTensor] = None, speaker_ids: Optional[torch.LongTensor] = None, lang_ids: Optional[torch.LongTensor] = None, speaker_embedding: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> Union[Tuple, FastSpeech2ConformerModelOutput]: """ Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Input sequence of text vectors. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*, defaults to `None`): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: 0 for tokens that are **masked**, 1 for tokens that are **not masked**. spectrogram_labels (`torch.FloatTensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`, *optional*, defaults to `None`): Batch of padded target features. duration_labels (`torch.LongTensor` of shape `(batch_size, sequence_length + 1)`, *optional*, defaults to `None`): Batch of padded durations. pitch_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`): Batch of padded token-averaged pitch. energy_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`): Batch of padded token-averaged energy. speaker_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`): Speaker ids used to condition features of speech output by the model. lang_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`): Language ids used to condition features of speech output by the model. speaker_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`, *optional*, defaults to `None`): Embedding containing conditioning signals for the features of the speech. return_dict (`bool`, *optional*, defaults to `None`): Whether or not to return a [`FastSpeech2ConformerModelOutput`] instead of a plain tuple. output_attentions (`bool`, *optional*, defaults to `None`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*, defaults to `None`): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. Returns: Example: ```python >>> from transformers import ( ... FastSpeech2ConformerTokenizer, ... FastSpeech2ConformerModel, ... FastSpeech2ConformerHifiGan, ... ) >>> tokenizer = FastSpeech2ConformerTokenizer.from_pretrained("espnet/fastspeech2_conformer") >>> inputs = tokenizer("some text to convert to speech", return_tensors="pt") >>> input_ids = inputs["input_ids"] >>> model = FastSpeech2ConformerModel.from_pretrained("espnet/fastspeech2_conformer") >>> output_dict = model(input_ids, return_dict=True) >>> spectrogram = output_dict["spectrogram"] >>> vocoder = FastSpeech2ConformerHifiGan.from_pretrained("espnet/fastspeech2_conformer_hifigan") >>> waveform = vocoder(spectrogram) >>> print(waveform.shape) torch.Size([1, 49664]) ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if attention_mask is None: attention_mask = torch.ones(input_ids.shape) has_missing_labels = ( spectrogram_labels is None or duration_labels is None or pitch_labels is None or energy_labels is None ) if self.training and has_missing_labels: raise ValueError("All labels must be provided to run in training mode.") # forward encoder text_masks = attention_mask.unsqueeze(-2) encoder_outputs = self.encoder( input_ids, text_masks, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) hidden_states = encoder_outputs[0] # Integrate with language id, speaker id, and speaker embedding if self.multispeaker_model and speaker_ids is not None: speaker_id_embeddings = self.speaker_id_embedding(speaker_ids.view(-1)) hidden_states = hidden_states + speaker_id_embeddings.unsqueeze(1) if self.multilingual_model and lang_ids is not None: language_id_embbedings = self.language_id_embedding(lang_ids.view(-1)) hidden_states = hidden_states + language_id_embbedings.unsqueeze(1) if self.speaker_embed_dim is not None and speaker_embedding is not None: embeddings_expanded = ( nn.functional.normalize(speaker_embedding).unsqueeze(1).expand(-1, hidden_states.size(1), -1) ) hidden_states = self.projection(torch.cat([hidden_states, embeddings_expanded], dim=-1)) # forward duration predictor and variance predictors duration_mask = ~attention_mask.bool() if self.stop_gradient_from_pitch_predictor: pitch_predictions = self.pitch_predictor(hidden_states.detach(), duration_mask.unsqueeze(-1)) else: pitch_predictions = self.pitch_predictor(hidden_states, duration_mask.unsqueeze(-1)) if self.stop_gradient_from_energy_predictor: energy_predictions = self.energy_predictor(hidden_states.detach(), duration_mask.unsqueeze(-1)) else: energy_predictions = self.energy_predictor(hidden_states, duration_mask.unsqueeze(-1)) duration_predictions = self.duration_predictor(hidden_states) duration_predictions = duration_predictions.masked_fill(duration_mask, 0.0) if not self.training: # use prediction in inference embedded_pitch_curve = self.pitch_embed(pitch_predictions) embedded_energy_curve = self.energy_embed(energy_predictions) hidden_states = hidden_states + embedded_energy_curve + embedded_pitch_curve hidden_states = length_regulator(hidden_states, duration_predictions, self.config.speaking_speed) else: # use groundtruth in training embedded_pitch_curve = self.pitch_embed(pitch_labels) embedded_energy_curve = self.energy_embed(energy_labels) hidden_states = hidden_states + embedded_energy_curve + embedded_pitch_curve hidden_states = length_regulator(hidden_states, duration_labels) # forward decoder if not self.training: hidden_mask = None else: spectrogram_mask = (spectrogram_labels != -100).any(dim=-1) spectrogram_mask = spectrogram_mask.int() if self.reduction_factor > 1: length_dim = spectrogram_mask.shape[1] - spectrogram_mask.shape[1] % self.reduction_factor spectrogram_mask = spectrogram_mask[:, :, :length_dim] hidden_mask = spectrogram_mask.unsqueeze(-2) decoder_outputs = self.decoder( hidden_states, hidden_mask, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) outputs_before_postnet, outputs_after_postnet = self.speech_decoder_postnet(decoder_outputs[0]) loss = None if self.training: # calculate loss loss_duration_mask = ~duration_mask loss_spectrogram_mask = spectrogram_mask.unsqueeze(-1).bool() loss = self.criterion( outputs_after_postnet=outputs_after_postnet, outputs_before_postnet=outputs_before_postnet, duration_outputs=duration_predictions, pitch_outputs=pitch_predictions, energy_outputs=energy_predictions, spectrogram_labels=spectrogram_labels, duration_labels=duration_labels, pitch_labels=pitch_labels, energy_labels=energy_labels, duration_mask=loss_duration_mask, spectrogram_mask=loss_spectrogram_mask, ) if not return_dict: postnet_outputs = (outputs_after_postnet,) audio_feature_predictions = ( duration_predictions, pitch_predictions, energy_predictions, ) outputs = postnet_outputs + encoder_outputs + decoder_outputs[1:] + audio_feature_predictions return ((loss,) + outputs) if loss is not None else outputs return FastSpeech2ConformerModelOutput( loss=loss, spectrogram=outputs_after_postnet, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, duration_outputs=duration_predictions, pitch_outputs=pitch_predictions, energy_outputs=energy_predictions, ) # Copied from transformers.models.speecht5.modeling_speecht5.HifiGanResidualBlock class HifiGanResidualBlock(nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1): super().__init__() self.leaky_relu_slope = leaky_relu_slope self.convs1 = nn.ModuleList( [ nn.Conv1d( channels, channels, kernel_size, stride=1, dilation=dilation[i], padding=self.get_padding(kernel_size, dilation[i]), ) for i in range(len(dilation)) ] ) self.convs2 = nn.ModuleList( [ nn.Conv1d( channels, channels, kernel_size, stride=1, dilation=1, padding=self.get_padding(kernel_size, 1), ) for _ in range(len(dilation)) ] ) def get_padding(self, kernel_size, dilation=1): return (kernel_size * dilation - dilation) // 2 def apply_weight_norm(self): for layer in self.convs1: nn.utils.weight_norm(layer) for layer in self.convs2: nn.utils.weight_norm(layer) def remove_weight_norm(self): for layer in self.convs1: nn.utils.remove_weight_norm(layer) for layer in self.convs2: nn.utils.remove_weight_norm(layer) def forward(self, hidden_states): for conv1, conv2 in zip(self.convs1, self.convs2): residual = hidden_states hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = conv1(hidden_states) hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = conv2(hidden_states) hidden_states = hidden_states + residual return hidden_states @add_start_docstrings( """HiFi-GAN vocoder.""", HIFIGAN_START_DOCSTRING, ) # Copied from transformers.models.speecht5.modeling_speecht5.SpeechT5HifiGan with SpeechT5->FastSpeech2Conformer class FastSpeech2ConformerHifiGan(PreTrainedModel): config_class = FastSpeech2ConformerHifiGanConfig main_input_name = "spectrogram" def __init__(self, config: FastSpeech2ConformerHifiGanConfig): super().__init__(config) self.num_kernels = len(config.resblock_kernel_sizes) self.num_upsamples = len(config.upsample_rates) self.conv_pre = nn.Conv1d( config.model_in_dim, config.upsample_initial_channel, kernel_size=7, stride=1, padding=3, ) self.upsampler = nn.ModuleList() for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)): self.upsampler.append( nn.ConvTranspose1d( config.upsample_initial_channel // (2**i), config.upsample_initial_channel // (2 ** (i + 1)), kernel_size=kernel_size, stride=upsample_rate, padding=(kernel_size - upsample_rate) // 2, ) ) self.resblocks = nn.ModuleList() for i in range(len(self.upsampler)): channels = config.upsample_initial_channel // (2 ** (i + 1)) for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes): self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope)) self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3) self.register_buffer("mean", torch.zeros(config.model_in_dim)) self.register_buffer("scale", torch.ones(config.model_in_dim)) # Initialize weights and apply final processing self.post_init() def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() def apply_weight_norm(self): nn.utils.weight_norm(self.conv_pre) for layer in self.upsampler: nn.utils.weight_norm(layer) for layer in self.resblocks: layer.apply_weight_norm() nn.utils.weight_norm(self.conv_post) def remove_weight_norm(self): nn.utils.remove_weight_norm(self.conv_pre) for layer in self.upsampler: nn.utils.remove_weight_norm(layer) for layer in self.resblocks: layer.remove_weight_norm() nn.utils.remove_weight_norm(self.conv_post) def forward(self, spectrogram: torch.FloatTensor) -> torch.FloatTensor: r""" Converts a log-mel spectrogram into a speech waveform. Passing a batch of log-mel spectrograms returns a batch of speech waveforms. Passing a single, un-batched log-mel spectrogram returns a single, un-batched speech waveform. Args: spectrogram (`torch.FloatTensor`): Tensor containing the log-mel spectrograms. Can be batched and of shape `(batch_size, sequence_length, config.model_in_dim)`, or un-batched and of shape `(sequence_length, config.model_in_dim)`. Returns: `torch.FloatTensor`: Tensor containing the speech waveform. If the input spectrogram is batched, will be of shape `(batch_size, num_frames,)`. If un-batched, will be of shape `(num_frames,)`. """ if self.config.normalize_before: spectrogram = (spectrogram - self.mean) / self.scale is_batched = spectrogram.dim() == 3 if not is_batched: spectrogram = spectrogram.unsqueeze(0) hidden_states = spectrogram.transpose(2, 1) hidden_states = self.conv_pre(hidden_states) for i in range(self.num_upsamples): hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope) hidden_states = self.upsampler[i](hidden_states) res_state = self.resblocks[i * self.num_kernels](hidden_states) for j in range(1, self.num_kernels): res_state += self.resblocks[i * self.num_kernels + j](hidden_states) hidden_states = res_state / self.num_kernels hidden_states = nn.functional.leaky_relu(hidden_states) hidden_states = self.conv_post(hidden_states) hidden_states = torch.tanh(hidden_states) if not is_batched: # remove batch dim and collapse tensor to 1-d audio waveform waveform = hidden_states.squeeze(0).transpose(1, 0).view(-1) else: # remove seq-len dim since this collapses to 1 waveform = hidden_states.squeeze(1) return waveform @add_start_docstrings( "The FastSpeech2ConformerModel with a FastSpeech2ConformerHifiGan vocoder head that performs text-to-speech (waveform).", FASTSPEECH2_CONFORMER_WITH_HIFIGAN_START_DOCSTRING, ) class FastSpeech2ConformerWithHifiGan(PreTrainedModel): config_class = FastSpeech2ConformerWithHifiGanConfig def __init__(self, config: FastSpeech2ConformerWithHifiGanConfig): super().__init__(config) self.model = FastSpeech2ConformerModel(config.model_config) self.vocoder = FastSpeech2ConformerHifiGan(config.vocoder_config) self.config = config @replace_return_docstrings( output_type=FastSpeech2ConformerWithHifiGanOutput, config_class=FastSpeech2ConformerWithHifiGanConfig ) def forward( self, input_ids: torch.LongTensor, attention_mask: Optional[torch.LongTensor] = None, spectrogram_labels: Optional[torch.FloatTensor] = None, duration_labels: Optional[torch.LongTensor] = None, pitch_labels: Optional[torch.FloatTensor] = None, energy_labels: Optional[torch.FloatTensor] = None, speaker_ids: Optional[torch.LongTensor] = None, lang_ids: Optional[torch.LongTensor] = None, speaker_embedding: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> Union[Tuple, FastSpeech2ConformerModelOutput]: """ Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Input sequence of text vectors. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*, defaults to `None`): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: 0 for tokens that are **masked**, 1 for tokens that are **not masked**. spectrogram_labels (`torch.FloatTensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`, *optional*, defaults to `None`): Batch of padded target features. duration_labels (`torch.LongTensor` of shape `(batch_size, sequence_length + 1)`, *optional*, defaults to `None`): Batch of padded durations. pitch_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`): Batch of padded token-averaged pitch. energy_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`): Batch of padded token-averaged energy. speaker_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`): Speaker ids used to condition features of speech output by the model. lang_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`): Language ids used to condition features of speech output by the model. speaker_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`, *optional*, defaults to `None`): Embedding containing conditioning signals for the features of the speech. return_dict (`bool`, *optional*, defaults to `None`): Whether or not to return a [`FastSpeech2ConformerModelOutput`] instead of a plain tuple. output_attentions (`bool`, *optional*, defaults to `None`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*, defaults to `None`): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. Returns: Example: ```python >>> from transformers import ( ... FastSpeech2ConformerTokenizer, ... FastSpeech2ConformerWithHifiGan, ... ) >>> tokenizer = FastSpeech2ConformerTokenizer.from_pretrained("espnet/fastspeech2_conformer") >>> inputs = tokenizer("some text to convert to speech", return_tensors="pt") >>> input_ids = inputs["input_ids"] >>> model = FastSpeech2ConformerWithHifiGan.from_pretrained("espnet/fastspeech2_conformer_with_hifigan") >>> output_dict = model(input_ids, return_dict=True) >>> waveform = output_dict["waveform"] >>> print(waveform.shape) torch.Size([1, 49664]) ``` """ return_dict = return_dict if return_dict is not None else self.config.model_config.use_return_dict output_attentions = ( output_attentions if output_attentions is not None else self.config.model_config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.model_config.output_hidden_states ) model_outputs = self.model( input_ids, attention_mask, spectrogram_labels=spectrogram_labels, duration_labels=duration_labels, pitch_labels=pitch_labels, energy_labels=energy_labels, speaker_ids=speaker_ids, lang_ids=lang_ids, speaker_embedding=speaker_embedding, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) if not return_dict: has_missing_labels = ( spectrogram_labels is None or duration_labels is None or pitch_labels is None or energy_labels is None ) if has_missing_labels: spectrogram = model_outputs[0] else: spectrogram = model_outputs[1] else: spectrogram = model_outputs["spectrogram"] waveform = self.vocoder(spectrogram) if not return_dict: return model_outputs + (waveform,) return FastSpeech2ConformerWithHifiGanOutput(waveform=waveform, **model_outputs)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/fastspeech2_conformer/configuration_fastspeech2_conformer.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ FastSpeech2Conformer model configuration""" from typing import Dict from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) FASTSPEECH2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "espnet/fastspeech2_conformer": "https://huggingface.co/espnet/fastspeech2_conformer/raw/main/config.json", } FASTSPEECH2_CONFORMER_HIFIGAN_PRETRAINED_CONFIG_ARCHIVE_MAP = { "espnet/fastspeech2_conformer_hifigan": "https://huggingface.co/espnet/fastspeech2_conformer_hifigan/raw/main/config.json", } FASTSPEECH2_CONFORMER_WITH_HIFIGAN_PRETRAINED_CONFIG_ARCHIVE_MAP = { "espnet/fastspeech2_conformer_with_hifigan": "https://huggingface.co/espnet/fastspeech2_conformer_with_hifigan/raw/main/config.json", } class FastSpeech2ConformerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`FastSpeech2ConformerModel`]. It is used to instantiate a FastSpeech2Conformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the FastSpeech2Conformer [espnet/fastspeech2_conformer](https://huggingface.co/espnet/fastspeech2_conformer) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 384): The dimensionality of the hidden layers. vocab_size (`int`, *optional*, defaults to 78): The size of the vocabulary. num_mel_bins (`int`, *optional*, defaults to 80): The number of mel filters used in the filter bank. encoder_num_attention_heads (`int`, *optional*, defaults to 2): The number of attention heads in the encoder. encoder_layers (`int`, *optional*, defaults to 4): The number of layers in the encoder. encoder_linear_units (`int`, *optional*, defaults to 1536): The number of units in the linear layer of the encoder. decoder_layers (`int`, *optional*, defaults to 4): The number of layers in the decoder. decoder_num_attention_heads (`int`, *optional*, defaults to 2): The number of attention heads in the decoder. decoder_linear_units (`int`, *optional*, defaults to 1536): The number of units in the linear layer of the decoder. speech_decoder_postnet_layers (`int`, *optional*, defaults to 5): The number of layers in the post-net of the speech decoder. speech_decoder_postnet_units (`int`, *optional*, defaults to 256): The number of units in the post-net layers of the speech decoder. speech_decoder_postnet_kernel (`int`, *optional*, defaults to 5): The kernel size in the post-net of the speech decoder. positionwise_conv_kernel_size (`int`, *optional*, defaults to 3): The size of the convolution kernel used in the position-wise layer. encoder_normalize_before (`bool`, *optional*, defaults to `False`): Specifies whether to normalize before encoder layers. decoder_normalize_before (`bool`, *optional*, defaults to `False`): Specifies whether to normalize before decoder layers. encoder_concat_after (`bool`, *optional*, defaults to `False`): Specifies whether to concatenate after encoder layers. decoder_concat_after (`bool`, *optional*, defaults to `False`): Specifies whether to concatenate after decoder layers. reduction_factor (`int`, *optional*, defaults to 1): The factor by which the speech frame rate is reduced. speaking_speed (`float`, *optional*, defaults to 1.0): The speed of the speech produced. use_macaron_style_in_conformer (`bool`, *optional*, defaults to `True`): Specifies whether to use macaron style in the conformer. use_cnn_in_conformer (`bool`, *optional*, defaults to `True`): Specifies whether to use convolutional neural networks in the conformer. encoder_kernel_size (`int`, *optional*, defaults to 7): The kernel size used in the encoder. decoder_kernel_size (`int`, *optional*, defaults to 31): The kernel size used in the decoder. duration_predictor_layers (`int`, *optional*, defaults to 2): The number of layers in the duration predictor. duration_predictor_channels (`int`, *optional*, defaults to 256): The number of channels in the duration predictor. duration_predictor_kernel_size (`int`, *optional*, defaults to 3): The kernel size used in the duration predictor. energy_predictor_layers (`int`, *optional*, defaults to 2): The number of layers in the energy predictor. energy_predictor_channels (`int`, *optional*, defaults to 256): The number of channels in the energy predictor. energy_predictor_kernel_size (`int`, *optional*, defaults to 3): The kernel size used in the energy predictor. energy_predictor_dropout (`float`, *optional*, defaults to 0.5): The dropout rate in the energy predictor. energy_embed_kernel_size (`int`, *optional*, defaults to 1): The kernel size used in the energy embed layer. energy_embed_dropout (`float`, *optional*, defaults to 0.0): The dropout rate in the energy embed layer. stop_gradient_from_energy_predictor (`bool`, *optional*, defaults to `False`): Specifies whether to stop gradients from the energy predictor. pitch_predictor_layers (`int`, *optional*, defaults to 5): The number of layers in the pitch predictor. pitch_predictor_channels (`int`, *optional*, defaults to 256): The number of channels in the pitch predictor. pitch_predictor_kernel_size (`int`, *optional*, defaults to 5): The kernel size used in the pitch predictor. pitch_predictor_dropout (`float`, *optional*, defaults to 0.5): The dropout rate in the pitch predictor. pitch_embed_kernel_size (`int`, *optional*, defaults to 1): The kernel size used in the pitch embed layer. pitch_embed_dropout (`float`, *optional*, defaults to 0.0): The dropout rate in the pitch embed layer. stop_gradient_from_pitch_predictor (`bool`, *optional*, defaults to `True`): Specifies whether to stop gradients from the pitch predictor. encoder_dropout_rate (`float`, *optional*, defaults to 0.2): The dropout rate in the encoder. encoder_positional_dropout_rate (`float`, *optional*, defaults to 0.2): The positional dropout rate in the encoder. encoder_attention_dropout_rate (`float`, *optional*, defaults to 0.2): The attention dropout rate in the encoder. decoder_dropout_rate (`float`, *optional*, defaults to 0.2): The dropout rate in the decoder. decoder_positional_dropout_rate (`float`, *optional*, defaults to 0.2): The positional dropout rate in the decoder. decoder_attention_dropout_rate (`float`, *optional*, defaults to 0.2): The attention dropout rate in the decoder. duration_predictor_dropout_rate (`float`, *optional*, defaults to 0.2): The dropout rate in the duration predictor. speech_decoder_postnet_dropout (`float`, *optional*, defaults to 0.5): The dropout rate in the speech decoder postnet. max_source_positions (`int`, *optional*, defaults to 5000): if `"relative"` position embeddings are used, defines the maximum source input positions. use_masking (`bool`, *optional*, defaults to `True`): Specifies whether to use masking in the model. use_weighted_masking (`bool`, *optional*, defaults to `False`): Specifies whether to use weighted masking in the model. num_speakers (`int`, *optional*): Number of speakers. If set to > 1, assume that the speaker ids will be provided as the input and use speaker id embedding layer. num_languages (`int`, *optional*): Number of languages. If set to > 1, assume that the language ids will be provided as the input and use the languge id embedding layer. speaker_embed_dim (`int`, *optional*): Speaker embedding dimension. If set to > 0, assume that speaker_embedding will be provided as the input. is_encoder_decoder (`bool`, *optional*, defaults to `True`): Specifies whether the model is an encoder-decoder. Example: ```python >>> from transformers import FastSpeech2ConformerModel, FastSpeech2ConformerConfig >>> # Initializing a FastSpeech2Conformer style configuration >>> configuration = FastSpeech2ConformerConfig() >>> # Initializing a model from the FastSpeech2Conformer style configuration >>> model = FastSpeech2ConformerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "fastspeech2_conformer" attribute_map = {"num_hidden_layers": "encoder_layers", "num_attention_heads": "encoder_num_attention_heads"} def __init__( self, hidden_size=384, vocab_size=78, num_mel_bins=80, encoder_num_attention_heads=2, encoder_layers=4, encoder_linear_units=1536, decoder_layers=4, decoder_num_attention_heads=2, decoder_linear_units=1536, speech_decoder_postnet_layers=5, speech_decoder_postnet_units=256, speech_decoder_postnet_kernel=5, positionwise_conv_kernel_size=3, encoder_normalize_before=False, decoder_normalize_before=False, encoder_concat_after=False, decoder_concat_after=False, reduction_factor=1, speaking_speed=1.0, use_macaron_style_in_conformer=True, use_cnn_in_conformer=True, encoder_kernel_size=7, decoder_kernel_size=31, duration_predictor_layers=2, duration_predictor_channels=256, duration_predictor_kernel_size=3, energy_predictor_layers=2, energy_predictor_channels=256, energy_predictor_kernel_size=3, energy_predictor_dropout=0.5, energy_embed_kernel_size=1, energy_embed_dropout=0.0, stop_gradient_from_energy_predictor=False, pitch_predictor_layers=5, pitch_predictor_channels=256, pitch_predictor_kernel_size=5, pitch_predictor_dropout=0.5, pitch_embed_kernel_size=1, pitch_embed_dropout=0.0, stop_gradient_from_pitch_predictor=True, encoder_dropout_rate=0.2, encoder_positional_dropout_rate=0.2, encoder_attention_dropout_rate=0.2, decoder_dropout_rate=0.2, decoder_positional_dropout_rate=0.2, decoder_attention_dropout_rate=0.2, duration_predictor_dropout_rate=0.2, speech_decoder_postnet_dropout=0.5, max_source_positions=5000, use_masking=True, use_weighted_masking=False, num_speakers=None, num_languages=None, speaker_embed_dim=None, is_encoder_decoder=True, **kwargs, ): if positionwise_conv_kernel_size % 2 == 0: raise ValueError( f"positionwise_conv_kernel_size must be odd, but got {positionwise_conv_kernel_size} instead." ) if encoder_kernel_size % 2 == 0: raise ValueError(f"encoder_kernel_size must be odd, but got {encoder_kernel_size} instead.") if decoder_kernel_size % 2 == 0: raise ValueError(f"decoder_kernel_size must be odd, but got {decoder_kernel_size} instead.") if duration_predictor_kernel_size % 2 == 0: raise ValueError( f"duration_predictor_kernel_size must be odd, but got {duration_predictor_kernel_size} instead." ) if energy_predictor_kernel_size % 2 == 0: raise ValueError( f"energy_predictor_kernel_size must be odd, but got {energy_predictor_kernel_size} instead." ) if energy_embed_kernel_size % 2 == 0: raise ValueError(f"energy_embed_kernel_size must be odd, but got {energy_embed_kernel_size} instead.") if pitch_predictor_kernel_size % 2 == 0: raise ValueError( f"pitch_predictor_kernel_size must be odd, but got {pitch_predictor_kernel_size} instead." ) if pitch_embed_kernel_size % 2 == 0: raise ValueError(f"pitch_embed_kernel_size must be odd, but got {pitch_embed_kernel_size} instead.") if hidden_size % encoder_num_attention_heads != 0: raise ValueError("The hidden_size must be evenly divisible by encoder_num_attention_heads.") if hidden_size % decoder_num_attention_heads != 0: raise ValueError("The hidden_size must be evenly divisible by decoder_num_attention_heads.") if use_masking and use_weighted_masking: raise ValueError("Either use_masking or use_weighted_masking can be True, but not both.") self.hidden_size = hidden_size self.vocab_size = vocab_size self.num_mel_bins = num_mel_bins self.encoder_config = { "num_attention_heads": encoder_num_attention_heads, "layers": encoder_layers, "kernel_size": encoder_kernel_size, "attention_dropout_rate": encoder_attention_dropout_rate, "dropout_rate": encoder_dropout_rate, "positional_dropout_rate": encoder_positional_dropout_rate, "linear_units": encoder_linear_units, "normalize_before": encoder_normalize_before, "concat_after": encoder_concat_after, } self.decoder_config = { "num_attention_heads": decoder_num_attention_heads, "layers": decoder_layers, "kernel_size": decoder_kernel_size, "attention_dropout_rate": decoder_attention_dropout_rate, "dropout_rate": decoder_dropout_rate, "positional_dropout_rate": decoder_positional_dropout_rate, "linear_units": decoder_linear_units, "normalize_before": decoder_normalize_before, "concat_after": decoder_concat_after, } self.encoder_num_attention_heads = encoder_num_attention_heads self.encoder_layers = encoder_layers self.duration_predictor_channels = duration_predictor_channels self.duration_predictor_kernel_size = duration_predictor_kernel_size self.duration_predictor_layers = duration_predictor_layers self.energy_embed_dropout = energy_embed_dropout self.energy_embed_kernel_size = energy_embed_kernel_size self.energy_predictor_channels = energy_predictor_channels self.energy_predictor_dropout = energy_predictor_dropout self.energy_predictor_kernel_size = energy_predictor_kernel_size self.energy_predictor_layers = energy_predictor_layers self.pitch_embed_dropout = pitch_embed_dropout self.pitch_embed_kernel_size = pitch_embed_kernel_size self.pitch_predictor_channels = pitch_predictor_channels self.pitch_predictor_dropout = pitch_predictor_dropout self.pitch_predictor_kernel_size = pitch_predictor_kernel_size self.pitch_predictor_layers = pitch_predictor_layers self.positionwise_conv_kernel_size = positionwise_conv_kernel_size self.speech_decoder_postnet_units = speech_decoder_postnet_units self.speech_decoder_postnet_dropout = speech_decoder_postnet_dropout self.speech_decoder_postnet_kernel = speech_decoder_postnet_kernel self.speech_decoder_postnet_layers = speech_decoder_postnet_layers self.reduction_factor = reduction_factor self.speaking_speed = speaking_speed self.stop_gradient_from_energy_predictor = stop_gradient_from_energy_predictor self.stop_gradient_from_pitch_predictor = stop_gradient_from_pitch_predictor self.max_source_positions = max_source_positions self.use_cnn_in_conformer = use_cnn_in_conformer self.use_macaron_style_in_conformer = use_macaron_style_in_conformer self.use_masking = use_masking self.use_weighted_masking = use_weighted_masking self.num_speakers = num_speakers self.num_languages = num_languages self.speaker_embed_dim = speaker_embed_dim self.duration_predictor_dropout_rate = duration_predictor_dropout_rate self.is_encoder_decoder = is_encoder_decoder super().__init__( is_encoder_decoder=is_encoder_decoder, **kwargs, ) class FastSpeech2ConformerHifiGanConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`FastSpeech2ConformerHifiGanModel`]. It is used to instantiate a FastSpeech2Conformer HiFi-GAN vocoder model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the FastSpeech2Conformer [espnet/fastspeech2_conformer_hifigan](https://huggingface.co/espnet/fastspeech2_conformer_hifigan) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: model_in_dim (`int`, *optional*, defaults to 80): The number of frequency bins in the input log-mel spectrogram. upsample_initial_channel (`int`, *optional*, defaults to 512): The number of input channels into the upsampling network. upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[8, 8, 2, 2]`): A tuple of integers defining the stride of each 1D convolutional layer in the upsampling network. The length of *upsample_rates* defines the number of convolutional layers and has to match the length of *upsample_kernel_sizes*. upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[16, 16, 4, 4]`): A tuple of integers defining the kernel size of each 1D convolutional layer in the upsampling network. The length of *upsample_kernel_sizes* defines the number of convolutional layers and has to match the length of *upsample_rates*. resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`): A tuple of integers defining the kernel sizes of the 1D convolutional layers in the multi-receptive field fusion (MRF) module. resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`): A nested tuple of integers defining the dilation rates of the dilated 1D convolutional layers in the multi-receptive field fusion (MRF) module. initializer_range (`float`, *optional*, defaults to 0.01): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. leaky_relu_slope (`float`, *optional*, defaults to 0.1): The angle of the negative slope used by the leaky ReLU activation. normalize_before (`bool`, *optional*, defaults to `True`): Whether or not to normalize the spectrogram before vocoding using the vocoder's learned mean and variance. Example: ```python >>> from transformers import FastSpeech2ConformerHifiGan, FastSpeech2ConformerHifiGanConfig >>> # Initializing a FastSpeech2ConformerHifiGan configuration >>> configuration = FastSpeech2ConformerHifiGanConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = FastSpeech2ConformerHifiGan(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "hifigan" def __init__( self, model_in_dim=80, upsample_initial_channel=512, upsample_rates=[8, 8, 2, 2], upsample_kernel_sizes=[16, 16, 4, 4], resblock_kernel_sizes=[3, 7, 11], resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], initializer_range=0.01, leaky_relu_slope=0.1, normalize_before=True, **kwargs, ): self.model_in_dim = model_in_dim self.upsample_initial_channel = upsample_initial_channel self.upsample_rates = upsample_rates self.upsample_kernel_sizes = upsample_kernel_sizes self.resblock_kernel_sizes = resblock_kernel_sizes self.resblock_dilation_sizes = resblock_dilation_sizes self.initializer_range = initializer_range self.leaky_relu_slope = leaky_relu_slope self.normalize_before = normalize_before super().__init__(**kwargs) class FastSpeech2ConformerWithHifiGanConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`FastSpeech2ConformerWithHifiGan`]. It is used to instantiate a `FastSpeech2ConformerWithHifiGanModel` model according to the specified sub-models configurations, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the FastSpeech2ConformerModel [espnet/fastspeech2_conformer](https://huggingface.co/espnet/fastspeech2_conformer) and FastSpeech2ConformerHifiGan [espnet/fastspeech2_conformer_hifigan](https://huggingface.co/espnet/fastspeech2_conformer_hifigan) architectures. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: model_config (`typing.Dict`, *optional*): Configuration of the text-to-speech model. vocoder_config (`typing.Dict`, *optional*): Configuration of the vocoder model. model_config ([`FastSpeech2ConformerConfig`], *optional*): Configuration of the text-to-speech model. vocoder_config ([`FastSpeech2ConformerHiFiGanConfig`], *optional*): Configuration of the vocoder model. Example: ```python >>> from transformers import ( ... FastSpeech2ConformerConfig, ... FastSpeech2ConformerHifiGanConfig, ... FastSpeech2ConformerWithHifiGanConfig, ... FastSpeech2ConformerWithHifiGan, ... ) >>> # Initializing FastSpeech2ConformerWithHifiGan sub-modules configurations. >>> model_config = FastSpeech2ConformerConfig() >>> vocoder_config = FastSpeech2ConformerHifiGanConfig() >>> # Initializing a FastSpeech2ConformerWithHifiGan module style configuration >>> configuration = FastSpeech2ConformerWithHifiGanConfig(model_config.to_dict(), vocoder_config.to_dict()) >>> # Initializing a model (with random weights) >>> model = FastSpeech2ConformerWithHifiGan(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "fastspeech2_conformer_with_hifigan" is_composition = True def __init__( self, model_config: Dict = None, vocoder_config: Dict = None, **kwargs, ): if model_config is None: model_config = {} logger.info("model_config is None. initializing the model with default values.") if vocoder_config is None: vocoder_config = {} logger.info("vocoder_config is None. initializing the coarse model with default values.") self.model_config = FastSpeech2ConformerConfig(**model_config) self.vocoder_config = FastSpeech2ConformerHifiGanConfig(**vocoder_config) super().__init__(**kwargs)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/t5/convert_t5x_checkpoint_to_flax.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert T5X checkpoints from the original repository to JAX/FLAX model.""" import argparse from t5x import checkpoints from transformers import FlaxT5ForConditionalGeneration, T5Config def convert_t5x_checkpoint_to_flax(t5x_checkpoint_path, config_name, flax_dump_folder_path): config = T5Config.from_pretrained(config_name) flax_model = FlaxT5ForConditionalGeneration(config=config) t5x_model = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path) split_mlp_wi = "wi_0" in t5x_model["target"]["encoder"]["layers_0"]["mlp"] # Encoder for layer_index in range(config.num_layers): layer_name = f"layers_{str(layer_index)}" # Self-Attention t5x_attention_key = t5x_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] t5x_attention_out = t5x_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] t5x_attention_query = t5x_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] t5x_attention_value = t5x_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Layer Normalization t5x_attention_layer_norm = t5x_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: t5x_mlp_wi_0 = t5x_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] t5x_mlp_wi_1 = t5x_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: t5x_mlp_wi = t5x_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] t5x_mlp_wo = t5x_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization t5x_mlp_layer_norm = t5x_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["k"][ "kernel" ] = t5x_attention_key flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["o"][ "kernel" ] = t5x_attention_out flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["q"][ "kernel" ] = t5x_attention_query flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["v"][ "kernel" ] = t5x_attention_value flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["layer_norm"][ "weight" ] = t5x_attention_layer_norm if split_mlp_wi: flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["DenseReluDense"]["wi_0"][ "kernel" ] = t5x_mlp_wi_0 flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["DenseReluDense"]["wi_1"][ "kernel" ] = t5x_mlp_wi_1 else: flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["DenseReluDense"]["wi"][ "kernel" ] = t5x_mlp_wi flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["DenseReluDense"]["wo"][ "kernel" ] = t5x_mlp_wo flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["layer_norm"][ "weight" ] = t5x_mlp_layer_norm # Only for layer 0: t5x_encoder_rel_embedding = t5x_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T flax_model.params["encoder"]["block"]["0"]["layer"]["0"]["SelfAttention"]["relative_attention_bias"][ "embedding" ] = t5x_encoder_rel_embedding # Assigning t5x_encoder_norm = t5x_model["target"]["encoder"]["encoder_norm"]["scale"] flax_model.params["encoder"]["final_layer_norm"]["weight"] = t5x_encoder_norm # Decoder for layer_index in range(config.num_decoder_layers): layer_name = f"layers_{str(layer_index)}" # Self-Attention t5x_attention_key = t5x_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] t5x_attention_out = t5x_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] t5x_attention_query = t5x_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] t5x_attention_value = t5x_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization t5x_pre_attention_layer_norm = t5x_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention t5x_enc_dec_attention_key = t5x_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]["key"][ "kernel" ] t5x_enc_dec_attention_out = t5x_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]["out"][ "kernel" ] t5x_enc_dec_attention_query = t5x_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]["query"][ "kernel" ] t5x_enc_dec_attention_value = t5x_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]["value"][ "kernel" ] # Layer Normalization t5x_cross_layer_norm = t5x_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: t5x_mlp_wi_0 = t5x_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] t5x_mlp_wi_1 = t5x_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: t5x_mlp_wi = t5x_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] t5x_mlp_wo = t5x_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization tx5_mlp_layer_norm = t5x_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["k"][ "kernel" ] = t5x_attention_key flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["o"][ "kernel" ] = t5x_attention_out flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["q"][ "kernel" ] = t5x_attention_query flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["v"][ "kernel" ] = t5x_attention_value flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["layer_norm"][ "weight" ] = t5x_pre_attention_layer_norm flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["k"][ "kernel" ] = t5x_enc_dec_attention_key flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["o"][ "kernel" ] = t5x_enc_dec_attention_out flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["q"][ "kernel" ] = t5x_enc_dec_attention_query flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["v"][ "kernel" ] = t5x_enc_dec_attention_value flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["layer_norm"][ "weight" ] = t5x_cross_layer_norm if split_mlp_wi: flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["DenseReluDense"]["wi_0"][ "kernel" ] = t5x_mlp_wi_0 flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["DenseReluDense"]["wi_1"][ "kernel" ] = t5x_mlp_wi_1 else: flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["DenseReluDense"]["wi"][ "kernel" ] = t5x_mlp_wi flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["DenseReluDense"]["wo"][ "kernel" ] = t5x_mlp_wo flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["layer_norm"][ "weight" ] = tx5_mlp_layer_norm # Decoder Normalization tx5_decoder_norm = t5x_model["target"]["decoder"]["decoder_norm"]["scale"] flax_model.params["decoder"]["final_layer_norm"]["weight"] = tx5_decoder_norm # Only for layer 0: t5x_decoder_rel_embedding = t5x_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T flax_model.params["decoder"]["block"]["0"]["layer"]["0"]["SelfAttention"]["relative_attention_bias"][ "embedding" ] = t5x_decoder_rel_embedding # Token Embeddings tx5_token_embeddings = t5x_model["target"]["token_embedder"]["embedding"] flax_model.params["shared"]["embedding"] = tx5_token_embeddings # LM Head (only in v1.1 checkpoints) if "logits_dense" in t5x_model["target"]["decoder"]: flax_model.params["lm_head"]["kernel"] = t5x_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(flax_dump_folder_path) print("T5X Model was sucessfully converted!") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the TX5 checkpoint." ) parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of T5 model.") parser.add_argument( "--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model." ) args = parser.parse_args() convert_t5x_checkpoint_to_flax(args.t5x_checkpoint_path, args.config_name, args.flax_dump_folder_path)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/t5/modeling_t5.py
# coding=utf-8 # Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch T5 model.""" import copy import math import os import warnings from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, Seq2SeqQuestionAnsweringModelOutput, Seq2SeqSequenceClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( DUMMY_INPUTS, DUMMY_MASK, add_start_docstrings, add_start_docstrings_to_model_forward, is_torch_fx_proxy, logging, replace_return_docstrings, ) from ...utils.model_parallel_utils import assert_device_map, get_device_map from .configuration_t5 import T5Config logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "T5Config" _CHECKPOINT_FOR_DOC = "t5-small" #################################################### # This dict contains ids and associated url # for the pretrained weights provided with the models #################################################### T5_PRETRAINED_MODEL_ARCHIVE_LIST = [ "t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b", # See all T5 models at https://huggingface.co/models?filter=t5 ] #################################################### # This is a conversion method from TF 1.0 to PyTorch # More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28 #################################################### def load_tf_weights_in_t5(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] tf_weights = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) tf_weights[name] = array for txt_name in names: name = txt_name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") tf_weights.pop(txt_name, None) continue if "_slot_" in name[-1]: logger.info(f"Skipping {'/'.join(name)}") tf_weights.pop(txt_name, None) continue pointer = model array = tf_weights[txt_name] for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] in ["kernel", "scale", "embedding"]: pointer = getattr(pointer, "weight") elif scope_names[0] == "self_attention": pointer = getattr(pointer, "layer") pointer = pointer[0] elif scope_names[0] == "enc_dec_attention": pointer = getattr(pointer, "layer") pointer = pointer[1] elif scope_names[0] == "dense_relu_dense": pointer = getattr(pointer, "layer") pointer = pointer[2] elif scope_names[0] == "rms_norm": if hasattr(pointer, "layer_norm"): pointer = getattr(pointer, "layer_norm") elif hasattr(pointer, "final_layer_norm"): pointer = getattr(pointer, "final_layer_norm") elif scope_names[0] == "scale": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") elif scope_names[0] == "decoder" and name[1] == "logits": continue elif scope_names[0] == "logits": pointer = getattr(pointer, "lm_head") elif scope_names[0] == "wi" and len(scope_names) > 1 and scope_names[1].isdigit(): pointer = getattr(pointer, f"wi_{scope_names[1]}") continue else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if scope_names[0] not in ["kernel", "scale", "embedding"]: pointer = getattr(pointer, "weight") if scope_names[0] != "embedding": logger.info(f"Transposing numpy weight of shape {array.shape} for {name}") array = np.transpose(array) try: if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array.astype(np.float32)) tf_weights.pop(txt_name, None) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.") return model #################################################### # PyTorch Models are constructed by sub-classing # - torch.nn.Module for the layers and # - PreTrainedModel for the models (it-self a sub-class of nn.Module) #################################################### PARALLELIZE_DOCSTRING = r""" This is an experimental feature and is a subject to change at a moment's notice. Uses a device map to distribute attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks across all devices. Args: device_map (`Dict[int, list]`, optional, defaults to None): A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always automatically mapped to the first device (for esoteric reasons). That means that the first device should have fewer attention modules mapped to it than other devices. For reference, the t5 models have the following number of attention modules: - t5-small: 6 - t5-base: 12 - t5-large: 24 - t5-3b: 24 - t5-11b: 24 Example: ```python # Here is an example of a device map on a machine with 4 GPUs using t5-3b, which has a total of 24 attention modules: model = T5ForConditionalGeneration.from_pretrained("t5-3b") device_map = { 0: [0, 1, 2], 1: [3, 4, 5, 6, 7, 8, 9], 2: [10, 11, 12, 13, 14, 15, 16], 3: [17, 18, 19, 20, 21, 22, 23], } model.parallelize(device_map) ``` """ DEPARALLELIZE_DOCSTRING = r""" Moves the model to cpu from a model parallel state. Example: ```python # On a 4 GPU machine with t5-3b: model = T5ForConditionalGeneration.from_pretrained("t5-3b") device_map = { 0: [0, 1, 2], 1: [3, 4, 5, 6, 7, 8, 9], 2: [10, 11, 12, 13, 14, 15, 16], 3: [17, 18, 19, 20, 21, 22, 23], } model.parallelize(device_map) # Splits the model across several devices model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() ``` """ class T5LayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ Construct a layernorm module in the T5 style. No bias and no subtraction of mean. """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # convert into half-precision if necessary if self.weight.dtype in [torch.float16, torch.bfloat16]: hidden_states = hidden_states.to(self.weight.dtype) return self.weight * hidden_states try: from apex.normalization import FusedRMSNorm T5LayerNorm = FusedRMSNorm # noqa logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of T5LayerNorm") except ImportError: # using the normal T5LayerNorm pass except Exception: logger.warning("discovered apex but it failed to load, falling back to T5LayerNorm") pass ALL_LAYERNORM_LAYERS.append(T5LayerNorm) class T5DenseActDense(nn.Module): def __init__(self, config: T5Config): super().__init__() self.wi = nn.Linear(config.d_model, config.d_ff, bias=False) self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) self.dropout = nn.Dropout(config.dropout_rate) self.act = ACT2FN[config.dense_act_fn] def forward(self, hidden_states): hidden_states = self.wi(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dropout(hidden_states) if ( isinstance(self.wo.weight, torch.Tensor) and hidden_states.dtype != self.wo.weight.dtype and self.wo.weight.dtype != torch.int8 ): hidden_states = hidden_states.to(self.wo.weight.dtype) hidden_states = self.wo(hidden_states) return hidden_states class T5DenseGatedActDense(nn.Module): def __init__(self, config: T5Config): super().__init__() self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False) self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False) self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) self.dropout = nn.Dropout(config.dropout_rate) self.act = ACT2FN[config.dense_act_fn] def forward(self, hidden_states): hidden_gelu = self.act(self.wi_0(hidden_states)) hidden_linear = self.wi_1(hidden_states) hidden_states = hidden_gelu * hidden_linear hidden_states = self.dropout(hidden_states) # To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32. # See https://github.com/huggingface/transformers/issues/20287 # we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None`` if ( isinstance(self.wo.weight, torch.Tensor) and hidden_states.dtype != self.wo.weight.dtype and self.wo.weight.dtype != torch.int8 ): hidden_states = hidden_states.to(self.wo.weight.dtype) hidden_states = self.wo(hidden_states) return hidden_states class T5LayerFF(nn.Module): def __init__(self, config: T5Config): super().__init__() if config.is_gated_act: self.DenseReluDense = T5DenseGatedActDense(config) else: self.DenseReluDense = T5DenseActDense(config) self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward(self, hidden_states): forwarded_states = self.layer_norm(hidden_states) forwarded_states = self.DenseReluDense(forwarded_states) hidden_states = hidden_states + self.dropout(forwarded_states) return hidden_states class T5Attention(nn.Module): def __init__(self, config: T5Config, has_relative_attention_bias=False): super().__init__() self.is_decoder = config.is_decoder self.has_relative_attention_bias = has_relative_attention_bias self.relative_attention_num_buckets = config.relative_attention_num_buckets self.relative_attention_max_distance = config.relative_attention_max_distance self.d_model = config.d_model self.key_value_proj_dim = config.d_kv self.n_heads = config.num_heads self.dropout = config.dropout_rate self.inner_dim = self.n_heads * self.key_value_proj_dim # Mesh TensorFlow initialization to avoid scaling before softmax self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) if self.has_relative_attention_bias: self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) self.pruned_heads = set() self.gradient_checkpointing = False def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads ) # Prune linear layers self.q = prune_linear_layer(self.q, index) self.k = prune_linear_layer(self.k, index) self.v = prune_linear_layer(self.v, index) self.o = prune_linear_layer(self.o, index, dim=1) # Update hyper params self.n_heads = self.n_heads - len(heads) self.inner_dim = self.key_value_proj_dim * self.n_heads self.pruned_heads = self.pruned_heads.union(heads) @staticmethod def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on Args: relative_position: an int32 Tensor bidirectional: a boolean - whether the attention is bidirectional num_buckets: an integer max_distance: an integer Returns: a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0).to(torch.long) * num_buckets relative_position = torch.abs(relative_position) else: relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) relative_position_if_large = torch.min( relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) ) relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) return relative_buckets def compute_bias(self, query_length, key_length, device=None): """Compute binned relative position bias""" if device is None: device = self.relative_attention_bias.weight.device context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] relative_position = memory_position - context_position # shape (query_length, key_length) relative_position_bucket = self._relative_position_bucket( relative_position, # shape (query_length, key_length) bidirectional=(not self.is_decoder), num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) return values def forward( self, hidden_states, mask=None, key_value_states=None, position_bias=None, past_key_value=None, layer_head_mask=None, query_length=None, use_cache=False, output_attentions=False, ): """ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). """ # Input is (batch_size, seq_length, dim) # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) batch_size, seq_length = hidden_states.shape[:2] real_seq_length = seq_length if past_key_value is not None: if len(past_key_value) != 2: raise ValueError( f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" ) real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] def shape(states): """projection""" return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) def unshape(states): """reshape""" return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) def project(hidden_states, proj_layer, key_value_states, past_key_value): """projects hidden states correctly to key/query states""" if key_value_states is None: # self-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(hidden_states)) elif past_key_value is None: # cross-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(key_value_states)) if past_key_value is not None: if key_value_states is None: # self-attn # (batch_size, n_heads, key_length, dim_per_head) hidden_states = torch.cat([past_key_value, hidden_states], dim=2) elif past_key_value.shape[2] != key_value_states.shape[1]: # checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning # cross-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(key_value_states)) else: # cross-attn hidden_states = past_key_value return hidden_states # get query states query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head) # get key/value states key_states = project( hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None ) value_states = project( hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None ) # compute scores scores = torch.matmul( query_states, key_states.transpose(3, 2) ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 if position_bias is None: if not self.has_relative_attention_bias: position_bias = torch.zeros( (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype ) if self.gradient_checkpointing and self.training: position_bias.requires_grad = True else: position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device) # if key and values are already calculated # we want only the last query position bias if past_key_value is not None: position_bias = position_bias[:, :, -hidden_states.size(1) :, :] if mask is not None: position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length) if self.pruned_heads: mask = torch.ones(position_bias.shape[1]) mask[list(self.pruned_heads)] = 0 position_bias_masked = position_bias[:, mask.bool()] else: position_bias_masked = position_bias scores += position_bias_masked attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( scores ) # (batch_size, n_heads, seq_length, key_length) attn_weights = nn.functional.dropout( attn_weights, p=self.dropout, training=self.training ) # (batch_size, n_heads, seq_length, key_length) # Mask heads if we want to if layer_head_mask is not None: attn_weights = attn_weights * layer_head_mask attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim) attn_output = self.o(attn_output) present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) if output_attentions: outputs = outputs + (attn_weights,) return outputs class T5LayerSelfAttention(nn.Module): def __init__(self, config, has_relative_attention_bias=False): super().__init__() self.SelfAttention = T5Attention(config, has_relative_attention_bias=has_relative_attention_bias) self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.SelfAttention( normed_hidden_states, mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = hidden_states + self.dropout(attention_output[0]) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs class T5LayerCrossAttention(nn.Module): def __init__(self, config): super().__init__() self.EncDecAttention = T5Attention(config, has_relative_attention_bias=False) self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, key_value_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, query_length=None, output_attentions=False, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.EncDecAttention( normed_hidden_states, mask=attention_mask, key_value_states=key_value_states, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, query_length=query_length, output_attentions=output_attentions, ) layer_output = hidden_states + self.dropout(attention_output[0]) outputs = (layer_output,) + attention_output[1:] # add attentions if we output them return outputs class T5Block(nn.Module): def __init__(self, config, has_relative_attention_bias=False): super().__init__() self.is_decoder = config.is_decoder self.layer = nn.ModuleList() self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias)) if self.is_decoder: self.layer.append(T5LayerCrossAttention(config)) self.layer.append(T5LayerFF(config)) def forward( self, hidden_states, attention_mask=None, position_bias=None, encoder_hidden_states=None, encoder_attention_mask=None, encoder_decoder_position_bias=None, layer_head_mask=None, cross_attn_layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, return_dict=True, ): if past_key_value is not None: if not self.is_decoder: logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.") expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 if len(past_key_value) != expected_num_past_key_values: raise ValueError( f"There should be {expected_num_past_key_values} past states. " f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}" f"Got {len(past_key_value)} past key / value states" ) self_attn_past_key_value = past_key_value[:2] cross_attn_past_key_value = past_key_value[2:] else: self_attn_past_key_value, cross_attn_past_key_value = None, None self_attention_outputs = self.layer[0]( hidden_states, attention_mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=self_attn_past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states, present_key_value_state = self_attention_outputs[:2] attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16: clamp_value = torch.where( torch.isinf(hidden_states).any(), torch.finfo(hidden_states.dtype).max - 1000, torch.finfo(hidden_states.dtype).max, ) hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) do_cross_attention = self.is_decoder and encoder_hidden_states is not None if do_cross_attention: # the actual query length is unknown for cross attention # if using past key value states. Need to inject it here if present_key_value_state is not None: query_length = present_key_value_state[0].shape[2] else: query_length = None cross_attention_outputs = self.layer[1]( hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, position_bias=encoder_decoder_position_bias, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, query_length=query_length, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = cross_attention_outputs[0] # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16: clamp_value = torch.where( torch.isinf(hidden_states).any(), torch.finfo(hidden_states.dtype).max - 1000, torch.finfo(hidden_states.dtype).max, ) hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) # Combine self attn and cross attn key value states if present_key_value_state is not None: present_key_value_state = present_key_value_state + cross_attention_outputs[1] # Keep cross-attention outputs and relative position weights attention_outputs = attention_outputs + cross_attention_outputs[2:] # Apply Feed Forward layer hidden_states = self.layer[-1](hidden_states) # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16: clamp_value = torch.where( torch.isinf(hidden_states).any(), torch.finfo(hidden_states.dtype).max - 1000, torch.finfo(hidden_states.dtype).max, ) hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if use_cache: outputs = outputs + (present_key_value_state,) + attention_outputs else: outputs = outputs + attention_outputs return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) class T5ClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config: T5Config): super().__init__() self.dense = nn.Linear(config.d_model, config.d_model) self.dropout = nn.Dropout(p=config.classifier_dropout) self.out_proj = nn.Linear(config.d_model, config.num_labels) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dropout(hidden_states) hidden_states = self.dense(hidden_states) hidden_states = torch.tanh(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.out_proj(hidden_states) return hidden_states class T5PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = T5Config load_tf_weights = load_tf_weights_in_t5 base_model_prefix = "transformer" is_parallelizable = True supports_gradient_checkpointing = True _no_split_modules = ["T5Block"] _keep_in_fp32_modules = ["wo"] @property def dummy_inputs(self): input_ids = torch.tensor(DUMMY_INPUTS) input_mask = torch.tensor(DUMMY_MASK) dummy_inputs = { "decoder_input_ids": input_ids, "input_ids": input_ids, "decoder_attention_mask": input_mask, } return dummy_inputs def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor # Used for testing weights initialization if isinstance(module, T5LayerNorm): module.weight.data.fill_(factor * 1.0) elif isinstance( module, (T5Model, T5ForConditionalGeneration, T5EncoderModel, T5ForQuestionAnswering), ): # Mesh TensorFlow embeddings initialization # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624 module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0) if hasattr(module, "lm_head") and not self.config.tie_word_embeddings: module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0) if hasattr(module, "qa_outputs"): module.qa_outputs.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) module.qa_outputs.bias.data.zero_() elif isinstance(module, T5ClassificationHead): module.dense.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.dense, "bias") and module.dense.bias is not None: module.dense.bias.data.zero_() module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None: module.out_proj.bias.data.zero_() elif isinstance(module, T5DenseActDense): # Mesh TensorFlow FF initialization # See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56 # and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89 module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.wi, "bias") and module.wi.bias is not None: module.wi.bias.data.zero_() module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) if hasattr(module.wo, "bias") and module.wo.bias is not None: module.wo.bias.data.zero_() elif isinstance(module, T5DenseGatedActDense): module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None: module.wi_0.bias.data.zero_() module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None: module.wi_1.bias.data.zero_() module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) if hasattr(module.wo, "bias") and module.wo.bias is not None: module.wo.bias.data.zero_() elif isinstance(module, T5Attention): # Mesh TensorFlow attention initialization to avoid scaling before softmax # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 d_model = self.config.d_model key_value_proj_dim = self.config.d_kv n_heads = self.config.num_heads module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) if module.has_relative_attention_bias: module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5)) def _shift_right(self, input_ids): decoder_start_token_id = self.config.decoder_start_token_id pad_token_id = self.config.pad_token_id if decoder_start_token_id is None: raise ValueError( "self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id. " "See T5 docs for more information." ) # shift inputs to the right if is_torch_fx_proxy(input_ids): # Item assignment is not supported natively for proxies. shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) else: shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() shifted_input_ids[..., 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids class T5Stack(T5PreTrainedModel): def __init__(self, config, embed_tokens=None): super().__init__(config) self.embed_tokens = embed_tokens self.is_decoder = config.is_decoder self.block = nn.ModuleList( [T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)] ) self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) # Initialize weights and apply final processing self.post_init() # Model parallel self.model_parallel = False self.device_map = None self.gradient_checkpointing = False @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): warnings.warn( "`T5Stack.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model" " with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" " `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0," " 'block.1': 1, ...}", FutureWarning, ) # Check validity of device_map self.device_map = ( get_device_map(len(self.block), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.block)) self.model_parallel = True self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys())) self.last_device = "cuda:" + str(max(self.device_map.keys())) # Load onto devices for k, v in self.device_map.items(): for layer in v: cuda_device = "cuda:" + str(k) self.block[layer] = self.block[layer].to(cuda_device) # Set embed_tokens to first layer self.embed_tokens = self.embed_tokens.to(self.first_device) # Set final layer norm to last device self.final_layer_norm = self.final_layer_norm.to(self.last_device) @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): warnings.warn( "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", FutureWarning, ) self.model_parallel = False self.device_map = None self.first_device = "cpu" self.last_device = "cpu" for i in range(len(self.block)): self.block[i] = self.block[i].to("cpu") self.embed_tokens = self.embed_tokens.to("cpu") self.final_layer_norm = self.final_layer_norm.to("cpu") torch.cuda.empty_cache() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, new_embeddings): self.embed_tokens = new_embeddings def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, inputs_embeds=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): # Model parallel if self.model_parallel: torch.cuda.set_device(self.first_device) self.embed_tokens = self.embed_tokens.to(self.first_device) use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: err_msg_prefix = "decoder_" if self.is_decoder else "" raise ValueError( f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" ) elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: err_msg_prefix = "decoder_" if self.is_decoder else "" raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") if inputs_embeds is None: if self.embed_tokens is None: raise ValueError("You have to initialize the model with valid token embeddings") inputs_embeds = self.embed_tokens(input_ids) batch_size, seq_length = input_shape # required mask seq length can be calculated via length of past mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length if use_cache is True: if not self.is_decoder: raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder") # initialize past_key_values with `None` if past does not exist if past_key_values is None: past_key_values = [None] * len(self.block) if attention_mask is None: attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones( encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long ) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # Prepare head mask if needed head_mask = self.get_head_mask(head_mask, self.config.num_layers) cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) present_key_value_states = () if use_cache else None all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if (output_attentions and self.is_decoder) else None position_bias = None encoder_decoder_position_bias = None hidden_states = self.dropout(inputs_embeds) for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): layer_head_mask = head_mask[i] cross_attn_layer_head_mask = cross_attn_head_mask[i] # Model parallel if self.model_parallel: torch.cuda.set_device(hidden_states.device) # Ensure that attention_mask is always on the same device as hidden_states if attention_mask is not None: attention_mask = attention_mask.to(hidden_states.device) if position_bias is not None: position_bias = position_bias.to(hidden_states.device) if encoder_hidden_states is not None: encoder_hidden_states = encoder_hidden_states.to(hidden_states.device) if encoder_extended_attention_mask is not None: encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device) if encoder_decoder_position_bias is not None: encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device) if layer_head_mask is not None: layer_head_mask = layer_head_mask.to(hidden_states.device) if cross_attn_layer_head_mask is not None: cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.forward, hidden_states, extended_attention_mask, position_bias, encoder_hidden_states, encoder_extended_attention_mask, encoder_decoder_position_bias, layer_head_mask, cross_attn_layer_head_mask, None, # past_key_value is always None with gradient checkpointing use_cache, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask=extended_attention_mask, position_bias=position_bias, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, encoder_decoder_position_bias=encoder_decoder_position_bias, layer_head_mask=layer_head_mask, cross_attn_layer_head_mask=cross_attn_layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) # layer_outputs is a tuple with: # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) if use_cache is False: layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] hidden_states, present_key_value_state = layer_outputs[:2] # We share the position biases between the layers - the first layer store them # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), # (cross-attention position bias), (cross-attention weights) position_bias = layer_outputs[2] if self.is_decoder and encoder_hidden_states is not None: encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] # append next layer key value states if use_cache: present_key_value_states = present_key_value_states + (present_key_value_state,) if output_attentions: all_attentions = all_attentions + (layer_outputs[3],) if self.is_decoder: all_cross_attentions = all_cross_attentions + (layer_outputs[5],) # Model Parallel: If it's the last layer for that device, put things on the next device if self.model_parallel: for k, v in self.device_map.items(): if i == v[-1] and "cuda:" + str(k) != self.last_device: hidden_states = hidden_states.to("cuda:" + str(k + 1)) hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, present_key_value_states, all_hidden_states, all_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_value_states, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) T5_START_DOCSTRING = r""" The T5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a text-to-text denoising generative setting. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`T5Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ T5_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. [What are input IDs?](../glossary#input-ids) To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5 Training](./t5#training). decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ T5_ENCODER_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask __HEAD_MASK_WARNING_MSG = """ The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, `decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers, num_heads)`. """ @add_start_docstrings( "The bare T5 Model transformer outputting raw hidden-states without any specific head on top.", T5_START_DOCSTRING, ) class T5Model(T5PreTrainedModel): _keys_to_ignore_on_load_unexpected = [ "decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", ] _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] def __init__(self, config: T5Config): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.is_decoder = False encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = T5Stack(encoder_config, self.shared) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.is_encoder_decoder = False decoder_config.num_layers = config.num_decoder_layers self.decoder = T5Stack(decoder_config, self.shared) # Initialize weights and apply final processing self.post_init() # Model parallel self.model_parallel = False self.device_map = None @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): warnings.warn( "`T5Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model" " with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" " `device_map` but it needs to be a dictionary module_name to device, so for instance {'encoder.block.0':" " 0, 'encoder.block.1': 1, ...}", FutureWarning, ) self.device_map = ( get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.encoder.block)) self.encoder.parallelize(self.device_map) self.decoder.parallelize(self.device_map) self.model_parallel = True @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): warnings.warn( "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", FutureWarning, ) self.encoder.deparallelize() self.decoder.deparallelize() self.encoder = self.encoder.to("cpu") self.decoder = self.decoder.to("cpu") self.model_parallel = False self.device_map = None torch.cuda.empty_cache() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) self.decoder.set_input_embeddings(new_embeddings) def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, T5Model >>> tokenizer = AutoTokenizer.from_pretrained("t5-small") >>> model = T5Model.from_pretrained("t5-small") >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model. >>> # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg. >>> decoder_input_ids = model._shift_right(decoder_input_ids) >>> # forward pass >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state ```""" use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask if head_mask is not None and decoder_head_mask is None: if self.config.num_layers == self.config.num_decoder_layers: warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) decoder_head_mask = head_mask # Encode if needed (training, first prediction pass) if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) hidden_states = encoder_outputs[0] # Set device for model parallelism if self.model_parallel: torch.cuda.set_device(self.decoder.first_device) hidden_states = hidden_states.to(self.decoder.first_device) if decoder_input_ids is not None: decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) if attention_mask is not None: attention_mask = attention_mask.to(self.decoder.first_device) if decoder_attention_mask is not None: decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, inputs_embeds=decoder_inputs_embeds, past_key_values=past_key_values, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings("""T5 Model with a `language modeling` head on top.""", T5_START_DOCSTRING) class T5ForConditionalGeneration(T5PreTrainedModel): _keys_to_ignore_on_load_unexpected = [ "decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", ] _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] def __init__(self, config: T5Config): super().__init__(config) self.model_dim = config.d_model self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.is_decoder = False encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = T5Stack(encoder_config, self.shared) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.is_encoder_decoder = False decoder_config.num_layers = config.num_decoder_layers self.decoder = T5Stack(decoder_config, self.shared) self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() # Model parallel self.model_parallel = False self.device_map = None @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): warnings.warn( "`T5ForConditionalGeneration.parallelize` is deprecated and will be removed in v5 of Transformers, you" " should load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also" " provide your own `device_map` but it needs to be a dictionary module_name to device, so for instance" " {'encoder.block.0': 0, 'encoder.block.1': 1, ...}", FutureWarning, ) self.device_map = ( get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.encoder.block)) self.encoder.parallelize(self.device_map) self.decoder.parallelize(self.device_map) self.lm_head = self.lm_head.to(self.decoder.first_device) self.model_parallel = True @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): warnings.warn( "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", FutureWarning, ) self.encoder.deparallelize() self.decoder.deparallelize() self.encoder = self.encoder.to("cpu") self.decoder = self.decoder.to("cpu") self.lm_head = self.lm_head.to("cpu") self.model_parallel = False self.device_map = None torch.cuda.empty_cache() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) self.decoder.set_input_embeddings(new_embeddings) def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def get_output_embeddings(self): return self.lm_head def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Returns: Examples: ```python >>> from transformers import AutoTokenizer, T5ForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("t5-small") >>> model = T5ForConditionalGeneration.from_pretrained("t5-small") >>> # training >>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids >>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids >>> outputs = model(input_ids=input_ids, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits >>> # inference >>> input_ids = tokenizer( ... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> outputs = model.generate(input_ids) >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) >>> # studies have shown that owning a dog is good for you. ```""" use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask if head_mask is not None and decoder_head_mask is None: if self.config.num_layers == self.config.num_decoder_layers: warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) decoder_head_mask = head_mask # Encode if needed (training, first prediction pass) if encoder_outputs is None: # Convert encoder inputs in embeddings if needed encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) hidden_states = encoder_outputs[0] if self.model_parallel: torch.cuda.set_device(self.decoder.first_device) if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: # get decoder inputs from shifting lm labels to the right decoder_input_ids = self._shift_right(labels) # Set device for model parallelism if self.model_parallel: torch.cuda.set_device(self.decoder.first_device) hidden_states = hidden_states.to(self.decoder.first_device) if decoder_input_ids is not None: decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) if attention_mask is not None: attention_mask = attention_mask.to(self.decoder.first_device) if decoder_attention_mask is not None: decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, inputs_embeds=decoder_inputs_embeds, past_key_values=past_key_values, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = decoder_outputs[0] # Set device for model parallelism if self.model_parallel: torch.cuda.set_device(self.encoder.first_device) self.lm_head = self.lm_head.to(self.encoder.first_device) sequence_output = sequence_output.to(self.lm_head.weight.device) if self.config.tie_word_embeddings: # Rescale output before projecting on vocab # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 sequence_output = sequence_output * (self.model_dim**-0.5) lm_logits = self.lm_head(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss(ignore_index=-100) # move labels to correct device to enable PP labels = labels.to(lm_logits.device) loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) # TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666 if not return_dict: output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs return ((loss,) + output) if loss is not None else output return Seq2SeqLMOutput( loss=loss, logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_head_mask=None, decoder_attention_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past_key_values is used if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] return { "decoder_input_ids": input_ids, "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "decoder_attention_mask": decoder_attention_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, } def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return self._shift_right(labels) def _reorder_cache(self, past_key_values, beam_idx): # if decoder past is not included in output # speedy decoding is disabled and no need to reorder if past_key_values is None: logger.warning("You might want to consider setting `use_cache=True` to speed up decoding") return past_key_values reordered_decoder_past = () for layer_past_states in past_key_values: # get the correct batch idx from layer past batch dim # batch dim of `past` is at 2nd position reordered_layer_past_states = () for layer_past_state in layer_past_states: # need to set correct `past` for each of the four key / value states reordered_layer_past_states = reordered_layer_past_states + ( layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), ) if reordered_layer_past_states[0].shape != layer_past_states[0].shape: raise ValueError( f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched" ) if len(reordered_layer_past_states) != len(layer_past_states): raise ValueError( f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched" ) reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) return reordered_decoder_past @add_start_docstrings( "The bare T5 Model transformer outputting encoder's raw hidden-states without any specific head on top.", T5_START_DOCSTRING, ) class T5EncoderModel(T5PreTrainedModel): _tied_weights_keys = ["encoder.embed_tokens.weight"] _keys_to_ignore_on_load_unexpected = [r"decoder"] def __init__(self, config: T5Config): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = T5Stack(encoder_config, self.shared) # Initialize weights and apply final processing self.post_init() # Model parallel self.model_parallel = False self.device_map = None @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): warnings.warn( "`T5EncoderModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load" " your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" " `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0," " 'block.1': 1, ...}", FutureWarning, ) self.device_map = ( get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.encoder.block)) self.encoder.parallelize(self.device_map) self.model_parallel = True @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): warnings.warn( "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", FutureWarning, ) self.encoder.deparallelize() self.encoder = self.encoder.to("cpu") self.model_parallel = False self.device_map = None torch.cuda.empty_cache() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) def get_encoder(self): return self.encoder def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads) @add_start_docstrings_to_model_forward(T5_ENCODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, T5EncoderModel >>> tokenizer = AutoTokenizer.from_pretrained("t5-small") >>> model = T5EncoderModel.from_pretrained("t5-small") >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> outputs = model(input_ids=input_ids) >>> last_hidden_states = outputs.last_hidden_state ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return encoder_outputs @add_start_docstrings( """ T5 model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, T5_START_DOCSTRING, ) class T5ForSequenceClassification(T5PreTrainedModel): _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"] _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] def __init__(self, config: T5Config): super().__init__(config) self.transformer = T5Model(config) self.classification_head = T5ClassificationHead(config) # Initialize weights and apply final processing self.post_init() self.model_parallel = False @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False if input_ids is None and inputs_embeds is not None: raise NotImplementedError( f"Passing input embeddings is currently not supported for {self.__class__.__name__}" ) # Copied from models.bart.modeling_bart.BartModel.forward different to other models, T5 automatically creates # decoder_input_ids from input_ids if no decoder_input_ids are provided if decoder_input_ids is None and decoder_inputs_embeds is None: if input_ids is None: raise ValueError( "If no `decoder_input_ids` or `decoder_inputs_embeds` are " "passed, `input_ids` cannot be `None`. Please pass either " "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." ) decoder_input_ids = self._shift_right(input_ids) outputs = self.transformer( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] eos_mask = input_ids.eq(self.config.eos_token_id).to(sequence_output.device) if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: raise ValueError("All examples must have the same number of <eos> tokens.") batch_size, _, hidden_size = sequence_output.shape sentence_representation = sequence_output[eos_mask, :].view(batch_size, -1, hidden_size)[:, -1, :] logits = self.classification_head(sentence_representation) loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.config.num_labels == 1: self.config.problem_type = "regression" elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.config.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return Seq2SeqSequenceClassifierOutput( loss=loss, logits=logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @add_start_docstrings( """ T5 Model with a span classification head on top for extractive question-answering tasks like SQuAD (linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, T5_START_DOCSTRING, ) class T5ForQuestionAnswering(T5PreTrainedModel): _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"] _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] def __init__(self, config: T5Config): super().__init__(config) self.model_dim = config.d_model self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.is_decoder = False encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = T5Stack(encoder_config, self.shared) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.is_encoder_decoder = False decoder_config.num_layers = config.num_decoder_layers self.decoder = T5Stack(decoder_config, self.shared) self.num_labels = config.num_labels self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() self.model_parallel = False def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) self.decoder.set_input_embeddings(new_embeddings) def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqQuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence are not taken into account for computing the loss. Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict use_cache = use_cache if use_cache is not None else self.config.use_cache if start_positions is not None and end_positions is not None: use_cache = False # Copied from models.bart.modeling_bart.BartModel.forward # different to other models, T5 automatically creates decoder_input_ids from # input_ids if no decoder_input_ids are provided if decoder_input_ids is None and decoder_inputs_embeds is None: if input_ids is None: raise ValueError( "If no `decoder_input_ids` or `decoder_inputs_embeds` are " "passed, `input_ids` cannot be `None`. Please pass either " "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." ) decoder_input_ids = self._shift_right(input_ids) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask if head_mask is not None and decoder_head_mask is None: if self.config.num_layers == self.config.num_decoder_layers: warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) decoder_head_mask = head_mask # Encode if needed (training, first prediction pass) if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) hidden_states = encoder_outputs[0] # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, inputs_embeds=decoder_inputs_embeds, past_key_values=None, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = decoder_outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1).to(start_logits.device) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1).to(end_logits.device) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + decoder_outputs[1:] + encoder_outputs return ((total_loss,) + output) if total_loss is not None else output return Seq2SeqQuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/t5/modeling_flax_t5.py
# coding=utf-8 # Copyright 2021 T5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Flax T5 model.""" import copy from typing import Callable, Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen import partitioning as nn_partitioning from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput, FlaxSeq2SeqModelOutput, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_t5 import T5Config logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "t5-small" _CONFIG_FOR_DOC = "T5Config" remat = nn_partitioning.remat # Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray: """ Shift input ids one token to the right. """ shifted_input_ids = jnp.zeros_like(input_ids) shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1]) shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id) shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids) return shifted_input_ids class FlaxT5LayerNorm(nn.Module): hidden_size: int dtype: jnp.dtype = jnp.float32 eps: float = 1e-6 weight_init: Callable[..., np.ndarray] = jax.nn.initializers.ones def setup(self): self.weight = self.param("weight", self.weight_init, (self.hidden_size,)) def __call__(self, hidden_states): """ Construct a layernorm module in the T5 style; No bias and no subtraction of mean. """ # layer norm should always be calculated in float32 variance = jnp.power(hidden_states.astype("f4"), 2).mean(axis=-1, keepdims=True) hidden_states = hidden_states / jnp.sqrt(variance + self.eps) return self.weight * hidden_states class FlaxT5DenseActDense(nn.Module): config: T5Config dtype: jnp.dtype = jnp.float32 def setup(self): wi_init_std = self.config.initializer_factor * (self.config.d_model**-0.5) wo_init_std = self.config.initializer_factor * (self.config.d_ff**-0.5) self.wi = nn.Dense( self.config.d_ff, use_bias=False, kernel_init=jax.nn.initializers.normal(wi_init_std), dtype=self.dtype, ) self.wo = nn.Dense( self.config.d_model, use_bias=False, kernel_init=jax.nn.initializers.normal(wo_init_std), dtype=self.dtype, ) self.dropout = nn.Dropout(self.config.dropout_rate) self.act = ACT2FN[self.config.dense_act_fn] def __call__(self, hidden_states, deterministic=True): hidden_states = self.wi(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.wo(hidden_states) return hidden_states class FlaxT5DenseGatedActDense(nn.Module): config: T5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): wi_init_std = self.config.initializer_factor * (self.config.d_model**-0.5) wo_init_std = self.config.initializer_factor * (self.config.d_ff**-0.5) self.wi_0 = nn.Dense( self.config.d_ff, use_bias=False, kernel_init=jax.nn.initializers.normal(wi_init_std), dtype=self.dtype, ) self.wi_1 = nn.Dense( self.config.d_ff, use_bias=False, kernel_init=jax.nn.initializers.normal(wi_init_std), dtype=self.dtype, ) self.wo = nn.Dense( self.config.d_model, use_bias=False, kernel_init=jax.nn.initializers.normal(wo_init_std), dtype=self.dtype, ) self.dropout = nn.Dropout(self.config.dropout_rate) self.act = ACT2FN[self.config.dense_act_fn] def __call__(self, hidden_states, deterministic): hidden_gelu = self.act(self.wi_0(hidden_states)) hidden_linear = self.wi_1(hidden_states) hidden_states = hidden_gelu * hidden_linear hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.wo(hidden_states) return hidden_states class FlaxT5LayerFF(nn.Module): config: T5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): if self.config.is_gated_act: self.DenseReluDense = FlaxT5DenseGatedActDense(self.config, dtype=self.dtype) else: self.DenseReluDense = FlaxT5DenseActDense(self.config, dtype=self.dtype) self.layer_norm = FlaxT5LayerNorm(self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype) self.dropout = nn.Dropout(self.config.dropout_rate) def __call__(self, hidden_states, deterministic=True): forwarded_states = self.layer_norm(hidden_states) forwarded_states = self.DenseReluDense(forwarded_states, deterministic=deterministic) hidden_states = hidden_states + self.dropout(forwarded_states, deterministic=deterministic) return hidden_states class FlaxT5Attention(nn.Module): config: T5Config has_relative_attention_bias: bool = False causal: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.relative_attention_num_buckets = self.config.relative_attention_num_buckets self.relative_attention_max_distance = self.config.relative_attention_max_distance self.d_model = self.config.d_model self.key_value_proj_dim = self.config.d_kv self.n_heads = self.config.num_heads self.dropout = self.config.dropout_rate self.inner_dim = self.n_heads * self.key_value_proj_dim q_init_std = self.config.initializer_factor * ((self.inner_dim * self.key_value_proj_dim) ** -0.5) kv_init_std = self.config.initializer_factor * (self.inner_dim**-0.5) o_init_std = self.config.initializer_factor * (self.inner_dim**-0.5) self.q = nn.Dense( self.inner_dim, use_bias=False, kernel_init=jax.nn.initializers.normal(q_init_std), dtype=self.dtype, ) self.k = nn.Dense( self.inner_dim, use_bias=False, kernel_init=jax.nn.initializers.normal(kv_init_std), dtype=self.dtype, ) self.v = nn.Dense( self.inner_dim, use_bias=False, kernel_init=jax.nn.initializers.normal(kv_init_std), dtype=self.dtype, ) self.o = nn.Dense( self.d_model, use_bias=False, kernel_init=jax.nn.initializers.normal(o_init_std), dtype=self.dtype, ) if self.has_relative_attention_bias: self.relative_attention_bias = nn.Embed( self.relative_attention_num_buckets, self.n_heads, embedding_init=jax.nn.initializers.normal(kv_init_std), dtype=self.dtype, ) @staticmethod def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0) * num_buckets relative_position = jnp.abs(relative_position) else: relative_position = -jnp.clip(relative_position, a_max=0) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( jnp.log(relative_position / max_exact) / jnp.log(max_distance / max_exact) * (num_buckets - max_exact) ) relative_position_if_large = jnp.clip(relative_position_if_large, a_max=num_buckets - 1) relative_buckets += jnp.where(is_small, relative_position, relative_position_if_large) return relative_buckets.astype("i4") def compute_bias(self, query_length, key_length): """Compute binned relative position bias""" context_position = jnp.arange(query_length, dtype="i4")[:, None] memory_position = jnp.arange(key_length, dtype="i4")[None, :] relative_position = memory_position - context_position relative_position_bucket = self._relative_position_bucket( relative_position, bidirectional=(not self.causal), num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) values = self.relative_attention_bias(relative_position_bucket) values = values.transpose((2, 0, 1))[None, :, :, :] return values def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.n_heads, self.key_value_proj_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.inner_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = jax.lax.dynamic_update_slice(cached_key.value, key, indices) value = jax.lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions # that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def _create_position_bias( self, key_states, query_states, attention_mask, init_cache, seq_length, causal_attention_mask_shift ): cache_is_filled = self.causal and self.has_variable("cache", "cached_key") and (not init_cache) key_length = key_states.shape[1] query_length = key_length if cache_is_filled else query_states.shape[1] if self.has_relative_attention_bias: position_bias = self.compute_bias(query_length, key_length) elif attention_mask is not None: position_bias = jnp.zeros_like(attention_mask) else: position_bias = jnp.zeros((1, self.n_heads, query_length, key_length), dtype=self.dtype) # if key and values are already calculated, only the last query position bias should be taken if cache_is_filled: max_decoder_length = self.variables["cache"]["cached_key"].shape[1] position_bias = jax.lax.dynamic_slice( position_bias, (0, 0, causal_attention_mask_shift, 0), (1, self.n_heads, seq_length, max_decoder_length), ) return position_bias def __call__( self, hidden_states, attention_mask=None, key_value_states=None, position_bias=None, use_cache=False, output_attentions=False, deterministic=True, init_cache=False, ): """ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). """ batch_size, seq_length = hidden_states.shape[:2] # q, k, v projections query_states = self.q(hidden_states) # (batch_size, n_heads, seq_length, dim_per_head) key_states = self.k(hidden_states) if key_value_states is None else self.k(key_value_states) value_states = self.v(hidden_states) if key_value_states is None else self.v(key_value_states) # reshape to (batch_size, seq_length, n_heads, head_dim) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # counter-act scaling in dot_product_attention_weights function query_states *= jnp.sqrt(query_states.shape[-1]) # for fast decoding causal attention mask should be shifted causal_attention_mask_shift = ( self.variables["cache"]["cache_index"] if (self.has_variable("cache", "cached_key") and self.causal) else 0 ) # create causal attention_mask; attention_mask has to be defined when model is causal if self.causal: causal_attention_mask = make_causal_mask(attention_mask, dtype="bool") # fast decoding for generate requires special attention_mask if self.has_variable("cache", "cached_key"): max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_attention_mask = jax.lax.dynamic_slice( causal_attention_mask, (0, 0, causal_attention_mask_shift, 0), (1, 1, seq_length, max_decoder_length), ) # broadcast causal attention mask & attention mask to fit for merge causal_attention_mask = jnp.broadcast_to( causal_attention_mask, (batch_size,) + causal_attention_mask.shape[1:] ) attention_mask = jnp.broadcast_to( jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_attention_mask.shape ) attention_mask = combine_masks(attention_mask, causal_attention_mask) elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # replace masked positions with -10_000 if attention_mask is not None: mask_value = jnp.finfo(self.dtype).min attention_mask = jax.lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, mask_value).astype(self.dtype), ) if position_bias is None: # compute position bias (only for first layer) position_bias = self._create_position_bias( key_states, query_states, attention_mask, init_cache, seq_length, causal_attention_mask_shift ) if attention_mask is not None: position_bias = position_bias + attention_mask # create dropout rng dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") # Softmax(QK^T) attn_weights = dot_product_attention_weights( query_states, key_states, bias=position_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, ) # multiply with value states attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) # bring back to (batch_size, seq_length, d_model) attn_output = self._merge_heads(attn_output) # apply output matrix attn_output = self.o(attn_output) outputs = (attn_output, position_bias) if output_attentions: outputs = outputs + (attn_weights,) return outputs class FlaxT5LayerSelfAttention(nn.Module): config: T5Config has_relative_attention_bias: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.SelfAttention = FlaxT5Attention( self.config, has_relative_attention_bias=self.has_relative_attention_bias, causal=self.config.causal, dtype=self.dtype, ) self.layer_norm = FlaxT5LayerNorm(self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype) self.dropout = nn.Dropout(self.config.dropout_rate) def __call__( self, hidden_states, attention_mask=None, position_bias=None, output_attentions=False, deterministic=True, init_cache=False, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.SelfAttention( normed_hidden_states, attention_mask=attention_mask, position_bias=position_bias, output_attentions=output_attentions, deterministic=deterministic, init_cache=init_cache, ) hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs class FlaxT5LayerCrossAttention(nn.Module): config: T5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.EncDecAttention = FlaxT5Attention( self.config, has_relative_attention_bias=False, causal=False, dtype=self.dtype ) self.layer_norm = FlaxT5LayerNorm(self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype) self.dropout = nn.Dropout(self.config.dropout_rate) def __call__( self, hidden_states, key_value_states, attention_mask=None, position_bias=None, output_attentions=False, deterministic=True, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.EncDecAttention( normed_hidden_states, attention_mask=attention_mask, key_value_states=key_value_states, position_bias=position_bias, output_attentions=output_attentions, ) hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs class FlaxT5Block(nn.Module): config: T5Config has_relative_attention_bias: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.causal = self.config.causal self.layer = ( FlaxT5LayerSelfAttention( self.config, has_relative_attention_bias=self.has_relative_attention_bias, name=str(0), dtype=self.dtype, ), ) feed_forward_index = 1 if self.causal: self.layer += (FlaxT5LayerCrossAttention(self.config, name=str(1), dtype=self.dtype),) feed_forward_index += 1 self.layer += (FlaxT5LayerFF(self.config, name=str(feed_forward_index), dtype=self.dtype),) def __call__( self, hidden_states, attention_mask=None, position_bias=None, encoder_hidden_states=None, encoder_attention_mask=None, encoder_decoder_position_bias=None, output_attentions=False, return_dict=True, deterministic=True, init_cache=False, ): self_attention_outputs = self.layer[0]( hidden_states, attention_mask=attention_mask, position_bias=position_bias, output_attentions=output_attentions, deterministic=deterministic, init_cache=init_cache, ) hidden_states = self_attention_outputs[0] attention_outputs = self_attention_outputs[1:] # Keep self-attention outputs and relative position weights do_cross_attention = self.causal and encoder_hidden_states is not None if do_cross_attention: cross_attention_outputs = self.layer[1]( hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, position_bias=encoder_decoder_position_bias, output_attentions=output_attentions, deterministic=deterministic, ) hidden_states = cross_attention_outputs[0] # Keep cross-attention outputs and relative position weights attention_outputs = attention_outputs + cross_attention_outputs[1:] # Apply Feed Forward layer hidden_states = self.layer[-1](hidden_states, deterministic=deterministic) outputs = (hidden_states,) outputs = outputs + attention_outputs # returns hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), # (cross-attention position bias), (cross-attention weights) return outputs class FlaxT5LayerCollection(nn.Module): config: T5Config has_relative_attention_bias: bool dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layer = FlaxT5Block( self.config, has_relative_attention_bias=self.has_relative_attention_bias, dtype=self.dtype ) def __call__( self, hidden_states, attention_mask=None, position_bias=None, encoder_hidden_states=None, encoder_attention_mask=None, encoder_decoder_position_bias=None, output_attentions=False, deterministic=True, init_cache=False, ): return self.layer( hidden_states, attention_mask=attention_mask, position_bias=position_bias, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, encoder_decoder_position_bias=encoder_decoder_position_bias, output_attentions=output_attentions, deterministic=deterministic, init_cache=init_cache, ) class FlaxT5BlockCollection(nn.Module): config: T5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): self.causal = self.config.causal if self.gradient_checkpointing: FlaxT5CheckpointLayer = remat(FlaxT5LayerCollection, static_argnums=(6, 7, 8)) self.blocks = [ FlaxT5CheckpointLayer( self.config, has_relative_attention_bias=(i == 0), dtype=self.dtype, name=str(i), ) for i in range(self.config.num_layers) ] else: self.blocks = [ FlaxT5LayerCollection( self.config, has_relative_attention_bias=(i == 0), dtype=self.dtype, name=str(i), ) for i in range(self.config.num_layers) ] def __call__( self, hidden_states=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions: bool = False, output_hidden_states: bool = False, deterministic: bool = True, init_cache: bool = False, ): # Prepare head mask if needed all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if (output_attentions and self.causal) else None position_bias = None encoder_decoder_position_bias = None for i, layer_module in enumerate(self.blocks): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, position_bias, encoder_hidden_states, encoder_attention_mask, encoder_decoder_position_bias, output_attentions, deterministic, init_cache, ) hidden_states = layer_outputs[0] # We share the position biases between the layers - the first layer store them # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), # (cross-attention position bias), (cross-attention weights) position_bias = layer_outputs[1] if self.causal and encoder_hidden_states is not None: encoder_decoder_position_bias = layer_outputs[3 if output_attentions else 2] if output_attentions: all_attentions = all_attentions + (layer_outputs[2],) if self.causal: all_cross_attentions = all_cross_attentions + (layer_outputs[4],) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) class FlaxT5Stack(nn.Module): config: T5Config embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): self.causal = self.config.causal self.block = FlaxT5BlockCollection( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.final_layer_norm = FlaxT5LayerNorm( self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype ) self.dropout = nn.Dropout(self.config.dropout_rate) def __call__( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, init_cache: bool = False, ): hidden_states = self.embed_tokens(input_ids) hidden_states = self.dropout(hidden_states, deterministic=deterministic) outputs = self.block( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, deterministic=deterministic, init_cache=init_cache, ) hidden_states = outputs[0] hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) # Add last layer all_hidden_states = None if output_hidden_states: all_hidden_states = outputs.hidden_states all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: if output_hidden_states: return ( hidden_states, all_hidden_states, ) + outputs[2:] return (hidden_states,) + outputs[1:] return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) T5_ENCODE_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ T5_DECODE_INPUTS_DOCSTRING = r""" Args: decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) For training, `decoder_input_ids` should be provided. encoder_outputs (`tuple(tuple(jnp.ndarray)`): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ T5_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. [What are input IDs?](../glossary#input-ids) To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5 Training](./t5#training). decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. encoder_outputs (`tuple(tuple(jnp.ndarray)`, *optional*): Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(jnp.ndarray))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class FlaxT5PreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = T5Config base_model_prefix = "transformer" module_class: nn.Module = None def __init__( self, config: T5Config, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, gradient_checkpointing: bool = False, **kwargs, ): module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def enable_gradient_checkpointing(self): self._module = self.module_class( config=self.config, dtype=self.dtype, gradient_checkpointing=True, ) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) args = [input_ids, attention_mask] if self.module_class not in [FlaxT5EncoderModule]: decoder_input_ids = jnp.ones_like(input_ids) decoder_attention_mask = jnp.ones_like(input_ids) args.extend([decoder_input_ids, decoder_attention_mask]) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, *args, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) def __call__( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, decoder_input_ids: jnp.ndarray = None, decoder_attention_mask: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if decoder_input_ids is None: raise ValueError( "Make sure to provide both `input_ids` and `decoder_input_ids`. `decoder_input_ids` is not passed" " here." ) # prepare encoder inputs if attention_mask is None: attention_mask = jnp.ones_like(input_ids) # prepare decoder inputs if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, ) def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, **kwargs, ) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) @add_start_docstrings(T5_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=T5Config) def encode( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxT5ForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("t5-small") >>> model = FlaxT5ForConditionalGeneration.from_pretrained("t5-small") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if attention_mask is None: attention_mask = jnp.ones_like(input_ids) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, input_ids, attention_mask, **kwargs): encode_module = module._get_encoder_module() return encode_module(input_ids, attention_mask, **kwargs) return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, method=_encoder_forward, ) @add_start_docstrings(T5_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=T5Config) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxT5ForConditionalGeneration >>> import jax.numpy as jnp >>> tokenizer = AutoTokenizer.from_pretrained("t5-small") >>> model = FlaxT5ForConditionalGeneration.from_pretrained("t5-small") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxT5Attention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, **kwargs, ) outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs T5_START_DOCSTRING = r""" The T5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a text-to-text denoising generative setting. This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`T5Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ @add_start_docstrings( "The bare T5 Model transformer outputting raw hidden-stateswithout any specific head on top.", T5_START_DOCSTRING, ) class FlaxT5Module(nn.Module): config: T5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def _get_encoder_module(self): return self.encoder def _get_decoder_module(self): return self.decoder def setup(self): self.shared = nn.Embed( self.config.vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.initializer_factor * 1.0), dtype=self.dtype, ) encoder_config = copy.deepcopy(self.config) encoder_config.causal = False self.encoder = FlaxT5Stack( encoder_config, embed_tokens=self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) decoder_config = copy.deepcopy(self.config) decoder_config.causal = True decoder_config.num_layers = self.config.num_decoder_layers self.decoder = FlaxT5Stack( decoder_config, embed_tokens=self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) def __call__( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, encoder_outputs=None, output_attentions=None, output_hidden_states=None, return_dict=None, deterministic: bool = True, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Encode if needed (training, first prediction pass) encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) class FlaxT5Model(FlaxT5PreTrainedModel): module_class = FlaxT5Module append_call_sample_docstring(FlaxT5Model, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC) FLAX_T5_MODEL_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxT5Model >>> tokenizer = AutoTokenizer.from_pretrained("t5-small") >>> model = FlaxT5Model.from_pretrained("t5-small") >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="np" ... ).input_ids >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="np").input_ids >>> # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model. >>> # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg. >>> decoder_input_ids = model._shift_right(decoder_input_ids) >>> # forward pass >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state ``` """ overwrite_call_docstring(FlaxT5Model, T5_INPUTS_DOCSTRING + FLAX_T5_MODEL_DOCSTRING) append_replace_return_docstrings(FlaxT5Model, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_start_docstrings( "The bare T5 Model transformer outputting encoder's raw hidden-states without any specific head on top.", T5_START_DOCSTRING, ) class FlaxT5EncoderModule(nn.Module): config: T5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): self.shared = nn.Embed( self.config.vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.initializer_factor * 1.0), dtype=self.dtype, ) encoder_config = copy.deepcopy(self.config) encoder_config.is_decoder = False encoder_config.is_encoder_decoder = False encoder_config.causal = False self.encoder = FlaxT5Stack( encoder_config, embed_tokens=self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) def __call__( self, input_ids=None, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict: bool = True, deterministic: bool = True, ): # Encode if needed (training, first prediction pass) encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) return encoder_outputs class FlaxT5EncoderModel(FlaxT5PreTrainedModel): module_class = FlaxT5EncoderModule @add_start_docstrings_to_model_forward(T5_ENCODE_INPUTS_DOCSTRING) def __call__( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # prepare encoder inputs if attention_mask is None: attention_mask = jnp.ones_like(input_ids) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, ) @add_start_docstrings("""T5 Model with a `language modeling` head on top.""", T5_START_DOCSTRING) class FlaxT5ForConditionalGenerationModule(nn.Module): config: T5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def _get_encoder_module(self): return self.encoder def _get_decoder_module(self): return self.decoder def setup(self): self.model_dim = self.config.d_model self.shared = nn.Embed( self.config.vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.initializer_factor), dtype=self.dtype, ) encoder_config = copy.deepcopy(self.config) encoder_config.causal = False encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = FlaxT5Stack( encoder_config, self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) decoder_config = copy.deepcopy(self.config) decoder_config.causal = True decoder_config.is_encoder_decoder = False decoder_config.num_layers = self.config.num_decoder_layers self.decoder = FlaxT5Stack( decoder_config, self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.lm_head = nn.Dense( self.config.vocab_size, use_bias=False, kernel_init=jax.nn.initializers.normal(self.config.initializer_factor), dtype=self.dtype, ) def __call__( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, encoder_outputs=None, output_attentions=None, output_hidden_states=None, return_dict=None, deterministic: bool = True, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Encode encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = encoder_outputs[0] # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) sequence_output = decoder_outputs[0] if self.config.tie_word_embeddings: # Rescale output before projecting on vocab # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 sequence_output = sequence_output * (self.model_dim**-0.5) if self.config.tie_word_embeddings: shared_embedding = self.shared.variables["params"]["embedding"] lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, sequence_output) else: lm_logits = self.lm_head(sequence_output) if not return_dict: return (lm_logits,) + decoder_outputs[1:] + encoder_outputs return FlaxSeq2SeqLMOutput( logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) class FlaxT5ForConditionalGeneration(FlaxT5PreTrainedModel): module_class = FlaxT5ForConditionalGenerationModule @add_start_docstrings(T5_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=T5Config) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxT5ForConditionalGeneration >>> import jax.numpy as jnp >>> tokenizer = AutoTokenizer.from_pretrained("t5-small") >>> model = FlaxT5ForConditionalGeneration.from_pretrained("t5-small") >>> text = "summarize: My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxT5Attention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs): decoder_module = module._get_decoder_module() decoder_outputs = decoder_module( decoder_input_ids, decoder_attention_mask, **kwargs, ) sequence_output = decoder_outputs[0] if self.config.tie_word_embeddings: # Rescale output before projecting on vocab # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 sequence_output = sequence_output * (self.config.d_model**-0.5) if self.config.tie_word_embeddings: shared_embedding = module.shared.variables["params"]["embedding"] lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, sequence_output) else: lm_logits = module.lm_head(sequence_output) return lm_logits, decoder_outputs outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) if past_key_values is None: lm_logits, decoder_outputs = outputs else: (lm_logits, decoder_outputs), past = outputs if return_dict: outputs = FlaxCausalLMOutputWithCrossAttentions( logits=lm_logits, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) else: outputs = (lm_logits,) + decoder_outputs[1:] # add updated cache to model output if past_key_values is not None and return_dict: outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs def prepare_inputs_for_generation( self, decoder_input_ids, max_length, attention_mask: Optional[jax.Array] = None, decoder_attention_mask: Optional[jax.Array] = None, encoder_outputs=None, **kwargs, ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if decoder_attention_mask is not None: extended_attention_mask = jax.lax.dynamic_update_slice( extended_attention_mask, decoder_attention_mask, (0, 0) ) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "encoder_attention_mask": attention_mask, "decoder_attention_mask": extended_attention_mask, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values return model_kwargs FLAX_T5_CONDITIONAL_GENERATION_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxT5ForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("t5-small") >>> model = FlaxT5ForConditionalGeneration.from_pretrained("t5-small") >>> ARTICLE_TO_SUMMARIZE = "summarize: My friends are cool but they eat too many carbs." >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], return_tensors="np") >>> # Generate Summary >>> summary_ids = model.generate(inputs["input_ids"]).sequences >>> print(tokenizer.decode(summary_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)) ``` """ overwrite_call_docstring( FlaxT5ForConditionalGeneration, T5_INPUTS_DOCSTRING + FLAX_T5_CONDITIONAL_GENERATION_DOCSTRING ) append_replace_return_docstrings( FlaxT5ForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/t5/convert_t5_original_tf_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2018 The T5 authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert T5 checkpoint.""" import argparse from transformers import T5Config, T5ForConditionalGeneration, load_tf_weights_in_t5 from transformers.utils import logging logging.set_verbosity_info() def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path): # Initialise PyTorch model config = T5Config.from_json_file(config_file) print(f"Building PyTorch model from configuration: {config}") model = T5ForConditionalGeneration(config) # Load weights from tf checkpoint load_tf_weights_in_t5(model, config, tf_checkpoint_path) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}") model.save_pretrained(pytorch_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/t5/modeling_tf_t5.py
# coding=utf-8 # Copyright 2020 T5 Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 T5 model.""" from __future__ import annotations import copy import itertools import math import warnings from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from tensorflow.compiler.tf2xla.python.xla import dynamic_slice from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPastAndCrossAttentions, TFSeq2SeqLMOutput, TFSeq2SeqModelOutput, ) from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFModelInputType, TFPreTrainedModel, get_initializer, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_t5 import T5Config logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "T5Config" TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST = [ "t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b", # See all T5 models at https://huggingface.co/models?filter=t5 ] #################################################### # TF 2.0 Models are constructed using Keras imperative API by sub-classing # - tf.keras.layers.Layer for the layers and # - TFPreTrainedModel for the models (it-self a sub-class of tf.keras.Model) #################################################### class TFT5LayerNorm(tf.keras.layers.Layer): def __init__(self, hidden_size, epsilon=1e-6, **kwargs): """ Construct a layernorm module in the T5 style No bias and no subtraction of mean. """ super().__init__(**kwargs) self.variance_epsilon = epsilon self.hidden_size = hidden_size def build(self, input_shape): """Build shared word embedding layer""" self.weight = self.add_weight("weight", shape=(self.hidden_size,), initializer="ones") super().build(input_shape) def call(self, hidden_states): variance = tf.math.reduce_mean(tf.math.square(hidden_states), axis=-1, keepdims=True) hidden_states = hidden_states * tf.math.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states class TFT5DenseActDense(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) wi_initializer = tf.keras.initializers.RandomNormal( mean=0, stddev=config.initializer_factor * (config.d_model**-0.5) ) wo_initializer = tf.keras.initializers.RandomNormal( mean=0, stddev=config.initializer_factor * (config.d_ff**-0.5) ) self.wi = tf.keras.layers.Dense( config.d_ff, use_bias=False, name="wi", kernel_initializer=wi_initializer ) # Update init weights as in flax self.wo = tf.keras.layers.Dense( config.d_model, use_bias=False, name="wo", kernel_initializer=wo_initializer ) # Update init weights as in flax self.dropout = tf.keras.layers.Dropout(config.dropout_rate) self.act = get_tf_activation(config.dense_act_fn) self.config = config def call(self, hidden_states, training=False): hidden_states = self.wi(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.wo(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "wi", None) is not None: with tf.name_scope(self.wi.name): self.wi.build([None, None, self.config.d_model]) if getattr(self, "wo", None) is not None: with tf.name_scope(self.wo.name): self.wo.build([None, None, self.config.d_ff]) class TFT5DenseGatedActDense(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) wi_initializer = tf.keras.initializers.RandomNormal( mean=0, stddev=config.initializer_factor * (config.d_model**-0.5) ) wo_initializer = tf.keras.initializers.RandomNormal( mean=0, stddev=config.initializer_factor * (config.d_ff**-0.5) ) self.wi_0 = tf.keras.layers.Dense( config.d_ff, use_bias=False, name="wi_0", kernel_initializer=wi_initializer ) # Update init weights as in flax self.wi_1 = tf.keras.layers.Dense( config.d_ff, use_bias=False, name="wi_1", kernel_initializer=wi_initializer ) # Update init weights as in flax self.wo = tf.keras.layers.Dense( config.d_model, use_bias=False, name="wo", kernel_initializer=wo_initializer ) # Update init weights as in flax self.dropout = tf.keras.layers.Dropout(config.dropout_rate) self.act = get_tf_activation(config.dense_act_fn) self.config = config def call(self, hidden_states, training=False): hidden_gelu = self.act(self.wi_0(hidden_states)) hidden_linear = self.wi_1(hidden_states) hidden_states = hidden_gelu * hidden_linear hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.wo(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "wi_0", None) is not None: with tf.name_scope(self.wi_0.name): self.wi_0.build([None, None, self.config.d_model]) if getattr(self, "wi_1", None) is not None: with tf.name_scope(self.wi_1.name): self.wi_1.build([None, None, self.config.d_model]) if getattr(self, "wo", None) is not None: with tf.name_scope(self.wo.name): self.wo.build([None, None, self.config.d_ff]) class TFT5LayerFF(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.is_gated_act: self.DenseReluDense = TFT5DenseGatedActDense(config, name="DenseReluDense") else: self.DenseReluDense = TFT5DenseActDense(config, name="DenseReluDense") self.layer_norm = TFT5LayerNorm(config.d_model, epsilon=config.layer_norm_epsilon, name="layer_norm") self.dropout = tf.keras.layers.Dropout(config.dropout_rate) def call(self, hidden_states, training=False): normed_hidden_states = self.layer_norm(hidden_states) dense_output = self.DenseReluDense(normed_hidden_states, training=training) hidden_states = hidden_states + self.dropout(dense_output, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build(None) if getattr(self, "DenseReluDense", None) is not None: with tf.name_scope(self.DenseReluDense.name): self.DenseReluDense.build(None) class TFT5Attention(tf.keras.layers.Layer): NEW_ID = itertools.count() def __init__(self, config, has_relative_attention_bias=False, **kwargs): super().__init__(**kwargs) self.layer_id = next(TFT5Attention.NEW_ID) self.is_decoder = config.is_decoder self.use_cache = config.use_cache self.has_relative_attention_bias = has_relative_attention_bias self.output_attentions = config.output_attentions self.relative_attention_num_buckets = config.relative_attention_num_buckets self.relative_attention_max_distance = config.relative_attention_max_distance self.d_model = config.d_model self.key_value_proj_dim = config.d_kv self.n_heads = config.num_heads self.inner_dim = self.n_heads * self.key_value_proj_dim # Mesh TensorFlow initialization to avoid scaling before softmax q_initializer = tf.keras.initializers.RandomNormal( mean=0, stddev=config.initializer_factor * ((self.inner_dim * self.key_value_proj_dim) ** -0.5) ) k_initializer = tf.keras.initializers.RandomNormal( mean=0, stddev=config.initializer_factor * (self.inner_dim**-0.5) ) v_initializer = tf.keras.initializers.RandomNormal( mean=0, stddev=config.initializer_factor * (self.inner_dim**-0.5) ) o_initializer = tf.keras.initializers.RandomNormal( mean=0, stddev=config.initializer_factor * (self.inner_dim**-0.5) ) self.relative_attention_bias_initializer = tf.keras.initializers.RandomNormal( mean=0, stddev=config.initializer_factor * (self.inner_dim**-0.5) ) self.q = tf.keras.layers.Dense( self.inner_dim, use_bias=False, name="q", kernel_initializer=q_initializer ) # Update init weights as in flax self.k = tf.keras.layers.Dense( self.inner_dim, use_bias=False, name="k", kernel_initializer=k_initializer ) # Update init weights as in flax self.v = tf.keras.layers.Dense( self.inner_dim, use_bias=False, name="v", kernel_initializer=v_initializer ) # Update init weights as in flax self.o = tf.keras.layers.Dense( self.d_model, use_bias=False, name="o", kernel_initializer=o_initializer ) # Update init weights as in flax self.dropout = tf.keras.layers.Dropout(config.dropout_rate) self.pruned_heads = set() def build(self, input_shape=None): if self.built: return self.built = True if self.has_relative_attention_bias: with tf.name_scope("relative_attention_bias"): self.relative_attention_bias = self.add_weight( name="embeddings", shape=[self.relative_attention_num_buckets, self.n_heads], initializer=self.relative_attention_bias_initializer, # Add initializer ) if getattr(self, "q", None) is not None: with tf.name_scope(self.q.name): self.q.build([None, None, self.d_model]) if getattr(self, "k", None) is not None: with tf.name_scope(self.k.name): self.k.build([None, None, self.d_model]) if getattr(self, "v", None) is not None: with tf.name_scope(self.v.name): self.v.build([None, None, self.d_model]) if getattr(self, "o", None) is not None: with tf.name_scope(self.o.name): self.o.build([None, None, self.inner_dim]) def prune_heads(self, heads): raise NotImplementedError @staticmethod def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on Args: relative_position: an int32 Tensor bidirectional: a boolean - whether the attention is bidirectional num_buckets: an integer max_distance: an integer Returns: a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) """ relative_buckets = 0 # n = -relative_position if bidirectional: num_buckets //= 2 relative_buckets += ( tf.cast(tf.math.greater(relative_position, 0), dtype=relative_position.dtype) * num_buckets ) relative_position = tf.math.abs(relative_position) else: relative_position = -tf.math.minimum(relative_position, 0) # now n is in the range [0, inf) max_exact = num_buckets // 2 is_small = tf.math.less(relative_position, max_exact) relative_position_if_large = max_exact + tf.cast( tf.math.log(tf.cast(relative_position, tf.float32) / tf.cast(max_exact, tf.float32)) / math.log(max_distance / max_exact) * (num_buckets - max_exact), dtype=relative_position.dtype, ) relative_position_if_large = tf.math.minimum(relative_position_if_large, num_buckets - 1) relative_buckets += tf.where(is_small, relative_position, relative_position_if_large) return relative_buckets def compute_bias(self, query_length, key_length): """Compute binned relative position bias""" context_position = tf.range(query_length)[:, None] memory_position = tf.range(key_length)[None, :] relative_position = memory_position - context_position # shape (query_length, key_length) relative_position_bucket = self._relative_position_bucket( relative_position, bidirectional=(not self.is_decoder), num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) values = tf.gather( self.relative_attention_bias, relative_position_bucket ) # shape (query_length, key_length, num_heads) values = tf.expand_dims( tf.transpose(values, [2, 0, 1]), axis=0 ) # shape (1, num_heads, query_length, key_length) return values def call( self, hidden_states, mask=None, key_value_states=None, position_bias=None, past_key_value=None, layer_head_mask=None, query_length=None, use_cache=False, training=False, output_attentions=False, ): """ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). """ # Input is (batch_size, query_length, dim) # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) batch_size, seq_length = shape_list(hidden_states)[:2] real_seq_length = seq_length if past_key_value is not None: assert ( len(past_key_value) == 2 ), f"past_key_value should have 2 past states: keys and values. Got {len(past_key_value)} past states" real_seq_length += shape_list(past_key_value[0])[2] if query_length is None else query_length key_length = real_seq_length if key_value_states is None else shape_list(key_value_states)[1] def shape(hidden_states): """projection""" return tf.transpose( tf.reshape(hidden_states, (batch_size, -1, self.n_heads, self.key_value_proj_dim)), perm=(0, 2, 1, 3) ) def unshape(hidden_states): """compute context""" return tf.reshape(tf.transpose(hidden_states, perm=(0, 2, 1, 3)), (batch_size, -1, self.inner_dim)) def project(hidden_states, proj_layer, key_value_states, past_key_value): """projects hidden states correctly to key/query states""" if key_value_states is None: # self-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(hidden_states)) elif past_key_value is None: # cross-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(key_value_states)) if past_key_value is not None: if key_value_states is None: # self-attn # (batch_size, n_heads, key_length, dim_per_head) hidden_states = tf.concat([past_key_value, hidden_states], axis=2) else: # cross-attn hidden_states = past_key_value return hidden_states # get query query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, query_length, dim_per_head) # get key/value key_states = project( hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None ) value_states = project( hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None ) # to cope with keras serialization if self.is_decoder and use_cache: present_key_value_state = (key_states, value_states) else: present_key_value_state = None scores = tf.einsum( "bnqd,bnkd->bnqk", query_states, key_states ) # (batch_size, n_heads, query_length, key_length) if position_bias is None: if not self.has_relative_attention_bias: position_bias = tf.zeros((1, self.n_heads, real_seq_length, key_length)) else: position_bias = self.compute_bias(real_seq_length, key_length) # if key and values are already calculated we want only the last query position bias if past_key_value is not None: if not self.has_relative_attention_bias: position_bias = position_bias[:, :, -seq_length:, :] else: # we might have a padded past structure, in which case we want to fetch the position bias slice # right after the most recently filled past index most_recently_filled_past_index = tf.reduce_max(tf.where(past_key_value[0][0, 0, :, 0] != 0.0)) position_bias = dynamic_slice( position_bias, (0, 0, most_recently_filled_past_index + 1, 0), (1, self.n_heads, seq_length, real_seq_length), ) if mask is not None: position_bias = tf.cast(position_bias, dtype=mask.dtype) position_bias = position_bias + mask # (batch_size, n_heads, query_length, key_length) scores += position_bias weights = stable_softmax(scores, axis=-1) # (batch_size, n_heads, query_length, key_length) weights = self.dropout(weights, training=training) # (batch_size, n_heads, query_length, key_length) # Mask heads if we want to if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.n_heads], message=( f"Head mask for a single layer should be of size {(self.n_heads)}, but is" f" {shape_list(layer_head_mask)}" ), ) weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * weights attn_output = tf.matmul(weights, value_states) # (batch_size, n_heads, query_length, dim_per_head) attn_output = self.o(unshape(attn_output)) outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) if output_attentions: outputs = outputs + (weights,) return outputs class TFT5LayerSelfAttention(tf.keras.layers.Layer): def __init__(self, config, has_relative_attention_bias=False, **kwargs): super().__init__(**kwargs) self.SelfAttention = TFT5Attention( config, has_relative_attention_bias=has_relative_attention_bias, name="SelfAttention", ) self.layer_norm = TFT5LayerNorm(config.d_model, epsilon=config.layer_norm_epsilon, name="layer_norm") self.dropout = tf.keras.layers.Dropout(config.dropout_rate) def call( self, hidden_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, training=False, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.SelfAttention( normed_hidden_states, mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, training=training, ) hidden_states = hidden_states + self.dropout(attention_output[0], training=training) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "SelfAttention", None) is not None: with tf.name_scope(self.SelfAttention.name): self.SelfAttention.build(None) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build(None) class TFT5LayerCrossAttention(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.EncDecAttention = TFT5Attention( config, has_relative_attention_bias=False, name="EncDecAttention", ) self.layer_norm = TFT5LayerNorm(config.d_model, epsilon=config.layer_norm_epsilon, name="layer_norm") self.dropout = tf.keras.layers.Dropout(config.dropout_rate) def call( self, hidden_states, key_value_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, query_length=None, use_cache=False, output_attentions=False, training=False, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.EncDecAttention( normed_hidden_states, mask=attention_mask, key_value_states=key_value_states, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, query_length=query_length, use_cache=use_cache, output_attentions=output_attentions, training=training, ) hidden_states = hidden_states + self.dropout(attention_output[0], training=training) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "EncDecAttention", None) is not None: with tf.name_scope(self.EncDecAttention.name): self.EncDecAttention.build(None) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build(None) class TFT5Block(tf.keras.layers.Layer): def __init__(self, config, has_relative_attention_bias=False, **kwargs): super().__init__(**kwargs) self.is_decoder = config.is_decoder self.layer = [] self.layer.append( TFT5LayerSelfAttention( config, has_relative_attention_bias=has_relative_attention_bias, name="layer_._0", ) ) if self.is_decoder: self.layer.append( TFT5LayerCrossAttention( config, name="layer_._1", ) ) self.layer.append(TFT5LayerFF(config, name=f"layer_._{len(self.layer)}")) def call( self, hidden_states, attention_mask=None, position_bias=None, encoder_hidden_states=None, encoder_attention_mask=None, encoder_decoder_position_bias=None, layer_head_mask=None, encoder_layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, training=False, ): if past_key_value is not None: assert self.is_decoder, "Only decoder can use `past_key_values`" expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 if len(past_key_value) != expected_num_past_key_values: raise ValueError( f"There should be {expected_num_past_key_values} past states. " f"{'2 (past / key) for cross attention' if expected_num_past_key_values == 4 else ''}. " f"Got {len(past_key_value)} past key / value states" ) self_attn_past_key_value = past_key_value[:2] cross_attn_past_key_value = past_key_value[2:] else: self_attn_past_key_value, cross_attn_past_key_value = None, None self_attention_outputs = self.layer[0]( hidden_states, attention_mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=self_attn_past_key_value, use_cache=use_cache, output_attentions=output_attentions, training=training, ) hidden_states, present_key_value_state = self_attention_outputs[:2] attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights if self.is_decoder and encoder_hidden_states is not None: # the actual query length is unknown for cross attention # if using past key value states. Need to inject it here if present_key_value_state is not None: query_length = shape_list(present_key_value_state[0])[2] else: query_length = None cross_attention_outputs = self.layer[1]( hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, position_bias=encoder_decoder_position_bias, layer_head_mask=encoder_layer_head_mask, past_key_value=cross_attn_past_key_value, query_length=query_length, use_cache=use_cache, output_attentions=output_attentions, training=training, ) hidden_states = cross_attention_outputs[0] # Combine self attn and cross attn key value states if present_key_value_state is not None: present_key_value_state = present_key_value_state + cross_attention_outputs[1] # Keep cross-attention outputs and relative position weights attention_outputs = attention_outputs + cross_attention_outputs[2:] # Apply Feed Forward layer hidden_states = self.layer[-1](hidden_states, training=training) outputs = (hidden_states,) # Add attentions if we output them outputs = outputs + (present_key_value_state,) + attention_outputs return outputs # hidden-states, present_key_value_states, (self-attention weights), (self-attention position bias), (cross-attention weights), (cross-attention position bias) def build(self, input_shape=None): if self.built: return self.built = True for layer_module in self.layer: if hasattr(layer_module, "name"): with tf.name_scope(layer_module.name): layer_module.build(None) #################################################### # The full model without a specific pretrained or finetuning head is # provided as a tf.keras.layers.Layer usually called "TFT5MainLayer" #################################################### @keras_serializable class TFT5MainLayer(tf.keras.layers.Layer): config_class = T5Config def __init__(self, config, embed_tokens=None, **kwargs): super().__init__(**kwargs) self.config = config self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.use_cache = config.use_cache self.embed_tokens = embed_tokens self.is_decoder = config.is_decoder self.config = config self.num_hidden_layers = config.num_layers self.block = [ TFT5Block(config, has_relative_attention_bias=bool(i == 0), name=f"block_._{i}") for i in range(config.num_layers) ] self.final_layer_norm = TFT5LayerNorm( config.d_model, epsilon=config.layer_norm_epsilon, name="final_layer_norm" ) self.dropout = tf.keras.layers.Dropout(config.dropout_rate) def _prune_heads(self, heads_to_prune): raise NotImplementedError # Not implemented yet in the library fr TF 2.0 models @unpack_inputs def call( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, inputs_embeds=None, head_mask=None, encoder_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ) -> Tuple: if input_ids is not None and inputs_embeds is not None: err_msg_prefix = "decoder_" if self.is_decoder else "" raise ValueError( f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" ) elif input_ids is not None: input_shape = shape_list(input_ids) input_ids = tf.reshape(input_ids, (-1, input_shape[-1])) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: err_msg_prefix = "decoder_" if self.is_decoder else "" raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") if inputs_embeds is None: assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings" check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) inputs_embeds = self.embed_tokens(input_ids) batch_size, seq_length = input_shape # required mask seq length can be calculated via length of past mask_seq_length = ( shape_list(past_key_values[0][0])[2] + seq_length if past_key_values is not None else seq_length ) if attention_mask is None: attention_mask = tf.fill((batch_size, mask_seq_length), 1) if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None: encoder_seq_length = shape_list(encoder_hidden_states)[1] encoder_attention_mask = tf.fill((batch_size, encoder_seq_length), 1) # initialize past_key_values with `None` if past does not exist if past_key_values is None: past_key_values = [None] * len(self.block) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. attention_mask = tf.cast(attention_mask, dtype=inputs_embeds.dtype) num_dims_attention_mask = len(shape_list(attention_mask)) if num_dims_attention_mask == 3: extended_attention_mask = attention_mask[:, None, :, :] elif num_dims_attention_mask == 2: # Provided a padding mask of dimensions [batch_size, mask_seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] if self.is_decoder: seq_ids = tf.range(mask_seq_length) causal_mask = tf.less_equal( tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)), seq_ids[None, :, None], ) causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype) extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :] if past_key_values[0] is not None: extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :] else: extended_attention_mask = attention_mask[:, None, None, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -1e9 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270 # extended_attention_mask = tf.math.equal(extended_attention_mask, # tf.transpose(extended_attention_mask, perm=(-1, -2))) extended_attention_mask = (1.0 - extended_attention_mask) * -1e9 if self.is_decoder and encoder_attention_mask is not None: # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype) num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask)) if num_dims_encoder_attention_mask == 3: encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] if num_dims_encoder_attention_mask == 2: encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask, # tf.transpose(encoder_extended_attention_mask, perm=(-1, -2))) encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e9 else: encoder_extended_attention_mask = None present_key_value_states = () if use_cache and self.is_decoder else None all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if (output_attentions and self.is_decoder) else None position_bias = None encoder_decoder_position_bias = None hidden_states = self.dropout(inputs_embeds, training=training) for idx, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask=extended_attention_mask, position_bias=position_bias, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, encoder_decoder_position_bias=encoder_decoder_position_bias, layer_head_mask=head_mask[idx] if head_mask is not None else None, encoder_layer_head_mask=encoder_head_mask[idx] if encoder_head_mask is not None else None, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, training=training, ) # layer_outputs is a tuple with: # hidden-states, key-value-states, (self-attention weights), (self-attention position bias), (cross-attention weights), (cross-attention position bias) hidden_states, present_key_value_state = layer_outputs[:2] # We share the position biases between the layers - the first layer store them # layer_outputs = hidden-states, past_key_values, (self-attention weights), # (self-attention position bias), (cross-attention position bias), (cross-attention weights), position_bias = layer_outputs[2] if self.is_decoder and encoder_hidden_states is not None: encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] # append next layer key value states if present_key_value_state is not None and use_cache and self.is_decoder: present_key_value_states = present_key_value_states + (present_key_value_state,) if output_attentions: all_attentions = all_attentions + (layer_outputs[3],) if self.is_decoder: all_cross_attentions = all_cross_attentions + (layer_outputs[5],) hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.dropout(hidden_states, training=training) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: outputs = (hidden_states,) # need to check if is decoder here as well for special cases when using keras compile if use_cache and self.is_decoder: outputs = outputs + (present_key_value_states,) if output_hidden_states: outputs = outputs + (all_hidden_states,) if output_attentions: outputs = outputs + (all_attentions,) if self.is_decoder: outputs + (all_cross_attentions,) return outputs # last-layer hidden state, (past_key_values), (all hidden states), (all attentions), (all_cross_attentions) if self.is_decoder: return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_value_states, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) else: return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build(None) if getattr(self, "block", None) is not None: for layer in self.block: with tf.name_scope(layer.name): layer.build(None) #################################################### # TFT5PreTrainedModel is a sub-class of tf.keras.Model # which take care of loading and saving pretrained weights # and various common utilities. # Here you just need to specify a few (self-explanatory) # pointers for your model. #################################################### class TFT5PreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = T5Config base_model_prefix = "transformer" # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"decoder\Wblock[\W_0]+layer[\W_1]+EncDecAttention\Wrelative_attention_bias"] def get_input_embeddings(self): return self.shared def set_input_embeddings(self, value): self.shared = value self.encoder.embed_tokens = self.shared if hasattr(self, "decoder"): self.decoder.embed_tokens = self.shared def _shift_right(self, input_ids): decoder_start_token_id = self.config.decoder_start_token_id pad_token_id = self.config.pad_token_id assert decoder_start_token_id is not None, ( "self.model.config.decoder_start_token_id has to be defined. In TF T5 it is usually set to the" " pad_token_id. See T5 docs for more information" ) start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id) start_tokens = tf.cast(start_tokens, input_ids.dtype) # Ensure compatible dtypes for concatenation shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.cast(tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids.dtype), shifted_input_ids, ) # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal( shifted_input_ids, tf.constant(0, dtype=shifted_input_ids.dtype) ) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids T5_START_DOCSTRING = r""" The T5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a text-to-text denoising generative setting. This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`T5Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ T5_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on the right or the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) To know more on how to prepare `inputs` for pretraining take a look at [T5 Training](./t5#training). decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Provide for sequence to sequence training. T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5 Training](./t5#training). attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(tf.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(tf.Tensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`tf.Tensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ T5_ENCODER_INPUTS_DOCSTRING = r""" Args: inputs (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on the right or the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. To know more on how to prepare `inputs` for pre-training take a look at [T5 Training](./t5#training). attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ _HEAD_MASK_WARNING_MSG = """ The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, `decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = tf.ones((num_layers, num_heads))`. """ @add_start_docstrings( "The bare T5 Model transformer outputting raw hidden-stateswithout any specific head on top.", T5_START_DOCSTRING, ) class TFT5Model(TFT5PreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.shared = tf.keras.layers.Embedding( input_dim=config.vocab_size, output_dim=config.d_model, embeddings_initializer=tf.keras.initializers.TruncatedNormal(self.config.initializer_factor), name="shared", ) # Additional attribute to specify the expected name scope of the layer (for loading/storing weights) self.shared.load_weight_prefix = "shared" encoder_config = copy.deepcopy(config) encoder_config.use_cache = False self.encoder = TFT5MainLayer(encoder_config, self.shared, name="encoder") decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.num_layers = config.num_decoder_layers self.decoder = TFT5MainLayer(decoder_config, self.shared, name="decoder") def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @unpack_inputs @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, decoder_head_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFSeq2SeqModelOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, TFT5Model >>> tokenizer = AutoTokenizer.from_pretrained("t5-small") >>> model = TFT5Model.from_pretrained("t5-small") >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="tf" ... ).input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="tf").input_ids # Batch size 1 >>> # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model. >>> # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg. >>> decoder_input_ids = model._shift_right(decoder_input_ids) >>> # forward pass >>> outputs = model(input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state ```""" # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask if head_mask is not None and decoder_head_mask is None: warnings.warn(_HEAD_MASK_WARNING_MSG, FutureWarning) decoder_head_mask = head_mask # Encode if needed (training, first prediction pass) if encoder_outputs is None: encoder_outputs = self.encoder( input_ids, attention_mask=attention_mask, encoder_hidden_states=None, encoder_attention_mask=None, inputs_embeds=inputs_embeds, head_mask=head_mask, past_key_values=None, use_cache=False, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = encoder_outputs[0] # Decode decoder_outputs = self.decoder( decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, inputs_embeds=decoder_inputs_embeds, head_mask=decoder_head_mask, encoder_head_mask=head_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) past = decoder_outputs[1] if use_cache else None if not return_dict: if past_key_values is not None: decoder_outputs = decoder_outputs[:1] + (past,) + decoder_outputs[2:] return decoder_outputs + encoder_outputs return TFSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=past, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True # The shared/tied weights expect to be in the model base namespace # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than # the current one. with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"): self.shared.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build(None) @add_start_docstrings("""T5 Model with a `language modeling` head on top.""", T5_START_DOCSTRING) class TFT5ForConditionalGeneration(TFT5PreTrainedModel, TFCausalLanguageModelingLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model_dim = config.d_model self.shared = tf.keras.layers.Embedding( config.vocab_size, config.d_model, name="shared", embeddings_initializer=get_initializer(self.config.initializer_factor), ) # Additional attribute to specify the expected name scope of the layer (for loading/storing weights) self.shared.load_weight_prefix = "shared" encoder_config = copy.deepcopy(config) encoder_config.use_cache = False self.encoder = TFT5MainLayer(encoder_config, self.shared, name="encoder") decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.num_layers = config.num_decoder_layers self.decoder = TFT5MainLayer(decoder_config, self.shared, name="decoder") if not config.tie_word_embeddings: lm_head_initializer = tf.keras.initializers.RandomNormal(mean=0, stddev=config.initializer_factor) self.lm_head = tf.keras.layers.Dense( config.vocab_size, use_bias=False, name="lm_head", kernel_initializer=lm_head_initializer ) # Update init weights as in flax self.config = config def get_output_embeddings(self): if self.config.tie_word_embeddings: return self.get_input_embeddings() else: # in a dense layer the kernel has a shape (last_dim, units), for us (dim, num_tokens) # value has a shape (num_tokens, dim) then needs to be transposed return tf.transpose(self.lm_head.kernel) def set_output_embeddings(self, value): if self.config.tie_word_embeddings: self.set_input_embeddings(value) else: lm_head_initializer = tf.keras.initializers.RandomNormal(mean=0, stddev=self.config.initializer_factor) self.lm_head = tf.keras.layers.Dense( shape_list(value)[0], use_bias=False, name="lm_head", kernel_initializer=lm_head_initializer ) # Update init weights as in flax # in a dense layer the kernel has a shape (last_dim, units), for us (dim, num_tokens) # value has a shape (num_tokens, dim) then needs to be transposed transposed_value = tf.transpose(value) self.lm_head.kernel = transposed_value def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @unpack_inputs @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, decoder_head_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, labels: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFSeq2SeqLMOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., config.vocab_size - 1]`. Returns: Examples: ```python >>> from transformers import AutoTokenizer, TFT5ForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("t5-small") >>> model = TFT5ForConditionalGeneration.from_pretrained("t5-small") >>> # training >>> inputs = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="tf").input_ids >>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="tf").input_ids >>> outputs = model(inputs, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits >>> # inference >>> inputs = tokenizer( ... "summarize: studies have shown that owning a dog is good for you", return_tensors="tf" ... ).input_ids # Batch size 1 >>> outputs = model.generate(inputs) >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) >>> # studies have shown that owning a dog is good for you ```""" # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask if head_mask is not None and decoder_head_mask is None: warnings.warn(_HEAD_MASK_WARNING_MSG, FutureWarning) decoder_head_mask = head_mask # Encode if needed (training, first prediction pass) if encoder_outputs is None: encoder_outputs = self.encoder( input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = encoder_outputs[0] if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: # get decoder inputs from shifting lm labels to the right decoder_input_ids = self._shift_right(labels) # Decode decoder_outputs = self.decoder( decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, inputs_embeds=decoder_inputs_embeds, head_mask=decoder_head_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = decoder_outputs[0] # T5v1.1 does not tie output word embeddings and thus does not require downscaling if self.config.tie_word_embeddings: sequence_output = sequence_output * (self.model_dim**-0.5) logits = tf.matmul(sequence_output, self.shared.weights, transpose_b=True) else: logits = self.lm_head(sequence_output) logits = tf.cast(logits, tf.float32) loss = None if labels is None else self.hf_compute_loss(labels, logits) past = decoder_outputs[1] if use_cache else None if not return_dict: if past_key_values is not None: decoder_outputs = decoder_outputs[:1] + (past,) + decoder_outputs[2:] output = (logits,) + decoder_outputs[1:] + encoder_outputs return ((loss,) + output) if loss is not None else output # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True elif isinstance(encoder_outputs, tuple): last_hidden_state = encoder_outputs[0] hidden_states = None attentions = None idx = 0 if output_hidden_states: idx += 1 hidden_states = encoder_outputs[idx] if output_attentions: idx += 1 attentions = encoder_outputs[idx] encoder_outputs = TFBaseModelOutput( last_hidden_state=last_hidden_state, hidden_states=hidden_states, attentions=attentions, ) return TFSeq2SeqLMOutput( loss=loss, logits=logits, past_key_values=past, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def serving_output(self, output): pkv = tf.convert_to_tensor(output.past_key_values[1:]) if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqLMOutput( logits=output.logits, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past is used if past_key_values is not None: input_ids = input_ids[:, -1:] return { "input_ids": None, # needs to be passed to make Keras.layer.__call__ happy "decoder_input_ids": input_ids, "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "use_cache": use_cache, } def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor): return self._shift_right(labels) def build(self, input_shape=None): if self.built: return self.built = True # The shared/tied weights expect to be in the model base namespace # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than # the current one. with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"): self.shared.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build(None) if getattr(self, "lm_head", None) is not None: with tf.name_scope(self.lm_head.name): self.lm_head.build([None, None, self.config.d_model]) @add_start_docstrings( "The bare T5 Model transformer outputting encoder's raw hidden-stateswithout any specific head on top.", T5_START_DOCSTRING, ) class TFT5EncoderModel(TFT5PreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.shared = tf.keras.layers.Embedding( config.vocab_size, config.d_model, name="shared", embeddings_initializer=get_initializer(self.config.initializer_factor), ) # Additional attribute to specify the expected name scope of the layer (for loading/storing weights) self.shared.load_weight_prefix = "shared" encoder_config = copy.deepcopy(config) encoder_config.use_cache = False self.encoder = TFT5MainLayer(encoder_config, self.shared, name="encoder") def get_encoder(self): return self.encoder @unpack_inputs @add_start_docstrings_to_model_forward(T5_ENCODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFBaseModelOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, TFT5EncoderModel >>> tokenizer = AutoTokenizer.from_pretrained("t5-small") >>> model = TFT5EncoderModel.from_pretrained("t5-small") >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="tf" ... ).input_ids # Batch size 1 >>> outputs = model(input_ids) ```""" encoder_outputs = self.encoder( input_ids, attention_mask=attention_mask, encoder_hidden_states=None, encoder_attention_mask=None, inputs_embeds=inputs_embeds, head_mask=head_mask, past_key_values=None, use_cache=False, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return encoder_outputs return TFBaseModelOutput( last_hidden_state=encoder_outputs.last_hidden_state, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True # The shared/tied weights expect to be in the model base namespace # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than # the current one. with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"): self.shared.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/t5/download_from_gcp.sh
#!/usr/bin/env bash # Use this script as follows ./download_from_gcp.sh /path/to/folder/to/store/downloads folder_to_store_downloads=${1} # Replace by gcp_path to T5 cloud bucket folder here # To download the official `t5-small` model of https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints: gcp_path="gs://t5-data/pretrained_models/small" # Number of files the checkpoint is split into num_of_checks=16 # Create dir if not exist mkdir -p ${folder_to_store_downloads} # Copy all meta information files gsutil cp "${gcp_path}/operative_config.gin" ${folder_to_store_downloads} gsutil cp "${gcp_path}/checkpoint" ${folder_to_store_downloads} gsutil cp "${gcp_path}/model.ckpt-1000000.index" ${folder_to_store_downloads} gsutil cp "${gcp_path}/model.ckpt-1000000.meta" ${folder_to_store_downloads} # Copy all model weights # single digit num checkpoitns for ((i = 0 ; i < ${num_of_checks} ; i++)); do gsutil cp "${gcp_path}/model.ckpt-1000000.data-0000${i}-of-000${num_of_checks}" ${folder_to_store_downloads} done # double digit num checkpoints for ((i = 0 ; i < ${num_of_checks} ; i++)); do gsutil cp "${gcp_path}/model.ckpt-1000000.data-000${i}-of-000${num_of_checks}" ${folder_to_store_downloads} done # Having run this script, you should create a suitable config.json, *e.g.* by # looking at `https://huggingface.co/t5-small`. # Then you can run `python convert_t5_original_tf_checkpoint_to_pytorch.py --tf_checkpoint_path "${folder_to_store_downloads}" --config_file "config.json" --pytorch_dump_path "/path/to/store/pytorch/weights"
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/t5/configuration_t5.py
# coding=utf-8 # Copyright 2020, The T5 Authors and HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ T5 model configuration""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeq2SeqConfigWithPast from ...utils import logging logger = logging.get_logger(__name__) T5_PRETRAINED_CONFIG_ARCHIVE_MAP = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class T5Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`T5Model`] or a [`TFT5Model`]. It is used to instantiate a T5 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the T5 [t5-small](https://huggingface.co/t5-small) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Arguments: vocab_size (`int`, *optional*, defaults to 32128): Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`T5Model`] or [`TFT5Model`]. d_model (`int`, *optional*, defaults to 512): Size of the encoder layers and the pooler layer. d_kv (`int`, *optional*, defaults to 64): Size of the key, query, value projections per attention head. The `inner_dim` of the projection layer will be defined as `num_heads * d_kv`. d_ff (`int`, *optional*, defaults to 2048): Size of the intermediate feed forward layer in each `T5Block`. num_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer encoder. num_decoder_layers (`int`, *optional*): Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set. num_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. relative_attention_num_buckets (`int`, *optional*, defaults to 32): The number of buckets to use for each attention layer. relative_attention_max_distance (`int`, *optional*, defaults to 128): The maximum distance of the longer sequences for the bucket separation. dropout_rate (`float`, *optional*, defaults to 0.1): The ratio for all dropout layers. classifier_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for classifier. layer_norm_eps (`float`, *optional*, defaults to 1e-6): The epsilon used by the layer normalization layers. initializer_factor (`float`, *optional*, defaults to 1): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). feed_forward_proj (`string`, *optional*, defaults to `"relu"`): Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. T5v1.1 uses the `"gated-gelu"` feed forward projection. Original T5 uses `"relu"`. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). """ model_type = "t5" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self, vocab_size=32128, d_model=512, d_kv=64, d_ff=2048, num_layers=6, num_decoder_layers=None, num_heads=8, relative_attention_num_buckets=32, relative_attention_max_distance=128, dropout_rate=0.1, layer_norm_epsilon=1e-6, initializer_factor=1.0, feed_forward_proj="relu", is_encoder_decoder=True, use_cache=True, pad_token_id=0, eos_token_id=1, classifier_dropout=0.0, **kwargs, ): self.vocab_size = vocab_size self.d_model = d_model self.d_kv = d_kv self.d_ff = d_ff self.num_layers = num_layers self.num_decoder_layers = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry self.num_heads = num_heads self.relative_attention_num_buckets = relative_attention_num_buckets self.relative_attention_max_distance = relative_attention_max_distance self.dropout_rate = dropout_rate self.classifier_dropout = classifier_dropout self.layer_norm_epsilon = layer_norm_epsilon self.initializer_factor = initializer_factor self.feed_forward_proj = feed_forward_proj self.use_cache = use_cache act_info = self.feed_forward_proj.split("-") self.dense_act_fn = act_info[-1] self.is_gated_act = act_info[0] == "gated" if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer. " "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": self.dense_act_fn = "gelu_new" super().__init__( pad_token_id=pad_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, **kwargs, ) class T5OnnxConfig(OnnxSeq2SeqConfigWithPast): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: common_inputs = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: common_inputs["attention_mask"][1] = "past_encoder_sequence + sequence" common_inputs["decoder_input_ids"] = {0: "batch"} common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(common_inputs, direction="inputs") return common_inputs @property def default_onnx_opset(self) -> int: return 13
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/t5/convert_t5x_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2022 Google LLC and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Convert T5X checkpoint to PyTorch Steps: - Install gsutil according to https://cloud.google.com/storage/docs/gsutil_install - Get a T5X checkpoint at https://github.com/google-research/t5x/blob/main/docs/models.md#t5-11-checkpoints Example: `gsutil -m cp -r gs://t5-data/pretrained_models/t5x/t5_1_1_small $HOME/` - Create or download a corresponding config for the downloaded model. E.g. for T5 v1.1 small, you can use https://huggingface.co/google/t5-v1_1-small/blob/main/config.json - Convert: ``` python3 convert_t5x_checkpoint_to_pytorch.py --t5x_checkpoint_path=$HOME/t5_1_1_small --config_file=config.json\ --pytorch_dump_path=$HOME/t5_1_1_small_pt ``` """ import argparse import collections import torch from flax import traverse_util from t5x import checkpoints from transformers import T5Config, T5EncoderModel, T5ForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def t5x_attention_lookup(params, i, prefix, layer_name="attention"): """Returns the KOQV parameters of (self-)attention. Does not transpose.""" k = params[f"{prefix}/layers_{i}/{layer_name}/key/kernel"] o = params[f"{prefix}/layers_{i}/{layer_name}/out/kernel"] q = params[f"{prefix}/layers_{i}/{layer_name}/query/kernel"] v = params[f"{prefix}/layers_{i}/{layer_name}/value/kernel"] return k, o, q, v def t5x_mlp_lookup(params, i, prefix, split_mlp_wi=False): """Returns the MLP parameters of a layer. Does not transpose.""" if split_mlp_wi: wi_0 = params[f"{prefix}/layers_{i}/mlp/wi_0/kernel"] wi_1 = params[f"{prefix}/layers_{i}/mlp/wi_1/kernel"] wi = (wi_0, wi_1) else: wi = params[f"{prefix}/layers_{i}/mlp/wi/kernel"] wo = params[f"{prefix}/layers_{i}/mlp/wo/kernel"] return wi, wo def t5x_layer_norm_lookup(params, i, prefix, layer_name): """Returns the layer norm param of a layer.""" return params[f"{prefix}/layers_{i}/{layer_name}/scale"] def convert_t5x_to_pytorch(variables: dict, *, num_layers: int, num_decoder_layers: int, is_encoder_only: bool): """Converts the parameters from T5X-Flax to Transformers-PyTorch.""" old = traverse_util.flatten_dict(variables["target"]) old = {"/".join(k): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi split_mlp_wi = "encoder/layers_0/mlp/wi_0/kernel" in old print("Split MLP:", split_mlp_wi) new = collections.OrderedDict() # Shared embeddings. new["shared.weight"] = old["token_embedder/embedding"] # Encoder. for i in range(num_layers): # Block i, layer 0 (Self Attention). layer_norm = t5x_layer_norm_lookup(old, i, "encoder", "pre_attention_layer_norm") k, o, q, v = t5x_attention_lookup(old, i, "encoder", "attention") new[f"encoder.block.{i}.layer.0.layer_norm.weight"] = layer_norm new[f"encoder.block.{i}.layer.0.SelfAttention.k.weight"] = k.T new[f"encoder.block.{i}.layer.0.SelfAttention.o.weight"] = o.T new[f"encoder.block.{i}.layer.0.SelfAttention.q.weight"] = q.T new[f"encoder.block.{i}.layer.0.SelfAttention.v.weight"] = v.T # Block i, layer 1 (MLP). layer_norm = t5x_layer_norm_lookup(old, i, "encoder", "pre_mlp_layer_norm") wi, wo = t5x_mlp_lookup(old, i, "encoder", split_mlp_wi) new[f"encoder.block.{i}.layer.1.layer_norm.weight"] = layer_norm if split_mlp_wi: new[f"encoder.block.{i}.layer.1.DenseReluDense.wi_0.weight"] = wi[0].T new[f"encoder.block.{i}.layer.1.DenseReluDense.wi_1.weight"] = wi[1].T else: new[f"encoder.block.{i}.layer.1.DenseReluDense.wi.weight"] = wi.T new[f"encoder.block.{i}.layer.1.DenseReluDense.wo.weight"] = wo.T new["encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"] = old[ "encoder/relpos_bias/rel_embedding" ].T new["encoder.final_layer_norm.weight"] = old["encoder/encoder_norm/scale"] if not is_encoder_only: # Decoder. for i in range(num_decoder_layers): # Block i, layer 0 (Self Attention). layer_norm = t5x_layer_norm_lookup(old, i, "decoder", "pre_self_attention_layer_norm") k, o, q, v = t5x_attention_lookup(old, i, "decoder", "self_attention") new[f"decoder.block.{i}.layer.0.layer_norm.weight"] = layer_norm new[f"decoder.block.{i}.layer.0.SelfAttention.k.weight"] = k.T new[f"decoder.block.{i}.layer.0.SelfAttention.o.weight"] = o.T new[f"decoder.block.{i}.layer.0.SelfAttention.q.weight"] = q.T new[f"decoder.block.{i}.layer.0.SelfAttention.v.weight"] = v.T # Block i, layer 1 (Cross Attention). layer_norm = t5x_layer_norm_lookup(old, i, "decoder", "pre_cross_attention_layer_norm") k, o, q, v = t5x_attention_lookup(old, i, "decoder", "encoder_decoder_attention") new[f"decoder.block.{i}.layer.1.layer_norm.weight"] = layer_norm new[f"decoder.block.{i}.layer.1.EncDecAttention.k.weight"] = k.T new[f"decoder.block.{i}.layer.1.EncDecAttention.o.weight"] = o.T new[f"decoder.block.{i}.layer.1.EncDecAttention.q.weight"] = q.T new[f"decoder.block.{i}.layer.1.EncDecAttention.v.weight"] = v.T # Block i, layer 2 (MLP). layer_norm = t5x_layer_norm_lookup(old, i, "decoder", "pre_mlp_layer_norm") wi, wo = t5x_mlp_lookup(old, i, "decoder", split_mlp_wi) new[f"decoder.block.{i}.layer.2.layer_norm.weight"] = layer_norm if split_mlp_wi: new[f"decoder.block.{i}.layer.2.DenseReluDense.wi_0.weight"] = wi[0].T new[f"decoder.block.{i}.layer.2.DenseReluDense.wi_1.weight"] = wi[1].T else: new[f"decoder.block.{i}.layer.2.DenseReluDense.wi.weight"] = wi.T new[f"decoder.block.{i}.layer.2.DenseReluDense.wo.weight"] = wo.T new["decoder.final_layer_norm.weight"] = old["decoder/decoder_norm/scale"] new["decoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"] = old[ "decoder/relpos_bias/rel_embedding" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: new["lm_head.weight"] = old["decoder/logits_dense/kernel"].T return new def make_state_dict(converted_params, is_encoder_only: bool): """Prepares a state dict for the PyTorch model.""" # Make a state dict with torch tensors. state_dict = collections.OrderedDict([(k, torch.from_numpy(v.copy())) for (k, v) in converted_params.items()]) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: state_dict["encoder.embed_tokens.weight"] = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: state_dict["decoder.embed_tokens.weight"] = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head.") state_dict["lm_head.weight"] = state_dict["shared.weight"] return state_dict def load_t5x_weights_in_t5(model, config, t5x_checkpoint_path, is_encoder_only): """Replaces the params in model witht the T5X converted params.""" variables = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path) converted = convert_t5x_to_pytorch( variables, num_layers=config.num_layers, num_decoder_layers=config.num_decoder_layers, is_encoder_only=is_encoder_only, ) state_dict = make_state_dict(converted, is_encoder_only) model.load_state_dict(state_dict, strict=True) def convert_t5x_checkpoint_to_pytorch( t5x_checkpoint_path, config_file, pytorch_dump_path, is_encoder_only: bool = False ): """Loads the config and model, converts the T5X checkpoint, and saves a PyTorch checkpoint.""" # Initialise PyTorch model config = T5Config.from_json_file(config_file) print(f"Building PyTorch model from configuration: {config}") # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: model = T5EncoderModel(config) else: model = T5ForConditionalGeneration(config) # Load weights from tf checkpoint load_t5x_weights_in_t5(model, config, t5x_checkpoint_path, is_encoder_only) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}") model.save_pretrained(pytorch_dump_path) # Verify that we can load the checkpoint. model.from_pretrained(pytorch_dump_path) print("Done") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) args = parser.parse_args() convert_t5x_checkpoint_to_pytorch( args.t5x_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/t5/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = {"configuration_t5": ["T5_PRETRAINED_CONFIG_ARCHIVE_MAP", "T5Config", "T5OnnxConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_t5"] = ["T5Tokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_t5_fast"] = ["T5TokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_t5"] = [ "T5_PRETRAINED_MODEL_ARCHIVE_LIST", "T5EncoderModel", "T5ForConditionalGeneration", "T5Model", "T5PreTrainedModel", "load_tf_weights_in_t5", "T5ForQuestionAnswering", "T5ForSequenceClassification", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_t5"] = [ "TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST", "TFT5EncoderModel", "TFT5ForConditionalGeneration", "TFT5Model", "TFT5PreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_t5"] = [ "FlaxT5EncoderModel", "FlaxT5ForConditionalGeneration", "FlaxT5Model", "FlaxT5PreTrainedModel", ] if TYPE_CHECKING: from .configuration_t5 import T5_PRETRAINED_CONFIG_ARCHIVE_MAP, T5Config, T5OnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_t5 import T5Tokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_t5_fast import T5TokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_t5 import ( T5_PRETRAINED_MODEL_ARCHIVE_LIST, T5EncoderModel, T5ForConditionalGeneration, T5ForQuestionAnswering, T5ForSequenceClassification, T5Model, T5PreTrainedModel, load_tf_weights_in_t5, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_t5 import ( TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST, TFT5EncoderModel, TFT5ForConditionalGeneration, TFT5Model, TFT5PreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_t5 import ( FlaxT5EncoderModel, FlaxT5ForConditionalGeneration, FlaxT5Model, FlaxT5PreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/t5/tokenization_t5.py
# coding=utf-8 # Copyright 2018 T5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization class for model T5.""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...convert_slow_tokenizer import import_protobuf from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "t5-small": 512, "t5-base": 512, "t5-large": 512, "t5-3b": 512, "t5-11b": 512, } SPIECE_UNDERLINE = "▁" class T5Tokenizer(PreTrainedTokenizer): """ Construct a T5 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. extra_ids (`int`, *optional*, defaults to 100): Add a number of extra ids added to the vocabulary for use as sentinels. These tokens are accessible as "<extra_id_{%d}>" where "{%d}" is a number between 0 and extra_ids-1. These tokens can be retrieved by calling get_sentinel_tokens method and token ids can be by calling get_sentinel_token_ids method additional_special_tokens (`List[str]`, *optional*): Additional special tokens used by the tokenizer. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. legacy (`bool`, *optional*): Whether or not the `legacy` behaviour of the tokenizer should be used. Legacy is before the merge of #24622 and #25224 which includes fixes to properly handle tokens that appear after special tokens. A simple example: - `legacy=True`: ```python >>> from transformers import T5Tokenizer >>> tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=True) >>> tokenizer.encode("Hello <extra_id_0>.") [8774, 32099, 3, 5, 1] ``` - `legacy=False`: ```python >>> from transformers import T5Tokenizer >>> tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=False) >>> tokenizer.encode("Hello <extra_id_0>.") # the extra space `[3]` is no longer here [8774, 32099, 5, 1] ``` Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, eos_token="</s>", unk_token="<unk>", pad_token="<pad>", extra_ids=100, additional_special_tokens=None, sp_model_kwargs: Optional[Dict[str, Any]] = None, legacy=None, **kwargs, ) -> None: pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.vocab_file = vocab_file self._extra_ids = extra_ids self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(vocab_file) if additional_special_tokens is not None: extra_tokens = [x for x in additional_special_tokens if "<extra_id_" in str(x)] if len(extra_tokens) < 1: additional_special_tokens += [f"<extra_id_{i}>" for i in range(extra_ids)] elif extra_ids > 0 and extra_ids != len(extra_tokens): raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) else: extra_tokens = [f"<extra_id_{i}>" for i in range(extra_ids)] additional_special_tokens = extra_tokens # for legacy purpose, we keep this. Will be removed and tests updated. (when `added_tokens_decoder` is not passed as kwargs) self._added_tokens_decoder = {} for i in range(len(extra_tokens)): self._added_tokens_decoder[len(self.sp_model) - 1 + extra_ids - i] = AddedToken( f"<extra_id_{i}>", single_word=False, lstrip=True, rstrip=True, special=True, normalized=False ) if legacy is None: logger.warning_once( f"You are using the default legacy behaviour of the {self.__class__}. This is" " expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you." " If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it" " means, and thoroughly read the reason why this was added as explained in" " https://github.com/huggingface/transformers/pull/24565" ) legacy = True self.legacy = legacy self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False)) self.vocab_file = vocab_file self._extra_ids = extra_ids super().__init__( eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, extra_ids=extra_ids, additional_special_tokens=additional_special_tokens, sp_model_kwargs=self.sp_model_kwargs, legacy=legacy, **kwargs, ) # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor def get_spm_processor(self, from_slow=False): tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs) if self.legacy or from_slow: # no dependency on protobuf tokenizer.Load(self.vocab_file) return tokenizer with open(self.vocab_file, "rb") as f: sp_model = f.read() model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)") model = model_pb2.ModelProto.FromString(sp_model) normalizer_spec = model_pb2.NormalizerSpec() normalizer_spec.add_dummy_prefix = False model.normalizer_spec.MergeFrom(normalizer_spec) sp_model = model.SerializeToString() tokenizer.LoadFromSerializedProto(sp_model) return tokenizer @staticmethod def _eventually_correct_t5_max_length(pretrained_model_name_or_path, max_model_length, init_max_model_length): if pretrained_model_name_or_path in T5Tokenizer.max_model_input_sizes: deprecated_max_model_length = T5Tokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" f" {pretrained_model_name_or_path} automatically truncating your input to" f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value.", FutureWarning, ) return max_model_length @property def vocab_size(self): return self.sp_model.get_piece_size() def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) # normal case: some special tokens if token_ids_1 is None: return ([0] * len(token_ids_0)) + [1] return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] def get_sentinel_tokens(self): return list( set(filter(lambda x: bool(re.search(r"<extra_id_\d+>", x)) is not None, self.additional_special_tokens)) ) def get_sentinel_token_ids(self): return [self.convert_tokens_to_ids(token) for token in self.get_sentinel_tokens()] def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]: """Do not add eos again if user already added it.""" if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ eos = [self.eos_token_id] if token_ids_1 is None: return len(token_ids_0 + eos) * [0] return len(token_ids_0 + eos + token_ids_1 + eos) * [0] def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A sequence has the following format: - single sequence: `X </s>` - pair of sequences: `A </s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ token_ids_0 = self._add_eos_if_not_present(token_ids_0) if token_ids_1 is None: return token_ids_0 else: token_ids_1 = self._add_eos_if_not_present(token_ids_1) return token_ids_0 + token_ids_1 def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize def tokenize(self, text: "TextInput", add_special_tokens=False, **kwargs) -> List[str]: """ Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the first token is special. """ if self.legacy or len(text) == 0: return super().tokenize(text, **kwargs) tokens = super().tokenize(SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " "), **kwargs) if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens: tokens = tokens[1:] return tokens @property def unk_token_length(self): return len(self.sp_model.encode(str(self.unk_token))) def _tokenize(self, text, **kwargs): """ Returns a tokenized string. We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give `['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the `unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`. `self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`. """ tokens = self.sp_model.encode(text, out_type=str) if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")): return tokens # 1. Encode string + prefix ex: "<unk> Hey" tokens = self.sp_model.encode(self.unk_token + text, out_type=str) # 2. Remove self.unk_token from ['<','unk','>', '▁Hey'] return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.piece_to_id(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" token = self.sp_model.IdToPiece(index) return token def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] # since we manually add the prefix space, we have to remove it tokens[0] = tokens[0].lstrip(SPIECE_UNDERLINE) out_string = "" prev_is_special = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(current_sub_tokens) + token prev_is_special = True current_sub_tokens = [] else: current_sub_tokens.append(token) prev_is_special = False out_string += self.sp_model.decode(current_sub_tokens) return out_string.strip() def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/t5/tokenization_t5_fast.py
# coding=utf-8 # Copyright 2018 T5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization class for model T5.""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_t5 import T5Tokenizer else: T5Tokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", }, "tokenizer_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/tokenizer.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/tokenizer.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/tokenizer.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/tokenizer.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/tokenizer.json", }, } # TODO(PVP) - this should be removed in Transformers v5 PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "t5-small": 512, "t5-base": 512, "t5-large": 512, "t5-3b": 512, "t5-11b": 512, } class T5TokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" T5 tokenizer (backed by HuggingFace's *tokenizers* library). Based on [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. extra_ids (`int`, *optional*, defaults to 100): Add a number of extra ids added to the vocabulary for use as sentinels. These tokens are accessible as "<extra_id_{%d}>" where "{%d}" is a number between 0 and extra_ids-1. These tokens can be retrieved by calling get_sentinel_tokens method and token ids can be by calling get_sentinel_token_ids method additional_special_tokens (`List[str]`, *optional*): Additional special tokens used by the tokenizer. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = T5Tokenizer prefix_tokens: List[int] = [] def __init__( self, vocab_file=None, tokenizer_file=None, eos_token="</s>", unk_token="<unk>", pad_token="<pad>", extra_ids=100, additional_special_tokens=None, **kwargs, ): # Add extra_ids to the special token list if additional_special_tokens is not None: extra_tokens = [x for x in additional_special_tokens if "<extra_id_" in str(x)] if len(extra_tokens) < 1: additional_special_tokens += [f"<extra_id_{i}>" for i in range(extra_ids)] elif extra_ids > 0 and extra_ids != len(extra_tokens): raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) else: extra_tokens = [f"<extra_id_{i}>" for i in range(extra_ids)] additional_special_tokens = extra_tokens super().__init__( vocab_file, tokenizer_file=tokenizer_file, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, extra_ids=extra_ids, additional_special_tokens=additional_special_tokens, **kwargs, ) self.vocab_file = vocab_file self._extra_ids = extra_ids @property def can_save_slow_tokenizer(self) -> bool: return os.path.isfile(self.vocab_file) if self.vocab_file else False @staticmethod def _eventually_correct_t5_max_length(pretrained_model_name_or_path, max_model_length, init_max_model_length): if pretrained_model_name_or_path in T5TokenizerFast.max_model_input_sizes: deprecated_max_model_length = T5TokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" f" {pretrained_model_name_or_path} automatically truncating your input to" f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value.", FutureWarning, ) return max_model_length def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) logger.info(f"Copy vocab file to {out_vocab_file}") return (out_vocab_file,) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A sequence has the following format: - single sequence: `X </s>` - pair of sequences: `A </s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ token_ids_0 = token_ids_0 + [self.eos_token_id] if token_ids_1 is None: return self.prefix_tokens + token_ids_0 else: token_ids_1 = token_ids_1 + [self.eos_token_id] return self.prefix_tokens + token_ids_0 + token_ids_1 def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ eos = [self.eos_token_id] if token_ids_1 is None: return len(token_ids_0 + eos) * [0] return len(token_ids_0 + eos + token_ids_1 + eos) * [0] def get_sentinel_tokens(self): return list( set(filter(lambda x: bool(re.search(r"<extra_id_\d+>", x)) is not None, self.additional_special_tokens)) ) def get_sentinel_token_ids(self): return [self.convert_tokens_to_ids(token) for token in self.get_sentinel_tokens()]
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/xlnet/convert_xlnet_original_tf_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert BERT checkpoint.""" import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging GLUE_TASKS_NUM_LABELS = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def convert_xlnet_checkpoint_to_pytorch( tf_checkpoint_path, bert_config_file, pytorch_dump_folder_path, finetuning_task=None ): # Initialise PyTorch model config = XLNetConfig.from_json_file(bert_config_file) finetuning_task = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"Building PyTorch XLNetForSequenceClassification model from configuration: {config}") config.finetuning_task = finetuning_task config.num_labels = GLUE_TASKS_NUM_LABELS[finetuning_task] model = XLNetForSequenceClassification(config) elif "squad" in finetuning_task: config.finetuning_task = finetuning_task model = XLNetForQuestionAnswering(config) else: model = XLNetLMHeadModel(config) # Load weights from tf checkpoint load_tf_weights_in_xlnet(model, config, tf_checkpoint_path) # Save pytorch-model pytorch_weights_dump_path = os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME) pytorch_config_dump_path = os.path.join(pytorch_dump_folder_path, CONFIG_NAME) print(f"Save PyTorch model to {os.path.abspath(pytorch_weights_dump_path)}") torch.save(model.state_dict(), pytorch_weights_dump_path) print(f"Save configuration file to {os.path.abspath(pytorch_config_dump_path)}") with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: f.write(config.to_json_string()) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) args = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/xlnet/tokenization_xlnet.py
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization classes for XLNet model.""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) SEG_ID_A = 0 SEG_ID_B = 1 SEG_ID_CLS = 2 SEG_ID_SEP = 3 SEG_ID_PAD = 4 class XLNetTokenizer(PreTrainedTokenizer): """ Construct an XLNet tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that contains the vocabulary necessary to instantiate a tokenizer. do_lower_case (`bool`, *optional*, defaults to `False`): Whether to lowercase the input when tokenizing. remove_space (`bool`, *optional*, defaults to `True`): Whether to strip the text when tokenizing (removing excess spaces before and after the string). keep_accents (`bool`, *optional*, defaults to `False`): Whether to keep accents when tokenizing. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"<sep>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"<cls>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `['<eop>', '<eod>']`): Additional special tokens used by the tokenizer. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES padding_side = "left" def __init__( self, vocab_file, do_lower_case=False, remove_space=True, keep_accents=False, bos_token="<s>", eos_token="</s>", unk_token="<unk>", sep_token="<sep>", pad_token="<pad>", cls_token="<cls>", mask_token="<mask>", additional_special_tokens=["<eop>", "<eod>"], sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.do_lower_case = do_lower_case self.remove_space = remove_space self.keep_accents = keep_accents self.vocab_file = vocab_file self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(vocab_file) super().__init__( do_lower_case=do_lower_case, remove_space=remove_space, keep_accents=keep_accents, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, additional_special_tokens=additional_special_tokens, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) self._pad_token_type_id = 3 @property def vocab_size(self): return len(self.sp_model) def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def preprocess_text(self, inputs): if self.remove_space: outputs = " ".join(inputs.strip().split()) else: outputs = inputs outputs = outputs.replace("``", '"').replace("''", '"') if not self.keep_accents: outputs = unicodedata.normalize("NFKD", outputs) outputs = "".join([c for c in outputs if not unicodedata.combining(c)]) if self.do_lower_case: outputs = outputs.lower() return outputs def _tokenize(self, text: str) -> List[str]: """Tokenize a string.""" text = self.preprocess_text(text) pieces = self.sp_model.encode(text, out_type=str) new_pieces = [] for piece in pieces: if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, "")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: cur_pieces = cur_pieces[1:] else: cur_pieces[0] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(cur_pieces) else: new_pieces.append(piece) return new_pieces def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.PieceToId(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.sp_model.IdToPiece(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (strings for sub-words) in a single string.""" out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string def _decode( self, token_ids: List[int], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, spaces_between_special_tokens: bool = True, **kwargs, ) -> str: self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False) filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 sub_texts = [] current_sub_text = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(current_sub_text)) current_sub_text = [] sub_texts.append(token) else: current_sub_text.append(token) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(current_sub_text)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens text = "".join(sub_texts) clean_up_tokenization_spaces = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: clean_text = self.clean_up_tokenization(text) return clean_text else: return text def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLNet sequence has the following format: - single sequence: `X <sep> <cls>` - pair of sequences: `A <sep> B <sep> <cls>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return token_ids_0 + sep + cls return token_ids_0 + sep + token_ids_1 + sep + cls def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1, 1] return ([0] * len(token_ids_0)) + [1, 1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls_segment_id = [2] if token_ids_1 is None: return len(token_ids_0 + sep) * [0] + cls_segment_id return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + cls_segment_id def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/xlnet/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_xlnet"] = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_xlnet_fast"] = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_xlnet"] = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_xlnet"] = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/xlnet/modeling_tf_xlnet.py
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 XLNet model. """ from __future__ import annotations import warnings from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFSequenceSummary, TFSharedEmbeddings, TFTokenClassificationLoss, get_initializer, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_xlnet import XLNetConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "xlnet-base-cased" _CONFIG_FOR_DOC = "XLNetConfig" TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = [ "xlnet-base-cased", "xlnet-large-cased", # See all XLNet models at https://huggingface.co/models?filter=xlnet ] class TFXLNetRelativeAttention(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.d_model % config.n_head != 0: raise ValueError( f"The hidden size ({config.d_model}) is not a multiple of the number of attention " f"heads ({config.n_head}" ) self.n_head = config.n_head self.d_head = config.d_head self.d_model = config.d_model self.scale = 1 / (config.d_head**0.5) self.initializer_range = config.initializer_range self.output_attentions = config.output_attentions self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.dropout = tf.keras.layers.Dropout(config.dropout) self.config = config def build(self, input_shape=None): initializer = get_initializer(self.initializer_range) self.q = self.add_weight( shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="q" ) self.k = self.add_weight( shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="k" ) self.v = self.add_weight( shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="v" ) self.o = self.add_weight( shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="o" ) self.r = self.add_weight( shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="r" ) self.r_r_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias" ) self.r_s_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_s_bias" ) self.r_w_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias" ) self.seg_embed = self.add_weight( shape=(2, self.n_head, self.d_head), initializer=initializer, trainable=True, name="seg_embed" ) if self.built: return self.built = True if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.d_model]) def prune_heads(self, heads): raise NotImplementedError def rel_shift(self, x, klen=-1): """perform relative shift to form the relative attention score.""" x_size = shape_list(x) x = tf.reshape(x, (x_size[1], x_size[0], x_size[2], x_size[3])) x = x[1:, ...] x = tf.reshape(x, (x_size[0], x_size[1] - 1, x_size[2], x_size[3])) x = x[:, 0:klen, :, :] # x = torch.index_select(x, 1, torch.arange(klen, device=x.device, dtype=torch.long)) return x def rel_attn_core( self, q_head, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask, head_mask, output_attentions, training=False ): """Core relative positional attention operations.""" # content based attention score ac = tf.einsum("ibnd,jbnd->ijbn", q_head + self.r_w_bias, k_head_h) # position based attention score bd = tf.einsum("ibnd,jbnd->ijbn", q_head + self.r_r_bias, k_head_r) bd = self.rel_shift(bd, klen=shape_list(ac)[1]) # segment based attention score if seg_mat is None: ef = 0 else: ef = tf.einsum("ibnd,snd->ibns", q_head + self.r_s_bias, self.seg_embed) ef = tf.einsum("ijbs,ibns->ijbn", seg_mat, ef) # merge attention scores and perform masking attn_score = (ac + bd + ef) * self.scale if attn_mask is not None: # attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask if attn_mask.dtype == tf.float16 or attn_mask.dtype == tf.bfloat16: attn_score = attn_score - 65500 * attn_mask else: attn_score = attn_score - 1e30 * attn_mask # attention probability attn_prob = stable_softmax(attn_score, axis=1) attn_prob = self.dropout(attn_prob, training=training) # Mask heads if we want to if head_mask is not None: attn_prob = attn_prob * head_mask # attention output attn_vec = tf.einsum("ijbn,jbnd->ibnd", attn_prob, v_head_h) if output_attentions: return attn_vec, attn_prob return attn_vec def post_attention(self, h, attn_vec, residual=True, training=False): """Post-attention processing.""" # post-attention projection (back to `d_model`) attn_out = tf.einsum("ibnd,hnd->ibh", attn_vec, self.o) attn_out = self.dropout(attn_out, training=training) if residual: attn_out = attn_out + h output = self.layer_norm(attn_out) return output def call( self, h, g, attn_mask_h, attn_mask_g, r, seg_mat, mems: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = False, training: bool = False, ): if g is not None: # Two-stream attention with relative positional encoding. # content based attention score if mems is not None and len(shape_list(mems)) > 1: cat = tf.concat([mems, h], axis=0) else: cat = h # content-based key head k_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.k) # content-based value head v_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.v) # position-based key head k_head_r = tf.einsum("ibh,hnd->ibnd", r, self.r) # h-stream # content-stream query head q_head_h = tf.einsum("ibh,hnd->ibnd", h, self.q) # core attention ops attn_vec_h = self.rel_attn_core( q_head_h, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask_h, head_mask, output_attentions, training=training, ) if output_attentions: attn_vec_h, attn_prob_h = attn_vec_h # post processing output_h = self.post_attention(h, attn_vec_h, training=training) # g-stream # query-stream query head q_head_g = tf.einsum("ibh,hnd->ibnd", g, self.q) # core attention ops if target_mapping is not None: q_head_g = tf.einsum("mbnd,mlb->lbnd", q_head_g, target_mapping) attn_vec_g = self.rel_attn_core( q_head_g, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask_g, head_mask, output_attentions, training=training, ) if output_attentions: attn_vec_g, attn_prob_g = attn_vec_g attn_vec_g = tf.einsum("lbnd,mlb->mbnd", attn_vec_g, target_mapping) else: attn_vec_g = self.rel_attn_core( q_head_g, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask_g, head_mask, output_attentions, training=training, ) if output_attentions: attn_vec_g, attn_prob_g = attn_vec_g # post processing output_g = self.post_attention(g, attn_vec_g, training=training) if output_attentions: attn_prob = attn_prob_h, attn_prob_g else: # Multi-head attention with relative positional encoding if mems is not None and len(shape_list(mems)) > 1: cat = tf.concat([mems, h], axis=0) else: cat = h # content heads q_head_h = tf.einsum("ibh,hnd->ibnd", h, self.q) k_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.k) v_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.v) # positional heads k_head_r = tf.einsum("ibh,hnd->ibnd", r, self.r) # core attention ops attn_vec = self.rel_attn_core( q_head_h, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask_h, head_mask, output_attentions, training=training, ) if output_attentions: attn_vec, attn_prob = attn_vec # post processing output_h = self.post_attention(h, attn_vec, training=training) output_g = None outputs = (output_h, output_g) if output_attentions: outputs = outputs + (attn_prob,) return outputs class TFXLNetFeedForward(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.layer_1 = tf.keras.layers.Dense( config.d_inner, kernel_initializer=get_initializer(config.initializer_range), name="layer_1" ) self.layer_2 = tf.keras.layers.Dense( config.d_model, kernel_initializer=get_initializer(config.initializer_range), name="layer_2" ) self.dropout = tf.keras.layers.Dropout(config.dropout) if isinstance(config.ff_activation, str): self.activation_function = get_tf_activation(config.ff_activation) else: self.activation_function = config.ff_activation self.config = config def call(self, inp, training=False): output = inp output = self.layer_1(output) output = self.activation_function(output) output = self.dropout(output, training=training) output = self.layer_2(output) output = self.dropout(output, training=training) output = self.layer_norm(output + inp) return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.d_model]) if getattr(self, "layer_1", None) is not None: with tf.name_scope(self.layer_1.name): self.layer_1.build([None, None, self.config.d_model]) if getattr(self, "layer_2", None) is not None: with tf.name_scope(self.layer_2.name): self.layer_2.build([None, None, self.config.d_inner]) class TFXLNetLayer(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.rel_attn = TFXLNetRelativeAttention(config, name="rel_attn") self.ff = TFXLNetFeedForward(config, name="ff") self.dropout = tf.keras.layers.Dropout(config.dropout) def call( self, output_h, output_g, non_tgt_mask, attn_mask, pos_emb, seg_mat, mems: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = False, training: bool = False, ): outputs = self.rel_attn( output_h, output_g, non_tgt_mask, attn_mask, pos_emb, seg_mat, mems, target_mapping, head_mask, output_attentions, training=training, ) output_h, output_g = outputs[:2] if output_g is not None: output_g = self.ff(output_g, training=training) output_h = self.ff(output_h, training=training) outputs = (output_h, output_g) + outputs[2:] # Add again attentions if there are there return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "rel_attn", None) is not None: with tf.name_scope(self.rel_attn.name): self.rel_attn.build(None) if getattr(self, "ff", None) is not None: with tf.name_scope(self.ff.name): self.ff.build(None) class TFXLNetLMHead(tf.keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.config = config # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.input_embeddings = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self): return self.input_embeddings def set_output_embeddings(self, value): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): hidden_states = self.input_embeddings(hidden_states, mode="linear") hidden_states = hidden_states + self.bias return hidden_states @keras_serializable class TFXLNetMainLayer(tf.keras.layers.Layer): config_class = XLNetConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.return_dict = config.return_dict self.mem_len = config.mem_len self.reuse_len = config.reuse_len self.d_model = config.d_model self.same_length = config.same_length self.attn_type = config.attn_type self.bi_data = config.bi_data self.clamp_len = config.clamp_len self.n_layer = config.n_layer self.use_bfloat16 = config.use_bfloat16 self.initializer_range = config.initializer_range self.word_embedding = TFSharedEmbeddings( config.vocab_size, config.d_model, initializer_range=config.initializer_range, name="word_embedding" ) self.layer = [TFXLNetLayer(config, name=f"layer_._{i}") for i in range(config.n_layer)] self.dropout = tf.keras.layers.Dropout(config.dropout) self.use_mems_eval = config.use_mems_eval self.use_mems_train = config.use_mems_train def get_input_embeddings(self): return self.word_embedding def set_input_embeddings(self, value): self.word_embedding.weight = value self.word_embedding.vocab_size = shape_list(value)[0] def build(self, input_shape=None): initializer = get_initializer(self.initializer_range) self.mask_emb = self.add_weight( shape=(1, 1, self.d_model), initializer=initializer, trainable=True, name="mask_emb" ) if self.built: return self.built = True if getattr(self, "word_embedding", None) is not None: with tf.name_scope(self.word_embedding.name): self.word_embedding.build(None) if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) def _prune_heads(self, heads_to_prune): raise NotImplementedError def create_mask(self, qlen, mlen): """ Creates causal attention mask. Float mask where 1.0 indicates masked, 0.0 indicates not-masked. Args: qlen: TODO Lysandre didn't fill mlen: TODO Lysandre didn't fill ``` same_length=False: same_length=True: <mlen > < qlen > <mlen > < qlen > ^ [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 0 1 1 1] [1 0 0 0 0 0 1 1 1] qlen [0 0 0 0 0 0 0 1 1] [1 1 0 0 0 0 0 1 1] [0 0 0 0 0 0 0 0 1] [1 1 1 0 0 0 0 0 1] v [0 0 0 0 0 0 0 0 0] [1 1 1 1 0 0 0 0 0] ``` """ attn_mask = tf.ones([qlen, qlen]) mask_u = tf.linalg.band_part(attn_mask, 0, -1) mask_dia = tf.linalg.band_part(attn_mask, 0, 0) attn_mask_pad = tf.zeros([qlen, mlen]) ret = tf.concat([attn_mask_pad, mask_u - mask_dia], 1) if self.same_length: mask_l = tf.linalg.band_part(attn_mask, -1, 0) ret = tf.concat([ret[:, :qlen] + mask_l - mask_dia, ret[:, qlen:]], 1) return ret def cache_mem(self, curr_out, prev_mem): # cache hidden states into memory. if self.reuse_len is not None and self.reuse_len > 0: curr_out = curr_out[: self.reuse_len] if self.mem_len is None or self.mem_len == 0: # If `use_mems` is active but no `mem_len` is defined, the model behaves like GPT-2 at inference time # and returns all of the past and current hidden states. cutoff = 0 else: # If `use_mems` is active and `mem_len` is defined, the model returns the last `mem_len` hidden # states. This is the preferred setting for training and long-form generation. cutoff = -self.mem_len if prev_mem is None: # if `use_mems` is active and `mem_len` is defined, the model new_mem = curr_out[cutoff:] else: new_mem = tf.concat([prev_mem, curr_out], 0)[cutoff:] return tf.stop_gradient(new_mem) @staticmethod def positional_embedding(pos_seq, inv_freq, bsz=None): sinusoid_inp = tf.einsum("i,d->id", pos_seq, inv_freq) pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], axis=-1) pos_emb = pos_emb[:, None, :] if bsz is not None: pos_emb = tf.tile(pos_emb, [1, bsz, 1]) return pos_emb def relative_positional_encoding(self, qlen, klen, bsz=None): """create relative positional encoding.""" freq_seq = tf.range(0, self.d_model, 2.0) inv_freq = 1 / (10000 ** (freq_seq / self.d_model)) if self.attn_type == "bi": # beg, end = klen - 1, -qlen beg, end = klen, -qlen elif self.attn_type == "uni": # beg, end = klen - 1, -1 beg, end = klen, -1 else: raise ValueError(f"Unknown `attn_type` {self.attn_type}.") if self.bi_data: fwd_pos_seq = tf.range(beg, end, -1.0) bwd_pos_seq = tf.range(-beg, -end, 1.0) if self.clamp_len > 0: fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -self.clamp_len, self.clamp_len) bwd_pos_seq = tf.clip_by_value(bwd_pos_seq, -self.clamp_len, self.clamp_len) if bsz is not None: if bsz % 2 != 0: raise ValueError(f"With bi_data, the batch size {bsz} should be divisible by 2") fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz // 2) bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz // 2) else: fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq) bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq) pos_emb = tf.concat([fwd_pos_emb, bwd_pos_emb], axis=1) else: fwd_pos_seq = tf.range(beg, end, -1.0) if self.clamp_len > 0: fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -self.clamp_len, self.clamp_len) pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz) return pos_emb @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ): if training and use_mems is None: use_mems = self.use_mems_train else: use_mems = self.use_mems_eval # the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end # but we want a unified interface in the library with the batch size on the first dimension # so we move here the first dimension (batch) to the end if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_ids = tf.transpose(input_ids, perm=(1, 0)) qlen, bsz = shape_list(input_ids)[:2] elif inputs_embeds is not None: inputs_embeds = tf.transpose(inputs_embeds, perm=(1, 0, 2)) qlen, bsz = shape_list(inputs_embeds)[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") token_type_ids = tf.transpose(token_type_ids, perm=(1, 0)) if token_type_ids is not None else None input_mask = tf.transpose(input_mask, perm=(1, 0)) if input_mask is not None else None attention_mask = tf.transpose(attention_mask, perm=(1, 0)) if attention_mask is not None else None perm_mask = tf.transpose(perm_mask, perm=(1, 2, 0)) if perm_mask is not None else None target_mapping = tf.transpose(target_mapping, perm=(1, 2, 0)) if target_mapping is not None else None mlen = shape_list(mems[0])[0] if mems is not None and mems[0] is not None else 0 klen = mlen + qlen # Attention mask # causal attention mask if self.attn_type == "uni": attn_mask = self.create_mask(qlen, mlen) attn_mask = attn_mask[:, :, None, None] elif self.attn_type == "bi": attn_mask = None else: raise ValueError(f"Unsupported attention type: {self.attn_type}") # data mask: input mask & perm mask assert input_mask is None or attention_mask is None, ( "You can only use one of input_mask (uses 1 for padding) " "or attention_mask (uses 0 for padding, added for compatibility with BERT). Please choose one." ) if input_mask is None and attention_mask is not None: one_cst = tf.constant(1.0) input_mask = 1.0 - tf.cast(attention_mask, dtype=one_cst.dtype) if input_mask is not None and perm_mask is not None: data_mask = input_mask[None] + perm_mask elif input_mask is not None and perm_mask is None: data_mask = input_mask[None] elif input_mask is None and perm_mask is not None: data_mask = perm_mask else: data_mask = None if data_mask is not None: # all mems can be attended to if mlen > 0: mems_mask = tf.zeros([shape_list(data_mask)[0], mlen, bsz]) data_mask = tf.concat([mems_mask, data_mask], axis=1) if attn_mask is None: attn_mask = data_mask[:, :, :, None] else: attn_mask += data_mask[:, :, :, None] if attn_mask is not None: attn_mask = tf.cast(attn_mask > 0, dtype=attn_mask.dtype) if attn_mask is not None: non_tgt_mask = -tf.eye(qlen) if mlen > 0: non_tgt_mask = tf.concat([tf.zeros([qlen, mlen]), non_tgt_mask], axis=-1) non_tgt_mask = tf.cast((attn_mask + non_tgt_mask[:, :, None, None]) > 0, dtype=non_tgt_mask.dtype) else: non_tgt_mask = None # Word embeddings and prepare h & g hidden states if inputs_embeds is not None: word_emb_k = inputs_embeds else: check_embeddings_within_bounds(input_ids, self.word_embedding.vocab_size) word_emb_k = self.word_embedding(input_ids) output_h = self.dropout(word_emb_k, training=training) if target_mapping is not None: word_emb_q = tf.tile(self.mask_emb, [shape_list(target_mapping)[0], bsz, 1]) # else: # We removed the inp_q input which was same as target mapping # inp_q_ext = inp_q[:, :, None] # word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k output_g = self.dropout(word_emb_q, training=training) else: output_g = None # Segment embedding if token_type_ids is not None: # Convert `token_type_ids` to one-hot `seg_mat` if mlen > 0: mem_pad = tf.zeros([mlen, bsz], dtype=token_type_ids.dtype) cat_ids = tf.concat([mem_pad, token_type_ids], 0) else: cat_ids = token_type_ids # `1` indicates not in the same segment [qlen x klen x bsz] seg_mat = tf.cast( tf.logical_not(tf.equal(token_type_ids[:, None], cat_ids[None, :])), dtype=token_type_ids.dtype, ) seg_mat = tf.one_hot(seg_mat, 2) else: seg_mat = None # Positional encoding pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz) pos_emb = self.dropout(pos_emb, training=training) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer) # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.n_layer new_mems = () if mems is None: mems = [None] * len(self.layer) attentions = [] if output_attentions else None hidden_states = [] if output_hidden_states else None for i, layer_module in enumerate(self.layer): # cache new mems if use_mems: new_mems = new_mems + (self.cache_mem(output_h, mems[i]),) if output_hidden_states: hidden_states.append((output_h, output_g) if output_g is not None else output_h) outputs = layer_module( output_h, output_g, non_tgt_mask, attn_mask, pos_emb, seg_mat, mems[i], target_mapping, head_mask[i], output_attentions, training=training, ) output_h, output_g = outputs[:2] if output_attentions: attentions.append(outputs[2]) # Add last hidden state if output_hidden_states: hidden_states.append((output_h, output_g) if output_g is not None else output_h) output = self.dropout(output_g if output_g is not None else output_h, training=training) # Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method) output = tf.transpose(output, perm=(1, 0, 2)) if not use_mems: new_mems = None if output_hidden_states: if output_g is not None: hidden_states = tuple(tf.transpose(h, perm=(1, 0, 2)) for hs in hidden_states for h in hs) else: hidden_states = tuple(tf.transpose(hs, perm=(1, 0, 2)) for hs in hidden_states) if output_attentions: if target_mapping is not None: # when target_mapping is provided, there are 2-tuple of attentions attentions = tuple( tuple(tf.transpose(attn_stream, perm=(2, 3, 0, 1)) for attn_stream in t) for t in attentions ) else: attentions = tuple(tf.transpose(t, perm=(2, 3, 0, 1)) for t in attentions) if not return_dict: return tuple(v for v in [output, new_mems, hidden_states, attentions] if v is not None) return TFXLNetModelOutput( last_hidden_state=output, mems=new_mems, hidden_states=hidden_states, attentions=attentions ) class TFXLNetPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = XLNetConfig base_model_prefix = "transformer" @dataclass class TFXLNetModelOutput(ModelOutput): """ Output type of [`TFXLNetModel`]. Args: last_hidden_state (`tf.Tensor` of shape `(batch_size, num_predict, hidden_size)`): Sequence of hidden-states at the last layer of the model. `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`. mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: tf.Tensor = None mems: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None @dataclass class TFXLNetLMHeadModelOutput(ModelOutput): """ Output type of [`TFXLNetLMHeadModel`]. Args: loss (`tf.Tensor` of shape *(1,)*, *optional*, returned when `labels` is provided) Language modeling loss (for next-token prediction). logits (`tf.Tensor` of shape `(batch_size, num_predict, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`. mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor = None mems: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None @dataclass class TFXLNetForSequenceClassificationOutput(ModelOutput): """ Output type of [`TFXLNetForSequenceClassification`]. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `label` is provided): Classification (or regression if config.num_labels==1) loss. logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor = None mems: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None @dataclass class TFXLNetForTokenClassificationOutput(ModelOutput): """ Output type of [`TFXLNetForTokenClassificationOutput`]. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided) : Classification loss. logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.num_labels)`): Classification scores (before SoftMax). mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor = None mems: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None @dataclass class TFXLNetForMultipleChoiceOutput(ModelOutput): """ Output type of [`TFXLNetForMultipleChoice`]. Args: loss (`tf.Tensor` of shape *(1,)*, *optional*, returned when `labels` is provided): Classification loss. logits (`tf.Tensor` of shape `(batch_size, num_choices)`): *num_choices* is the second dimension of the input tensors. (see *input_ids* above). Classification scores (before SoftMax). mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor = None mems: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None @dataclass class TFXLNetForQuestionAnsweringSimpleOutput(ModelOutput): """ Output type of [`TFXLNetForQuestionAnsweringSimple`]. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. start_logits (`tf.Tensor` of shape `(batch_size, sequence_length,)`): Span-start scores (before SoftMax). end_logits (`tf.Tensor` of shape `(batch_size, sequence_length,)`): Span-end scores (before SoftMax). mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None start_logits: tf.Tensor = None end_logits: tf.Tensor = None mems: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None XLNET_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`XLNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ XLNET_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. `use_mems` has to be set to `True` to make use of `mems`. perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*): Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`: - if `perm_mask[k, i, j] = 0`, i attend to j in batch k; - if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k. If not set, each token attends to all the others (full bidirectional attention). Only used during pretraining (to define factorization order) or for sequential decoding (generation). target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*): Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is on the j-th token. Only used during pretraining for partial prediction or for sequential decoding (generation). token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) input_mask (`torch.FloatTensor` of shape `{0}`, *optional*): Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for real tokens and 1 for padding which is kept for compatibility with the original code base. Mask values selected in `[0, 1]`: - 1 for tokens that are **masked**, - 0 for tokens that are **not masked**. You can only uses one of `input_mask` and `attention_mask`. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare XLNet Model transformer outputting raw hidden-states without any specific head on top.", XLNET_START_DOCSTRING, ) class TFXLNetModel(TFXLNetPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFXLNetMainLayer(config, name="transformer") @unpack_inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFXLNetModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFXLNetModelOutput, Tuple[tf.Tensor]]: outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) @add_start_docstrings( """ XLNet Model with a language modeling head on top (linear layer with weights tied to the input embeddings). """, XLNET_START_DOCSTRING, ) class TFXLNetLMHeadModel(TFXLNetPreTrainedModel, TFCausalLanguageModelingLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFXLNetMainLayer(config, name="transformer") self.lm_loss = TFXLNetLMHead(config, self.transformer.word_embedding, name="lm_loss") # generate fails to convert to a graph with XLNet self.supports_xla_generation = False def get_lm_head(self): return self.lm_loss def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.lm_loss.name def prepare_inputs_for_generation(self, inputs, past_key_values=None, use_mems=None, **kwargs): # Add dummy token at the end (no attention on this one) effective_batch_size = inputs.shape[0] dummy_token = tf.zeros((effective_batch_size, 1), dtype=inputs.dtype) # At every pass, the attention values for the new token and the two last generated tokens # are computed, the rest is reloaded from the `past` cache. A purely auto-regressive model would have # offset = 1; offset = 2 seems to have slightly better computation. offset = 2 if past_key_values: input_ids = tf.concat([inputs[:, -offset:], dummy_token], axis=1) else: input_ids = tf.concat([inputs, dummy_token], axis=1) # Build permutation mask so that previous tokens don't see last token sequence_length = input_ids.shape[1] perm_mask = tf.zeros((effective_batch_size, sequence_length, sequence_length - 1)) perm_mask_seq_end = tf.ones((effective_batch_size, sequence_length, 1)) perm_mask = tf.concat([perm_mask, perm_mask_seq_end], axis=-1) # We'll only predict the last token target_mapping = tf.zeros((effective_batch_size, 1, sequence_length - 1)) target_mapping_seq_end = tf.ones((effective_batch_size, 1, 1)) target_mapping = tf.concat([target_mapping, target_mapping_seq_end], axis=-1) inputs = { "input_ids": input_ids, "perm_mask": perm_mask, "target_mapping": target_mapping, "use_mems": use_mems, } # if past is defined in model kwargs then use it for faster decoding if past_key_values: inputs["mems"] = tuple(layer_past[:-offset, :, :] for layer_past in past_key_values) return inputs @unpack_inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFXLNetLMHeadModelOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFXLNetLMHeadModelOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., config.vocab_size - 1]`. Return: Examples: ```python >>> import tensorflow as tf >>> import numpy as np >>> from transformers import AutoTokenizer, TFXLNetLMHeadModel >>> tokenizer = AutoTokenizer.from_pretrained("xlnet-large-cased") >>> model = TFXLNetLMHeadModel.from_pretrained("xlnet-large-cased") >>> # We show how to setup inputs to predict a next token using a bi-directional context. >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=True))[ ... None, : ... ] # We will predict the masked token >>> perm_mask = np.zeros((1, input_ids.shape[1], input_ids.shape[1])) >>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token >>> target_mapping = np.zeros( ... (1, 1, input_ids.shape[1]) ... ) # Shape [1, 1, seq_length] => let's predict one token >>> target_mapping[ ... 0, 0, -1 ... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token) >>> outputs = model( ... input_ids, ... perm_mask=tf.constant(perm_mask, dtype=tf.float32), ... target_mapping=tf.constant(target_mapping, dtype=tf.float32), ... ) >>> next_token_logits = outputs[ ... 0 ... ] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size] ```""" transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_state = transformer_outputs[0] logits = self.lm_loss(hidden_state, training=training) loss = None if labels is not None: loss = self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFXLNetLMHeadModelOutput( loss=loss, logits=logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "lm_loss", None) is not None: with tf.name_scope(self.lm_loss.name): self.lm_loss.build(None) @add_start_docstrings( """ XLNet Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, XLNET_START_DOCSTRING, ) class TFXLNetForSequenceClassification(TFXLNetPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.transformer = TFXLNetMainLayer(config, name="transformer") self.sequence_summary = TFSequenceSummary( config, initializer_range=config.initializer_range, name="sequence_summary" ) self.logits_proj = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="logits_proj" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFXLNetForSequenceClassificationOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFXLNetForSequenceClassificationOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) output = transformer_outputs[0] output = self.sequence_summary(output) logits = self.logits_proj(output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFXLNetForSequenceClassificationOutput( loss=loss, logits=logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "sequence_summary", None) is not None: with tf.name_scope(self.sequence_summary.name): self.sequence_summary.build(None) if getattr(self, "logits_proj", None) is not None: with tf.name_scope(self.logits_proj.name): self.logits_proj.build([None, None, self.config.d_model]) @add_start_docstrings( """ XLNET Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, XLNET_START_DOCSTRING, ) class TFXLNetForMultipleChoice(TFXLNetPreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFXLNetMainLayer(config, name="transformer") self.sequence_summary = TFSequenceSummary( config, initializer_range=config.initializer_range, name="sequence_summary" ) self.logits_proj = tf.keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="logits_proj" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFXLNetForMultipleChoiceOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFXLNetForMultipleChoiceOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_input_mask = tf.reshape(input_mask, (-1, seq_length)) if input_mask is not None else None flat_inputs_embeds = ( tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) transformer_outputs = self.transformer( flat_input_ids, flat_attention_mask, mems, perm_mask, target_mapping, flat_token_type_ids, flat_input_mask, head_mask, flat_inputs_embeds, use_mems, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) output = transformer_outputs[0] logits = self.sequence_summary(output) logits = self.logits_proj(logits) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFXLNetForMultipleChoiceOutput( loss=loss, logits=reshaped_logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "sequence_summary", None) is not None: with tf.name_scope(self.sequence_summary.name): self.sequence_summary.build(None) if getattr(self, "logits_proj", None) is not None: with tf.name_scope(self.logits_proj.name): self.logits_proj.build([None, None, self.config.d_model]) @add_start_docstrings( """ XLNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, XLNET_START_DOCSTRING, ) class TFXLNetForTokenClassification(TFXLNetPreTrainedModel, TFTokenClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.transformer = TFXLNetMainLayer(config, name="transformer") self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFXLNetForTokenClassificationOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFXLNetForTokenClassificationOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) output = transformer_outputs[0] logits = self.classifier(output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFXLNetForTokenClassificationOutput( loss=loss, logits=logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, XLNET_START_DOCSTRING, ) class TFXLNetForQuestionAnsweringSimple(TFXLNetPreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFXLNetMainLayer(config, name="transformer") self.qa_outputs = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFXLNetForQuestionAnsweringSimpleOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFXLNetForQuestionAnsweringSimpleOutput, Tuple[tf.Tensor]]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = transformer_outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFXLNetForQuestionAnsweringSimpleOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.hidden_size])
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/xlnet/configuration_xlnet.py
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ XLNet configuration""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class XLNetConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`XLNetModel`] or a [`TFXLNetModel`]. It is used to instantiate a XLNet model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the XLNet model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`XLNetModel`] or [`TFXLNetModel`]. d_model (`int`, *optional*, defaults to 1024): Dimensionality of the encoder layers and the pooler layer. n_layer (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. d_inner (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. ff_activation (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. untie_r (`bool`, *optional*, defaults to `True`): Whether or not to untie relative position biases attn_type (`str`, *optional*, defaults to `"bi"`): The attention type used by the model. Set `"bi"` for XLNet, `"uni"` for Transformer-XL. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. mem_len (`int` or `None`, *optional*): The number of tokens to cache. The key/value pairs that have already been pre-computed in a previous forward pass won't be re-computed. See the [quickstart](https://huggingface.co/transformers/quickstart.html#using-the-past) for more information. reuse_len (`int`, *optional*): The number of tokens in the current batch to be cached and reused in the future. bi_data (`bool`, *optional*, defaults to `False`): Whether or not to use bidirectional input pipeline. Usually set to `True` during pretraining and `False` during finetuning. clamp_len (`int`, *optional*, defaults to -1): Clamp all relative distances larger than clamp_len. Setting this attribute to -1 means no clamping. same_length (`bool`, *optional*, defaults to `False`): Whether or not to use the same attention length for each token. summary_type (`str`, *optional*, defaults to "last"): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Has to be one of the following options: - `"last"`: Take the last token hidden state (like XLNet). - `"first"`: Take the first token hidden state (like BERT). - `"mean"`: Take the mean of all tokens hidden states. - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). - `"attn"`: Not implemented now, use multi-head attention. summary_use_proj (`bool`, *optional*, defaults to `True`): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Whether or not to add a projection after the vector extraction. summary_activation (`str`, *optional*): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation. summary_proj_to_labels (`boo`, *optional*, defaults to `True`): Used in the sequence classification and multiple choice models. Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes. summary_last_dropout (`float`, *optional*, defaults to 0.1): Used in the sequence classification and multiple choice models. The dropout ratio to be used after the projection and activation. start_n_top (`int`, *optional*, defaults to 5): Used in the SQuAD evaluation script. end_n_top (`int`, *optional*, defaults to 5): Used in the SQuAD evaluation script. use_mems_eval (`bool`, *optional*, defaults to `True`): Whether or not the model should make use of the recurrent memory mechanism in evaluation mode. use_mems_train (`bool`, *optional*, defaults to `False`): Whether or not the model should make use of the recurrent memory mechanism in train mode. <Tip> For pretraining, it is recommended to set `use_mems_train` to `True`. For fine-tuning, it is recommended to set `use_mems_train` to `False` as discussed [here](https://github.com/zihangdai/xlnet/issues/41#issuecomment-505102587). If `use_mems_train` is set to `True`, one has to make sure that the train batches are correctly pre-processed, *e.g.* `batch_1 = [[This line is], [This is the]]` and `batch_2 = [[ the first line], [ second line]]` and that all batches are of equal size. </Tip> Examples: ```python >>> from transformers import XLNetConfig, XLNetModel >>> # Initializing a XLNet configuration >>> configuration = XLNetConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = XLNetModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "xlnet" keys_to_ignore_at_inference = ["mems"] attribute_map = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, vocab_size=32000, d_model=1024, n_layer=24, n_head=16, d_inner=4096, ff_activation="gelu", untie_r=True, attn_type="bi", initializer_range=0.02, layer_norm_eps=1e-12, dropout=0.1, mem_len=512, reuse_len=None, use_mems_eval=True, use_mems_train=False, bi_data=False, clamp_len=-1, same_length=False, summary_type="last", summary_use_proj=True, summary_activation="tanh", summary_last_dropout=0.1, start_n_top=5, end_n_top=5, pad_token_id=5, bos_token_id=1, eos_token_id=2, **kwargs, ): """Constructs XLNetConfig.""" self.vocab_size = vocab_size self.d_model = d_model self.n_layer = n_layer self.n_head = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) self.d_head = d_model // n_head self.ff_activation = ff_activation self.d_inner = d_inner self.untie_r = untie_r self.attn_type = attn_type self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.dropout = dropout self.mem_len = mem_len self.reuse_len = reuse_len self.bi_data = bi_data self.clamp_len = clamp_len self.same_length = same_length self.summary_type = summary_type self.summary_use_proj = summary_use_proj self.summary_activation = summary_activation self.summary_last_dropout = summary_last_dropout self.start_n_top = start_n_top self.end_n_top = end_n_top self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id self.eos_token_id = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead.", FutureWarning, ) use_mems_eval = kwargs["use_cache"] self.use_mems_eval = use_mems_eval self.use_mems_train = use_mems_train super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) @property def max_position_embeddings(self): logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def max_position_embeddings(self, value): # Message copied from Transformer-XL documentation raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit." )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/xlnet/modeling_xlnet.py
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch XLNet model. """ import warnings from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_utils import PoolerAnswerClass, PoolerEndLogits, PoolerStartLogits, PreTrainedModel, SequenceSummary from ...pytorch_utils import apply_chunking_to_forward from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_xlnet import XLNetConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "xlnet-base-cased" _CONFIG_FOR_DOC = "XLNetConfig" XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = [ "xlnet-base-cased", "xlnet-large-cased", # See all XLNet models at https://huggingface.co/models?filter=xlnet ] def build_tf_xlnet_to_pytorch_map(model, config, tf_weights=None): """ A map of modules from TF to PyTorch. I use a map to keep the PyTorch model as identical to the original PyTorch model as possible. """ tf_to_pt_map = {} if hasattr(model, "transformer"): if hasattr(model, "lm_loss"): # We will load also the output bias tf_to_pt_map["model/lm_loss/bias"] = model.lm_loss.bias if hasattr(model, "sequence_summary") and "model/sequnece_summary/summary/kernel" in tf_weights: # We will load also the sequence summary tf_to_pt_map["model/sequnece_summary/summary/kernel"] = model.sequence_summary.summary.weight tf_to_pt_map["model/sequnece_summary/summary/bias"] = model.sequence_summary.summary.bias if ( hasattr(model, "logits_proj") and config.finetuning_task is not None and f"model/regression_{config.finetuning_task}/logit/kernel" in tf_weights ): tf_to_pt_map[f"model/regression_{config.finetuning_task}/logit/kernel"] = model.logits_proj.weight tf_to_pt_map[f"model/regression_{config.finetuning_task}/logit/bias"] = model.logits_proj.bias # Now load the rest of the transformer model = model.transformer # Embeddings and output tf_to_pt_map.update( { "model/transformer/word_embedding/lookup_table": model.word_embedding.weight, "model/transformer/mask_emb/mask_emb": model.mask_emb, } ) # Transformer blocks for i, b in enumerate(model.layer): layer_str = f"model/transformer/layer_{i}/" tf_to_pt_map.update( { layer_str + "rel_attn/LayerNorm/gamma": b.rel_attn.layer_norm.weight, layer_str + "rel_attn/LayerNorm/beta": b.rel_attn.layer_norm.bias, layer_str + "rel_attn/o/kernel": b.rel_attn.o, layer_str + "rel_attn/q/kernel": b.rel_attn.q, layer_str + "rel_attn/k/kernel": b.rel_attn.k, layer_str + "rel_attn/r/kernel": b.rel_attn.r, layer_str + "rel_attn/v/kernel": b.rel_attn.v, layer_str + "ff/LayerNorm/gamma": b.ff.layer_norm.weight, layer_str + "ff/LayerNorm/beta": b.ff.layer_norm.bias, layer_str + "ff/layer_1/kernel": b.ff.layer_1.weight, layer_str + "ff/layer_1/bias": b.ff.layer_1.bias, layer_str + "ff/layer_2/kernel": b.ff.layer_2.weight, layer_str + "ff/layer_2/bias": b.ff.layer_2.bias, } ) # Relative positioning biases if config.untie_r: r_r_list = [] r_w_list = [] r_s_list = [] seg_embed_list = [] for b in model.layer: r_r_list.append(b.rel_attn.r_r_bias) r_w_list.append(b.rel_attn.r_w_bias) r_s_list.append(b.rel_attn.r_s_bias) seg_embed_list.append(b.rel_attn.seg_embed) else: r_r_list = [model.r_r_bias] r_w_list = [model.r_w_bias] r_s_list = [model.r_s_bias] seg_embed_list = [model.seg_embed] tf_to_pt_map.update( { "model/transformer/r_r_bias": r_r_list, "model/transformer/r_w_bias": r_w_list, "model/transformer/r_s_bias": r_s_list, "model/transformer/seg_embed": seg_embed_list, } ) return tf_to_pt_map def load_tf_weights_in_xlnet(model, config, tf_path): """Load tf checkpoints in a pytorch model""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model init_vars = tf.train.list_variables(tf_path) tf_weights = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) tf_weights[name] = array # Build TF to PyTorch weights loading map tf_to_pt_map = build_tf_xlnet_to_pytorch_map(model, config, tf_weights) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}") if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping") continue array = tf_weights[name] # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if "kernel" in name and ("ff" in name or "summary" in name or "logit" in name): logger.info("Transposing") array = np.transpose(array) if isinstance(pointer, list): # Here we will split the TF weights assert ( len(pointer) == array.shape[0] ), f"Pointer length {len(pointer)} and array length {array.shape[0]} mismatched" for i, p_i in enumerate(pointer): arr_i = array[i, ...] try: assert ( p_i.shape == arr_i.shape ), f"Pointer shape {p_i.shape} and array shape {arr_i.shape} mismatched" except AssertionError as e: e.args += (p_i.shape, arr_i.shape) raise logger.info(f"Initialize PyTorch weight {name} for layer {i}") p_i.data = torch.from_numpy(arr_i) else: try: assert ( pointer.shape == array.shape ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) tf_weights.pop(name, None) tf_weights.pop(name + "/Adam", None) tf_weights.pop(name + "/Adam_1", None) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}") return model class XLNetRelativeAttention(nn.Module): def __init__(self, config): super().__init__() if config.d_model % config.n_head != 0: raise ValueError( f"The hidden size ({config.d_model}) is not a multiple of the number of attention " f"heads ({config.n_head}" ) self.n_head = config.n_head self.d_head = config.d_head self.d_model = config.d_model self.scale = 1 / (config.d_head**0.5) self.q = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head)) self.k = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head)) self.v = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head)) self.o = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head)) self.r = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head)) self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) self.r_s_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) self.seg_embed = nn.Parameter(torch.FloatTensor(2, self.n_head, self.d_head)) self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.dropout) def prune_heads(self, heads): raise NotImplementedError @staticmethod def rel_shift(x, klen=-1): """perform relative shift to form the relative attention score.""" x_size = x.shape x = x.reshape(x_size[1], x_size[0], x_size[2], x_size[3]) x = x[1:, ...] x = x.reshape(x_size[0], x_size[1] - 1, x_size[2], x_size[3]) # x = x[:, 0:klen, :, :] x = torch.index_select(x, 1, torch.arange(klen, device=x.device, dtype=torch.long)) return x @staticmethod def rel_shift_bnij(x, klen=-1): x_size = x.shape x = x.reshape(x_size[0], x_size[1], x_size[3], x_size[2]) x = x[:, :, 1:, :] x = x.reshape(x_size[0], x_size[1], x_size[2], x_size[3] - 1) # Note: the tensor-slice form was faster in my testing than torch.index_select # However, tracing doesn't like the nature of the slice, and if klen changes # during the run then it'll fail, whereas index_select will be fine. x = torch.index_select(x, 3, torch.arange(klen, device=x.device, dtype=torch.long)) # x = x[:, :, :, :klen] return x def rel_attn_core( self, q_head, k_head_h, v_head_h, k_head_r, seg_mat=None, attn_mask=None, head_mask=None, output_attentions=False, ): """Core relative positional attention operations.""" # content based attention score ac = torch.einsum("ibnd,jbnd->bnij", q_head + self.r_w_bias, k_head_h) # position based attention score bd = torch.einsum("ibnd,jbnd->bnij", q_head + self.r_r_bias, k_head_r) bd = self.rel_shift_bnij(bd, klen=ac.shape[3]) # segment based attention score if seg_mat is None: ef = 0 else: ef = torch.einsum("ibnd,snd->ibns", q_head + self.r_s_bias, self.seg_embed) ef = torch.einsum("ijbs,ibns->bnij", seg_mat, ef) # merge attention scores and perform masking attn_score = (ac + bd + ef) * self.scale if attn_mask is not None: # attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask if attn_mask.dtype == torch.float16: attn_score = attn_score - 65500 * torch.einsum("ijbn->bnij", attn_mask) else: attn_score = attn_score - 1e30 * torch.einsum("ijbn->bnij", attn_mask) # attention probability attn_prob = nn.functional.softmax(attn_score, dim=3) attn_prob = self.dropout(attn_prob) # Mask heads if we want to if head_mask is not None: attn_prob = attn_prob * torch.einsum("ijbn->bnij", head_mask) # attention output attn_vec = torch.einsum("bnij,jbnd->ibnd", attn_prob, v_head_h) if output_attentions: return attn_vec, torch.einsum("bnij->ijbn", attn_prob) return attn_vec def post_attention(self, h, attn_vec, residual=True): """Post-attention processing.""" # post-attention projection (back to `d_model`) attn_out = torch.einsum("ibnd,hnd->ibh", attn_vec, self.o) attn_out = self.dropout(attn_out) if residual: attn_out = attn_out + h output = self.layer_norm(attn_out) return output def forward( self, h, g, attn_mask_h, attn_mask_g, r, seg_mat, mems=None, target_mapping=None, head_mask=None, output_attentions=False, ): if g is not None: # Two-stream attention with relative positional encoding. # content based attention score if mems is not None and mems.dim() > 1: cat = torch.cat([mems, h], dim=0) else: cat = h # content-based key head k_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.k) # content-based value head v_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.v) # position-based key head k_head_r = torch.einsum("ibh,hnd->ibnd", r, self.r) # h-stream # content-stream query head q_head_h = torch.einsum("ibh,hnd->ibnd", h, self.q) # core attention ops attn_vec_h = self.rel_attn_core( q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h, head_mask=head_mask, output_attentions=output_attentions, ) if output_attentions: attn_vec_h, attn_prob_h = attn_vec_h # post processing output_h = self.post_attention(h, attn_vec_h) # g-stream # query-stream query head q_head_g = torch.einsum("ibh,hnd->ibnd", g, self.q) # core attention ops if target_mapping is not None: q_head_g = torch.einsum("mbnd,mlb->lbnd", q_head_g, target_mapping) attn_vec_g = self.rel_attn_core( q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g, head_mask=head_mask, output_attentions=output_attentions, ) if output_attentions: attn_vec_g, attn_prob_g = attn_vec_g attn_vec_g = torch.einsum("lbnd,mlb->mbnd", attn_vec_g, target_mapping) else: attn_vec_g = self.rel_attn_core( q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g, head_mask=head_mask, output_attentions=output_attentions, ) if output_attentions: attn_vec_g, attn_prob_g = attn_vec_g # post processing output_g = self.post_attention(g, attn_vec_g) if output_attentions: attn_prob = attn_prob_h, attn_prob_g else: # Multi-head attention with relative positional encoding if mems is not None and mems.dim() > 1: cat = torch.cat([mems, h], dim=0) else: cat = h # content heads q_head_h = torch.einsum("ibh,hnd->ibnd", h, self.q) k_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.k) v_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.v) # positional heads # type casting for fp16 support k_head_r = torch.einsum("ibh,hnd->ibnd", r.type(self.r.dtype), self.r) # core attention ops attn_vec = self.rel_attn_core( q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h, head_mask=head_mask, output_attentions=output_attentions, ) if output_attentions: attn_vec, attn_prob = attn_vec # post processing output_h = self.post_attention(h, attn_vec) output_g = None outputs = (output_h, output_g) if output_attentions: outputs = outputs + (attn_prob,) return outputs class XLNetFeedForward(nn.Module): def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps) self.layer_1 = nn.Linear(config.d_model, config.d_inner) self.layer_2 = nn.Linear(config.d_inner, config.d_model) self.dropout = nn.Dropout(config.dropout) if isinstance(config.ff_activation, str): self.activation_function = ACT2FN[config.ff_activation] else: self.activation_function = config.ff_activation def forward(self, inp): output = inp output = self.layer_1(output) output = self.activation_function(output) output = self.dropout(output) output = self.layer_2(output) output = self.dropout(output) output = self.layer_norm(output + inp) return output class XLNetLayer(nn.Module): def __init__(self, config): super().__init__() self.rel_attn = XLNetRelativeAttention(config) self.ff = XLNetFeedForward(config) self.dropout = nn.Dropout(config.dropout) self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 def forward( self, output_h, output_g, attn_mask_h, attn_mask_g, r, seg_mat, mems=None, target_mapping=None, head_mask=None, output_attentions=False, ): outputs = self.rel_attn( output_h, output_g, attn_mask_h, attn_mask_g, r, seg_mat, mems=mems, target_mapping=target_mapping, head_mask=head_mask, output_attentions=output_attentions, ) output_h, output_g = outputs[:2] if output_g is not None: output_g = apply_chunking_to_forward( self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, output_g ) output_h = apply_chunking_to_forward(self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, output_h) outputs = (output_h, output_g) + outputs[2:] # Add again attentions if there are there return outputs def ff_chunk(self, output_x): output_x = self.ff(output_x) return output_x class XLNetPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = XLNetConfig load_tf_weights = load_tf_weights_in_xlnet base_model_prefix = "transformer" def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, XLNetRelativeAttention): for param in [ module.q, module.k, module.v, module.o, module.r, module.r_r_bias, module.r_s_bias, module.r_w_bias, module.seg_embed, ]: param.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, XLNetModel): module.mask_emb.data.normal_(mean=0.0, std=self.config.initializer_range) @dataclass class XLNetModelOutput(ModelOutput): """ Output type of [`XLNetModel`]. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_predict, hidden_size)`): Sequence of hidden-states at the last layer of the model. `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`. mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor mems: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class XLNetLMHeadModelOutput(ModelOutput): """ Output type of [`XLNetLMHeadModel`]. Args: loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided) Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, num_predict, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`. mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None mems: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class XLNetForSequenceClassificationOutput(ModelOutput): """ Output type of [`XLNetForSequenceClassification`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `label` is provided): Classification (or regression if config.num_labels==1) loss. logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None mems: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class XLNetForTokenClassificationOutput(ModelOutput): """ Output type of [`XLNetForTokenClassificationOutput`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) : Classification loss. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`): Classification scores (before SoftMax). mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None mems: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class XLNetForMultipleChoiceOutput(ModelOutput): """ Output type of [`XLNetForMultipleChoice`]. Args: loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided): Classification loss. logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`): *num_choices* is the second dimension of the input tensors. (see *input_ids* above). Classification scores (before SoftMax). mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None mems: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class XLNetForQuestionAnsweringSimpleOutput(ModelOutput): """ Output type of [`XLNetForQuestionAnsweringSimple`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length,)`): Span-start scores (before SoftMax). end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length,)`): Span-end scores (before SoftMax). mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None start_logits: torch.FloatTensor = None end_logits: torch.FloatTensor = None mems: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class XLNetForQuestionAnsweringOutput(ModelOutput): """ Output type of [`XLNetForQuestionAnswering`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided): Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses. start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Log probabilities for the top config.start_n_top start token possibilities (beam-search). start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Indices for the top config.start_n_top start token possibilities (beam-search). end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search). end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search). cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Log probabilities for the `is_impossible` label of the answers. mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None start_top_log_probs: Optional[torch.FloatTensor] = None start_top_index: Optional[torch.LongTensor] = None end_top_log_probs: Optional[torch.FloatTensor] = None end_top_index: Optional[torch.LongTensor] = None cls_logits: Optional[torch.FloatTensor] = None mems: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None XLNET_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`XLNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ XLNET_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. `use_mems` has to be set to `True` to make use of `mems`. perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*): Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`: - if `perm_mask[k, i, j] = 0`, i attend to j in batch k; - if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k. If not set, each token attends to all the others (full bidirectional attention). Only used during pretraining (to define factorization order) or for sequential decoding (generation). target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*): Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is on the j-th token. Only used during pretraining for partial prediction or for sequential decoding (generation). token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) input_mask (`torch.FloatTensor` of shape `{0}`, *optional*): Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for real tokens and 1 for padding which is kept for compatibility with the original code base. Mask values selected in `[0, 1]`: - 1 for tokens that are **masked**, - 0 for tokens that are **not masked**. You can only uses one of `input_mask` and `attention_mask`. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare XLNet Model transformer outputting raw hidden-states without any specific head on top.", XLNET_START_DOCSTRING, ) class XLNetModel(XLNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.mem_len = config.mem_len self.reuse_len = config.reuse_len self.d_model = config.d_model self.same_length = config.same_length self.attn_type = config.attn_type self.bi_data = config.bi_data self.clamp_len = config.clamp_len self.n_layer = config.n_layer self.word_embedding = nn.Embedding(config.vocab_size, config.d_model) self.mask_emb = nn.Parameter(torch.FloatTensor(1, 1, config.d_model)) self.layer = nn.ModuleList([XLNetLayer(config) for _ in range(config.n_layer)]) self.dropout = nn.Dropout(config.dropout) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.word_embedding def set_input_embeddings(self, new_embeddings): self.word_embedding = new_embeddings def _prune_heads(self, heads_to_prune): raise NotImplementedError def create_mask(self, qlen, mlen): """ Creates causal attention mask. Float mask where 1.0 indicates masked, 0.0 indicates not-masked. Args: qlen: Sequence length mlen: Mask length :: same_length=False: same_length=True: <mlen > < qlen > <mlen > < qlen > ^ [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 0 1 1 1] [1 0 0 0 0 0 1 1 1] qlen [0 0 0 0 0 0 0 1 1] [1 1 0 0 0 0 0 1 1] [0 0 0 0 0 0 0 0 1] [1 1 1 0 0 0 0 0 1] v [0 0 0 0 0 0 0 0 0] [1 1 1 1 0 0 0 0 0] """ mask = torch.ones((qlen, qlen + mlen), device=self.device) if self.same_length: mask_lo = mask[:, :qlen].tril(-1) mask.triu_(mlen + 1) mask[:, :qlen] += mask_lo else: mask.triu_(mlen + 1) return mask def cache_mem(self, curr_out, prev_mem): # cache hidden states into memory. if self.reuse_len is not None and self.reuse_len > 0: curr_out = curr_out[: self.reuse_len] if self.mem_len is None or self.mem_len == 0: # If `use_mems` is active but no `mem_len` is defined, the model behaves like GPT-2 at inference time # and returns all of the past and current hidden states. cutoff = 0 else: # If `use_mems` is active and `mem_len` is defined, the model returns the last `mem_len` hidden # states. This is the preferred setting for training and long-form generation. cutoff = -self.mem_len if prev_mem is None: # if `use_mems` is active and `mem_len` is defined, the model new_mem = curr_out[cutoff:] else: new_mem = torch.cat([prev_mem, curr_out], dim=0)[cutoff:] return new_mem.detach() @staticmethod def positional_embedding(pos_seq, inv_freq, bsz=None): sinusoid_inp = torch.einsum("i,d->id", pos_seq, inv_freq) pos_emb = torch.cat([torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)], dim=-1) pos_emb = pos_emb[:, None, :] if bsz is not None: pos_emb = pos_emb.expand(-1, bsz, -1) return pos_emb def relative_positional_encoding(self, qlen, klen, bsz=None): # create relative positional encoding. freq_seq = torch.arange(0, self.d_model, 2.0, dtype=torch.float) inv_freq = 1 / torch.pow(10000, (freq_seq / self.d_model)) if self.attn_type == "bi": # beg, end = klen - 1, -qlen beg, end = klen, -qlen elif self.attn_type == "uni": # beg, end = klen - 1, -1 beg, end = klen, -1 else: raise ValueError(f"Unknown `attn_type` {self.attn_type}.") if self.bi_data: fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.float) bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=torch.float) if self.clamp_len > 0: fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len) bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len) if bsz is not None: fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz // 2) bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz // 2) else: fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq) bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq) pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1) else: fwd_pos_seq = torch.arange(beg, end, -1.0) if self.clamp_len > 0: fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len) pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz) return pos_emb @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=XLNetModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, mems: Optional[torch.Tensor] = None, perm_mask: Optional[torch.Tensor] = None, target_mapping: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, input_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, # delete after depreciation warning is removed ) -> Union[Tuple, XLNetModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems`" " instead.", FutureWarning, ) use_mems = kwargs["use_cache"] if self.training: use_mems = use_mems if use_mems is not None else self.config.use_mems_train else: use_mems = use_mems if use_mems is not None else self.config.use_mems_eval # the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end # but we want a unified interface in the library with the batch size on the first dimension # so we move here the first dimension (batch) to the end if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_ids = input_ids.transpose(0, 1).contiguous() qlen, bsz = input_ids.shape[0], input_ids.shape[1] elif inputs_embeds is not None: inputs_embeds = inputs_embeds.transpose(0, 1).contiguous() qlen, bsz = inputs_embeds.shape[0], inputs_embeds.shape[1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") token_type_ids = token_type_ids.transpose(0, 1).contiguous() if token_type_ids is not None else None input_mask = input_mask.transpose(0, 1).contiguous() if input_mask is not None else None attention_mask = attention_mask.transpose(0, 1).contiguous() if attention_mask is not None else None perm_mask = perm_mask.permute(1, 2, 0).contiguous() if perm_mask is not None else None target_mapping = target_mapping.permute(1, 2, 0).contiguous() if target_mapping is not None else None mlen = mems[0].shape[0] if mems is not None and mems[0] is not None else 0 klen = mlen + qlen dtype_float = self.dtype device = self.device # Attention mask # causal attention mask if self.attn_type == "uni": attn_mask = self.create_mask(qlen, mlen) attn_mask = attn_mask[:, :, None, None] elif self.attn_type == "bi": attn_mask = None else: raise ValueError(f"Unsupported attention type: {self.attn_type}") # data mask: input mask & perm mask assert input_mask is None or attention_mask is None, "You can only use one of input_mask (uses 1 for padding) " "or attention_mask (uses 0 for padding, added for compatibility with BERT). Please choose one." if input_mask is None and attention_mask is not None: input_mask = 1.0 - attention_mask if input_mask is not None and perm_mask is not None: data_mask = input_mask[None] + perm_mask elif input_mask is not None and perm_mask is None: data_mask = input_mask[None] elif input_mask is None and perm_mask is not None: data_mask = perm_mask else: data_mask = None if data_mask is not None: # all mems can be attended to if mlen > 0: mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz]).to(data_mask) data_mask = torch.cat([mems_mask, data_mask], dim=1) if attn_mask is None: attn_mask = data_mask[:, :, :, None] else: attn_mask += data_mask[:, :, :, None] if attn_mask is not None: attn_mask = (attn_mask > 0).to(dtype_float) if attn_mask is not None: non_tgt_mask = -torch.eye(qlen).to(attn_mask) if mlen > 0: non_tgt_mask = torch.cat([torch.zeros([qlen, mlen]).to(attn_mask), non_tgt_mask], dim=-1) non_tgt_mask = ((attn_mask + non_tgt_mask[:, :, None, None]) > 0).to(attn_mask) else: non_tgt_mask = None # Word embeddings and prepare h & g hidden states if inputs_embeds is not None: word_emb_k = inputs_embeds else: word_emb_k = self.word_embedding(input_ids) output_h = self.dropout(word_emb_k) if target_mapping is not None: word_emb_q = self.mask_emb.expand(target_mapping.shape[0], bsz, -1) # else: # We removed the inp_q input which was same as target mapping # inp_q_ext = inp_q[:, :, None] # word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k output_g = self.dropout(word_emb_q) else: output_g = None # Segment embedding if token_type_ids is not None: # Convert `token_type_ids` to one-hot `seg_mat` if mlen > 0: mem_pad = torch.zeros([mlen, bsz], dtype=torch.long, device=device) cat_ids = torch.cat([mem_pad, token_type_ids], dim=0) else: cat_ids = token_type_ids # `1` indicates not in the same segment [qlen x klen x bsz] seg_mat = (token_type_ids[:, None] != cat_ids[None, :]).long() seg_mat = nn.functional.one_hot(seg_mat, num_classes=2).to(dtype_float) else: seg_mat = None # Positional encoding pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz) pos_emb = pos_emb.to(output_h.device) pos_emb = self.dropout(pos_emb) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer) # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head] if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0) head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1) head_mask = head_mask.to( dtype=next(self.parameters()).dtype ) # switch to float if need + fp16 compatibility else: head_mask = [None] * self.n_layer new_mems = () if mems is None: mems = [None] * len(self.layer) attentions = [] if output_attentions else None hidden_states = [] if output_hidden_states else None for i, layer_module in enumerate(self.layer): if use_mems: # cache new mems new_mems = new_mems + (self.cache_mem(output_h, mems[i]),) if output_hidden_states: hidden_states.append((output_h, output_g) if output_g is not None else output_h) outputs = layer_module( output_h, output_g, attn_mask_h=non_tgt_mask, attn_mask_g=attn_mask, r=pos_emb, seg_mat=seg_mat, mems=mems[i], target_mapping=target_mapping, head_mask=head_mask[i], output_attentions=output_attentions, ) output_h, output_g = outputs[:2] if output_attentions: attentions.append(outputs[2]) # Add last hidden state if output_hidden_states: hidden_states.append((output_h, output_g) if output_g is not None else output_h) output = self.dropout(output_g if output_g is not None else output_h) # Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method) output = output.permute(1, 0, 2).contiguous() if not use_mems: new_mems = None if output_hidden_states: if output_g is not None: hidden_states = tuple(h.permute(1, 0, 2).contiguous() for hs in hidden_states for h in hs) else: hidden_states = tuple(hs.permute(1, 0, 2).contiguous() for hs in hidden_states) if output_attentions: if target_mapping is not None: # when target_mapping is provided, there are 2-tuple of attentions attentions = tuple( tuple(att_stream.permute(2, 3, 0, 1).contiguous() for att_stream in t) for t in attentions ) else: attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions) if not return_dict: return tuple(v for v in [output, new_mems, hidden_states, attentions] if v is not None) return XLNetModelOutput( last_hidden_state=output, mems=new_mems, hidden_states=hidden_states, attentions=attentions ) @add_start_docstrings( """ XLNet Model with a language modeling head on top (linear layer with weights tied to the input embeddings). """, XLNET_START_DOCSTRING, ) class XLNetLMHeadModel(XLNetPreTrainedModel): _tied_weights_keys = ["lm_loss.weight"] def __init__(self, config): super().__init__(config) self.attn_type = config.attn_type self.same_length = config.same_length self.transformer = XLNetModel(config) self.lm_loss = nn.Linear(config.d_model, config.vocab_size, bias=True) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_loss def set_output_embeddings(self, new_embeddings): self.lm_loss = new_embeddings def prepare_inputs_for_generation(self, input_ids, past_key_values=None, use_mems=None, **kwargs): # Add dummy token at the end (no attention on this one) effective_batch_size = input_ids.shape[0] dummy_token = torch.zeros((effective_batch_size, 1), dtype=torch.long, device=input_ids.device) # At every pass, the attention values for the new token and the two last generated tokens # are computed, the rest is reloaded from the `past` cache. A purely auto-regressive model would have # offset = 1; offset = 2 seems to have slightly better computation. offset = 2 if past_key_values: input_ids = torch.cat([input_ids[:, -offset:], dummy_token], dim=1) else: input_ids = torch.cat([input_ids, dummy_token], dim=1) # Build permutation mask so that previous tokens don't see last token sequence_length = input_ids.shape[1] perm_mask = torch.zeros( (effective_batch_size, sequence_length, sequence_length), dtype=torch.float, device=input_ids.device ) perm_mask[:, :, -1] = 1.0 # We'll only predict the last token target_mapping = torch.zeros( (effective_batch_size, 1, sequence_length), dtype=torch.float, device=input_ids.device ) target_mapping[:, 0, -1] = 1.0 inputs = { "input_ids": input_ids, "perm_mask": perm_mask, "target_mapping": target_mapping, "use_mems": use_mems, } # if past is defined in model kwargs then use it for faster decoding if past_key_values: inputs["mems"] = tuple(layer_past[:-offset, :, :] for layer_past in past_key_values) return inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=XLNetLMHeadModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, mems: Optional[torch.Tensor] = None, perm_mask: Optional[torch.Tensor] = None, target_mapping: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, input_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, # delete when `use_cache` is removed in XLNetModel ) -> Union[Tuple, XLNetLMHeadModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, num_predict)`, *optional*): Labels for masked language modeling. `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`. The labels should correspond to the masked input words that should be predicted and depends on `target_mapping`. Note in order to perform standard auto-regressive language modeling a *<mask>* token has to be added to the `input_ids` (see the `prepare_inputs_for_generation` function and examples below) Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored, the loss is only computed for labels in `[0, ..., config.vocab_size]` Return: Examples: ```python >>> from transformers import AutoTokenizer, XLNetLMHeadModel >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("xlnet-large-cased") >>> model = XLNetLMHeadModel.from_pretrained("xlnet-large-cased") >>> # We show how to setup inputs to predict a next token using a bi-directional context. >>> input_ids = torch.tensor( ... tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False) ... ).unsqueeze( ... 0 ... ) # We will predict the masked token >>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float) >>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token >>> target_mapping = torch.zeros( ... (1, 1, input_ids.shape[1]), dtype=torch.float ... ) # Shape [1, 1, seq_length] => let's predict one token >>> target_mapping[ ... 0, 0, -1 ... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token) >>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping) >>> next_token_logits = outputs[ ... 0 ... ] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size] >>> # The same way can the XLNetLMHeadModel be used to be trained by standard auto-regressive language modeling. >>> input_ids = torch.tensor( ... tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False) ... ).unsqueeze( ... 0 ... ) # We will predict the masked token >>> labels = torch.tensor(tokenizer.encode("cute", add_special_tokens=False)).unsqueeze(0) >>> assert labels.shape[0] == 1, "only one word will be predicted" >>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float) >>> perm_mask[ ... :, :, -1 ... ] = 1.0 # Previous tokens don't see last token as is done in standard auto-regressive lm training >>> target_mapping = torch.zeros( ... (1, 1, input_ids.shape[1]), dtype=torch.float ... ) # Shape [1, 1, seq_length] => let's predict one token >>> target_mapping[ ... 0, 0, -1 ... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token) >>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping, labels=labels) >>> loss = outputs.loss >>> next_token_logits = ( ... outputs.logits ... ) # Logits have shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs, ) logits = self.lm_loss(transformer_outputs[0]) loss = None if labels is not None: # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1)) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return XLNetLMHeadModelOutput( loss=loss, logits=logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @staticmethod def _reorder_cache(mems: List[torch.Tensor], beam_idx: torch.Tensor) -> List[torch.Tensor]: """ This function is used to re-order the `mems` cache if [`~PreTrainedModel.beam_search`] or [`~PreTrainedModel.beam_sample`] is called. This is required to match `mems` with the correct beam_idx at every generation step. """ return [layer_past.index_select(1, beam_idx.to(layer_past.device)) for layer_past in mems] @add_start_docstrings( """ XLNet Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, XLNET_START_DOCSTRING, ) class XLNetForSequenceClassification(XLNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.transformer = XLNetModel(config) self.sequence_summary = SequenceSummary(config) self.logits_proj = nn.Linear(config.d_model, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=XLNetForSequenceClassificationOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, mems: Optional[torch.Tensor] = None, perm_mask: Optional[torch.Tensor] = None, target_mapping: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, input_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, # delete when `use_cache` is removed in XLNetModel ) -> Union[Tuple, XLNetForSequenceClassificationOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs, ) output = transformer_outputs[0] output = self.sequence_summary(output) logits = self.logits_proj(output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return XLNetForSequenceClassificationOutput( loss=loss, logits=logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ XLNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, XLNET_START_DOCSTRING, ) class XLNetForTokenClassification(XLNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = XLNetModel(config) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=XLNetForTokenClassificationOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, mems: Optional[torch.Tensor] = None, perm_mask: Optional[torch.Tensor] = None, target_mapping: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, input_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, # delete when `use_cache` is removed in XLNetModel ) -> Union[Tuple, XLNetForTokenClassificationOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return XLNetForTokenClassificationOutput( loss=loss, logits=logits, mems=outputs.mems, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ XLNet Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RACE/SWAG tasks. """, XLNET_START_DOCSTRING, ) class XLNetForMultipleChoice(XLNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.transformer = XLNetModel(config) self.sequence_summary = SequenceSummary(config) self.logits_proj = nn.Linear(config.d_model, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=XLNetForMultipleChoiceOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, input_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, mems: Optional[torch.Tensor] = None, perm_mask: Optional[torch.Tensor] = None, target_mapping: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, # delete when `use_cache` is removed in XLNetModel ) -> Union[Tuple, XLNetForMultipleChoiceOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None flat_input_mask = input_mask.view(-1, input_mask.size(-1)) if input_mask is not None else None flat_inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) transformer_outputs = self.transformer( flat_input_ids, token_type_ids=flat_token_type_ids, input_mask=flat_input_mask, attention_mask=flat_attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs, ) output = transformer_outputs[0] output = self.sequence_summary(output) logits = self.logits_proj(output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels.view(-1)) if not return_dict: output = (reshaped_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return XLNetForMultipleChoiceOutput( loss=loss, logits=reshaped_logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, XLNET_START_DOCSTRING, ) class XLNetForQuestionAnsweringSimple(XLNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = XLNetModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=XLNetForQuestionAnsweringSimpleOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, mems: Optional[torch.Tensor] = None, perm_mask: Optional[torch.Tensor] = None, target_mapping: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, input_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, # delete when `use_cache` is removed in XLNetModel ) -> Union[Tuple, XLNetForQuestionAnsweringSimpleOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return XLNetForQuestionAnsweringSimpleOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, mems=outputs.mems, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, XLNET_START_DOCSTRING, ) class XLNetForQuestionAnswering(XLNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.start_n_top = config.start_n_top self.end_n_top = config.end_n_top self.transformer = XLNetModel(config) self.start_logits = PoolerStartLogits(config) self.end_logits = PoolerEndLogits(config) self.answer_class = PoolerAnswerClass(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=XLNetForQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, mems: Optional[torch.Tensor] = None, perm_mask: Optional[torch.Tensor] = None, target_mapping: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, input_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, is_impossible: Optional[torch.Tensor] = None, cls_index: Optional[torch.Tensor] = None, p_mask: Optional[torch.Tensor] = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, # delete when `use_cache` is removed in XLNetModel ) -> Union[Tuple, XLNetForQuestionAnsweringOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels whether a question has an answer or no answer (SQuAD 2.0) cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the classification token to use as input for computing plausibility of the answer. p_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...). 1.0 means token should be masked. 0.0 mean token is not masked. Returns: Example: ```python >>> from transformers import AutoTokenizer, XLNetForQuestionAnswering >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("xlnet-base-cased") >>> model = XLNetForQuestionAnswering.from_pretrained("xlnet-base-cased") >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze( ... 0 ... ) # Batch size 1 >>> start_positions = torch.tensor([1]) >>> end_positions = torch.tensor([3]) >>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions) >>> loss = outputs.loss ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs, ) hidden_states = transformer_outputs[0] start_logits = self.start_logits(hidden_states, p_mask=p_mask) outputs = transformer_outputs[1:] # Keep mems, hidden states, attentions if there are in it if start_positions is not None and end_positions is not None: # If we are on multi-GPU, let's remove the dimension added by batch splitting for x in (start_positions, end_positions, cls_index, is_impossible): if x is not None and x.dim() > 1: x.squeeze_(-1) # during training, compute the end logits based on the ground truth of the start position end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask) loss_fct = CrossEntropyLoss() start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if cls_index is not None and is_impossible is not None: # Predict answerability from the representation of CLS and START cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index) loss_fct_cls = nn.BCEWithLogitsLoss() cls_loss = loss_fct_cls(cls_logits, is_impossible) # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss total_loss += cls_loss * 0.5 if not return_dict: return (total_loss,) + transformer_outputs[1:] else: return XLNetForQuestionAnsweringOutput( loss=total_loss, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) else: # during inference, compute the end logits based on beam search bsz, slen, hsz = hidden_states.size() start_log_probs = nn.functional.softmax(start_logits, dim=-1) # shape (bsz, slen) start_top_log_probs, start_top_index = torch.topk( start_log_probs, self.start_n_top, dim=-1 ) # shape (bsz, start_n_top) start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz) start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz) start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz) hidden_states_expanded = hidden_states.unsqueeze(2).expand_as( start_states ) # shape (bsz, slen, start_n_top, hsz) p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask) end_log_probs = nn.functional.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top) end_top_log_probs, end_top_index = torch.topk( end_log_probs, self.end_n_top, dim=1 ) # shape (bsz, end_n_top, start_n_top) end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top) end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top) start_states = torch.einsum( "blh,bl->bh", hidden_states, start_log_probs ) # get the representation of START as weighted sum of hidden states cls_logits = self.answer_class( hidden_states, start_states=start_states, cls_index=cls_index ) # Shape (batch size,): one single `cls_logits` for each sample if not return_dict: outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) return outputs + transformer_outputs[1:] else: return XLNetForQuestionAnsweringOutput( start_top_log_probs=start_top_log_probs, start_top_index=start_top_index, end_top_log_probs=end_top_log_probs, end_top_index=end_top_index, cls_logits=cls_logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/xlnet/tokenization_xlnet_fast.py
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization classes for XLNet model.""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: XLNetTokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "xlnet-base-cased": None, "xlnet-large-cased": None, } SPIECE_UNDERLINE = "▁" # Segments (not really needed) SEG_ID_A = 0 SEG_ID_B = 1 SEG_ID_CLS = 2 SEG_ID_SEP = 3 SEG_ID_PAD = 4 class XLNetTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" XLNet tokenizer (backed by HuggingFace's *tokenizers* library). Based on [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that contains the vocabulary necessary to instantiate a tokenizer. do_lower_case (`bool`, *optional*, defaults to `True`): Whether to lowercase the input when tokenizing. remove_space (`bool`, *optional*, defaults to `True`): Whether to strip the text when tokenizing (removing excess spaces before and after the string). keep_accents (`bool`, *optional*, defaults to `False`): Whether to keep accents when tokenizing. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"<sep>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"<cls>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `["<eop>", "<eod>"]`): Additional special tokens used by the tokenizer. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES padding_side = "left" slow_tokenizer_class = XLNetTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, do_lower_case=False, remove_space=True, keep_accents=False, bos_token="<s>", eos_token="</s>", unk_token="<unk>", sep_token="<sep>", pad_token="<pad>", cls_token="<cls>", mask_token="<mask>", additional_special_tokens=["<eop>", "<eod>"], **kwargs, ): # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( vocab_file=vocab_file, tokenizer_file=tokenizer_file, do_lower_case=do_lower_case, remove_space=remove_space, keep_accents=keep_accents, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, additional_special_tokens=additional_special_tokens, **kwargs, ) self._pad_token_type_id = 3 self.do_lower_case = do_lower_case self.remove_space = remove_space self.keep_accents = keep_accents self.vocab_file = vocab_file @property def can_save_slow_tokenizer(self) -> bool: return os.path.isfile(self.vocab_file) if self.vocab_file else False def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLNet sequence has the following format: - single sequence: `X <sep> <cls>` - pair of sequences: `A <sep> B <sep> <cls>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return token_ids_0 + sep + cls return token_ids_0 + sep + token_ids_1 + sep + cls def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls_segment_id = [2] if token_ids_1 is None: return len(token_ids_0 + sep) * [0] + cls_segment_id return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + cls_segment_id def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/mistral/modeling_mistral.py
# coding=utf-8 # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Mistral model.""" import inspect import math import warnings from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast from ...modeling_utils import PreTrainedModel from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) from .configuration_mistral import MistralConfig if is_flash_attn_2_available(): from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "MistralConfig" # Copied from transformers.models.llama.modeling_llama._get_unpad_data def _get_unpad_data(attention_mask): seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral class MistralRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ MistralRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mistral class MistralRotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) # Build here to make `torch.jit.trace` work. self._set_cos_sin_cache( seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() ) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) def forward(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) return ( self.cos_cached[:seq_len].to(dtype=x.dtype), self.sin_cached[:seq_len].to(dtype=x.dtype), ) # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`): The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos[position_ids].unsqueeze(unsqueeze_dim) sin = sin[position_ids].unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class MistralMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class MistralAttention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer and "Generating Long Sequences with Sparse Transformers". """ def __init__(self, config: MistralConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.is_causal = True self.attention_dropout = config.attention_dropout if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) self.rotary_emb = MistralRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta, ) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index." ) kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): raise ValueError( f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class MistralFlashAttention2(MistralAttention): """ Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, **kwargs, ): if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) # overwrite attention_mask with padding_mask attention_mask = kwargs.pop("padding_mask") bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index." ) kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) # Because the input can be padded, the absolute sequence length depends on the max position id. rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1 cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) use_sliding_windows = ( _flash_supports_window_size and getattr(self.config, "sliding_window", None) is not None and kv_seq_len > self.config.sliding_window ) if not _flash_supports_window_size: logger.warning_once( "The current flash attention version does not support sliding window attention, for a more memory efficient implementation" " make sure to upgrade flash-attn library." ) if past_key_value is not None: # Activate slicing cache only if the config has a value `sliding_windows` attribute cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 if ( getattr(self.config, "sliding_window", None) is not None and kv_seq_len > self.config.sliding_window and cache_has_contents ): slicing_tokens = 1 - self.config.sliding_window past_key = past_key_value[self.layer_idx][0] past_value = past_key_value[self.layer_idx][1] past_key = past_key[:, :, slicing_tokens:, :].contiguous() past_value = past_value[:, :, slicing_tokens:, :].contiguous() if past_key.shape[-2] != self.config.sliding_window - 1: raise ValueError( f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" f" {past_key.shape}" ) if attention_mask is not None: attention_mask = attention_mask[:, slicing_tokens:] attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) dropout_rate = 0.0 if not self.training else self.attention_dropout # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in float16 just to be sure everything works as expected. input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) # Reashape to the expected shape for Flash Attention query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) attn_output = self._flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate, use_sliding_windows=use_sliding_windows, ) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def _flash_attention_forward( self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None, use_sliding_windows=False, ): """ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token first unpad the input, then computes the attention scores and pad the final attention scores. Args: query_states (`torch.Tensor`): Input query states to be passed to Flash Attention API key_states (`torch.Tensor`): Input key states to be passed to Flash Attention API value_states (`torch.Tensor`): Input value states to be passed to Flash Attention API attention_mask (`torch.Tensor`): The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the position of padding tokens and 1 for the position of non-padding tokens. dropout (`int`, *optional*): Attention dropout softmax_scale (`float`, *optional*): The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) use_sliding_windows (`bool`, *optional*): Whether to activate sliding window attention. """ if not self._flash_attn_uses_top_left_mask: causal = self.is_causal else: # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. causal = self.is_causal and query_length != 1 # Contains at least one padding token in the sequence if attention_mask is not None: batch_size = query_states.shape[0] query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( query_states, key_states, value_states, attention_mask, query_length ) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens if not use_sliding_windows: attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, ) else: attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, window_size=(self.config.sliding_window, self.config.sliding_window), ) attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) else: if not use_sliding_windows: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, ) else: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, window_size=(self.config.sliding_window, self.config.sliding_window), ) return attn_output def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape # On the first iteration we need to properly re-create the padding mask # by slicing it on the proper place if kv_seq_len != attention_mask.shape[-1]: attention_mask_num_tokens = attention_mask.shape[-1] attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) if query_length == kv_seq_len: query_layer = index_first_axis( query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k ) cu_seqlens_q = cu_seqlens_k max_seqlen_in_batch_q = max_seqlen_in_batch_k indices_q = indices_k elif query_length == 1: max_seqlen_in_batch_q = 1 cu_seqlens_q = torch.arange( batch_size + 1, dtype=torch.int32, device=query_layer.device ) # There is a memcpy here, that is very bad. indices_q = cu_seqlens_q[:-1] query_layer = query_layer.squeeze(1) else: # The -q_len: slice assumes left padding. attention_mask = attention_mask[:, -query_length:] query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) return ( query_layer, key_layer, value_layer, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_in_batch_q, max_seqlen_in_batch_k), ) # Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Mistral class MistralSdpaAttention(MistralAttention): """ Mistral attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from `MistralAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to SDPA API. """ # Adapted from MistralAttention.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "MistralModel is using MistralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and attention_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=self.attention_dropout if self.training else 0.0, # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. is_causal=self.is_causal and attention_mask is None and q_len > 1, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value MISTRAL_ATTENTION_CLASSES = { "eager": MistralAttention, "flash_attention_2": MistralFlashAttention2, "sdpa": MistralSdpaAttention, } class MistralDecoderLayer(nn.Module): def __init__(self, config: MistralConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) self.mlp = MistralMLP(config) self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs MISTRAL_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MistralConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare Mistral Model outputting raw hidden-states without any specific head on top.", MISTRAL_START_DOCSTRING, ) class MistralPreTrainedModel(PreTrainedModel): config_class = MistralConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["MistralDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_sdpa = True _supports_cache_class = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() MISTRAL_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance; - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Mistral Model outputting raw hidden-states without any specific head on top.", MISTRAL_START_DOCSTRING, ) class MistralModel(MistralPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`] Args: config: MistralConfig """ def __init__(self, config: MistralConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self._attn_implementation = config._attn_implementation self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False past_key_values_length = 0 if use_cache: use_legacy_cache = not isinstance(past_key_values, Cache) if use_legacy_cache: past_key_values = DynamicCache.from_legacy_cache(past_key_values) past_key_values_length = past_key_values.get_usable_length(seq_length) if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0).view(-1, seq_length) else: position_ids = position_ids.view(-1, seq_length).long() if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache: is_padding_right = attention_mask[:, -1].sum().item() != batch_size if is_padding_right: raise ValueError( "You are attempting to perform batched generation with padding_side='right'" " this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to " " call `tokenizer.padding_side = 'left'` before tokenizing the input. " ) if self._attn_implementation == "flash_attention_2": # 2d mask is passed through the layers attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None elif self._attn_implementation == "sdpa" and not output_attentions: # output_attentions=True can not be supported when using SDPA, and we fall back on # the manual implementation that requires a 4D causal mask in all cases. attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, ) else: # 4d mask is passed through the layers attention_mask = _prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, sliding_window=self.config.sliding_window, ) hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, position_ids, past_key_values, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = None if use_cache: next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class MistralForCausalLM(MistralPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = MistralModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, MistralForCausalLM >>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1") >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) logits = logits.float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs ): # Omit tokens covered by past_key_values if past_key_values is not None: if isinstance(past_key_values, Cache): cache_length = past_key_values.get_seq_length() past_length = past_key_values.seen_tokens max_cache_length = past_key_values.get_max_length() else: cache_length = past_length = past_key_values[0][0].shape[2] max_cache_length = None # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as # input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. if ( max_cache_length is not None and attention_mask is not None and cache_length + input_ids.shape[1] > max_cache_length ): attention_mask = attention_mask[:, -max_cache_length:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past @add_start_docstrings( """ The Mistral Model transformer with a sequence classification head on top (linear layer). [`MistralForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, MISTRAL_START_DOCSTRING, ) # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Mistral, LLAMA->MISTRAL class MistralForSequenceClassification(MistralPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = MistralModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/mistral/__init__.py
# Copyright 2023 Mistral AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _import_structure = { "configuration_mistral": ["MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP", "MistralConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_mistral"] = [ "MistralForCausalLM", "MistralModel", "MistralPreTrainedModel", "MistralForSequenceClassification", ] if TYPE_CHECKING: from .configuration_mistral import MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP, MistralConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mistral import ( MistralForCausalLM, MistralForSequenceClassification, MistralModel, MistralPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/mistral/configuration_mistral.py
# coding=utf-8 # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Mistral model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = { "mistralai/Mistral-7B-v0.1": "https://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.json", "mistralai/Mistral-7B-Instruct-v0.1": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json", } class MistralConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1. [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MistralModel`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 14336): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. num_key_value_heads (`int`, *optional*, defaults to 8): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to `4096*32`): The maximum sequence length that this model might ever be used with. Mistral's sliding window attention allows sequence of up to 4096*32 tokens. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*): The id of the padding token. bos_token_id (`int`, *optional*, defaults to 1): The id of the "beginning-of-sequence" token. eos_token_id (`int`, *optional*, defaults to 2): The id of the "end-of-sequence" token. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether the model's input and output word embeddings should be tied. rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. sliding_window (`int`, *optional*, defaults to 4096): Sliding window attention window size. If not specified, will default to `4096`. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. ```python >>> from transformers import MistralModel, MistralConfig >>> # Initializing a Mistral 7B style configuration >>> configuration = MistralConfig() >>> # Initializing a model from the Mistral 7B style configuration >>> model = MistralModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mistral" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=32000, hidden_size=4096, intermediate_size=14336, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=8, hidden_act="silu", max_position_embeddings=4096 * 32, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, rope_theta=10000.0, sliding_window=4096, attention_dropout=0.0, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.sliding_window = sliding_window # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.attention_dropout = attention_dropout super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/mistral/convert_mistral_weights_to_hf.py
# Copyright 2023 Mistral AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import gc import json import os import shutil import warnings import torch from transformers import ( LlamaTokenizer, MistralConfig, MistralForCausalLM, ) try: from transformers import LlamaTokenizerFast tokenizer_class = LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" ) tokenizer_class = LlamaTokenizer """ Sample usage: ``` python src/transformers/models/mistral/convert_mistral_weights_to_hf.py \ --input_dir /path/to/downloaded/mistral/weights --model_size 7B --output_dir /output/path ``` Thereafter, models can be loaded via: ```py from transformers import MistralForCausalLM, LlamaTokenizer model = MistralForCausalLM.from_pretrained("/output/path") tokenizer = LlamaTokenizer.from_pretrained("/output/path") ``` Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). """ NUM_SHARDS = {"7B": 1} def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of) def read_json(path): with open(path, "r") as f: return json.load(f) def write_json(text, path): with open(path, "w") as f: json.dump(text, f) def write_model(model_path, input_base_path, model_size, tokenizer_path=None, safe_serialization=True): # for backward compatibility, before you needed the repo to be called `my_repo/model_size` if not os.path.isfile(os.path.join(input_base_path, "params.json")): input_base_path = os.path.join(input_base_path, model_size) os.makedirs(model_path, exist_ok=True) tmp_model_path = os.path.join(model_path, "tmp") os.makedirs(tmp_model_path, exist_ok=True) params = read_json(os.path.join(input_base_path, "params.json")) num_shards = NUM_SHARDS[model_size] # For some reason this is a string in the params.json sliding_window = int(params["sliding_window"]) n_layers = params["n_layers"] n_heads = params["n_heads"] n_heads_per_shard = n_heads // num_shards dim = params["dim"] dims_per_head = dim // n_heads base = params.get("rope_theta", 10000.0) inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head)) max_position_embeddings = 4096 * 8 if tokenizer_path is not None: tokenizer = tokenizer_class(tokenizer_path) tokenizer.save_pretrained(model_path) vocab_size = tokenizer.vocab_size if tokenizer_path is not None else 32000 if "n_kv_heads" in params: num_key_value_heads = params["n_kv_heads"] # for GQA / MQA num_local_key_value_heads = num_key_value_heads // num_shards key_value_dim = dims_per_head * num_local_key_value_heads else: # compatibility with other checkpoints num_key_value_heads = n_heads num_local_key_value_heads = n_heads_per_shard key_value_dim = dim # permute for sliced rotary def permute(w, n_heads=n_heads, dim1=dim, dim2=dim): return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2) print(f"Fetching all parameters from the checkpoint at {input_base_path}.") # Load weights loaded = [ torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu") for i in range(num_shards) ] param_count = 0 index_dict = {"weight_map": {}} for layer_i in range(n_layers): filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. state_dict = { f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ f"layers.{layer_i}.attention_norm.weight" ].clone(), f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ f"layers.{layer_i}.ffn_norm.weight" ].clone(), } state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim) for i in range(num_shards) ], dim=0, ).reshape(dim, dim) ) state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wk.weight"].view( num_local_key_value_heads, dims_per_head, dim ) for i in range(num_shards) ], dim=0, ).reshape(key_value_dim, dim), num_key_value_heads, key_value_dim, dim, ) state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(num_local_key_value_heads, dims_per_head, dim) for i in range(num_shards) ], dim=0, ).reshape(key_value_dim, dim) state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat( [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1 ) state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0 ) state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1 ) state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0 ) state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq for k, v in state_dict.items(): index_dict["weight_map"][k] = filename param_count += v.numel() torch.save(state_dict, os.path.join(tmp_model_path, filename)) filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" state_dict = { "model.norm.weight": loaded[0]["norm.weight"], "model.embed_tokens.weight": torch.cat([loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1), "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0), } for k, v in state_dict.items(): index_dict["weight_map"][k] = filename param_count += v.numel() torch.save(state_dict, os.path.join(tmp_model_path, filename)) # Write configs index_dict["metadata"] = {"total_size": param_count * 2} write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json")) config = MistralConfig( hidden_size=dim, intermediate_size=params["hidden_dim"], num_attention_heads=params["n_heads"], num_hidden_layers=params["n_layers"], rms_norm_eps=params["norm_eps"], num_key_value_heads=num_key_value_heads, vocab_size=vocab_size, rope_theta=base, max_position_embeddings=max_position_embeddings, sliding_window=sliding_window, ) config.save_pretrained(tmp_model_path) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("Loading the checkpoint in a Mistral model.") model = MistralForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True) # Avoid saving this as part of the config. del model.config._name_or_path model.config.torch_dtype = torch.float16 print("Saving in the Transformers format.") model.save_pretrained(model_path, safe_serialization=safe_serialization) shutil.rmtree(tmp_model_path) def write_tokenizer(tokenizer_path, input_tokenizer_path): # Initialize the tokenizer based on the `spm` model print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.") tokenizer = tokenizer_class(input_tokenizer_path) tokenizer.save_pretrained(tokenizer_path) def main(): parser = argparse.ArgumentParser() parser.add_argument( "--input_dir", help="Location of Mistral weights, which contains tokenizer.model and model folders", ) parser.add_argument( "--model_size", choices=["7B", "tokenizer_only"], help="'f' models correspond to the finetuned versions, and are specific to the Mistral2 official release. For more details on Mistral2, checkout the original repo: https://huggingface.co/meta-mistral", ) parser.add_argument( "--output_dir", help="Location to write HF model and tokenizer", ) parser.add_argument("--safe_serialization", type=bool, help="Whether or not to save using `safetensors`.") args = parser.parse_args() spm_path = os.path.join(args.input_dir, "tokenizer.model") if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir, input_base_path=args.input_dir, model_size=args.model_size, safe_serialization=args.safe_serialization, tokenizer_path=spm_path, ) else: write_tokenizer(args.output_dir, spm_path) if __name__ == "__main__": main()
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/vilt/modeling_vilt.py
# coding=utf-8 # Copyright 2022 NAVER AI Labs and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch ViLT model.""" import collections.abc import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, ModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import ( find_pruneable_heads_and_indices, meshgrid, prune_linear_layer, ) from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_vilt import ViltConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "ViltConfig" _CHECKPOINT_FOR_DOC = "dandelin/vilt-b32-mlm" VILT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "dandelin/vilt-b32-mlm", # See all ViLT models at https://huggingface.co/models?filter=vilt ] @dataclass class ViltForImagesAndTextClassificationOutput(ModelOutput): """ Class for outputs of [`ViltForImagesAndTextClassification`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification (or regression if config.num_labels==1) loss. logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (`List[tuple(torch.FloatTensor)]`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): List of tuples of `torch.FloatTensor` (one for each image-text pair, each tuple containing the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`List[tuple(torch.FloatTensor)]`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): List of tuples of `torch.FloatTensor` (one for each image-text pair, each tuple containing the attention weights of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[List[Tuple[torch.FloatTensor]]] = None attentions: Optional[List[Tuple[torch.FloatTensor]]] = None class ViltEmbeddings(nn.Module): """ Construct the text and patch embeddings. Text embeddings are equivalent to BERT embeddings. Patch embeddings are equivalent to ViT embeddings. """ def __init__(self, config): super().__init__() # text embeddings self.text_embeddings = TextEmbeddings(config) # patch embeddings self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.patch_embeddings = ViltPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) # modality type (text/patch) embeddings self.token_type_embeddings = nn.Embedding(config.modality_type_vocab_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.config = config def visual_embed(self, pixel_values, pixel_mask, max_image_length=200): _, _, ph, pw = self.patch_embeddings.projection.weight.shape x = self.patch_embeddings(pixel_values) x_mask = pixel_mask[:, None, :, :].float() x_mask = nn.functional.interpolate(x_mask, size=(x.shape[2], x.shape[3])).long() x_h = x_mask[:, 0].sum(dim=1)[:, 0] x_w = x_mask[:, 0].sum(dim=2)[:, 0] batch_size, num_channels, height, width = x.shape patch_dim = self.config.image_size // self.config.patch_size spatial_pos = self.position_embeddings[:, 1:, :].transpose(1, 2).view(1, num_channels, patch_dim, patch_dim) pos_embed = torch.cat( [ nn.functional.pad( nn.functional.interpolate( spatial_pos, size=(h, w), mode="bilinear", align_corners=True, ), (0, width - w, 0, height - h), ) for h, w in zip(x_h, x_w) ], dim=0, ) pos_embed = pos_embed.flatten(2).transpose(1, 2) x = x.flatten(2).transpose(1, 2) # Set `device` here, otherwise `patch_index` will always be on `CPU` and will fail near the end for torch>=1.13 patch_index = torch.stack( meshgrid(torch.arange(x_mask.shape[-2]), torch.arange(x_mask.shape[-1]), indexing="ij"), dim=-1 ).to(device=x_mask.device) patch_index = patch_index[None, None, :, :, :] patch_index = patch_index.expand(x_mask.shape[0], x_mask.shape[1], -1, -1, -1) patch_index = patch_index.flatten(1, 3) x_mask = x_mask.flatten(1) if max_image_length < 0 or max_image_length is None or not isinstance(max_image_length, int): # suppose aug is 800 x 1333, then, maximum effective res is 800 x 1333 (if one side gets bigger, the other will be constrained and be shrinked) # (800 // self.patch_size) * (1333 // self.patch_size) is the maximum number of patches that single image can get. # if self.patch_size = 32, 25 * 41 = 1025 # if res is 384 x 640, 12 * 20 = 240 effective_resolution = x_h * x_w max_image_length = effective_resolution.max() else: effective_resolution = x_h * x_w max_image_length = min(effective_resolution.max(), max_image_length) valid_idx = x_mask.nonzero(as_tuple=False) non_valid_idx = (1 - x_mask).nonzero(as_tuple=False) unique_rows = valid_idx[:, 0].unique() valid_row_idx = [valid_idx[valid_idx[:, 0] == u] for u in unique_rows] non_valid_row_idx = [non_valid_idx[non_valid_idx[:, 0] == u] for u in unique_rows] valid_nums = [v.size(0) for v in valid_row_idx] non_valid_nums = [v.size(0) for v in non_valid_row_idx] pad_nums = [max_image_length - v for v in valid_nums] select = [] for i, (v, nv, p) in enumerate(zip(valid_nums, non_valid_nums, pad_nums)): if p <= 0: valid_choice = torch.multinomial(torch.ones(v).float(), max_image_length) select.append(valid_row_idx[i][valid_choice]) else: pad_choice = torch.multinomial(torch.ones(nv).float(), p, replacement=True) select.append(torch.cat([valid_row_idx[i], non_valid_row_idx[i][pad_choice]], dim=0)) select = torch.cat(select, dim=0) x = x[select[:, 0], select[:, 1]].view(batch_size, -1, num_channels) x_mask = x_mask[select[:, 0], select[:, 1]].view(batch_size, -1) # `patch_index` should be on the same device as `select` (for torch>=1.13), which is ensured at definition time. patch_index = patch_index[select[:, 0], select[:, 1]].view(batch_size, -1, 2) pos_embed = pos_embed[select[:, 0], select[:, 1]].view(batch_size, -1, num_channels) cls_tokens = self.cls_token.expand(batch_size, -1, -1) x = torch.cat((cls_tokens, x), dim=1) pos_embed = torch.cat( (self.position_embeddings[:, 0, :][:, None, :].expand(batch_size, -1, -1), pos_embed), dim=1 ) x = x + pos_embed x = self.dropout(x) x_mask = torch.cat([torch.ones(x_mask.shape[0], 1).to(x_mask), x_mask], dim=1) return x, x_mask, (patch_index, (height, width)) def forward( self, input_ids, attention_mask, token_type_ids, pixel_values, pixel_mask, inputs_embeds, image_embeds, image_token_type_idx=1, ): # PART 1: text embeddings text_embeds = self.text_embeddings( input_ids=input_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) # PART 2: patch embeddings (with interpolated position encodings) if image_embeds is None: image_embeds, image_masks, patch_index = self.visual_embed( pixel_values, pixel_mask, max_image_length=self.config.max_image_length ) else: image_masks = pixel_mask.flatten(1) # PART 3: add modality type embeddings # 0 indicates text, 1 indicates image, 2 is optionally used when a second image is provided (NLVR2) if image_token_type_idx is None: image_token_type_idx = 1 text_embeds = text_embeds + self.token_type_embeddings( torch.zeros_like(attention_mask, dtype=torch.long, device=text_embeds.device) ) image_embeds = image_embeds + self.token_type_embeddings( torch.full_like(image_masks, image_token_type_idx, dtype=torch.long, device=text_embeds.device) ) # PART 4: concatenate embeddings = torch.cat([text_embeds, image_embeds], dim=1) masks = torch.cat([attention_mask, image_masks], dim=1) return embeddings, masks class TextEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class ViltPatchEmbeddings(nn.Module): """ Image to Patch Embedding. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values): batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) x = self.projection(pixel_values) return x class ViltSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->Vilt class ViltSelfOutput(nn.Module): """ The residual connection is defined in ViltLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: ViltConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class ViltAttention(nn.Module): def __init__(self, config): super().__init__() self.attention = ViltSelfAttention(config) self.output = ViltSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False): self_outputs = self.attention(hidden_states, attention_mask, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->Vilt class ViltIntermediate(nn.Module): def __init__(self, config: ViltConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->Vilt class ViltOutput(nn.Module): def __init__(self, config: ViltConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states class ViltLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = ViltAttention(config) self.intermediate = ViltIntermediate(config) self.output = ViltOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False): self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in ViLT, layernorm is applied before self-attention attention_mask, head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + hidden_states.to(attention_output.device) # in ViLT, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs class ViltEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([ViltLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class ViltPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ViltConfig base_model_prefix = "vilt" supports_gradient_checkpointing = True _no_split_modules = ["ViltEmbeddings", "ViltSelfAttention"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) VILT_START_DOCSTRING = r""" This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ViltConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ VILT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViltImageProcessor.__call__`] for details. pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). `What are attention masks? <../glossary.html#attention-mask>`__ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. image_embeds (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`, *optional*): Optionally, instead of passing `pixel_values`, you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `pixel_values` into patch embeddings. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ VILT_IMAGES_AND_TEXT_CLASSIFICATION_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_images, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViltImageProcessor.__call__`] for details. pixel_mask (`torch.LongTensor` of shape `(batch_size, num_images, height, width)`, *optional*): Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). `What are attention masks? <../glossary.html#attention-mask>`__ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. image_embeds (`torch.FloatTensor` of shape `(batch_size, num_images, num_patches, hidden_size)`, *optional*): Optionally, instead of passing `pixel_values`, you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `pixel_values` into patch embeddings. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare ViLT Model transformer outputting raw hidden-states without any specific head on top.", VILT_START_DOCSTRING, ) class ViltModel(ViltPreTrainedModel): def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = ViltEmbeddings(config) self.encoder = ViltEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pooler = ViltPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.text_embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.text_embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(VILT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, image_embeds: Optional[torch.FloatTensor] = None, image_token_type_idx: Optional[int] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[BaseModelOutputWithPooling, Tuple[torch.FloatTensor]]: r""" Returns: Examples: ```python >>> from transformers import ViltProcessor, ViltModel >>> from PIL import Image >>> import requests >>> # prepare image and text >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "hello world" >>> processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-mlm") >>> model = ViltModel.from_pretrained("dandelin/vilt-b32-mlm") >>> inputs = processor(image, text, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") text_batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(((text_batch_size, seq_length)), device=device) if pixel_values is not None and image_embeds is not None: raise ValueError("You cannot specify both pixel_values and image_embeds at the same time") elif pixel_values is None and image_embeds is None: raise ValueError("You have to specify either pixel_values or image_embeds") image_batch_size = pixel_values.shape[0] if pixel_values is not None else image_embeds.shape[0] if image_batch_size != text_batch_size: raise ValueError("The text inputs and image inputs need to have the same batch size") if pixel_mask is None: pixel_mask = torch.ones((image_batch_size, self.config.image_size, self.config.image_size), device=device) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output, attention_mask = self.embeddings( input_ids, attention_mask, token_type_ids, pixel_values, pixel_mask, inputs_embeds, image_embeds, image_token_type_idx=image_token_type_idx, ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class ViltPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output @add_start_docstrings( """ ViLT Model with a language modeling head on top as done during pretraining. """, VILT_START_DOCSTRING, ) class ViltForMaskedLM(ViltPreTrainedModel): _tied_weights_keys = ["mlm_score.decoder.weight", "mlm_score.decoder.bias"] def __init__(self, config): super().__init__(config) self.vilt = ViltModel(config) self.mlm_score = ViltMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.mlm_score.decoder def set_output_embeddings(self, new_embeddings): self.mlm_score.decoder = new_embeddings @add_start_docstrings_to_model_forward(VILT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, image_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[MaskedLMOutput, Tuple[torch.FloatTensor]]: r""" labels (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*): Labels for computing the masked language modeling loss. Indices should be in *[-100, 0, ..., config.vocab_size]* (see *input_ids* docstring) Tokens with indices set to *-100* are ignored (masked), the loss is only computed for the tokens with labels in *[0, ..., config.vocab_size]* Returns: Examples: ```python >>> from transformers import ViltProcessor, ViltForMaskedLM >>> import requests >>> from PIL import Image >>> import re >>> import torch >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "a bunch of [MASK] laying on a [MASK]." >>> processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-mlm") >>> model = ViltForMaskedLM.from_pretrained("dandelin/vilt-b32-mlm") >>> # prepare inputs >>> encoding = processor(image, text, return_tensors="pt") >>> # forward pass >>> outputs = model(**encoding) >>> tl = len(re.findall("\[MASK\]", text)) >>> inferred_token = [text] >>> # gradually fill in the MASK tokens, one by one >>> with torch.no_grad(): ... for i in range(tl): ... encoded = processor.tokenizer(inferred_token) ... input_ids = torch.tensor(encoded.input_ids) ... encoded = encoded["input_ids"][0][1:-1] ... outputs = model(input_ids=input_ids, pixel_values=encoding.pixel_values) ... mlm_logits = outputs.logits[0] # shape (seq_len, vocab_size) ... # only take into account text features (minus CLS and SEP token) ... mlm_logits = mlm_logits[1 : input_ids.shape[1] - 1, :] ... mlm_values, mlm_ids = mlm_logits.softmax(dim=-1).max(dim=-1) ... # only take into account text ... mlm_values[torch.tensor(encoded) != 103] = 0 ... select = mlm_values.argmax().item() ... encoded[select] = mlm_ids[select].item() ... inferred_token = [processor.decode(encoded)] >>> selected_token = "" >>> encoded = processor.tokenizer(inferred_token) >>> output = processor.decode(encoded.input_ids[0], skip_special_tokens=True) >>> print(output) a bunch of cats laying on a couch. ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vilt( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, pixel_values=pixel_values, pixel_mask=pixel_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, image_embeds=image_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] # split up final hidden states into text and image features text_seq_len = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] text_features, _ = (sequence_output[:, :text_seq_len], sequence_output[:, text_seq_len:]) mlm_logits = self.mlm_score(text_features) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token # move labels to correct device to enable PP labels = labels.to(mlm_logits.device) masked_lm_loss = loss_fct(mlm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (mlm_logits,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=mlm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class ViltPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class ViltMLMHead(nn.Module): def __init__(self, config, weight=None): super().__init__() self.config = config self.transform = ViltPredictionHeadTransform(config) self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) if weight is not None: self.decoder.weight = weight # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, x): x = self.transform(x) x = self.decoder(x) return x @add_start_docstrings( """ Vilt Model transformer with a classifier head on top (a linear layer on top of the final hidden state of the [CLS] token) for visual question answering, e.g. for VQAv2. """, VILT_START_DOCSTRING, ) class ViltForQuestionAnswering(ViltPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.vilt = ViltModel(config) # Classifier head self.classifier = nn.Sequential( nn.Linear(config.hidden_size, config.hidden_size * 2), nn.LayerNorm(config.hidden_size * 2), nn.GELU(), nn.Linear(config.hidden_size * 2, config.num_labels), ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VILT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, image_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[SequenceClassifierOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.FloatTensor` of shape `(batch_size, num_labels)`, *optional*): Labels for computing the visual question answering loss. This tensor must be either a one-hot encoding of all answers that are applicable for a given example in the batch, or a soft encoding indicating which answers are applicable, where 1.0 is the highest score. Returns: Examples: ```python >>> from transformers import ViltProcessor, ViltForQuestionAnswering >>> import requests >>> from PIL import Image >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "How many cats are there?" >>> processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa") >>> model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa") >>> # prepare inputs >>> encoding = processor(image, text, return_tensors="pt") >>> # forward pass >>> outputs = model(**encoding) >>> logits = outputs.logits >>> idx = logits.argmax(-1).item() >>> print("Predicted answer:", model.config.id2label[idx]) Predicted answer: 2 ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vilt( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, pixel_values=pixel_values, pixel_mask=pixel_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, image_embeds=image_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooler_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooler_output) loss = None if labels is not None: # move labels to correct device to enable PP labels = labels.to(logits.device) loss = nn.functional.binary_cross_entropy_with_logits(logits, labels) * labels.shape[1] # see https://github.com/jnhwkim/ban-vqa/blob/master/train.py#L19 if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Vilt Model transformer with a classifier head on top (a linear layer on top of the final hidden state of the [CLS] token) for image-to-text or text-to-image retrieval, e.g. MSCOCO and F30K. """, VILT_START_DOCSTRING, ) class ViltForImageAndTextRetrieval(ViltPreTrainedModel): def __init__(self, config): super().__init__(config) self.vilt = ViltModel(config) # Classifier head self.rank_output = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VILT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, image_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[SequenceClassifierOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels are currently not supported. Returns: Examples: ```python >>> from transformers import ViltProcessor, ViltForImageAndTextRetrieval >>> import requests >>> from PIL import Image >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"] >>> processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-coco") >>> model = ViltForImageAndTextRetrieval.from_pretrained("dandelin/vilt-b32-finetuned-coco") >>> # forward pass >>> scores = dict() >>> for text in texts: ... # prepare inputs ... encoding = processor(image, text, return_tensors="pt") ... outputs = model(**encoding) ... scores[text] = outputs.logits[0, :].item() ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vilt( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, pixel_values=pixel_values, pixel_mask=pixel_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, image_embeds=image_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooler_output = outputs.pooler_output if return_dict else outputs[1] logits = self.rank_output(pooler_output) loss = None if labels is not None: # move labels to correct device to enable PP labels = labels.to(logits.device) raise NotImplementedError("Training is not yet supported.") if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Vilt Model transformer with a classifier head on top for natural language visual reasoning, e.g. NLVR2. """, VILT_IMAGES_AND_TEXT_CLASSIFICATION_INPUTS_DOCSTRING, ) class ViltForImagesAndTextClassification(ViltPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.vilt = ViltModel(config) # Classifier head num_images = config.num_images self.classifier = nn.Sequential( nn.Linear(config.hidden_size * num_images, config.hidden_size * num_images), nn.LayerNorm(config.hidden_size * num_images), nn.GELU(), nn.Linear(config.hidden_size * num_images, config.num_labels), ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VILT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ViltForImagesAndTextClassificationOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, image_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[ViltForImagesAndTextClassificationOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Binary classification labels. Returns: Examples: ```python >>> from transformers import ViltProcessor, ViltForImagesAndTextClassification >>> import requests >>> from PIL import Image >>> image1 = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg", stream=True).raw) >>> image2 = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_1.jpg", stream=True).raw) >>> text = "The left image contains twice the number of dogs as the right image." >>> processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-nlvr2") >>> model = ViltForImagesAndTextClassification.from_pretrained("dandelin/vilt-b32-finetuned-nlvr2") >>> # prepare inputs >>> encoding = processor([image1, image2], text, return_tensors="pt") >>> # forward pass >>> outputs = model(input_ids=encoding.input_ids, pixel_values=encoding.pixel_values.unsqueeze(0)) >>> logits = outputs.logits >>> idx = logits.argmax(-1).item() >>> print("Predicted answer:", model.config.id2label[idx]) Predicted answer: True ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is not None and pixel_values.ndim == 4: # add dummy num_images dimension pixel_values = pixel_values.unsqueeze(1) if image_embeds is not None and image_embeds.ndim == 3: # add dummy num_images dimension image_embeds = image_embeds.unsqueeze(1) num_images = pixel_values.shape[1] if pixel_values is not None else None if num_images is None: num_images = image_embeds.shape[1] if image_embeds is not None else None if num_images != self.config.num_images: raise ValueError( "Make sure to match the number of images in the model with the number of images in the input." ) pooler_outputs = [] hidden_states = [] if output_hidden_states else None attentions = [] if output_attentions else None for i in range(num_images): # forward every image through the model outputs = self.vilt( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, pixel_values=pixel_values[:, i, :, :, :] if pixel_values is not None else None, pixel_mask=pixel_mask[:, i, :, :] if pixel_mask is not None else None, head_mask=head_mask, inputs_embeds=inputs_embeds, image_embeds=image_embeds[:, i, :, :] if image_embeds is not None else None, image_token_type_idx=i + 1, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooler_output = outputs.pooler_output if return_dict else outputs[1] pooler_outputs.append(pooler_output) if output_hidden_states: hidden_states.append(outputs.hidden_states) if output_attentions: attentions.append(outputs.attentions) pooled_output = torch.cat(pooler_outputs, dim=-1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # move labels to correct device to enable PP labels = labels.to(logits.device) loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits, hidden_states, attentions) return ((loss,) + output) if loss is not None else output return ViltForImagesAndTextClassificationOutput( loss=loss, logits=logits, hidden_states=hidden_states, attentions=attentions, ) @add_start_docstrings( """ ViLT Model with a token classification head on top (a linear layer on top of the final hidden-states of the text tokens) e.g. for Named-Entity-Recognition (NER) tasks. """, VILT_START_DOCSTRING, ) class ViltForTokenClassification(ViltPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.vilt = ViltModel(config, add_pooling_layer=False) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VILT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, image_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[TokenClassifierOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size, text_sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vilt( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, pixel_values=pixel_values, pixel_mask=pixel_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, image_embeds=image_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] text_input_size = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output[:, :text_input_size]) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # move labels to correct device to enable PP labels = labels.to(logits.device) loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/vilt/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = {"configuration_vilt": ["VILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViltConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_vilt"] = ["ViltFeatureExtractor"] _import_structure["image_processing_vilt"] = ["ViltImageProcessor"] _import_structure["processing_vilt"] = ["ViltProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_vilt"] = [ "VILT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViltForImageAndTextRetrieval", "ViltForImagesAndTextClassification", "ViltForTokenClassification", "ViltForMaskedLM", "ViltForQuestionAnswering", "ViltLayer", "ViltModel", "ViltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vilt import VILT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViltConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vilt import ViltFeatureExtractor from .image_processing_vilt import ViltImageProcessor from .processing_vilt import ViltProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vilt import ( VILT_PRETRAINED_MODEL_ARCHIVE_LIST, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltForTokenClassification, ViltLayer, ViltModel, ViltPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/vilt/convert_vilt_original_to_pytorch.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ViLT checkpoints from the original Github repository.""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(config, vqa_model=False, nlvr_model=False, irtr_model=False): rename_keys = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight")) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias")) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, config): for i in range(config.num_hidden_layers): prefix = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ : config.hidden_size, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ -config.hidden_size :, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] def remove_classification_head_(state_dict): ignore_keys = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(k, None) def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val @torch.no_grad() def convert_vilt_checkpoint(checkpoint_url, pytorch_dump_folder_path): """ Copy/paste/tweak model's weights to our ViLT structure. """ # define configuration and initialize HuggingFace model config = ViltConfig(image_size=384, patch_size=32, tie_word_embeddings=False) mlm_model = False vqa_model = False nlvr_model = False irtr_model = False if "vqa" in checkpoint_url: vqa_model = True config.num_labels = 3129 repo_id = "huggingface/label-files" filename = "vqa2-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} model = ViltForQuestionAnswering(config) elif "nlvr" in checkpoint_url: nlvr_model = True config.num_labels = 2 config.id2label = {0: "False", 1: "True"} config.label2id = {v: k for k, v in config.id2label.items()} config.modality_type_vocab_size = 3 model = ViltForImagesAndTextClassification(config) elif "irtr" in checkpoint_url: irtr_model = True model = ViltForImageAndTextRetrieval(config) elif "mlm_itm" in checkpoint_url: mlm_model = True model = ViltForMaskedLM(config) else: raise ValueError("Unknown model type") # load state_dict of original model, remove and rename some keys state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")["state_dict"] rename_keys = create_rename_keys(config, vqa_model, nlvr_model, irtr_model) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_q_k_v(state_dict, config) if mlm_model or irtr_model: ignore_keys = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(k, None) # load state dict into HuggingFace model model.eval() if mlm_model: missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(state_dict) # Define processor image_processor = ViltImageProcessor(size=384) tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") processor = ViltProcessor(image_processor, tokenizer) # Forward pass on example inputs (image + text) if nlvr_model: image1 = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg", stream=True).raw) image2 = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg", stream=True).raw) text = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) encoding_1 = processor(image1, text, return_tensors="pt") encoding_2 = processor(image2, text, return_tensors="pt") outputs = model( input_ids=encoding_1.input_ids, pixel_values=encoding_1.pixel_values, pixel_values_2=encoding_2.pixel_values, ) else: image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw) if mlm_model: text = "a bunch of [MASK] laying on a [MASK]." else: text = "How many cats are there?" encoding = processor(image, text, return_tensors="pt") outputs = model(**encoding) # Verify outputs if mlm_model: expected_shape = torch.Size([1, 11, 30522]) expected_slice = torch.tensor([-12.5061, -12.5123, -12.5174]) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3], expected_slice, atol=1e-4) # verify masked token prediction equals "cats" predicted_id = outputs.logits[0, 4, :].argmax(-1).item() assert tokenizer.decode([predicted_id]) == "cats" elif vqa_model: expected_shape = torch.Size([1, 3129]) expected_slice = torch.tensor([-15.9495, -18.1472, -10.3041]) assert torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3], expected_slice, atol=1e-4) # verify vqa prediction equals "2" predicted_idx = outputs.logits.argmax(-1).item() assert model.config.id2label[predicted_idx] == "2" elif nlvr_model: expected_shape = torch.Size([1, 2]) expected_slice = torch.tensor([-2.8721, 2.1291]) assert torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4) assert outputs.logits.shape == expected_shape Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model and processor to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) processor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) args = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/vilt/feature_extraction_vilt.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for ViLT.""" import warnings from ...utils import logging from .image_processing_vilt import ViltImageProcessor logger = logging.get_logger(__name__) class ViltFeatureExtractor(ViltImageProcessor): def __init__(self, *args, **kwargs) -> None: warnings.warn( "The class ViltFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use ViltImageProcessor instead.", FutureWarning, ) super().__init__(*args, **kwargs)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/vilt/image_processing_vilt.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for Vilt.""" from typing import Any, Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import PaddingMode, pad, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL logger = logging.get_logger(__name__) def max_across_indices(values: Iterable[Any]) -> List[Any]: """ Return the maximum value across all indices of an iterable of values. """ return [max(values_i) for values_i in zip(*values)] def make_pixel_mask( image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: """ Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding. Args: image (`np.ndarray`): Image to make the pixel mask for. output_size (`Tuple[int, int]`): Output size of the mask. """ input_height, input_width = get_image_size(image, channel_dim=input_data_format) mask = np.zeros(output_size, dtype=np.int64) mask[:input_height, :input_width] = 1 return mask def get_max_height_width( images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None ) -> List[int]: """ Get the maximum height and width across all images in a batch. """ if input_data_format is None: input_data_format = infer_channel_dimension_format(images[0]) if input_data_format == ChannelDimension.FIRST: _, max_height, max_width = max_across_indices([img.shape for img in images]) elif input_data_format == ChannelDimension.LAST: max_height, max_width, _ = max_across_indices([img.shape for img in images]) else: raise ValueError(f"Invalid channel dimension format: {input_data_format}") return (max_height, max_width) def get_resize_output_image_size( input_image: np.ndarray, shorter: int = 800, longer: int = 1333, size_divisor: int = 32, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> Tuple[int, int]: input_height, input_width = get_image_size(input_image, input_data_format) min_size, max_size = shorter, longer scale = min_size / min(input_height, input_width) if input_height < input_width: new_height = min_size new_width = scale * input_width else: new_height = scale * input_height new_width = min_size if max(new_height, new_width) > max_size: scale = max_size / max(new_height, new_width) new_height = scale * new_height new_width = scale * new_width new_height, new_width = int(new_height + 0.5), int(new_width + 0.5) new_height = new_height // size_divisor * size_divisor new_width = new_width // size_divisor * size_divisor return new_height, new_width class ViltImageProcessor(BaseImageProcessor): r""" Constructs a ViLT image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 384}`): Resize the shorter side of the input to `size["shortest_edge"]`. The longer side will be limited to under `int((1333 / 800) * size["shortest_edge"])` while preserving the aspect ratio. Only has an effect if `do_resize` is set to `True`. Can be overridden by the `size` parameter in the `preprocess` method. size_divisor (`int`, *optional*, defaults to 32): The size by which to make sure both the height and width can be divided. Only has an effect if `do_resize` is set to `True`. Can be overridden by the `size_divisor` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. Can be overridden by the `resample` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Wwhether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. do_pad (`bool`, *optional*, defaults to `True`): Whether to pad the image to the `(max_height, max_width)` of the images in the batch. Can be overridden by the `do_pad` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, size_divisor: int = 32, resample: PILImageResampling = PILImageResampling.BICUBIC, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_pad: bool = True, **kwargs, ) -> None: if "pad_and_return_pixel_mask" in kwargs: do_pad = kwargs.pop("pad_and_return_pixel_mask") super().__init__(**kwargs) size = size if size is not None else {"shortest_edge": 384} size = get_size_dict(size, default_to_square=False) self.do_resize = do_resize self.size = size self.size_divisor = size_divisor self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD self.do_pad = do_pad @classmethod def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs): """ Overrides the `from_dict` method from the base class to make sure `reduce_labels` is updated if image processor is created using from_dict and kwargs e.g. `ViltImageProcessor.from_pretrained(checkpoint, pad_and_return_pixel_mask=False)` """ image_processor_dict = image_processor_dict.copy() if "pad_and_return_pixel_mask" in kwargs: image_processor_dict["pad_and_return_pixel_mask"] = kwargs.pop("pad_and_return_pixel_mask") return super().from_dict(image_processor_dict, **kwargs) def resize( self, image: np.ndarray, size: Dict[str, int], size_divisor: int = 32, resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image. Resizes the shorter side of the image to `size["shortest_edge"]` while preserving the aspect ratio. If the longer side is larger than the max size `(int(`size["shortest_edge"]` * 1333 / 800))`, the longer side is then resized to the max size while preserving the aspect ratio. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Controls the size of the output image. Should be of the form `{"shortest_edge": int}`. size_divisor (`int`, defaults to 32): The image is resized to a size that is a multiple of this value. resample (`PILImageResampling` filter, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ size = get_size_dict(size, default_to_square=False) if "shortest_edge" not in size: raise ValueError(f"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}") shorter = size["shortest_edge"] longer = int(1333 / 800 * shorter) output_size = get_resize_output_image_size( image, shorter=shorter, longer=longer, size_divisor=size_divisor, input_data_format=input_data_format ) return resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._pad_image def _pad_image( self, image: np.ndarray, output_size: Tuple[int, int], constant_values: Union[float, Iterable[float]] = 0, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Pad an image with zeros to the given size. """ input_height, input_width = get_image_size(image, channel_dim=input_data_format) output_height, output_width = output_size pad_bottom = output_height - input_height pad_right = output_width - input_width padding = ((0, pad_bottom), (0, pad_right)) padded_image = pad( image, padding, mode=PaddingMode.CONSTANT, constant_values=constant_values, data_format=data_format, input_data_format=input_data_format, ) return padded_image # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.pad def pad( self, images: List[np.ndarray], constant_values: Union[float, Iterable[float]] = 0, return_pixel_mask: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> BatchFeature: """ Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width in the batch and optionally returns their corresponding pixel mask. Args: image (`np.ndarray`): Image to pad. constant_values (`float` or `Iterable[float]`, *optional*): The value to use for the padding if `mode` is `"constant"`. return_pixel_mask (`bool`, *optional*, defaults to `True`): Whether to return a pixel mask. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ pad_size = get_max_height_width(images, input_data_format=input_data_format) padded_images = [ self._pad_image( image, pad_size, constant_values=constant_values, data_format=data_format, input_data_format=input_data_format, ) for image in images ] data = {"pixel_values": padded_images} if return_pixel_mask: masks = [ make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format) for image in images ] data["pixel_mask"] = masks return BatchFeature(data=data, tensor_type=return_tensors) def preprocess( self, images: ImageInput, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, size_divisor: Optional[int] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_pad: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Controls the size of the image after `resize`. The shortest edge of the image is resized to `size["shortest_edge"]` whilst preserving the aspect ratio. If the longest edge of this resized image is > `int(size["shortest_edge"] * (1333 / 800))`, then the image is resized again to make the longest edge equal to `int(size["shortest_edge"] * (1333 / 800))`. size_divisor (`int`, *optional*, defaults to `self.size_divisor`): The image is resized to a size that is a multiple of this value. resample (`PILImageResampling`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to normalize the image by if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to normalize the image by if `do_normalize` is set to `True`. do_pad (`bool`, *optional*, defaults to `self.do_pad`): Whether to pad the image to the (max_height, max_width) in the batch. If `True`, a pixel mask is also created and returned. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size_divisor = size_divisor if size_divisor is not None else self.size_divisor resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_pad = do_pad if do_pad is not None else self.do_pad size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False) images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_resize: images = [ self.resize( image=image, size=size, size_divisor=size_divisor, resample=resample, input_data_format=input_data_format, ) for image in images ] if do_rescale: images = [ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images ] if do_normalize: images = [ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] if do_pad: encoded_outputs = self.pad( images, return_pixel_mask=True, return_tensors=return_tensors, input_data_format=data_format ) else: encoded_outputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors) return encoded_outputs
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/vilt/processing_vilt.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for ViLT. """ import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class ViltProcessor(ProcessorMixin): r""" Constructs a ViLT processor which wraps a BERT tokenizer and ViLT image processor into a single processor. [`ViltProcessor`] offers all the functionalities of [`ViltImageProcessor`] and [`BertTokenizerFast`]. See the docstring of [`~ViltProcessor.__call__`] and [`~ViltProcessor.decode`] for more information. Args: image_processor (`ViltImageProcessor`, *optional*): An instance of [`ViltImageProcessor`]. The image processor is a required input. tokenizer (`BertTokenizerFast`, *optional*): An instance of ['BertTokenizerFast`]. The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "ViltImageProcessor" tokenizer_class = ("BertTokenizer", "BertTokenizerFast") def __init__(self, image_processor=None, tokenizer=None, **kwargs): feature_extractor = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", FutureWarning, ) feature_extractor = kwargs.pop("feature_extractor") image_processor = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(image_processor, tokenizer) self.current_processor = self.image_processor def __call__( self, images, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> BatchEncoding: """ This method uses [`ViltImageProcessor.__call__`] method to prepare image(s) for the model, and [`BertTokenizerFast.__call__`] to prepare text for the model. Please refer to the docstring of the above two methods for more information. """ encoding = self.tokenizer( text=text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, return_tensors=return_tensors, **kwargs, ) # add pixel_values + pixel_mask encoding_image_processor = self.image_processor(images, return_tensors=return_tensors) encoding.update(encoding_image_processor) return encoding def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def feature_extractor_class(self): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", FutureWarning, ) return self.image_processor_class @property def feature_extractor(self): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", FutureWarning, ) return self.image_processor
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/vilt/configuration_vilt.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ VilT model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) VILT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "dandelin/vilt-b32-mlm": "https://huggingface.co/dandelin/vilt-b32-mlm/blob/main/config.json" } class ViltConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ViLTModel`]. It is used to instantiate an ViLT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ViLT [dandelin/vilt-b32-mlm](https://huggingface.co/dandelin/vilt-b32-mlm) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the text part of the model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`ViltModel`]. type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`ViltModel`]. This is used when encoding text. modality_type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the modalities passed when calling [`ViltModel`]. This is used after concatening the embeddings of the text and image modalities. max_position_embeddings (`int`, *optional*, defaults to 40): The maximum sequence length that this model might ever be used with. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. image_size (`int`, *optional*, defaults to 384): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 32): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. max_image_length (`int`, *optional*, defaults to -1): The maximum number of patches to take as input for the Transformer encoder. If set to a positive integer, the encoder will sample `max_image_length` patches at maximum. If set to -1, will not be taken into account. num_images (`int`, *optional*, defaults to -1): The number of images to use for natural language visual reasoning. If set to a positive integer, will be used by [`ViltForImagesAndTextClassification`] for defining the classifier head. Example: ```python >>> from transformers import ViLTModel, ViLTConfig >>> # Initializing a ViLT dandelin/vilt-b32-mlm style configuration >>> configuration = ViLTConfig() >>> # Initializing a model from the dandelin/vilt-b32-mlm style configuration >>> model = ViLTModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "vilt" def __init__( self, vocab_size=30522, type_vocab_size=2, modality_type_vocab_size=2, max_position_embeddings=40, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-12, image_size=384, patch_size=32, num_channels=3, qkv_bias=True, max_image_length=-1, tie_word_embeddings=False, num_images=-1, **kwargs, ): super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) self.vocab_size = vocab_size self.type_vocab_size = type_vocab_size self.modality_type_vocab_size = modality_type_vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.qkv_bias = qkv_bias self.max_image_length = max_image_length self.num_images = num_images
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/x_clip/processing_x_clip.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Image/Text processor class for XCLIP """ import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class XCLIPProcessor(ProcessorMixin): r""" Constructs an X-CLIP processor which wraps a VideoMAE image processor and a CLIP tokenizer into a single processor. [`XCLIPProcessor`] offers all the functionalities of [`VideoMAEImageProcessor`] and [`CLIPTokenizerFast`]. See the [`~XCLIPProcessor.__call__`] and [`~XCLIPProcessor.decode`] for more information. Args: image_processor ([`VideoMAEImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`CLIPTokenizerFast`], *optional*): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "VideoMAEImageProcessor" tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__(self, image_processor=None, tokenizer=None, **kwargs): feature_extractor = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", FutureWarning, ) feature_extractor = kwargs.pop("feature_extractor") image_processor = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(image_processor, tokenizer) self.current_processor = self.image_processor def __call__(self, text=None, videos=None, return_tensors=None, **kwargs): """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `videos` and `kwargs` arguments to VideoMAEImageProcessor's [`~VideoMAEImageProcessor.__call__`] if `videos` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). videos (`List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`, `List[List[PIL.Image.Image]]`, `List[List[np.ndarrray]]`,: `List[List[torch.Tensor]]`): The video or batch of videos to be prepared. Each video should be a list of frames, which can be either PIL images or NumPy arrays. In case of NumPy arrays/PyTorch tensors, each frame should be of shape (H, W, C), where H and W are frame height and width, and C is a number of channels. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `videos` is not `None`. """ if text is None and videos is None: raise ValueError("You have to specify either text or videos. Both cannot be none.") if text is not None: encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs) if videos is not None: image_features = self.image_processor(videos, return_tensors=return_tensors, **kwargs) if text is not None and videos is not None: encoding["pixel_values"] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): return ["input_ids", "attention_mask", "position_ids", "pixel_values"] @property def feature_extractor_class(self): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", FutureWarning, ) return self.image_processor_class @property def feature_extractor(self): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", FutureWarning, ) return self.image_processor
0