repo_id
stringlengths 15
89
| file_path
stringlengths 27
180
| content
stringlengths 1
2.23M
| __index_level_0__
int64 0
0
|
---|---|---|---|
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/vit/convert_vit_timm_to_pytorch.py | # coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert ViT and non-distilled DeiT checkpoints from the timm library."""
import argparse
from pathlib import Path
import requests
import timm
import torch
from PIL import Image
from timm.data import ImageNetInfo, infer_imagenet_subset
from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
def create_rename_keys(config, base_model=False):
rename_keys = []
for i in range(config.num_hidden_layers):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight"))
rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias"))
rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight"))
rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias"))
rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight"))
rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias"))
rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight"))
rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias"))
rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight"))
rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias"))
# projection layer + position embeddings
rename_keys.extend(
[
("cls_token", "vit.embeddings.cls_token"),
("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("pos_embed", "vit.embeddings.position_embeddings"),
]
)
if base_model:
# layernorm
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
]
)
# if just the base model, we should remove "vit" from all keys that start with "vit"
rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
]
)
return rename_keys
# we split up the matrix of each encoder layer into queries, keys and values
def read_in_q_k_v(state_dict, config, base_model=False):
for i in range(config.num_hidden_layers):
if base_model:
prefix = ""
else:
prefix = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight")
in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[
: config.hidden_size, :
]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[
-config.hidden_size :, :
]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :]
def remove_classification_head_(state_dict):
ignore_keys = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(k, None)
def rename_key(dct, old, new):
val = dct.pop(old)
dct[new] = val
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@torch.no_grad()
def convert_vit_checkpoint(vit_name, pytorch_dump_folder_path):
"""
Copy/paste/tweak model's weights to our ViT structure.
"""
# define default ViT configuration
config = ViTConfig()
base_model = False
# load original model from timm
timm_model = timm.create_model(vit_name, pretrained=True)
timm_model.eval()
# detect unsupported ViT models in transformers
# fc_norm is present
if not isinstance(getattr(timm_model, "fc_norm", None), torch.nn.Identity):
raise ValueError(f"{vit_name} is not supported in transformers because of the presence of fc_norm.")
# use of global average pooling in combination (or without) class token
if getattr(timm_model, "global_pool", None) == "avg":
raise ValueError(f"{vit_name} is not supported in transformers because of use of global average pooling.")
# CLIP style vit with norm_pre layer present
if "clip" in vit_name and not isinstance(getattr(timm_model, "norm_pre", None), torch.nn.Identity):
raise ValueError(
f"{vit_name} is not supported in transformers because it's a CLIP style ViT with norm_pre layer."
)
# SigLIP style vit with attn_pool layer present
if "siglip" in vit_name and getattr(timm_model, "global_pool", None) == "map":
raise ValueError(
f"{vit_name} is not supported in transformers because it's a SigLIP style ViT with attn_pool."
)
# use of layer scale in ViT model blocks
if not isinstance(getattr(timm_model.blocks[0], "ls1", None), torch.nn.Identity) or not isinstance(
getattr(timm_model.blocks[0], "ls2", None), torch.nn.Identity
):
raise ValueError(f"{vit_name} is not supported in transformers because it uses a layer scale in its blocks.")
# Hybrid ResNet-ViTs
if not isinstance(timm_model.patch_embed, timm.layers.PatchEmbed):
raise ValueError(f"{vit_name} is not supported in transformers because it is a hybrid ResNet-ViT.")
# get patch size and image size from the patch embedding submodule
config.patch_size = timm_model.patch_embed.patch_size[0]
config.image_size = timm_model.patch_embed.img_size[0]
# retrieve architecture-specific parameters from the timm model
config.hidden_size = timm_model.embed_dim
config.intermediate_size = timm_model.blocks[0].mlp.fc1.out_features
config.num_hidden_layers = len(timm_model.blocks)
config.num_attention_heads = timm_model.blocks[0].attn.num_heads
# check whether the model has a classification head or not
if timm_model.num_classes != 0:
config.num_labels = timm_model.num_classes
# infer ImageNet subset from timm model
imagenet_subset = infer_imagenet_subset(timm_model)
dataset_info = ImageNetInfo(imagenet_subset)
config.id2label = {i: dataset_info.index_to_label_name(i) for i in range(dataset_info.num_classes())}
config.label2id = {v: k for k, v in config.id2label.items()}
else:
print(f"{vit_name} is going to be converted as a feature extractor only.")
base_model = True
# load state_dict of original model
state_dict = timm_model.state_dict()
# remove and rename some keys in the state dict
if base_model:
remove_classification_head_(state_dict)
rename_keys = create_rename_keys(config, base_model)
for src, dest in rename_keys:
rename_key(state_dict, src, dest)
read_in_q_k_v(state_dict, config, base_model)
# load HuggingFace model
if base_model:
model = ViTModel(config, add_pooling_layer=False).eval()
else:
model = ViTForImageClassification(config).eval()
model.load_state_dict(state_dict)
# Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor
if "deit" in vit_name:
image_processor = DeiTImageProcessor(size=config.image_size)
else:
image_processor = ViTImageProcessor(size=config.image_size)
encoding = image_processor(images=prepare_img(), return_tensors="pt")
pixel_values = encoding["pixel_values"]
outputs = model(pixel_values)
if base_model:
timm_pooled_output = timm_model.forward_features(pixel_values)
assert timm_pooled_output.shape == outputs.last_hidden_state.shape
assert torch.allclose(timm_pooled_output, outputs.last_hidden_state, atol=1e-1)
else:
timm_logits = timm_model(pixel_values)
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(timm_logits, outputs.logits, atol=1e-3)
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
print(f"Saving model {vit_name} to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving image processor to {pytorch_dump_folder_path}")
image_processor.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--vit_name",
default="vit_base_patch16_224",
type=str,
help="Name of the ViT timm model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
args = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/vit/modeling_vit.py | # coding=utf-8
# Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch ViT model."""
import collections.abc
import math
from typing import Dict, List, Optional, Set, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPooling,
ImageClassifierOutput,
MaskedImageModelingOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_vit import ViTConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "ViTConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "google/vit-base-patch16-224-in21k"
_EXPECTED_OUTPUT_SHAPE = [1, 197, 768]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "google/vit-base-patch16-224"
_IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat"
VIT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"google/vit-base-patch16-224",
# See all ViT models at https://huggingface.co/models?filter=vit
]
class ViTEmbeddings(nn.Module):
"""
Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
"""
def __init__(self, config: ViTConfig, use_mask_token: bool = False) -> None:
super().__init__()
self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size))
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None
self.patch_embeddings = ViTPatchEmbeddings(config)
num_patches = self.patch_embeddings.num_patches
self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size))
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.config = config
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
resolution images.
Source:
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
"""
num_patches = embeddings.shape[1] - 1
num_positions = self.position_embeddings.shape[1] - 1
if num_patches == num_positions and height == width:
return self.position_embeddings
class_pos_embed = self.position_embeddings[:, 0]
patch_pos_embed = self.position_embeddings[:, 1:]
dim = embeddings.shape[-1]
h0 = height // self.config.patch_size
w0 = width // self.config.patch_size
# we add a small number to avoid floating point error in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
h0, w0 = h0 + 0.1, w0 + 0.1
patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)),
mode="bicubic",
align_corners=False,
)
assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1]
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
def forward(
self,
pixel_values: torch.Tensor,
bool_masked_pos: Optional[torch.BoolTensor] = None,
interpolate_pos_encoding: bool = False,
) -> torch.Tensor:
batch_size, num_channels, height, width = pixel_values.shape
embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
if bool_masked_pos is not None:
seq_length = embeddings.shape[1]
mask_tokens = self.mask_token.expand(batch_size, seq_length, -1)
# replace the masked visual tokens by mask_tokens
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
# add the [CLS] token to the embedded patch tokens
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
# add positional encoding to each token
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings)
return embeddings
class ViTPatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
super().__init__()
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
batch_size, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
f" Expected {self.num_channels} but got {num_channels}."
)
if not interpolate_pos_encoding:
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model"
f" ({self.image_size[0]}*{self.image_size[1]})."
)
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
return embeddings
class ViTSelfAttention(nn.Module):
def __init__(self, config: ViTConfig) -> None:
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class ViTSelfOutput(nn.Module):
"""
The residual connection is defined in ViTLayer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, config: ViTConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class ViTAttention(nn.Module):
def __init__(self, config: ViTConfig) -> None:
super().__init__()
self.attention = ViTSelfAttention(config)
self.output = ViTSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads: Set[int]) -> None:
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_outputs = self.attention(hidden_states, head_mask, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class ViTIntermediate(nn.Module):
def __init__(self, config: ViTConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class ViTOutput(nn.Module):
def __init__(self, config: ViTConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
return hidden_states
class ViTLayer(nn.Module):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config: ViTConfig) -> None:
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = ViTAttention(config)
self.intermediate = ViTIntermediate(config)
self.output = ViTOutput(config)
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_attention_outputs = self.attention(
self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention
head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# first residual connection
hidden_states = attention_output + hidden_states
# in ViT, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
# second residual connection is done here
layer_output = self.output(layer_output, hidden_states)
outputs = (layer_output,) + outputs
return outputs
class ViTEncoder(nn.Module):
def __init__(self, config: ViTConfig) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([ViTLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
layer_head_mask,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class ViTPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ViTConfig
base_model_prefix = "vit"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
_no_split_modules = ["ViTEmbeddings", "ViTLayer"]
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
# `trunc_normal_cpu` not implemented in `half` issues
module.weight.data = nn.init.trunc_normal_(
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
).to(module.weight.dtype)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, ViTEmbeddings):
module.position_embeddings.data = nn.init.trunc_normal_(
module.position_embeddings.data.to(torch.float32),
mean=0.0,
std=self.config.initializer_range,
).to(module.position_embeddings.dtype)
module.cls_token.data = nn.init.trunc_normal_(
module.cls_token.data.to(torch.float32),
mean=0.0,
std=self.config.initializer_range,
).to(module.cls_token.dtype)
VIT_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`ViTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
VIT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
for details.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
interpolate_pos_encoding (`bool`, *optional*):
Whether to interpolate the pre-trained position encodings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare ViT Model transformer outputting raw hidden-states without any specific head on top.",
VIT_START_DOCSTRING,
)
class ViTModel(ViTPreTrainedModel):
def __init__(self, config: ViTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False):
super().__init__(config)
self.config = config
self.embeddings = ViTEmbeddings(config, use_mask_token=use_mask_token)
self.encoder = ViTEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pooler = ViTPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> ViTPatchEmbeddings:
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
# TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?)
expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype
if pixel_values.dtype != expected_dtype:
pixel_values = pixel_values.to(expected_dtype)
embedding_output = self.embeddings(
pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding
)
encoder_outputs = self.encoder(
embedding_output,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
return head_outputs + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class ViTPooler(nn.Module):
def __init__(self, config: ViTConfig):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
@add_start_docstrings(
"""ViT Model with a decoder on top for masked image modeling, as proposed in [SimMIM](https://arxiv.org/abs/2111.09886).
<Tip>
Note that we provide a script to pre-train this model on custom data in our [examples
directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
</Tip>
""",
VIT_START_DOCSTRING,
)
class ViTForMaskedImageModeling(ViTPreTrainedModel):
def __init__(self, config: ViTConfig) -> None:
super().__init__(config)
self.vit = ViTModel(config, add_pooling_layer=False, use_mask_token=True)
self.decoder = nn.Sequential(
nn.Conv2d(
in_channels=config.hidden_size,
out_channels=config.encoder_stride**2 * config.num_channels,
kernel_size=1,
),
nn.PixelShuffle(config.encoder_stride),
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=MaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, MaskedImageModelingOutput]:
r"""
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, ViTForMaskedImageModeling
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
>>> model = ViTForMaskedImageModeling.from_pretrained("google/vit-base-patch16-224-in21k")
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
>>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
>>> # create random boolean mask of shape (batch_size, num_patches)
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
>>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction
>>> list(reconstructed_pixel_values.shape)
[1, 3, 224, 224]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if bool_masked_pos is not None and (self.config.patch_size != self.config.encoder_stride):
raise ValueError(
"When `bool_masked_pos` is provided, `patch_size` must be equal to `encoder_stride` to ensure that "
"the reconstructed image has the same dimensions as the input. "
f"Got `patch_size` = {self.config.patch_size} and `encoder_stride` = {self.config.encoder_stride}."
)
outputs = self.vit(
pixel_values,
bool_masked_pos=bool_masked_pos,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
sequence_output = outputs[0]
# Reshape to (batch_size, num_channels, height, width)
sequence_output = sequence_output[:, 1:]
batch_size, sequence_length, num_channels = sequence_output.shape
height = width = math.floor(sequence_length**0.5)
sequence_output = sequence_output.permute(0, 2, 1).reshape(batch_size, num_channels, height, width)
# Reconstruct pixel values
reconstructed_pixel_values = self.decoder(sequence_output)
masked_im_loss = None
if bool_masked_pos is not None:
size = self.config.image_size // self.config.patch_size
bool_masked_pos = bool_masked_pos.reshape(-1, size, size)
mask = (
bool_masked_pos.repeat_interleave(self.config.patch_size, 1)
.repeat_interleave(self.config.patch_size, 2)
.unsqueeze(1)
.contiguous()
)
reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none")
masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels
if not return_dict:
output = (reconstructed_pixel_values,) + outputs[1:]
return ((masked_im_loss,) + output) if masked_im_loss is not None else output
return MaskedImageModelingOutput(
loss=masked_im_loss,
reconstruction=reconstructed_pixel_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
ViT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
the [CLS] token) e.g. for ImageNet.
<Tip>
Note that it's possible to fine-tune ViT on higher resolution images than the ones it has been trained on, by
setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained
position embeddings to the higher resolution.
</Tip>
""",
VIT_START_DOCSTRING,
)
class ViTForImageClassification(ViTPreTrainedModel):
def __init__(self, config: ViTConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.vit = ViTModel(config, add_pooling_layer=False)
# Classifier head
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.vit(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output[:, 0, :])
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/vit/image_processing_vit.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for ViT."""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
logger = logging.get_logger(__name__)
class ViTImageProcessor(BaseImageProcessor):
r"""
Constructs a ViT image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `(size["height"],
size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method.
size (`dict`, *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 224, "width": 224}
size = get_size_dict(size)
self.do_resize = do_resize
self.do_rescale = do_rescale
self.do_normalize = do_normalize
self.size = size
self.resample = resample
self.rescale_factor = rescale_factor
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
output_size = (size["height"], size["width"])
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
):
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after
resizing.
resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
`PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use if `do_normalize` is set to `True`.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
resample = resample if resample is not None else self.resample
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size_dict = get_size_dict(size)
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [
self.resize(image=image, size=size_dict, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_rescale:
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/vit/feature_extraction_vit.py | # coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for ViT."""
import warnings
from ...utils import logging
from .image_processing_vit import ViTImageProcessor
logger = logging.get_logger(__name__)
class ViTFeatureExtractor(ViTImageProcessor):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
"The class ViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use ViTImageProcessor instead.",
FutureWarning,
)
super().__init__(*args, **kwargs)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/vit/convert_dino_to_pytorch.py | # coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert ViT checkpoints trained with the DINO method."""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
def create_rename_keys(config, base_model=False):
rename_keys = []
for i in range(config.num_hidden_layers):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight"))
rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias"))
rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight"))
rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias"))
rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight"))
rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias"))
rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight"))
rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias"))
rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight"))
rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias"))
# projection layer + position embeddings
rename_keys.extend(
[
("cls_token", "vit.embeddings.cls_token"),
("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("pos_embed", "vit.embeddings.position_embeddings"),
]
)
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
]
)
# if just the base model, we should remove "vit" from all keys that start with "vit"
rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
]
)
return rename_keys
# we split up the matrix of each encoder layer into queries, keys and values
def read_in_q_k_v(state_dict, config, base_model=False):
for i in range(config.num_hidden_layers):
if base_model:
prefix = ""
else:
prefix = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight")
in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[
: config.hidden_size, :
]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[
-config.hidden_size :, :
]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :]
def remove_classification_head_(state_dict):
ignore_keys = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(k, None)
def rename_key(dct, old, new):
val = dct.pop(old)
dct[new] = val
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@torch.no_grad()
def convert_vit_checkpoint(model_name, pytorch_dump_folder_path, base_model=True):
"""
Copy/paste/tweak model's weights to our ViT structure.
"""
# define default ViT configuration
config = ViTConfig()
# patch_size
if model_name[-1] == "8":
config.patch_size = 8
# set labels if required
if not base_model:
config.num_labels = 1000
repo_id = "huggingface/label-files"
filename = "imagenet-1k-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
config.hidden_size = 384
config.intermediate_size = 1536
config.num_hidden_layers = 12
config.num_attention_heads = 6
# load original model from torch hub
original_model = torch.hub.load("facebookresearch/dino:main", model_name)
original_model.eval()
# load state_dict of original model, remove and rename some keys
state_dict = original_model.state_dict()
if base_model:
remove_classification_head_(state_dict)
rename_keys = create_rename_keys(config, base_model=base_model)
for src, dest in rename_keys:
rename_key(state_dict, src, dest)
read_in_q_k_v(state_dict, config, base_model)
# load HuggingFace model
if base_model:
model = ViTModel(config, add_pooling_layer=False).eval()
else:
model = ViTForImageClassification(config).eval()
model.load_state_dict(state_dict)
# Check outputs on an image, prepared by ViTImageProcessor
image_processor = ViTImageProcessor()
encoding = image_processor(images=prepare_img(), return_tensors="pt")
pixel_values = encoding["pixel_values"]
outputs = model(pixel_values)
if base_model:
final_hidden_state_cls_token = original_model(pixel_values)
assert torch.allclose(final_hidden_state_cls_token, outputs.last_hidden_state[:, 0, :], atol=1e-1)
else:
logits = original_model(pixel_values)
assert logits.shape == outputs.logits.shape
assert torch.allclose(logits, outputs.logits, atol=1e-3)
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving image processor to {pytorch_dump_folder_path}")
image_processor.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="dino_vitb16",
type=str,
help="Name of the model trained with DINO you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--base_model",
action="store_true",
help="Whether to only convert the base model (no projection head weights).",
)
parser.set_defaults(base_model=True)
args = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/vit/__init__.py | # Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
_import_structure = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["feature_extraction_vit"] = ["ViTFeatureExtractor"]
_import_structure["image_processing_vit"] = ["ViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_vit"] = [
"VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTForImageClassification",
"ViTForMaskedImageModeling",
"ViTModel",
"ViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_vit"] = [
"TFViTForImageClassification",
"TFViTModel",
"TFViTPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_vit"] = [
"FlaxViTForImageClassification",
"FlaxViTModel",
"FlaxViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/vit/configuration_vit.py | # coding=utf-8
# Copyright 2021 Google AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" ViT model configuration"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
VIT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json",
# See all ViT models at https://huggingface.co/models?filter=vit
}
class ViTConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ViTModel`]. It is used to instantiate an ViT
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the ViT
[google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
encoder_stride (`int`, *optional*, defaults to 16):
Factor to increase the spatial resolution by in the decoder head for masked image modeling.
Example:
```python
>>> from transformers import ViTConfig, ViTModel
>>> # Initializing a ViT vit-base-patch16-224 style configuration
>>> configuration = ViTConfig()
>>> # Initializing a model (with random weights) from the vit-base-patch16-224 style configuration
>>> model = ViTModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "vit"
def __init__(
self,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-12,
image_size=224,
patch_size=16,
num_channels=3,
qkv_bias=True,
encoder_stride=16,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.qkv_bias = qkv_bias
self.encoder_stride = encoder_stride
class ViTOnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-4
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/vit/modeling_flax_vit.py | # coding=utf-8
# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxBaseModelOutputWithPooling, FlaxSequenceClassifierOutput
from ...modeling_flax_utils import (
ACT2FN,
FlaxPreTrainedModel,
append_replace_return_docstrings,
overwrite_call_docstring,
)
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward
from .configuration_vit import ViTConfig
VIT_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a
[flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`ViTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
VIT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class FlaxViTPatchEmbeddings(nn.Module):
config: ViTConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
image_size = self.config.image_size
patch_size = self.config.patch_size
num_patches = (image_size // patch_size) * (image_size // patch_size)
self.num_patches = num_patches
self.num_channels = self.config.num_channels
self.projection = nn.Conv(
self.config.hidden_size,
kernel_size=(patch_size, patch_size),
strides=(patch_size, patch_size),
padding="VALID",
dtype=self.dtype,
kernel_init=jax.nn.initializers.variance_scaling(
self.config.initializer_range**2, "fan_in", "truncated_normal"
),
)
def __call__(self, pixel_values):
num_channels = pixel_values.shape[-1]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
embeddings = self.projection(pixel_values)
batch_size, _, _, channels = embeddings.shape
return jnp.reshape(embeddings, (batch_size, -1, channels))
class FlaxViTEmbeddings(nn.Module):
"""Construct the CLS token, position and patch embeddings."""
config: ViTConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.cls_token = self.param(
"cls_token",
jax.nn.initializers.variance_scaling(self.config.initializer_range**2, "fan_in", "truncated_normal"),
(1, 1, self.config.hidden_size),
)
self.patch_embeddings = FlaxViTPatchEmbeddings(self.config, dtype=self.dtype)
num_patches = self.patch_embeddings.num_patches
self.position_embeddings = self.param(
"position_embeddings",
jax.nn.initializers.variance_scaling(self.config.initializer_range**2, "fan_in", "truncated_normal"),
(1, num_patches + 1, self.config.hidden_size),
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, pixel_values, deterministic=True):
batch_size = pixel_values.shape[0]
embeddings = self.patch_embeddings(pixel_values)
cls_tokens = jnp.broadcast_to(self.cls_token, (batch_size, 1, self.config.hidden_size))
embeddings = jnp.concatenate((cls_tokens, embeddings), axis=1)
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings, deterministic=deterministic)
return embeddings
class FlaxViTSelfAttention(nn.Module):
config: ViTConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
if self.config.hidden_size % self.config.num_attention_heads != 0:
raise ValueError(
"`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads`:"
" {self.config.num_attention_heads}"
)
self.query = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.variance_scaling(
self.config.initializer_range**2, mode="fan_in", distribution="truncated_normal"
),
use_bias=self.config.qkv_bias,
)
self.key = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.variance_scaling(
self.config.initializer_range**2, mode="fan_in", distribution="truncated_normal"
),
use_bias=self.config.qkv_bias,
)
self.value = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.variance_scaling(
self.config.initializer_range**2, mode="fan_in", distribution="truncated_normal"
),
use_bias=self.config.qkv_bias,
)
def __call__(self, hidden_states, deterministic: bool = True, output_attentions: bool = False):
head_dim = self.config.hidden_size // self.config.num_attention_heads
query_states = self.query(hidden_states).reshape(
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
)
value_states = self.value(hidden_states).reshape(
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
)
key_states = self.key(hidden_states).reshape(
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
)
dropout_rng = None
if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
dropout_rng=dropout_rng,
dropout_rate=self.config.attention_probs_dropout_prob,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
class FlaxViTSelfOutput(nn.Module):
config: ViTConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.variance_scaling(
self.config.initializer_range**2, "fan_in", "truncated_normal"
),
dtype=self.dtype,
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, hidden_states, input_tensor, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states
class FlaxViTAttention(nn.Module):
config: ViTConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.attention = FlaxViTSelfAttention(self.config, dtype=self.dtype)
self.output = FlaxViTSelfOutput(self.config, dtype=self.dtype)
def __call__(self, hidden_states, deterministic=True, output_attentions: bool = False):
attn_outputs = self.attention(hidden_states, deterministic=deterministic, output_attentions=output_attentions)
attn_output = attn_outputs[0]
hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_outputs[1],)
return outputs
class FlaxViTIntermediate(nn.Module):
config: ViTConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.intermediate_size,
kernel_init=jax.nn.initializers.variance_scaling(
self.config.initializer_range**2, "fan_in", "truncated_normal"
),
dtype=self.dtype,
)
self.activation = ACT2FN[self.config.hidden_act]
def __call__(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
class FlaxViTOutput(nn.Module):
config: ViTConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.variance_scaling(
self.config.initializer_range**2, "fan_in", "truncated_normal"
),
dtype=self.dtype,
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, hidden_states, attention_output, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = hidden_states + attention_output
return hidden_states
class FlaxViTLayer(nn.Module):
config: ViTConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.attention = FlaxViTAttention(self.config, dtype=self.dtype)
self.intermediate = FlaxViTIntermediate(self.config, dtype=self.dtype)
self.output = FlaxViTOutput(self.config, dtype=self.dtype)
self.layernorm_before = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.layernorm_after = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
def __call__(self, hidden_states, deterministic: bool = True, output_attentions: bool = False):
attention_outputs = self.attention(
self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention
deterministic=deterministic,
output_attentions=output_attentions,
)
attention_output = attention_outputs[0]
# first residual connection
attention_output = attention_output + hidden_states
# in ViT, layernorm is also applied after self-attention
layer_output = self.layernorm_after(attention_output)
hidden_states = self.intermediate(layer_output)
hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic)
outputs = (hidden_states,)
if output_attentions:
outputs += (attention_outputs[1],)
return outputs
class FlaxViTLayerCollection(nn.Module):
config: ViTConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxViTLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = layer(hidden_states, deterministic=deterministic, output_attentions=output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states,)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
class FlaxViTEncoder(nn.Module):
config: ViTConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layer = FlaxViTLayerCollection(self.config, dtype=self.dtype)
def __call__(
self,
hidden_states,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
return self.layer(
hidden_states,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class FlaxViTPooler(nn.Module):
config: ViTConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.variance_scaling(
self.config.initializer_range**2, "fan_in", "truncated_normal"
),
dtype=self.dtype,
)
def __call__(self, hidden_states):
cls_hidden_state = hidden_states[:, 0]
cls_hidden_state = self.dense(cls_hidden_state)
return nn.tanh(cls_hidden_state)
class FlaxViTPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ViTConfig
base_model_prefix = "vit"
main_input_name = "pixel_values"
module_class: nn.Module = None
def __init__(
self,
config: ViTConfig,
input_shape=None,
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
if input_shape is None:
input_shape = (1, config.image_size, config.image_size, config.num_channels)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
pixel_values = jnp.zeros(input_shape, dtype=self.dtype)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(rngs, pixel_values, return_dict=False)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
@add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def __call__(
self,
pixel_values,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
return self.module.apply(
{"params": params or self.params},
jnp.array(pixel_values, dtype=jnp.float32),
not train,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
)
class FlaxViTModule(nn.Module):
config: ViTConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
add_pooling_layer: bool = True
def setup(self):
self.embeddings = FlaxViTEmbeddings(self.config, dtype=self.dtype)
self.encoder = FlaxViTEncoder(self.config, dtype=self.dtype)
self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.pooler = FlaxViTPooler(self.config, dtype=self.dtype) if self.add_pooling_layer else None
def __call__(
self,
pixel_values,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
hidden_states = self.embeddings(pixel_values, deterministic=deterministic)
outputs = self.encoder(
hidden_states,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.layernorm(hidden_states)
pooled = self.pooler(hidden_states) if self.add_pooling_layer else None
if not return_dict:
# if pooled is None, don't return it
if pooled is None:
return (hidden_states,) + outputs[1:]
return (hidden_states, pooled) + outputs[1:]
return FlaxBaseModelOutputWithPooling(
last_hidden_state=hidden_states,
pooler_output=pooled,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"The bare ViT Model transformer outputting raw hidden-states without any specific head on top.",
VIT_START_DOCSTRING,
)
class FlaxViTModel(FlaxViTPreTrainedModel):
module_class = FlaxViTModule
FLAX_VISION_MODEL_DOCSTRING = """
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, FlaxViTModel
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
>>> model = FlaxViTModel.from_pretrained("google/vit-base-patch16-224-in21k")
>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
```
"""
overwrite_call_docstring(FlaxViTModel, FLAX_VISION_MODEL_DOCSTRING)
append_replace_return_docstrings(FlaxViTModel, output_type=FlaxBaseModelOutputWithPooling, config_class=ViTConfig)
class FlaxViTForImageClassificationModule(nn.Module):
config: ViTConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.vit = FlaxViTModule(config=self.config, dtype=self.dtype, add_pooling_layer=False)
self.classifier = nn.Dense(
self.config.num_labels,
dtype=self.dtype,
kernel_init=jax.nn.initializers.variance_scaling(
self.config.initializer_range**2, "fan_in", "truncated_normal"
),
)
def __call__(
self,
pixel_values=None,
deterministic: bool = True,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.vit(
pixel_values,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.classifier(hidden_states[:, 0, :])
if not return_dict:
output = (logits,) + outputs[2:]
return output
return FlaxSequenceClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
ViT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
the [CLS] token) e.g. for ImageNet.
""",
VIT_START_DOCSTRING,
)
class FlaxViTForImageClassification(FlaxViTPreTrainedModel):
module_class = FlaxViTForImageClassificationModule
FLAX_VISION_CLASSIF_DOCSTRING = """
Returns:
Example:
```python
>>> from transformers import AutoImageProcessor, FlaxViTForImageClassification
>>> from PIL import Image
>>> import jax
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
>>> model = FlaxViTForImageClassification.from_pretrained("google/vit-base-patch16-224")
>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = jax.numpy.argmax(logits, axis=-1)
>>> print("Predicted class:", model.config.id2label[predicted_class_idx.item()])
```
"""
overwrite_call_docstring(FlaxViTForImageClassification, FLAX_VISION_CLASSIF_DOCSTRING)
append_replace_return_docstrings(
FlaxViTForImageClassification, output_type=FlaxSequenceClassifierOutput, config_class=ViTConfig
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/vit/modeling_tf_vit.py | # coding=utf-8
# Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 ViT model."""
from __future__ import annotations
import collections.abc
import math
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling, TFSequenceClassifierOutput
from ...modeling_tf_utils import (
TFModelInputType,
TFPreTrainedModel,
TFSequenceClassificationLoss,
get_initializer,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import shape_list, stable_softmax
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_vit import ViTConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "ViTConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "google/vit-base-patch16-224-in21k"
_EXPECTED_OUTPUT_SHAPE = [1, 197, 768]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "google/vit-base-patch16-224"
_IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat"
class TFViTEmbeddings(tf.keras.layers.Layer):
"""
Construct the CLS token, position and patch embeddings.
"""
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.patch_embeddings = TFViTPatchEmbeddings(config, name="patch_embeddings")
self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def build(self, input_shape=None):
num_patches = self.patch_embeddings.num_patches
self.cls_token = self.add_weight(
shape=(1, 1, self.config.hidden_size),
initializer=get_initializer(self.config.initializer_range),
trainable=True,
name="cls_token",
)
self.position_embeddings = self.add_weight(
shape=(1, num_patches + 1, self.config.hidden_size),
initializer=get_initializer(self.config.initializer_range),
trainable=True,
name="position_embeddings",
)
if self.built:
return
self.built = True
if getattr(self, "patch_embeddings", None) is not None:
with tf.name_scope(self.patch_embeddings.name):
self.patch_embeddings.build(None)
def interpolate_pos_encoding(self, embeddings, height, width) -> tf.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
resolution images.
Source:
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
"""
batch_size, seq_len, dim = shape_list(embeddings)
num_patches = seq_len - 1
_, num_positions, _ = shape_list(self.position_embeddings)
num_positions -= 1
if num_patches == num_positions and height == width:
return self.position_embeddings
class_pos_embed = self.position_embeddings[:, :1]
patch_pos_embed = self.position_embeddings[:, 1:]
h0 = height // self.config.patch_size
w0 = width // self.config.patch_size
patch_pos_embed = tf.image.resize(
images=tf.reshape(
patch_pos_embed, shape=(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
),
size=(h0, w0),
method="bicubic",
)
shape = shape_list(patch_pos_embed)
assert h0 == shape[-3] and w0 == shape[-2]
patch_pos_embed = tf.reshape(tensor=patch_pos_embed, shape=(1, -1, dim))
return tf.concat(values=(class_pos_embed, patch_pos_embed), axis=1)
def call(
self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False, training: bool = False
) -> tf.Tensor:
batch_size, num_channels, height, width = shape_list(pixel_values)
embeddings = self.patch_embeddings(
pixel_values, interpolate_pos_encoding=interpolate_pos_encoding, training=training
)
# add the [CLS] token to the embedded patch tokens
cls_tokens = tf.repeat(self.cls_token, repeats=batch_size, axis=0)
embeddings = tf.concat((cls_tokens, embeddings), axis=1)
# add positional encoding to each token
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings, training=training)
return embeddings
# Based on timm implementation, which can be found here:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
class TFViTPatchEmbeddings(tf.keras.layers.Layer):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_patches = num_patches
self.num_channels = num_channels
self.config = config
self.projection = tf.keras.layers.Conv2D(
filters=hidden_size,
kernel_size=patch_size,
strides=patch_size,
padding="valid",
data_format="channels_last",
use_bias=True,
kernel_initializer=get_initializer(self.config.initializer_range),
bias_initializer="zeros",
name="projection",
)
def call(
self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False, training: bool = False
) -> tf.Tensor:
batch_size, num_channels, height, width = shape_list(pixel_values)
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
if not interpolate_pos_encoding:
if tf.executing_eagerly():
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model"
f" ({self.image_size[0]}*{self.image_size[1]})."
)
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
projection = self.projection(pixel_values)
# Change the 2D spatial dimensions to a single temporal dimension.
# shape = (batch_size, num_patches, out_channels=embed_dim)
num_patches = (width // self.patch_size[1]) * (height // self.patch_size[0])
embeddings = tf.reshape(tensor=projection, shape=(batch_size, num_patches, -1))
return embeddings
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "projection", None) is not None:
with tf.name_scope(self.projection.name):
self.projection.build([None, None, None, self.num_channels])
class TFViTSelfAttention(tf.keras.layers.Layer):
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number "
f"of attention heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
self.query = tf.keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
)
self.key = tf.keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
)
self.value = tf.keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
)
self.dropout = tf.keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
self.config = config
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
return tf.transpose(tensor, perm=[0, 2, 1, 3])
def call(
self,
hidden_states: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
batch_size = shape_list(hidden_states)[0]
mixed_query_layer = self.query(inputs=hidden_states)
mixed_key_layer = self.key(inputs=hidden_states)
mixed_value_layer = self.value(inputs=hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
# Take the dot product between "query" and "key" to get the raw attention scores.
# (batch size, num_heads, seq_len_q, seq_len_k)
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
attention_scores = tf.divide(attention_scores, dk)
# Normalize the attention scores to probabilities.
attention_probs = stable_softmax(logits=attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(inputs=attention_probs, training=training)
# Mask heads if we want to
if head_mask is not None:
attention_probs = tf.multiply(attention_probs, head_mask)
attention_output = tf.matmul(attention_probs, value_layer)
attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
# (batch_size, seq_len_q, all_head_size)
attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "query", None) is not None:
with tf.name_scope(self.query.name):
self.query.build([None, None, self.config.hidden_size])
if getattr(self, "key", None) is not None:
with tf.name_scope(self.key.name):
self.key.build([None, None, self.config.hidden_size])
if getattr(self, "value", None) is not None:
with tf.name_scope(self.value.name):
self.value.build([None, None, self.config.hidden_size])
class TFViTSelfOutput(tf.keras.layers.Layer):
"""
The residual connection is defined in TFViTLayer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
class TFViTAttention(tf.keras.layers.Layer):
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.self_attention = TFViTSelfAttention(config, name="attention")
self.dense_output = TFViTSelfOutput(config, name="output")
def prune_heads(self, heads):
raise NotImplementedError
def call(
self,
input_tensor: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
self_outputs = self.self_attention(
hidden_states=input_tensor, head_mask=head_mask, output_attentions=output_attentions, training=training
)
attention_output = self.dense_output(
hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attention", None) is not None:
with tf.name_scope(self.self_attention.name):
self.self_attention.build(None)
if getattr(self, "dense_output", None) is not None:
with tf.name_scope(self.dense_output.name):
self.dense_output.build(None)
class TFViTIntermediate(tf.keras.layers.Layer):
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
else:
self.intermediate_act_fn = config.hidden_act
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
class TFViTOutput(tf.keras.layers.Layer):
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = hidden_states + input_tensor
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.intermediate_size])
class TFViTLayer(tf.keras.layers.Layer):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.attention = TFViTAttention(config, name="attention")
self.intermediate = TFViTIntermediate(config, name="intermediate")
self.vit_output = TFViTOutput(config, name="output")
self.layernorm_before = tf.keras.layers.LayerNormalization(
epsilon=config.layer_norm_eps, name="layernorm_before"
)
self.layernorm_after = tf.keras.layers.LayerNormalization(
epsilon=config.layer_norm_eps, name="layernorm_after"
)
self.config = config
def call(
self,
hidden_states: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
attention_outputs = self.attention(
# in ViT, layernorm is applied before self-attention
input_tensor=self.layernorm_before(inputs=hidden_states),
head_mask=head_mask,
output_attentions=output_attentions,
training=training,
)
attention_output = attention_outputs[0]
# first residual connection
hidden_states = attention_output + hidden_states
# in ViT, layernorm is also applied after self-attention
layer_output = self.layernorm_after(inputs=hidden_states)
intermediate_output = self.intermediate(hidden_states=layer_output)
# second residual connection is done here
layer_output = self.vit_output(
hidden_states=intermediate_output, input_tensor=hidden_states, training=training
)
outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "intermediate", None) is not None:
with tf.name_scope(self.intermediate.name):
self.intermediate.build(None)
if getattr(self, "vit_output", None) is not None:
with tf.name_scope(self.vit_output.name):
self.vit_output.build(None)
if getattr(self, "layernorm_before", None) is not None:
with tf.name_scope(self.layernorm_before.name):
self.layernorm_before.build([None, None, self.config.hidden_size])
if getattr(self, "layernorm_after", None) is not None:
with tf.name_scope(self.layernorm_after.name):
self.layernorm_after.build([None, None, self.config.hidden_size])
class TFViTEncoder(tf.keras.layers.Layer):
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.layer = [TFViTLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
def call(
self,
hidden_states: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
output_hidden_states: bool,
return_dict: bool,
training: bool = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(
hidden_states=hidden_states,
head_mask=head_mask[i],
output_attentions=output_attentions,
training=training,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layer", None) is not None:
for layer in self.layer:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFViTMainLayer(tf.keras.layers.Layer):
config_class = ViTConfig
def __init__(self, config: ViTConfig, add_pooling_layer: bool = True, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embeddings = TFViTEmbeddings(config, name="embeddings")
self.encoder = TFViTEncoder(config, name="encoder")
self.layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
self.pooler = TFViTPooler(config, name="pooler") if add_pooling_layer else None
def get_input_embeddings(self) -> tf.keras.layers.Layer:
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError
@unpack_inputs
def call(
self,
pixel_values: TFModelInputType | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.embeddings(
pixel_values=pixel_values,
interpolate_pos_encoding=interpolate_pos_encoding,
training=training,
)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.config.num_hidden_layers
encoder_outputs = self.encoder(
hidden_states=embedding_output,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(inputs=sequence_output)
pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "layernorm", None) is not None:
with tf.name_scope(self.layernorm.name):
self.layernorm.build([None, None, self.config.hidden_size])
if getattr(self, "pooler", None) is not None:
with tf.name_scope(self.pooler.name):
self.pooler.build(None)
class TFViTPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ViTConfig
base_model_prefix = "vit"
main_input_name = "pixel_values"
VIT_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Args:
config ([`ViTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
VIT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
for details.
head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
interpolate_pos_encoding (`bool`, *optional*):
Whether to interpolate the pre-trained position encodings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False``):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare ViT Model transformer outputting raw hidden-states without any specific head on top.",
VIT_START_DOCSTRING,
)
class TFViTModel(TFViTPreTrainedModel):
def __init__(self, config: ViTConfig, *inputs, add_pooling_layer=True, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.vit = TFViTMainLayer(config, add_pooling_layer=add_pooling_layer, name="vit")
@unpack_inputs
@add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def call(
self,
pixel_values: TFModelInputType | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
outputs = self.vit(
pixel_values=pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "vit", None) is not None:
with tf.name_scope(self.vit.name):
self.vit.build(None)
class TFViTPooler(tf.keras.layers.Layer):
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(inputs=first_token_tensor)
return pooled_output
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
ViT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
the [CLS] token) e.g. for ImageNet.
<Tip>
Note that it's possible to fine-tune ViT on higher resolution images than the ones it has been trained on, by
setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained
position embeddings to the higher resolution.
</Tip>
""",
VIT_START_DOCSTRING,
)
class TFViTForImageClassification(TFViTPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: ViTConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.vit = TFViTMainLayer(config, add_pooling_layer=False, name="vit")
# Classifier head
self.classifier = tf.keras.layers.Dense(
units=config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
name="classifier",
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def call(
self,
pixel_values: TFModelInputType | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs = self.vit(
pixel_values=pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.classifier(inputs=sequence_output[:, 0, :])
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "vit", None) is not None:
with tf.name_scope(self.vit.name):
self.vit.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/blenderbot_small/configuration_blenderbot_small.py | # coding=utf-8
# Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BlenderbotSmall model configuration"""
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
logger = logging.get_logger(__name__)
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json",
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class BlenderbotSmallConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BlenderbotSmallModel`]. It is used to instantiate
an BlenderbotSmall model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the BlenderbotSmall
[facebook/blenderbot_small-90M](https://huggingface.co/facebook/blenderbot_small-90M) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the BlenderbotSmall model. Defines the number of different tokens that can be
represented by the `inputs_ids` passed when calling [`BlenderbotSmallModel`] or [`TFBlenderbotSmallModel`].
d_model (`int`, *optional*, defaults to 512):
Dimensionality of the layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 8):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 8):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 2048):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 2048):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
scale_embedding (`bool`, *optional*, defaults to `False`):
Scale embeddings by diving by sqrt(d_model).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models)
forced_eos_token_id (`int`, *optional*, defaults to 2):
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
`eos_token_id`.
Example:
```python
>>> from transformers import BlenderbotSmallConfig, BlenderbotSmallModel
>>> # Initializing a BlenderbotSmall facebook/blenderbot_small-90M style configuration
>>> configuration = BlenderbotSmallConfig()
>>> # Initializing a model (with random weights) from the facebook/blenderbot_small-90M style configuration
>>> model = BlenderbotSmallModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "blenderbot-small"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(
self,
vocab_size=50265,
max_position_embeddings=512,
encoder_layers=8,
encoder_ffn_dim=2048,
encoder_attention_heads=16,
decoder_layers=8,
decoder_ffn_dim=2048,
decoder_attention_heads=16,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
use_cache=True,
is_encoder_decoder=True,
activation_function="gelu",
d_model=512,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
decoder_start_token_id=1,
scale_embedding=False,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
forced_eos_token_id=2,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.use_cache = use_cache
self.num_hidden_layers = encoder_layers
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
forced_eos_token_id=forced_eos_token_id,
**kwargs,
)
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig
class BlenderbotSmallOnnxConfig(OnnxSeq2SeqConfigWithPast):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
]
)
if self.use_past:
common_inputs["decoder_input_ids"] = {0: "batch"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
elif self.task == "causal-lm":
# TODO: figure this case out.
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
]
)
if self.use_past:
num_encoder_layers, _ = self.num_layers
for i in range(num_encoder_layers):
common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
else:
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
]
)
return common_inputs
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
common_outputs = super().outputs
else:
common_outputs = super(OnnxConfigWithPast, self).outputs
if self.use_past:
num_encoder_layers, _ = self.num_layers
for i in range(num_encoder_layers):
common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def _generate_dummy_inputs_for_default_and_seq2seq_lm(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, seq_length, is_pair, framework
)
# Generate decoder inputs
decoder_seq_length = seq_length if not self.use_past else 1
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, decoder_seq_length, is_pair, framework
)
decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
common_inputs = dict(**encoder_inputs, **decoder_inputs)
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, encoder_seq_length = common_inputs["input_ids"].shape
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
encoder_shape = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
decoder_past_length = decoder_seq_length + 3
decoder_shape = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
common_inputs["decoder_attention_mask"] = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1
)
common_inputs["past_key_values"] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
num_encoder_layers, num_decoder_layers = self.num_layers
min_num_layers = min(num_encoder_layers, num_decoder_layers)
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(min_num_layers):
common_inputs["past_key_values"].append(
(
torch.zeros(decoder_shape),
torch.zeros(decoder_shape),
torch.zeros(encoder_shape),
torch.zeros(encoder_shape),
)
)
# TODO: test this.
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(min_num_layers, max_num_layers):
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
return common_inputs
def _generate_dummy_inputs_for_causal_lm(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, seq_length, is_pair, framework
)
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, seqlen = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
past_key_values_length = seqlen + 2
num_encoder_layers, _ = self.num_layers
num_encoder_attention_heads, _ = self.num_attention_heads
past_shape = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
mask_dtype = common_inputs["attention_mask"].dtype
common_inputs["attention_mask"] = torch.cat(
[common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
)
common_inputs["past_key_values"] = [
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers)
]
return common_inputs
def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
seq_length = compute_effective_axis_dimension(
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
)
# Generate dummy inputs according to compute batch and sequence
dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
common_inputs = dict(tokenizer(dummy_input, return_tensors=framework))
return common_inputs
def generate_dummy_inputs(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
elif self.task == "causal-lm":
common_inputs = self._generate_dummy_inputs_for_causal_lm(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
else:
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
return common_inputs
def _flatten_past_key_values_(self, flattened_output, name, idx, t):
if self.task in ["default", "seq2seq-lm"]:
flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t)
else:
flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_(
flattened_output, name, idx, t
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/blenderbot_small/modeling_flax_blenderbot_small.py | # coding=utf-8
# Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Flax BlenderbotSmall model."""
import math
import random
from functools import partial
from typing import Callable, Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from jax.random import PRNGKey
from ...modeling_flax_outputs import (
FlaxBaseModelOutput,
FlaxBaseModelOutputWithPastAndCrossAttentions,
FlaxCausalLMOutputWithCrossAttentions,
FlaxSeq2SeqLMOutput,
FlaxSeq2SeqModelOutput,
)
from ...modeling_flax_utils import (
ACT2FN,
FlaxPreTrainedModel,
append_call_sample_docstring,
append_replace_return_docstrings,
overwrite_call_docstring,
)
from ...utils import add_start_docstrings, logging, replace_return_docstrings
from .configuration_blenderbot_small import BlenderbotSmallConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/blenderbot_small-90M"
_CONFIG_FOR_DOC = "BlenderbotSmallConfig"
BLENDERBOT_SMALL_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`BlenderbotSmallConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
BLENDERBOT_SMALL_INPUTS_DOCSTRING = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
For translation and summarization training, `decoder_input_ids` should be provided. If no
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
for denoising pre-training following the paper.
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.max_position_embeddings - 1]`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
BLENDERBOT_SMALL_ENCODE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
BLENDERBOT_SMALL_DECODE_INPUTS_DOCSTRING = r"""
Args:
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
For translation and summarization training, `decoder_input_ids` should be provided. If no
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
for denoising pre-training following the paper.
encoder_outputs (`tuple(tuple(jnp.ndarray)`):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.max_position_embeddings - 1]`.
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
"""
Shift input ids one token to the right.
"""
shifted_input_ids = jnp.zeros_like(input_ids)
shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1])
shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id)
shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids)
return shifted_input_ids
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->BlenderbotSmall
class FlaxBlenderbotSmallAttention(nn.Module):
config: BlenderbotSmallConfig
embed_dim: int
num_heads: int
dropout: float = 0.0
causal: bool = False
bias: bool = True
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self) -> None:
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {self.num_heads})."
)
dense = partial(
nn.Dense,
self.embed_dim,
use_bias=self.bias,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
self.out_proj = dense()
self.dropout_layer = nn.Dropout(rate=self.dropout)
if self.causal:
self.causal_mask = make_causal_mask(
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
@nn.compact
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slighly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states: jnp.ndarray,
key_value_states: Optional[jnp.ndarray] = None,
attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size = hidden_states.shape[0]
# get query proj
query_states = self.q_proj(hidden_states)
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self.k_proj(key_value_states)
value_states = self.v_proj(key_value_states)
else:
# self_attention
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# handle cache prepare causal attention mask
if self.causal:
query_length, key_length = query_states.shape[1], key_states.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
# combine masks if needed
if attention_mask is not None and self.causal:
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
elif self.causal:
attention_mask = causal_mask
elif attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
key_states, value_states, attention_mask = self._concatenate_to_cache(
key_states, value_states, query_states, attention_mask
)
# Convert the boolean attention mask to an attention bias.
if attention_mask is not None:
# attention mask in the form of attention bias
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.dropout > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.dropout,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = self._merge_heads(attn_output)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayer with Bart->BlenderbotSmall
class FlaxBlenderbotSmallEncoderLayer(nn.Module):
config: BlenderbotSmallConfig
dtype: jnp.dtype = jnp.float32
def setup(self) -> None:
self.embed_dim = self.config.d_model
self.self_attn = FlaxBlenderbotSmallAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.encoder_attention_heads,
dropout=self.config.attention_dropout,
dtype=self.dtype,
)
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
self.activation_fn = ACT2FN[self.config.activation_function]
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
self.fc1 = nn.Dense(
self.config.encoder_ffn_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.fc2 = nn.Dense(
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
)
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
hidden_states: jnp.ndarray,
attention_mask: jnp.ndarray,
output_attentions: bool = True,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
residual = hidden_states
hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayerCollection with Bart->BlenderbotSmall
class FlaxBlenderbotSmallEncoderLayerCollection(nn.Module):
config: BlenderbotSmallConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxBlenderbotSmallEncoderLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.encoder_layers)
]
self.layerdrop = self.config.encoder_layerdrop
def __call__(
self,
hidden_states,
attention_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for encoder_layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if not deterministic and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
output_attentions,
deterministic,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states, all_hidden_states, all_attentions)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayer with Bart->BlenderbotSmall
class FlaxBlenderbotSmallDecoderLayer(nn.Module):
config: BlenderbotSmallConfig
dtype: jnp.dtype = jnp.float32
def setup(self) -> None:
self.embed_dim = self.config.d_model
self.self_attn = FlaxBlenderbotSmallAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.decoder_attention_heads,
dropout=self.config.attention_dropout,
causal=True,
dtype=self.dtype,
)
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
self.activation_fn = ACT2FN[self.config.activation_function]
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.encoder_attn = FlaxBlenderbotSmallAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.decoder_attention_heads,
dropout=self.config.attention_dropout,
dtype=self.dtype,
)
self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.fc1 = nn.Dense(
self.config.decoder_ffn_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.fc2 = nn.Dense(
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
)
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
hidden_states: jnp.ndarray,
attention_mask: jnp.ndarray,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
output_attentions: bool = True,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
residual = hidden_states
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache
)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states, cross_attn_weights = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayerCollection with Bart->BlenderbotSmall
class FlaxBlenderbotSmallDecoderLayerCollection(nn.Module):
config: BlenderbotSmallConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxBlenderbotSmallDecoderLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.decoder_layers)
]
self.layerdrop = self.config.decoder_layerdrop
def __call__(
self,
hidden_states,
attention_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if not deterministic and (dropout_probability < self.layerdrop):
layer_outputs = (None, None, None)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
output_attentions=output_attentions,
deterministic=deterministic,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions]
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
class FlaxBlenderbotSmallEncoder(nn.Module):
config: BlenderbotSmallConfig
embed_tokens: nn.Embed
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
embed_dim = self.config.d_model
self.padding_idx = self.config.pad_token_id
self.max_source_positions = self.config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
self.embed_positions = nn.Embed(
self.config.max_position_embeddings,
embed_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
)
self.layers = FlaxBlenderbotSmallEncoderLayerCollection(self.config, self.dtype)
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
input_shape = input_ids.shape
input_ids = input_ids.reshape(-1, input_shape[-1])
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(position_ids)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
outputs = self.layers(
hidden_states,
attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return outputs
return FlaxBaseModelOutput(
last_hidden_state=outputs.last_hidden_state,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class FlaxBlenderbotSmallDecoder(nn.Module):
config: BlenderbotSmallConfig
embed_tokens: nn.Embed
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
embed_dim = self.config.d_model
self.padding_idx = self.config.pad_token_id
self.max_target_positions = self.config.max_position_embeddings
self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
self.embed_positions = nn.Embed(
self.config.max_position_embeddings,
embed_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
)
self.layers = FlaxBlenderbotSmallDecoderLayerCollection(self.config, self.dtype)
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
input_shape = input_ids.shape
input_ids = input_ids.reshape(-1, input_shape[-1])
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
# embed positions
positions = self.embed_positions(position_ids)
# BlenderbotSmall applies layer norm on inputs_embeds in decoder
inputs_embeds = self.layernorm_embedding(inputs_embeds)
hidden_states = inputs_embeds + positions
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
outputs = self.layers(
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return outputs
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=outputs.last_hidden_state,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModule with Bart->BlenderbotSmall
class FlaxBlenderbotSmallModule(nn.Module):
config: BlenderbotSmallConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.shared = nn.Embed(
self.config.vocab_size,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
dtype=self.dtype,
)
self.encoder = FlaxBlenderbotSmallEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
self.decoder = FlaxBlenderbotSmallDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
def _get_encoder_module(self):
return self.encoder
def _get_decoder_module(self):
return self.decoder
def __call__(
self,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
position_ids=decoder_position_ids,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return FlaxSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
class FlaxBlenderbotSmallPreTrainedModel(FlaxPreTrainedModel):
config_class = BlenderbotSmallConfig
base_model_prefix: str = "model"
module_class: nn.Module = None
def __init__(
self,
config: BlenderbotSmallConfig,
input_shape: Tuple[int] = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
# make sure initialization pass will work for FlaxBlenderbotSmallForSequenceClassificationModule
input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id)
attention_mask = jnp.ones_like(input_ids)
decoder_input_ids = input_ids
decoder_attention_mask = jnp.ones_like(input_ids)
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(
rngs,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def init_cache(self, batch_size, max_length, encoder_outputs):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
`encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
`attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*)
is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
cross-attention of the decoder.
"""
# init input variables to retrieve cache
decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
decoder_position_ids = jnp.broadcast_to(
jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape
)
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
decoder_module = module._get_decoder_module()
return decoder_module(
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
**kwargs,
)
init_variables = self.module.init(
jax.random.PRNGKey(0),
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
encoder_hidden_states=encoder_outputs[0],
init_cache=True,
method=_decoder_forward, # we only need to call the decoder to init the cache
)
return unfreeze(init_variables["cache"])
@add_start_docstrings(BLENDERBOT_SMALL_ENCODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=BlenderbotSmallConfig)
def encode(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration
>>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if position_ids is None:
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs):
encode_module = module._get_encoder_module()
return encode_module(input_ids, attention_mask, position_ids, **kwargs)
return self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
method=_encoder_forward,
)
@add_start_docstrings(BLENDERBOT_SMALL_DECODE_INPUTS_DOCSTRING)
@replace_return_docstrings(
output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=BlenderbotSmallConfig
)
def decode(
self,
decoder_input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration
>>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
if decoder_position_ids is None:
if past_key_values is not None:
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
decoder_position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by FlaxBlenderbotSmallAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
decoder_module = module._get_decoder_module()
return decoder_module(
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
**kwargs,
)
outputs = self.module.apply(
inputs,
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past = outputs
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past = outputs
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
def __call__(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
decoder_input_ids: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# prepare encoder inputs
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if position_ids is None:
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
# prepare decoder inputs
if decoder_input_ids is None:
decoder_input_ids = shift_tokens_right(
input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id
)
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
if decoder_position_ids is None:
batch_size, sequence_length = decoder_input_ids.shape
decoder_position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
return self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
)
@add_start_docstrings(
"The bare BlenderbotSmall Model transformer outputting raw hidden-states without any specific head on top.",
BLENDERBOT_SMALL_START_DOCSTRING,
)
class FlaxBlenderbotSmallModel(FlaxBlenderbotSmallPreTrainedModel):
config: BlenderbotSmallConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
module_class = FlaxBlenderbotSmallModule
append_call_sample_docstring(FlaxBlenderbotSmallModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC)
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForConditionalGenerationModule with Bart->BlenderbotSmall
class FlaxBlenderbotSmallForConditionalGenerationModule(nn.Module):
config: BlenderbotSmallConfig
dtype: jnp.dtype = jnp.float32
bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
def setup(self):
self.model = FlaxBlenderbotSmallModule(config=self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.model.shared.num_embeddings,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings))
def _get_encoder_module(self):
return self.model.encoder
def _get_decoder_module(self):
return self.model.decoder
def __call__(
self,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
position_ids=position_ids,
decoder_position_ids=decoder_position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.model.variables["params"]["shared"]["embedding"]
lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
lm_logits = self.lm_head(hidden_states)
lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return output
return FlaxSeq2SeqLMOutput(
logits=lm_logits,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"The BLENDERBOT_SMALL Model with a language modeling head. Can be used for summarization.",
BLENDERBOT_SMALL_START_DOCSTRING,
)
class FlaxBlenderbotSmallForConditionalGeneration(FlaxBlenderbotSmallPreTrainedModel):
module_class = FlaxBlenderbotSmallForConditionalGenerationModule
dtype: jnp.dtype = jnp.float32
@add_start_docstrings(BLENDERBOT_SMALL_DECODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=BlenderbotSmallConfig)
def decode(
self,
decoder_input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
deterministic: bool = True,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration
>>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
if decoder_position_ids is None:
if past_key_values is not None:
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
decoder_position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by FlaxBlenderbotSmallAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
decoder_module = module._get_decoder_module()
outputs = decoder_module(
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
**kwargs,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = module.model.variables["params"]["shared"]["embedding"]
lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
lm_logits = module.lm_head(hidden_states)
lm_logits += module.final_logits_bias.astype(self.dtype)
return lm_logits, outputs
outputs = self.module.apply(
inputs,
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
if past_key_values is None:
lm_logits, decoder_outputs = outputs
else:
(lm_logits, decoder_outputs), past = outputs
if return_dict:
outputs = FlaxCausalLMOutputWithCrossAttentions(
logits=lm_logits,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
)
else:
outputs = (lm_logits,) + decoder_outputs[1:]
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
def prepare_inputs_for_generation(
self,
decoder_input_ids,
max_length,
attention_mask: Optional[jax.Array] = None,
decoder_attention_mask: Optional[jax.Array] = None,
encoder_outputs=None,
**kwargs,
):
# initializing the cache
batch_size, seq_length = decoder_input_ids.shape
past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since the decoder uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if decoder_attention_mask is not None:
position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"encoder_outputs": encoder_outputs,
"encoder_attention_mask": attention_mask,
"decoder_attention_mask": extended_attention_mask,
"decoder_position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1
return model_kwargs
FLAX_BLENDERBOT_SMALL_CONDITIONAL_GENERATION_DOCSTRING = """
Returns:
Summarization example:
```py
>>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration
>>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="np")
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"]).sequences
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
```
Mask filling example:
```py
>>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M")
>>> input_ids = tokenizer([TXT], return_tensors="np")["input_ids"]
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = jax.nn.softmax(logits[0, masked_index], axis=0)
>>> values, predictions = jax.lax.top_k(probs)
>>> tokenizer.decode(predictions).split()
```
"""
overwrite_call_docstring(
FlaxBlenderbotSmallForConditionalGeneration,
BLENDERBOT_SMALL_INPUTS_DOCSTRING + FLAX_BLENDERBOT_SMALL_CONDITIONAL_GENERATION_DOCSTRING,
)
append_replace_return_docstrings(
FlaxBlenderbotSmallForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py | # coding=utf-8
# Copyright 2021 The Facebook, Inc and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 BlenderbotSmall model."""
from __future__ import annotations
import random
from typing import List, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFBaseModelOutputWithPastAndCrossAttentions,
TFSeq2SeqLMOutput,
TFSeq2SeqModelOutput,
)
# Public API
from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss,
TFPreTrainedModel,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_blenderbot_small import BlenderbotSmallConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/blenderbot_small-90M"
_CONFIG_FOR_DOC = "BlenderbotSmallConfig"
LARGE_NEGATIVE = -1e8
# Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right
def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
pad_token_id = tf.cast(pad_token_id, input_ids.dtype)
decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype)
start_tokens = tf.fill(
(shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype)
)
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids = tf.where(
shifted_input_ids == -100,
tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)),
shifted_input_ids,
)
# "Verify that `labels` has only positive values and -100"
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
# Make sure the assertion op is called by wrapping the result in an identity no-op
with tf.control_dependencies([assert_gte0]):
shifted_input_ids = tf.identity(shifted_input_ids)
return shifted_input_ids
# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask
def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz = input_ids_shape[0]
tgt_len = input_ids_shape[1]
mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE
mask_cond = tf.range(shape_list(mask)[-1])
mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)
if past_key_values_length > 0:
mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
src_len = shape_list(mask)[1]
tgt_len = tgt_len if tgt_len is not None else src_len
one_cst = tf.constant(1.0)
mask = tf.cast(mask, dtype=one_cst.dtype)
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
return (one_cst - expanded_mask) * LARGE_NEGATIVE
# Copied from transformers.models.blenderbot.modeling_tf_blenderbot.TFBlenderbotLearnedPositionalEmbedding with Blenderbot->BlenderbotSmall
class TFBlenderbotSmallLearnedPositionalEmbedding(tf.keras.layers.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs):
super().__init__(num_embeddings, embedding_dim, **kwargs)
def call(
self, input_shape: tf.TensorShape, past_key_values_length: int = 0, position_ids: tf.Tensor | None = None
):
"""Input is expected to be of size [bsz x seqlen]."""
if position_ids is None:
seq_len = input_shape[1]
position_ids = tf.range(seq_len, delta=1, name="range")
position_ids += past_key_values_length
return super().call(tf.cast(position_ids, dtype=tf.int32))
# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->BlenderbotSmall
class TFBlenderbotSmallAttention(tf.keras.layers.Layer):
"""Multi-headed attention from "Attention Is All You Need"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = tf.keras.layers.Dropout(dropout)
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
self.q_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
self.v_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
self.out_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
def call(
self,
hidden_states: tf.Tensor,
key_value_states: tf.Tensor | None = None,
past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
attention_mask: tf.Tensor | None = None,
layer_head_mask: tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Tuple[tf.Tensor, tf.Tensor | None]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, embed_dim = shape_list(hidden_states)
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = tf.concat([past_key_value[0], key_states], axis=2)
value_states = tf.concat([past_key_value[1], value_states], axis=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
key_states = tf.reshape(key_states, proj_shape)
value_states = tf.reshape(value_states, proj_shape)
src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
tf.debugging.assert_equal(
shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len],
message=(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {shape_list(attn_weights)}"
),
)
if attention_mask is not None:
tf.debugging.assert_equal(
shape_list(attention_mask),
[bsz, 1, tgt_len, src_len],
message=(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {shape_list(attention_mask)}"
),
)
attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None:
tf.debugging.assert_equal(
shape_list(layer_head_mask),
[self.num_heads],
message=(
f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
f" {shape_list(layer_head_mask)}"
),
)
attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
attn_weights, (bsz, self.num_heads, tgt_len, src_len)
)
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states)
tf.debugging.assert_equal(
shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim],
message=(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {shape_list(attn_output)}"
),
)
attn_output = tf.transpose(
tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
)
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
attn_output = self.out_proj(attn_output)
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
return attn_output, attn_weights, past_key_value
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "k_proj", None) is not None:
with tf.name_scope(self.k_proj.name):
self.k_proj.build([None, None, self.embed_dim])
if getattr(self, "q_proj", None) is not None:
with tf.name_scope(self.q_proj.name):
self.q_proj.build([None, None, self.embed_dim])
if getattr(self, "v_proj", None) is not None:
with tf.name_scope(self.v_proj.name):
self.v_proj.build([None, None, self.embed_dim])
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build([None, None, self.embed_dim])
# Copied from transformers.models.bart.modeling_tf_bart.TFBartEncoderLayer with Bart->BlenderbotSmall
class TFBlenderbotSmallEncoderLayer(tf.keras.layers.Layer):
def __init__(self, config: BlenderbotSmallConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.d_model
self.self_attn = TFBlenderbotSmallAttention(
self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn"
)
self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.activation_fn = get_tf_activation(config.activation_function)
self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout)
self.fc1 = tf.keras.layers.Dense(config.encoder_ffn_dim, name="fc1")
self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
self.config = config
def call(
self,
hidden_states: tf.Tensor,
attention_mask: np.ndarray | tf.Tensor | None,
layer_head_mask: tf.Tensor | None,
training: Optional[bool] = False,
) -> tf.Tensor:
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`
"""
residual = hidden_states
hidden_states, self_attn_weights, _ = self.self_attn(
hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask
)
tf.debugging.assert_equal(
shape_list(hidden_states),
shape_list(residual),
message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}",
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout(hidden_states, training=training)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
return hidden_states, self_attn_weights
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attn", None) is not None:
with tf.name_scope(self.self_attn.name):
self.self_attn.build(None)
if getattr(self, "self_attn_layer_norm", None) is not None:
with tf.name_scope(self.self_attn_layer_norm.name):
self.self_attn_layer_norm.build([None, None, self.embed_dim])
if getattr(self, "fc1", None) is not None:
with tf.name_scope(self.fc1.name):
self.fc1.build([None, None, self.embed_dim])
if getattr(self, "fc2", None) is not None:
with tf.name_scope(self.fc2.name):
self.fc2.build([None, None, self.config.encoder_ffn_dim])
if getattr(self, "final_layer_norm", None) is not None:
with tf.name_scope(self.final_layer_norm.name):
self.final_layer_norm.build([None, None, self.embed_dim])
# Copied from transformers.models.bart.modeling_tf_bart.TFBartDecoderLayer with Bart->BlenderbotSmall
class TFBlenderbotSmallDecoderLayer(tf.keras.layers.Layer):
def __init__(self, config: BlenderbotSmallConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.d_model
self.self_attn = TFBlenderbotSmallAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
name="self_attn",
is_decoder=True,
)
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.activation_fn = get_tf_activation(config.activation_function)
self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout)
self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.encoder_attn = TFBlenderbotSmallAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
name="encoder_attn",
is_decoder=True,
)
self.encoder_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm")
self.fc1 = tf.keras.layers.Dense(config.decoder_ffn_dim, name="fc1")
self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
self.config = config
def call(
self,
hidden_states: tf.Tensor,
attention_mask: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
layer_head_mask: tf.Tensor | None = None,
cross_attn_layer_head_mask: tf.Tensor | None = None,
past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
training: Optional[bool] = False,
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`tf.Tensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
`(decoder_attention_heads,)`
cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
`(decoder_attention_heads,)`
past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
"""
residual = hidden_states
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout(hidden_states, training=training)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
return (
hidden_states,
self_attn_weights,
cross_attn_weights,
present_key_value,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attn", None) is not None:
with tf.name_scope(self.self_attn.name):
self.self_attn.build(None)
if getattr(self, "self_attn_layer_norm", None) is not None:
with tf.name_scope(self.self_attn_layer_norm.name):
self.self_attn_layer_norm.build([None, None, self.embed_dim])
if getattr(self, "encoder_attn", None) is not None:
with tf.name_scope(self.encoder_attn.name):
self.encoder_attn.build(None)
if getattr(self, "encoder_attn_layer_norm", None) is not None:
with tf.name_scope(self.encoder_attn_layer_norm.name):
self.encoder_attn_layer_norm.build([None, None, self.embed_dim])
if getattr(self, "fc1", None) is not None:
with tf.name_scope(self.fc1.name):
self.fc1.build([None, None, self.embed_dim])
if getattr(self, "fc2", None) is not None:
with tf.name_scope(self.fc2.name):
self.fc2.build([None, None, self.config.decoder_ffn_dim])
if getattr(self, "final_layer_norm", None) is not None:
with tf.name_scope(self.final_layer_norm.name):
self.final_layer_norm.build([None, None, self.embed_dim])
class TFBlenderbotSmallPreTrainedModel(TFPreTrainedModel):
config_class = BlenderbotSmallConfig
base_model_prefix = "model"
BLENDERBOT_SMALL_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Args:
config ([`BlenderbotSmallConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
BLENDERBOT_SMALL_GENERATION_EXAMPLE = r"""
Conversation example::
```py
>>> from transformers import AutoTokenizer, TFBlenderbotSmallForConditionalGeneration
>>> mname = "facebook/blenderbot_small-90M"
>>> model = BlenderbotSmallForConditionalGeneration.from_pretrained(mname)
>>> tokenizer = AutoTokenizer.from_pretrained(mname)
>>> UTTERANCE = "My friends are cool but they eat too many carbs."
>>> print("Human: ", UTTERANCE)
>>> inputs = tokenizer([UTTERANCE], return_tensors="tf")
>>> reply_ids = model.generate(**inputs)
>>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0])
what kind of carbs do they eat? i don't know much about carbs.
>>> REPLY = "I'm not sure"
>>> print("Human: ", REPLY)
>>> NEXT_UTTERANCE = (
... "My friends are cool but they eat too many carbs.</s> "
... "<s>what kind of carbs do they eat? i don't know much about carbs.</s> "
... "<s>I'm not sure."
... )
>>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="tf")
>>> inputs.pop("token_type_ids")
>>> next_reply_ids = model.generate(**inputs)
>>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0])
```
"""
BLENDERBOT_SMALL_INPUTS_DOCSTRING = r"""
Args:
input_ids (`tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
BlenderbotSmall uses the `bos_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.max_position_embeddings - 1]`.
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tf.FloatTensor`, *optional*):
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
of shape `(batch_size, sequence_length, hidden_size)` is a sequence of
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`). Set to `False` during training, `True` during generation
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@keras_serializable
class TFBlenderbotSmallEncoder(tf.keras.layers.Layer):
config_class = BlenderbotSmallConfig
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`TFBlenderbotSmallEncoderLayer`].
Args:
config: BlenderbotSmallConfig
"""
def __init__(
self, config: BlenderbotSmallConfig, embed_tokens: Optional[tf.keras.layers.Embedding] = None, **kwargs
):
super().__init__(**kwargs)
self.config = config
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.layerdrop = config.encoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
self.embed_tokens = embed_tokens
self.embed_positions = TFBlenderbotSmallLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
name="embed_positions",
)
self.layers = [TFBlenderbotSmallEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)]
self.layernorm_embedding = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding")
self.embed_dim = config.d_model
def get_embed_tokens(self):
return self.embed_tokens
def set_embed_tokens(self, embed_tokens):
self.embed_tokens = embed_tokens
@unpack_inputs
def call(
self,
input_ids=None,
inputs_embeds=None,
attention_mask=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
):
"""
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
in the config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail. This argument can be used only in eager mode, in graph mode the value in the config
will be used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
in eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input_shape)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
# check attention mask and invert
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask)
else:
attention_mask = None
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
tf.debugging.assert_equal(
shape_list(head_mask)[0],
len(self.layers),
message=(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {shape_list(head_mask)[0]}."
),
)
# encoder layers
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if training and (dropout_probability < self.layerdrop): # skip the layer
continue
hidden_states, attn = encoder_layer(
hidden_states,
attention_mask,
head_mask[idx] if head_mask is not None else None,
)
if output_attentions:
all_attentions += (attn,)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embed_positions", None) is not None:
with tf.name_scope(self.embed_positions.name):
self.embed_positions.build(None)
if getattr(self, "layernorm_embedding", None) is not None:
with tf.name_scope(self.layernorm_embedding.name):
self.layernorm_embedding.build([None, None, self.embed_dim])
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFBlenderbotSmallDecoder(tf.keras.layers.Layer):
config_class = BlenderbotSmallConfig
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFBlenderbotSmallDecoderLayer`]
Args:
config: BlenderbotSmallConfig
embed_tokens: output embedding
"""
def __init__(
self, config: BlenderbotSmallConfig, embed_tokens: Optional[tf.keras.layers.Embedding] = None, **kwargs
):
super().__init__(**kwargs)
self.config = config
self.padding_idx = config.pad_token_id
self.embed_tokens = embed_tokens
self.layerdrop = config.decoder_layerdrop
self.embed_positions = TFBlenderbotSmallLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
name="embed_positions",
)
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
self.layers = [TFBlenderbotSmallDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)]
self.layernorm_embedding = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding")
self.dropout = tf.keras.layers.Dropout(config.dropout)
def get_embed_tokens(self):
return self.embed_tokens
def set_embed_tokens(self, embed_tokens):
self.embed_tokens = embed_tokens
@unpack_inputs
def call(
self,
input_ids=None,
inputs_embeds=None,
attention_mask=None,
position_ids=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
):
r"""
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.max_position_embeddings - 1]`.
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
in the config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail. This argument can be used only in eager mode, in graph mode the value in the config
will be used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
in eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length)
else:
combined_attention_mask = _expand_mask(
tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1]
)
if attention_mask is not None:
combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1])
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1])
# embed positions
if position_ids is None:
positions = self.embed_positions(input_shape, past_key_values_length)
else:
positions = self.embed_positions(input_shape, position_ids=position_ids)
hidden_states = self.layernorm_embedding(inputs_embeds) + positions
hidden_states = self.dropout(hidden_states, training=training)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None
present_key_values = () if use_cache else None
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
if attn_mask is not None:
tf.debugging.assert_equal(
shape_list(attn_mask)[0],
len(self.layers),
message=(
f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for"
f" {shape_list(attn_mask)[0]}."
),
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if training and (dropout_probability < self.layerdrop):
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
hidden_states,
attention_mask=combined_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=head_mask[idx] if head_mask is not None else None,
cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
past_key_value=past_key_value,
)
if use_cache:
present_key_values += (present_key_value,)
if output_attentions:
all_self_attns += (layer_self_attn,)
if encoder_hidden_states is not None:
all_cross_attns += (layer_cross_attn,)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns
else:
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attns,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embed_positions", None) is not None:
with tf.name_scope(self.embed_positions.name):
self.embed_positions.build(None)
if getattr(self, "layernorm_embedding", None) is not None:
with tf.name_scope(self.layernorm_embedding.name):
self.layernorm_embedding.build([None, None, self.config.d_model])
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFBlenderbotSmallMainLayer(tf.keras.layers.Layer):
config_class = BlenderbotSmallConfig
def __init__(self, config: BlenderbotSmallConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.shared = tf.keras.layers.Embedding(
input_dim=config.vocab_size,
output_dim=config.d_model,
embeddings_initializer=tf.keras.initializers.TruncatedNormal(stddev=self.config.init_std),
name="model.shared",
)
# Additional attribute to specify the expected name scope of the layer (for loading/storing weights)
self.shared.load_weight_prefix = "model.shared"
self.encoder = TFBlenderbotSmallEncoder(config, self.shared, name="encoder")
self.decoder = TFBlenderbotSmallDecoder(config, self.shared, name="decoder")
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
@unpack_inputs
def call(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
decoder_position_ids=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput):
encoder_outputs = TFBaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False
elif not return_dict and not isinstance(encoder_outputs, tuple):
encoder_outputs = encoder_outputs.to_tuple()
decoder_outputs = self.decoder(
decoder_input_ids,
attention_mask=decoder_attention_mask,
position_ids=decoder_position_ids,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return TFSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
# The shared/tied weights expect to be in the model base namespace
# Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than
# the current one.
with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"):
self.shared.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "decoder", None) is not None:
with tf.name_scope(self.decoder.name):
self.decoder.build(None)
@add_start_docstrings(
"The bare BLENDERBOT_SMALL Model outputting raw hidden-states without any specific head on top.",
BLENDERBOT_SMALL_START_DOCSTRING,
)
class TFBlenderbotSmallModel(TFBlenderbotSmallPreTrainedModel):
def __init__(self, config: BlenderbotSmallConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.model = TFBlenderbotSmallMainLayer(config, name="model")
def get_encoder(self):
return self.model.encoder
def get_decoder(self):
return self.model.decoder
@unpack_inputs
@add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFSeq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: tf.Tensor | None = None,
attention_mask: tf.Tensor | None = None,
decoder_input_ids: tf.Tensor | None = None,
decoder_attention_mask: tf.Tensor | None = None,
decoder_position_ids: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
decoder_head_mask: tf.Tensor | None = None,
cross_attn_head_mask: tf.Tensor | None = None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values: List[tf.Tensor] | None = None,
inputs_embeds: tf.Tensor | None = None,
decoder_inputs_embeds: tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple[tf.Tensor], TFSeq2SeqModelOutput]:
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
# Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
return TFSeq2SeqModelOutput(
last_hidden_state=output.last_hidden_state,
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "model", None) is not None:
with tf.name_scope(self.model.name):
self.model.build(None)
# Copied from transformers.models.bart.modeling_tf_bart.BiasLayer
class BiasLayer(tf.keras.layers.Layer):
"""
Bias as a layer. It is used for serialization purposes: `tf.keras.Model.save_weights` stores on a per-layer basis,
so all weights have to be registered in a layer.
"""
def __init__(self, shape, initializer, trainable, name, **kwargs):
super().__init__(name=name, **kwargs)
# Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of
# "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see:
# https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214
self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable)
def call(self, x):
return x + self.bias
@add_start_docstrings(
"The BLENDERBOT_SMALL Model with a language modeling head. Can be used for summarization.",
BLENDERBOT_SMALL_START_DOCSTRING,
)
class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel, TFCausalLanguageModelingLoss):
_keys_to_ignore_on_load_unexpected = [
r"model.encoder.embed_tokens.weight",
r"model.decoder.embed_tokens.weight",
]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.model = TFBlenderbotSmallMainLayer(config, name="model")
self.use_cache = config.use_cache
# final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency.
self.bias_layer = BiasLayer(
name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False
)
def get_decoder(self):
return self.model.decoder
def get_encoder(self):
return self.model.encoder
def get_output_embeddings(self):
return self.get_input_embeddings()
def set_output_embeddings(self, value):
self.set_input_embeddings(value)
def get_bias(self):
return {"final_logits_bias": self.bias_layer.bias}
def set_bias(self, value):
# Replaces the existing layers containing bias for correct (de)serialization.
vocab_size = value["final_logits_bias"].shape[-1]
self.bias_layer = BiasLayer(
name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False
)
self.bias_layer.bias.assign(value["final_logits_bias"])
@unpack_inputs
@add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(BLENDERBOT_SMALL_GENERATION_EXAMPLE)
def call(
self,
input_ids: tf.Tensor | None = None,
attention_mask: tf.Tensor | None = None,
decoder_input_ids: tf.Tensor | None = None,
decoder_attention_mask: tf.Tensor | None = None,
decoder_position_ids: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
decoder_head_mask: tf.Tensor | None = None,
cross_attn_head_mask: tf.Tensor | None = None,
encoder_outputs: Optional[TFBaseModelOutput] = None,
past_key_values: List[tf.Tensor] | None = None,
inputs_embeds: tf.Tensor | None = None,
decoder_inputs_embeds: tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]:
r"""
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
if labels is not None:
labels = tf.where(
labels == self.config.pad_token_id,
tf.cast(tf.fill(shape_list(labels), -100), labels.dtype),
labels,
)
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True)
lm_logits = self.bias_layer(lm_logits)
masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits)
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return TFSeq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values, # index 1 of d outputs
decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
cross_attentions=outputs.cross_attentions, # index 4 of d outputs
encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs
encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
encoder_attentions=outputs.encoder_attentions, # 2 of e out
)
# Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
return TFSeq2SeqLMOutput(
logits=output.logits,
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
)
# Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past_key_values is used
if past_key_values is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
if decoder_attention_mask is not None: # xla
decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:]
elif past_key_values is not None: # no xla + past_key_values
decoder_position_ids = past_key_values[0][0].shape[2]
else: # no xla + no past_key_values
decoder_position_ids = tf.range(decoder_input_ids.shape[1])
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"decoder_position_ids": decoder_position_ids,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
}
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "model", None) is not None:
with tf.name_scope(self.model.name):
self.model.build(None)
if getattr(self, "bias_layer", None) is not None:
with tf.name_scope(self.bias_layer.name):
self.bias_layer.build(None)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/blenderbot_small/modeling_blenderbot_small.py | # coding=utf-8
# Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch BlenderbotSmall model."""
import copy
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_blenderbot_small import BlenderbotSmallConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "BlenderbotSmallConfig"
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/blenderbot_small-90M",
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
]
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
# Copied from transformers.models.blenderbot.modeling_blenderbot.BlenderbotLearnedPositionalEmbedding with Blenderbot->BlenderbotSmall
class BlenderbotSmallLearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int):
super().__init__(num_embeddings, embedding_dim)
def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
bsz, seq_len = input_ids_shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
)
return super().forward(positions)
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->BlenderbotSmall
class BlenderbotSmallAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[BlenderbotSmallConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
# Copied from transformers.models.bart.modeling_bart.BartEncoderLayer with Bart->BlenderbotSmall, BART->BLENDERBOT_SMALL
class BlenderbotSmallEncoderLayer(nn.Module):
def __init__(self, config: BlenderbotSmallConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = BLENDERBOT_SMALL_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
config=config,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: torch.FloatTensor,
layer_head_mask: torch.FloatTensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# TODO: Implement attention with SDPA for TimeSeriesTransformer.
BLENDERBOT_SMALL_ATTENTION_CLASSES = {
"eager": BlenderbotSmallAttention,
}
# Copied from transformers.models.bart.modeling_bart.BartDecoderLayer with Bart->BlenderbotSmall, BART->BLENDERBOT_SMALL
class BlenderbotSmallDecoderLayer(nn.Module):
def __init__(self, config: BlenderbotSmallConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = BLENDERBOT_SMALL_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
is_causal=True,
config=config,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = BLENDERBOT_SMALL_ATTENTION_CLASSES[config._attn_implementation](
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
config=config,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size `(decoder_attention_heads,)`.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
class BlenderbotSmallPreTrainedModel(PreTrainedModel):
config_class = BlenderbotSmallConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def dummy_inputs(self):
pad_token = self.config.pad_token_id
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
dummy_inputs = {
"attention_mask": input_ids.ne(pad_token),
"input_ids": input_ids,
"decoder_input_ids": input_ids,
}
return dummy_inputs
BLENDERBOT_SMALL_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`BlenderbotSmallConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
BLENDERBOT_SMALL_GENERATION_EXAMPLE = r"""
Conversation example:
```python
>>> from transformers import AutoTokenizer, BlenderbotSmallForConditionalGeneration
>>> mname = "facebook/blenderbot_small-90M"
>>> model = BlenderbotSmallForConditionalGeneration.from_pretrained(mname)
>>> tokenizer = AutoTokenizer.from_pretrained(mname)
>>> UTTERANCE = "My friends are cool but they eat too many carbs."
>>> print("Human: ", UTTERANCE)
Human: My friends are cool but they eat too many carbs.
>>> inputs = tokenizer([UTTERANCE], return_tensors="pt")
>>> reply_ids = model.generate(**inputs)
>>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0])
Bot: what kind of carbs do they eat? i don't know much about carbs.
>>> REPLY = "I'm not sure"
>>> print("Human: ", REPLY)
Human: I'm not sure
>>> NEXT_UTTERANCE = (
... "My friends are cool but they eat too many carbs.__end__ __start__what kind of carbs do they eat? "
... "i don't know much about carbs__end__ "
... "__start__ I'm not sure."
... )
>>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="pt")
>>> next_reply_ids = model.generate(**inputs)
>>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0])
Bot: they eat a lot of carbs. carbs are high in fat, protein, and fats.
```
"""
BLENDERBOT_SMALL_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
BlenderbotSmall uses the `bos_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class BlenderbotSmallEncoder(BlenderbotSmallPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`BlenderbotSmallEncoderLayer`].
Args:
config: BlenderbotSmallConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
self.embed_positions = BlenderbotSmallLearnedPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
)
self.layers = nn.ModuleList([BlenderbotSmallEncoderLayer(config) for _ in range(config.encoder_layers)])
self.layernorm_embedding = nn.LayerNorm(embed_dim)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids=None,
attention_mask=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input_shape)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != len(self.layers):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class BlenderbotSmallDecoder(BlenderbotSmallPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`BlenderbotSmallDecoderLayer`]
Args:
config: BlenderbotSmallConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_positions = BlenderbotSmallLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
)
self.layers = nn.ModuleList([BlenderbotSmallDecoderLayer(config) for _ in range(config.decoder_layers)])
self.layernorm_embedding = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input_shape, past_key_values_length)
# BlenderbotSmall applies layer norm on hidden_states
inputs_embeds = self.layernorm_embedding(inputs_embeds)
hidden_states = inputs_embeds + positions
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != len(self.layers):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare BlenderbotSmall Model outputting raw hidden-states without any specific head on top.",
BLENDERBOT_SMALL_START_DOCSTRING,
)
class BlenderbotSmallModel(BlenderbotSmallPreTrainedModel):
_tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"]
def __init__(self, config: BlenderbotSmallConfig):
super().__init__(config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
self.encoder = BlenderbotSmallEncoder(config, self.shared)
self.decoder = BlenderbotSmallDecoder(config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, BlenderbotSmallModel
>>> model = BlenderbotSmallModel.from_pretrained("facebook/blenderbot_small-90M")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
>>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt")
>>> decoder_inputs = tokenizer("Studies show that", return_tensors="pt") # Batch size 1
>>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 3, 512]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The BlenderbotSmall Model with a language modeling head. Can be used for summarization.",
BLENDERBOT_SMALL_START_DOCSTRING,
)
class BlenderbotSmallForConditionalGeneration(BlenderbotSmallPreTrainedModel):
base_model_prefix = "model"
_keys_to_ignore_on_load_missing = ["final_logits_bias"]
_tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "lm_head.weight"]
def __init__(self, config: BlenderbotSmallConfig):
super().__init__(config)
self.model = BlenderbotSmallModel(config)
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding:
new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
self._resize_final_logits_bias(new_embeddings.weight.shape[0])
return new_embeddings
def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
old_num_tokens = self.final_logits_bias.shape[-1]
if new_num_tokens <= old_num_tokens:
new_bias = self.final_logits_bias[:, :new_num_tokens]
else:
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
self.register_buffer("final_logits_bias", new_bias)
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(BLENDERBOT_SMALL_GENERATION_EXAMPLE)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past is used
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if decoder_input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = decoder_input_ids.shape[1] - 1
decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
}
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ layer_past[2:],
)
return reordered_past
# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->BlenderbotSmall
class BlenderbotSmallDecoderWrapper(BlenderbotSmallPreTrainedModel):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
used in combination with the [`EncoderDecoderModel`] framework.
"""
def __init__(self, config):
super().__init__(config)
self.decoder = BlenderbotSmallDecoder(config)
def forward(self, *args, **kwargs):
return self.decoder(*args, **kwargs)
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->BlenderbotSmall, facebook/bart-base->facebook/blenderbot_small-90M
class BlenderbotSmallForCausalLM(BlenderbotSmallPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
config = copy.deepcopy(config)
config.is_decoder = True
config.is_encoder_decoder = False
super().__init__(config)
self.model = BlenderbotSmallDecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model.decoder = decoder
def get_decoder(self):
return self.model.decoder
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, BlenderbotSmallForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
>>> model = BlenderbotSmallForCausalLM.from_pretrained("facebook/blenderbot_small-90M", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
>>> list(logits.shape) == expected_shape
True
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(outputs[0])
loss = None
if labels is not None:
labels = labels.to(logits.device)
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs
):
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_ids.shape)
if past_key_values:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
# first step, decoder_cached_states are empty
return {
"input_ids": input_ids, # encoder_outputs is defined. input_ids not needed
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"use_cache": use_cache,
}
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/blenderbot_small/__init__.py | # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
"configuration_blenderbot_small": [
"BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotSmallConfig",
"BlenderbotSmallOnnxConfig",
],
"tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_blenderbot_small_fast"] = ["BlenderbotSmallTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_blenderbot_small"] = [
"BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotSmallForCausalLM",
"BlenderbotSmallForConditionalGeneration",
"BlenderbotSmallModel",
"BlenderbotSmallPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_blenderbot_small"] = [
"TFBlenderbotSmallForConditionalGeneration",
"TFBlenderbotSmallModel",
"TFBlenderbotSmallPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_blenderbot_small"] = [
"FlaxBlenderbotSmallForConditionalGeneration",
"FlaxBlenderbotSmallModel",
"FlaxBlenderbotSmallPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig,
BlenderbotSmallOnnxConfig,
)
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotSmallForCausalLM,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallModel,
BlenderbotSmallPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot_small import (
TFBlenderbotSmallForConditionalGeneration,
TFBlenderbotSmallModel,
TFBlenderbotSmallPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/blenderbot_small/tokenization_blenderbot_small.py | # coding=utf-8
# Copyright 2021 The Facebook Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization class for BlenderbotSmall."""
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
},
"merges_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
},
"tokenizer_config_file": {
"facebook/blenderbot_small-90M": (
"https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
)
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"facebook/blenderbot_small-90M": 512}
def get_pairs(word):
"""
Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
pairs = set(pairs)
return pairs
class BlenderbotSmallTokenizer(PreTrainedTokenizer):
"""
Constructs a Blenderbot-90M tokenizer based on BPE (Byte-Pair-Encoding)
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
the superclass for more information regarding methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
merges_file (`str`):
Path to the merges file.
bos_token (`str`, *optional*, defaults to `"__start__"`):
The beginning of sentence token.
eos_token (`str`, *optional*, defaults to `"__end__"`):
The end of sentence token.
unk_token (`str`, *optional*, defaults to `"__unk__"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"__null__"`):
The token used for padding, for example when batching sequences of different lengths.
kwargs (*optional*):
Additional keyword arguments passed along to [`PreTrainedTokenizer`]
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
merges_file,
bos_token="__start__",
eos_token="__end__",
unk_token="__unk__",
pad_token="__null__",
**kwargs,
):
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
merges = merges_handle.read().split("\n")[1:-1]
merges = [tuple(merge.split()) for merge in merges]
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {}
super().__init__(unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, **kwargs)
@property
def vocab_size(self) -> int:
return len(self.encoder)
def get_vocab(self) -> Dict:
return dict(self.encoder, **self.added_tokens_encoder)
def bpe(self, token: str) -> str:
if token in self.cache:
return self.cache[token]
token = re.sub("([.,!?()])", r" \1", token)
token = re.sub("(')", r" \1 ", token)
token = re.sub(r"\s{2,}", " ", token)
if "\n" in token:
token = token.replace("\n", " __newln__")
tokens = token.split(" ")
words = []
for token in tokens:
if not len(token):
continue
token = token.lower()
word = tuple(token)
word = tuple(list(word[:-1]) + [word[-1] + "</w>"])
pairs = get_pairs(word)
if not pairs:
words.append(token)
continue
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except ValueError:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = "@@ ".join(word)
word = word[:-4]
self.cache[token] = word
words.append(word)
return " ".join(words)
def _tokenize(self, text: str) -> List[str]:
"""Split a string into tokens using BPE."""
split_tokens = []
words = re.findall(r"\S+\n?", text)
for token in words:
split_tokens.extend(list(self.bpe(token).split(" ")))
return split_tokens
def _convert_token_to_id(self, token: str) -> int:
"""Converts a token to an id using the vocab."""
token = token.lower()
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index: int) -> str:
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens: List[str]) -> str:
"""Converts a sequence of tokens in a single string."""
out_string = " ".join(tokens).replace("@@ ", "").strip()
return out_string
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
merge_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
index = 0
with open(merge_file, "w", encoding="utf-8") as writer:
writer.write("#version: 0.2\n")
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!"
)
index = token_index
writer.write(" ".join(bpe_tokens) + "\n")
index += 1
return vocab_file, merge_file
@property
# Copied from transformers.models.blenderbot.tokenization_blenderbot.BlenderbotTokenizer.default_chat_template
def default_chat_template(self):
"""
A very simple chat template that just adds whitespace between messages.
"""
logger.warning_once(
"\nNo chat template is defined for this tokenizer - using the default template "
f"for the {self.__class__.__name__} class. If the default is not appropriate for "
"your model, please set `tokenizer.chat_template` to an appropriate template. "
"See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
)
return (
"{% for message in messages %}"
"{% if message['role'] == 'user' %}{{ ' ' }}{% endif %}"
"{{ message['content'] }}"
"{% if not loop.last %}{{ ' ' }}{% endif %}"
"{% endfor %}"
"{{ eos_token }}"
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/blenderbot_small/tokenization_blenderbot_small_fast.py | # coding=utf-8
# Copyright 2021, The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fast tokenization class for BlenderbotSmall."""
from typing import List, Optional
from tokenizers import ByteLevelBPETokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
},
"merges_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
},
"tokenizer_config_file": {
"facebook/blenderbot_small-90M": (
"https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
)
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"facebook/blenderbot_small-90M": 512,
}
class BlenderbotSmallTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" BlenderbotSmall tokenizer (backed by HuggingFace's *tokenizers* library).
Args:
vocab_file (`str`):
Path to the vocabulary file.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
slow_tokenizer_class = BlenderbotSmallTokenizer
def __init__(
self,
vocab_file=None,
merges_file=None,
unk_token="<|endoftext|>",
bos_token="<|endoftext|>",
eos_token="<|endoftext|>",
add_prefix_space=False,
trim_offsets=True,
**kwargs,
):
super().__init__(
ByteLevelBPETokenizer(
vocab=vocab_file,
merges=merges_file,
add_prefix_space=add_prefix_space,
trim_offsets=trim_offsets,
),
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
**kwargs,
)
self.add_prefix_space = add_prefix_space
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
if token_ids_1 is None:
return output
return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. BlenderbotSmall
does not make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
@property
# Copied from transformers.models.blenderbot.tokenization_blenderbot.BlenderbotTokenizer.default_chat_template
def default_chat_template(self):
"""
A very simple chat template that just adds whitespace between messages.
"""
logger.warning_once(
"\nNo chat template is defined for this tokenizer - using the default template "
f"for the {self.__class__.__name__} class. If the default is not appropriate for "
"your model, please set `tokenizer.chat_template` to an appropriate template. "
"See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
)
return (
"{% for message in messages %}"
"{% if message['role'] == 'user' %}{{ ' ' }}{% endif %}"
"{{ message['content'] }}"
"{% if not loop.last %}{{ ' ' }}{% endif %}"
"{% endfor %}"
"{{ eos_token }}"
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/graphormer/collating_graphormer.py | # Copyright (c) Microsoft Corporation and HuggingFace
# Licensed under the MIT License.
from typing import Any, Dict, List, Mapping
import numpy as np
import torch
from ...utils import is_cython_available, requires_backends
if is_cython_available():
import pyximport
pyximport.install(setup_args={"include_dirs": np.get_include()})
from . import algos_graphormer # noqa E402
def convert_to_single_emb(x, offset: int = 512):
feature_num = x.shape[1] if len(x.shape) > 1 else 1
feature_offset = 1 + np.arange(0, feature_num * offset, offset, dtype=np.int64)
x = x + feature_offset
return x
def preprocess_item(item, keep_features=True):
requires_backends(preprocess_item, ["cython"])
if keep_features and "edge_attr" in item.keys(): # edge_attr
edge_attr = np.asarray(item["edge_attr"], dtype=np.int64)
else:
edge_attr = np.ones((len(item["edge_index"][0]), 1), dtype=np.int64) # same embedding for all
if keep_features and "node_feat" in item.keys(): # input_nodes
node_feature = np.asarray(item["node_feat"], dtype=np.int64)
else:
node_feature = np.ones((item["num_nodes"], 1), dtype=np.int64) # same embedding for all
edge_index = np.asarray(item["edge_index"], dtype=np.int64)
input_nodes = convert_to_single_emb(node_feature) + 1
num_nodes = item["num_nodes"]
if len(edge_attr.shape) == 1:
edge_attr = edge_attr[:, None]
attn_edge_type = np.zeros([num_nodes, num_nodes, edge_attr.shape[-1]], dtype=np.int64)
attn_edge_type[edge_index[0], edge_index[1]] = convert_to_single_emb(edge_attr) + 1
# node adj matrix [num_nodes, num_nodes] bool
adj = np.zeros([num_nodes, num_nodes], dtype=bool)
adj[edge_index[0], edge_index[1]] = True
shortest_path_result, path = algos_graphormer.floyd_warshall(adj)
max_dist = np.amax(shortest_path_result)
input_edges = algos_graphormer.gen_edge_input(max_dist, path, attn_edge_type)
attn_bias = np.zeros([num_nodes + 1, num_nodes + 1], dtype=np.single) # with graph token
# combine
item["input_nodes"] = input_nodes + 1 # we shift all indices by one for padding
item["attn_bias"] = attn_bias
item["attn_edge_type"] = attn_edge_type
item["spatial_pos"] = shortest_path_result.astype(np.int64) + 1 # we shift all indices by one for padding
item["in_degree"] = np.sum(adj, axis=1).reshape(-1) + 1 # we shift all indices by one for padding
item["out_degree"] = item["in_degree"] # for undirected graph
item["input_edges"] = input_edges + 1 # we shift all indices by one for padding
if "labels" not in item:
item["labels"] = item["y"]
return item
class GraphormerDataCollator:
def __init__(self, spatial_pos_max=20, on_the_fly_processing=False):
if not is_cython_available():
raise ImportError("Graphormer preprocessing needs Cython (pyximport)")
self.spatial_pos_max = spatial_pos_max
self.on_the_fly_processing = on_the_fly_processing
def __call__(self, features: List[dict]) -> Dict[str, Any]:
if self.on_the_fly_processing:
features = [preprocess_item(i) for i in features]
if not isinstance(features[0], Mapping):
features = [vars(f) for f in features]
batch = {}
max_node_num = max(len(i["input_nodes"]) for i in features)
node_feat_size = len(features[0]["input_nodes"][0])
edge_feat_size = len(features[0]["attn_edge_type"][0][0])
max_dist = max(len(i["input_edges"][0][0]) for i in features)
edge_input_size = len(features[0]["input_edges"][0][0][0])
batch_size = len(features)
batch["attn_bias"] = torch.zeros(batch_size, max_node_num + 1, max_node_num + 1, dtype=torch.float)
batch["attn_edge_type"] = torch.zeros(batch_size, max_node_num, max_node_num, edge_feat_size, dtype=torch.long)
batch["spatial_pos"] = torch.zeros(batch_size, max_node_num, max_node_num, dtype=torch.long)
batch["in_degree"] = torch.zeros(batch_size, max_node_num, dtype=torch.long)
batch["input_nodes"] = torch.zeros(batch_size, max_node_num, node_feat_size, dtype=torch.long)
batch["input_edges"] = torch.zeros(
batch_size, max_node_num, max_node_num, max_dist, edge_input_size, dtype=torch.long
)
for ix, f in enumerate(features):
for k in ["attn_bias", "attn_edge_type", "spatial_pos", "in_degree", "input_nodes", "input_edges"]:
f[k] = torch.tensor(f[k])
if len(f["attn_bias"][1:, 1:][f["spatial_pos"] >= self.spatial_pos_max]) > 0:
f["attn_bias"][1:, 1:][f["spatial_pos"] >= self.spatial_pos_max] = float("-inf")
batch["attn_bias"][ix, : f["attn_bias"].shape[0], : f["attn_bias"].shape[1]] = f["attn_bias"]
batch["attn_edge_type"][ix, : f["attn_edge_type"].shape[0], : f["attn_edge_type"].shape[1], :] = f[
"attn_edge_type"
]
batch["spatial_pos"][ix, : f["spatial_pos"].shape[0], : f["spatial_pos"].shape[1]] = f["spatial_pos"]
batch["in_degree"][ix, : f["in_degree"].shape[0]] = f["in_degree"]
batch["input_nodes"][ix, : f["input_nodes"].shape[0], :] = f["input_nodes"]
batch["input_edges"][
ix, : f["input_edges"].shape[0], : f["input_edges"].shape[1], : f["input_edges"].shape[2], :
] = f["input_edges"]
batch["out_degree"] = batch["in_degree"]
sample = features[0]["labels"]
if len(sample) == 1: # one task
if isinstance(sample[0], float): # regression
batch["labels"] = torch.from_numpy(np.concatenate([i["labels"] for i in features]))
else: # binary classification
batch["labels"] = torch.from_numpy(np.concatenate([i["labels"] for i in features]))
else: # multi task classification, left to float to keep the NaNs
batch["labels"] = torch.from_numpy(np.stack([i["labels"] for i in features], axis=0))
return batch
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/graphormer/algos_graphormer.pyx | # Copyright (c) Microsoft Corporation and HuggingFace
# Licensed under the MIT License.
import cython
cimport numpy
from cython.parallel cimport parallel, prange
import numpy as np
# Reduce this number if matrices are too big for large graphs
UNREACHABLE_NODE_DISTANCE = 510
def floyd_warshall(adjacency_matrix):
"""
Applies the Floyd-Warshall algorithm to the adjacency matrix, to compute the
shortest paths distance between all nodes, up to UNREACHABLE_NODE_DISTANCE.
"""
(nrows, ncols) = adjacency_matrix.shape
assert nrows == ncols
cdef unsigned int n = nrows
adj_mat_copy = adjacency_matrix.astype(np.int32, order='C', casting='safe', copy=True)
assert adj_mat_copy.flags['C_CONTIGUOUS']
cdef numpy.ndarray[numpy.int32_t, ndim=2, mode='c'] M = adj_mat_copy
cdef numpy.ndarray[numpy.int32_t, ndim=2, mode='c'] path = -1 * np.ones([n, n], dtype=np.int32)
cdef unsigned int i, j, k
cdef numpy.int32_t M_ij, M_ik, cost_ikkj
cdef numpy.int32_t* M_ptr = &M[0,0]
cdef numpy.int32_t* M_i_ptr
cdef numpy.int32_t* M_k_ptr
# set unreachable nodes distance to UNREACHABLE_NODE_DISTANCE
for i in range(n):
for j in range(n):
if i == j:
M[i][j] = 0
elif M[i][j] == 0:
M[i][j] = UNREACHABLE_NODE_DISTANCE
# floyed algo
for k in range(n):
M_k_ptr = M_ptr + n*k
for i in range(n):
M_i_ptr = M_ptr + n*i
M_ik = M_i_ptr[k]
for j in range(n):
cost_ikkj = M_ik + M_k_ptr[j]
M_ij = M_i_ptr[j]
if M_ij > cost_ikkj:
M_i_ptr[j] = cost_ikkj
path[i][j] = k
# set unreachable path to UNREACHABLE_NODE_DISTANCE
for i in range(n):
for j in range(n):
if M[i][j] >= UNREACHABLE_NODE_DISTANCE:
path[i][j] = UNREACHABLE_NODE_DISTANCE
M[i][j] = UNREACHABLE_NODE_DISTANCE
return M, path
def get_all_edges(path, i, j):
"""
Recursive function to compute all possible paths between two nodes from the graph adjacency matrix.
"""
cdef int k = path[i][j]
if k == -1:
return []
else:
return get_all_edges(path, i, k) + [k] + get_all_edges(path, k, j)
def gen_edge_input(max_dist, path, edge_feat):
"""
Generates the full edge feature and adjacency matrix.
Shape: num_nodes * num_nodes * max_distance_between_nodes * num_edge_features
Dim 1 is the input node, dim 2 the output node of the edge, dim 3 the depth of the edge, dim 4 the feature
"""
(nrows, ncols) = path.shape
assert nrows == ncols
cdef unsigned int n = nrows
cdef unsigned int max_dist_copy = max_dist
path_copy = path.astype(long, order='C', casting='safe', copy=True)
edge_feat_copy = edge_feat.astype(long, order='C', casting='safe', copy=True)
assert path_copy.flags['C_CONTIGUOUS']
assert edge_feat_copy.flags['C_CONTIGUOUS']
cdef numpy.ndarray[numpy.int32_t, ndim=4, mode='c'] edge_fea_all = -1 * np.ones([n, n, max_dist_copy, edge_feat.shape[-1]], dtype=np.int32)
cdef unsigned int i, j, k, num_path, cur
for i in range(n):
for j in range(n):
if i == j:
continue
if path_copy[i][j] == UNREACHABLE_NODE_DISTANCE:
continue
path = [i] + get_all_edges(path_copy, i, j) + [j]
num_path = len(path) - 1
for k in range(num_path):
edge_fea_all[i, j, k, :] = edge_feat_copy[path[k], path[k+1], :]
return edge_fea_all
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/graphormer/__init__.py | # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_import_structure = {
"configuration_graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_graphormer"] = [
"GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"GraphormerForGraphClassification",
"GraphormerModel",
"GraphormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_graphormer import (
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
GraphormerForGraphClassification,
GraphormerModel,
GraphormerPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/graphormer/configuration_graphormer.py | # coding=utf-8
# Copyright 2022 Microsoft, clefourrier and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Graphormer model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
# pcqm4mv1 now deprecated
"graphormer-base": "https://huggingface.co/clefourrier/graphormer-base-pcqm4mv2/resolve/main/config.json",
# See all Graphormer models at https://huggingface.co/models?filter=graphormer
}
class GraphormerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`~GraphormerModel`]. It is used to instantiate an
Graphormer model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Graphormer
[graphormer-base-pcqm4mv1](https://huggingface.co/graphormer-base-pcqm4mv1) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_classes (`int`, *optional*, defaults to 1):
Number of target classes or labels, set to n for binary classification of n tasks.
num_atoms (`int`, *optional*, defaults to 512*9):
Number of node types in the graphs.
num_edges (`int`, *optional*, defaults to 512*3):
Number of edges types in the graph.
num_in_degree (`int`, *optional*, defaults to 512):
Number of in degrees types in the input graphs.
num_out_degree (`int`, *optional*, defaults to 512):
Number of out degrees types in the input graphs.
num_edge_dis (`int`, *optional*, defaults to 128):
Number of edge dis in the input graphs.
multi_hop_max_dist (`int`, *optional*, defaults to 20):
Maximum distance of multi hop edges between two nodes.
spatial_pos_max (`int`, *optional*, defaults to 1024):
Maximum distance between nodes in the graph attention bias matrices, used during preprocessing and
collation.
edge_type (`str`, *optional*, defaults to multihop):
Type of edge relation chosen.
max_nodes (`int`, *optional*, defaults to 512):
Maximum number of nodes which can be parsed for the input graphs.
share_input_output_embed (`bool`, *optional*, defaults to `False`):
Shares the embedding layer between encoder and decoder - careful, True is not implemented.
num_layers (`int`, *optional*, defaults to 12):
Number of layers.
embedding_dim (`int`, *optional*, defaults to 768):
Dimension of the embedding layer in encoder.
ffn_embedding_dim (`int`, *optional*, defaults to 768):
Dimension of the "intermediate" (often named feed-forward) layer in encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads in the encoder.
self_attention (`bool`, *optional*, defaults to `True`):
Model is self attentive (False not implemented).
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the attention weights.
activation_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the activation of the linear transformer layer.
layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
bias (`bool`, *optional*, defaults to `True`):
Uses bias in the attention module - unsupported at the moment.
embed_scale(`float`, *optional*, defaults to None):
Scaling factor for the node embeddings.
num_trans_layers_to_freeze (`int`, *optional*, defaults to 0):
Number of transformer layers to freeze.
encoder_normalize_before (`bool`, *optional*, defaults to `False`):
Normalize features before encoding the graph.
pre_layernorm (`bool`, *optional*, defaults to `False`):
Apply layernorm before self attention and the feed forward network. Without this, post layernorm will be
used.
apply_graphormer_init (`bool`, *optional*, defaults to `False`):
Apply a custom graphormer initialisation to the model before training.
freeze_embeddings (`bool`, *optional*, defaults to `False`):
Freeze the embedding layer, or train it along the model.
encoder_normalize_before (`bool`, *optional*, defaults to `False`):
Apply the layer norm before each encoder block.
q_noise (`float`, *optional*, defaults to 0.0):
Amount of quantization noise (see "Training with Quantization Noise for Extreme Model Compression"). (For
more detail, see fairseq's documentation on quant_noise).
qn_block_size (`int`, *optional*, defaults to 8):
Size of the blocks for subsequent quantization with iPQ (see q_noise).
kdim (`int`, *optional*, defaults to None):
Dimension of the key in the attention, if different from the other values.
vdim (`int`, *optional*, defaults to None):
Dimension of the value in the attention, if different from the other values.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
traceable (`bool`, *optional*, defaults to `False`):
Changes return value of the encoder's inner_state to stacked tensors.
Example:
```python
>>> from transformers import GraphormerForGraphClassification, GraphormerConfig
>>> # Initializing a Graphormer graphormer-base-pcqm4mv2 style configuration
>>> configuration = GraphormerConfig()
>>> # Initializing a model from the graphormer-base-pcqm4mv1 style configuration
>>> model = GraphormerForGraphClassification(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "graphormer"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
num_classes: int = 1,
num_atoms: int = 512 * 9,
num_edges: int = 512 * 3,
num_in_degree: int = 512,
num_out_degree: int = 512,
num_spatial: int = 512,
num_edge_dis: int = 128,
multi_hop_max_dist: int = 5, # sometimes is 20
spatial_pos_max: int = 1024,
edge_type: str = "multi_hop",
max_nodes: int = 512,
share_input_output_embed: bool = False,
num_hidden_layers: int = 12,
embedding_dim: int = 768,
ffn_embedding_dim: int = 768,
num_attention_heads: int = 32,
dropout: float = 0.1,
attention_dropout: float = 0.1,
activation_dropout: float = 0.1,
layerdrop: float = 0.0,
encoder_normalize_before: bool = False,
pre_layernorm: bool = False,
apply_graphormer_init: bool = False,
activation_fn: str = "gelu",
embed_scale: float = None,
freeze_embeddings: bool = False,
num_trans_layers_to_freeze: int = 0,
traceable: bool = False,
q_noise: float = 0.0,
qn_block_size: int = 8,
kdim: int = None,
vdim: int = None,
bias: bool = True,
self_attention: bool = True,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
**kwargs,
):
self.num_classes = num_classes
self.num_atoms = num_atoms
self.num_in_degree = num_in_degree
self.num_out_degree = num_out_degree
self.num_edges = num_edges
self.num_spatial = num_spatial
self.num_edge_dis = num_edge_dis
self.edge_type = edge_type
self.multi_hop_max_dist = multi_hop_max_dist
self.spatial_pos_max = spatial_pos_max
self.max_nodes = max_nodes
self.num_hidden_layers = num_hidden_layers
self.embedding_dim = embedding_dim
self.hidden_size = embedding_dim
self.ffn_embedding_dim = ffn_embedding_dim
self.num_attention_heads = num_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.layerdrop = layerdrop
self.encoder_normalize_before = encoder_normalize_before
self.pre_layernorm = pre_layernorm
self.apply_graphormer_init = apply_graphormer_init
self.activation_fn = activation_fn
self.embed_scale = embed_scale
self.freeze_embeddings = freeze_embeddings
self.num_trans_layers_to_freeze = num_trans_layers_to_freeze
self.share_input_output_embed = share_input_output_embed
self.traceable = traceable
self.q_noise = q_noise
self.qn_block_size = qn_block_size
# These parameters are here for future extensions
# atm, the model only supports self attention
self.kdim = kdim
self.vdim = vdim
self.self_attention = self_attention
self.bias = bias
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
**kwargs,
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/graphormer/modeling_graphormer.py | # coding=utf-8
# Copyright 2022 Microsoft, clefourrier The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Graphormer model."""
import math
from typing import Iterable, Iterator, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
SequenceClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_graphormer import GraphormerConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "graphormer-base-pcqm4mv1"
_CONFIG_FOR_DOC = "GraphormerConfig"
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"clefourrier/graphormer-base-pcqm4mv1",
"clefourrier/graphormer-base-pcqm4mv2",
# See all Graphormer models at https://huggingface.co/models?filter=graphormer
]
def quant_noise(module: nn.Module, p: float, block_size: int):
"""
From:
https://github.com/facebookresearch/fairseq/blob/dd0079bde7f678b0cd0715cbd0ae68d661b7226d/fairseq/modules/quant_noise.py
Wraps modules and applies quantization noise to the weights for subsequent quantization with Iterative Product
Quantization as described in "Training with Quantization Noise for Extreme Model Compression"
Args:
- module: nn.Module
- p: amount of Quantization Noise
- block_size: size of the blocks for subsequent quantization with iPQ
Remarks:
- Module weights must have the right sizes wrt the block size
- Only Linear, Embedding and Conv2d modules are supported for the moment
- For more detail on how to quantize by blocks with convolutional weights, see "And the Bit Goes Down:
Revisiting the Quantization of Neural Networks"
- We implement the simplest form of noise here as stated in the paper which consists in randomly dropping
blocks
"""
# if no quantization noise, don't register hook
if p <= 0:
return module
# supported modules
if not isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d)):
raise NotImplementedError("Module unsupported for quant_noise.")
# test whether module.weight has the right sizes wrt block_size
is_conv = module.weight.ndim == 4
# 2D matrix
if not is_conv:
if module.weight.size(1) % block_size != 0:
raise AssertionError("Input features must be a multiple of block sizes")
# 4D matrix
else:
# 1x1 convolutions
if module.kernel_size == (1, 1):
if module.in_channels % block_size != 0:
raise AssertionError("Input channels must be a multiple of block sizes")
# regular convolutions
else:
k = module.kernel_size[0] * module.kernel_size[1]
if k % block_size != 0:
raise AssertionError("Kernel size must be a multiple of block size")
def _forward_pre_hook(mod, input):
# no noise for evaluation
if mod.training:
if not is_conv:
# gather weight and sizes
weight = mod.weight
in_features = weight.size(1)
out_features = weight.size(0)
# split weight matrix into blocks and randomly drop selected blocks
mask = torch.zeros(in_features // block_size * out_features, device=weight.device)
mask.bernoulli_(p)
mask = mask.repeat_interleave(block_size, -1).view(-1, in_features)
else:
# gather weight and sizes
weight = mod.weight
in_channels = mod.in_channels
out_channels = mod.out_channels
# split weight matrix into blocks and randomly drop selected blocks
if mod.kernel_size == (1, 1):
mask = torch.zeros(
int(in_channels // block_size * out_channels),
device=weight.device,
)
mask.bernoulli_(p)
mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels)
else:
mask = torch.zeros(weight.size(0), weight.size(1), device=weight.device)
mask.bernoulli_(p)
mask = mask.unsqueeze(2).unsqueeze(3).repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1])
# scale weights and apply mask
mask = mask.to(torch.bool) # x.bool() is not currently supported in TorchScript
s = 1 / (1 - p)
mod.weight.data = s * weight.masked_fill(mask, 0)
module.register_forward_pre_hook(_forward_pre_hook)
return module
class LayerDropModuleList(nn.ModuleList):
"""
From:
https://github.com/facebookresearch/fairseq/blob/dd0079bde7f678b0cd0715cbd0ae68d661b7226d/fairseq/modules/layer_drop.py
A LayerDrop implementation based on [`torch.nn.ModuleList`]. LayerDrop as described in
https://arxiv.org/abs/1909.11556.
We refresh the choice of which layers to drop every time we iterate over the LayerDropModuleList instance. During
evaluation we always iterate over all layers.
Usage:
```python
layers = LayerDropList(p=0.5, modules=[layer1, layer2, layer3])
for layer in layers: # this might iterate over layers 1 and 3
x = layer(x)
for layer in layers: # this might iterate over all layers
x = layer(x)
for layer in layers: # this might not iterate over any layers
x = layer(x)
```
Args:
p (float): probability of dropping out each layer
modules (iterable, optional): an iterable of modules to add
"""
def __init__(self, p: float, modules: Optional[Iterable[nn.Module]] = None):
super().__init__(modules)
self.p = p
def __iter__(self) -> Iterator[nn.Module]:
dropout_probs = torch.empty(len(self)).uniform_()
for i, m in enumerate(super().__iter__()):
if not self.training or (dropout_probs[i] > self.p):
yield m
class GraphormerGraphNodeFeature(nn.Module):
"""
Compute node features for each node in the graph.
"""
def __init__(self, config: GraphormerConfig):
super().__init__()
self.num_heads = config.num_attention_heads
self.num_atoms = config.num_atoms
self.atom_encoder = nn.Embedding(config.num_atoms + 1, config.hidden_size, padding_idx=config.pad_token_id)
self.in_degree_encoder = nn.Embedding(
config.num_in_degree, config.hidden_size, padding_idx=config.pad_token_id
)
self.out_degree_encoder = nn.Embedding(
config.num_out_degree, config.hidden_size, padding_idx=config.pad_token_id
)
self.graph_token = nn.Embedding(1, config.hidden_size)
def forward(
self,
input_nodes: torch.LongTensor,
in_degree: torch.LongTensor,
out_degree: torch.LongTensor,
) -> torch.Tensor:
n_graph, n_node = input_nodes.size()[:2]
node_feature = ( # node feature + graph token
self.atom_encoder(input_nodes).sum(dim=-2) # [n_graph, n_node, n_hidden]
+ self.in_degree_encoder(in_degree)
+ self.out_degree_encoder(out_degree)
)
graph_token_feature = self.graph_token.weight.unsqueeze(0).repeat(n_graph, 1, 1)
graph_node_feature = torch.cat([graph_token_feature, node_feature], dim=1)
return graph_node_feature
class GraphormerGraphAttnBias(nn.Module):
"""
Compute attention bias for each head.
"""
def __init__(self, config: GraphormerConfig):
super().__init__()
self.num_heads = config.num_attention_heads
self.multi_hop_max_dist = config.multi_hop_max_dist
# We do not change edge feature embedding learning, as edge embeddings are represented as a combination of the original features
# + shortest path
self.edge_encoder = nn.Embedding(config.num_edges + 1, config.num_attention_heads, padding_idx=0)
self.edge_type = config.edge_type
if self.edge_type == "multi_hop":
self.edge_dis_encoder = nn.Embedding(
config.num_edge_dis * config.num_attention_heads * config.num_attention_heads,
1,
)
self.spatial_pos_encoder = nn.Embedding(config.num_spatial, config.num_attention_heads, padding_idx=0)
self.graph_token_virtual_distance = nn.Embedding(1, config.num_attention_heads)
def forward(
self,
input_nodes: torch.LongTensor,
attn_bias: torch.Tensor,
spatial_pos: torch.LongTensor,
input_edges: torch.LongTensor,
attn_edge_type: torch.LongTensor,
) -> torch.Tensor:
n_graph, n_node = input_nodes.size()[:2]
graph_attn_bias = attn_bias.clone()
graph_attn_bias = graph_attn_bias.unsqueeze(1).repeat(
1, self.num_heads, 1, 1
) # [n_graph, n_head, n_node+1, n_node+1]
# spatial pos
# [n_graph, n_node, n_node, n_head] -> [n_graph, n_head, n_node, n_node]
spatial_pos_bias = self.spatial_pos_encoder(spatial_pos).permute(0, 3, 1, 2)
graph_attn_bias[:, :, 1:, 1:] = graph_attn_bias[:, :, 1:, 1:] + spatial_pos_bias
# reset spatial pos here
t = self.graph_token_virtual_distance.weight.view(1, self.num_heads, 1)
graph_attn_bias[:, :, 1:, 0] = graph_attn_bias[:, :, 1:, 0] + t
graph_attn_bias[:, :, 0, :] = graph_attn_bias[:, :, 0, :] + t
# edge feature
if self.edge_type == "multi_hop":
spatial_pos_ = spatial_pos.clone()
spatial_pos_[spatial_pos_ == 0] = 1 # set pad to 1
# set 1 to 1, input_nodes > 1 to input_nodes - 1
spatial_pos_ = torch.where(spatial_pos_ > 1, spatial_pos_ - 1, spatial_pos_)
if self.multi_hop_max_dist > 0:
spatial_pos_ = spatial_pos_.clamp(0, self.multi_hop_max_dist)
input_edges = input_edges[:, :, :, : self.multi_hop_max_dist, :]
# [n_graph, n_node, n_node, max_dist, n_head]
input_edges = self.edge_encoder(input_edges).mean(-2)
max_dist = input_edges.size(-2)
edge_input_flat = input_edges.permute(3, 0, 1, 2, 4).reshape(max_dist, -1, self.num_heads)
edge_input_flat = torch.bmm(
edge_input_flat,
self.edge_dis_encoder.weight.reshape(-1, self.num_heads, self.num_heads)[:max_dist, :, :],
)
input_edges = edge_input_flat.reshape(max_dist, n_graph, n_node, n_node, self.num_heads).permute(
1, 2, 3, 0, 4
)
input_edges = (input_edges.sum(-2) / (spatial_pos_.float().unsqueeze(-1))).permute(0, 3, 1, 2)
else:
# [n_graph, n_node, n_node, n_head] -> [n_graph, n_head, n_node, n_node]
input_edges = self.edge_encoder(attn_edge_type).mean(-2).permute(0, 3, 1, 2)
graph_attn_bias[:, :, 1:, 1:] = graph_attn_bias[:, :, 1:, 1:] + input_edges
graph_attn_bias = graph_attn_bias + attn_bias.unsqueeze(1) # reset
return graph_attn_bias
class GraphormerMultiheadAttention(nn.Module):
"""Multi-headed attention.
See "Attention Is All You Need" for more details.
"""
def __init__(self, config: GraphormerConfig):
super().__init__()
self.embedding_dim = config.embedding_dim
self.kdim = config.kdim if config.kdim is not None else config.embedding_dim
self.vdim = config.vdim if config.vdim is not None else config.embedding_dim
self.qkv_same_dim = self.kdim == config.embedding_dim and self.vdim == config.embedding_dim
self.num_heads = config.num_attention_heads
self.attention_dropout_module = torch.nn.Dropout(p=config.attention_dropout, inplace=False)
self.head_dim = config.embedding_dim // config.num_attention_heads
if not (self.head_dim * config.num_attention_heads == self.embedding_dim):
raise AssertionError("The embedding_dim must be divisible by num_heads.")
self.scaling = self.head_dim**-0.5
self.self_attention = True # config.self_attention
if not (self.self_attention):
raise NotImplementedError("The Graphormer model only supports self attention for now.")
if self.self_attention and not self.qkv_same_dim:
raise AssertionError("Self-attention requires query, key and value to be of the same size.")
self.k_proj = quant_noise(
nn.Linear(self.kdim, config.embedding_dim, bias=config.bias),
config.q_noise,
config.qn_block_size,
)
self.v_proj = quant_noise(
nn.Linear(self.vdim, config.embedding_dim, bias=config.bias),
config.q_noise,
config.qn_block_size,
)
self.q_proj = quant_noise(
nn.Linear(config.embedding_dim, config.embedding_dim, bias=config.bias),
config.q_noise,
config.qn_block_size,
)
self.out_proj = quant_noise(
nn.Linear(config.embedding_dim, config.embedding_dim, bias=config.bias),
config.q_noise,
config.qn_block_size,
)
self.onnx_trace = False
def reset_parameters(self):
if self.qkv_same_dim:
# Empirically observed the convergence to be much better with
# the scaled initialization
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
else:
nn.init.xavier_uniform_(self.k_proj.weight)
nn.init.xavier_uniform_(self.v_proj.weight)
nn.init.xavier_uniform_(self.q_proj.weight)
nn.init.xavier_uniform_(self.out_proj.weight)
if self.out_proj.bias is not None:
nn.init.constant_(self.out_proj.bias, 0.0)
def forward(
self,
query: torch.LongTensor,
key: Optional[torch.Tensor],
value: Optional[torch.Tensor],
attn_bias: Optional[torch.Tensor],
key_padding_mask: Optional[torch.Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[torch.Tensor] = None,
before_softmax: bool = False,
need_head_weights: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""
Args:
key_padding_mask (Bytetorch.Tensor, optional): mask to exclude
keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s.
need_weights (bool, optional): return the attention weights,
averaged over heads (default: False).
attn_mask (Bytetorch.Tensor, optional): typically used to
implement causal attention, where the mask prevents the attention from looking forward in time
(default: None).
before_softmax (bool, optional): return the raw attention
weights and values before the attention softmax.
need_head_weights (bool, optional): return the attention
weights for each head. Implies *need_weights*. Default: return the average attention weights over all
heads.
"""
if need_head_weights:
need_weights = True
tgt_len, bsz, embedding_dim = query.size()
src_len = tgt_len
if not (embedding_dim == self.embedding_dim):
raise AssertionError(
f"The query embedding dimension {embedding_dim} is not equal to the expected embedding_dim"
f" {self.embedding_dim}."
)
if not (list(query.size()) == [tgt_len, bsz, embedding_dim]):
raise AssertionError("Query size incorrect in Graphormer, compared to model dimensions.")
if key is not None:
src_len, key_bsz, _ = key.size()
if not torch.jit.is_scripting():
if (key_bsz != bsz) or (value is None) or not (src_len, bsz == value.shape[:2]):
raise AssertionError(
"The batch shape does not match the key or value shapes provided to the attention."
)
q = self.q_proj(query)
k = self.k_proj(query)
v = self.v_proj(query)
q *= self.scaling
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1)
if k is not None:
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
if v is not None:
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
if (k is None) or not (k.size(1) == src_len):
raise AssertionError("The shape of the key generated in the attention is incorrect")
# This is part of a workaround to get around fork/join parallelism
# not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.dim() == 0:
key_padding_mask = None
if key_padding_mask is not None:
if key_padding_mask.size(0) != bsz or key_padding_mask.size(1) != src_len:
raise AssertionError(
"The shape of the generated padding mask for the key does not match expected dimensions."
)
attn_weights = torch.bmm(q, k.transpose(1, 2))
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
if list(attn_weights.size()) != [bsz * self.num_heads, tgt_len, src_len]:
raise AssertionError("The attention weights generated do not match the expected dimensions.")
if attn_bias is not None:
attn_weights += attn_bias.view(bsz * self.num_heads, tgt_len, src_len)
if attn_mask is not None:
attn_mask = attn_mask.unsqueeze(0)
attn_weights += attn_mask
if key_padding_mask is not None:
# don't attend to padding symbols
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf")
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if before_softmax:
return attn_weights, v
attn_weights_float = torch.nn.functional.softmax(attn_weights, dim=-1)
attn_weights = attn_weights_float.type_as(attn_weights)
attn_probs = self.attention_dropout_module(attn_weights)
if v is None:
raise AssertionError("No value generated")
attn = torch.bmm(attn_probs, v)
if list(attn.size()) != [bsz * self.num_heads, tgt_len, self.head_dim]:
raise AssertionError("The attention generated do not match the expected dimensions.")
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embedding_dim)
attn: torch.Tensor = self.out_proj(attn)
attn_weights = None
if need_weights:
attn_weights = attn_weights_float.contiguous().view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0)
if not need_head_weights:
# average attention weights over heads
attn_weights = attn_weights.mean(dim=0)
return attn, attn_weights
def apply_sparse_mask(self, attn_weights: torch.Tensor, tgt_len: int, src_len: int, bsz: int) -> torch.Tensor:
return attn_weights
class GraphormerGraphEncoderLayer(nn.Module):
def __init__(self, config: GraphormerConfig) -> None:
super().__init__()
# Initialize parameters
self.embedding_dim = config.embedding_dim
self.num_attention_heads = config.num_attention_heads
self.q_noise = config.q_noise
self.qn_block_size = config.qn_block_size
self.pre_layernorm = config.pre_layernorm
self.dropout_module = torch.nn.Dropout(p=config.dropout, inplace=False)
self.activation_dropout_module = torch.nn.Dropout(p=config.activation_dropout, inplace=False)
# Initialize blocks
self.activation_fn = ACT2FN[config.activation_fn]
self.self_attn = GraphormerMultiheadAttention(config)
# layer norm associated with the self attention layer
self.self_attn_layer_norm = nn.LayerNorm(self.embedding_dim)
self.fc1 = self.build_fc(
self.embedding_dim,
config.ffn_embedding_dim,
q_noise=config.q_noise,
qn_block_size=config.qn_block_size,
)
self.fc2 = self.build_fc(
config.ffn_embedding_dim,
self.embedding_dim,
q_noise=config.q_noise,
qn_block_size=config.qn_block_size,
)
# layer norm associated with the position wise feed-forward NN
self.final_layer_norm = nn.LayerNorm(self.embedding_dim)
def build_fc(
self, input_dim: int, output_dim: int, q_noise: float, qn_block_size: int
) -> Union[nn.Module, nn.Linear, nn.Embedding, nn.Conv2d]:
return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size)
def forward(
self,
input_nodes: torch.Tensor,
self_attn_bias: Optional[torch.Tensor] = None,
self_attn_mask: Optional[torch.Tensor] = None,
self_attn_padding_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""
nn.LayerNorm is applied either before or after the self-attention/ffn modules similar to the original
Transformer implementation.
"""
residual = input_nodes
if self.pre_layernorm:
input_nodes = self.self_attn_layer_norm(input_nodes)
input_nodes, attn = self.self_attn(
query=input_nodes,
key=input_nodes,
value=input_nodes,
attn_bias=self_attn_bias,
key_padding_mask=self_attn_padding_mask,
need_weights=False,
attn_mask=self_attn_mask,
)
input_nodes = self.dropout_module(input_nodes)
input_nodes = residual + input_nodes
if not self.pre_layernorm:
input_nodes = self.self_attn_layer_norm(input_nodes)
residual = input_nodes
if self.pre_layernorm:
input_nodes = self.final_layer_norm(input_nodes)
input_nodes = self.activation_fn(self.fc1(input_nodes))
input_nodes = self.activation_dropout_module(input_nodes)
input_nodes = self.fc2(input_nodes)
input_nodes = self.dropout_module(input_nodes)
input_nodes = residual + input_nodes
if not self.pre_layernorm:
input_nodes = self.final_layer_norm(input_nodes)
return input_nodes, attn
class GraphormerGraphEncoder(nn.Module):
def __init__(self, config: GraphormerConfig):
super().__init__()
self.dropout_module = torch.nn.Dropout(p=config.dropout, inplace=False)
self.layerdrop = config.layerdrop
self.embedding_dim = config.embedding_dim
self.apply_graphormer_init = config.apply_graphormer_init
self.traceable = config.traceable
self.graph_node_feature = GraphormerGraphNodeFeature(config)
self.graph_attn_bias = GraphormerGraphAttnBias(config)
self.embed_scale = config.embed_scale
if config.q_noise > 0:
self.quant_noise = quant_noise(
nn.Linear(self.embedding_dim, self.embedding_dim, bias=False),
config.q_noise,
config.qn_block_size,
)
else:
self.quant_noise = None
if config.encoder_normalize_before:
self.emb_layer_norm = nn.LayerNorm(self.embedding_dim)
else:
self.emb_layer_norm = None
if config.pre_layernorm:
self.final_layer_norm = nn.LayerNorm(self.embedding_dim)
if self.layerdrop > 0.0:
self.layers = LayerDropModuleList(p=self.layerdrop)
else:
self.layers = nn.ModuleList([])
self.layers.extend([GraphormerGraphEncoderLayer(config) for _ in range(config.num_hidden_layers)])
# Apply initialization of model params after building the model
if config.freeze_embeddings:
raise NotImplementedError("Freezing embeddings is not implemented yet.")
for layer in range(config.num_trans_layers_to_freeze):
m = self.layers[layer]
if m is not None:
for p in m.parameters():
p.requires_grad = False
def forward(
self,
input_nodes: torch.LongTensor,
input_edges: torch.LongTensor,
attn_bias: torch.Tensor,
in_degree: torch.LongTensor,
out_degree: torch.LongTensor,
spatial_pos: torch.LongTensor,
attn_edge_type: torch.LongTensor,
perturb=None,
last_state_only: bool = False,
token_embeddings: Optional[torch.Tensor] = None,
attn_mask: Optional[torch.Tensor] = None,
) -> Tuple[Union[torch.Tensor, List[torch.LongTensor]], torch.Tensor]:
# compute padding mask. This is needed for multi-head attention
data_x = input_nodes
n_graph, n_node = data_x.size()[:2]
padding_mask = (data_x[:, :, 0]).eq(0)
padding_mask_cls = torch.zeros(n_graph, 1, device=padding_mask.device, dtype=padding_mask.dtype)
padding_mask = torch.cat((padding_mask_cls, padding_mask), dim=1)
attn_bias = self.graph_attn_bias(input_nodes, attn_bias, spatial_pos, input_edges, attn_edge_type)
if token_embeddings is not None:
input_nodes = token_embeddings
else:
input_nodes = self.graph_node_feature(input_nodes, in_degree, out_degree)
if perturb is not None:
input_nodes[:, 1:, :] += perturb
if self.embed_scale is not None:
input_nodes = input_nodes * self.embed_scale
if self.quant_noise is not None:
input_nodes = self.quant_noise(input_nodes)
if self.emb_layer_norm is not None:
input_nodes = self.emb_layer_norm(input_nodes)
input_nodes = self.dropout_module(input_nodes)
input_nodes = input_nodes.transpose(0, 1)
inner_states = []
if not last_state_only:
inner_states.append(input_nodes)
for layer in self.layers:
input_nodes, _ = layer(
input_nodes,
self_attn_padding_mask=padding_mask,
self_attn_mask=attn_mask,
self_attn_bias=attn_bias,
)
if not last_state_only:
inner_states.append(input_nodes)
graph_rep = input_nodes[0, :, :]
if last_state_only:
inner_states = [input_nodes]
if self.traceable:
return torch.stack(inner_states), graph_rep
else:
return inner_states, graph_rep
class GraphormerDecoderHead(nn.Module):
def __init__(self, embedding_dim: int, num_classes: int):
super().__init__()
"""num_classes should be 1 for regression, or the number of classes for classification"""
self.lm_output_learned_bias = nn.Parameter(torch.zeros(1))
self.classifier = nn.Linear(embedding_dim, num_classes, bias=False)
self.num_classes = num_classes
def forward(self, input_nodes: torch.Tensor, **unused) -> torch.Tensor:
input_nodes = self.classifier(input_nodes)
input_nodes = input_nodes + self.lm_output_learned_bias
return input_nodes
class GraphormerPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GraphormerConfig
base_model_prefix = "graphormer"
main_input_name_nodes = "input_nodes"
main_input_name_edges = "input_edges"
def normal_(self, data: torch.Tensor):
# with FSDP, module params will be on CUDA, so we cast them back to CPU
# so that the RNG is consistent with and without FSDP
data.copy_(data.cpu().normal_(mean=0.0, std=0.02).to(data.device))
def init_graphormer_params(self, module: Union[nn.Linear, nn.Embedding, GraphormerMultiheadAttention]):
"""
Initialize the weights specific to the Graphormer Model.
"""
if isinstance(module, nn.Linear):
self.normal_(module.weight.data)
if module.bias is not None:
module.bias.data.zero_()
if isinstance(module, nn.Embedding):
self.normal_(module.weight.data)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if isinstance(module, GraphormerMultiheadAttention):
self.normal_(module.q_proj.weight.data)
self.normal_(module.k_proj.weight.data)
self.normal_(module.v_proj.weight.data)
def _init_weights(
self,
module: Union[
nn.Linear, nn.Conv2d, nn.Embedding, nn.LayerNorm, GraphormerMultiheadAttention, GraphormerGraphEncoder
],
):
"""
Initialize the weights
"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# We might be missing part of the Linear init, dependant on the layer num
module.weight.data.normal_(mean=0.0, std=0.02)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=0.02)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, GraphormerMultiheadAttention):
module.q_proj.weight.data.normal_(mean=0.0, std=0.02)
module.k_proj.weight.data.normal_(mean=0.0, std=0.02)
module.v_proj.weight.data.normal_(mean=0.0, std=0.02)
module.reset_parameters()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, GraphormerGraphEncoder):
if module.apply_graphormer_init:
module.apply(self.init_graphormer_params)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class GraphormerModel(GraphormerPreTrainedModel):
"""The Graphormer model is a graph-encoder model.
It goes from a graph to its representation. If you want to use the model for a downstream classification task, use
GraphormerForGraphClassification instead. For any other downstream task, feel free to add a new class, or combine
this model with a downstream model of your choice, following the example in GraphormerForGraphClassification.
"""
def __init__(self, config: GraphormerConfig):
super().__init__(config)
self.max_nodes = config.max_nodes
self.graph_encoder = GraphormerGraphEncoder(config)
self.share_input_output_embed = config.share_input_output_embed
self.lm_output_learned_bias = None
# Remove head is set to true during fine-tuning
self.load_softmax = not getattr(config, "remove_head", False)
self.lm_head_transform_weight = nn.Linear(config.embedding_dim, config.embedding_dim)
self.activation_fn = ACT2FN[config.activation_fn]
self.layer_norm = nn.LayerNorm(config.embedding_dim)
self.post_init()
def reset_output_layer_parameters(self):
self.lm_output_learned_bias = nn.Parameter(torch.zeros(1))
def forward(
self,
input_nodes: torch.LongTensor,
input_edges: torch.LongTensor,
attn_bias: torch.Tensor,
in_degree: torch.LongTensor,
out_degree: torch.LongTensor,
spatial_pos: torch.LongTensor,
attn_edge_type: torch.LongTensor,
perturb: Optional[torch.FloatTensor] = None,
masked_tokens: None = None,
return_dict: Optional[bool] = None,
**unused,
) -> Union[Tuple[torch.LongTensor], BaseModelOutputWithNoAttention]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
inner_states, graph_rep = self.graph_encoder(
input_nodes, input_edges, attn_bias, in_degree, out_degree, spatial_pos, attn_edge_type, perturb=perturb
)
# last inner state, then revert Batch and Graph len
input_nodes = inner_states[-1].transpose(0, 1)
# project masked tokens only
if masked_tokens is not None:
raise NotImplementedError
input_nodes = self.layer_norm(self.activation_fn(self.lm_head_transform_weight(input_nodes)))
# project back to size of vocabulary
if self.share_input_output_embed and hasattr(self.graph_encoder.embed_tokens, "weight"):
input_nodes = torch.nn.functional.linear(input_nodes, self.graph_encoder.embed_tokens.weight)
if not return_dict:
return tuple(x for x in [input_nodes, inner_states] if x is not None)
return BaseModelOutputWithNoAttention(last_hidden_state=input_nodes, hidden_states=inner_states)
def max_nodes(self):
"""Maximum output length supported by the encoder."""
return self.max_nodes
class GraphormerForGraphClassification(GraphormerPreTrainedModel):
"""
This model can be used for graph-level classification or regression tasks.
It can be trained on
- regression (by setting config.num_classes to 1); there should be one float-type label per graph
- one task classification (by setting config.num_classes to the number of classes); there should be one integer
label per graph
- binary multi-task classification (by setting config.num_classes to the number of labels); there should be a list
of integer labels for each graph.
"""
def __init__(self, config: GraphormerConfig):
super().__init__(config)
self.encoder = GraphormerModel(config)
self.embedding_dim = config.embedding_dim
self.num_classes = config.num_classes
self.classifier = GraphormerDecoderHead(self.embedding_dim, self.num_classes)
self.is_encoder_decoder = True
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_nodes: torch.LongTensor,
input_edges: torch.LongTensor,
attn_bias: torch.Tensor,
in_degree: torch.LongTensor,
out_degree: torch.LongTensor,
spatial_pos: torch.LongTensor,
attn_edge_type: torch.LongTensor,
labels: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
**unused,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_outputs = self.encoder(
input_nodes,
input_edges,
attn_bias,
in_degree,
out_degree,
spatial_pos,
attn_edge_type,
return_dict=True,
)
outputs, hidden_states = encoder_outputs["last_hidden_state"], encoder_outputs["hidden_states"]
head_outputs = self.classifier(outputs)
logits = head_outputs[:, 0, :].contiguous()
loss = None
if labels is not None:
mask = ~torch.isnan(labels)
if self.num_classes == 1: # regression
loss_fct = MSELoss()
loss = loss_fct(logits[mask].squeeze(), labels[mask].squeeze().float())
elif self.num_classes > 1 and len(labels.shape) == 1: # One task classification
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits[mask].view(-1, self.num_classes), labels[mask].view(-1))
else: # Binary multi-task classification
loss_fct = BCEWithLogitsLoss(reduction="sum")
loss = loss_fct(logits[mask], labels[mask])
if not return_dict:
return tuple(x for x in [loss, logits, hidden_states] if x is not None)
return SequenceClassifierOutput(loss=loss, logits=logits, hidden_states=hidden_states, attentions=None)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py | ####################################################################################################
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPT2Config
####################################################################################################
def recursive_print(name, val, spaces=0):
# Format the message.
if name is None:
msg = None
else:
fmt = "." * max(0, spaces - 2) + "# {:" + str(50 - spaces) + "s}"
msg = fmt.format(name)
# Print and recurse (if needed).
if isinstance(val, dict):
if msg is not None:
print(msg)
for k in val.keys():
recursive_print(k, val[k], spaces + 2)
elif isinstance(val, torch.Tensor):
print(msg, ":", val.size())
else:
print(msg, ":", val)
def fix_query_key_value_ordering(param, checkpoint_version, num_splits, num_heads, hidden_size):
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
input_shape = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
saved_shape = (num_heads, hidden_size, num_splits) + input_shape[1:]
param = param.view(*saved_shape)
param = param.transpose(0, 2)
param = param.transpose(1, 2).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
saved_shape = (num_heads, num_splits, hidden_size) + input_shape[1:]
param = param.view(*saved_shape)
param = param.transpose(0, 1).contiguous()
param = param.view(*input_shape)
return param
####################################################################################################
def convert_megatron_checkpoint(args, input_state_dict, config):
# The converted output model.
output_state_dict = {}
# old versions did not store training args
ds_args = input_state_dict.get("args", None)
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
config.vocab_size = ds_args.padded_vocab_size
config.n_positions = ds_args.max_position_embeddings
config.n_embd = ds_args.hidden_size
config.n_layer = ds_args.num_layers
config.n_head = ds_args.num_attention_heads
config.n_inner = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
heads = config.n_head
# The hidden_size per head.
hidden_size_per_head = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
checkpoint_version = input_state_dict["checkpoint_version"]
else:
checkpoint_version = 0.0
# The model.
model = input_state_dict["model"]
# The language model.
lm = model["language_model"]
# The embeddings.
embeddings = lm["embedding"]
# The word embeddings.
word_embeddings = embeddings["word_embeddings"]["weight"]
# Truncate the embedding table to vocab_size rows.
word_embeddings = word_embeddings[: config.vocab_size, :]
output_state_dict["transformer.wte.weight"] = word_embeddings
# The position embeddings.
pos_embeddings = embeddings["position_embeddings"]["weight"]
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
n_positions = pos_embeddings.size(0)
if n_positions != config.n_positions:
raise ValueError(
f"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match"
)
# Store the position embeddings.
output_state_dict["transformer.wpe.weight"] = pos_embeddings
# The transformer.
transformer = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"]
# The regex to extract layer names.
layer_re = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)")
# The simple map of names for "automated" rules.
megatron_to_transformers = {
"attention.dense": ".attn.c_proj.",
"self_attention.dense": ".attn.c_proj.",
"mlp.dense_h_to_4h": ".mlp.c_fc.",
"mlp.dense_4h_to_h": ".mlp.c_proj.",
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
m = layer_re.match(key)
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
layer_idx = int(m.group(1))
# The name of the operation.
op_name = m.group(2)
# Is it a weight or a bias?
weight_or_bias = m.group(3)
# The name of the layer.
layer_name = f"transformer.h.{layer_idx}"
# For layernorm(s), simply store the layer norm.
if op_name.endswith("layernorm"):
ln_name = "ln_1" if op_name.startswith("input") else "ln_2"
output_state_dict[layer_name + "." + ln_name + "." + weight_or_bias] = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
causal_mask = torch.tril(torch.ones((n_positions, n_positions), dtype=torch.float16)).view(
1, 1, n_positions, n_positions
)
output_state_dict[layer_name + ".attn.bias"] = causal_mask
# Insert a "dummy" tensor for masked_bias.
masked_bias = torch.tensor(-1e4, dtype=torch.float16)
output_state_dict[layer_name + ".attn.masked_bias"] = masked_bias
out_val = fix_query_key_value_ordering(val, checkpoint_version, 3, heads, hidden_size_per_head)
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
out_val = out_val.transpose(0, 1).contiguous()
# Store.
output_state_dict[layer_name + ".attn.c_attn.weight"] = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
out_val = fix_query_key_value_ordering(val, checkpoint_version, 3, heads, hidden_size_per_head)
# Store. No change of shape.
output_state_dict[layer_name + ".attn.c_attn.bias"] = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
out_name = megatron_to_transformers[op_name]
output_state_dict[layer_name + out_name + "weight"] = val.transpose(0, 1)
# Copy the bias.
elif weight_or_bias == "bias":
out_name = megatron_to_transformers[op_name]
output_state_dict[layer_name + out_name + "bias"] = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
output_state_dict["transformer.ln_f.weight"] = transformer["final_layernorm.weight"]
output_state_dict["transformer.ln_f.bias"] = transformer["final_layernorm.bias"]
# For LM head, transformers' wants the matrix to weight embeddings.
output_state_dict["lm_head.weight"] = word_embeddings
# It should be done!
return output_state_dict
####################################################################################################
def main():
# Create the argument parser.
parser = argparse.ArgumentParser()
parser.add_argument("--print-checkpoint-structure", action="store_true")
parser.add_argument(
"path_to_checkpoint",
type=str,
help="Path to the checkpoint file (.zip archive or direct .pt file)",
)
parser.add_argument(
"--config_file",
default="",
type=str,
help="An optional config json file describing the pre-trained model.",
)
args = parser.parse_args()
# Extract the basename.
basename = os.path.dirname(args.path_to_checkpoint)
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(f"Extracting PyTorch state dictionary from {args.path_to_checkpoint}")
if args.path_to_checkpoint.endswith(".zip"):
with zipfile.ZipFile(args.path_to_checkpoint, "r") as checkpoint:
with checkpoint.open("release/mp_rank_00/model_optim_rng.pt") as pytorch_dict:
input_state_dict = torch.load(pytorch_dict, map_location="cpu")
else:
input_state_dict = torch.load(args.path_to_checkpoint, map_location="cpu")
ds_args = input_state_dict.get("args", None)
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
activation_function = "gelu_fast"
elif ds_args.openai_gelu:
activation_function = "gelu_new"
else:
activation_function = "gelu"
else:
# in the very early days this used to be "gelu_new"
activation_function = "gelu_new"
# Spell out all parameters in case the defaults change.
config = GPT2Config(
vocab_size=50257,
n_positions=1024,
n_embd=1024,
n_layer=24,
n_head=16,
n_inner=4096,
activation_function=activation_function,
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
summary_type="cls_index",
summary_use_proj=True,
summary_activation=None,
summary_proj_to_labels=True,
summary_first_dropout=0.1,
scale_attn_weights=True,
use_cache=True,
bos_token_id=50256,
eos_token_id=50256,
)
else:
config = GPT2Config.from_json_file(args.config_file)
config.architectures = ["GPT2LMHeadModel"]
# Convert.
print("Converting")
output_state_dict = convert_megatron_checkpoint(args, input_state_dict, config)
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(None, output_state_dict)
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
tokenizer_type = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
tokenizer_model_name = "gpt2"
elif tokenizer_type == "PretrainedFromHF":
tokenizer_model_name = ds_args.tokenizer_name_or_path
else:
raise ValueError(f"Unrecognized tokenizer_type {tokenizer_type}")
else:
tokenizer_model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(tokenizer_model_name)
tokenizer_class = type(tokenizer).__name__
config.tokenizer_class = tokenizer_class
# Store the config to file.
print("Saving config")
config.save_pretrained(basename)
# Save tokenizer based on args
print(f"Adding {tokenizer_class} tokenizer files")
tokenizer.save_pretrained(basename)
# Store the state_dict to file.
output_checkpoint_file = os.path.join(basename, "pytorch_model.bin")
print(f'Saving checkpoint to "{output_checkpoint_file}"')
torch.save(output_state_dict, output_checkpoint_file)
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/megatron_gpt2/__init__.py | # Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/megatron_gpt2/checkpoint_reshaping_and_interoperability.py | # Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import re
import sys
import types
import torch
from transformers import AutoTokenizer, GPT2Config
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME, shard_checkpoint
def add_checkpointing_args(parser):
parser.add_argument("--megatron-path", type=str, default=None, help="Base directory of Megatron repository")
parser.add_argument(
"--convert_checkpoint_from_megatron_to_transformers",
action="store_true",
help=(
"If True, convert a Megatron checkpoint to a Transformers checkpoint. "
"If False, convert a Transformers checkpoint to a Megatron checkpoint."
),
)
parser.add_argument(
"--load_path",
type=str,
required=True,
help="Path to the checkpoint to convert.",
)
parser.add_argument(
"--save_path",
type=str,
required=True,
help="Path to the converted checkpoint.",
)
parser.add_argument("--print-checkpoint-structure", action="store_true")
return parser
def add_megatron_checkpoint_args(parser):
parser.add_argument(
"--target_tensor_model_parallel_size",
type=int,
default=1,
help=(
"The tensor model parallel size of the converted checkpoint. "
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
),
)
parser.add_argument(
"--target_pipeline_model_parallel_size",
type=int,
default=1,
help=(
"The pipeline model parallel size of the converted checkpoint. "
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
),
)
parser.add_argument(
"--target_data_parallel_size",
type=int,
default=1,
help=(
"The data parallel size of the converted checkpoint. "
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
),
)
parser.add_argument(
"--target_params_dtype",
type=str,
default="fp32",
help=(
"The dtype of the converted checkpoint. "
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
),
)
parser.add_argument(
"--make_vocab_size_divisible_by",
type=int,
default=128,
help=(
"Pad the vocab size to be divisible by this value. "
"This is added for computational efficieny reasons. "
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
),
)
parser.add_argument(
"--use_distributed_optimizer",
action="store_true",
help=(
"If True, use the distributed optimizer. "
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
),
)
return parser
def add_transformers_checkpoint_args(parser):
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help=(
"The name of the pre-trained tokenizer to save. "
"If not None, the tokenizer will be saved. "
"Only used when converting a Megatron checkpoint to a Transformers checkpoint."
),
)
parser.add_argument(
"--max_shard_size",
type=str,
default="10GB",
help=(
"The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size "
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`). "
"Only used when converting a Megatron checkpoint to a Transformers checkpoint."
),
)
return parser
# The simple map of names for "automated" rules.
megatron_to_transformers = {
"attention.dense": ".attn.c_proj.",
"self_attention.dense": ".attn.c_proj.",
"mlp.dense_h_to_4h": ".mlp.c_fc.",
"mlp.dense_4h_to_h": ".mlp.c_proj.",
}
transformers_to_megatron = {v[1:-1]: k for k, v in megatron_to_transformers.items()}
tensor_parallel_params = [
# megatron-lm layers to merge across tp ranks
"self_attention.query_key_value.weight",
"self_attention.query_key_value.bias",
"self_attention.dense.weight",
"mlp.dense_h_to_4h.weight",
"mlp.dense_h_to_4h.bias",
"mlp.dense_4h_to_h.weight",
# deprecated
"attention.query_key_value.weight",
"attention.query_key_value.bias",
"attention.dense.weight",
# transformers layers to split across tp ranks
"attn.c_attn.weight",
"attn.c_attn.bias",
"attn.c_proj.weight",
"mlp.c_fc.weight",
"mlp.c_fc.bias",
"mlp.c_proj.weight",
]
def recursive_print(name, val, spaces=0):
"""
Recursively print the structure of a checkpoint. This function is taken from `convert_megatron_gpt2_checkpoint.py`
Args:
name (str): the name of the current tensor parameter
val (Tuple(int)): the shape of the current tensor parameter
spaces (int): the number of spaces to print before the output for a nested structure
"""
# Format the message.
if name is None:
msg = None
else:
fmt = "." * max(0, spaces - 2) + "# {:" + str(50 - spaces) + "s}"
msg = fmt.format(name)
# Print and recurse (if needed).
if isinstance(val, dict):
if msg is not None:
print(msg)
for k in val.keys():
recursive_print(k, val[k], spaces + 2)
elif isinstance(val, torch.Tensor):
print(msg, ":", val.size())
else:
print(msg, ":", val)
def megatron_to_transformers_fix_query_key_value_ordering(
param, checkpoint_version, num_splits, num_heads, hidden_size
):
"""
Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] for compatibility with later versions
of NVIDIA Megatron-LM. The inverse operation is performed inside Megatron-LM to read checkpoints:
https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 If param is the weight tensor of the
self-attention block, the returned tensor will have to be transposed one more time to be read by HuggingFace GPT2.
This function is taken from `convert_megatron_gpt2_checkpoint.py`
Args:
param (torch.Tensor): the tensor to permute
checkpoint_version (int): the version of the checkpoint.
num_splits (int): the number of projections, usually 3 for (Query, Key, Value)
num_heads (int): the number of attention heads
hidden_size (int): the hidden size per head
"""
input_shape = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
saved_shape = (num_heads, hidden_size, num_splits) + input_shape[1:]
param = param.view(*saved_shape)
param = param.transpose(0, 2)
param = param.transpose(1, 2).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
saved_shape = (num_heads, num_splits, hidden_size) + input_shape[1:]
param = param.view(*saved_shape)
param = param.transpose(0, 1).contiguous()
param = param.view(*input_shape)
return param
def transformers_to_megatron_fix_query_key_value_ordering(
param, checkpoint_version, num_splits, num_heads, hidden_size
):
"""
Permutes layout of param tensor to the one compatible with respective NVIDIA Megatron-LM chekpoint versions. Input
is [num_splits * num_heads * hidden_size, :] and output is [num_heads * hidden_size * num_splits, :] for version
1.0 and [num_heads * num_splits * hidden_size, :] for version 2.0 and later. If param is the weight tensor of the
self-attention block, the param needs to be already transposed before calling this function.
Args:
param (torch.Tensor): the tensor to permute
checkpoint_version (int): the version of the checkpoint.
num_splits (int): the number of projections, usually 3 for (Query, Key, Value)
num_heads (int): the number of attention heads
hidden_size (int): the hidden size per head
"""
# Input is [num_splits * num_heads * hidden_size, :]
input_shape = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
current_shape = (num_splits, num_heads, hidden_size) + input_shape[1:]
param = param.view(*current_shape)
param = param.transpose(0, 2)
param = param.transpose(1, 2).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
current_shape = (num_splits, num_heads, hidden_size) + input_shape[1:]
param = param.view(*current_shape)
param = param.transpose(0, 1).contiguous()
param = param.view(*input_shape)
return param
def merge_transformers_sharded_states(path, num_checkpoints):
"""
Merge sharded checkpoints from transformers into a single checkpoint.
Args:
path (str): the path to the sharded checkpoints
num_checkpoints (int): the number of checkpoints to merge
"""
state_dict = {}
for i in range(1, num_checkpoints + 1):
checkpoint_path = os.path.join(path, f"pytorch_model-{i:05d}-of-{num_checkpoints:05d}.bin")
current_chunk = torch.load(checkpoint_path, map_location="cpu")
state_dict.update(current_chunk)
return state_dict
def get_megatron_sharded_states(args, tp_size, pp_size, pp_rank):
"""
Get sharded checkpoints from NVIDIA Megatron-LM checkpoint based on the provided tensor parallel size, pipeline
parallel size and pipeline parallel rank.
Args:
args (argparse.Namespace): the arguments to the script
tp_size (int): the tensor parallel size
pp_size (int): the pipeline parallel size
pp_rank (int): the pipeline parallel rank
"""
tp_state_dicts = []
for i in range(tp_size):
sub_dir_name = f"mp_rank_{i:02d}" if pp_size == 1 else f"mp_rank_{i:02d}_{pp_rank:03d}"
for checkpoint_name in ["model_optim_rng.pt", "model_rng.pt"]:
checkpoint_path = os.path.join(args.load_path, sub_dir_name, checkpoint_name)
if os.path.isfile(checkpoint_path):
break
state_dict = torch.load(checkpoint_path, map_location="cpu")
tp_state_dicts.append(state_dict)
return tp_state_dicts
def get_element_from_dict_by_path(d, path):
"""
Get element from dictionary by path. If element is not present, recursively add empty dictionaries.
Args:
d (dict): the dictionary to get the element from
path (list): the path to the element which is delimited by "."
"""
path = path.split(".")
for k in path:
if k not in d:
d[k] = {}
d = d[k]
return d
def convert_checkpoint_from_megatron_to_transformers(args):
"""
Convert NVIDIA Megatron-LM checkpoint to HuggingFace Transformers checkpoint. This handles Megatron checkpoints
with different tensor parallelism and pipeline parallelism sizes. It saves the converted checkpoint into shards
using HuggingFace Transformers checkpoint sharding functionality. This greatly extends the functionality of
`convert_megatron_gpt2_checkpoint.py`
Args:
args (argparse.Namespace): the arguments to the script
"""
# Load Megatron-LM checkpoint arguments from the state dict
sub_dirs = os.listdir(args.load_path)
possible_sub_dirs = ["mp_rank_00", "mp_rank_00_000"]
for sub_dir in possible_sub_dirs:
if sub_dir in sub_dirs:
rank0_checkpoint_name = os.listdir(os.path.join(args.load_path, sub_dir))[0]
rank0_checkpoint_path = os.path.join(args.load_path, sub_dir, rank0_checkpoint_name)
break
print(f"Loading Megatron-LM checkpoint arguments from: {rank0_checkpoint_path}")
state_dict = torch.load(rank0_checkpoint_path, map_location="cpu")
megatron_args = state_dict.get("args", None)
if megatron_args is None:
raise ValueError(
"Megatron-LM checkpoint does not contain arguments. This utility only supports Megatron-LM checkpoints"
" containing all the megatron arguments. This is because it loads all config related to model"
" architecture, the tensor and pipeline model parallel size from the checkpoint insead of user having to"
" manually specify all the details. Please save Megatron-LM checkpoint along with all the megatron"
" arguments to use this utility."
)
# Create Transformers GPT2 config from Megatron-LM arguments
if megatron_args is not None:
if megatron_args.bias_gelu_fusion:
activation_function = "gelu_fast"
elif megatron_args.openai_gelu:
activation_function = "gelu_new"
else:
activation_function = "gelu"
else:
# in the very early days this used to be "gelu_new"
activation_function = "gelu_new"
vocab_size = (
megatron_args.padded_vocab_size
if getattr(megatron_args, "orig_vocab_size", None) is None
else megatron_args.orig_vocab_size
)
print(vocab_size)
config = GPT2Config(
vocab_size=vocab_size,
n_positions=megatron_args.max_position_embeddings,
n_embd=megatron_args.hidden_size,
n_layer=megatron_args.num_layers,
n_head=megatron_args.num_attention_heads,
n_inner=megatron_args.ffn_hidden_size,
activation_function=activation_function,
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
summary_type="cls_index",
summary_use_proj=True,
summary_activation=None,
summary_proj_to_labels=True,
summary_first_dropout=0.1,
scale_attn_weights=True,
use_cache=True,
bos_token_id=vocab_size - 1,
eos_token_id=vocab_size - 1,
architectures=["GPT2LMHeadModel"],
)
output_state_dict = {}
checkpoint_version = state_dict.get("checkpoint_version", 0.0)
tp_size = megatron_args.tensor_model_parallel_size
pp_size = megatron_args.pipeline_model_parallel_size
dtype = torch.float32
# The regex to extract layer names.
layer_re = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)")
# Convert.
print("Converting")
# Embeddings
print("Converting embeddings")
tp_state_dicts = get_megatron_sharded_states(args, tp_size, pp_size, 0)
# Convert and store the position embeddings.
position_embeddings = get_element_from_dict_by_path(
tp_state_dicts[0], "model.language_model.embedding.position_embeddings.weight"
)
output_state_dict["transformer.wpe.weight"] = position_embeddings.to(dtype)
# Convert and store the word embeddings.
word_embeddings = torch.cat(
[
get_element_from_dict_by_path(
tp_state_dicts[tp_rank], "model.language_model.embedding.word_embeddings.weight"
)
for tp_rank in range(tp_size)
],
dim=0,
)
word_embeddings = word_embeddings[:vocab_size].to(dtype)
output_state_dict["transformer.wte.weight"] = word_embeddings
# Transformer Layers
print("Converting transformer layers")
# The number of heads.
heads = config.n_head
# The hidden_size per head.
hidden_size_per_head = config.n_embd // config.n_head
n_positions = config.n_positions
num_layers = config.num_hidden_layers // pp_size
for pp_rank in range(pp_size):
if pp_size > 0:
print(f"Converting pipeline parallel rank {pp_rank}")
tp_state_dicts = get_megatron_sharded_states(args, tp_size, pp_size, pp_rank)
# The transformer.
path = (
"model.language_model.transformer"
if "transformer" in get_element_from_dict_by_path(tp_state_dicts[0], "model.language_model").keys()
else "model.language_model.encoder"
)
# Extract the layers.
for key, val in get_element_from_dict_by_path(tp_state_dicts[0], path).items():
# Match the name.
m = layer_re.match(key)
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
layer_idx = int(m.group(1)) + pp_rank * num_layers
# The name of the operation.
op_name = m.group(2)
# Is it a weight or a bias?
weight_or_bias = m.group(3)
# The name of the layer.
layer_name = f"transformer.h.{layer_idx}"
if op_name + "." + weight_or_bias not in tensor_parallel_params:
params = val.to(dtype)
else:
dim = 1 if op_name in ["self_attention.dense", "mlp.dense_4h_to_h", "attention.dense"] else 0
params = torch.cat(
[val]
+ [
get_element_from_dict_by_path(tp_state_dicts[tp_rank], f"{path}")[key]
for tp_rank in range(1, tp_size)
],
dim=dim,
).to(dtype)
# For layernorm(s), simply store the layer norm.
if op_name.endswith("layernorm"):
ln_name = "ln_1" if op_name.startswith("input") else "ln_2"
output_state_dict[layer_name + "." + ln_name + "." + weight_or_bias] = params
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
causal_mask = torch.tril(torch.ones((n_positions, n_positions), dtype=dtype)).view(
1, 1, n_positions, n_positions
)
output_state_dict[layer_name + ".attn.bias"] = causal_mask
# Insert a "dummy" tensor for masked_bias.
masked_bias = torch.tensor(-1e4, dtype=dtype)
output_state_dict[layer_name + ".attn.masked_bias"] = masked_bias
out_val = megatron_to_transformers_fix_query_key_value_ordering(
params,
checkpoint_version,
3,
heads,
hidden_size_per_head,
)
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
out_val = out_val.transpose(0, 1).contiguous()
# Store.
output_state_dict[layer_name + ".attn.c_attn.weight"] = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
out_val = megatron_to_transformers_fix_query_key_value_ordering(
params, checkpoint_version, 3, heads, hidden_size_per_head
)
# Store. No change of shape.
output_state_dict[layer_name + ".attn.c_attn.bias"] = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
out_name = megatron_to_transformers[op_name]
output_state_dict[layer_name + out_name + "weight"] = params.transpose(0, 1)
# Copy the bias.
elif weight_or_bias == "bias":
out_name = megatron_to_transformers[op_name]
output_state_dict[layer_name + out_name + "bias"] = params
if config.n_layer != (layer_idx + 1):
raise ValueError(f"Expected {config.n_layer} layers but found {layer_idx + 1}")
# The final layernorm.
print("Converting final layernorm")
params = get_element_from_dict_by_path(tp_state_dicts[0], str(path))
output_state_dict["transformer.ln_f.weight"] = params["final_layernorm.weight"].to(dtype)
output_state_dict["transformer.ln_f.bias"] = params["final_layernorm.bias"].to(dtype)
# For LM head, transformers' wants the matrix to weight embeddings.
print("Converting LM head")
output_state_dict["lm_head.weight"] = word_embeddings.to(dtype)
# It should be done!
print("Conversion from Megatron-LM to Transformers is done!")
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(None, output_state_dict)
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if args.tokenizer_name is None:
tokenizer_name = "gpt2"
else:
tokenizer_name = args.tokenizer_name
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
tokenizer_class = type(tokenizer).__name__
config.tokenizer_class = tokenizer_class
# Store the config to file.
print("Saving config")
config.save_pretrained(args.save_path)
# Save tokenizer based on args
if args.tokenizer_name is not None:
print(f"Adding {tokenizer_class} tokenizer files")
tokenizer.save_pretrained(args.save_path)
# Store the state_dict to file.
max_shard_size = int(args.max_shard_size) if args.max_shard_size.isdigit() else args.max_shard_size
shards, index = shard_checkpoint(output_state_dict, max_shard_size=max_shard_size)
# Save the model
for shard_file, shard in shards.items():
torch.save(shard, os.path.join(args.save_path, shard_file))
if index is None:
print(f"Model weights saved in {os.path.join(args.save_path, WEIGHTS_NAME)}")
else:
save_index_file = os.path.join(args.save_path, WEIGHTS_INDEX_NAME)
# Save the index as well
with open(save_index_file, "w", encoding="utf-8") as f:
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
f.write(content)
print(
f"The model is bigger than the maximum size per checkpoint ({args.max_shard_size}) and is going to be "
f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
f"index located at {save_index_file}."
)
def convert_checkpoint_from_transformers_to_megatron(args):
"""
Convert a checkpoint from HuggingFace Transformers to Megatron-LM. This allows converted checkpoints with variable
tensor parallelism and pipeline parallelism sizes. It takes as input a checkpoint from HuggingFace Transformers
which can have multiple shards.
Args:
args (argparse.Namespace): the arguments to the script
"""
os.makedirs(args.save_path, exist_ok=True)
# Search in directory above this
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)))
if args.megatron_path is not None:
sys.path.insert(0, args.megatron_path)
try:
from megatron.tokenizer.tokenizer import _vocab_size_with_padding
except ModuleNotFoundError:
print("Unable to import Megatron, please specify the path to Megatron using --megatron-path. Exiting.")
exit(1)
# load the transformers model state dict and config
sub_dirs = [x for x in os.listdir(args.load_path) if x.startswith("pytorch_model")]
if len(sub_dirs) == 1:
checkpoint_name = "pytorch_model.bin"
state_dict = torch.load(os.path.join(args.load_path, checkpoint_name), map_location="cpu")
else:
num_checkpoints = len(sub_dirs) - 1
state_dict = merge_transformers_sharded_states(args.load_path, num_checkpoints)
config = GPT2Config.from_pretrained(args.load_path)
# Saving the tracker file
tracker_filepath = os.path.join(args.save_path, "latest_checkpointed_iteration.txt")
with open(tracker_filepath, "w") as f:
f.write("release")
# create `release` dir in args.load_path
release_dir = os.path.join(args.save_path, "release")
os.makedirs(release_dir, exist_ok=True)
# megatron args
megatron_args = {
"orig_vocab_size": config.vocab_size,
"max_position_embeddings": config.n_positions,
"hidden_size": config.n_embd,
"num_layers": config.n_layer,
"num_attention_heads": config.n_head,
"ffn_hidden_size": config.n_inner,
"tensor_model_parallel_size": args.target_tensor_model_parallel_size,
"pipeline_model_parallel_size": args.target_pipeline_model_parallel_size,
"data_parallel_size": args.target_data_parallel_size,
"make_vocab_size_divisible_by": args.make_vocab_size_divisible_by,
"rank": 0,
"tokenizer_type": "GPT2BPETokenizer",
}
if config.activation_function == "gelu":
megatron_args["bias_gelu_fusion"] = False
megatron_args["openai_gelu"] = False
elif config.activation_function == "gelu_fast":
megatron_args["bias_gelu_fusion"] = True
megatron_args["openai_gelu"] = False
elif config.activation_function == "gelu_new":
megatron_args["bias_gelu_fusion"] = False
megatron_args["openai_gelu"] = True
margs = types.SimpleNamespace()
for k, v in megatron_args.items():
setattr(margs, k, v)
# params dtype
if args.target_params_dtype == "fp16":
dtype = torch.float16
elif args.target_params_dtype == "bf16":
dtype = torch.bfloat16
else:
dtype = torch.float32
setattr(margs, "params_dtype", dtype)
# save dummy optim state dict
dummy_optim_state_dict = {}
dummy_optim_state_dict["optimizer"] = {
"step": 0,
"param_groups": [
{
"lr": 0.0,
"beta1": 0.0,
"beta2": 0.0,
"eps": 0.0,
"weight_decay": 0.0,
"correct_bias": False,
"params": [],
}
],
}
if args.use_distributed_optimizer:
for i in range(args.target_pipeline_model_parallel_size):
for j in range(args.target_tensor_model_parallel_size):
for k in range(args.target_data_parallel_size):
if args.target_pipeline_model_parallel_size == 1:
checkpoint_dir = f"mp_rank_{j:02d}_{k:03d}"
else:
checkpoint_dir = f"mp_rank_{j:02d}_{i:03d}_{k:03d}"
checkpoint_dir = os.path.join(release_dir, checkpoint_dir)
os.makedirs(checkpoint_dir, exist_ok=True)
torch.save(
dummy_optim_state_dict,
os.path.join(checkpoint_dir, "optim.pt"),
)
# Convert.
print("Converting")
output_state_dict = []
for i in range(args.target_tensor_model_parallel_size):
output_state_dict.append({})
# Embedding layer
print("converting embedding layer")
pos_embedding = state_dict["transformer.wpe.weight"].to(dtype)
word_embedding = state_dict["transformer.wte.weight"].to(dtype)
orig_vocab_size = config.vocab_size
padded_vocab_size = _vocab_size_with_padding(orig_vocab_size, margs)
setattr(margs, "padded_vocab_size", padded_vocab_size)
# Cut out extra padding we don't need
if orig_vocab_size > padded_vocab_size:
full_word_embed = word_embedding[0:padded_vocab_size, :]
# Expanding embedding to larger size by replicating final entry
elif orig_vocab_size < padded_vocab_size:
padding_size = padded_vocab_size - orig_vocab_size
full_word_embed = torch.cat((word_embedding, word_embedding[-1].unsqueeze(0).expand(padding_size, -1)))
# Same size!
else:
full_word_embed = word_embedding
# Split into new tensor model parallel sizes
out_word_embed = torch.chunk(full_word_embed, args.target_tensor_model_parallel_size, dim=0)
for i in range(args.target_tensor_model_parallel_size):
pos_emb_dict = get_element_from_dict_by_path(
output_state_dict[i], "model.language_model.embedding.position_embeddings"
)
pos_emb_dict["weight"] = pos_embedding
word_emb_dict = get_element_from_dict_by_path(
output_state_dict[i], "model.language_model.embedding.word_embeddings"
)
word_emb_dict["weight"] = out_word_embed[i].clone()
# Transformer layers
print("converting transformer layers")
if config.num_attention_heads % args.target_tensor_model_parallel_size != 0:
raise ValueError(
f"Number of attention heads ({config.num_attention_heads}) must be divisible by number of tensor parallelism"
f" ({args.target_tensor_model_parallel_size})"
)
if config.num_hidden_layers % args.target_pipeline_model_parallel_size != 0:
raise ValueError(
f"Number of layers ({config.num_hidden_layers}) must be divisible by number of pipeline parallelism"
f" ({args.target_pipeline_model_parallel_size})"
)
num_layers = config.num_hidden_layers // args.target_pipeline_model_parallel_size
layer_re = re.compile(r"transformer.h\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)")
# The number of heads.
heads = config.n_head
# The hidden_size per head.
hidden_size_per_head = config.n_embd // config.n_head
for pp_rank in range(args.target_pipeline_model_parallel_size):
layer_offset = pp_rank * num_layers
if pp_rank > 0:
output_state_dict = []
for i in range(args.target_tensor_model_parallel_size):
output_state_dict.append({})
for layer in range(num_layers):
pp_layer_id = layer + layer_offset
layers_to_copy = [
layer_name
for layer_name in state_dict.keys()
if layer_name.startswith(f"transformer.h.{pp_layer_id}.")
]
for layer_name in layers_to_copy:
m = layer_re.match(layer_name)
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
_ = int(m.group(1))
# The name of the operation.
op_name = m.group(2)
# Is it a weight or a bias?
weight_or_bias = m.group(3)
params = state_dict[layer_name].to(dtype)
# handle layernorm
if op_name.startswith("ln"):
out_name = "input_layernorm" if op_name.endswith("1") else "post_attention_layernorm"
layer_name = f"layers.{layer}.{out_name}.{weight_or_bias}"
# handle attention K, V, Q weights
elif op_name.startswith("attn.c_attn") and weight_or_bias == "weight":
# transformers stores D X (3*D) but Megatron-LM expects (3*D) X D.
params = params.transpose(0, 1).contiguous()
params = transformers_to_megatron_fix_query_key_value_ordering(
params,
3.0,
3,
heads,
hidden_size_per_head,
)
layer_name = f"layers.{layer}.self_attention.query_key_value.{weight_or_bias}"
# handle attention K, V, Q bias
elif op_name.startswith("attn.c_attn") and weight_or_bias == "bias":
params = transformers_to_megatron_fix_query_key_value_ordering(
params,
3.0,
3,
heads,
hidden_size_per_head,
)
layer_name = f"layers.{layer}.self_attention.query_key_value.{weight_or_bias}"
# handle attention and mlp weights
elif weight_or_bias == "weight":
out_name = transformers_to_megatron.get(op_name, None)
if out_name is None:
continue
params = params.transpose(0, 1)
layer_name = f"layers.{layer}.{out_name}.{weight_or_bias}"
# handle attention and mlp bias
elif weight_or_bias == "bias":
out_name = transformers_to_megatron.get(op_name, None)
if out_name is None:
continue
layer_name = f"layers.{layer}.{out_name}.{weight_or_bias}"
# skip
else:
continue
if op_name + "." + weight_or_bias in tensor_parallel_params:
dim = 1 if op_name in ["attn.c_proj", "mlp.c_proj"] else 0
params = torch.chunk(params, args.target_tensor_model_parallel_size, dim=dim)
for i in range(args.target_tensor_model_parallel_size):
params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.language_model.encoder")
params_dict[layer_name] = (
params[i].clone() if (op_name + "." + weight_or_bias in tensor_parallel_params) else params
)
if pp_rank == args.target_pipeline_model_parallel_size - 1:
# handle final layernorm
for weight_or_bias in ["weight", "bias"]:
params = state_dict[f"transformer.ln_f.{weight_or_bias}"].to(dtype)
layer_name = f"final_layernorm.{weight_or_bias}"
for i in range(args.target_tensor_model_parallel_size):
params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.language_model.encoder")
params_dict[layer_name] = params
# add the LM head
for i in range(args.target_tensor_model_parallel_size):
params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.word_embeddings_for_head")
params_dict["weight"] = out_word_embed[i].clone()
# saving the state dict as per the tp_rank and pp_rank
for tp_rank in range(args.target_tensor_model_parallel_size):
output_state_dict[tp_rank]["checkpoint_version"] = 3.0
output_state_dict[tp_rank]["args"] = margs
checkpoint_dir = (
f"mp_rank_{tp_rank:02d}"
if args.target_pipeline_model_parallel_size == 1
else f"mp_rank_{tp_rank:02d}_{pp_rank:03d}"
)
if args.use_distributed_optimizer:
checkpoint_name = "model_rng.pt"
else:
checkpoint_name = "model_optim_rng.pt"
output_state_dict[tp_rank]["optimizer"] = dummy_optim_state_dict["optimizer"]
checkpoint_dir = os.path.join(release_dir, checkpoint_dir)
os.makedirs(checkpoint_dir, exist_ok=True)
checkpoint_path = os.path.join(checkpoint_dir, checkpoint_name)
if args.print_checkpoint_structure:
print(
f"Checkpoint structure of model state dict shard belonging to TP rank {tp_rank} and PP rank"
f" {pp_rank}:"
)
recursive_print(None, output_state_dict[tp_rank])
torch.save(output_state_dict[tp_rank], checkpoint_path)
def main():
parser = argparse.ArgumentParser()
parser = add_checkpointing_args(parser)
parser = add_megatron_checkpoint_args(parser)
parser = add_transformers_checkpoint_args(parser)
args = parser.parse_args()
if args.convert_checkpoint_from_megatron_to_transformers:
convert_checkpoint_from_megatron_to_transformers(args)
else:
convert_checkpoint_from_transformers_to_megatron(args)
if __name__ == "__main__":
main()
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/fuyu/configuration_fuyu.py | # coding=utf-8
# Copyright 2023 Adept AI and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Fuyu model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
logger = logging.get_logger(__name__)
FUYU_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"adept/fuyu-8b": "https://huggingface.co/adept/fuyu-8b/resolve/main/config.json",
}
class FuyuConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FuyuForCausalLM`]. It is used to instantiate an
Fuyu model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the
[adept/fuyu-8b](https://huggingface.co/adept/fuyu-8b).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 262144):
Vocabulary size of the Fuyu model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`FuyuForCausalLM`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 16384):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 36):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 64):
Number of attention heads for each attention layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 16384):
The maximum sequence length that this model might ever be used with.
image_size (`int`, *optional*, defaults to 300):
The input image size.
patch_size (`int`, *optional*, defaults to 30):
The input vision transformer encoding patch size.
num_channels (`int`, *optional*, defaults to 3):
The input image number of channels.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`. Whether to tie weight embeddings
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie input and output embeddings.
rope_theta (`float`, *optional*, defaults to 25000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalFuyu/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions.
qk_layernorm (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the Queries and Keys after projecting the hidden states
hidden_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio after applying the MLP to the hidden states.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio after computing the attention scores.
partial_rotary_factor (`float`, *optional*, defaults to 0.5):
Percentage of the query and keys which will have rotary embedding.
pad_token_id (`int`, *optional*):
The id of the *padding* token.
bos_token_id (`int`, *optional*, defaults to 1):
The id of the *beginning-of-sequence* token.
eos_token_id (`Union[int, List[int]]`, *optional*, defaults to 2):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize the `language``[`Aut`].
```python
>>> from transformers import FuyuConfig
>>> # Initializing a Fuyu fuyu-7b style configuration
>>> configuration = FuyuConfig()
```"""
model_type = "fuyu"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=262144,
hidden_size=4096,
intermediate_size=16384,
num_hidden_layers=36,
num_attention_heads=64,
hidden_act="relu2",
max_position_embeddings=16384,
image_size=300,
patch_size=30,
num_channels=3,
initializer_range=0.02,
layer_norm_eps=1e-5,
use_cache=True,
tie_word_embeddings=False,
rope_theta=25000.0,
rope_scaling=None,
qk_layernorm=True,
hidden_dropout=0.0,
attention_dropout=0.0,
partial_rotary_factor=0.5,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
text_config=None,
**kwargs,
):
if text_config is None:
text_config = {
"vocab_size": vocab_size,
"max_position_embeddings": max_position_embeddings,
"hidden_size": hidden_size,
"intermediate_size": intermediate_size,
"num_hidden_layers": num_hidden_layers,
"num_attention_heads": num_attention_heads,
"hidden_act": hidden_act,
"initializer_range": initializer_range,
"layer_norm_eps": layer_norm_eps,
"use_cache": use_cache,
"rope_theta": rope_theta,
"rope_scaling": rope_scaling,
"qk_layernorm": qk_layernorm,
"hidden_dropout": hidden_dropout,
"attention_dropout": attention_dropout,
"partial_rotary_factor": partial_rotary_factor,
"pad_token_id": pad_token_id,
"bos_token_id": bos_token_id,
"eos_token_id": eos_token_id,
"tie_word_embeddings": tie_word_embeddings,
}
logger.info("text_config is None. initializing the text model with default values.")
text_model_type = text_config["model_type"] if "model_type" in text_config else "persimmon"
self.text_config = CONFIG_MAPPING[text_model_type](**text_config)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.qk_layernorm = qk_layernorm
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.partial_rotary_factor = partial_rotary_factor
self._rope_scaling_validation()
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
raise ValueError(
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
f"got {self.rope_scaling}"
)
rope_scaling_type = self.rope_scaling.get("type", None)
rope_scaling_factor = self.rope_scaling.get("factor", None)
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
)
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/fuyu/modeling_fuyu.py | # coding=utf-8
# Copyright 2023 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Fuyu model."""
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...modeling_outputs import CausalLMOutputWithPast
from ...modeling_utils import PreTrainedModel
from ...models.auto.modeling_auto import AutoModelForCausalLM
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_fuyu import FuyuConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "FuyuConfig"
FUYU_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`FuyuConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Fuyu Model outputting raw hidden-states without any specific head on top.",
FUYU_START_DOCSTRING,
)
class FuyuPreTrainedModel(PreTrainedModel):
config_class = FuyuConfig
base_model_prefix = "fuyu"
supports_gradient_checkpointing = True
_no_split_modules = []
_skip_keys_device_placement = "past_key_values"
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
FUYU_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
image_patches (`torch.FloatTensor` of shape `(batch_size, num_total_patches, patch_size_ x patch_size x num_channels)`, *optional*):
Image patches to be used as continuous embeddings. The patches are flattened and then projected to the
hidden size of the model.
image_patches_indices (`torch.LongTensor` of shape `(batch_size, num_total_patches + number_of_newline_tokens + number_of_text_tokens, patch_size_ x patch_size x num_channels )`, *optional*):
Indices indicating at which position the image_patches have to be inserted in input_embeds.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"Fuyu Model with a language modeling head on top for causal language model conditioned on image patches and text.",
FUYU_START_DOCSTRING,
)
class FuyuForCausalLM(FuyuPreTrainedModel):
def __init__(self, config: FuyuConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.language_model = AutoModelForCausalLM.from_config(config.text_config)
self.vision_embed_tokens = nn.Linear(
config.patch_size * config.patch_size * config.num_channels, config.hidden_size
)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def gather_continuous_embeddings(
self,
word_embeddings: torch.Tensor,
continuous_embeddings: List[torch.Tensor],
image_patch_input_indices: torch.Tensor,
) -> torch.Tensor:
"""This function places the continuous_embeddings into the word_embeddings at the locations
indicated by image_patch_input_indices. Different batch elements can have different numbers of continuous
embeddings.
Args:
word_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Tensor of word embeddings.
continuous_embeddings (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`):
Tensor of continuous embeddings. The length of the list is the batch size. Each entry is shape
[num_image_embeddings, hidden], and num_image_embeddings needs to match the number of non-negative
indices in image_patch_input_indices for that batch element.
image_patch_input_indices (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Tensor of indices of the image patches in the input_ids tensor.
"""
if not (word_embeddings.shape[0] == len(continuous_embeddings)):
raise ValueError(
f"Batch sizes must match! Got {len(continuous_embeddings)=} and {word_embeddings.shape[0]=}"
)
output_embeddings = word_embeddings.clone()
for batch_idx in range(word_embeddings.shape[0]):
# First, find the positions of all the non-negative values in image_patch_input_indices, those are the
# positions in word_embeddings that we want to replace with content from continuous_embeddings.
dst_indices = torch.nonzero(image_patch_input_indices[batch_idx] >= 0, as_tuple=True)[0]
# Next look up those indices in image_patch_input_indices to find the indices in continuous_embeddings that we
# want to use to replace the values in word_embeddings.
src_indices = image_patch_input_indices[batch_idx][dst_indices]
# Check if we have more indices than embeddings. Note that we could have fewer indices if images got truncated.
if src_indices.shape[0] > continuous_embeddings[batch_idx].shape[0]:
raise ValueError(
f"Number of continuous embeddings {continuous_embeddings[batch_idx].shape=} does not match "
f"number of continuous token ids {src_indices.shape=} in batch element {batch_idx}."
)
output_embeddings[batch_idx, dst_indices] = continuous_embeddings[batch_idx][src_indices]
return output_embeddings
@add_start_docstrings_to_model_forward(FUYU_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
image_patches: torch.Tensor = None, # [batch_size, num_total_patches, patch_size_ x patch_size x num_channels ]
image_patches_indices: torch.Tensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Examples:
```python
>>> from transformers import FuyuProcessor, FuyuForCausalLM
>>> from PIL import Image
>>> import requests
>>> processor = FuyuProcessor.from_pretrained("adept/fuyu-8b")
>>> model = FuyuForCausalLM.from_pretrained("adept/fuyu-8b")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> prompt = "Generate a coco-style caption.\n"
>>> inputs = processor(text=text_prompt, images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=7)
>>> generation_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
>>> print(generation_text)
'A bus parked on the side of a road.'
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either input_is or inputs_embeds")
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0)
if inputs_embeds is None:
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
if image_patches is not None and past_key_values is None:
patch_embeddings = [
self.vision_embed_tokens(patch.to(self.vision_embed_tokens.weight.dtype)).squeeze(0)
for patch in image_patches
]
inputs_embeds = self.gather_continuous_embeddings(
word_embeddings=inputs_embeds,
continuous_embeddings=patch_embeddings,
image_patch_input_indices=image_patches_indices,
)
outputs = self.language_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
labels=labels,
use_cache=use_cache,
return_dict=return_dict,
)
return outputs
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
image_patches=None,
image_patches_indices=None,
**kwargs,
):
if past_key_values:
input_ids = input_ids[:, -1:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
if image_patches_indices is not None:
model_inputs["image_patches_indices"] = image_patches_indices
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"image_patches_indices": image_patches_indices if past_key_values is None else None,
"image_patches": image_patches if past_key_values is None else None,
}
)
return model_inputs
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/fuyu/image_processing_fuyu.py | # coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Fuyu."""
import math
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import (
pad,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
is_valid_image,
make_list_of_images,
to_numpy_array,
)
from ...utils import (
TensorType,
is_torch_available,
is_torch_device,
is_torch_dtype,
logging,
requires_backends,
)
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
def make_list_of_list_of_images(
images: Union[List[List[ImageInput]], List[ImageInput], ImageInput],
) -> List[List[ImageInput]]:
if is_valid_image(images):
return [[images]]
if isinstance(images, list) and all(isinstance(image, list) for image in images):
return images
if isinstance(images, list):
return [make_list_of_images(image) for image in images]
raise ValueError("images must be a list of list of images or a list of images or an image.")
class FuyuBatchFeature(BatchFeature):
"""
BatchFeature class for Fuyu image processor and processor.
The outputs dictionary from the processors contains a mix of tensors and lists of tensors.
"""
def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None):
"""
Convert the inner content to tensors.
Args:
tensor_type (`str` or [`~utils.TensorType`], *optional*):
The type of tensors to use. If `str`, should be one of the values of the enum [`~utils.TensorType`]. If
`None`, no modification is done.
"""
if tensor_type is None:
return self
is_tensor, as_tensor = self._get_is_as_tensor_fns(tensor_type=tensor_type)
def _convert_tensor(elem):
if is_tensor(elem):
return elem
return as_tensor(elem)
def _safe_convert_tensor(elem):
try:
return _convert_tensor(elem)
except: # noqa E722
if key == "overflowing_values":
raise ValueError("Unable to create tensor returning overflowing values of different lengths. ")
raise ValueError(
"Unable to create tensor, you should probably activate padding "
"with 'padding=True' to have batched tensors with the same length."
)
# Do the tensor conversion in batch
for key, value in self.items():
if isinstance(value, list) and isinstance(value[0], list):
# List[List[Any]] -> List[List[Tensor]]
self[key] = [[_safe_convert_tensor(elem) for elem in elems] for elems in value]
elif isinstance(value, list):
# List[Any] -> List[Tensor]
self[key] = [_safe_convert_tensor(elem) for elem in value]
else:
# Any -> Tensor
self[key] = _safe_convert_tensor(value)
return self
def to(self, *args, **kwargs) -> "BatchFeature":
"""
Send all values to device by calling `v.to(*args, **kwargs)` (PyTorch only). This should support casting in
different `dtypes` and sending the `BatchFeature` to a different `device`.
Args:
args (`Tuple`):
Will be passed to the `to(...)` function of the tensors.
kwargs (`Dict`, *optional*):
Will be passed to the `to(...)` function of the tensors.
Returns:
[`BatchFeature`]: The same instance after modification.
"""
requires_backends(self, ["torch"])
import torch # noqa
new_data = {}
device = kwargs.get("device")
# Check if the args are a device or a dtype
if device is None and len(args) > 0:
# device should be always the first argument
arg = args[0]
if is_torch_dtype(arg):
# The first argument is a dtype
pass
elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int):
device = arg
else:
# it's something else
raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.")
def _to(elem):
# check if v is a floating point
if torch.is_floating_point(elem):
# cast and send to device
return elem.to(*args, **kwargs)
if device is not None:
return elem.to(device=device)
return elem
# We cast only floating point tensors to avoid issues with tokenizers casting `LongTensor` to `FloatTensor`
for k, v in self.items():
if isinstance(v, list) and isinstance(v[0], list):
# Data structure is a list of lists
new_v = []
for elems in v:
new_v.append([_to(elem) for elem in elems])
new_data[k] = new_v
elif isinstance(v, list):
# Data structure is a list
new_data[k] = [_to(elem) for elem in v]
else:
new_data[k] = _to(v)
self.data = new_data
return self
class FuyuImageProcessor(BaseImageProcessor):
"""
This class should handle the image processing part before the main FuyuForCausalLM. In particular, it should
handle:
- Processing Images:
Taking a batch of images as input. If the images are variable-sized, it resizes them based on the desired patch
dimensions. The image output is always img_h, img_w of (1080, 1920)
Then, it patches up these images using the patchify_image function.
- Creating Image Input IDs:
For each patch, a placeholder ID is given to identify where these patches belong in a token sequence. For
variable-sized images, each line of patches is terminated with a newline ID.
- Image Patch Indices:
For each image patch, the code maintains an index where these patches should be inserted in a token stream.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image to `size`.
size (`Dict[str, int]`, *optional*, defaults to `{"height": 1080, "width": 1920}`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
do_pad (`bool`, *optional*, defaults to `True`):
Whether to pad the image to `size`.
padding_value (`float`, *optional*, defaults to 1.0):
The value to pad the image with.
padding_mode (`str`, *optional*, defaults to `"constant"`):
The padding mode to use when padding the image.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image.
image_mean (`float`, *optional*, defaults to 0.5):
The mean to use when normalizing the image.
image_std (`float`, *optional*, defaults to 0.5):
The standard deviation to use when normalizing the image.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `1 / 255`):
The factor to use when rescaling the image.
patch_size (`Dict[str, int]`, *optional*, defaults to `{"height": 30, "width": 30}`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the patches.
"""
model_input_names = [
"images",
"image_input_ids",
"image_patches",
"image_patch_indices_per_batch",
"image_patch_indices_per_subsequence",
]
def __init__(
self,
do_resize: bool = True,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_pad: bool = True,
padding_value: float = 1.0,
padding_mode: str = "constant",
do_normalize: bool = True,
image_mean: Union[float, List[float]] = 0.5,
image_std: Union[float, List[float]] = 0.5,
do_rescale: bool = True,
rescale_factor: float = 1 / 255,
patch_size: Optional[Dict[str, int]] = None,
**kwargs,
):
super().__init__(**kwargs)
self.do_resize = do_resize
self.size = size if size is not None else {"height": 1080, "width": 1920}
self.resample = resample
self.do_pad = do_pad
self.padding_value = padding_value
self.padding_mode = padding_mode
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.patch_size = patch_size if patch_size is not None else {"height": 30, "width": 30}
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
"""
image_height, image_width = get_image_size(image, input_data_format)
target_height, target_width = size["height"], size["width"]
if image_width <= target_width and image_height <= target_height:
return image
height_scale_factor = target_height / image_height
width_scale_factor = target_width / image_width
optimal_scale_factor = min(height_scale_factor, width_scale_factor)
new_height = int(image_height * optimal_scale_factor)
new_width = int(image_width * optimal_scale_factor)
scaled_image = resize(
image=image,
size=(new_height, new_width),
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
return scaled_image
def pad_image(
self,
image: np.ndarray,
size: Dict[str, int],
mode: str = "constant",
constant_values: float = 1.0,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Pad an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to pad.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
data_format (`ChannelDimension` or `str`, *optional*):
The data format of the output image. If unset, the same format as the input image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
image_height, image_width = get_image_size(image, input_data_format)
target_height, target_width = size["height"], size["width"]
padding_top = 0
padding_left = 0
padding_bottom = target_height - image_height
padding_right = target_width - image_width
padded_image = pad(
image,
padding=((padding_top, padding_bottom), (padding_left, padding_right)),
mode=mode,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
)
return padded_image
def preprocess(
self,
images,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
resample: Optional[PILImageResampling] = None,
do_pad: Optional[bool] = None,
padding_value: Optional[float] = None,
padding_mode: Optional[str] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[float] = None,
image_std: Optional[float] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
patch_size: Optional[Dict[str, int]] = None,
data_format: Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
return_tensors: Optional[TensorType] = None,
):
"""
Utility function to preprocess the images and extract necessary information about original formats.
Args:
images (`ImageInput`):
Images to preprocess. Expects a single image, a list or images or a list of lists of images. Pixel
values range from 0 to 255, or between 0 and 1 if `do_rescale` is `False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image to `size`.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
do_pad (`bool`, *optional*, defaults to `self.do_pad`):
Whether to pad the image to `size`.
padding_value (`float`, *optional*, defaults to `self.padding_value`):
The value to pad the image with.
padding_mode (`str`, *optional*, defaults to `self.padding_mode`):
The padding mode to use when padding the image.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float`, *optional*, defaults to `self.image_mean`):
The mean to use when normalizing the image.
image_std (`float`, *optional*, defaults to `self.image_std`):
The standard deviation to use when normalizing the image.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
The factor to use when rescaling the image.
patch_size (`Dict[str, int]`, *optional*, defaults to `self.patch_size`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the patches.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format of the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
resample = resample if resample is not None else self.resample
do_pad = do_pad if do_pad is not None else self.do_pad
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
padding_value = padding_value if padding_value is not None else self.padding_value
padding_mode = padding_mode if padding_mode is not None else self.padding_mode
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
patch_size = patch_size if patch_size is not None else self.patch_size
if isinstance(images, list) and any(isinstance(elem, list) and len(elem) >= 2 for elem in images):
raise ValueError("Multiple images for a single sample are not yet supported.")
batch_images = make_list_of_list_of_images(images)
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and image_mean is None or image_std is None:
raise ValueError("image_mean and image_std must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
batch_images = [[to_numpy_array(image) for image in images] for images in batch_images]
if is_scaled_image(batch_images[0][0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(batch_images[0][0])
original_image_sizes = [get_image_size(images[0], channel_dim=input_data_format) for images in batch_images]
if do_resize:
batch_images = [
[self.resize(image, size=size, input_data_format=input_data_format) for image in images]
for images in batch_images
]
image_sizes = [get_image_size(images[0], channel_dim=input_data_format) for images in batch_images]
image_unpadded_heights = [[image_size[0]] for image_size in image_sizes]
image_unpadded_widths = [[image_size[1]] for image_size in image_sizes]
# scale_h is the same as scale_w
image_scale_factors = [
[resized_size[0] / original_size[0]]
for original_size, resized_size in zip(original_image_sizes, image_sizes)
]
if do_pad:
batch_images = [
[
self.pad_image(
image,
size=size,
mode=padding_mode,
constant_values=padding_value,
input_data_format=input_data_format,
)
for image in images
]
for images in batch_images
]
if do_rescale:
batch_images = [
[self.rescale(image, scale=rescale_factor, input_data_format=input_data_format) for image in images]
for images in batch_images
]
if do_normalize:
batch_images = [
[
self.normalize(image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
for images in batch_images
]
if data_format is not None:
batch_images = [
[to_channel_dimension_format(image, data_format, input_data_format) for image in images]
for images in batch_images
]
data = {
"images": batch_images,
"image_unpadded_heights": image_unpadded_heights,
"image_unpadded_widths": image_unpadded_widths,
"image_scale_factors": image_scale_factors,
}
return FuyuBatchFeature(data=data, tensor_type=return_tensors)
def get_num_patches(self, image_height: int, image_width: int, patch_size: Dict[str, int] = None) -> int:
"""
Calculate number of patches required to encode an image.
Args:
image_height (`int`):
Height of the image.
image_width (`int`):
Width of the image.
patch_size (`Dict[str, int]`, *optional*, defaults to `self.patch_size`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the patches.
"""
patch_size = patch_size if patch_size is not None else self.patch_size
patch_height, patch_width = self.patch_size["height"], self.patch_size["width"]
if image_height % patch_height != 0:
raise ValueError(f"{image_height=} must be divisible by {patch_height}")
if image_width % patch_width != 0:
raise ValueError(f"{image_width=} must be divisible by {patch_width}")
num_patches_per_dim_h = image_height // patch_height
num_patches_per_dim_w = image_width // patch_width
num_patches = num_patches_per_dim_h * num_patches_per_dim_w
return num_patches
def patchify_image(self, image: "torch.Tensor", patch_size: Optional[Dict[str, int]] = None) -> "torch.Tensor":
"""
Convert an image into a tensor of patches.
Args:
image (`torch.Tensor`):
Image to convert. Shape: [batch, channels, height, width]
patch_size (`Dict[str, int]`, *optional*, defaults to `self.patch_size`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the patches.
"""
requires_backends(self, ["torch"])
patch_size = patch_size if patch_size is not None else self.patch_size
patch_height, patch_width = patch_size["height"], patch_size["width"]
# TODO refer to https://github.com/ArthurZucker/transformers/blob/0f0a3fe5ca5697ee58faeb5b53f049af720b5e98/src/transformers/models/vit_mae/modeling_vit_mae.py#L871
# torch implementation is faster but does not handle non-squares
batch_size, channels, _, _ = image.shape
unfolded_along_height = image.unfold(2, patch_height, patch_height)
patches = unfolded_along_height.unfold(3, patch_width, patch_width)
patches = patches.contiguous()
patches = patches.view(batch_size, channels, -1, patch_height, patch_width)
patches = patches.permute(0, 2, 3, 4, 1)
patches = patches.reshape(batch_size, -1, channels * patch_height * patch_width)
return patches
def preprocess_with_tokenizer_info(
self,
image_input: "torch.Tensor",
image_present: "torch.Tensor",
image_unpadded_h: "torch.Tensor",
image_unpadded_w: "torch.Tensor",
image_placeholder_id: int,
image_newline_id: int,
variable_sized: bool,
patch_size: Optional[Dict[str, int]] = None,
) -> FuyuBatchFeature:
"""Process images for model input. In particular, variable-sized images are handled here.
Args:
image_input (`torch.Tensor` of shape [batch_size, subsequence_size, num_channels, height, width]):
Tensor of images padded to model input size.
image_present (`torch.Tensor` of shape [batch_size, subsequence_size, num_images]):
Tensor of 1s and 0s indicating whether an image is present.
image_unpadded_h (`torch.Tensor` of shape [batch_size, subsequence_size]):
Tensor of unpadded image heights.
image_unpadded_w (`torch.Tensor` of shape [batch_size, subsequence_size]):
Tensor of unpadded image widths.
image_placeholder_id (int):
The id of the image placeholder token. Comes from an associated tokenizer.
image_newline_id (int):
The id of the image newline token. Comes from an associated tokenizer.
variable_sized (bool):
Whether to process images as variable-sized.
patch_size (`Dict[str, int]`, *optional*, defaults to `self.patch_size`):
Size of the patches.
"""
requires_backends(self, ["torch"])
patch_size = patch_size if patch_size is not None else self.patch_size
patch_height, patch_width = patch_size["height"], patch_size["width"]
# Only images that are present.
images: List[List[torch.Tensor]] = []
batch_image_patches: List[List[torch.Tensor]] = []
# Image input ids for every subsequence, including ones with no image present.
batch_image_input_ids: List[List[torch.Tensor]] = []
for batch_index in range(image_input.shape[0]):
image_input_ids = []
image_patches = []
for subseq_index in range(image_input.shape[1]):
if image_present[batch_index, subseq_index]:
image = image_input[batch_index, subseq_index]
image_height, image_width = image.shape[1], image.shape[2]
if variable_sized:
# The min() is required here due to floating point issues:
# math.ceil(torch.tensor(300).cuda() / 30) == 11
new_h = min(
image_height,
math.ceil(image_unpadded_h[batch_index, subseq_index] / patch_height) * patch_height,
)
new_w = min(
image_width,
math.ceil(image_unpadded_w[batch_index, subseq_index] / patch_width) * patch_width,
)
image = image[:, :new_h, :new_w]
image_height, image_width = new_h, new_w
num_patches = self.get_num_patches(image_height=image_height, image_width=image_width)
tensor_of_image_ids = torch.full(
[num_patches], image_placeholder_id, dtype=torch.int32, device=image_input.device
)
patches = self.patchify_image(image=image.unsqueeze(0)).squeeze(0)
assert num_patches == patches.shape[0]
if variable_sized:
# Now terminate each line with |NEWLINE|.
tensor_of_image_ids = tensor_of_image_ids.reshape(-1, image_width // patch_width)
newline_ids = torch.full(
[tensor_of_image_ids.shape[0], 1],
image_newline_id,
dtype=torch.int32,
device=image_input.device,
)
tensor_of_image_ids = torch.cat([tensor_of_image_ids, newline_ids], dim=1)
tensor_of_image_ids = tensor_of_image_ids.reshape(-1)
images.append([image])
image_input_ids.append(tensor_of_image_ids)
image_patches.append(patches)
else:
image_input_ids.append(torch.tensor([], dtype=torch.int32, device=image_input.device))
batch_image_input_ids.append(image_input_ids)
batch_image_patches.append(image_patches)
# Create image_patch_input_indices, where non-negative values correspond to image patches to be inserted in
# the stream.
image_patch_indices_per_batch: List[List[torch.Tensor]] = []
image_patch_indices_per_subsequence: List[List[torch.Tensor]] = []
for sample_image_input_ids in batch_image_input_ids:
index_offset = 0
per_batch_indices = []
per_subsequence_indices = []
for subseq_image_input_ids in sample_image_input_ids:
# Indices of image patches.
patches_mask = subseq_image_input_ids == image_placeholder_id
num_patches = torch.count_nonzero(patches_mask)
indices = torch.arange(
num_patches, dtype=subseq_image_input_ids.dtype, device=subseq_image_input_ids.device
)
# Place those indices in the image input ids token stream, with -1 representing non-index tokens.
indices_in_stream_per_batch = torch.full_like(subseq_image_input_ids, -1)
indices_in_stream_per_subsequence = torch.full_like(subseq_image_input_ids, -1)
patches_inds = torch.nonzero(patches_mask, as_tuple=True)[0]
indices_in_stream_per_batch[patches_inds] = indices + index_offset
indices_in_stream_per_subsequence[patches_inds] = indices
per_batch_indices.append(indices_in_stream_per_batch)
per_subsequence_indices.append(indices_in_stream_per_subsequence)
index_offset += num_patches
image_patch_indices_per_batch.append(per_batch_indices)
image_patch_indices_per_subsequence.append(per_subsequence_indices)
return FuyuBatchFeature(
data={
"images": images,
"image_input_ids": batch_image_input_ids,
"image_patches": batch_image_patches,
"image_patch_indices_per_batch": image_patch_indices_per_batch,
"image_patch_indices_per_subsequence": image_patch_indices_per_subsequence,
}
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/fuyu/__init__.py | # Copyright 2023 AdeptAI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_import_structure = {
"configuration_fuyu": ["FUYU_PRETRAINED_CONFIG_ARCHIVE_MAP", "FuyuConfig"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["image_processing_fuyu"] = ["FuyuImageProcessor"]
_import_structure["processing_fuyu"] = ["FuyuProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_fuyu"] = [
"FuyuForCausalLM",
"FuyuPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_fuyu import FUYU_PRETRAINED_CONFIG_ARCHIVE_MAP, FuyuConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_fuyu import FuyuImageProcessor
from .processing_fuyu import FuyuProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fuyu import (
FuyuForCausalLM,
FuyuPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/fuyu/processing_fuyu.py | # coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for GIT
"""
import re
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, TruncationStrategy
from ...utils import TensorType, is_torch_available, logging, requires_backends
if is_torch_available():
from .image_processing_fuyu import FuyuBatchFeature
logger = logging.get_logger(__name__)
if is_torch_available():
import torch
TEXT_REPR_BBOX_OPEN = "<box>"
TEXT_REPR_BBOX_CLOSE = "</box>"
TEXT_REPR_POINT_OPEN = "<point>"
TEXT_REPR_POINT_CLOSE = "</point>"
TOKEN_BBOX_OPEN_STRING = "<0x00>" # <bbox>
TOKEN_BBOX_CLOSE_STRING = "<0x01>" # </bbox>
TOKEN_POINT_OPEN_STRING = "<0x02>" # <point>
TOKEN_POINT_CLOSE_STRING = "<0x03>" # </point>
BEGINNING_OF_ANSWER_STRING = "<0x04>" # <boa>
def full_unpacked_stream_to_tensor(
all_bi_tokens_to_place: List[int],
full_unpacked_stream: List["torch.Tensor"],
fill_value: int,
batch_size: int,
new_seq_len: int,
offset: int,
) -> "torch.Tensor":
"""Takes an unpacked stream of tokens (i.e. a list of tensors, one for each item in the batch) and does
the required padding to create a single tensor for the batch of shape batch_size x new_seq_len.
"""
assert len(all_bi_tokens_to_place) == batch_size
assert len(full_unpacked_stream) == batch_size
# Create padded tensors for the full batch.
new_padded_tensor = torch.full(
[batch_size, new_seq_len],
fill_value=fill_value,
dtype=full_unpacked_stream[0].dtype,
device=full_unpacked_stream[0].device,
)
# Place each batch entry into the batch tensor.
for bi in range(batch_size):
tokens_to_place = all_bi_tokens_to_place[bi]
new_padded_tensor[bi, :tokens_to_place] = full_unpacked_stream[bi][offset : tokens_to_place + offset]
return new_padded_tensor
def construct_full_unpacked_stream(
num_real_text_tokens: Union[List[List[int]], "torch.Tensor"],
input_stream: "torch.Tensor",
image_tokens: List[List["torch.Tensor"]],
batch_size: int,
num_sub_sequences: int,
) -> List["torch.Tensor"]:
"""Takes an input_stream tensor of shape B x S x ?. For each subsequence, adds any required
padding to account for images and then unpacks the subsequences to create a single sequence per item in the batch.
Returns a list of tensors, one for each item in the batch."""
all_bi_stream = []
for batch_index in range(batch_size):
all_si_stream = []
# First, construct full token stream (including image placeholder tokens) and loss mask for each subsequence
# and append to lists. We use lists rather than tensors because each subsequence is variable-sized.
# TODO Remove this logic in a subsequent release since subsequences are not supported.
image_adjustment = image_tokens[batch_index][0]
subsequence_stream = torch.cat([image_adjustment, input_stream[batch_index, 0]], dim=0)
num_real_tokens = image_adjustment.shape[0] + num_real_text_tokens[batch_index][0]
all_si_stream.append(subsequence_stream[:num_real_tokens])
all_bi_stream.append(torch.cat(all_si_stream, dim=0))
return all_bi_stream
def _replace_string_repr_with_token_tags(prompt: str) -> str:
prompt = prompt.replace(TEXT_REPR_POINT_OPEN, TOKEN_POINT_OPEN_STRING)
prompt = prompt.replace(TEXT_REPR_POINT_CLOSE, TOKEN_POINT_CLOSE_STRING)
prompt = prompt.replace(TEXT_REPR_BBOX_OPEN, TOKEN_BBOX_OPEN_STRING)
prompt = prompt.replace(TEXT_REPR_BBOX_CLOSE, TOKEN_BBOX_CLOSE_STRING)
return prompt
def _segment_prompt_into_text_token_conversions(prompt: str) -> List:
"""
Given a string prompt, converts the prompt into a list of TextTokenConversions.
"""
# Wherever, we notice the [TOKEN_OPEN_STRING, TOKEN_CLOSE_STRING], we split the prompt
prompt_text_list: List = []
regex_pattern = re.compile(
f"({TOKEN_BBOX_OPEN_STRING}|{TOKEN_BBOX_CLOSE_STRING}|{TOKEN_POINT_OPEN_STRING}|{TOKEN_POINT_CLOSE_STRING})"
)
# Split by the regex pattern
prompt_split = regex_pattern.split(prompt)
for i, elem in enumerate(prompt_split):
if len(elem) == 0 or elem in [
TOKEN_BBOX_OPEN_STRING,
TOKEN_BBOX_CLOSE_STRING,
TOKEN_POINT_OPEN_STRING,
TOKEN_POINT_CLOSE_STRING,
]:
continue
prompt_text_list.append(
(elem, i > 1 and prompt_split[i - 1] in [TOKEN_BBOX_OPEN_STRING, TOKEN_POINT_OPEN_STRING])
)
return prompt_text_list
def _transform_coordinates_and_tokenize(prompt: str, scale_factor: float, tokenizer) -> List[int]:
"""
This function transforms the prompt in the following fashion:
- <box> <point> and </box> </point> to their respective token mappings
- extract the coordinates from the tag
- transform the coordinates into the transformed image space
- return the prompt tokens with the transformed coordinates and new tags
Bounding boxes and points MUST be in the following format: <box>y1, x1, y2, x2</box> <point>x, y</point> The spaces
and punctuation added above are NOT optional.
"""
# Make a namedtuple that stores "text" and "is_bbox"
# We want to do the following: Tokenize the code normally -> when we see a point or box, tokenize using the tokenize_within_tag function
# When point or box close tag, continue tokenizing normally
# First, we replace the point and box tags with their respective tokens
prompt = _replace_string_repr_with_token_tags(prompt)
# Tokenize the prompt
# Convert prompt into a list split
prompt_text_list = _segment_prompt_into_text_token_conversions(prompt)
transformed_prompt_tokens: List[int] = []
for elem in prompt_text_list:
if elem[1]:
# This is a location, we need to tokenize it
within_tag_tokenized = _transform_within_tags(elem[0], scale_factor, tokenizer)
# Surround the text with the open and close tags
transformed_prompt_tokens.extend(within_tag_tokenized)
else:
transformed_prompt_tokens.extend(tokenizer(elem[0], add_special_tokens=False).input_ids)
return transformed_prompt_tokens
def _transform_within_tags(text: str, scale_factor: float, tokenizer) -> List[int]:
"""
Given a bounding box of the fashion <box>1, 2, 3, 4</box> | <point>1, 2</point> This function is responsible for
converting 1, 2, 3, 4 into tokens of 1 2 3 4 without any commas.
"""
# Convert the text into a list of strings.
num_int_strs = text.split(",")
if len(num_int_strs) == 2:
# If there are any open or close tags, remove them.
token_space_open_string = tokenizer.vocab[TOKEN_POINT_OPEN_STRING]
token_space_close_string = tokenizer.vocab[TOKEN_POINT_CLOSE_STRING]
else:
token_space_open_string = tokenizer.vocab[TOKEN_BBOX_OPEN_STRING]
token_space_close_string = tokenizer.vocab[TOKEN_BBOX_CLOSE_STRING]
# Remove all spaces from num_ints
num_ints = [float(num.strip()) for num in num_int_strs]
# scale to transformed image siz
if len(num_ints) == 2:
num_ints_translated = scale_point_to_transformed_image(x=num_ints[0], y=num_ints[1], scale_factor=scale_factor)
elif len(num_ints) == 4:
num_ints_translated = scale_bbox_to_transformed_image(
top=num_ints[0],
left=num_ints[1],
bottom=num_ints[2],
right=num_ints[3],
scale_factor=scale_factor,
)
else:
raise ValueError(f"Invalid number of ints: {len(num_ints)}")
# Tokenize the text, skipping the
tokens = [tokenizer.vocab[str(num)] for num in num_ints_translated]
return [token_space_open_string] + tokens + [token_space_close_string]
def _tokenize_prompts_with_image_and_batch(
tokenizer,
prompts: List[List[str]],
scale_factors: Optional[List[List["torch.Tensor"]]],
max_tokens_to_generate: int,
max_position_embeddings: int,
add_BOS: bool, # Same issue with types as above
add_beginning_of_answer_token: bool,
) -> Tuple["torch.Tensor", "torch.Tensor"]:
"""
Given a set of prompts and number of tokens to generate:
- tokenize prompts
- set the sequence length to be the max of length of prompts plus the number of tokens we would like to generate
- pad all the sequences to this length so we can convert them into a 3D tensor.
"""
# If not tool use, tranform the coordinates while tokenizing
if scale_factors is not None:
transformed_prompt_tokens = []
for prompt_seq, scale_factor_seq in zip(prompts, scale_factors):
transformed_prompt_tokens.append(
[
_transform_coordinates_and_tokenize(prompt, scale_factor.item(), tokenizer)
for prompt, scale_factor in zip(prompt_seq, scale_factor_seq)
]
)
else:
transformed_prompt_tokens = [[tokenizer.tokenize(prompt) for prompt in prompt_seq] for prompt_seq in prompts]
prompts_tokens = transformed_prompt_tokens
if add_BOS:
bos_token = tokenizer.vocab["<s>"]
else:
bos_token = tokenizer.vocab["|ENDOFTEXT|"]
prompts_tokens = [[[bos_token] + x for x in prompt_seq] for prompt_seq in prompts_tokens]
if add_beginning_of_answer_token:
boa = tokenizer.vocab[BEGINNING_OF_ANSWER_STRING]
# Only add bbox open token to the last subsequence since that is what will be completed
for token_seq in prompts_tokens:
token_seq[-1].append(boa)
# Now we have a list of list of tokens which each list has a different
# size. We want to extend this list to:
# - incorporate the tokens that need to be generated
# - make all the sequences equal length.
# Get the prompts length.
prompts_length = [[len(x) for x in prompts_tokens_seq] for prompts_tokens_seq in prompts_tokens]
# Get the max prompts length.
max_prompt_len: int = np.max(prompts_length)
# Number of tokens in the each sample of the batch.
samples_length = min(max_prompt_len + max_tokens_to_generate, max_position_embeddings)
if max_prompt_len + max_tokens_to_generate > max_position_embeddings:
logger.warning(
f"Max subsequence prompt length of {max_prompt_len} + max tokens to generate {max_tokens_to_generate}",
f"exceeds context length of {max_position_embeddings}. Will generate as many tokens as possible.",
)
# Now update the list of list to be of the same size: samples_length.
for prompt_tokens_seq, prompts_length_seq in zip(prompts_tokens, prompts_length):
for prompt_tokens, prompt_length in zip(prompt_tokens_seq, prompts_length_seq):
if len(prompt_tokens) > samples_length:
raise ValueError("Length of subsequence prompt exceeds sequence length.")
padding_size = samples_length - prompt_length
prompt_tokens.extend([tokenizer.vocab["|ENDOFTEXT|"]] * padding_size)
# Now we are in a structured format, we can convert to tensors.
prompts_tokens_tensor = torch.tensor(prompts_tokens, dtype=torch.int64)
prompts_length_tensor = torch.tensor(prompts_length, dtype=torch.int64)
return prompts_tokens_tensor, prompts_length_tensor
# Simplified assuming self.crop_top = self.padding_top = 0
def original_to_transformed_h_coords(original_coords, scale_h):
return np.round(original_coords * scale_h).astype(np.int32)
# Simplified assuming self.crop_left = self.padding_left = 0
def original_to_transformed_w_coords(original_coords, scale_w):
return np.round(original_coords * scale_w).astype(np.int32)
def scale_point_to_transformed_image(x: float, y: float, scale_factor: float) -> List[int]:
x_scaled = original_to_transformed_w_coords(np.array([x / 2]), scale_factor)[0]
y_scaled = original_to_transformed_h_coords(np.array([y / 2]), scale_factor)[0]
return [x_scaled, y_scaled]
def scale_bbox_to_transformed_image(
top: float, left: float, bottom: float, right: float, scale_factor: float
) -> List[int]:
top_scaled = original_to_transformed_w_coords(np.array([top / 2]), scale_factor)[0]
left_scaled = original_to_transformed_h_coords(np.array([left / 2]), scale_factor)[0]
bottom_scaled = original_to_transformed_w_coords(np.array([bottom / 2]), scale_factor)[0]
right_scaled = original_to_transformed_h_coords(np.array([right / 2]), scale_factor)[0]
return [top_scaled, left_scaled, bottom_scaled, right_scaled]
class FuyuProcessor(ProcessorMixin):
r"""
Constructs a Fuyu processor which wraps a Fuyu image processor and a Llama tokenizer into a single processor.
[`FuyuProcessor`] offers all the functionalities of [`FuyuImageProcessor`] and [`LlamaTokenizerFast`]. See the
[`~FuyuProcessor.__call__`] and [`~FuyuProcessor.decode`] for more information.
Args:
image_processor ([`FuyuImageProcessor`]):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`]):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "FuyuImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor, tokenizer):
super().__init__(image_processor=image_processor, tokenizer=tokenizer)
self.image_processor = image_processor
self.tokenizer = tokenizer
self.max_tokens_to_generate = 10
self.max_position_embeddings = 16384 # TODO Can't derive this from model files: where to set it?
self.pad_token_id = 0
self.dummy_image_index = -1
def _left_pad_inputs_with_attention_mask(self, model_inputs: List[Dict], return_attention_mask: bool):
max_length_input_ids = max(entry["input_ids"].shape[1] for entry in model_inputs)
max_length_image_patch_indices = max(entry["image_patches_indices"].shape[1] for entry in model_inputs)
batched_inputs = {"input_ids": [], "image_patches": [], "image_patches_indices": [], "attention_mask": []}
for entry in model_inputs:
for key, tensor in entry.items():
if key == "input_ids":
num_padding_tokens = max_length_input_ids - tensor.shape[1]
padded_input_ids = torch.cat(
[
torch.full((tensor.shape[0], num_padding_tokens), self.pad_token_id, dtype=torch.long),
tensor,
],
dim=1,
)
batched_inputs[key].append(padded_input_ids)
attention_mask = torch.cat(
[torch.zeros(tensor.shape[0], num_padding_tokens, dtype=torch.long), torch.ones_like(tensor)],
dim=1,
)
batched_inputs["attention_mask"].append(attention_mask)
elif key == "image_patches":
# For image_patches, we don't pad but just append them to the list.
batched_inputs[key].append(tensor)
else: # for image_patches_indices
num_padding_indices = max_length_image_patch_indices - tensor.shape[1]
padded_indices = torch.cat(
[
torch.full(
(tensor.shape[0], num_padding_indices), self.dummy_image_index, dtype=torch.long
),
tensor,
],
dim=1,
)
batched_inputs[key].append(padded_indices)
batched_keys = ["input_ids", "image_patches_indices"]
if return_attention_mask:
batched_keys.append("attention_mask")
for key in batched_keys:
batched_inputs[key] = torch.cat(batched_inputs[key], dim=0)
return batched_inputs
def get_sample_encoding(
self,
prompts,
scale_factors,
image_unpadded_heights,
image_unpadded_widths,
image_placeholder_id,
image_newline_id,
tensor_batch_images,
):
image_present = torch.ones(1, 1, 1)
model_image_input = self.image_processor.preprocess_with_tokenizer_info(
image_input=tensor_batch_images,
image_present=image_present,
image_unpadded_h=image_unpadded_heights,
image_unpadded_w=image_unpadded_widths,
image_placeholder_id=image_placeholder_id,
image_newline_id=image_newline_id,
variable_sized=True,
)
# FIXME max_tokens_to_generate is embedded into this processor's call.
prompt_tokens, prompts_length = _tokenize_prompts_with_image_and_batch(
tokenizer=self.tokenizer,
prompts=prompts,
scale_factors=scale_factors,
max_tokens_to_generate=self.max_tokens_to_generate,
max_position_embeddings=self.max_position_embeddings,
add_BOS=True,
add_beginning_of_answer_token=True,
)
image_padded_unpacked_tokens = construct_full_unpacked_stream(
num_real_text_tokens=prompts_length,
input_stream=prompt_tokens,
image_tokens=model_image_input["image_input_ids"],
batch_size=1,
num_sub_sequences=self.subsequence_length,
)
# Construct inputs for image patch indices.
unpacked_image_patch_indices_per_batch = construct_full_unpacked_stream(
num_real_text_tokens=prompts_length,
input_stream=torch.full_like(prompt_tokens, -1),
image_tokens=model_image_input["image_patch_indices_per_batch"],
batch_size=1,
num_sub_sequences=self.subsequence_length,
)
max_prompt_length = max(x.shape[-1] for x in image_padded_unpacked_tokens)
max_seq_len_batch = min(max_prompt_length + self.max_tokens_to_generate, self.max_position_embeddings)
tokens_to_place = min(max_seq_len_batch, max(0, image_padded_unpacked_tokens[0].shape[0]))
# Use same packing logic for the image patch indices.
image_patch_input_indices = full_unpacked_stream_to_tensor(
all_bi_tokens_to_place=[tokens_to_place],
full_unpacked_stream=unpacked_image_patch_indices_per_batch,
fill_value=-1,
batch_size=1,
new_seq_len=max_seq_len_batch,
offset=0,
)
image_patches_tensor = torch.stack([img[0] for img in model_image_input["image_patches"]])
batch_encoding = {
"input_ids": image_padded_unpacked_tokens[0].unsqueeze(0),
"image_patches": image_patches_tensor,
"image_patches_indices": image_patch_input_indices,
}
return batch_encoding
def __call__(
self,
text=None,
images=None,
add_special_tokens: bool = True,
return_attention_mask: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_token_type_ids: bool = False,
return_length: bool = False,
verbose: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs,
) -> "FuyuBatchFeature":
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to
encode the text. To prepare the image(s), this method forwards the `images` and `kwargs` arguments to
FuyuImageProcessor's [`~FuyuImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `List[PIL.Image.Image]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
Returns:
[`FuyuBatchEncoding`]: A [`FuyuBatchEncoding`] with the following fields:
- **input_ids** -- Tensor of token ids to be fed to a model. Returned when `text` is not `None`.
- **image_patches** -- List of Tensor of image patches. Returned when `images` is not `None`.
- **image_patches_indices** -- Tensor of indices where patch embeddings have to be inserted by the model.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model when
`return_attention_mask=True`.
"""
requires_backends(self, ["torch"])
# --- Check input validity ---
if not return_attention_mask:
raise ValueError("`return_attention_mask=False` is not supported for this model.")
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be None.")
if text is not None and images is None:
logger.warning("You are processing a text with no associated image. Make sure it is intended.")
self.current_processor = self.tokenizer
text_encoding = self.tokenizer(
text=text,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_token_type_ids=return_token_type_ids,
return_length=return_length,
verbose=verbose,
return_tensors=return_tensors,
**kwargs,
)
return text_encoding
if text is None and images is not None:
logger.warning("You are processing an image with no associated text. Make sure it is intended.")
prompts = [[""]]
if text is not None and images is not None:
if isinstance(text, str):
prompts = [[text]]
elif isinstance(text, list):
prompts = [[text_seq] for text_seq in text]
# --- Preprocess images using self.image_processor ---
# FIXME - We hard code "pt" here because the rest of the processing assumes torch tensors
image_encoding = self.image_processor.preprocess(images, return_tensors="pt")
batch_images = image_encoding["images"]
image_unpadded_heights = image_encoding["image_unpadded_heights"]
image_unpadded_widths = image_encoding["image_unpadded_widths"]
scale_factors = image_encoding["image_scale_factors"]
self.subsequence_length = 1 # Each batch contains only one sequence.
self.batch_size = len(batch_images)
# --- Use self.tokenizer to get the ids of special tokens to insert into image ids ---
image_placeholder_id = self.tokenizer("|SPEAKER|", add_special_tokens=False)["input_ids"][1]
image_newline_id = self.tokenizer("|NEWLINE|", add_special_tokens=False)["input_ids"][1]
tensor_batch_images = torch.stack([img[0] for img in batch_images]).unsqueeze(1)
# --- Use self.image_processor again to obtain the full token ids and batch inputs ---
all_encodings = []
for prompt, scale_factor, image_unpadded_height, image_unpadded_width, tensor_batch_image in zip(
prompts, scale_factors, image_unpadded_heights, image_unpadded_widths, tensor_batch_images
):
sample_encoding = self.get_sample_encoding(
prompts=[prompt],
scale_factors=[scale_factor],
image_unpadded_heights=torch.tensor([image_unpadded_height]),
image_unpadded_widths=torch.tensor([image_unpadded_width]),
image_placeholder_id=image_placeholder_id,
image_newline_id=image_newline_id,
tensor_batch_images=tensor_batch_image.unsqueeze(0),
)
all_encodings.append(sample_encoding)
batch_encoding = self._left_pad_inputs_with_attention_mask(
model_inputs=all_encodings, return_attention_mask=return_attention_mask
)
return FuyuBatchFeature(data=batch_encoding)
def post_process_box_coordinates(self, outputs, target_sizes=None):
"""
Transforms raw coordinates detected by [`FuyuForCausalLM`] to the original images' coordinate space.
Coordinates will be returned in "box" format, with the following pattern:
`<box>top, left, bottom, right</box>`
Point coordinates are not supported yet.
Args:
outputs ([`GenerateOutput`]):
Raw outputs from `generate`.
target_sizes (`torch.Tensor`, *optional*):
Tensor of shape (batch_size, 2) where each entry is the (height, width) of the corresponding image in
the batch. If set, found coordinates in the output sequence are rescaled to the target sizes. If left
to None, coordinates will not be rescaled.
Returns:
`GenerateOutput`: Same output type returned by `generate`, with output token ids replaced with
boxed and possible rescaled coordinates.
"""
def scale_factor_to_fit(original_size, target_size=None):
height, width = original_size
if target_size is None:
max_height = self.image_processor.size["height"]
max_width = self.image_processor.size["width"]
else:
max_height, max_width = target_size
if width <= max_width and height <= max_height:
return 1.0
return min(max_height / height, max_width / width)
def find_delimiters_pair(tokens, start_token, end_token):
start_id = self.tokenizer.convert_tokens_to_ids(start_token)
end_id = self.tokenizer.convert_tokens_to_ids(end_token)
starting_positions = (tokens == start_id).nonzero(as_tuple=True)[0]
ending_positions = (tokens == end_id).nonzero(as_tuple=True)[0]
if torch.any(starting_positions) and torch.any(ending_positions):
return (starting_positions[0], ending_positions[0])
return (None, None)
def tokens_to_boxes(tokens, original_size):
while (pair := find_delimiters_pair(tokens, TOKEN_BBOX_OPEN_STRING, TOKEN_BBOX_CLOSE_STRING)) != (
None,
None,
):
start, end = pair
if end != start + 5:
continue
# Retrieve transformed coordinates from tokens
coords = self.tokenizer.convert_ids_to_tokens(tokens[start + 1 : end])
# Scale back to original image size and multiply by 2
scale = scale_factor_to_fit(original_size)
top, left, bottom, right = [2 * int(float(c) / scale) for c in coords]
# Replace the IDs so they get detokenized right
replacement = f" {TEXT_REPR_BBOX_OPEN}{top}, {left}, {bottom}, {right}{TEXT_REPR_BBOX_CLOSE}"
replacement = self.tokenizer.tokenize(replacement)[1:]
replacement = self.tokenizer.convert_tokens_to_ids(replacement)
replacement = torch.tensor(replacement).to(tokens)
tokens = torch.cat([tokens[:start], replacement, tokens[end + 1 :]], 0)
return tokens
def tokens_to_points(tokens, original_size):
while (pair := find_delimiters_pair(tokens, TOKEN_POINT_OPEN_STRING, TOKEN_POINT_CLOSE_STRING)) != (
None,
None,
):
start, end = pair
if end != start + 3:
continue
# Retrieve transformed coordinates from tokens
coords = self.tokenizer.convert_ids_to_tokens(tokens[start + 1 : end])
# Scale back to original image size and multiply by 2
scale = scale_factor_to_fit(original_size)
x, y = [2 * int(float(c) / scale) for c in coords]
# Replace the IDs so they get detokenized right
replacement = f" {TEXT_REPR_POINT_OPEN}{x}, {y}{TEXT_REPR_POINT_CLOSE}"
replacement = self.tokenizer.tokenize(replacement)[1:]
replacement = self.tokenizer.convert_tokens_to_ids(replacement)
replacement = torch.tensor(replacement).to(tokens)
tokens = torch.cat([tokens[:start], replacement, tokens[end + 1 :]], 0)
return tokens
if target_sizes is None:
target_sizes = ((self.image_processor.size["height"], self.image_processor.size["width"]),) * len(outputs)
elif target_sizes.shape[1] != 2:
raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
if len(outputs) != len(target_sizes):
raise ValueError("Make sure that you pass in as many target sizes as output sequences")
results = []
for seq, size in zip(outputs, target_sizes):
seq = tokens_to_boxes(seq, size)
seq = tokens_to_points(seq, size)
results.append(seq)
return results
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/fuyu/convert_fuyu_model_weights_to_hf.py | # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import sys
import warnings
import flatdict
import torch
from transformers import FuyuConfig, FuyuForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
tokenizer_class = LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
)
tokenizer_class = LlamaTokenizer
"""
Sample usage: # TODO fix clone links from persimmon to fuyu
```
git clone https://github.com/adept-ai-labs/adept-inference
wget https://axtkn4xl5cip.objectstorage.us-phoenix-1.oci.customer-oci.com/n/axtkn4xl5cip/b/adept-public-data/o/8b_base_model_release.tar
wget https://axtkn4xl5cip.objectstorage.us-phoenix-1.oci.customer-oci.com/n/axtkn4xl5cip/b/adept-public-data/o/8b_chat_model_release.tar
python src/transformers/models/fuyu/convert_fuyu_weights_to_hf.py --input_dir /path/to/downloaded/fuyu/weights/ --output_dir /output/path
```
Thereafter, models can be loaded via:
```py
from transformers import FuyuForCausalLM, FuyuTokenizer
model = FuyuForCausalLM.from_pretrained("/output/path")
tokenizer = FuyuTokenizer.from_pretrained("/output/path")
```
Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
"""
KEYS_TO_MODIFY_MAPPING = {
"self_attention": "self_attn",
"language_model.encoder": "language_model.model",
"word_embeddings_for_head": "language_model.lm_head",
"language_model.embedding.word_embeddings": "language_model.model.embed_tokens",
"vit_encoder.linear_encoder": "vision_embed_tokens",
}
KEYS_TO_REMOVE = {
"rotary_emb.inv_freq",
"image_patch_projection",
"image_patch_projection.weight",
"image_patch_projection.bias",
}
def rename_state_dict(state_dict):
model_state_dict = {}
for key, value in state_dict.items():
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
key = key.replace(key_to_modify, new_key)
# if KEYS_TO_REMOVE in key:
if key in KEYS_TO_REMOVE:
continue
model_state_dict[key] = value
return model_state_dict
def convert_fuyu_checkpoint(pytorch_dump_folder_path, ada_lib_path, pt_model_path, safe_serialization=False):
sys.path.insert(0, ada_lib_path)
model_state_dict_base = torch.load(pt_model_path, map_location="cpu")
state_dict = flatdict.FlatDict(model_state_dict_base["model"], ".")
state_dict = rename_state_dict(state_dict)
transformers_config = FuyuConfig()
model = FuyuForCausalLM(transformers_config).to(torch.bfloat16)
model.load_state_dict(state_dict)
model.save_pretrained(pytorch_dump_folder_path, safe_serialization=safe_serialization)
transformers_config.save_pretrained(pytorch_dump_folder_path)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--input_dir",
help="Location of Fuyu weights, which contains tokenizer.model and model folders",
)
parser.add_argument(
"--pt_model_path",
help="Location of Fuyu `model_optim_rng.pt`",
)
parser.add_argument(
"--output_dir",
help="Location to write HF model and tokenizer",
)
parser.add_argument(
"--ada_lib_path",
help="Location of original source code from adept to deserialize .pt checkpoint",
)
parser.add_argument("--safe_serialization", type=bool, help="Whether or not to save using `safetensors`.")
args = parser.parse_args()
spm_path = os.path.join(args.input_dir, "adept_vocab.model")
convert_fuyu_checkpoint(
pytorch_dump_folder_path=args.output_dir,
pt_model_path=args.pt_model_path,
safe_serialization=args.safe_serialization,
ada_lib_path=args.ada_lib_path,
)
tokenizer = tokenizer_class(spm_path, bos_token="|ENDOFTEXT|", eos_token="|ENDOFTEXT|")
tokenizer.save_pretrained(args.output_dir)
if __name__ == "__main__":
main()
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/electra/convert_electra_original_tf_checkpoint_to_pytorch.py | # coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert ELECTRA checkpoint."""
import argparse
import torch
from transformers import ElectraConfig, ElectraForMaskedLM, ElectraForPreTraining, load_tf_weights_in_electra
from transformers.utils import logging
logging.set_verbosity_info()
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path, discriminator_or_generator):
# Initialise PyTorch model
config = ElectraConfig.from_json_file(config_file)
print(f"Building PyTorch model from configuration: {config}")
if discriminator_or_generator == "discriminator":
model = ElectraForPreTraining(config)
elif discriminator_or_generator == "generator":
model = ElectraForMaskedLM(config)
else:
raise ValueError("The discriminator_or_generator argument should be either 'discriminator' or 'generator'")
# Load weights from tf checkpoint
load_tf_weights_in_electra(
model, config, tf_checkpoint_path, discriminator_or_generator=discriminator_or_generator
)
# Save pytorch-model
print(f"Save PyTorch model to {pytorch_dump_path}")
torch.save(model.state_dict(), pytorch_dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--discriminator_or_generator",
default=None,
type=str,
required=True,
help=(
"Whether to export the generator or the discriminator. Should be a string, either 'discriminator' or "
"'generator'."
),
)
args = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.discriminator_or_generator
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/electra/tokenization_electra.py | # coding=utf-8
# Copyright 2020 The Google AI Team, Stanford University and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import os
import unicodedata
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"
),
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"
),
}
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"google/electra-small-generator": 512,
"google/electra-base-generator": 512,
"google/electra-large-generator": 512,
"google/electra-small-discriminator": 512,
"google/electra-base-discriminator": 512,
"google/electra-large-discriminator": 512,
}
PRETRAINED_INIT_CONFIGURATION = {
"google/electra-small-generator": {"do_lower_case": True},
"google/electra-base-generator": {"do_lower_case": True},
"google/electra-large-generator": {"do_lower_case": True},
"google/electra-small-discriminator": {"do_lower_case": True},
"google/electra-base-discriminator": {"do_lower_case": True},
"google/electra-large-discriminator": {"do_lower_case": True},
}
# Copied from transformers.models.bert.tokenization_bert.load_vocab
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
vocab[token] = index
return vocab
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer with Bert->Electra,BERT->Electra
class ElectraTokenizer(PreTrainedTokenizer):
r"""
Construct a Electra tokenizer. Based on WordPiece.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
Whether or not to do basic tokenization before WordPiece.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original Electra).
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__(
self,
vocab_file,
do_lower_case=True,
do_basic_tokenize=True,
never_split=None,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
tokenize_chinese_chars=True,
strip_accents=None,
**kwargs,
):
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
" model use `tokenizer = ElectraTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.do_basic_tokenize = do_basic_tokenize
if do_basic_tokenize:
self.basic_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case,
never_split=never_split,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
super().__init__(
do_lower_case=do_lower_case,
do_basic_tokenize=do_basic_tokenize,
never_split=never_split,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
**kwargs,
)
@property
def do_lower_case(self):
return self.basic_tokenizer.do_lower_case
@property
def vocab_size(self):
return len(self.vocab)
def get_vocab(self):
return dict(self.vocab, **self.added_tokens_encoder)
def _tokenize(self, text, split_special_tokens=False):
split_tokens = []
if self.do_basic_tokenize:
for token in self.basic_tokenizer.tokenize(
text, never_split=self.all_special_tokens if not split_special_tokens else None
):
# If the token is part of the never_split set
if token in self.basic_tokenizer.never_split:
split_tokens.append(token)
else:
split_tokens += self.wordpiece_tokenizer.tokenize(token)
else:
split_tokens = self.wordpiece_tokenizer.tokenize(text)
return split_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = " ".join(tokens).replace(" ##", "").strip()
return out_string
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A Electra sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Electra sequence
pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
index = 0
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
class BasicTokenizer(object):
"""
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
Args:
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
do_split_on_punc (`bool`, *optional*, defaults to `True`):
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
the full context of the words, such as contractions.
"""
def __init__(
self,
do_lower_case=True,
never_split=None,
tokenize_chinese_chars=True,
strip_accents=None,
do_split_on_punc=True,
):
if never_split is None:
never_split = []
self.do_lower_case = do_lower_case
self.never_split = set(never_split)
self.tokenize_chinese_chars = tokenize_chinese_chars
self.strip_accents = strip_accents
self.do_split_on_punc = do_split_on_punc
def tokenize(self, text, never_split=None):
"""
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
Args:
never_split (`List[str]`, *optional*)
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
"""
# union() returns a new set by concatenating the two sets.
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if self.tokenize_chinese_chars:
text = self._tokenize_chinese_chars(text)
# prevents treating the same character with different unicode codepoints as different characters
unicode_normalized_text = unicodedata.normalize("NFC", text)
orig_tokens = whitespace_tokenize(unicode_normalized_text)
split_tokens = []
for token in orig_tokens:
if token not in never_split:
if self.do_lower_case:
token = token.lower()
if self.strip_accents is not False:
token = self._run_strip_accents(token)
elif self.strip_accents:
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token, never_split))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text, never_split=None):
"""Splits punctuation on a piece of text."""
if not self.do_split_on_punc or (never_split is not None and text in never_split):
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xFFFD or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
class WordpieceTokenizer(object):
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
tokenization using the given vocabulary.
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through *BasicTokenizer*.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/electra/modeling_electra.py | # coding=utf-8
# Copyright 2019 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ELECTRA model."""
import math
import os
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN, get_activation
from ...modeling_outputs import (
BaseModelOutputWithCrossAttentions,
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel, SequenceSummary
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_electra import ElectraConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/electra-small-discriminator"
_CONFIG_FOR_DOC = "ElectraConfig"
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = [
"google/electra-small-generator",
"google/electra-base-generator",
"google/electra-large-generator",
"google/electra-small-discriminator",
"google/electra-base-discriminator",
"google/electra-large-discriminator",
# See all ELECTRA models at https://huggingface.co/models?filter=electra
]
def load_tf_weights_in_electra(model, config, tf_checkpoint_path, discriminator_or_generator="discriminator"):
"""Load tf checkpoints in a pytorch model."""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
for name, array in zip(names, arrays):
original_name: str = name
try:
if isinstance(model, ElectraForMaskedLM):
name = name.replace("electra/embeddings/", "generator/embeddings/")
if discriminator_or_generator == "generator":
name = name.replace("electra/", "discriminator/")
name = name.replace("generator/", "electra/")
name = name.replace("dense_1", "dense_prediction")
name = name.replace("generator_predictions/output_bias", "generator_lm_head/bias")
name = name.split("/")
# print(original_name, name)
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(n in ["global_step", "temperature"] for n in name):
logger.info(f"Skipping {original_name}")
continue
pointer = model
for m_name in name:
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
scope_names = re.split(r"_(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
pointer = getattr(pointer, "bias")
elif scope_names[0] == "output_weights":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "squad":
pointer = getattr(pointer, "classifier")
else:
pointer = getattr(pointer, scope_names[0])
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
if m_name.endswith("_embeddings"):
pointer = getattr(pointer, "weight")
elif m_name == "kernel":
array = np.transpose(array)
try:
if pointer.shape != array.shape:
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
except ValueError as e:
e.args += (pointer.shape, array.shape)
raise
print(f"Initialize PyTorch weight {name}", original_name)
pointer.data = torch.from_numpy(array)
except AttributeError as e:
print(f"Skipping {original_name}", name, e)
continue
return model
class ElectraEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
)
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.forward
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values_length: int = 0,
) -> torch.Tensor:
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Electra
class ElectraSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
use_cache = past_key_value is not None
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
if use_cache:
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
-1, 1
)
else:
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in ElectraModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
class ElectraSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Electra
class ElectraAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = ElectraSelfAttention(config, position_embedding_type=position_embedding_type)
self.output = ElectraSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
class ElectraIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput
class ElectraOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Electra
class ElectraLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = ElectraAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = ElectraAttention(config, position_embedding_type="absolute")
self.intermediate = ElectraIntermediate(config)
self.output = ElectraOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Electra
class ElectraEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([ElectraLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
class ElectraDiscriminatorPredictions(nn.Module):
"""Prediction module for the discriminator, made up of two dense layers."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = get_activation(config.hidden_act)
self.dense_prediction = nn.Linear(config.hidden_size, 1)
self.config = config
def forward(self, discriminator_hidden_states):
hidden_states = self.dense(discriminator_hidden_states)
hidden_states = self.activation(hidden_states)
logits = self.dense_prediction(hidden_states).squeeze(-1)
return logits
class ElectraGeneratorPredictions(nn.Module):
"""Prediction module for the generator, made up of two dense layers."""
def __init__(self, config):
super().__init__()
self.activation = get_activation("gelu")
self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
self.dense = nn.Linear(config.hidden_size, config.embedding_size)
def forward(self, generator_hidden_states):
hidden_states = self.dense(generator_hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class ElectraPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ElectraConfig
load_tf_weights = load_tf_weights_in_electra
base_model_prefix = "electra"
supports_gradient_checkpointing = True
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
@dataclass
class ElectraForPreTrainingOutput(ModelOutput):
"""
Output type of [`ElectraForPreTraining`].
Args:
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss of the ELECTRA objective.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Prediction scores of the head (scores for each token before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
ELECTRA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`ElectraConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
ELECTRA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
encoder_hidden_states (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Electra Model transformer outputting raw hidden-states without any specific head on top. Identical to "
"the BERT model except that it uses an additional linear layer between the embedding layer and the encoder if the "
"hidden size and embedding size are different. "
""
"Both the generator and discriminator checkpoints may be loaded into this model.",
ELECTRA_START_DOCSTRING,
)
class ElectraModel(ElectraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.embeddings = ElectraEmbeddings(config)
if config.embedding_size != config.hidden_size:
self.embeddings_project = nn.Linear(config.embedding_size, config.hidden_size)
self.encoder = ElectraEncoder(config)
self.config = config
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
hidden_states = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
if hasattr(self, "embeddings_project"):
hidden_states = self.embeddings_project(hidden_states)
hidden_states = self.encoder(
hidden_states,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return hidden_states
class ElectraClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.activation = get_activation("gelu")
self.dropout = nn.Dropout(classifier_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = self.activation(x) # although BERT uses tanh here, it seems Electra authors used gelu here
x = self.dropout(x)
x = self.out_proj(x)
return x
@add_start_docstrings(
"""
ELECTRA Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
ELECTRA_START_DOCSTRING,
)
class ElectraForSequenceClassification(ElectraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.electra = ElectraModel(config)
self.classifier = ElectraClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="bhadresh-savani/electra-base-emotion",
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="'joy'",
expected_loss=0.06,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
discriminator_hidden_states = self.electra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = discriminator_hidden_states[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + discriminator_hidden_states[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=discriminator_hidden_states.hidden_states,
attentions=discriminator_hidden_states.attentions,
)
@add_start_docstrings(
"""
Electra model with a binary classification head on top as used during pretraining for identifying generated tokens.
It is recommended to load the discriminator checkpoint into that model.
""",
ELECTRA_START_DOCSTRING,
)
class ElectraForPreTraining(ElectraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.electra = ElectraModel(config)
self.discriminator_predictions = ElectraDiscriminatorPredictions(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=ElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], ElectraForPreTrainingOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the ELECTRA loss. Input should be a sequence of tokens (see `input_ids` docstring)
Indices should be in `[0, 1]`:
- 0 indicates the token is an original token,
- 1 indicates the token was replaced.
Returns:
Examples:
```python
>>> from transformers import ElectraForPreTraining, AutoTokenizer
>>> import torch
>>> discriminator = ElectraForPreTraining.from_pretrained("google/electra-base-discriminator")
>>> tokenizer = AutoTokenizer.from_pretrained("google/electra-base-discriminator")
>>> sentence = "The quick brown fox jumps over the lazy dog"
>>> fake_sentence = "The quick brown fox fake over the lazy dog"
>>> fake_tokens = tokenizer.tokenize(fake_sentence, add_special_tokens=True)
>>> fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt")
>>> discriminator_outputs = discriminator(fake_inputs)
>>> predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2)
>>> fake_tokens
['[CLS]', 'the', 'quick', 'brown', 'fox', 'fake', 'over', 'the', 'lazy', 'dog', '[SEP]']
>>> predictions.squeeze().tolist()
[0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
discriminator_hidden_states = self.electra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
discriminator_sequence_output = discriminator_hidden_states[0]
logits = self.discriminator_predictions(discriminator_sequence_output)
loss = None
if labels is not None:
loss_fct = nn.BCEWithLogitsLoss()
if attention_mask is not None:
active_loss = attention_mask.view(-1, discriminator_sequence_output.shape[1]) == 1
active_logits = logits.view(-1, discriminator_sequence_output.shape[1])[active_loss]
active_labels = labels[active_loss]
loss = loss_fct(active_logits, active_labels.float())
else:
loss = loss_fct(logits.view(-1, discriminator_sequence_output.shape[1]), labels.float())
if not return_dict:
output = (logits,) + discriminator_hidden_states[1:]
return ((loss,) + output) if loss is not None else output
return ElectraForPreTrainingOutput(
loss=loss,
logits=logits,
hidden_states=discriminator_hidden_states.hidden_states,
attentions=discriminator_hidden_states.attentions,
)
@add_start_docstrings(
"""
Electra model with a language modeling head on top.
Even though both the discriminator and generator may be loaded into this model, the generator is the only model of
the two to have been trained for the masked language modeling task.
""",
ELECTRA_START_DOCSTRING,
)
class ElectraForMaskedLM(ElectraPreTrainedModel):
_tied_weights_keys = ["generator_lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.electra = ElectraModel(config)
self.generator_predictions = ElectraGeneratorPredictions(config)
self.generator_lm_head = nn.Linear(config.embedding_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.generator_lm_head
def set_output_embeddings(self, word_embeddings):
self.generator_lm_head = word_embeddings
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="google/electra-small-generator",
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="[MASK]",
expected_output="'paris'",
expected_loss=1.22,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
generator_hidden_states = self.electra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
generator_sequence_output = generator_hidden_states[0]
prediction_scores = self.generator_predictions(generator_sequence_output)
prediction_scores = self.generator_lm_head(prediction_scores)
loss = None
# Masked language modeling softmax layer
if labels is not None:
loss_fct = nn.CrossEntropyLoss() # -100 index = padding token
loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + generator_hidden_states[1:]
return ((loss,) + output) if loss is not None else output
return MaskedLMOutput(
loss=loss,
logits=prediction_scores,
hidden_states=generator_hidden_states.hidden_states,
attentions=generator_hidden_states.attentions,
)
@add_start_docstrings(
"""
Electra model with a token classification head on top.
Both the discriminator and generator may be loaded into this model.
""",
ELECTRA_START_DOCSTRING,
)
class ElectraForTokenClassification(ElectraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.electra = ElectraModel(config)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="bhadresh-savani/electra-base-discriminator-finetuned-conll03-english",
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="['B-LOC', 'B-ORG', 'O', 'O', 'O', 'O', 'O', 'B-LOC', 'O', 'B-LOC', 'I-LOC']",
expected_loss=0.11,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
discriminator_hidden_states = self.electra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
discriminator_sequence_output = discriminator_hidden_states[0]
discriminator_sequence_output = self.dropout(discriminator_sequence_output)
logits = self.classifier(discriminator_sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + discriminator_hidden_states[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=discriminator_hidden_states.hidden_states,
attentions=discriminator_hidden_states.attentions,
)
@add_start_docstrings(
"""
ELECTRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
ELECTRA_START_DOCSTRING,
)
class ElectraForQuestionAnswering(ElectraPreTrainedModel):
config_class = ElectraConfig
base_model_prefix = "electra"
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.electra = ElectraModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="bhadresh-savani/electra-base-squad2",
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
qa_target_start_index=11,
qa_target_end_index=12,
expected_output="'a nice puppet'",
expected_loss=2.64,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
discriminator_hidden_states = self.electra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = discriminator_hidden_states[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (
start_logits,
end_logits,
) + discriminator_hidden_states[1:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=discriminator_hidden_states.hidden_states,
attentions=discriminator_hidden_states.attentions,
)
@add_start_docstrings(
"""
ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
ELECTRA_START_DOCSTRING,
)
class ElectraForMultipleChoice(ElectraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.electra = ElectraModel(config)
self.sequence_summary = SequenceSummary(config)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
discriminator_hidden_states = self.electra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = discriminator_hidden_states[0]
pooled_output = self.sequence_summary(sequence_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + discriminator_hidden_states[1:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=discriminator_hidden_states.hidden_states,
attentions=discriminator_hidden_states.attentions,
)
@add_start_docstrings(
"""ELECTRA Model with a `language modeling` head on top for CLM fine-tuning.""", ELECTRA_START_DOCSTRING
)
class ElectraForCausalLM(ElectraPreTrainedModel):
_tied_weights_keys = ["generator_lm_head.weight"]
def __init__(self, config):
super().__init__(config)
if not config.is_decoder:
logger.warning("If you want to use `ElectraForCausalLM` as a standalone, add `is_decoder=True.`")
self.electra = ElectraModel(config)
self.generator_predictions = ElectraGeneratorPredictions(config)
self.generator_lm_head = nn.Linear(config.embedding_size, config.vocab_size)
self.init_weights()
def get_output_embeddings(self):
return self.generator_lm_head
def set_output_embeddings(self, new_embeddings):
self.generator_lm_head = new_embeddings
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.Tensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, ElectraForCausalLM, ElectraConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/electra-base-generator")
>>> config = ElectraConfig.from_pretrained("google/electra-base-generator")
>>> config.is_decoder = True
>>> model = ElectraForCausalLM.from_pretrained("google/electra-base-generator", config=config)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.electra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.generator_lm_head(self.generator_predictions(sequence_output))
lm_loss = None
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
# Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM.prepare_inputs_for_generation
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
# cut decoder_input_ids if past_key_values is used
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
# Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM._reorder_cache
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/electra/tokenization_electra_fast.py | # coding=utf-8
# Copyright 2020 The Google AI Team, Stanford University and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"
),
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json"
),
"google/electra-base-generator": (
"https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json"
),
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json"
),
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"google/electra-small-generator": 512,
"google/electra-base-generator": 512,
"google/electra-large-generator": 512,
"google/electra-small-discriminator": 512,
"google/electra-base-discriminator": 512,
"google/electra-large-discriminator": 512,
}
PRETRAINED_INIT_CONFIGURATION = {
"google/electra-small-generator": {"do_lower_case": True},
"google/electra-base-generator": {"do_lower_case": True},
"google/electra-large-generator": {"do_lower_case": True},
"google/electra-small-discriminator": {"do_lower_case": True},
"google/electra-base-discriminator": {"do_lower_case": True},
"google/electra-large-discriminator": {"do_lower_case": True},
}
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast with Bert->Electra , BERT->ELECTRA
class ElectraTokenizerFast(PreTrainedTokenizerFast):
r"""
Construct a "fast" ELECTRA tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
clean_text (`bool`, *optional*, defaults to `True`):
Whether or not to clean the text before tokenization by removing any control characters and replacing all
whitespaces by the classic one.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original ELECTRA).
wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
The prefix for subwords.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
slow_tokenizer_class = ElectraTokenizer
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
do_lower_case=True,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
tokenize_chinese_chars=True,
strip_accents=None,
**kwargs,
):
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
do_lower_case=do_lower_case,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
**kwargs,
)
normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get("lowercase", do_lower_case) != do_lower_case
or normalizer_state.get("strip_accents", strip_accents) != strip_accents
or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
):
normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
normalizer_state["lowercase"] = do_lower_case
normalizer_state["strip_accents"] = strip_accents
normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
self.do_lower_case = do_lower_case
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A ELECTRA sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
if token_ids_1 is not None:
output += token_ids_1 + [self.sep_token_id]
return output
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A ELECTRA sequence
pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/electra/modeling_flax_electra.py | # coding=utf-8
# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Optional, Tuple
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen import partitioning as nn_partitioning
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from ...modeling_flax_outputs import (
FlaxBaseModelOutput,
FlaxBaseModelOutputWithPastAndCrossAttentions,
FlaxCausalLMOutputWithCrossAttentions,
FlaxMaskedLMOutput,
FlaxMultipleChoiceModelOutput,
FlaxQuestionAnsweringModelOutput,
FlaxSequenceClassifierOutput,
FlaxTokenClassifierOutput,
)
from ...modeling_flax_utils import (
ACT2FN,
FlaxPreTrainedModel,
append_call_sample_docstring,
append_replace_return_docstrings,
overwrite_call_docstring,
)
from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_electra import ElectraConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/electra-small-discriminator"
_CONFIG_FOR_DOC = "ElectraConfig"
remat = nn_partitioning.remat
@flax.struct.dataclass
class FlaxElectraForPreTrainingOutput(ModelOutput):
"""
Output type of [`ElectraForPreTraining`].
Args:
logits (`jnp.ndarray` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
logits: jnp.ndarray = None
hidden_states: Optional[Tuple[jnp.ndarray]] = None
attentions: Optional[Tuple[jnp.ndarray]] = None
ELECTRA_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`ElectraConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
ELECTRA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`numpy.ndarray` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`numpy.ndarray` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`numpy.ndarray` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
head_mask (`numpy.ndarray` of shape `({0})`, `optional):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class FlaxElectraEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.word_embeddings = nn.Embed(
self.config.vocab_size,
self.config.embedding_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.position_embeddings = nn.Embed(
self.config.max_position_embeddings,
self.config.embedding_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.token_type_embeddings = nn.Embed(
self.config.type_vocab_size,
self.config.embedding_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEmbeddings.__call__
def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True):
# Embed
inputs_embeds = self.word_embeddings(input_ids.astype("i4"))
position_embeds = self.position_embeddings(position_ids.astype("i4"))
token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4"))
# Sum all embeddings
hidden_states = inputs_embeds + token_type_embeddings + position_embeds
# Layer Norm
hidden_states = self.LayerNorm(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfAttention with Bert->Electra
class FlaxElectraSelfAttention(nn.Module):
config: ElectraConfig
causal: bool = False
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.head_dim = self.config.hidden_size // self.config.num_attention_heads
if self.config.hidden_size % self.config.num_attention_heads != 0:
raise ValueError(
"`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` "
" : {self.config.num_attention_heads}"
)
self.query = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.key = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.value = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
if self.causal:
self.causal_mask = make_causal_mask(
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,))
@nn.compact
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slighly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states,
attention_mask,
layer_head_mask,
key_value_states: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic=True,
output_attentions: bool = False,
):
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size = hidden_states.shape[0]
# get query proj
query_states = self.query(hidden_states)
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self.key(key_value_states)
value_states = self.value(key_value_states)
else:
# self_attention
key_states = self.key(hidden_states)
value_states = self.value(hidden_states)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# handle cache prepare causal attention mask
if self.causal:
query_length, key_length = query_states.shape[1], key_states.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
# combine masks if needed
if attention_mask is not None and self.causal:
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
elif self.causal:
attention_mask = causal_mask
elif attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
key_states, value_states, attention_mask = self._concatenate_to_cache(
key_states, value_states, query_states, attention_mask
)
# Convert the boolean attention mask to an attention bias.
if attention_mask is not None:
# attention mask in the form of attention bias
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.config.attention_probs_dropout_prob,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfOutput with Bert->Electra
class FlaxElectraSelfOutput(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, hidden_states, input_tensor, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertAttention with Bert->Electra
class FlaxElectraAttention(nn.Module):
config: ElectraConfig
causal: bool = False
dtype: jnp.dtype = jnp.float32
def setup(self):
self.self = FlaxElectraSelfAttention(self.config, causal=self.causal, dtype=self.dtype)
self.output = FlaxElectraSelfOutput(self.config, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask,
layer_head_mask,
key_value_states=None,
init_cache=False,
deterministic=True,
output_attentions: bool = False,
):
# Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length)
# FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable
# with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length)
attn_outputs = self.self(
hidden_states,
attention_mask,
layer_head_mask=layer_head_mask,
key_value_states=key_value_states,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0]
hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_outputs[1],)
return outputs
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertIntermediate with Bert->Electra
class FlaxElectraIntermediate(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.intermediate_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.activation = ACT2FN[self.config.hidden_act]
def __call__(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOutput with Bert->Electra
class FlaxElectraOutput(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
def __call__(self, hidden_states, attention_output, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.LayerNorm(hidden_states + attention_output)
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayer with Bert->Electra
class FlaxElectraLayer(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.attention = FlaxElectraAttention(self.config, causal=self.config.is_decoder, dtype=self.dtype)
self.intermediate = FlaxElectraIntermediate(self.config, dtype=self.dtype)
self.output = FlaxElectraOutput(self.config, dtype=self.dtype)
if self.config.add_cross_attention:
self.crossattention = FlaxElectraAttention(self.config, causal=False, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
):
# Self Attention
attention_outputs = self.attention(
hidden_states,
attention_mask,
layer_head_mask=layer_head_mask,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
)
attention_output = attention_outputs[0]
# Cross-Attention Block
if encoder_hidden_states is not None:
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask=encoder_attention_mask,
layer_head_mask=layer_head_mask,
key_value_states=encoder_hidden_states,
deterministic=deterministic,
output_attentions=output_attentions,
)
attention_output = cross_attention_outputs[0]
hidden_states = self.intermediate(attention_output)
hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic)
outputs = (hidden_states,)
if output_attentions:
outputs += (attention_outputs[1],)
if encoder_hidden_states is not None:
outputs += (cross_attention_outputs[1],)
return outputs
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayerCollection with Bert->Electra
class FlaxElectraLayerCollection(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def setup(self):
if self.gradient_checkpointing:
FlaxElectraCheckpointLayer = remat(FlaxElectraLayer, static_argnums=(5, 6, 7))
self.layers = [
FlaxElectraCheckpointLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.num_hidden_layers)
]
else:
self.layers = [
FlaxElectraLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
# Check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.shape[0] != (len(self.layers)):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for "
f" {head_mask.shape[0]}."
)
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = layer(
hidden_states,
attention_mask,
head_mask[i] if head_mask is not None else None,
encoder_hidden_states,
encoder_attention_mask,
init_cache,
deterministic,
output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEncoder with Bert->Electra
class FlaxElectraEncoder(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def setup(self):
self.layer = FlaxElectraLayerCollection(
self.config,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
def __call__(
self,
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
return self.layer(
hidden_states,
attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class FlaxElectraGeneratorPredictions(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dense = nn.Dense(self.config.embedding_size, dtype=self.dtype)
def __call__(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = ACT2FN[self.config.hidden_act](hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class FlaxElectraDiscriminatorPredictions(nn.Module):
"""Prediction module for the discriminator, made up of two dense layers."""
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype)
self.dense_prediction = nn.Dense(1, dtype=self.dtype)
def __call__(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = ACT2FN[self.config.hidden_act](hidden_states)
hidden_states = self.dense_prediction(hidden_states).squeeze(-1)
return hidden_states
class FlaxElectraPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ElectraConfig
base_model_prefix = "electra"
module_class: nn.Module = None
def __init__(
self,
config: ElectraConfig,
input_shape: Tuple = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
gradient_checkpointing: bool = False,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.enable_gradient_checkpointing
def enable_gradient_checkpointing(self):
self._module = self.module_class(
config=self.config,
dtype=self.dtype,
gradient_checkpointing=True,
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.init_weights
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
token_type_ids = jnp.zeros_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
attention_mask = jnp.ones_like(input_ids)
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
if self.config.add_cross_attention:
encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,))
encoder_attention_mask = attention_mask
module_init_outputs = self.module.init(
rngs,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
return_dict=False,
)
else:
module_init_outputs = self.module.init(
rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, return_dict=False
)
random_params = module_init_outputs["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderPreTrainedModel.init_cache
def init_cache(self, batch_size, max_length):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
"""
# init input variables to retrieve cache
input_ids = jnp.ones((batch_size, max_length), dtype="i4")
attention_mask = jnp.ones_like(input_ids, dtype="i4")
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
init_variables = self.module.init(
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
)
return unfreeze(init_variables["cache"])
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
past_key_values: dict = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# init input tensors if not passed
if token_type_ids is None:
token_type_ids = jnp.ones_like(input_ids)
if position_ids is None:
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if head_mask is None:
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
if self.config.add_cross_attention:
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
# down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
# changed by FlaxElectraAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
token_type_ids=jnp.array(token_type_ids, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
head_mask=jnp.array(head_mask, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
deterministic=not train,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
rngs=rngs,
mutable=mutable,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past_key_values = outputs
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past_key_values = outputs
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
else:
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
token_type_ids=jnp.array(token_type_ids, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
head_mask=jnp.array(head_mask, dtype="i4"),
deterministic=not train,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
rngs=rngs,
)
return outputs
class FlaxElectraModule(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def setup(self):
self.embeddings = FlaxElectraEmbeddings(self.config, dtype=self.dtype)
if self.config.embedding_size != self.config.hidden_size:
self.embeddings_project = nn.Dense(self.config.hidden_size, dtype=self.dtype)
self.encoder = FlaxElectraEncoder(
self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask: Optional[np.ndarray] = None,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
embeddings = self.embeddings(
input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic
)
if hasattr(self, "embeddings_project"):
embeddings = self.embeddings_project(embeddings)
return self.encoder(
embeddings,
attention_mask,
head_mask=head_mask,
deterministic=deterministic,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
@add_start_docstrings(
"The bare Electra Model transformer outputting raw hidden-states without any specific head on top.",
ELECTRA_START_DOCSTRING,
)
class FlaxElectraModel(FlaxElectraPreTrainedModel):
module_class = FlaxElectraModule
append_call_sample_docstring(FlaxElectraModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC)
class FlaxElectraTiedDense(nn.Module):
embedding_size: int
dtype: jnp.dtype = jnp.float32
precision = None
bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros
def setup(self):
self.bias = self.param("bias", self.bias_init, (self.embedding_size,))
def __call__(self, x, kernel):
x = jnp.asarray(x, self.dtype)
kernel = jnp.asarray(kernel, self.dtype)
y = lax.dot_general(
x,
kernel,
(((x.ndim - 1,), (0,)), ((), ())),
precision=self.precision,
)
bias = jnp.asarray(self.bias, self.dtype)
return y + bias
class FlaxElectraForMaskedLMModule(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.electra = FlaxElectraModule(
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
self.generator_predictions = FlaxElectraGeneratorPredictions(config=self.config, dtype=self.dtype)
if self.config.tie_word_embeddings:
self.generator_lm_head = FlaxElectraTiedDense(self.config.vocab_size, dtype=self.dtype)
else:
self.generator_lm_head = nn.Dense(self.config.vocab_size, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
outputs = self.electra(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
prediction_scores = self.generator_predictions(hidden_states)
if self.config.tie_word_embeddings:
shared_embedding = self.electra.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
prediction_scores = self.generator_lm_head(prediction_scores, shared_embedding.T)
else:
prediction_scores = self.generator_lm_head(prediction_scores)
if not return_dict:
return (prediction_scores,) + outputs[1:]
return FlaxMaskedLMOutput(
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings("""Electra Model with a `language modeling` head on top.""", ELECTRA_START_DOCSTRING)
class FlaxElectraForMaskedLM(FlaxElectraPreTrainedModel):
module_class = FlaxElectraForMaskedLMModule
append_call_sample_docstring(FlaxElectraForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC)
class FlaxElectraForPreTrainingModule(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.electra = FlaxElectraModule(
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
self.discriminator_predictions = FlaxElectraDiscriminatorPredictions(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.electra(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.discriminator_predictions(hidden_states)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxElectraForPreTrainingOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Electra model with a binary classification head on top as used during pretraining for identifying generated tokens.
It is recommended to load the discriminator checkpoint into that model.
""",
ELECTRA_START_DOCSTRING,
)
class FlaxElectraForPreTraining(FlaxElectraPreTrainedModel):
module_class = FlaxElectraForPreTrainingModule
FLAX_ELECTRA_FOR_PRETRAINING_DOCSTRING = """
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FlaxElectraForPreTraining
>>> tokenizer = AutoTokenizer.from_pretrained("google/electra-small-discriminator")
>>> model = FlaxElectraForPreTraining.from_pretrained("google/electra-small-discriminator")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
```
"""
overwrite_call_docstring(
FlaxElectraForPreTraining,
ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_ELECTRA_FOR_PRETRAINING_DOCSTRING,
)
append_replace_return_docstrings(
FlaxElectraForPreTraining, output_type=FlaxElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC
)
class FlaxElectraForTokenClassificationModule(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.electra = FlaxElectraModule(
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
classifier_dropout = (
self.config.classifier_dropout
if self.config.classifier_dropout is not None
else self.config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.electra(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
logits = self.classifier(hidden_states)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxTokenClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Electra model with a token classification head on top.
Both the discriminator and generator may be loaded into this model.
""",
ELECTRA_START_DOCSTRING,
)
class FlaxElectraForTokenClassification(FlaxElectraPreTrainedModel):
module_class = FlaxElectraForTokenClassificationModule
append_call_sample_docstring(
FlaxElectraForTokenClassification,
_CHECKPOINT_FOR_DOC,
FlaxTokenClassifierOutput,
_CONFIG_FOR_DOC,
)
def identity(x, **kwargs):
return x
class FlaxElectraSequenceSummary(nn.Module):
r"""
Compute a single vector summary of a sequence hidden states.
Args:
config ([`PretrainedConfig`]):
The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
config class of your model for the default values it uses):
- **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
- **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
(otherwise to `config.hidden_size`).
- **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
another string or `None` will add no activation.
- **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
- **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
"""
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.summary = identity
if hasattr(self.config, "summary_use_proj") and self.config.summary_use_proj:
if (
hasattr(self.config, "summary_proj_to_labels")
and self.config.summary_proj_to_labels
and self.config.num_labels > 0
):
num_classes = self.config.num_labels
else:
num_classes = self.config.hidden_size
self.summary = nn.Dense(num_classes, dtype=self.dtype)
activation_string = getattr(self.config, "summary_activation", None)
self.activation = ACT2FN[activation_string] if activation_string else lambda x: x # noqa F407
self.first_dropout = identity
if hasattr(self.config, "summary_first_dropout") and self.config.summary_first_dropout > 0:
self.first_dropout = nn.Dropout(self.config.summary_first_dropout)
self.last_dropout = identity
if hasattr(self.config, "summary_last_dropout") and self.config.summary_last_dropout > 0:
self.last_dropout = nn.Dropout(self.config.summary_last_dropout)
def __call__(self, hidden_states, cls_index=None, deterministic: bool = True):
"""
Compute a single vector summary of a sequence hidden states.
Args:
hidden_states (`jnp.ndarray` of shape `[batch_size, seq_len, hidden_size]`):
The hidden states of the last layer.
cls_index (`jnp.ndarray` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
Returns:
`jnp.ndarray`: The summary of the sequence hidden states.
"""
# NOTE: this doest "first" type summary always
output = hidden_states[:, 0]
output = self.first_dropout(output, deterministic=deterministic)
output = self.summary(output)
output = self.activation(output)
output = self.last_dropout(output, deterministic=deterministic)
return output
class FlaxElectraForMultipleChoiceModule(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.electra = FlaxElectraModule(
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
self.sequence_summary = FlaxElectraSequenceSummary(config=self.config, dtype=self.dtype)
self.classifier = nn.Dense(1, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
num_choices = input_ids.shape[1]
input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None
attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None
token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None
# Model
outputs = self.electra(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
pooled_output = self.sequence_summary(hidden_states, deterministic=deterministic)
logits = self.classifier(pooled_output)
reshaped_logits = logits.reshape(-1, num_choices)
if not return_dict:
return (reshaped_logits,) + outputs[1:]
return FlaxMultipleChoiceModelOutput(
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
ELECTRA_START_DOCSTRING,
)
class FlaxElectraForMultipleChoice(FlaxElectraPreTrainedModel):
module_class = FlaxElectraForMultipleChoiceModule
# adapt docstring slightly for FlaxElectraForMultipleChoice
overwrite_call_docstring(
FlaxElectraForMultipleChoice, ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
append_call_sample_docstring(
FlaxElectraForMultipleChoice,
_CHECKPOINT_FOR_DOC,
FlaxMultipleChoiceModelOutput,
_CONFIG_FOR_DOC,
)
class FlaxElectraForQuestionAnsweringModule(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.electra = FlaxElectraModule(
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.electra(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.qa_outputs(hidden_states)
start_logits, end_logits = logits.split(self.config.num_labels, axis=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
if not return_dict:
return (start_logits, end_logits) + outputs[1:]
return FlaxQuestionAnsweringModelOutput(
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
ELECTRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
ELECTRA_START_DOCSTRING,
)
class FlaxElectraForQuestionAnswering(FlaxElectraPreTrainedModel):
module_class = FlaxElectraForQuestionAnsweringModule
append_call_sample_docstring(
FlaxElectraForQuestionAnswering,
_CHECKPOINT_FOR_DOC,
FlaxQuestionAnsweringModelOutput,
_CONFIG_FOR_DOC,
)
class FlaxElectraClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype)
classifier_dropout = (
self.config.classifier_dropout
if self.config.classifier_dropout is not None
else self.config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.out_proj = nn.Dense(self.config.num_labels, dtype=self.dtype)
def __call__(self, hidden_states, deterministic: bool = True):
x = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x, deterministic=deterministic)
x = self.dense(x)
x = ACT2FN["gelu"](x) # although BERT uses tanh here, it seems Electra authors used gelu
x = self.dropout(x, deterministic=deterministic)
x = self.out_proj(x)
return x
class FlaxElectraForSequenceClassificationModule(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.electra = FlaxElectraModule(
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
self.classifier = FlaxElectraClassificationHead(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.electra(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.classifier(hidden_states, deterministic=deterministic)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxSequenceClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Electra Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
ELECTRA_START_DOCSTRING,
)
class FlaxElectraForSequenceClassification(FlaxElectraPreTrainedModel):
module_class = FlaxElectraForSequenceClassificationModule
append_call_sample_docstring(
FlaxElectraForSequenceClassification,
_CHECKPOINT_FOR_DOC,
FlaxSequenceClassifierOutput,
_CONFIG_FOR_DOC,
)
class FlaxElectraForCausalLMModule(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.electra = FlaxElectraModule(
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
self.generator_predictions = FlaxElectraGeneratorPredictions(config=self.config, dtype=self.dtype)
if self.config.tie_word_embeddings:
self.generator_lm_head = FlaxElectraTiedDense(self.config.vocab_size, dtype=self.dtype)
else:
self.generator_lm_head = nn.Dense(self.config.vocab_size, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask: Optional[jnp.ndarray] = None,
token_type_ids: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
head_mask: Optional[jnp.ndarray] = None,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
outputs = self.electra(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
prediction_scores = self.generator_predictions(hidden_states)
if self.config.tie_word_embeddings:
shared_embedding = self.electra.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
prediction_scores = self.generator_lm_head(prediction_scores, shared_embedding.T)
else:
prediction_scores = self.generator_lm_head(prediction_scores)
if not return_dict:
return (prediction_scores,) + outputs[1:]
return FlaxCausalLMOutputWithCrossAttentions(
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
Electra Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for
autoregressive tasks.
""",
ELECTRA_START_DOCSTRING,
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForCausalLM with Bert->Electra
class FlaxElectraForCausalLM(FlaxElectraPreTrainedModel):
module_class = FlaxElectraForCausalLMModule
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since the decoder uses a causal mask, those positions are masked anyway.
# Thus, we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
position_ids = attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"attention_mask": extended_attention_mask,
"position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
return model_kwargs
append_call_sample_docstring(
FlaxElectraForCausalLM,
_CHECKPOINT_FOR_DOC,
FlaxCausalLMOutputWithCrossAttentions,
_CONFIG_FOR_DOC,
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/electra/configuration_electra.py | # coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" ELECTRA model configuration"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"google/electra-small-generator": "https://huggingface.co/google/electra-small-generator/resolve/main/config.json",
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/config.json",
"google/electra-large-generator": "https://huggingface.co/google/electra-large-generator/resolve/main/config.json",
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/config.json"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/config.json"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/config.json"
),
}
class ElectraConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ElectraModel`] or a [`TFElectraModel`]. It is
used to instantiate a ELECTRA model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the ELECTRA
[google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the ELECTRA model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`ElectraModel`] or [`TFElectraModel`].
embedding_size (`int`, *optional*, defaults to 128):
Dimensionality of the encoder layers and the pooler layer.
hidden_size (`int`, *optional*, defaults to 256):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 4):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 1024):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`ElectraModel`] or [`TFElectraModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
summary_type (`str`, *optional*, defaults to `"first"`):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Has to be one of the following options:
- `"last"`: Take the last token hidden state (like XLNet).
- `"first"`: Take the first token hidden state (like BERT).
- `"mean"`: Take the mean of all tokens hidden states.
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
- `"attn"`: Not implemented now, use multi-head attention.
summary_use_proj (`bool`, *optional*, defaults to `True`):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Whether or not to add a projection after the vector extraction.
summary_activation (`str`, *optional*):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Pass `"gelu"` for a gelu activation to the output, any other value will result in no activation.
summary_last_dropout (`float`, *optional*, defaults to 0.0):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
The dropout ratio to be used after the projection and activation.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
classifier_dropout (`float`, *optional*):
The dropout ratio for the classification head.
Examples:
```python
>>> from transformers import ElectraConfig, ElectraModel
>>> # Initializing a ELECTRA electra-base-uncased style configuration
>>> configuration = ElectraConfig()
>>> # Initializing a model (with random weights) from the electra-base-uncased style configuration
>>> model = ElectraModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "electra"
def __init__(
self,
vocab_size=30522,
embedding_size=128,
hidden_size=256,
num_hidden_layers=12,
num_attention_heads=4,
intermediate_size=1024,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
summary_type="first",
summary_use_proj=True,
summary_activation="gelu",
summary_last_dropout=0.1,
pad_token_id=0,
position_embedding_type="absolute",
use_cache=True,
classifier_dropout=None,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.summary_type = summary_type
self.summary_use_proj = summary_use_proj
self.summary_activation = summary_activation
self.summary_last_dropout = summary_last_dropout
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.classifier_dropout = classifier_dropout
class ElectraOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
]
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/electra/__init__.py | # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
"configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"],
"tokenization_electra": ["ElectraTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_electra_fast"] = ["ElectraTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_electra"] = [
"ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
"ElectraForCausalLM",
"ElectraForMaskedLM",
"ElectraForMultipleChoice",
"ElectraForPreTraining",
"ElectraForQuestionAnswering",
"ElectraForSequenceClassification",
"ElectraForTokenClassification",
"ElectraModel",
"ElectraPreTrainedModel",
"load_tf_weights_in_electra",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_electra"] = [
"TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFElectraForMaskedLM",
"TFElectraForMultipleChoice",
"TFElectraForPreTraining",
"TFElectraForQuestionAnswering",
"TFElectraForSequenceClassification",
"TFElectraForTokenClassification",
"TFElectraModel",
"TFElectraPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_electra"] = [
"FlaxElectraForCausalLM",
"FlaxElectraForMaskedLM",
"FlaxElectraForMultipleChoice",
"FlaxElectraForPreTraining",
"FlaxElectraForQuestionAnswering",
"FlaxElectraForSequenceClassification",
"FlaxElectraForTokenClassification",
"FlaxElectraModel",
"FlaxElectraPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/electra/modeling_tf_electra.py | # coding=utf-8
# Copyright 2019 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF Electra model."""
from __future__ import annotations
import math
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutputWithPastAndCrossAttentions,
TFMaskedLMOutput,
TFMultipleChoiceModelOutput,
TFQuestionAnsweringModelOutput,
TFSequenceClassifierOutput,
TFTokenClassifierOutput,
)
from ...modeling_tf_utils import (
TFMaskedLanguageModelingLoss,
TFModelInputType,
TFMultipleChoiceLoss,
TFPreTrainedModel,
TFQuestionAnsweringLoss,
TFSequenceClassificationLoss,
TFSequenceSummary,
TFTokenClassificationLoss,
get_initializer,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_electra import ElectraConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/electra-small-discriminator"
_CONFIG_FOR_DOC = "ElectraConfig"
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = [
"google/electra-small-generator",
"google/electra-base-generator",
"google/electra-large-generator",
"google/electra-small-discriminator",
"google/electra-base-discriminator",
"google/electra-large-discriminator",
# See all ELECTRA models at https://huggingface.co/models?filter=electra
]
# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->Electra
class TFElectraSelfAttention(tf.keras.layers.Layer):
def __init__(self, config: ElectraConfig, **kwargs):
super().__init__(**kwargs)
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number "
f"of attention heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
self.query = tf.keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
)
self.key = tf.keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
)
self.value = tf.keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
)
self.dropout = tf.keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
self.is_decoder = config.is_decoder
self.config = config
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
return tf.transpose(tensor, perm=[0, 2, 1, 3])
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: tf.Tensor,
encoder_attention_mask: tf.Tensor,
past_key_value: Tuple[tf.Tensor],
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
batch_size = shape_list(hidden_states)[0]
mixed_query_layer = self.query(inputs=hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size)
value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size)
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
key_layer = tf.concat([past_key_value[0], key_layer], axis=2)
value_layer = tf.concat([past_key_value[1], value_layer], axis=2)
else:
key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
# (batch size, num_heads, seq_len_q, seq_len_k)
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
attention_scores = tf.divide(attention_scores, dk)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in TFElectraModel call() function)
attention_scores = tf.add(attention_scores, attention_mask)
# Normalize the attention scores to probabilities.
attention_probs = stable_softmax(logits=attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(inputs=attention_probs, training=training)
# Mask heads if we want to
if head_mask is not None:
attention_probs = tf.multiply(attention_probs, head_mask)
attention_output = tf.matmul(attention_probs, value_layer)
attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
# (batch_size, seq_len_q, all_head_size)
attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "query", None) is not None:
with tf.name_scope(self.query.name):
self.query.build([None, None, self.config.hidden_size])
if getattr(self, "key", None) is not None:
with tf.name_scope(self.key.name):
self.key.build([None, None, self.config.hidden_size])
if getattr(self, "value", None) is not None:
with tf.name_scope(self.value.name):
self.value.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Electra
class TFElectraSelfOutput(tf.keras.layers.Layer):
def __init__(self, config: ElectraConfig, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->Electra
class TFElectraAttention(tf.keras.layers.Layer):
def __init__(self, config: ElectraConfig, **kwargs):
super().__init__(**kwargs)
self.self_attention = TFElectraSelfAttention(config, name="self")
self.dense_output = TFElectraSelfOutput(config, name="output")
def prune_heads(self, heads):
raise NotImplementedError
def call(
self,
input_tensor: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: tf.Tensor,
encoder_attention_mask: tf.Tensor,
past_key_value: Tuple[tf.Tensor],
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
self_outputs = self.self_attention(
hidden_states=input_tensor,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
training=training,
)
attention_output = self.dense_output(
hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
)
# add attentions (possibly with past_key_value) if we output them
outputs = (attention_output,) + self_outputs[1:]
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attention", None) is not None:
with tf.name_scope(self.self_attention.name):
self.self_attention.build(None)
if getattr(self, "dense_output", None) is not None:
with tf.name_scope(self.dense_output.name):
self.dense_output.build(None)
# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Electra
class TFElectraIntermediate(tf.keras.layers.Layer):
def __init__(self, config: ElectraConfig, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
else:
self.intermediate_act_fn = config.hidden_act
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Electra
class TFElectraOutput(tf.keras.layers.Layer):
def __init__(self, config: ElectraConfig, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.intermediate_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->Electra
class TFElectraLayer(tf.keras.layers.Layer):
def __init__(self, config: ElectraConfig, **kwargs):
super().__init__(**kwargs)
self.attention = TFElectraAttention(config, name="attention")
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = TFElectraAttention(config, name="crossattention")
self.intermediate = TFElectraIntermediate(config, name="intermediate")
self.bert_output = TFElectraOutput(config, name="output")
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: tf.Tensor | None,
encoder_attention_mask: tf.Tensor | None,
past_key_value: Tuple[tf.Tensor] | None,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
input_tensor=hidden_states,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=self_attn_past_key_value,
output_attentions=output_attentions,
training=training,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
input_tensor=attention_output,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
training=training,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
intermediate_output = self.intermediate(hidden_states=attention_output)
layer_output = self.bert_output(
hidden_states=intermediate_output, input_tensor=attention_output, training=training
)
outputs = (layer_output,) + outputs # add attentions if we output them
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "intermediate", None) is not None:
with tf.name_scope(self.intermediate.name):
self.intermediate.build(None)
if getattr(self, "bert_output", None) is not None:
with tf.name_scope(self.bert_output.name):
self.bert_output.build(None)
if getattr(self, "crossattention", None) is not None:
with tf.name_scope(self.crossattention.name):
self.crossattention.build(None)
# Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->Electra
class TFElectraEncoder(tf.keras.layers.Layer):
def __init__(self, config: ElectraConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.layer = [TFElectraLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: tf.Tensor | None,
encoder_attention_mask: tf.Tensor | None,
past_key_values: Tuple[Tuple[tf.Tensor]] | None,
use_cache: Optional[bool],
output_attentions: bool,
output_hidden_states: bool,
return_dict: bool,
training: bool = False,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
past_key_value = past_key_values[i] if past_key_values is not None else None
layer_outputs = layer_module(
hidden_states=hidden_states,
attention_mask=attention_mask,
head_mask=head_mask[i],
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
training=training,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if self.config.add_cross_attention and encoder_hidden_states is not None:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None
)
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layer", None) is not None:
for layer in self.layer:
with tf.name_scope(layer.name):
layer.build(None)
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Electra
class TFElectraPooler(tf.keras.layers.Layer):
def __init__(self, config: ElectraConfig, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(inputs=first_token_tensor)
return pooled_output
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
# Copied from transformers.models.albert.modeling_tf_albert.TFAlbertEmbeddings with Albert->Electra
class TFElectraEmbeddings(tf.keras.layers.Layer):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config: ElectraConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embedding_size = config.embedding_size
self.max_position_embeddings = config.max_position_embeddings
self.initializer_range = config.initializer_range
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)
def build(self, input_shape=None):
with tf.name_scope("word_embeddings"):
self.weight = self.add_weight(
name="weight",
shape=[self.config.vocab_size, self.embedding_size],
initializer=get_initializer(self.initializer_range),
)
with tf.name_scope("token_type_embeddings"):
self.token_type_embeddings = self.add_weight(
name="embeddings",
shape=[self.config.type_vocab_size, self.embedding_size],
initializer=get_initializer(self.initializer_range),
)
with tf.name_scope("position_embeddings"):
self.position_embeddings = self.add_weight(
name="embeddings",
shape=[self.max_position_embeddings, self.embedding_size],
initializer=get_initializer(self.initializer_range),
)
if self.built:
return
self.built = True
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.embedding_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertEmbeddings.call
def call(
self,
input_ids: tf.Tensor = None,
position_ids: tf.Tensor = None,
token_type_ids: tf.Tensor = None,
inputs_embeds: tf.Tensor = None,
past_key_values_length=0,
training: bool = False,
) -> tf.Tensor:
"""
Applies embedding based on inputs tensor.
Returns:
final_embeddings (`tf.Tensor`): output embedding tensor.
"""
if input_ids is None and inputs_embeds is None:
raise ValueError("Need to provide either `input_ids` or `input_embeds`.")
if input_ids is not None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
input_shape = shape_list(inputs_embeds)[:-1]
if token_type_ids is None:
token_type_ids = tf.fill(dims=input_shape, value=0)
if position_ids is None:
position_ids = tf.expand_dims(
tf.range(start=past_key_values_length, limit=input_shape[1] + past_key_values_length), axis=0
)
position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
final_embeddings = inputs_embeds + position_embeds + token_type_embeds
final_embeddings = self.LayerNorm(inputs=final_embeddings)
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
return final_embeddings
class TFElectraDiscriminatorPredictions(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(config.hidden_size, name="dense")
self.dense_prediction = tf.keras.layers.Dense(1, name="dense_prediction")
self.config = config
def call(self, discriminator_hidden_states, training=False):
hidden_states = self.dense(discriminator_hidden_states)
hidden_states = get_tf_activation(self.config.hidden_act)(hidden_states)
logits = tf.squeeze(self.dense_prediction(hidden_states), -1)
return logits
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "dense_prediction", None) is not None:
with tf.name_scope(self.dense_prediction.name):
self.dense_prediction.build([None, None, self.config.hidden_size])
class TFElectraGeneratorPredictions(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dense = tf.keras.layers.Dense(config.embedding_size, name="dense")
self.config = config
def call(self, generator_hidden_states, training=False):
hidden_states = self.dense(generator_hidden_states)
hidden_states = get_tf_activation("gelu")(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.embedding_size])
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
class TFElectraPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ElectraConfig
base_model_prefix = "electra"
# When the model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"generator_lm_head.weight"]
_keys_to_ignore_on_load_missing = [r"dropout"]
@keras_serializable
class TFElectraMainLayer(tf.keras.layers.Layer):
config_class = ElectraConfig
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.is_decoder = config.is_decoder
self.embeddings = TFElectraEmbeddings(config, name="embeddings")
if config.embedding_size != config.hidden_size:
self.embeddings_project = tf.keras.layers.Dense(config.hidden_size, name="embeddings_project")
self.encoder = TFElectraEncoder(config, name="encoder")
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError
def get_extended_attention_mask(self, attention_mask, input_shape, dtype, past_key_values_length=0):
batch_size, seq_length = input_shape
if attention_mask is None:
attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask_shape = shape_list(attention_mask)
mask_seq_length = seq_length + past_key_values_length
# Copied from `modeling_tf_t5.py`
# Provided a padding mask of dimensions [batch_size, mask_seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
if self.is_decoder:
seq_ids = tf.range(mask_seq_length)
causal_mask = tf.less_equal(
tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)),
seq_ids[None, :, None],
)
causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype)
extended_attention_mask = causal_mask * attention_mask[:, None, :]
attention_mask_shape = shape_list(extended_attention_mask)
extended_attention_mask = tf.reshape(
extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2])
)
if past_key_values_length > 0:
extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :]
else:
extended_attention_mask = tf.reshape(
attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1])
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = tf.cast(extended_attention_mask, dtype=dtype)
one_cst = tf.constant(1.0, dtype=dtype)
ten_thousand_cst = tf.constant(-10000.0, dtype=dtype)
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
return extended_attention_mask
def get_head_mask(self, head_mask):
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.config.num_hidden_layers
return head_mask
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
if not self.config.is_decoder:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
if past_key_values is None:
past_key_values_length = 0
past_key_values = [None] * len(self.encoder.layer)
else:
past_key_values_length = shape_list(past_key_values[0][0])[-2]
if attention_mask is None:
attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
if token_type_ids is None:
token_type_ids = tf.fill(dims=input_shape, value=0)
hidden_states = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
training=training,
)
extended_attention_mask = self.get_extended_attention_mask(
attention_mask, input_shape, hidden_states.dtype, past_key_values_length
)
# Copied from `modeling_tf_t5.py` with -1e9 -> -10000
if self.is_decoder and encoder_attention_mask is not None:
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype)
num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask))
if num_dims_encoder_attention_mask == 3:
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
if num_dims_encoder_attention_mask == 2:
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask,
# tf.transpose(encoder_extended_attention_mask, perm=(-1, -2)))
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
else:
encoder_extended_attention_mask = None
head_mask = self.get_head_mask(head_mask)
if hasattr(self, "embeddings_project"):
hidden_states = self.embeddings_project(hidden_states, training=training)
hidden_states = self.encoder(
hidden_states=hidden_states,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "embeddings_project", None) is not None:
with tf.name_scope(self.embeddings_project.name):
self.embeddings_project.build([None, None, self.config.embedding_size])
@dataclass
class TFElectraForPreTrainingOutput(ModelOutput):
"""
Output type of [`TFElectraForPreTraining`].
Args:
loss (*optional*, returned when `labels` is provided, `tf.Tensor` of shape `(1,)`):
Total loss of the ELECTRA objective.
logits (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Prediction scores of the head (scores for each token before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
ELECTRA_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Parameters:
config ([`ElectraConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
ELECTRA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare Electra Model transformer outputting raw hidden-states without any specific head on top. Identical to "
"the BERT model except that it uses an additional linear layer between the embedding layer and the encoder if the "
"hidden size and embedding size are different. "
""
"Both the generator and discriminator checkpoints may be loaded into this model.",
ELECTRA_START_DOCSTRING,
)
class TFElectraModel(TFElectraPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.electra = TFElectraMainLayer(config, name="electra")
@unpack_inputs
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPastAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`). Set to `False` during training, `True` during generation
"""
outputs = self.electra(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "electra", None) is not None:
with tf.name_scope(self.electra.name):
self.electra.build(None)
@add_start_docstrings(
"""
Electra model with a binary classification head on top as used during pretraining for identifying generated tokens.
Even though both the discriminator and generator may be loaded into this model, the discriminator is the only model
of the two to have the correct classification head to be used for this model.
""",
ELECTRA_START_DOCSTRING,
)
class TFElectraForPreTraining(TFElectraPreTrainedModel):
def __init__(self, config, **kwargs):
super().__init__(config, **kwargs)
self.electra = TFElectraMainLayer(config, name="electra")
self.discriminator_predictions = TFElectraDiscriminatorPredictions(config, name="discriminator_predictions")
@unpack_inputs
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFElectraForPreTrainingOutput, Tuple[tf.Tensor]]:
r"""
Returns:
Examples:
```python
>>> import tensorflow as tf
>>> from transformers import AutoTokenizer, TFElectraForPreTraining
>>> tokenizer = AutoTokenizer.from_pretrained("google/electra-small-discriminator")
>>> model = TFElectraForPreTraining.from_pretrained("google/electra-small-discriminator")
>>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
>>> outputs = model(input_ids)
>>> scores = outputs[0]
```"""
discriminator_hidden_states = self.electra(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
discriminator_sequence_output = discriminator_hidden_states[0]
logits = self.discriminator_predictions(discriminator_sequence_output)
if not return_dict:
return (logits,) + discriminator_hidden_states[1:]
return TFElectraForPreTrainingOutput(
logits=logits,
hidden_states=discriminator_hidden_states.hidden_states,
attentions=discriminator_hidden_states.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "electra", None) is not None:
with tf.name_scope(self.electra.name):
self.electra.build(None)
if getattr(self, "discriminator_predictions", None) is not None:
with tf.name_scope(self.discriminator_predictions.name):
self.discriminator_predictions.build(None)
class TFElectraMaskedLMHead(tf.keras.layers.Layer):
def __init__(self, config, input_embeddings, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embedding_size = config.embedding_size
self.input_embeddings = input_embeddings
def build(self, input_shape):
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
super().build(input_shape)
def get_output_embeddings(self):
return self.input_embeddings
def set_output_embeddings(self, value):
self.input_embeddings.weight = value
self.input_embeddings.vocab_size = shape_list(value)[0]
def get_bias(self):
return {"bias": self.bias}
def set_bias(self, value):
self.bias = value["bias"]
self.config.vocab_size = shape_list(value["bias"])[0]
def call(self, hidden_states):
seq_length = shape_list(tensor=hidden_states)[1]
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size])
hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
return hidden_states
@add_start_docstrings(
"""
Electra model with a language modeling head on top.
Even though both the discriminator and generator may be loaded into this model, the generator is the only model of
the two to have been trained for the masked language modeling task.
""",
ELECTRA_START_DOCSTRING,
)
class TFElectraForMaskedLM(TFElectraPreTrainedModel, TFMaskedLanguageModelingLoss):
def __init__(self, config, **kwargs):
super().__init__(config, **kwargs)
self.config = config
self.electra = TFElectraMainLayer(config, name="electra")
self.generator_predictions = TFElectraGeneratorPredictions(config, name="generator_predictions")
if isinstance(config.hidden_act, str):
self.activation = get_tf_activation(config.hidden_act)
else:
self.activation = config.hidden_act
self.generator_lm_head = TFElectraMaskedLMHead(config, self.electra.embeddings, name="generator_lm_head")
def get_lm_head(self):
return self.generator_lm_head
def get_prefix_bias_name(self):
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return self.name + "/" + self.generator_lm_head.name
@unpack_inputs
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="google/electra-small-generator",
output_type=TFMaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="[MASK]",
expected_output="'paris'",
expected_loss=1.22,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
generator_hidden_states = self.electra(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
generator_sequence_output = generator_hidden_states[0]
prediction_scores = self.generator_predictions(generator_sequence_output, training=training)
prediction_scores = self.generator_lm_head(prediction_scores, training=training)
loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores)
if not return_dict:
output = (prediction_scores,) + generator_hidden_states[1:]
return ((loss,) + output) if loss is not None else output
return TFMaskedLMOutput(
loss=loss,
logits=prediction_scores,
hidden_states=generator_hidden_states.hidden_states,
attentions=generator_hidden_states.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "electra", None) is not None:
with tf.name_scope(self.electra.name):
self.electra.build(None)
if getattr(self, "generator_predictions", None) is not None:
with tf.name_scope(self.generator_predictions.name):
self.generator_predictions.build(None)
if getattr(self, "generator_lm_head", None) is not None:
with tf.name_scope(self.generator_lm_head.name):
self.generator_lm_head.build(None)
class TFElectraClassificationHead(tf.keras.layers.Layer):
"""Head for sentence-level classification tasks."""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
classifier_dropout = (
config.classifhidden_dropout_probier_dropout
if config.classifier_dropout is not None
else config.hidden_dropout_prob
)
self.dropout = tf.keras.layers.Dropout(classifier_dropout)
self.out_proj = tf.keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj"
)
self.config = config
def call(self, inputs, **kwargs):
x = inputs[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = get_tf_activation("gelu")(x) # although BERT uses tanh here, it seems Electra authors used gelu here
x = self.dropout(x)
x = self.out_proj(x)
return x
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
ELECTRA Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
ELECTRA_START_DOCSTRING,
)
class TFElectraForSequenceClassification(TFElectraPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.electra = TFElectraMainLayer(config, name="electra")
self.classifier = TFElectraClassificationHead(config, name="classifier")
@unpack_inputs
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="bhadresh-savani/electra-base-emotion",
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="'joy'",
expected_loss=0.06,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs = self.electra(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
logits = self.classifier(outputs[0])
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "electra", None) is not None:
with tf.name_scope(self.electra.name):
self.electra.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build(None)
@add_start_docstrings(
"""
ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
ELECTRA_START_DOCSTRING,
)
class TFElectraForMultipleChoice(TFElectraPreTrainedModel, TFMultipleChoiceLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.electra = TFElectraMainLayer(config, name="electra")
self.sequence_summary = TFSequenceSummary(
config, initializer_range=config.initializer_range, name="sequence_summary"
)
self.classifier = tf.keras.layers.Dense(
1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
"""
if input_ids is not None:
num_choices = shape_list(input_ids)[1]
seq_length = shape_list(input_ids)[2]
else:
num_choices = shape_list(inputs_embeds)[1]
seq_length = shape_list(inputs_embeds)[2]
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
flat_inputs_embeds = (
tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
if inputs_embeds is not None
else None
)
outputs = self.electra(
input_ids=flat_input_ids,
attention_mask=flat_attention_mask,
token_type_ids=flat_token_type_ids,
position_ids=flat_position_ids,
head_mask=head_mask,
inputs_embeds=flat_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
logits = self.sequence_summary(outputs[0])
logits = self.classifier(logits)
reshaped_logits = tf.reshape(logits, (-1, num_choices))
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
if not return_dict:
output = (reshaped_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFMultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "electra", None) is not None:
with tf.name_scope(self.electra.name):
self.electra.build(None)
if getattr(self, "sequence_summary", None) is not None:
with tf.name_scope(self.sequence_summary.name):
self.sequence_summary.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
Electra model with a token classification head on top.
Both the discriminator and generator may be loaded into this model.
""",
ELECTRA_START_DOCSTRING,
)
class TFElectraForTokenClassification(TFElectraPreTrainedModel, TFTokenClassificationLoss):
def __init__(self, config, **kwargs):
super().__init__(config, **kwargs)
self.electra = TFElectraMainLayer(config, name="electra")
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = tf.keras.layers.Dropout(classifier_dropout)
self.classifier = tf.keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="bhadresh-savani/electra-base-discriminator-finetuned-conll03-english",
output_type=TFTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="['B-LOC', 'B-ORG', 'O', 'O', 'O', 'O', 'O', 'B-LOC', 'O', 'B-LOC', 'I-LOC']",
expected_loss=0.11,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
discriminator_hidden_states = self.electra(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
discriminator_sequence_output = discriminator_hidden_states[0]
discriminator_sequence_output = self.dropout(discriminator_sequence_output)
logits = self.classifier(discriminator_sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + discriminator_hidden_states[1:]
return ((loss,) + output) if loss is not None else output
return TFTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=discriminator_hidden_states.hidden_states,
attentions=discriminator_hidden_states.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "electra", None) is not None:
with tf.name_scope(self.electra.name):
self.electra.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
Electra Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
ELECTRA_START_DOCSTRING,
)
class TFElectraForQuestionAnswering(TFElectraPreTrainedModel, TFQuestionAnsweringLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.electra = TFElectraMainLayer(config, name="electra")
self.qa_outputs = tf.keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="bhadresh-savani/electra-base-squad2",
output_type=TFQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
qa_target_start_index=11,
qa_target_end_index=12,
expected_output="'a nice puppet'",
expected_loss=2.64,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
start_positions: np.ndarray | tf.Tensor | None = None,
end_positions: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
discriminator_hidden_states = self.electra(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
discriminator_sequence_output = discriminator_hidden_states[0]
logits = self.qa_outputs(discriminator_sequence_output)
start_logits, end_logits = tf.split(logits, 2, axis=-1)
start_logits = tf.squeeze(start_logits, axis=-1)
end_logits = tf.squeeze(end_logits, axis=-1)
loss = None
if start_positions is not None and end_positions is not None:
labels = {"start_position": start_positions}
labels["end_position"] = end_positions
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
if not return_dict:
output = (
start_logits,
end_logits,
) + discriminator_hidden_states[1:]
return ((loss,) + output) if loss is not None else output
return TFQuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=discriminator_hidden_states.hidden_states,
attentions=discriminator_hidden_states.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "electra", None) is not None:
with tf.name_scope(self.electra.name):
self.electra.build(None)
if getattr(self, "qa_outputs", None) is not None:
with tf.name_scope(self.qa_outputs.name):
self.qa_outputs.build([None, None, self.config.hidden_size])
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/regnet/modeling_regnet.py | # coding=utf-8
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch RegNet model."""
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "RegNetConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "facebook/regnet-y-040"
_EXPECTED_OUTPUT_SHAPE = [1, 1088, 7, 7]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "facebook/regnet-y-040"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
REGNET_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/regnet-y-040",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class RegNetConvLayer(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int = 3,
stride: int = 1,
groups: int = 1,
activation: Optional[str] = "relu",
):
super().__init__()
self.convolution = nn.Conv2d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=kernel_size // 2,
groups=groups,
bias=False,
)
self.normalization = nn.BatchNorm2d(out_channels)
self.activation = ACT2FN[activation] if activation is not None else nn.Identity()
def forward(self, hidden_state):
hidden_state = self.convolution(hidden_state)
hidden_state = self.normalization(hidden_state)
hidden_state = self.activation(hidden_state)
return hidden_state
class RegNetEmbeddings(nn.Module):
"""
RegNet Embedddings (stem) composed of a single aggressive convolution.
"""
def __init__(self, config: RegNetConfig):
super().__init__()
self.embedder = RegNetConvLayer(
config.num_channels, config.embedding_size, kernel_size=3, stride=2, activation=config.hidden_act
)
self.num_channels = config.num_channels
def forward(self, pixel_values):
num_channels = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
hidden_state = self.embedder(pixel_values)
return hidden_state
# Copied from transformers.models.resnet.modeling_resnet.ResNetShortCut with ResNet->RegNet
class RegNetShortCut(nn.Module):
"""
RegNet shortcut, used to project the residual features to the correct size. If needed, it is also used to
downsample the input using `stride=2`.
"""
def __init__(self, in_channels: int, out_channels: int, stride: int = 2):
super().__init__()
self.convolution = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False)
self.normalization = nn.BatchNorm2d(out_channels)
def forward(self, input: Tensor) -> Tensor:
hidden_state = self.convolution(input)
hidden_state = self.normalization(hidden_state)
return hidden_state
class RegNetSELayer(nn.Module):
"""
Squeeze and Excitation layer (SE) proposed in [Squeeze-and-Excitation Networks](https://arxiv.org/abs/1709.01507).
"""
def __init__(self, in_channels: int, reduced_channels: int):
super().__init__()
self.pooler = nn.AdaptiveAvgPool2d((1, 1))
self.attention = nn.Sequential(
nn.Conv2d(in_channels, reduced_channels, kernel_size=1),
nn.ReLU(),
nn.Conv2d(reduced_channels, in_channels, kernel_size=1),
nn.Sigmoid(),
)
def forward(self, hidden_state):
# b c h w -> b c 1 1
pooled = self.pooler(hidden_state)
attention = self.attention(pooled)
hidden_state = hidden_state * attention
return hidden_state
class RegNetXLayer(nn.Module):
"""
RegNet's layer composed by three `3x3` convolutions, same as a ResNet bottleneck layer with reduction = 1.
"""
def __init__(self, config: RegNetConfig, in_channels: int, out_channels: int, stride: int = 1):
super().__init__()
should_apply_shortcut = in_channels != out_channels or stride != 1
groups = max(1, out_channels // config.groups_width)
self.shortcut = (
RegNetShortCut(in_channels, out_channels, stride=stride) if should_apply_shortcut else nn.Identity()
)
self.layer = nn.Sequential(
RegNetConvLayer(in_channels, out_channels, kernel_size=1, activation=config.hidden_act),
RegNetConvLayer(out_channels, out_channels, stride=stride, groups=groups, activation=config.hidden_act),
RegNetConvLayer(out_channels, out_channels, kernel_size=1, activation=None),
)
self.activation = ACT2FN[config.hidden_act]
def forward(self, hidden_state):
residual = hidden_state
hidden_state = self.layer(hidden_state)
residual = self.shortcut(residual)
hidden_state += residual
hidden_state = self.activation(hidden_state)
return hidden_state
class RegNetYLayer(nn.Module):
"""
RegNet's Y layer: an X layer with Squeeze and Excitation.
"""
def __init__(self, config: RegNetConfig, in_channels: int, out_channels: int, stride: int = 1):
super().__init__()
should_apply_shortcut = in_channels != out_channels or stride != 1
groups = max(1, out_channels // config.groups_width)
self.shortcut = (
RegNetShortCut(in_channels, out_channels, stride=stride) if should_apply_shortcut else nn.Identity()
)
self.layer = nn.Sequential(
RegNetConvLayer(in_channels, out_channels, kernel_size=1, activation=config.hidden_act),
RegNetConvLayer(out_channels, out_channels, stride=stride, groups=groups, activation=config.hidden_act),
RegNetSELayer(out_channels, reduced_channels=int(round(in_channels / 4))),
RegNetConvLayer(out_channels, out_channels, kernel_size=1, activation=None),
)
self.activation = ACT2FN[config.hidden_act]
def forward(self, hidden_state):
residual = hidden_state
hidden_state = self.layer(hidden_state)
residual = self.shortcut(residual)
hidden_state += residual
hidden_state = self.activation(hidden_state)
return hidden_state
class RegNetStage(nn.Module):
"""
A RegNet stage composed by stacked layers.
"""
def __init__(
self,
config: RegNetConfig,
in_channels: int,
out_channels: int,
stride: int = 2,
depth: int = 2,
):
super().__init__()
layer = RegNetXLayer if config.layer_type == "x" else RegNetYLayer
self.layers = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
config,
in_channels,
out_channels,
stride=stride,
),
*[layer(config, out_channels, out_channels) for _ in range(depth - 1)],
)
def forward(self, hidden_state):
hidden_state = self.layers(hidden_state)
return hidden_state
class RegNetEncoder(nn.Module):
def __init__(self, config: RegNetConfig):
super().__init__()
self.stages = nn.ModuleList([])
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
config,
config.embedding_size,
config.hidden_sizes[0],
stride=2 if config.downsample_in_first_stage else 1,
depth=config.depths[0],
)
)
in_out_channels = zip(config.hidden_sizes, config.hidden_sizes[1:])
for (in_channels, out_channels), depth in zip(in_out_channels, config.depths[1:]):
self.stages.append(RegNetStage(config, in_channels, out_channels, depth=depth))
def forward(
self, hidden_state: Tensor, output_hidden_states: bool = False, return_dict: bool = True
) -> BaseModelOutputWithNoAttention:
hidden_states = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
hidden_states = hidden_states + (hidden_state,)
hidden_state = stage_module(hidden_state)
if output_hidden_states:
hidden_states = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(last_hidden_state=hidden_state, hidden_states=hidden_states)
class RegNetPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = RegNetConfig
base_model_prefix = "regnet"
main_input_name = "pixel_values"
# Copied from transformers.models.resnet.modeling_resnet.ResNetPreTrainedModel._init_weights
def _init_weights(self, module):
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(module.weight, 1)
nn.init.constant_(module.bias, 0)
REGNET_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and
behavior.
Parameters:
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
REGNET_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top.",
REGNET_START_DOCSTRING,
)
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class RegNetModel(RegNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embedder = RegNetEmbeddings(config)
self.encoder = RegNetEncoder(config)
self.pooler = nn.AdaptiveAvgPool2d((1, 1))
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(REGNET_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None
) -> BaseModelOutputWithPoolingAndNoAttention:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
embedding_output = self.embedder(pixel_values)
encoder_outputs = self.encoder(
embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict
)
last_hidden_state = encoder_outputs[0]
pooled_output = self.pooler(last_hidden_state)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
)
@add_start_docstrings(
"""
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""",
REGNET_START_DOCSTRING,
)
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class RegNetForImageClassification(RegNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.regnet = RegNetModel(config)
# classification head
self.classifier = nn.Sequential(
nn.Flatten(),
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity(),
)
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(REGNET_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> ImageClassifierOutputWithNoAttention:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.regnet(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/regnet/convert_regnet_to_pytorch.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert RegNet checkpoints from timm and vissl."""
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Callable, Dict, List, Tuple
import timm
import torch
import torch.nn as nn
from classy_vision.models.regnet import RegNet, RegNetParams, RegNetY32gf, RegNetY64gf, RegNetY128gf
from huggingface_hub import cached_download, hf_hub_url
from torch import Tensor
from vissl.models.model_helpers import get_trunk_forward_outputs
from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger()
@dataclass
class Tracker:
module: nn.Module
traced: List[nn.Module] = field(default_factory=list)
handles: list = field(default_factory=list)
def _forward_hook(self, m, inputs: Tensor, outputs: Tensor):
has_not_submodules = len(list(m.modules())) == 1 or isinstance(m, nn.Conv2d) or isinstance(m, nn.BatchNorm2d)
if has_not_submodules:
self.traced.append(m)
def __call__(self, x: Tensor):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook))
self.module(x)
[x.remove() for x in self.handles]
return self
@property
def parametrized(self):
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda x: len(list(x.state_dict().keys())) > 0, self.traced))
@dataclass
class ModuleTransfer:
src: nn.Module
dest: nn.Module
verbose: int = 1
src_skip: List = field(default_factory=list)
dest_skip: List = field(default_factory=list)
raise_if_mismatch: bool = True
def __call__(self, x: Tensor):
"""
Transfer the weights of `self.src` to `self.dest` by performing a forward pass using `x` as input. Under the
hood we tracked all the operations in both modules.
"""
dest_traced = Tracker(self.dest)(x).parametrized
src_traced = Tracker(self.src)(x).parametrized
src_traced = list(filter(lambda x: type(x) not in self.src_skip, src_traced))
dest_traced = list(filter(lambda x: type(x) not in self.dest_skip, dest_traced))
if len(dest_traced) != len(src_traced) and self.raise_if_mismatch:
raise Exception(
f"Numbers of operations are different. Source module has {len(src_traced)} operations while"
f" destination module has {len(dest_traced)}."
)
for dest_m, src_m in zip(dest_traced, src_traced):
dest_m.load_state_dict(src_m.state_dict())
if self.verbose == 1:
print(f"Transfered from={src_m} to={dest_m}")
class FakeRegNetVisslWrapper(nn.Module):
"""
Fake wrapper for RegNet that mimics what vissl does without the need to pass a config file.
"""
def __init__(self, model: nn.Module):
super().__init__()
feature_blocks: List[Tuple[str, nn.Module]] = []
# - get the stem
feature_blocks.append(("conv1", model.stem))
# - get all the feature blocks
for k, v in model.trunk_output.named_children():
assert k.startswith("block"), f"Unexpected layer name {k}"
block_index = len(feature_blocks) + 1
feature_blocks.append((f"res{block_index}", v))
self._feature_blocks = nn.ModuleDict(feature_blocks)
def forward(self, x: Tensor):
return get_trunk_forward_outputs(
x,
out_feat_keys=None,
feature_blocks=self._feature_blocks,
)
class NameToFromModelFuncMap(dict):
"""
A Dictionary with some additional logic to return a function that creates the correct original model.
"""
def convert_name_to_timm(self, x: str) -> str:
x_split = x.split("-")
return x_split[0] + x_split[1] + "_" + "".join(x_split[2:])
def __getitem__(self, x: str) -> Callable[[], Tuple[nn.Module, Dict]]:
# default to timm!
if x not in self:
x = self.convert_name_to_timm(x)
val = partial(lambda: (timm.create_model(x, pretrained=True).eval(), None))
else:
val = super().__getitem__(x)
return val
class NameToOurModelFuncMap(dict):
"""
A Dictionary with some additional logic to return the correct hugging face RegNet class reference.
"""
def __getitem__(self, x: str) -> Callable[[], nn.Module]:
if "seer" in x and "in1k" not in x:
val = RegNetModel
else:
val = RegNetForImageClassification
return val
def manually_copy_vissl_head(from_state_dict, to_state_dict, keys: List[Tuple[str, str]]):
for from_key, to_key in keys:
to_state_dict[to_key] = from_state_dict[from_key].clone()
print(f"Copied key={from_key} to={to_key}")
return to_state_dict
def convert_weight_and_push(
name: str,
from_model_func: Callable[[], nn.Module],
our_model_func: Callable[[], nn.Module],
config: RegNetConfig,
save_directory: Path,
push_to_hub: bool = True,
):
print(f"Converting {name}...")
with torch.no_grad():
from_model, from_state_dict = from_model_func()
our_model = our_model_func(config).eval()
module_transfer = ModuleTransfer(src=from_model, dest=our_model, raise_if_mismatch=False)
x = torch.randn((1, 3, 224, 224))
module_transfer(x)
if from_state_dict is not None:
keys = []
# for seer - in1k finetuned we have to manually copy the head
if "seer" in name and "in1k" in name:
keys = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")]
to_state_dict = manually_copy_vissl_head(from_state_dict, our_model.state_dict(), keys)
our_model.load_state_dict(to_state_dict)
our_outputs = our_model(x, output_hidden_states=True)
our_output = (
our_outputs.logits if isinstance(our_model, RegNetForImageClassification) else our_outputs.last_hidden_state
)
from_output = from_model(x)
from_output = from_output[-1] if isinstance(from_output, list) else from_output
# now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state
if "seer" in name and "in1k" in name:
our_output = our_outputs.hidden_states[-1]
assert torch.allclose(from_output, our_output), "The model logits don't match the original one."
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / name,
commit_message="Add model",
use_temp_dir=True,
)
size = 224 if "seer" not in name else 384
# we can use the convnext one
image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k", size=size)
image_processor.push_to_hub(
repo_path_or_name=save_directory / name,
commit_message="Add image processor",
use_temp_dir=True,
)
print(f"Pushed {name}")
def convert_weights_and_push(save_directory: Path, model_name: str = None, push_to_hub: bool = True):
filename = "imagenet-1k-id2label.json"
num_labels = 1000
expected_shape = (1, num_labels)
repo_id = "huggingface/label-files"
num_labels = num_labels
id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r"))
id2label = {int(k): v for k, v in id2label.items()}
id2label = id2label
label2id = {v: k for k, v in id2label.items()}
ImageNetPreTrainedConfig = partial(RegNetConfig, num_labels=num_labels, id2label=id2label, label2id=label2id)
names_to_config = {
"regnet-x-002": ImageNetPreTrainedConfig(
depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type="x"
),
"regnet-x-004": ImageNetPreTrainedConfig(
depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type="x"
),
"regnet-x-006": ImageNetPreTrainedConfig(
depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type="x"
),
"regnet-x-008": ImageNetPreTrainedConfig(
depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type="x"
),
"regnet-x-016": ImageNetPreTrainedConfig(
depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type="x"
),
"regnet-x-032": ImageNetPreTrainedConfig(
depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type="x"
),
"regnet-x-040": ImageNetPreTrainedConfig(
depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type="x"
),
"regnet-x-064": ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type="x"
),
"regnet-x-080": ImageNetPreTrainedConfig(
depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type="x"
),
"regnet-x-120": ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type="x"
),
"regnet-x-160": ImageNetPreTrainedConfig(
depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type="x"
),
"regnet-x-320": ImageNetPreTrainedConfig(
depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type="x"
),
# y variant
"regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8),
"regnet-y-004": ImageNetPreTrainedConfig(
depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8
),
"regnet-y-006": ImageNetPreTrainedConfig(
depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16
),
"regnet-y-008": ImageNetPreTrainedConfig(
depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16
),
"regnet-y-016": ImageNetPreTrainedConfig(
depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24
),
"regnet-y-032": ImageNetPreTrainedConfig(
depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24
),
"regnet-y-040": ImageNetPreTrainedConfig(
depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64
),
"regnet-y-064": ImageNetPreTrainedConfig(
depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72
),
"regnet-y-080": ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56
),
"regnet-y-120": ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112
),
"regnet-y-160": ImageNetPreTrainedConfig(
depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112
),
"regnet-y-320": ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232
),
# models created by SEER -> https://arxiv.org/abs/2202.08360
"regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232),
"regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328),
"regnet-y-1280-seer": RegNetConfig(
depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264
),
"regnet-y-2560-seer": RegNetConfig(
depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640
),
"regnet-y-10b-seer": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010
),
# finetuned on imagenet
"regnet-y-320-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232
),
"regnet-y-640-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328
),
"regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264
),
"regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig(
depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640
),
"regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010
),
}
names_to_ours_model_map = NameToOurModelFuncMap()
names_to_from_model_map = NameToFromModelFuncMap()
# add seer weights logic
def load_using_classy_vision(checkpoint_url: str, model_func: Callable[[], nn.Module]) -> Tuple[nn.Module, Dict]:
files = torch.hub.load_state_dict_from_url(checkpoint_url, model_dir=str(save_directory), map_location="cpu")
model = model_func()
# check if we have a head, if yes add it
model_state_dict = files["classy_state_dict"]["base_model"]["model"]
state_dict = model_state_dict["trunk"]
model.load_state_dict(state_dict)
return model.eval(), model_state_dict["heads"]
# pretrained
names_to_from_model_map["regnet-y-320-seer"] = partial(
load_using_classy_vision,
"https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch",
lambda: FakeRegNetVisslWrapper(RegNetY32gf()),
)
names_to_from_model_map["regnet-y-640-seer"] = partial(
load_using_classy_vision,
"https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch",
lambda: FakeRegNetVisslWrapper(RegNetY64gf()),
)
names_to_from_model_map["regnet-y-1280-seer"] = partial(
load_using_classy_vision,
"https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch",
lambda: FakeRegNetVisslWrapper(RegNetY128gf()),
)
names_to_from_model_map["regnet-y-10b-seer"] = partial(
load_using_classy_vision,
"https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch",
lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27, group_width=1010, w_0=1744, w_a=620.83, w_m=2.52))
),
)
# IN1K finetuned
names_to_from_model_map["regnet-y-320-seer-in1k"] = partial(
load_using_classy_vision,
"https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch",
lambda: FakeRegNetVisslWrapper(RegNetY32gf()),
)
names_to_from_model_map["regnet-y-640-seer-in1k"] = partial(
load_using_classy_vision,
"https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch",
lambda: FakeRegNetVisslWrapper(RegNetY64gf()),
)
names_to_from_model_map["regnet-y-1280-seer-in1k"] = partial(
load_using_classy_vision,
"https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch",
lambda: FakeRegNetVisslWrapper(RegNetY128gf()),
)
names_to_from_model_map["regnet-y-10b-seer-in1k"] = partial(
load_using_classy_vision,
"https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch",
lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27, group_width=1010, w_0=1744, w_a=620.83, w_m=2.52))
),
)
if model_name:
convert_weight_and_push(
model_name,
names_to_from_model_map[model_name],
names_to_ours_model_map[model_name],
names_to_config[model_name],
save_directory,
push_to_hub,
)
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(
model_name,
names_to_from_model_map[model_name],
names_to_ours_model_map[model_name],
config,
save_directory,
push_to_hub,
)
return config, expected_shape
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default=None,
type=str,
help=(
"The name of the model you wish to convert, it must be one of the supported regnet* architecture,"
" currently: regnetx-*, regnety-*. If `None`, all of them will the converted."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=Path,
required=True,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
default=True,
type=bool,
required=False,
help="If True, push model and image processor to the hub.",
)
args = parser.parse_args()
pytorch_dump_folder_path: Path = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/regnet/convert_regnet_seer_10b_to_pytorch.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert RegNet 10B checkpoints vissl."""
# You need to install a specific version of classy vision
# pip install git+https://github.com/FrancescoSaverioZuppichini/ClassyVision.git@convert_weights
import argparse
import json
import os
import re
from collections import OrderedDict
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from pprint import pprint
from typing import Dict, List, Tuple
import torch
import torch.nn as nn
from classy_vision.models.regnet import RegNet, RegNetParams
from huggingface_hub import cached_download, hf_hub_url
from torch import Tensor
from vissl.models.model_helpers import get_trunk_forward_outputs
from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger()
@dataclass
class Tracker:
module: nn.Module
traced: List[nn.Module] = field(default_factory=list)
handles: list = field(default_factory=list)
name2module: Dict[str, nn.Module] = field(default_factory=OrderedDict)
def _forward_hook(self, m, inputs: Tensor, outputs: Tensor, name: str):
has_not_submodules = len(list(m.modules())) == 1 or isinstance(m, nn.Conv2d) or isinstance(m, nn.BatchNorm2d)
if has_not_submodules:
self.traced.append(m)
self.name2module[name] = m
def __call__(self, x: Tensor):
for name, m in self.module.named_modules():
self.handles.append(m.register_forward_hook(partial(self._forward_hook, name=name)))
self.module(x)
[x.remove() for x in self.handles]
return self
@property
def parametrized(self):
# check the len of the state_dict keys to see if we have learnable params
return {k: v for k, v in self.name2module.items() if len(list(v.state_dict().keys())) > 0}
class FakeRegNetVisslWrapper(nn.Module):
"""
Fake wrapper for RegNet that mimics what vissl does without the need to pass a config file.
"""
def __init__(self, model: nn.Module):
super().__init__()
feature_blocks: List[Tuple[str, nn.Module]] = []
# - get the stem
feature_blocks.append(("conv1", model.stem))
# - get all the feature blocks
for k, v in model.trunk_output.named_children():
assert k.startswith("block"), f"Unexpected layer name {k}"
block_index = len(feature_blocks) + 1
feature_blocks.append((f"res{block_index}", v))
self._feature_blocks = nn.ModuleDict(feature_blocks)
def forward(self, x: Tensor):
return get_trunk_forward_outputs(
x,
out_feat_keys=None,
feature_blocks=self._feature_blocks,
)
class FakeRegNetParams(RegNetParams):
"""
Used to instantiace a RegNet model from classy vision with the same depth as the 10B one but with super small
parameters, so we can trace it in memory.
"""
def get_expanded_params(self):
return [(8, 2, 2, 8, 1.0), (8, 2, 7, 8, 1.0), (8, 2, 17, 8, 1.0), (8, 2, 1, 8, 1.0)]
def get_from_to_our_keys(model_name: str) -> Dict[str, str]:
"""
Returns a dictionary that maps from original model's key -> our implementation's keys
"""
# create our model (with small weights)
our_config = RegNetConfig(depths=[2, 7, 17, 1], hidden_sizes=[8, 8, 8, 8], groups_width=8)
if "in1k" in model_name:
our_model = RegNetForImageClassification(our_config)
else:
our_model = RegNetModel(our_config)
# create from model (with small weights)
from_model = FakeRegNetVisslWrapper(
RegNet(FakeRegNetParams(depth=27, group_width=1010, w_0=1744, w_a=620.83, w_m=2.52))
)
with torch.no_grad():
from_model = from_model.eval()
our_model = our_model.eval()
x = torch.randn((1, 3, 32, 32))
# trace both
dest_tracker = Tracker(our_model)
dest_traced = dest_tracker(x).parametrized
pprint(dest_tracker.name2module)
src_tracker = Tracker(from_model)
src_traced = src_tracker(x).parametrized
# convert the keys -> module dict to keys -> params
def to_params_dict(dict_with_modules):
params_dict = OrderedDict()
for name, module in dict_with_modules.items():
for param_name, param in module.state_dict().items():
params_dict[f"{name}.{param_name}"] = param
return params_dict
from_to_ours_keys = {}
src_state_dict = to_params_dict(src_traced)
dst_state_dict = to_params_dict(dest_traced)
for (src_key, src_param), (dest_key, dest_param) in zip(src_state_dict.items(), dst_state_dict.items()):
from_to_ours_keys[src_key] = dest_key
logger.info(f"{src_key} -> {dest_key}")
# if "in1k" was in the model_name it means it must have a classification head (was finetuned)
if "in1k" in model_name:
from_to_ours_keys["0.clf.0.weight"] = "classifier.1.weight"
from_to_ours_keys["0.clf.0.bias"] = "classifier.1.bias"
return from_to_ours_keys
def convert_weights_and_push(save_directory: Path, model_name: str = None, push_to_hub: bool = True):
filename = "imagenet-1k-id2label.json"
num_labels = 1000
repo_id = "huggingface/label-files"
num_labels = num_labels
id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r"))
id2label = {int(k): v for k, v in id2label.items()}
id2label = id2label
label2id = {v: k for k, v in id2label.items()}
ImageNetPreTrainedConfig = partial(RegNetConfig, num_labels=num_labels, id2label=id2label, label2id=label2id)
names_to_config = {
"regnet-y-10b-seer": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010
),
# finetuned on imagenet
"regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010
),
}
# add seer weights logic
def load_using_classy_vision(checkpoint_url: str) -> Tuple[Dict, Dict]:
files = torch.hub.load_state_dict_from_url(checkpoint_url, model_dir=str(save_directory), map_location="cpu")
# check if we have a head, if yes add it
model_state_dict = files["classy_state_dict"]["base_model"]["model"]
return model_state_dict["trunk"], model_state_dict["heads"]
names_to_from_model = {
"regnet-y-10b-seer": partial(
load_using_classy_vision,
"https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch",
),
"regnet-y-10b-seer-in1k": partial(
load_using_classy_vision,
"https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch",
),
}
from_to_ours_keys = get_from_to_our_keys(model_name)
if not (save_directory / f"{model_name}.pth").exists():
logger.info("Loading original state_dict.")
from_state_dict_trunk, from_state_dict_head = names_to_from_model[model_name]()
from_state_dict = from_state_dict_trunk
if "in1k" in model_name:
# add the head
from_state_dict = {**from_state_dict_trunk, **from_state_dict_head}
logger.info("Done!")
converted_state_dict = {}
not_used_keys = list(from_state_dict.keys())
regex = r"\.block.-part."
# this is "interesting", so the original checkpoints have `block[0,1]-part` in each key name, we remove it
for key in from_state_dict.keys():
# remove the weird "block[0,1]-part" from the key
src_key = re.sub(regex, "", key)
# now src_key from the model checkpoints is the one we got from the original model after tracing, so use it to get the correct destination key
dest_key = from_to_ours_keys[src_key]
# store the parameter with our key
converted_state_dict[dest_key] = from_state_dict[key]
not_used_keys.remove(key)
# check that all keys have been updated
assert len(not_used_keys) == 0, f"Some keys where not used {','.join(not_used_keys)}"
logger.info(f"The following keys were not used: {','.join(not_used_keys)}")
# save our state dict to disk
torch.save(converted_state_dict, save_directory / f"{model_name}.pth")
del converted_state_dict
else:
logger.info("The state_dict was already stored on disk.")
if push_to_hub:
logger.info(f"Token is {os.environ['HF_TOKEN']}")
logger.info("Loading our model.")
# create our model
our_config = names_to_config[model_name]
our_model_func = RegNetModel
if "in1k" in model_name:
our_model_func = RegNetForImageClassification
our_model = our_model_func(our_config)
# place our model to the meta device (so remove all the weights)
our_model.to(torch.device("meta"))
logger.info("Loading state_dict in our model.")
# load state dict
state_dict_keys = our_model.state_dict().keys()
PreTrainedModel._load_pretrained_model_low_mem(
our_model, state_dict_keys, [save_directory / f"{model_name}.pth"]
)
logger.info("Finally, pushing!")
# push it to hub
our_model.push_to_hub(
repo_path_or_name=save_directory / model_name,
commit_message="Add model",
output_dir=save_directory / model_name,
)
size = 384
# we can use the convnext one
image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k", size=size)
image_processor.push_to_hub(
repo_path_or_name=save_directory / model_name,
commit_message="Add image processor",
output_dir=save_directory / model_name,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default=None,
type=str,
help=(
"The name of the model you wish to convert, it must be one of the supported regnet* architecture,"
" currently: regnetx-*, regnety-*. If `None`, all of them will the converted."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=Path,
required=True,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
default=True,
type=bool,
required=False,
help="If True, push model and image processor to the hub.",
)
args = parser.parse_args()
pytorch_dump_folder_path: Path = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/regnet/__init__.py | # Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_import_structure = {"configuration_regnet": ["REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "RegNetConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_regnet"] = [
"REGNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"RegNetForImageClassification",
"RegNetModel",
"RegNetPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_regnet"] = [
"TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRegNetForImageClassification",
"TFRegNetModel",
"TFRegNetPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_regnet"] = [
"FlaxRegNetForImageClassification",
"FlaxRegNetModel",
"FlaxRegNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_regnet import REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP, RegNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_regnet import (
REGNET_PRETRAINED_MODEL_ARCHIVE_LIST,
RegNetForImageClassification,
RegNetModel,
RegNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_regnet import (
TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRegNetForImageClassification,
TFRegNetModel,
TFRegNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_regnet import (
FlaxRegNetForImageClassification,
FlaxRegNetModel,
FlaxRegNetPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/regnet/configuration_regnet.py | # coding=utf-8
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" RegNet model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/regnet-y-040": "https://huggingface.co/facebook/regnet-y-040/blob/main/config.json",
}
class RegNetConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`RegNetModel`]. It is used to instantiate a RegNet
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the RegNet
[facebook/regnet-y-040](https://huggingface.co/facebook/regnet-y-040) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
embedding_size (`int`, *optional*, defaults to 64):
Dimensionality (hidden size) for the embedding layer.
hidden_sizes (`List[int]`, *optional*, defaults to `[256, 512, 1024, 2048]`):
Dimensionality (hidden size) at each stage.
depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 3]`):
Depth (number of layers) for each stage.
layer_type (`str`, *optional*, defaults to `"y"`):
The layer to use, it can be either `"x" or `"y"`. An `x` layer is a ResNet's BottleNeck layer with
`reduction` fixed to `1`. While a `y` layer is a `x` but with squeeze and excitation. Please refer to the
paper for a detailed explanation of how these layers were constructed.
hidden_act (`str`, *optional*, defaults to `"relu"`):
The non-linear activation function in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"`
are supported.
downsample_in_first_stage (`bool`, *optional*, defaults to `False`):
If `True`, the first stage will downsample the inputs using a `stride` of 2.
Example:
```python
>>> from transformers import RegNetConfig, RegNetModel
>>> # Initializing a RegNet regnet-y-40 style configuration
>>> configuration = RegNetConfig()
>>> # Initializing a model from the regnet-y-40 style configuration
>>> model = RegNetModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "regnet"
layer_types = ["x", "y"]
def __init__(
self,
num_channels=3,
embedding_size=32,
hidden_sizes=[128, 192, 512, 1088],
depths=[2, 6, 12, 2],
groups_width=64,
layer_type="y",
hidden_act="relu",
**kwargs,
):
super().__init__(**kwargs)
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types)}")
self.num_channels = num_channels
self.embedding_size = embedding_size
self.hidden_sizes = hidden_sizes
self.depths = depths
self.groups_width = groups_width
self.layer_type = layer_type
self.hidden_act = hidden_act
# always downsample in the first stage
self.downsample_in_first_stage = True
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/regnet/modeling_flax_regnet.py | # coding=utf-8
# Copyright 2023 The Google Flax Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.traverse_util import flatten_dict, unflatten_dict
from transformers import RegNetConfig
from transformers.modeling_flax_outputs import (
FlaxBaseModelOutputWithNoAttention,
FlaxBaseModelOutputWithPooling,
FlaxBaseModelOutputWithPoolingAndNoAttention,
FlaxImageClassifierOutputWithNoAttention,
)
from transformers.modeling_flax_utils import (
ACT2FN,
FlaxPreTrainedModel,
append_replace_return_docstrings,
overwrite_call_docstring,
)
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
)
REGNET_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a
[flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
REGNET_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`RegNetImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.resnet.modeling_flax_resnet.Identity
class Identity(nn.Module):
"""Identity function."""
@nn.compact
def __call__(self, x, **kwargs):
return x
class FlaxRegNetConvLayer(nn.Module):
out_channels: int
kernel_size: int = 3
stride: int = 1
groups: int = 1
activation: Optional[str] = "relu"
dtype: jnp.dtype = jnp.float32
def setup(self):
self.convolution = nn.Conv(
self.out_channels,
kernel_size=(self.kernel_size, self.kernel_size),
strides=self.stride,
padding=self.kernel_size // 2,
feature_group_count=self.groups,
use_bias=False,
kernel_init=nn.initializers.variance_scaling(2.0, mode="fan_out", distribution="truncated_normal"),
dtype=self.dtype,
)
self.normalization = nn.BatchNorm(momentum=0.9, epsilon=1e-05, dtype=self.dtype)
self.activation_func = ACT2FN[self.activation] if self.activation is not None else Identity()
def __call__(self, hidden_state: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray:
hidden_state = self.convolution(hidden_state)
hidden_state = self.normalization(hidden_state, use_running_average=deterministic)
hidden_state = self.activation_func(hidden_state)
return hidden_state
class FlaxRegNetEmbeddings(nn.Module):
config: RegNetConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.embedder = FlaxRegNetConvLayer(
self.config.embedding_size,
kernel_size=3,
stride=2,
activation=self.config.hidden_act,
dtype=self.dtype,
)
def __call__(self, pixel_values: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray:
num_channels = pixel_values.shape[-1]
if num_channels != self.config.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
hidden_state = self.embedder(pixel_values, deterministic=deterministic)
return hidden_state
# Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetShortCut with ResNet->RegNet
class FlaxRegNetShortCut(nn.Module):
"""
RegNet shortcut, used to project the residual features to the correct size. If needed, it is also used to
downsample the input using `stride=2`.
"""
out_channels: int
stride: int = 2
dtype: jnp.dtype = jnp.float32
def setup(self):
self.convolution = nn.Conv(
self.out_channels,
kernel_size=(1, 1),
strides=self.stride,
use_bias=False,
kernel_init=nn.initializers.variance_scaling(2.0, mode="fan_out", distribution="truncated_normal"),
dtype=self.dtype,
)
self.normalization = nn.BatchNorm(momentum=0.9, epsilon=1e-05, dtype=self.dtype)
def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray:
hidden_state = self.convolution(x)
hidden_state = self.normalization(hidden_state, use_running_average=deterministic)
return hidden_state
class FlaxRegNetSELayerCollection(nn.Module):
in_channels: int
reduced_channels: int
dtype: jnp.dtype = jnp.float32
def setup(self):
self.conv_1 = nn.Conv(
self.reduced_channels,
kernel_size=(1, 1),
kernel_init=nn.initializers.variance_scaling(2.0, mode="fan_out", distribution="truncated_normal"),
dtype=self.dtype,
name="0",
) # 0 is the name used in corresponding pytorch implementation
self.conv_2 = nn.Conv(
self.in_channels,
kernel_size=(1, 1),
kernel_init=nn.initializers.variance_scaling(2.0, mode="fan_out", distribution="truncated_normal"),
dtype=self.dtype,
name="2",
) # 2 is the name used in corresponding pytorch implementation
def __call__(self, hidden_state: jnp.ndarray) -> jnp.ndarray:
hidden_state = self.conv_1(hidden_state)
hidden_state = nn.relu(hidden_state)
hidden_state = self.conv_2(hidden_state)
attention = nn.sigmoid(hidden_state)
return attention
class FlaxRegNetSELayer(nn.Module):
"""
Squeeze and Excitation layer (SE) proposed in [Squeeze-and-Excitation Networks](https://arxiv.org/abs/1709.01507).
"""
in_channels: int
reduced_channels: int
dtype: jnp.dtype = jnp.float32
def setup(self):
self.pooler = partial(nn.avg_pool, padding=((0, 0), (0, 0)))
self.attention = FlaxRegNetSELayerCollection(self.in_channels, self.reduced_channels, dtype=self.dtype)
def __call__(self, hidden_state: jnp.ndarray) -> jnp.ndarray:
pooled = self.pooler(
hidden_state,
window_shape=(hidden_state.shape[1], hidden_state.shape[2]),
strides=(hidden_state.shape[1], hidden_state.shape[2]),
)
attention = self.attention(pooled)
hidden_state = hidden_state * attention
return hidden_state
class FlaxRegNetXLayerCollection(nn.Module):
config: RegNetConfig
out_channels: int
stride: int = 1
dtype: jnp.dtype = jnp.float32
def setup(self):
groups = max(1, self.out_channels // self.config.groups_width)
self.layer = [
FlaxRegNetConvLayer(
self.out_channels,
kernel_size=1,
activation=self.config.hidden_act,
dtype=self.dtype,
name="0",
),
FlaxRegNetConvLayer(
self.out_channels,
stride=self.stride,
groups=groups,
activation=self.config.hidden_act,
dtype=self.dtype,
name="1",
),
FlaxRegNetConvLayer(
self.out_channels,
kernel_size=1,
activation=None,
dtype=self.dtype,
name="2",
),
]
def __call__(self, hidden_state: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray:
for layer in self.layer:
hidden_state = layer(hidden_state, deterministic=deterministic)
return hidden_state
class FlaxRegNetXLayer(nn.Module):
"""
RegNet's layer composed by three `3x3` convolutions, same as a ResNet bottleneck layer with reduction = 1.
"""
config: RegNetConfig
in_channels: int
out_channels: int
stride: int = 1
dtype: jnp.dtype = jnp.float32
def setup(self):
should_apply_shortcut = self.in_channels != self.out_channels or self.stride != 1
self.shortcut = (
FlaxRegNetShortCut(
self.out_channels,
stride=self.stride,
dtype=self.dtype,
)
if should_apply_shortcut
else Identity()
)
self.layer = FlaxRegNetXLayerCollection(
self.config,
in_channels=self.in_channels,
out_channels=self.out_channels,
stride=self.stride,
dtype=self.dtype,
)
self.activation_func = ACT2FN[self.config.hidden_act]
def __call__(self, hidden_state: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray:
residual = hidden_state
hidden_state = self.layer(hidden_state)
residual = self.shortcut(residual, deterministic=deterministic)
hidden_state += residual
hidden_state = self.activation_func(hidden_state)
return hidden_state
class FlaxRegNetYLayerCollection(nn.Module):
config: RegNetConfig
in_channels: int
out_channels: int
stride: int = 1
dtype: jnp.dtype = jnp.float32
def setup(self):
groups = max(1, self.out_channels // self.config.groups_width)
self.layer = [
FlaxRegNetConvLayer(
self.out_channels,
kernel_size=1,
activation=self.config.hidden_act,
dtype=self.dtype,
name="0",
),
FlaxRegNetConvLayer(
self.out_channels,
stride=self.stride,
groups=groups,
activation=self.config.hidden_act,
dtype=self.dtype,
name="1",
),
FlaxRegNetSELayer(
self.out_channels,
reduced_channels=int(round(self.in_channels / 4)),
dtype=self.dtype,
name="2",
),
FlaxRegNetConvLayer(
self.out_channels,
kernel_size=1,
activation=None,
dtype=self.dtype,
name="3",
),
]
def __call__(self, hidden_state: jnp.ndarray) -> jnp.ndarray:
for layer in self.layer:
hidden_state = layer(hidden_state)
return hidden_state
class FlaxRegNetYLayer(nn.Module):
"""
RegNet's Y layer: an X layer with Squeeze and Excitation.
"""
config: RegNetConfig
in_channels: int
out_channels: int
stride: int = 1
dtype: jnp.dtype = jnp.float32
def setup(self):
should_apply_shortcut = self.in_channels != self.out_channels or self.stride != 1
self.shortcut = (
FlaxRegNetShortCut(
self.out_channels,
stride=self.stride,
dtype=self.dtype,
)
if should_apply_shortcut
else Identity()
)
self.layer = FlaxRegNetYLayerCollection(
self.config,
in_channels=self.in_channels,
out_channels=self.out_channels,
stride=self.stride,
dtype=self.dtype,
)
self.activation_func = ACT2FN[self.config.hidden_act]
def __call__(self, hidden_state: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray:
residual = hidden_state
hidden_state = self.layer(hidden_state)
residual = self.shortcut(residual, deterministic=deterministic)
hidden_state += residual
hidden_state = self.activation_func(hidden_state)
return hidden_state
class FlaxRegNetStageLayersCollection(nn.Module):
"""
A RegNet stage composed by stacked layers.
"""
config: RegNetConfig
in_channels: int
out_channels: int
stride: int = 2
depth: int = 2
dtype: jnp.dtype = jnp.float32
def setup(self):
layer = FlaxRegNetXLayer if self.config.layer_type == "x" else FlaxRegNetYLayer
layers = [
# downsampling is done in the first layer with stride of 2
layer(
self.config,
self.in_channels,
self.out_channels,
stride=self.stride,
dtype=self.dtype,
name="0",
)
]
for i in range(self.depth - 1):
layers.append(
layer(
self.config,
self.out_channels,
self.out_channels,
dtype=self.dtype,
name=str(i + 1),
)
)
self.layers = layers
def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray:
hidden_state = x
for layer in self.layers:
hidden_state = layer(hidden_state, deterministic=deterministic)
return hidden_state
# Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetStage with ResNet->RegNet
class FlaxRegNetStage(nn.Module):
"""
A RegNet stage composed by stacked layers.
"""
config: RegNetConfig
in_channels: int
out_channels: int
stride: int = 2
depth: int = 2
dtype: jnp.dtype = jnp.float32
def setup(self):
self.layers = FlaxRegNetStageLayersCollection(
self.config,
in_channels=self.in_channels,
out_channels=self.out_channels,
stride=self.stride,
depth=self.depth,
dtype=self.dtype,
)
def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray:
return self.layers(x, deterministic=deterministic)
# Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetStageCollection with ResNet->RegNet
class FlaxRegNetStageCollection(nn.Module):
config: RegNetConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
in_out_channels = zip(self.config.hidden_sizes, self.config.hidden_sizes[1:])
stages = [
FlaxRegNetStage(
self.config,
self.config.embedding_size,
self.config.hidden_sizes[0],
stride=2 if self.config.downsample_in_first_stage else 1,
depth=self.config.depths[0],
dtype=self.dtype,
name="0",
)
]
for i, ((in_channels, out_channels), depth) in enumerate(zip(in_out_channels, self.config.depths[1:])):
stages.append(
FlaxRegNetStage(self.config, in_channels, out_channels, depth=depth, dtype=self.dtype, name=str(i + 1))
)
self.stages = stages
def __call__(
self,
hidden_state: jnp.ndarray,
output_hidden_states: bool = False,
deterministic: bool = True,
) -> FlaxBaseModelOutputWithNoAttention:
hidden_states = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
hidden_states = hidden_states + (hidden_state.transpose(0, 3, 1, 2),)
hidden_state = stage_module(hidden_state, deterministic=deterministic)
return hidden_state, hidden_states
# Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetEncoder with ResNet->RegNet
class FlaxRegNetEncoder(nn.Module):
config: RegNetConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.stages = FlaxRegNetStageCollection(self.config, dtype=self.dtype)
def __call__(
self,
hidden_state: jnp.ndarray,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
) -> FlaxBaseModelOutputWithNoAttention:
hidden_state, hidden_states = self.stages(
hidden_state, output_hidden_states=output_hidden_states, deterministic=deterministic
)
if output_hidden_states:
hidden_states = hidden_states + (hidden_state.transpose(0, 3, 1, 2),)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None)
return FlaxBaseModelOutputWithNoAttention(
last_hidden_state=hidden_state,
hidden_states=hidden_states,
)
# Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetPreTrainedModel with ResNet->RegNet,resnet->regnet,RESNET->REGNET
class FlaxRegNetPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = RegNetConfig
base_model_prefix = "regnet"
main_input_name = "pixel_values"
module_class: nn.Module = None
def __init__(
self,
config: RegNetConfig,
input_shape=(1, 224, 224, 3),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
if input_shape is None:
input_shape = (1, config.image_size, config.image_size, config.num_channels)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
pixel_values = jnp.zeros(input_shape, dtype=self.dtype)
rngs = {"params": rng}
random_params = self.module.init(rngs, pixel_values, return_dict=False)
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
@add_start_docstrings_to_model_forward(REGNET_INPUTS_DOCSTRING)
def __call__(
self,
pixel_values,
params: dict = None,
train: bool = False,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
# Handle any PRNG if needed
rngs = {}
return self.module.apply(
{
"params": params["params"] if params is not None else self.params["params"],
"batch_stats": params["batch_stats"] if params is not None else self.params["batch_stats"],
},
jnp.array(pixel_values, dtype=jnp.float32),
not train,
output_hidden_states,
return_dict,
rngs=rngs,
mutable=["batch_stats"] if train else False, # Returing tuple with batch_stats only when train is True
)
# Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetModule with ResNet->RegNet
class FlaxRegNetModule(nn.Module):
config: RegNetConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.embedder = FlaxRegNetEmbeddings(self.config, dtype=self.dtype)
self.encoder = FlaxRegNetEncoder(self.config, dtype=self.dtype)
# Adaptive average pooling used in resnet
self.pooler = partial(
nn.avg_pool,
padding=((0, 0), (0, 0)),
)
def __call__(
self,
pixel_values,
deterministic: bool = True,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> FlaxBaseModelOutputWithPoolingAndNoAttention:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
embedding_output = self.embedder(pixel_values, deterministic=deterministic)
encoder_outputs = self.encoder(
embedding_output,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
last_hidden_state = encoder_outputs[0]
pooled_output = self.pooler(
last_hidden_state,
window_shape=(last_hidden_state.shape[1], last_hidden_state.shape[2]),
strides=(last_hidden_state.shape[1], last_hidden_state.shape[2]),
).transpose(0, 3, 1, 2)
last_hidden_state = last_hidden_state.transpose(0, 3, 1, 2)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return FlaxBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
)
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top.",
REGNET_START_DOCSTRING,
)
class FlaxRegNetModel(FlaxRegNetPreTrainedModel):
module_class = FlaxRegNetModule
FLAX_VISION_MODEL_DOCSTRING = """
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, FlaxRegNetModel
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/regnet-y-040")
>>> model = FlaxRegNetModel.from_pretrained("facebook/regnet-y-040")
>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
```
"""
overwrite_call_docstring(FlaxRegNetModel, FLAX_VISION_MODEL_DOCSTRING)
append_replace_return_docstrings(
FlaxRegNetModel,
output_type=FlaxBaseModelOutputWithPooling,
config_class=RegNetConfig,
)
# Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetClassifierCollection with ResNet->RegNet
class FlaxRegNetClassifierCollection(nn.Module):
config: RegNetConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype, name="1")
def __call__(self, x: jnp.ndarray) -> jnp.ndarray:
return self.classifier(x)
# Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetForImageClassificationModule with ResNet->RegNet,resnet->regnet,RESNET->REGNET
class FlaxRegNetForImageClassificationModule(nn.Module):
config: RegNetConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.regnet = FlaxRegNetModule(config=self.config, dtype=self.dtype)
if self.config.num_labels > 0:
self.classifier = FlaxRegNetClassifierCollection(self.config, dtype=self.dtype)
else:
self.classifier = Identity()
def __call__(
self,
pixel_values=None,
deterministic: bool = True,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.regnet(
pixel_values,
deterministic=deterministic,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(pooled_output[:, :, 0, 0])
if not return_dict:
output = (logits,) + outputs[2:]
return output
return FlaxImageClassifierOutputWithNoAttention(logits=logits, hidden_states=outputs.hidden_states)
@add_start_docstrings(
"""
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""",
REGNET_START_DOCSTRING,
)
class FlaxRegNetForImageClassification(FlaxRegNetPreTrainedModel):
module_class = FlaxRegNetForImageClassificationModule
FLAX_VISION_CLASSIF_DOCSTRING = """
Returns:
Example:
```python
>>> from transformers import AutoImageProcessor, FlaxRegNetForImageClassification
>>> from PIL import Image
>>> import jax
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/regnet-y-040")
>>> model = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040")
>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = jax.numpy.argmax(logits, axis=-1)
>>> print("Predicted class:", model.config.id2label[predicted_class_idx.item()])
```
"""
overwrite_call_docstring(FlaxRegNetForImageClassification, FLAX_VISION_CLASSIF_DOCSTRING)
append_replace_return_docstrings(
FlaxRegNetForImageClassification,
output_type=FlaxImageClassifierOutputWithNoAttention,
config_class=RegNetConfig,
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/regnet/modeling_tf_regnet.py | # coding=utf-8
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TensorFlow RegNet model."""
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACT2FN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "RegNetConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "facebook/regnet-y-040"
_EXPECTED_OUTPUT_SHAPE = [1, 1088, 7, 7]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "facebook/regnet-y-040"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/regnet-y-040",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class TFRegNetConvLayer(tf.keras.layers.Layer):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int = 3,
stride: int = 1,
groups: int = 1,
activation: Optional[str] = "relu",
**kwargs,
):
super().__init__(**kwargs)
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
self.padding = tf.keras.layers.ZeroPadding2D(padding=kernel_size // 2)
self.convolution = tf.keras.layers.Conv2D(
filters=out_channels,
kernel_size=kernel_size,
strides=stride,
padding="VALID",
groups=groups,
use_bias=False,
name="convolution",
)
self.normalization = tf.keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name="normalization")
self.activation = ACT2FN[activation] if activation is not None else tf.identity
self.in_channels = in_channels
self.out_channels = out_channels
def call(self, hidden_state):
hidden_state = self.convolution(self.padding(hidden_state))
hidden_state = self.normalization(hidden_state)
hidden_state = self.activation(hidden_state)
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "convolution", None) is not None:
with tf.name_scope(self.convolution.name):
self.convolution.build([None, None, None, self.in_channels])
if getattr(self, "normalization", None) is not None:
with tf.name_scope(self.normalization.name):
self.normalization.build([None, None, None, self.out_channels])
class TFRegNetEmbeddings(tf.keras.layers.Layer):
"""
RegNet Embeddings (stem) composed of a single aggressive convolution.
"""
def __init__(self, config: RegNetConfig, **kwargs):
super().__init__(**kwargs)
self.num_channels = config.num_channels
self.embedder = TFRegNetConvLayer(
in_channels=config.num_channels,
out_channels=config.embedding_size,
kernel_size=3,
stride=2,
activation=config.hidden_act,
name="embedder",
)
def call(self, pixel_values):
num_channels = shape_list(pixel_values)[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
hidden_state = self.embedder(pixel_values)
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embedder", None) is not None:
with tf.name_scope(self.embedder.name):
self.embedder.build(None)
class TFRegNetShortCut(tf.keras.layers.Layer):
"""
RegNet shortcut, used to project the residual features to the correct size. If needed, it is also used to
downsample the input using `stride=2`.
"""
def __init__(self, in_channels: int, out_channels: int, stride: int = 2, **kwargs):
super().__init__(**kwargs)
self.convolution = tf.keras.layers.Conv2D(
filters=out_channels, kernel_size=1, strides=stride, use_bias=False, name="convolution"
)
self.normalization = tf.keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name="normalization")
self.in_channels = in_channels
self.out_channels = out_channels
def call(self, inputs: tf.Tensor, training: bool = False) -> tf.Tensor:
return self.normalization(self.convolution(inputs), training=training)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "convolution", None) is not None:
with tf.name_scope(self.convolution.name):
self.convolution.build([None, None, None, self.in_channels])
if getattr(self, "normalization", None) is not None:
with tf.name_scope(self.normalization.name):
self.normalization.build([None, None, None, self.out_channels])
class TFRegNetSELayer(tf.keras.layers.Layer):
"""
Squeeze and Excitation layer (SE) proposed in [Squeeze-and-Excitation Networks](https://arxiv.org/abs/1709.01507).
"""
def __init__(self, in_channels: int, reduced_channels: int, **kwargs):
super().__init__(**kwargs)
self.pooler = tf.keras.layers.GlobalAveragePooling2D(keepdims=True, name="pooler")
self.attention = [
tf.keras.layers.Conv2D(filters=reduced_channels, kernel_size=1, activation="relu", name="attention.0"),
tf.keras.layers.Conv2D(filters=in_channels, kernel_size=1, activation="sigmoid", name="attention.2"),
]
self.in_channels = in_channels
self.reduced_channels = reduced_channels
def call(self, hidden_state):
# [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels]
pooled = self.pooler(hidden_state)
for layer_module in self.attention:
pooled = layer_module(pooled)
hidden_state = hidden_state * pooled
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "pooler", None) is not None:
with tf.name_scope(self.pooler.name):
self.pooler.build((None, None, None, None))
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention[0].name):
self.attention[0].build([None, None, None, self.in_channels])
with tf.name_scope(self.attention[1].name):
self.attention[1].build([None, None, None, self.reduced_channels])
class TFRegNetXLayer(tf.keras.layers.Layer):
"""
RegNet's layer composed by three `3x3` convolutions, same as a ResNet bottleneck layer with reduction = 1.
"""
def __init__(self, config: RegNetConfig, in_channels: int, out_channels: int, stride: int = 1, **kwargs):
super().__init__(**kwargs)
should_apply_shortcut = in_channels != out_channels or stride != 1
groups = max(1, out_channels // config.groups_width)
self.shortcut = (
TFRegNetShortCut(in_channels, out_channels, stride=stride, name="shortcut")
if should_apply_shortcut
else tf.keras.layers.Activation("linear", name="shortcut")
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
self.layers = [
TFRegNetConvLayer(in_channels, out_channels, kernel_size=1, activation=config.hidden_act, name="layer.0"),
TFRegNetConvLayer(
out_channels, out_channels, stride=stride, groups=groups, activation=config.hidden_act, name="layer.1"
),
TFRegNetConvLayer(out_channels, out_channels, kernel_size=1, activation=None, name="layer.2"),
]
self.activation = ACT2FN[config.hidden_act]
def call(self, hidden_state):
residual = hidden_state
for layer_module in self.layers:
hidden_state = layer_module(hidden_state)
residual = self.shortcut(residual)
hidden_state += residual
hidden_state = self.activation(hidden_state)
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "shortcut", None) is not None:
with tf.name_scope(self.shortcut.name):
self.shortcut.build(None)
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
class TFRegNetYLayer(tf.keras.layers.Layer):
"""
RegNet's Y layer: an X layer with Squeeze and Excitation.
"""
def __init__(self, config: RegNetConfig, in_channels: int, out_channels: int, stride: int = 1, **kwargs):
super().__init__(**kwargs)
should_apply_shortcut = in_channels != out_channels or stride != 1
groups = max(1, out_channels // config.groups_width)
self.shortcut = (
TFRegNetShortCut(in_channels, out_channels, stride=stride, name="shortcut")
if should_apply_shortcut
else tf.keras.layers.Activation("linear", name="shortcut")
)
self.layers = [
TFRegNetConvLayer(in_channels, out_channels, kernel_size=1, activation=config.hidden_act, name="layer.0"),
TFRegNetConvLayer(
out_channels, out_channels, stride=stride, groups=groups, activation=config.hidden_act, name="layer.1"
),
TFRegNetSELayer(out_channels, reduced_channels=int(round(in_channels / 4)), name="layer.2"),
TFRegNetConvLayer(out_channels, out_channels, kernel_size=1, activation=None, name="layer.3"),
]
self.activation = ACT2FN[config.hidden_act]
def call(self, hidden_state):
residual = hidden_state
for layer_module in self.layers:
hidden_state = layer_module(hidden_state)
residual = self.shortcut(residual)
hidden_state += residual
hidden_state = self.activation(hidden_state)
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "shortcut", None) is not None:
with tf.name_scope(self.shortcut.name):
self.shortcut.build(None)
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
class TFRegNetStage(tf.keras.layers.Layer):
"""
A RegNet stage composed by stacked layers.
"""
def __init__(
self, config: RegNetConfig, in_channels: int, out_channels: int, stride: int = 2, depth: int = 2, **kwargs
):
super().__init__(**kwargs)
layer = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer
self.layers = [
# downsampling is done in the first layer with stride of 2
layer(config, in_channels, out_channels, stride=stride, name="layers.0"),
*[layer(config, out_channels, out_channels, name=f"layers.{i+1}") for i in range(depth - 1)],
]
def call(self, hidden_state):
for layer_module in self.layers:
hidden_state = layer_module(hidden_state)
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
class TFRegNetEncoder(tf.keras.layers.Layer):
def __init__(self, config: RegNetConfig, **kwargs):
super().__init__(**kwargs)
self.stages = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
config,
config.embedding_size,
config.hidden_sizes[0],
stride=2 if config.downsample_in_first_stage else 1,
depth=config.depths[0],
name="stages.0",
)
)
in_out_channels = zip(config.hidden_sizes, config.hidden_sizes[1:])
for i, ((in_channels, out_channels), depth) in enumerate(zip(in_out_channels, config.depths[1:])):
self.stages.append(TFRegNetStage(config, in_channels, out_channels, depth=depth, name=f"stages.{i+1}"))
def call(
self, hidden_state: tf.Tensor, output_hidden_states: bool = False, return_dict: bool = True
) -> TFBaseModelOutputWithNoAttention:
hidden_states = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
hidden_states = hidden_states + (hidden_state,)
hidden_state = stage_module(hidden_state)
if output_hidden_states:
hidden_states = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None)
return TFBaseModelOutputWithNoAttention(last_hidden_state=hidden_state, hidden_states=hidden_states)
def build(self, input_shape=None):
if self.built:
return
self.built = True
for stage in self.stages:
with tf.name_scope(stage.name):
stage.build(None)
@keras_serializable
class TFRegNetMainLayer(tf.keras.layers.Layer):
config_class = RegNetConfig
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embedder = TFRegNetEmbeddings(config, name="embedder")
self.encoder = TFRegNetEncoder(config, name="encoder")
self.pooler = tf.keras.layers.GlobalAveragePooling2D(keepdims=True, name="pooler")
@unpack_inputs
def call(
self,
pixel_values: tf.Tensor,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> TFBaseModelOutputWithPoolingAndNoAttention:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
embedding_output = self.embedder(pixel_values, training=training)
encoder_outputs = self.encoder(
embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training
)
last_hidden_state = encoder_outputs[0]
pooled_output = self.pooler(last_hidden_state)
# Change to NCHW output format have uniformity in the modules
pooled_output = tf.transpose(pooled_output, perm=(0, 3, 1, 2))
last_hidden_state = tf.transpose(last_hidden_state, perm=(0, 3, 1, 2))
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]])
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embedder", None) is not None:
with tf.name_scope(self.embedder.name):
self.embedder.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "pooler", None) is not None:
with tf.name_scope(self.pooler.name):
self.pooler.build((None, None, None, None))
class TFRegNetPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = RegNetConfig
base_model_prefix = "regnet"
main_input_name = "pixel_values"
@property
def input_signature(self):
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224), dtype=tf.float32)}
REGNET_START_DOCSTRING = r"""
This model is a Tensorflow
[tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a
regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and
behavior.
Parameters:
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
REGNET_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConveNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top.",
REGNET_START_DOCSTRING,
)
class TFRegNetModel(TFRegNetPreTrainedModel):
def __init__(self, config: RegNetConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.regnet = TFRegNetMainLayer(config, name="regnet")
@unpack_inputs
@add_start_docstrings_to_model_forward(REGNET_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPoolingAndNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def call(
self,
pixel_values: tf.Tensor,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.regnet(
pixel_values=pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state,
pooler_output=outputs.pooler_output,
hidden_states=outputs.hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "regnet", None) is not None:
with tf.name_scope(self.regnet.name):
self.regnet.build(None)
@add_start_docstrings(
"""
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""",
REGNET_START_DOCSTRING,
)
class TFRegNetForImageClassification(TFRegNetPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: RegNetConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.regnet = TFRegNetMainLayer(config, name="regnet")
# classification head
self.classifier = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels, name="classifier.1") if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(REGNET_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def call(
self,
pixel_values: Optional[tf.Tensor] = None,
labels: Optional[tf.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.regnet(
pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training
)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
flattened_output = self.classifier[0](pooled_output)
logits = self.classifier[1](flattened_output)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "regnet", None) is not None:
with tf.name_scope(self.regnet.name):
self.regnet.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier[1].name):
self.classifier[1].build([None, None, None, self.config.hidden_sizes[-1]])
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/cvt/convert_cvt_original_pytorch_checkpoint_to_pytorch.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert CvT checkpoints from the original repository.
URL: https://github.com/microsoft/CvT"""
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def embeddings(idx):
"""
The function helps in renaming embedding layer weights.
Args:
idx: stage number in original model
"""
embed = []
embed.append(
(
f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight",
f"stage{idx}.patch_embed.proj.weight",
)
)
embed.append(
(
f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias",
f"stage{idx}.patch_embed.proj.bias",
)
)
embed.append(
(
f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight",
f"stage{idx}.patch_embed.norm.weight",
)
)
embed.append(
(
f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias",
f"stage{idx}.patch_embed.norm.bias",
)
)
return embed
def attention(idx, cnt):
"""
The function helps in renaming attention block layers weights.
Args:
idx: stage number in original model
cnt: count of blocks in each stage
"""
attention_weights = []
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight",
f"stage{idx}.blocks.{cnt}.attn.proj_q.weight",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias",
f"stage{idx}.blocks.{cnt}.attn.proj_q.bias",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight",
f"stage{idx}.blocks.{cnt}.attn.proj_k.weight",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias",
f"stage{idx}.blocks.{cnt}.attn.proj_k.bias",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight",
f"stage{idx}.blocks.{cnt}.attn.proj_v.weight",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias",
f"stage{idx}.blocks.{cnt}.attn.proj_v.bias",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight",
f"stage{idx}.blocks.{cnt}.attn.proj.weight",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias",
f"stage{idx}.blocks.{cnt}.attn.proj.bias",
)
)
attention_weights.append(
(f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc1.weight")
)
attention_weights.append(
(f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc1.bias")
)
attention_weights.append(
(f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc2.weight")
)
attention_weights.append(
(f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc2.bias")
)
attention_weights.append(
(f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", f"stage{idx}.blocks.{cnt}.norm1.weight")
)
attention_weights.append(
(f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", f"stage{idx}.blocks.{cnt}.norm1.bias")
)
attention_weights.append(
(f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", f"stage{idx}.blocks.{cnt}.norm2.weight")
)
attention_weights.append(
(f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", f"stage{idx}.blocks.{cnt}.norm2.bias")
)
return attention_weights
def cls_token(idx):
"""
Function helps in renaming cls_token weights
"""
token = []
token.append((f"cvt.encoder.stages.{idx}.cls_token", "stage2.cls_token"))
return token
def final():
"""
Function helps in renaming final classification layer
"""
head = []
head.append(("layernorm.weight", "norm.weight"))
head.append(("layernorm.bias", "norm.bias"))
head.append(("classifier.weight", "head.weight"))
head.append(("classifier.bias", "head.bias"))
return head
def convert_cvt_checkpoint(cvt_model, image_size, cvt_file_name, pytorch_dump_folder):
"""
Fucntion to convert the microsoft cvt checkpoint to huggingface checkpoint
"""
img_labels_file = "imagenet-1k-id2label.json"
num_labels = 1000
repo_id = "huggingface/label-files"
num_labels = num_labels
id2label = json.load(open(cached_download(hf_hub_url(repo_id, img_labels_file, repo_type="dataset")), "r"))
id2label = {int(k): v for k, v in id2label.items()}
id2label = id2label
label2id = {v: k for k, v in id2label.items()}
config = config = CvtConfig(num_labels=num_labels, id2label=id2label, label2id=label2id)
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit("/", 1)[-1][4:6] == "13":
config.depth = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit("/", 1)[-1][4:6] == "21":
config.depth = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
config.depth = [2, 2, 20]
config.num_heads = [3, 12, 16]
config.embed_dim = [192, 768, 1024]
model = CvtForImageClassification(config)
image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k")
image_processor.size["shortest_edge"] = image_size
original_weights = torch.load(cvt_file_name, map_location=torch.device("cpu"))
huggingface_weights = OrderedDict()
list_of_state_dict = []
for idx in range(len(config.depth)):
if config.cls_token[idx]:
list_of_state_dict = list_of_state_dict + cls_token(idx)
list_of_state_dict = list_of_state_dict + embeddings(idx)
for cnt in range(config.depth[idx]):
list_of_state_dict = list_of_state_dict + attention(idx, cnt)
list_of_state_dict = list_of_state_dict + final()
for gg in list_of_state_dict:
print(gg)
for i in range(len(list_of_state_dict)):
huggingface_weights[list_of_state_dict[i][0]] = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(huggingface_weights)
model.save_pretrained(pytorch_dump_folder)
image_processor.save_pretrained(pytorch_dump_folder)
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=384,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
args = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/cvt/modeling_tf_cvt.py | # coding=utf-8
# Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 Cvt model."""
from __future__ import annotations
import collections.abc
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...modeling_tf_outputs import TFImageClassifierOutputWithNoAttention
from ...modeling_tf_utils import (
TFModelInputType,
TFPreTrainedModel,
TFSequenceClassificationLoss,
get_initializer,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import shape_list, stable_softmax
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_cvt import CvtConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "CvtConfig"
TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"microsoft/cvt-13",
"microsoft/cvt-13-384",
"microsoft/cvt-13-384-22k",
"microsoft/cvt-21",
"microsoft/cvt-21-384",
"microsoft/cvt-21-384-22k",
# See all Cvt models at https://huggingface.co/models?filter=cvt
]
@dataclass
class TFBaseModelOutputWithCLSToken(ModelOutput):
"""
Base class for model's outputs.
Args:
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
cls_token_value (`tf.Tensor` of shape `(batch_size, 1, hidden_size)`):
Classification token at the output of the last layer of the model.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus
the initial embedding outputs.
"""
last_hidden_state: tf.Tensor = None
cls_token_value: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None
class TFCvtDropPath(tf.keras.layers.Layer):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
References:
(1) github.com:rwightman/pytorch-image-models
"""
def __init__(self, drop_prob: float, **kwargs):
super().__init__(**kwargs)
self.drop_prob = drop_prob
def call(self, x: tf.Tensor, training=None):
if self.drop_prob == 0.0 or not training:
return x
keep_prob = 1 - self.drop_prob
shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1)
random_tensor = keep_prob + tf.random.uniform(shape, 0, 1, dtype=self.compute_dtype)
random_tensor = tf.floor(random_tensor)
return (x / keep_prob) * random_tensor
class TFCvtEmbeddings(tf.keras.layers.Layer):
"""Construct the Convolutional Token Embeddings."""
def __init__(
self,
config: CvtConfig,
patch_size: int,
num_channels: int,
embed_dim: int,
stride: int,
padding: int,
dropout_rate: float,
**kwargs,
):
super().__init__(**kwargs)
self.convolution_embeddings = TFCvtConvEmbeddings(
config,
patch_size=patch_size,
num_channels=num_channels,
embed_dim=embed_dim,
stride=stride,
padding=padding,
name="convolution_embeddings",
)
self.dropout = tf.keras.layers.Dropout(dropout_rate)
def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_state = self.convolution_embeddings(pixel_values)
hidden_state = self.dropout(hidden_state, training=training)
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "convolution_embeddings", None) is not None:
with tf.name_scope(self.convolution_embeddings.name):
self.convolution_embeddings.build(None)
class TFCvtConvEmbeddings(tf.keras.layers.Layer):
"""Image to Convolution Embeddings. This convolutional operation aims to model local spatial contexts."""
def __init__(
self,
config: CvtConfig,
patch_size: int,
num_channels: int,
embed_dim: int,
stride: int,
padding: int,
**kwargs,
):
super().__init__(**kwargs)
self.padding = tf.keras.layers.ZeroPadding2D(padding=padding)
self.patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
self.projection = tf.keras.layers.Conv2D(
filters=embed_dim,
kernel_size=patch_size,
strides=stride,
padding="valid",
data_format="channels_last",
kernel_initializer=get_initializer(config.initializer_range),
name="projection",
)
# Using the same default epsilon as PyTorch
self.normalization = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="normalization")
self.num_channels = num_channels
self.embed_dim = embed_dim
def call(self, pixel_values: tf.Tensor) -> tf.Tensor:
if isinstance(pixel_values, dict):
pixel_values = pixel_values["pixel_values"]
pixel_values = self.projection(self.padding(pixel_values))
# "batch_size, height, width, num_channels -> batch_size, (height*width), num_channels"
batch_size, height, width, num_channels = shape_list(pixel_values)
hidden_size = height * width
pixel_values = tf.reshape(pixel_values, shape=(batch_size, hidden_size, num_channels))
pixel_values = self.normalization(pixel_values)
# "batch_size, (height*width), num_channels -> batch_size, height, width, num_channels"
pixel_values = tf.reshape(pixel_values, shape=(batch_size, height, width, num_channels))
return pixel_values
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "projection", None) is not None:
with tf.name_scope(self.projection.name):
self.projection.build([None, None, None, self.num_channels])
if getattr(self, "normalization", None) is not None:
with tf.name_scope(self.normalization.name):
self.normalization.build([None, None, self.embed_dim])
class TFCvtSelfAttentionConvProjection(tf.keras.layers.Layer):
"""Convolutional projection layer."""
def __init__(self, config: CvtConfig, embed_dim: int, kernel_size: int, stride: int, padding: int, **kwargs):
super().__init__(**kwargs)
self.padding = tf.keras.layers.ZeroPadding2D(padding=padding)
self.convolution = tf.keras.layers.Conv2D(
filters=embed_dim,
kernel_size=kernel_size,
kernel_initializer=get_initializer(config.initializer_range),
padding="valid",
strides=stride,
use_bias=False,
name="convolution",
groups=embed_dim,
)
# Using the same default epsilon as PyTorch, TF uses (1 - pytorch momentum)
self.normalization = tf.keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name="normalization")
self.embed_dim = embed_dim
def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_state = self.convolution(self.padding(hidden_state))
hidden_state = self.normalization(hidden_state, training=training)
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "convolution", None) is not None:
with tf.name_scope(self.convolution.name):
self.convolution.build([None, None, None, self.embed_dim])
if getattr(self, "normalization", None) is not None:
with tf.name_scope(self.normalization.name):
self.normalization.build([None, None, None, self.embed_dim])
class TFCvtSelfAttentionLinearProjection(tf.keras.layers.Layer):
"""Linear projection layer used to flatten tokens into 1D."""
def call(self, hidden_state: tf.Tensor) -> tf.Tensor:
# "batch_size, height, width, num_channels -> batch_size, (height*width), num_channels"
batch_size, height, width, num_channels = shape_list(hidden_state)
hidden_size = height * width
hidden_state = tf.reshape(hidden_state, shape=(batch_size, hidden_size, num_channels))
return hidden_state
class TFCvtSelfAttentionProjection(tf.keras.layers.Layer):
"""Convolutional Projection for Attention."""
def __init__(
self,
config: CvtConfig,
embed_dim: int,
kernel_size: int,
stride: int,
padding: int,
projection_method: str = "dw_bn",
**kwargs,
):
super().__init__(**kwargs)
if projection_method == "dw_bn":
self.convolution_projection = TFCvtSelfAttentionConvProjection(
config, embed_dim, kernel_size, stride, padding, name="convolution_projection"
)
self.linear_projection = TFCvtSelfAttentionLinearProjection()
def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_state = self.convolution_projection(hidden_state, training=training)
hidden_state = self.linear_projection(hidden_state)
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "convolution_projection", None) is not None:
with tf.name_scope(self.convolution_projection.name):
self.convolution_projection.build(None)
class TFCvtSelfAttention(tf.keras.layers.Layer):
"""
Self-attention layer. A depth-wise separable convolution operation (Convolutional Projection), is applied for
query, key, and value embeddings.
"""
def __init__(
self,
config: CvtConfig,
num_heads: int,
embed_dim: int,
kernel_size: int,
stride_q: int,
stride_kv: int,
padding_q: int,
padding_kv: int,
qkv_projection_method: str,
qkv_bias: bool,
attention_drop_rate: float,
with_cls_token: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.scale = embed_dim**-0.5
self.with_cls_token = with_cls_token
self.embed_dim = embed_dim
self.num_heads = num_heads
self.convolution_projection_query = TFCvtSelfAttentionProjection(
config,
embed_dim,
kernel_size,
stride_q,
padding_q,
projection_method="linear" if qkv_projection_method == "avg" else qkv_projection_method,
name="convolution_projection_query",
)
self.convolution_projection_key = TFCvtSelfAttentionProjection(
config,
embed_dim,
kernel_size,
stride_kv,
padding_kv,
projection_method=qkv_projection_method,
name="convolution_projection_key",
)
self.convolution_projection_value = TFCvtSelfAttentionProjection(
config,
embed_dim,
kernel_size,
stride_kv,
padding_kv,
projection_method=qkv_projection_method,
name="convolution_projection_value",
)
self.projection_query = tf.keras.layers.Dense(
units=embed_dim,
kernel_initializer=get_initializer(config.initializer_range),
use_bias=qkv_bias,
bias_initializer="zeros",
name="projection_query",
)
self.projection_key = tf.keras.layers.Dense(
units=embed_dim,
kernel_initializer=get_initializer(config.initializer_range),
use_bias=qkv_bias,
bias_initializer="zeros",
name="projection_key",
)
self.projection_value = tf.keras.layers.Dense(
units=embed_dim,
kernel_initializer=get_initializer(config.initializer_range),
use_bias=qkv_bias,
bias_initializer="zeros",
name="projection_value",
)
self.dropout = tf.keras.layers.Dropout(attention_drop_rate)
def rearrange_for_multi_head_attention(self, hidden_state: tf.Tensor) -> tf.Tensor:
batch_size, hidden_size, _ = shape_list(hidden_state)
head_dim = self.embed_dim // self.num_heads
hidden_state = tf.reshape(hidden_state, shape=(batch_size, hidden_size, self.num_heads, head_dim))
hidden_state = tf.transpose(hidden_state, perm=(0, 2, 1, 3))
return hidden_state
def call(self, hidden_state: tf.Tensor, height: int, width: int, training: bool = False) -> tf.Tensor:
if self.with_cls_token:
cls_token, hidden_state = tf.split(hidden_state, [1, height * width], 1)
# "batch_size, (height*width), num_channels -> batch_size, height, width, num_channels"
batch_size, hidden_size, num_channels = shape_list(hidden_state)
hidden_state = tf.reshape(hidden_state, shape=(batch_size, height, width, num_channels))
key = self.convolution_projection_key(hidden_state, training=training)
query = self.convolution_projection_query(hidden_state, training=training)
value = self.convolution_projection_value(hidden_state, training=training)
if self.with_cls_token:
query = tf.concat((cls_token, query), axis=1)
key = tf.concat((cls_token, key), axis=1)
value = tf.concat((cls_token, value), axis=1)
head_dim = self.embed_dim // self.num_heads
query = self.rearrange_for_multi_head_attention(self.projection_query(query))
key = self.rearrange_for_multi_head_attention(self.projection_key(key))
value = self.rearrange_for_multi_head_attention(self.projection_value(value))
attention_score = tf.matmul(query, key, transpose_b=True) * self.scale
attention_probs = stable_softmax(logits=attention_score, axis=-1)
attention_probs = self.dropout(attention_probs, training=training)
context = tf.matmul(attention_probs, value)
# "batch_size, num_heads, hidden_size, head_dim -> batch_size, hidden_size, (num_heads*head_dim)"
_, _, hidden_size, _ = shape_list(context)
context = tf.transpose(context, perm=(0, 2, 1, 3))
context = tf.reshape(context, (batch_size, hidden_size, self.num_heads * head_dim))
return context
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "convolution_projection_query", None) is not None:
with tf.name_scope(self.convolution_projection_query.name):
self.convolution_projection_query.build(None)
if getattr(self, "convolution_projection_key", None) is not None:
with tf.name_scope(self.convolution_projection_key.name):
self.convolution_projection_key.build(None)
if getattr(self, "convolution_projection_value", None) is not None:
with tf.name_scope(self.convolution_projection_value.name):
self.convolution_projection_value.build(None)
if getattr(self, "projection_query", None) is not None:
with tf.name_scope(self.projection_query.name):
self.projection_query.build([None, None, self.embed_dim])
if getattr(self, "projection_key", None) is not None:
with tf.name_scope(self.projection_key.name):
self.projection_key.build([None, None, self.embed_dim])
if getattr(self, "projection_value", None) is not None:
with tf.name_scope(self.projection_value.name):
self.projection_value.build([None, None, self.embed_dim])
class TFCvtSelfOutput(tf.keras.layers.Layer):
"""Output of the Attention layer ."""
def __init__(self, config: CvtConfig, embed_dim: int, drop_rate: float, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.dropout = tf.keras.layers.Dropout(drop_rate)
self.embed_dim = embed_dim
def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_state = self.dense(inputs=hidden_state)
hidden_state = self.dropout(inputs=hidden_state, training=training)
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.embed_dim])
class TFCvtAttention(tf.keras.layers.Layer):
"""Attention layer. First chunk of the convolutional transformer block."""
def __init__(
self,
config: CvtConfig,
num_heads: int,
embed_dim: int,
kernel_size: int,
stride_q: int,
stride_kv: int,
padding_q: int,
padding_kv: int,
qkv_projection_method: str,
qkv_bias: bool,
attention_drop_rate: float,
drop_rate: float,
with_cls_token: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.attention = TFCvtSelfAttention(
config,
num_heads,
embed_dim,
kernel_size,
stride_q,
stride_kv,
padding_q,
padding_kv,
qkv_projection_method,
qkv_bias,
attention_drop_rate,
with_cls_token,
name="attention",
)
self.dense_output = TFCvtSelfOutput(config, embed_dim, drop_rate, name="output")
def prune_heads(self, heads):
raise NotImplementedError
def call(self, hidden_state: tf.Tensor, height: int, width: int, training: bool = False):
self_output = self.attention(hidden_state, height, width, training=training)
attention_output = self.dense_output(self_output, training=training)
return attention_output
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "dense_output", None) is not None:
with tf.name_scope(self.dense_output.name):
self.dense_output.build(None)
class TFCvtIntermediate(tf.keras.layers.Layer):
"""Intermediate dense layer. Second chunk of the convolutional transformer block."""
def __init__(self, config: CvtConfig, embed_dim: int, mlp_ratio: int, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=int(embed_dim * mlp_ratio),
kernel_initializer=get_initializer(config.initializer_range),
activation="gelu",
name="dense",
)
self.embed_dim = embed_dim
def call(self, hidden_state: tf.Tensor) -> tf.Tensor:
hidden_state = self.dense(hidden_state)
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.embed_dim])
class TFCvtOutput(tf.keras.layers.Layer):
"""
Output of the Convolutional Transformer Block (last chunk). It consists of a MLP and a residual connection.
"""
def __init__(self, config: CvtConfig, embed_dim: int, mlp_ratio: int, drop_rate: int, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.dropout = tf.keras.layers.Dropout(drop_rate)
self.embed_dim = embed_dim
self.mlp_ratio = mlp_ratio
def call(self, hidden_state: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_state = self.dense(inputs=hidden_state)
hidden_state = self.dropout(inputs=hidden_state, training=training)
hidden_state = hidden_state + input_tensor
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, int(self.embed_dim * self.mlp_ratio)])
class TFCvtLayer(tf.keras.layers.Layer):
"""
Convolutional Transformer Block composed by attention layers, normalization and multi-layer perceptrons (mlps). It
consists of 3 chunks : an attention layer, an intermediate dense layer and an output layer. This corresponds to the
`Block` class in the original implementation.
"""
def __init__(
self,
config: CvtConfig,
num_heads: int,
embed_dim: int,
kernel_size: int,
stride_q: int,
stride_kv: int,
padding_q: int,
padding_kv: int,
qkv_projection_method: str,
qkv_bias: bool,
attention_drop_rate: float,
drop_rate: float,
mlp_ratio: float,
drop_path_rate: float,
with_cls_token: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.attention = TFCvtAttention(
config,
num_heads,
embed_dim,
kernel_size,
stride_q,
stride_kv,
padding_q,
padding_kv,
qkv_projection_method,
qkv_bias,
attention_drop_rate,
drop_rate,
with_cls_token,
name="attention",
)
self.intermediate = TFCvtIntermediate(config, embed_dim, mlp_ratio, name="intermediate")
self.dense_output = TFCvtOutput(config, embed_dim, mlp_ratio, drop_rate, name="output")
# Using `layers.Activation` instead of `tf.identity` to better control `training` behaviour.
self.drop_path = (
TFCvtDropPath(drop_path_rate, name="drop_path")
if drop_path_rate > 0.0
else tf.keras.layers.Activation("linear", name="drop_path")
)
# Using the same default epsilon as PyTorch
self.layernorm_before = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_before")
self.layernorm_after = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_after")
self.embed_dim = embed_dim
def call(self, hidden_state: tf.Tensor, height: int, width: int, training: bool = False) -> tf.Tensor:
# in Cvt, layernorm is applied before self-attention
attention_output = self.attention(self.layernorm_before(hidden_state), height, width, training=training)
attention_output = self.drop_path(attention_output, training=training)
# first residual connection
hidden_state = attention_output + hidden_state
# in Cvt, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_state)
layer_output = self.intermediate(layer_output)
# second residual connection is done here
layer_output = self.dense_output(layer_output, hidden_state)
layer_output = self.drop_path(layer_output, training=training)
return layer_output
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "intermediate", None) is not None:
with tf.name_scope(self.intermediate.name):
self.intermediate.build(None)
if getattr(self, "dense_output", None) is not None:
with tf.name_scope(self.dense_output.name):
self.dense_output.build(None)
if getattr(self, "drop_path", None) is not None:
with tf.name_scope(self.drop_path.name):
self.drop_path.build(None)
if getattr(self, "layernorm_before", None) is not None:
with tf.name_scope(self.layernorm_before.name):
self.layernorm_before.build([None, None, self.embed_dim])
if getattr(self, "layernorm_after", None) is not None:
with tf.name_scope(self.layernorm_after.name):
self.layernorm_after.build([None, None, self.embed_dim])
class TFCvtStage(tf.keras.layers.Layer):
"""
Cvt stage (encoder block). Each stage has 2 parts :
- (1) A Convolutional Token Embedding layer
- (2) A Convolutional Transformer Block (layer).
The classification token is added only in the last stage.
Args:
config ([`CvtConfig`]): Model configuration class.
stage (`int`): Stage number.
"""
def __init__(self, config: CvtConfig, stage: int, **kwargs):
super().__init__(**kwargs)
self.config = config
self.stage = stage
if self.config.cls_token[self.stage]:
self.cls_token = self.add_weight(
shape=(1, 1, self.config.embed_dim[-1]),
initializer=get_initializer(self.config.initializer_range),
trainable=True,
name="cvt.encoder.stages.2.cls_token",
)
self.embedding = TFCvtEmbeddings(
self.config,
patch_size=config.patch_sizes[self.stage],
num_channels=config.num_channels if self.stage == 0 else config.embed_dim[self.stage - 1],
stride=config.patch_stride[self.stage],
embed_dim=config.embed_dim[self.stage],
padding=config.patch_padding[self.stage],
dropout_rate=config.drop_rate[self.stage],
name="embedding",
)
drop_path_rates = tf.linspace(0.0, config.drop_path_rate[self.stage], config.depth[stage])
drop_path_rates = [x.numpy().item() for x in drop_path_rates]
self.layers = [
TFCvtLayer(
config,
num_heads=config.num_heads[self.stage],
embed_dim=config.embed_dim[self.stage],
kernel_size=config.kernel_qkv[self.stage],
stride_q=config.stride_q[self.stage],
stride_kv=config.stride_kv[self.stage],
padding_q=config.padding_q[self.stage],
padding_kv=config.padding_kv[self.stage],
qkv_projection_method=config.qkv_projection_method[self.stage],
qkv_bias=config.qkv_bias[self.stage],
attention_drop_rate=config.attention_drop_rate[self.stage],
drop_rate=config.drop_rate[self.stage],
mlp_ratio=config.mlp_ratio[self.stage],
drop_path_rate=drop_path_rates[self.stage],
with_cls_token=config.cls_token[self.stage],
name=f"layers.{j}",
)
for j in range(config.depth[self.stage])
]
def call(self, hidden_state: tf.Tensor, training: bool = False):
cls_token = None
hidden_state = self.embedding(hidden_state, training)
# "batch_size, height, width, num_channels -> batch_size, (height*width), num_channels"
batch_size, height, width, num_channels = shape_list(hidden_state)
hidden_size = height * width
hidden_state = tf.reshape(hidden_state, shape=(batch_size, hidden_size, num_channels))
if self.config.cls_token[self.stage]:
cls_token = tf.repeat(self.cls_token, repeats=batch_size, axis=0)
hidden_state = tf.concat((cls_token, hidden_state), axis=1)
for layer in self.layers:
layer_outputs = layer(hidden_state, height, width, training=training)
hidden_state = layer_outputs
if self.config.cls_token[self.stage]:
cls_token, hidden_state = tf.split(hidden_state, [1, height * width], 1)
# "batch_size, (height*width), num_channels -> batch_size, height, width, num_channels"
hidden_state = tf.reshape(hidden_state, shape=(batch_size, height, width, num_channels))
return hidden_state, cls_token
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embedding", None) is not None:
with tf.name_scope(self.embedding.name):
self.embedding.build(None)
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
class TFCvtEncoder(tf.keras.layers.Layer):
"""
Convolutional Vision Transformer encoder. CVT has 3 stages of encoder blocks with their respective number of layers
(depth) being 1, 2 and 10.
Args:
config ([`CvtConfig`]): Model configuration class.
"""
config_class = CvtConfig
def __init__(self, config: CvtConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.stages = [
TFCvtStage(config, stage_idx, name=f"stages.{stage_idx}") for stage_idx in range(len(config.depth))
]
def call(
self,
pixel_values: TFModelInputType,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutputWithCLSToken, Tuple[tf.Tensor]]:
all_hidden_states = () if output_hidden_states else None
hidden_state = pixel_values
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support (batch_size, num_channels, height, width)
# as input format. So change the input format to (batch_size, height, width, num_channels).
hidden_state = tf.transpose(hidden_state, perm=(0, 2, 3, 1))
cls_token = None
for _, (stage_module) in enumerate(self.stages):
hidden_state, cls_token = stage_module(hidden_state, training=training)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_state,)
# Change back to (batch_size, num_channels, height, width) format to have uniformity in the modules
hidden_state = tf.transpose(hidden_state, perm=(0, 3, 1, 2))
if output_hidden_states:
all_hidden_states = tuple([tf.transpose(hs, perm=(0, 3, 1, 2)) for hs in all_hidden_states])
if not return_dict:
return tuple(v for v in [hidden_state, cls_token, all_hidden_states] if v is not None)
return TFBaseModelOutputWithCLSToken(
last_hidden_state=hidden_state,
cls_token_value=cls_token,
hidden_states=all_hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "stages", None) is not None:
for layer in self.stages:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFCvtMainLayer(tf.keras.layers.Layer):
"""Construct the Cvt model."""
config_class = CvtConfig
def __init__(self, config: CvtConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.encoder = TFCvtEncoder(config, name="encoder")
@unpack_inputs
def call(
self,
pixel_values: TFModelInputType | None = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutputWithCLSToken, Tuple[tf.Tensor]]:
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
encoder_outputs = self.encoder(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return TFBaseModelOutputWithCLSToken(
last_hidden_state=sequence_output,
cls_token_value=encoder_outputs.cls_token_value,
hidden_states=encoder_outputs.hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
class TFCvtPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = CvtConfig
base_model_prefix = "cvt"
main_input_name = "pixel_values"
TFCVT_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TF 2.0 models accepts two formats as inputs:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using [`tf.keras.Model.fit`] method which currently requires having all the
tensors in the first argument of the model call function: `model(inputs)`.
</Tip>
Args:
config ([`CvtConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
TFCVT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CvtImageProcessor.__call__`]
for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False``):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare Cvt Model transformer outputting raw hidden-states without any specific head on top.",
TFCVT_START_DOCSTRING,
)
class TFCvtModel(TFCvtPreTrainedModel):
def __init__(self, config: CvtConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.cvt = TFCvtMainLayer(config, name="cvt")
@unpack_inputs
@add_start_docstrings_to_model_forward(TFCVT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFBaseModelOutputWithCLSToken, config_class=_CONFIG_FOR_DOC)
def call(
self,
pixel_values: tf.Tensor | None = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutputWithCLSToken, Tuple[tf.Tensor]]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, TFCvtModel
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/cvt-13")
>>> model = TFCvtModel.from_pretrained("microsoft/cvt-13")
>>> inputs = image_processor(images=image, return_tensors="tf")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
```"""
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
outputs = self.cvt(
pixel_values=pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithCLSToken(
last_hidden_state=outputs.last_hidden_state,
cls_token_value=outputs.cls_token_value,
hidden_states=outputs.hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "cvt", None) is not None:
with tf.name_scope(self.cvt.name):
self.cvt.build(None)
@add_start_docstrings(
"""
Cvt Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
the [CLS] token) e.g. for ImageNet.
""",
TFCVT_START_DOCSTRING,
)
class TFCvtForImageClassification(TFCvtPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: CvtConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.cvt = TFCvtMainLayer(config, name="cvt")
# Using same default epsilon as in the original implementation.
self.layernorm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm")
# Classifier head
self.classifier = tf.keras.layers.Dense(
units=config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
use_bias=True,
bias_initializer="zeros",
name="classifier",
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(TFCVT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC)
def call(
self,
pixel_values: tf.Tensor | None = None,
labels: tf.Tensor | None = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFImageClassifierOutputWithNoAttention, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, TFCvtForImageClassification
>>> import tensorflow as tf
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/cvt-13")
>>> model = TFCvtForImageClassification.from_pretrained("microsoft/cvt-13")
>>> inputs = image_processor(images=image, return_tensors="tf")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = tf.math.argmax(logits, axis=-1)[0]
>>> print("Predicted class:", model.config.id2label[int(predicted_class_idx)])
```"""
outputs = self.cvt(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
cls_token = outputs[1]
if self.config.cls_token[-1]:
sequence_output = self.layernorm(cls_token)
else:
# rearrange "batch_size, num_channels, height, width -> batch_size, (height*width), num_channels"
batch_size, num_channels, height, width = shape_list(sequence_output)
sequence_output = tf.reshape(sequence_output, shape=(batch_size, num_channels, height * width))
sequence_output = tf.transpose(sequence_output, perm=(0, 2, 1))
sequence_output = self.layernorm(sequence_output)
sequence_output_mean = tf.reduce_mean(sequence_output, axis=1)
logits = self.classifier(sequence_output_mean)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "cvt", None) is not None:
with tf.name_scope(self.cvt.name):
self.cvt.build(None)
if getattr(self, "layernorm", None) is not None:
with tf.name_scope(self.layernorm.name):
self.layernorm.build([None, None, self.config.embed_dim[-1]])
if getattr(self, "classifier", None) is not None:
if hasattr(self.classifier, "name"):
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.embed_dim[-1]])
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/cvt/__init__.py | # Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_import_structure = {"configuration_cvt": ["CVT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CvtConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_cvt"] = [
"CVT_PRETRAINED_MODEL_ARCHIVE_LIST",
"CvtForImageClassification",
"CvtModel",
"CvtPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_cvt"] = [
"TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFCvtForImageClassification",
"TFCvtModel",
"TFCvtPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_cvt import CVT_PRETRAINED_CONFIG_ARCHIVE_MAP, CvtConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cvt import (
CVT_PRETRAINED_MODEL_ARCHIVE_LIST,
CvtForImageClassification,
CvtModel,
CvtPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_cvt import (
TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCvtForImageClassification,
TFCvtModel,
TFCvtPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/cvt/modeling_cvt.py | # coding=utf-8
# Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch CvT model."""
import collections.abc
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import ImageClassifierOutputWithNoAttention, ModelOutput
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import logging
from .configuration_cvt import CvtConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "CvtConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "microsoft/cvt-13"
_EXPECTED_OUTPUT_SHAPE = [1, 384, 14, 14]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "microsoft/cvt-13"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
CVT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"microsoft/cvt-13",
"microsoft/cvt-13-384",
"microsoft/cvt-13-384-22k",
"microsoft/cvt-21",
"microsoft/cvt-21-384",
"microsoft/cvt-21-384-22k",
# See all Cvt models at https://huggingface.co/models?filter=cvt
]
@dataclass
class BaseModelOutputWithCLSToken(ModelOutput):
"""
Base class for model's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
cls_token_value (`torch.FloatTensor` of shape `(batch_size, 1, hidden_size)`):
Classification token at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
"""
last_hidden_state: torch.FloatTensor = None
cls_token_value: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath
class CvtDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class CvtEmbeddings(nn.Module):
"""
Construct the CvT embeddings.
"""
def __init__(self, patch_size, num_channels, embed_dim, stride, padding, dropout_rate):
super().__init__()
self.convolution_embeddings = CvtConvEmbeddings(
patch_size=patch_size, num_channels=num_channels, embed_dim=embed_dim, stride=stride, padding=padding
)
self.dropout = nn.Dropout(dropout_rate)
def forward(self, pixel_values):
hidden_state = self.convolution_embeddings(pixel_values)
hidden_state = self.dropout(hidden_state)
return hidden_state
class CvtConvEmbeddings(nn.Module):
"""
Image to Conv Embedding.
"""
def __init__(self, patch_size, num_channels, embed_dim, stride, padding):
super().__init__()
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
self.patch_size = patch_size
self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=stride, padding=padding)
self.normalization = nn.LayerNorm(embed_dim)
def forward(self, pixel_values):
pixel_values = self.projection(pixel_values)
batch_size, num_channels, height, width = pixel_values.shape
hidden_size = height * width
# rearrange "b c h w -> b (h w) c"
pixel_values = pixel_values.view(batch_size, num_channels, hidden_size).permute(0, 2, 1)
if self.normalization:
pixel_values = self.normalization(pixel_values)
# rearrange "b (h w) c" -> b c h w"
pixel_values = pixel_values.permute(0, 2, 1).view(batch_size, num_channels, height, width)
return pixel_values
class CvtSelfAttentionConvProjection(nn.Module):
def __init__(self, embed_dim, kernel_size, padding, stride):
super().__init__()
self.convolution = nn.Conv2d(
embed_dim,
embed_dim,
kernel_size=kernel_size,
padding=padding,
stride=stride,
bias=False,
groups=embed_dim,
)
self.normalization = nn.BatchNorm2d(embed_dim)
def forward(self, hidden_state):
hidden_state = self.convolution(hidden_state)
hidden_state = self.normalization(hidden_state)
return hidden_state
class CvtSelfAttentionLinearProjection(nn.Module):
def forward(self, hidden_state):
batch_size, num_channels, height, width = hidden_state.shape
hidden_size = height * width
# rearrange " b c h w -> b (h w) c"
hidden_state = hidden_state.view(batch_size, num_channels, hidden_size).permute(0, 2, 1)
return hidden_state
class CvtSelfAttentionProjection(nn.Module):
def __init__(self, embed_dim, kernel_size, padding, stride, projection_method="dw_bn"):
super().__init__()
if projection_method == "dw_bn":
self.convolution_projection = CvtSelfAttentionConvProjection(embed_dim, kernel_size, padding, stride)
self.linear_projection = CvtSelfAttentionLinearProjection()
def forward(self, hidden_state):
hidden_state = self.convolution_projection(hidden_state)
hidden_state = self.linear_projection(hidden_state)
return hidden_state
class CvtSelfAttention(nn.Module):
def __init__(
self,
num_heads,
embed_dim,
kernel_size,
padding_q,
padding_kv,
stride_q,
stride_kv,
qkv_projection_method,
qkv_bias,
attention_drop_rate,
with_cls_token=True,
**kwargs,
):
super().__init__()
self.scale = embed_dim**-0.5
self.with_cls_token = with_cls_token
self.embed_dim = embed_dim
self.num_heads = num_heads
self.convolution_projection_query = CvtSelfAttentionProjection(
embed_dim,
kernel_size,
padding_q,
stride_q,
projection_method="linear" if qkv_projection_method == "avg" else qkv_projection_method,
)
self.convolution_projection_key = CvtSelfAttentionProjection(
embed_dim, kernel_size, padding_kv, stride_kv, projection_method=qkv_projection_method
)
self.convolution_projection_value = CvtSelfAttentionProjection(
embed_dim, kernel_size, padding_kv, stride_kv, projection_method=qkv_projection_method
)
self.projection_query = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
self.projection_key = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
self.projection_value = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
self.dropout = nn.Dropout(attention_drop_rate)
def rearrange_for_multi_head_attention(self, hidden_state):
batch_size, hidden_size, _ = hidden_state.shape
head_dim = self.embed_dim // self.num_heads
# rearrange 'b t (h d) -> b h t d'
return hidden_state.view(batch_size, hidden_size, self.num_heads, head_dim).permute(0, 2, 1, 3)
def forward(self, hidden_state, height, width):
if self.with_cls_token:
cls_token, hidden_state = torch.split(hidden_state, [1, height * width], 1)
batch_size, hidden_size, num_channels = hidden_state.shape
# rearrange "b (h w) c -> b c h w"
hidden_state = hidden_state.permute(0, 2, 1).view(batch_size, num_channels, height, width)
key = self.convolution_projection_key(hidden_state)
query = self.convolution_projection_query(hidden_state)
value = self.convolution_projection_value(hidden_state)
if self.with_cls_token:
query = torch.cat((cls_token, query), dim=1)
key = torch.cat((cls_token, key), dim=1)
value = torch.cat((cls_token, value), dim=1)
head_dim = self.embed_dim // self.num_heads
query = self.rearrange_for_multi_head_attention(self.projection_query(query))
key = self.rearrange_for_multi_head_attention(self.projection_key(key))
value = self.rearrange_for_multi_head_attention(self.projection_value(value))
attention_score = torch.einsum("bhlk,bhtk->bhlt", [query, key]) * self.scale
attention_probs = torch.nn.functional.softmax(attention_score, dim=-1)
attention_probs = self.dropout(attention_probs)
context = torch.einsum("bhlt,bhtv->bhlv", [attention_probs, value])
# rearrange"b h t d -> b t (h d)"
_, _, hidden_size, _ = context.shape
context = context.permute(0, 2, 1, 3).contiguous().view(batch_size, hidden_size, self.num_heads * head_dim)
return context
class CvtSelfOutput(nn.Module):
"""
The residual connection is defined in CvtLayer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, embed_dim, drop_rate):
super().__init__()
self.dense = nn.Linear(embed_dim, embed_dim)
self.dropout = nn.Dropout(drop_rate)
def forward(self, hidden_state, input_tensor):
hidden_state = self.dense(hidden_state)
hidden_state = self.dropout(hidden_state)
return hidden_state
class CvtAttention(nn.Module):
def __init__(
self,
num_heads,
embed_dim,
kernel_size,
padding_q,
padding_kv,
stride_q,
stride_kv,
qkv_projection_method,
qkv_bias,
attention_drop_rate,
drop_rate,
with_cls_token=True,
):
super().__init__()
self.attention = CvtSelfAttention(
num_heads,
embed_dim,
kernel_size,
padding_q,
padding_kv,
stride_q,
stride_kv,
qkv_projection_method,
qkv_bias,
attention_drop_rate,
with_cls_token,
)
self.output = CvtSelfOutput(embed_dim, drop_rate)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, hidden_state, height, width):
self_output = self.attention(hidden_state, height, width)
attention_output = self.output(self_output, hidden_state)
return attention_output
class CvtIntermediate(nn.Module):
def __init__(self, embed_dim, mlp_ratio):
super().__init__()
self.dense = nn.Linear(embed_dim, int(embed_dim * mlp_ratio))
self.activation = nn.GELU()
def forward(self, hidden_state):
hidden_state = self.dense(hidden_state)
hidden_state = self.activation(hidden_state)
return hidden_state
class CvtOutput(nn.Module):
def __init__(self, embed_dim, mlp_ratio, drop_rate):
super().__init__()
self.dense = nn.Linear(int(embed_dim * mlp_ratio), embed_dim)
self.dropout = nn.Dropout(drop_rate)
def forward(self, hidden_state, input_tensor):
hidden_state = self.dense(hidden_state)
hidden_state = self.dropout(hidden_state)
hidden_state = hidden_state + input_tensor
return hidden_state
class CvtLayer(nn.Module):
"""
CvtLayer composed by attention layers, normalization and multi-layer perceptrons (mlps).
"""
def __init__(
self,
num_heads,
embed_dim,
kernel_size,
padding_q,
padding_kv,
stride_q,
stride_kv,
qkv_projection_method,
qkv_bias,
attention_drop_rate,
drop_rate,
mlp_ratio,
drop_path_rate,
with_cls_token=True,
):
super().__init__()
self.attention = CvtAttention(
num_heads,
embed_dim,
kernel_size,
padding_q,
padding_kv,
stride_q,
stride_kv,
qkv_projection_method,
qkv_bias,
attention_drop_rate,
drop_rate,
with_cls_token,
)
self.intermediate = CvtIntermediate(embed_dim, mlp_ratio)
self.output = CvtOutput(embed_dim, mlp_ratio, drop_rate)
self.drop_path = CvtDropPath(drop_prob=drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.layernorm_before = nn.LayerNorm(embed_dim)
self.layernorm_after = nn.LayerNorm(embed_dim)
def forward(self, hidden_state, height, width):
self_attention_output = self.attention(
self.layernorm_before(hidden_state), # in Cvt, layernorm is applied before self-attention
height,
width,
)
attention_output = self_attention_output
attention_output = self.drop_path(attention_output)
# first residual connection
hidden_state = attention_output + hidden_state
# in Cvt, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_state)
layer_output = self.intermediate(layer_output)
# second residual connection is done here
layer_output = self.output(layer_output, hidden_state)
layer_output = self.drop_path(layer_output)
return layer_output
class CvtStage(nn.Module):
def __init__(self, config, stage):
super().__init__()
self.config = config
self.stage = stage
if self.config.cls_token[self.stage]:
self.cls_token = nn.Parameter(torch.randn(1, 1, self.config.embed_dim[-1]))
self.embedding = CvtEmbeddings(
patch_size=config.patch_sizes[self.stage],
stride=config.patch_stride[self.stage],
num_channels=config.num_channels if self.stage == 0 else config.embed_dim[self.stage - 1],
embed_dim=config.embed_dim[self.stage],
padding=config.patch_padding[self.stage],
dropout_rate=config.drop_rate[self.stage],
)
drop_path_rates = [x.item() for x in torch.linspace(0, config.drop_path_rate[self.stage], config.depth[stage])]
self.layers = nn.Sequential(
*[
CvtLayer(
num_heads=config.num_heads[self.stage],
embed_dim=config.embed_dim[self.stage],
kernel_size=config.kernel_qkv[self.stage],
padding_q=config.padding_q[self.stage],
padding_kv=config.padding_kv[self.stage],
stride_kv=config.stride_kv[self.stage],
stride_q=config.stride_q[self.stage],
qkv_projection_method=config.qkv_projection_method[self.stage],
qkv_bias=config.qkv_bias[self.stage],
attention_drop_rate=config.attention_drop_rate[self.stage],
drop_rate=config.drop_rate[self.stage],
drop_path_rate=drop_path_rates[self.stage],
mlp_ratio=config.mlp_ratio[self.stage],
with_cls_token=config.cls_token[self.stage],
)
for _ in range(config.depth[self.stage])
]
)
def forward(self, hidden_state):
cls_token = None
hidden_state = self.embedding(hidden_state)
batch_size, num_channels, height, width = hidden_state.shape
# rearrange b c h w -> b (h w) c"
hidden_state = hidden_state.view(batch_size, num_channels, height * width).permute(0, 2, 1)
if self.config.cls_token[self.stage]:
cls_token = self.cls_token.expand(batch_size, -1, -1)
hidden_state = torch.cat((cls_token, hidden_state), dim=1)
for layer in self.layers:
layer_outputs = layer(hidden_state, height, width)
hidden_state = layer_outputs
if self.config.cls_token[self.stage]:
cls_token, hidden_state = torch.split(hidden_state, [1, height * width], 1)
hidden_state = hidden_state.permute(0, 2, 1).view(batch_size, num_channels, height, width)
return hidden_state, cls_token
class CvtEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.stages = nn.ModuleList([])
for stage_idx in range(len(config.depth)):
self.stages.append(CvtStage(config, stage_idx))
def forward(self, pixel_values, output_hidden_states=False, return_dict=True):
all_hidden_states = () if output_hidden_states else None
hidden_state = pixel_values
cls_token = None
for _, (stage_module) in enumerate(self.stages):
hidden_state, cls_token = stage_module(hidden_state)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, cls_token, all_hidden_states] if v is not None)
return BaseModelOutputWithCLSToken(
last_hidden_state=hidden_state,
cls_token_value=cls_token,
hidden_states=all_hidden_states,
)
class CvtPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = CvtConfig
base_model_prefix = "cvt"
main_input_name = "pixel_values"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, CvtStage):
if self.config.cls_token[module.stage]:
module.cls_token.data = nn.init.trunc_normal_(
torch.zeros(1, 1, self.config.embed_dim[-1]), mean=0.0, std=self.config.initializer_range
)
CVT_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`CvtConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
CVT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CvtImageProcessor.__call__`]
for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Cvt Model transformer outputting raw hidden-states without any specific head on top.",
CVT_START_DOCSTRING,
)
class CvtModel(CvtPreTrainedModel):
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.encoder = CvtEncoder(config)
self.post_init()
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(CVT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithCLSToken,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithCLSToken]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
encoder_outputs = self.encoder(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutputWithCLSToken(
last_hidden_state=sequence_output,
cls_token_value=encoder_outputs.cls_token_value,
hidden_states=encoder_outputs.hidden_states,
)
@add_start_docstrings(
"""
Cvt Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
the [CLS] token) e.g. for ImageNet.
""",
CVT_START_DOCSTRING,
)
class CvtForImageClassification(CvtPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.cvt = CvtModel(config, add_pooling_layer=False)
self.layernorm = nn.LayerNorm(config.embed_dim[-1])
# Classifier head
self.classifier = (
nn.Linear(config.embed_dim[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(CVT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.cvt(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
cls_token = outputs[1]
if self.config.cls_token[-1]:
sequence_output = self.layernorm(cls_token)
else:
batch_size, num_channels, height, width = sequence_output.shape
# rearrange "b c h w -> b (h w) c"
sequence_output = sequence_output.view(batch_size, num_channels, height * width).permute(0, 2, 1)
sequence_output = self.layernorm(sequence_output)
sequence_output_mean = sequence_output.mean(dim=1)
logits = self.classifier(sequence_output_mean)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.config.num_labels == 1:
self.config.problem_type = "regression"
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.config.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/cvt/configuration_cvt.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" CvT model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
CVT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json",
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class CvtConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CvtModel`]. It is used to instantiate a CvT model
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the CvT
[microsoft/cvt-13](https://huggingface.co/microsoft/cvt-13) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3]`):
The kernel size of each encoder's patch embedding.
patch_stride (`List[int]`, *optional*, defaults to `[4, 2, 2]`):
The stride size of each encoder's patch embedding.
patch_padding (`List[int]`, *optional*, defaults to `[2, 1, 1]`):
The padding size of each encoder's patch embedding.
embed_dim (`List[int]`, *optional*, defaults to `[64, 192, 384]`):
Dimension of each of the encoder blocks.
num_heads (`List[int]`, *optional*, defaults to `[1, 3, 6]`):
Number of attention heads for each attention layer in each block of the Transformer encoder.
depth (`List[int]`, *optional*, defaults to `[1, 2, 10]`):
The number of layers in each encoder block.
mlp_ratios (`List[float]`, *optional*, defaults to `[4.0, 4.0, 4.0, 4.0]`):
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the
encoder blocks.
attention_drop_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.0]`):
The dropout ratio for the attention probabilities.
drop_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.0]`):
The dropout ratio for the patch embeddings probabilities.
drop_path_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.1]`):
The dropout probability for stochastic depth, used in the blocks of the Transformer encoder.
qkv_bias (`List[bool]`, *optional*, defaults to `[True, True, True]`):
The bias bool for query, key and value in attentions
cls_token (`List[bool]`, *optional*, defaults to `[False, False, True]`):
Whether or not to add a classification token to the output of each of the last 3 stages.
qkv_projection_method (`List[string]`, *optional*, defaults to ["dw_bn", "dw_bn", "dw_bn"]`):
The projection method for query, key and value Default is depth-wise convolutions with batch norm. For
Linear projection use "avg".
kernel_qkv (`List[int]`, *optional*, defaults to `[3, 3, 3]`):
The kernel size for query, key and value in attention layer
padding_kv (`List[int]`, *optional*, defaults to `[1, 1, 1]`):
The padding size for key and value in attention layer
stride_kv (`List[int]`, *optional*, defaults to `[2, 2, 2]`):
The stride size for key and value in attention layer
padding_q (`List[int]`, *optional*, defaults to `[1, 1, 1]`):
The padding size for query in attention layer
stride_q (`List[int]`, *optional*, defaults to `[1, 1, 1]`):
The stride size for query in attention layer
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
The epsilon used by the layer normalization layers.
Example:
```python
>>> from transformers import CvtConfig, CvtModel
>>> # Initializing a Cvt msft/cvt style configuration
>>> configuration = CvtConfig()
>>> # Initializing a model (with random weights) from the msft/cvt style configuration
>>> model = CvtModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "cvt"
def __init__(
self,
num_channels=3,
patch_sizes=[7, 3, 3],
patch_stride=[4, 2, 2],
patch_padding=[2, 1, 1],
embed_dim=[64, 192, 384],
num_heads=[1, 3, 6],
depth=[1, 2, 10],
mlp_ratio=[4.0, 4.0, 4.0],
attention_drop_rate=[0.0, 0.0, 0.0],
drop_rate=[0.0, 0.0, 0.0],
drop_path_rate=[0.0, 0.0, 0.1],
qkv_bias=[True, True, True],
cls_token=[False, False, True],
qkv_projection_method=["dw_bn", "dw_bn", "dw_bn"],
kernel_qkv=[3, 3, 3],
padding_kv=[1, 1, 1],
stride_kv=[2, 2, 2],
padding_q=[1, 1, 1],
stride_q=[1, 1, 1],
initializer_range=0.02,
layer_norm_eps=1e-12,
**kwargs,
):
super().__init__(**kwargs)
self.num_channels = num_channels
self.patch_sizes = patch_sizes
self.patch_stride = patch_stride
self.patch_padding = patch_padding
self.embed_dim = embed_dim
self.num_heads = num_heads
self.depth = depth
self.mlp_ratio = mlp_ratio
self.attention_drop_rate = attention_drop_rate
self.drop_rate = drop_rate
self.drop_path_rate = drop_path_rate
self.qkv_bias = qkv_bias
self.cls_token = cls_token
self.qkv_projection_method = qkv_projection_method
self.kernel_qkv = kernel_qkv
self.padding_kv = padding_kv
self.stride_kv = stride_kv
self.padding_q = padding_q
self.stride_q = stride_q
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/mra/modeling_mra.py | # coding=utf-8
# Copyright 2023 University of Wisconsin-Madison and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch MRA model."""
import math
from pathlib import Path
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from torch.utils.cpp_extension import load
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutputWithCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_ninja_available,
is_torch_cuda_available,
logging,
)
from .configuration_mra import MraConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "uw-madison/mra-base-512-4"
_CONFIG_FOR_DOC = "MraConfig"
_TOKENIZER_FOR_DOC = "AutoTokenizer"
MRA_PRETRAINED_MODEL_ARCHIVE_LIST = [
"uw-madison/mra-base-512-4",
# See all Mra models at https://huggingface.co/models?filter=mra
]
def load_cuda_kernels():
global cuda_kernel
src_folder = Path(__file__).resolve().parent.parent.parent / "kernels" / "mra"
def append_root(files):
return [src_folder / file for file in files]
src_files = append_root(["cuda_kernel.cu", "cuda_launch.cu", "torch_extension.cpp"])
cuda_kernel = load("cuda_kernel", src_files, verbose=True)
import cuda_kernel
cuda_kernel = None
if is_torch_cuda_available() and is_ninja_available():
logger.info("Loading custom CUDA kernels...")
try:
load_cuda_kernels()
except Exception as e:
logger.warning(
"Failed to load CUDA kernels. Mra requires custom CUDA kernels. Please verify that compatible versions of"
f" PyTorch and CUDA Toolkit are installed: {e}"
)
else:
pass
def sparse_max(sparse_qk_prod, indices, query_num_block, key_num_block):
"""
Computes maximum values for softmax stability.
"""
if len(sparse_qk_prod.size()) != 4:
raise ValueError("sparse_qk_prod must be a 4-dimensional tensor.")
if len(indices.size()) != 2:
raise ValueError("indices must be a 2-dimensional tensor.")
if sparse_qk_prod.size(2) != 32:
raise ValueError("The size of the second dimension of sparse_qk_prod must be 32.")
if sparse_qk_prod.size(3) != 32:
raise ValueError("The size of the third dimension of sparse_qk_prod must be 32.")
index_vals = sparse_qk_prod.max(dim=-2).values.transpose(-1, -2)
index_vals = index_vals.contiguous()
indices = indices.int()
indices = indices.contiguous()
max_vals, max_vals_scatter = cuda_kernel.index_max(index_vals, indices, query_num_block, key_num_block)
max_vals_scatter = max_vals_scatter.transpose(-1, -2)[:, :, None, :]
return max_vals, max_vals_scatter
def sparse_mask(mask, indices, block_size=32):
"""
Converts attention mask to a sparse mask for high resolution logits.
"""
if len(mask.size()) != 2:
raise ValueError("mask must be a 2-dimensional tensor.")
if len(indices.size()) != 2:
raise ValueError("indices must be a 2-dimensional tensor.")
if mask.shape[0] != indices.shape[0]:
raise ValueError("mask and indices must have the same size in the zero-th dimension.")
batch_size, seq_len = mask.shape
num_block = seq_len // block_size
batch_idx = torch.arange(indices.size(0), dtype=torch.long, device=indices.device)
mask = mask.reshape(batch_size, num_block, block_size)
mask = mask[batch_idx[:, None], (indices % num_block).long(), :]
return mask
def mm_to_sparse(dense_query, dense_key, indices, block_size=32):
"""
Performs Sampled Dense Matrix Multiplication.
"""
batch_size, query_size, dim = dense_query.size()
_, key_size, dim = dense_key.size()
if query_size % block_size != 0:
raise ValueError("query_size (size of first dimension of dense_query) must be divisible by block_size.")
if key_size % block_size != 0:
raise ValueError("key_size (size of first dimension of dense_key) must be divisible by block_size.")
dense_query = dense_query.reshape(batch_size, query_size // block_size, block_size, dim).transpose(-1, -2)
dense_key = dense_key.reshape(batch_size, key_size // block_size, block_size, dim).transpose(-1, -2)
if len(dense_query.size()) != 4:
raise ValueError("dense_query must be a 4-dimensional tensor.")
if len(dense_key.size()) != 4:
raise ValueError("dense_key must be a 4-dimensional tensor.")
if len(indices.size()) != 2:
raise ValueError("indices must be a 2-dimensional tensor.")
if dense_query.size(3) != 32:
raise ValueError("The third dimension of dense_query must be 32.")
if dense_key.size(3) != 32:
raise ValueError("The third dimension of dense_key must be 32.")
dense_query = dense_query.contiguous()
dense_key = dense_key.contiguous()
indices = indices.int()
indices = indices.contiguous()
return cuda_kernel.mm_to_sparse(dense_query, dense_key, indices.int())
def sparse_dense_mm(sparse_query, indices, dense_key, query_num_block, block_size=32):
"""
Performs matrix multiplication of a sparse matrix with a dense matrix.
"""
batch_size, key_size, dim = dense_key.size()
if key_size % block_size != 0:
raise ValueError("key_size (size of first dimension of dense_key) must be divisible by block_size.")
if sparse_query.size(2) != block_size:
raise ValueError("The size of the second dimension of sparse_query must be equal to the block_size.")
if sparse_query.size(3) != block_size:
raise ValueError("The size of the third dimension of sparse_query must be equal to the block_size.")
dense_key = dense_key.reshape(batch_size, key_size // block_size, block_size, dim).transpose(-1, -2)
if len(sparse_query.size()) != 4:
raise ValueError("sparse_query must be a 4-dimensional tensor.")
if len(dense_key.size()) != 4:
raise ValueError("dense_key must be a 4-dimensional tensor.")
if len(indices.size()) != 2:
raise ValueError("indices must be a 2-dimensional tensor.")
if dense_key.size(3) != 32:
raise ValueError("The size of the third dimension of dense_key must be 32.")
sparse_query = sparse_query.contiguous()
indices = indices.int()
indices = indices.contiguous()
dense_key = dense_key.contiguous()
dense_qk_prod = cuda_kernel.sparse_dense_mm(sparse_query, indices, dense_key, query_num_block)
dense_qk_prod = dense_qk_prod.transpose(-1, -2).reshape(batch_size, query_num_block * block_size, dim)
return dense_qk_prod
def transpose_indices(indices, dim_1_block, dim_2_block):
return ((indices % dim_2_block) * dim_1_block + torch.div(indices, dim_2_block, rounding_mode="floor")).long()
class MraSampledDenseMatMul(torch.autograd.Function):
@staticmethod
def forward(ctx, dense_query, dense_key, indices, block_size):
sparse_qk_prod = mm_to_sparse(dense_query, dense_key, indices, block_size)
ctx.save_for_backward(dense_query, dense_key, indices)
ctx.block_size = block_size
return sparse_qk_prod
@staticmethod
def backward(ctx, grad):
dense_query, dense_key, indices = ctx.saved_tensors
block_size = ctx.block_size
query_num_block = dense_query.size(1) // block_size
key_num_block = dense_key.size(1) // block_size
indices_T = transpose_indices(indices, query_num_block, key_num_block)
grad_key = sparse_dense_mm(grad.transpose(-1, -2), indices_T, dense_query, key_num_block)
grad_query = sparse_dense_mm(grad, indices, dense_key, query_num_block)
return grad_query, grad_key, None, None
@staticmethod
def operator_call(dense_query, dense_key, indices, block_size=32):
return MraSampledDenseMatMul.apply(dense_query, dense_key, indices, block_size)
class MraSparseDenseMatMul(torch.autograd.Function):
@staticmethod
def forward(ctx, sparse_query, indices, dense_key, query_num_block):
sparse_qk_prod = sparse_dense_mm(sparse_query, indices, dense_key, query_num_block)
ctx.save_for_backward(sparse_query, indices, dense_key)
ctx.query_num_block = query_num_block
return sparse_qk_prod
@staticmethod
def backward(ctx, grad):
sparse_query, indices, dense_key = ctx.saved_tensors
query_num_block = ctx.query_num_block
key_num_block = dense_key.size(1) // sparse_query.size(-1)
indices_T = transpose_indices(indices, query_num_block, key_num_block)
grad_key = sparse_dense_mm(sparse_query.transpose(-1, -2), indices_T, grad, key_num_block)
grad_query = mm_to_sparse(grad, dense_key, indices)
return grad_query, None, grad_key, None
@staticmethod
def operator_call(sparse_query, indices, dense_key, query_num_block):
return MraSparseDenseMatMul.apply(sparse_query, indices, dense_key, query_num_block)
class MraReduceSum:
@staticmethod
def operator_call(sparse_query, indices, query_num_block, key_num_block):
batch_size, num_block, block_size, _ = sparse_query.size()
if len(sparse_query.size()) != 4:
raise ValueError("sparse_query must be a 4-dimensional tensor.")
if len(indices.size()) != 2:
raise ValueError("indices must be a 2-dimensional tensor.")
_, _, block_size, _ = sparse_query.size()
batch_size, num_block = indices.size()
sparse_query = sparse_query.sum(dim=2).reshape(batch_size * num_block, block_size)
batch_idx = torch.arange(indices.size(0), dtype=torch.long, device=indices.device)
global_idxes = (
torch.div(indices, key_num_block, rounding_mode="floor").long() + batch_idx[:, None] * query_num_block
).reshape(batch_size * num_block)
temp = torch.zeros(
(batch_size * query_num_block, block_size), dtype=sparse_query.dtype, device=sparse_query.device
)
output = temp.index_add(0, global_idxes, sparse_query).reshape(batch_size, query_num_block, block_size)
output = output.reshape(batch_size, query_num_block * block_size)
return output
def get_low_resolution_logit(query, key, block_size, mask=None, value=None):
"""
Compute low resolution approximation.
"""
batch_size, seq_len, head_dim = query.size()
num_block_per_row = seq_len // block_size
value_hat = None
if mask is not None:
token_count = mask.reshape(batch_size, num_block_per_row, block_size).sum(dim=-1)
query_hat = query.reshape(batch_size, num_block_per_row, block_size, head_dim).sum(dim=-2) / (
token_count[:, :, None] + 1e-6
)
key_hat = key.reshape(batch_size, num_block_per_row, block_size, head_dim).sum(dim=-2) / (
token_count[:, :, None] + 1e-6
)
if value is not None:
value_hat = value.reshape(batch_size, num_block_per_row, block_size, head_dim).sum(dim=-2) / (
token_count[:, :, None] + 1e-6
)
else:
token_count = block_size * torch.ones(batch_size, num_block_per_row, dtype=torch.float, device=query.device)
query_hat = query.reshape(batch_size, num_block_per_row, block_size, head_dim).mean(dim=-2)
key_hat = key.reshape(batch_size, num_block_per_row, block_size, head_dim).mean(dim=-2)
if value is not None:
value_hat = value.reshape(batch_size, num_block_per_row, block_size, head_dim).mean(dim=-2)
low_resolution_logit = torch.matmul(query_hat, key_hat.transpose(-1, -2)) / math.sqrt(head_dim)
low_resolution_logit_row_max = low_resolution_logit.max(dim=-1, keepdims=True).values
if mask is not None:
low_resolution_logit = (
low_resolution_logit - 1e4 * ((token_count[:, None, :] * token_count[:, :, None]) < 0.5).float()
)
return low_resolution_logit, token_count, low_resolution_logit_row_max, value_hat
def get_block_idxes(
low_resolution_logit, num_blocks, approx_mode, initial_prior_first_n_blocks, initial_prior_diagonal_n_blocks
):
"""
Compute the indices of the subset of components to be used in the approximation.
"""
batch_size, total_blocks_per_row, _ = low_resolution_logit.shape
if initial_prior_diagonal_n_blocks > 0:
offset = initial_prior_diagonal_n_blocks // 2
temp_mask = torch.ones(total_blocks_per_row, total_blocks_per_row, device=low_resolution_logit.device)
diagonal_mask = torch.tril(torch.triu(temp_mask, diagonal=-offset), diagonal=offset)
low_resolution_logit = low_resolution_logit + diagonal_mask[None, :, :] * 5e3
if initial_prior_first_n_blocks > 0:
low_resolution_logit[:, :initial_prior_first_n_blocks, :] = (
low_resolution_logit[:, :initial_prior_first_n_blocks, :] + 5e3
)
low_resolution_logit[:, :, :initial_prior_first_n_blocks] = (
low_resolution_logit[:, :, :initial_prior_first_n_blocks] + 5e3
)
top_k_vals = torch.topk(
low_resolution_logit.reshape(batch_size, -1), num_blocks, dim=-1, largest=True, sorted=False
)
indices = top_k_vals.indices
if approx_mode == "full":
threshold = top_k_vals.values.min(dim=-1).values
high_resolution_mask = (low_resolution_logit >= threshold[:, None, None]).float()
elif approx_mode == "sparse":
high_resolution_mask = None
else:
raise ValueError(f"{approx_mode} is not a valid approx_model value.")
return indices, high_resolution_mask
def mra2_attention(
query,
key,
value,
mask,
num_blocks,
approx_mode,
block_size=32,
initial_prior_first_n_blocks=0,
initial_prior_diagonal_n_blocks=0,
):
"""
Use Mra to approximate self-attention.
"""
if cuda_kernel is None:
return torch.zeros_like(query).requires_grad_()
batch_size, num_head, seq_len, head_dim = query.size()
meta_batch = batch_size * num_head
if seq_len % block_size != 0:
raise ValueError("sequence length must be divisible by the block_size.")
num_block_per_row = seq_len // block_size
query = query.reshape(meta_batch, seq_len, head_dim)
key = key.reshape(meta_batch, seq_len, head_dim)
value = value.reshape(meta_batch, seq_len, head_dim)
if mask is not None:
query = query * mask[:, :, None]
key = key * mask[:, :, None]
value = value * mask[:, :, None]
if approx_mode == "full":
low_resolution_logit, token_count, low_resolution_logit_row_max, value_hat = get_low_resolution_logit(
query, key, block_size, mask, value
)
elif approx_mode == "sparse":
with torch.no_grad():
low_resolution_logit, token_count, low_resolution_logit_row_max, _ = get_low_resolution_logit(
query, key, block_size, mask
)
else:
raise Exception('approx_mode must be "full" or "sparse"')
with torch.no_grad():
low_resolution_logit_normalized = low_resolution_logit - low_resolution_logit_row_max
indices, high_resolution_mask = get_block_idxes(
low_resolution_logit_normalized,
num_blocks,
approx_mode,
initial_prior_first_n_blocks,
initial_prior_diagonal_n_blocks,
)
high_resolution_logit = MraSampledDenseMatMul.operator_call(
query, key, indices, block_size=block_size
) / math.sqrt(head_dim)
max_vals, max_vals_scatter = sparse_max(high_resolution_logit, indices, num_block_per_row, num_block_per_row)
high_resolution_logit = high_resolution_logit - max_vals_scatter
if mask is not None:
high_resolution_logit = high_resolution_logit - 1e4 * (1 - sparse_mask(mask, indices)[:, :, :, None])
high_resolution_attn = torch.exp(high_resolution_logit)
high_resolution_attn_out = MraSparseDenseMatMul.operator_call(
high_resolution_attn, indices, value, num_block_per_row
)
high_resolution_normalizer = MraReduceSum.operator_call(
high_resolution_attn, indices, num_block_per_row, num_block_per_row
)
if approx_mode == "full":
low_resolution_attn = (
torch.exp(low_resolution_logit - low_resolution_logit_row_max - 1e4 * high_resolution_mask)
* token_count[:, None, :]
)
low_resolution_attn_out = (
torch.matmul(low_resolution_attn, value_hat)[:, :, None, :]
.repeat(1, 1, block_size, 1)
.reshape(meta_batch, seq_len, head_dim)
)
low_resolution_normalizer = (
low_resolution_attn.sum(dim=-1)[:, :, None].repeat(1, 1, block_size).reshape(meta_batch, seq_len)
)
log_correction = low_resolution_logit_row_max.repeat(1, 1, block_size).reshape(meta_batch, seq_len) - max_vals
if mask is not None:
log_correction = log_correction * mask
low_resolution_corr = torch.exp(log_correction * (log_correction <= 0).float())
low_resolution_attn_out = low_resolution_attn_out * low_resolution_corr[:, :, None]
low_resolution_normalizer = low_resolution_normalizer * low_resolution_corr
high_resolution_corr = torch.exp(-log_correction * (log_correction > 0).float())
high_resolution_attn_out = high_resolution_attn_out * high_resolution_corr[:, :, None]
high_resolution_normalizer = high_resolution_normalizer * high_resolution_corr
context_layer = (high_resolution_attn_out + low_resolution_attn_out) / (
high_resolution_normalizer[:, :, None] + low_resolution_normalizer[:, :, None] + 1e-6
)
elif approx_mode == "sparse":
context_layer = high_resolution_attn_out / (high_resolution_normalizer[:, :, None] + 1e-6)
else:
raise Exception('config.approx_mode must be "full" or "sparse"')
if mask is not None:
context_layer = context_layer * mask[:, :, None]
context_layer = context_layer.reshape(batch_size, num_head, seq_len, head_dim)
return context_layer
class MraEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings + 2, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + 2)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),
persistent=False,
)
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class MraSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = (
position_embedding_type if position_embedding_type is not None else config.position_embedding_type
)
self.num_block = (config.max_position_embeddings // 32) * config.block_per_row
self.num_block = min(self.num_block, int((config.max_position_embeddings // 32) ** 2))
self.approx_mode = config.approx_mode
self.initial_prior_first_n_blocks = config.initial_prior_first_n_blocks
self.initial_prior_diagonal_n_blocks = config.initial_prior_diagonal_n_blocks
def transpose_for_scores(self, layer):
new_layer_shape = layer.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
layer = layer.view(*new_layer_shape)
return layer.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask=None):
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
batch_size, num_heads, seq_len, head_dim = query_layer.size()
# revert changes made by get_extended_attention_mask
attention_mask = 1.0 + attention_mask / 10000.0
attention_mask = (
attention_mask.squeeze().repeat(1, num_heads, 1).reshape(batch_size * num_heads, seq_len).int()
)
# The CUDA kernels are most efficient with inputs whose size is a multiple of a GPU's warp size (32). Inputs
# smaller than this are padded with zeros.
gpu_warp_size = 32
if head_dim < gpu_warp_size:
pad_size = batch_size, num_heads, seq_len, gpu_warp_size - head_dim
query_layer = torch.cat([query_layer, torch.zeros(pad_size, device=query_layer.device)], dim=-1)
key_layer = torch.cat([key_layer, torch.zeros(pad_size, device=key_layer.device)], dim=-1)
value_layer = torch.cat([value_layer, torch.zeros(pad_size, device=value_layer.device)], dim=-1)
context_layer = mra2_attention(
query_layer.float(),
key_layer.float(),
value_layer.float(),
attention_mask.float(),
self.num_block,
approx_mode=self.approx_mode,
initial_prior_first_n_blocks=self.initial_prior_first_n_blocks,
initial_prior_diagonal_n_blocks=self.initial_prior_diagonal_n_blocks,
)
if head_dim < gpu_warp_size:
context_layer = context_layer[:, :, :, :head_dim]
context_layer = context_layer.reshape(batch_size, num_heads, seq_len, head_dim)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
class MraSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class MraAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = MraSelfAttention(config, position_embedding_type=position_embedding_type)
self.output = MraSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, hidden_states, attention_mask=None):
self_outputs = self.self(hidden_states, attention_mask)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
class MraIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput
class MraOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class MraLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = MraAttention(config)
self.add_cross_attention = config.add_cross_attention
self.intermediate = MraIntermediate(config)
self.output = MraOutput(config)
def forward(self, hidden_states, attention_mask=None):
self_attention_outputs = self.attention(hidden_states, attention_mask)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class MraEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([MraLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_hidden_states=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
)
else:
layer_outputs = layer_module(hidden_states, attention_mask)
hidden_states = layer_outputs[0]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return BaseModelOutputWithCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
)
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform
class MraPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Mra
class MraLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = MraPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Mra
class MraOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = MraLMPredictionHead(config)
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
prediction_scores = self.predictions(sequence_output)
return prediction_scores
# Copied from transformers.models.yoso.modeling_yoso.YosoPreTrainedModel with Yoso->Mra,yoso->mra
class MraPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MraConfig
base_model_prefix = "mra"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
MRA_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`MraConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MRA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare MRA Model transformer outputting raw hidden-states without any specific head on top.",
MRA_START_DOCSTRING,
)
class MraModel(MraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = MraEmbeddings(config)
self.encoder = MraEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithCrossAttentions]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutputWithCrossAttentions(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings("""MRA Model with a `language modeling` head on top.""", MRA_START_DOCSTRING)
class MraForMaskedLM(MraPreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)
self.mra = MraModel(config)
self.cls = MraOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
@add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Copied from transformers.models.yoso.modeling_yoso.YosoClassificationHead with Yoso->Mra
class MraClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
self.config = config
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = ACT2FN[self.config.hidden_act](x)
x = self.dropout(x)
x = self.out_proj(x)
return x
@add_start_docstrings(
"""MRA Model transformer with a sequence classification/regression head on top (a linear layer on top of
the pooled output) e.g. for GLUE tasks.""",
MRA_START_DOCSTRING,
)
class MraForSequenceClassification(MraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.mra = MraModel(config)
self.classifier = MraClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""MRA Model with a multiple choice classification head on top (a linear layer on top of
the pooled output and a softmax) e.g. for RocStories/SWAG tasks.""",
MRA_START_DOCSTRING,
)
class MraForMultipleChoice(MraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.mra = MraModel(config)
self.pre_classifier = nn.Linear(config.hidden_size, config.hidden_size)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.mra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_state = outputs[0] # (bs * num_choices, seq_len, dim)
pooled_output = hidden_state[:, 0] # (bs * num_choices, dim)
pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim)
pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""MRA Model with a token classification head on top (a linear layer on top of
the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.""",
MRA_START_DOCSTRING,
)
class MraForTokenClassification(MraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.mra = MraModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
# Only keep active parts of the loss
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels)
active_labels = torch.where(
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
)
loss = loss_fct(active_logits, active_labels)
else:
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""MRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).""",
MRA_START_DOCSTRING,
)
class MraForQuestionAnswering(MraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
config.num_labels = 2
self.num_labels = config.num_labels
self.mra = MraModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/mra/__init__.py | # flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_import_structure = {"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_mra"] = [
"MRA_PRETRAINED_MODEL_ARCHIVE_LIST",
"MraForMaskedLM",
"MraForMultipleChoice",
"MraForQuestionAnswering",
"MraForSequenceClassification",
"MraForTokenClassification",
"MraLayer",
"MraModel",
"MraPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mra import (
MRA_PRETRAINED_MODEL_ARCHIVE_LIST,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraLayer,
MraModel,
MraPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/mra/convert_mra_pytorch_to_pytorch.py | # coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert MRA checkpoints from the original repository. URL: https://github.com/mlpen/mra-attention"""
import argparse
import torch
from transformers import MraConfig, MraForMaskedLM
def rename_key(orig_key):
if "model" in orig_key:
orig_key = orig_key.replace("model.", "")
if "norm1" in orig_key:
orig_key = orig_key.replace("norm1", "attention.output.LayerNorm")
if "norm2" in orig_key:
orig_key = orig_key.replace("norm2", "output.LayerNorm")
if "norm" in orig_key:
orig_key = orig_key.replace("norm", "LayerNorm")
if "transformer" in orig_key:
layer_num = orig_key.split(".")[0].split("_")[-1]
orig_key = orig_key.replace(f"transformer_{layer_num}", f"encoder.layer.{layer_num}")
if "mha.attn" in orig_key:
orig_key = orig_key.replace("mha.attn", "attention.self")
if "mha" in orig_key:
orig_key = orig_key.replace("mha", "attention")
if "W_q" in orig_key:
orig_key = orig_key.replace("W_q", "self.query")
if "W_k" in orig_key:
orig_key = orig_key.replace("W_k", "self.key")
if "W_v" in orig_key:
orig_key = orig_key.replace("W_v", "self.value")
if "ff.0" in orig_key:
orig_key = orig_key.replace("ff.0", "intermediate.dense")
if "ff.2" in orig_key:
orig_key = orig_key.replace("ff.2", "output.dense")
if "ff" in orig_key:
orig_key = orig_key.replace("ff", "output.dense")
if "mlm_class" in orig_key:
orig_key = orig_key.replace("mlm.mlm_class", "cls.predictions.decoder")
if "mlm" in orig_key:
orig_key = orig_key.replace("mlm", "cls.predictions.transform")
if "backbone.backbone.encoders" in orig_key:
orig_key = orig_key.replace("backbone.backbone.encoders", "encoder.layer")
if "cls" not in orig_key:
orig_key = "mra." + orig_key
return orig_key
def convert_checkpoint_helper(max_position_embeddings, orig_state_dict):
for key in orig_state_dict.copy().keys():
val = orig_state_dict.pop(key)
if ("pooler" in key) or ("sen_class" in key):
continue
else:
orig_state_dict[rename_key(key)] = val
orig_state_dict["cls.predictions.bias"] = orig_state_dict["cls.predictions.decoder.bias"]
orig_state_dict["mra.embeddings.position_ids"] = torch.arange(max_position_embeddings).expand((1, -1)) + 2
return orig_state_dict
def convert_mra_checkpoint(checkpoint_path, mra_config_file, pytorch_dump_path):
orig_state_dict = torch.load(checkpoint_path, map_location="cpu")["model_state_dict"]
config = MraConfig.from_json_file(mra_config_file)
model = MraForMaskedLM(config)
new_state_dict = convert_checkpoint_helper(config.max_position_embeddings, orig_state_dict)
print(model.load_state_dict(new_state_dict))
model.eval()
model.save_pretrained(pytorch_dump_path)
print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--pytorch_model_path", default=None, type=str, required=True, help="Path to Mra pytorch checkpoint."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The json file for Mra model config.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
args = parser.parse_args()
convert_mra_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/mra/configuration_mra.py | # coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" MRA model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
MRA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json",
}
class MraConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MraModel`]. It is used to instantiate an MRA
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Mra
[uw-madison/mra-base-512-4](https://huggingface.co/uw-madison/mra-base-512-4) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the Mra model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`MraModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 1):
The vocabulary size of the `token_type_ids` passed when calling [`MraModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`.
block_per_row (`int`, *optional*, defaults to 4):
Used to set the budget for the high resolution scale.
approx_mode (`str`, *optional*, defaults to `"full"`):
Controls whether both low and high resolution approximations are used. Set to `"full"` for both low and
high resolution and `"sparse"` for only low resolution.
initial_prior_first_n_blocks (`int`, *optional*, defaults to 0):
The initial number of blocks for which high resolution is used.
initial_prior_diagonal_n_blocks (`int`, *optional*, defaults to 0):
The number of diagonal blocks for which high resolution is used.
Example:
```python
>>> from transformers import MraConfig, MraModel
>>> # Initializing a Mra uw-madison/mra-base-512-4 style configuration
>>> configuration = MraConfig()
>>> # Initializing a model (with random weights) from the uw-madison/mra-base-512-4 style configuration
>>> model = MraModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mra"
def __init__(
self,
vocab_size=50265,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=1,
initializer_range=0.02,
layer_norm_eps=1e-5,
position_embedding_type="absolute",
block_per_row=4,
approx_mode="full",
initial_prior_first_n_blocks=0,
initial_prior_diagonal_n_blocks=0,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.block_per_row = block_per_row
self.approx_mode = approx_mode
self.initial_prior_first_n_blocks = initial_prior_first_n_blocks
self.initial_prior_diagonal_n_blocks = initial_prior_diagonal_n_blocks
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/segformer/__init__.py | # Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
_import_structure = {
"configuration_segformer": ["SEGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SegformerConfig", "SegformerOnnxConfig"]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["feature_extraction_segformer"] = ["SegformerFeatureExtractor"]
_import_structure["image_processing_segformer"] = ["SegformerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_segformer"] = [
"SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"SegformerDecodeHead",
"SegformerForImageClassification",
"SegformerForSemanticSegmentation",
"SegformerLayer",
"SegformerModel",
"SegformerPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_segformer"] = [
"TF_SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFSegformerDecodeHead",
"TFSegformerForImageClassification",
"TFSegformerForSemanticSegmentation",
"TFSegformerModel",
"TFSegformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_segformer import SEGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SegformerConfig, SegformerOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_segformer import SegformerFeatureExtractor
from .image_processing_segformer import SegformerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_segformer import (
SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
SegformerDecodeHead,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerLayer,
SegformerModel,
SegformerPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_segformer import (
TF_SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSegformerDecodeHead,
TFSegformerForImageClassification,
TFSegformerForSemanticSegmentation,
TFSegformerModel,
TFSegformerPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/segformer/configuration_segformer.py | # coding=utf-8
# Copyright 2021 NVIDIA and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" SegFormer model configuration"""
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
SEGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"nvidia/segformer-b0-finetuned-ade-512-512": (
"https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class SegformerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SegformerModel`]. It is used to instantiate an
SegFormer model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the SegFormer
[nvidia/segformer-b0-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
num_encoder_blocks (`int`, *optional*, defaults to 4):
The number of encoder blocks (i.e. stages in the Mix Transformer encoder).
depths (`List[int]`, *optional*, defaults to `[2, 2, 2, 2]`):
The number of layers in each encoder block.
sr_ratios (`List[int]`, *optional*, defaults to `[8, 4, 2, 1]`):
Sequence reduction ratios in each encoder block.
hidden_sizes (`List[int]`, *optional*, defaults to `[32, 64, 160, 256]`):
Dimension of each of the encoder blocks.
patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3, 3]`):
Patch size before each encoder block.
strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`):
Stride before each encoder block.
num_attention_heads (`List[int]`, *optional*, defaults to `[1, 2, 5, 8]`):
Number of attention heads for each attention layer in each block of the Transformer encoder.
mlp_ratios (`List[int]`, *optional*, defaults to `[4, 4, 4, 4]`):
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the
encoder blocks.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability before the classification head.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
drop_path_rate (`float`, *optional*, defaults to 0.1):
The dropout probability for stochastic depth, used in the blocks of the Transformer encoder.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
decoder_hidden_size (`int`, *optional*, defaults to 256):
The dimension of the all-MLP decode head.
semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
The index that is ignored by the loss function of the semantic segmentation model.
Example:
```python
>>> from transformers import SegformerModel, SegformerConfig
>>> # Initializing a SegFormer nvidia/segformer-b0-finetuned-ade-512-512 style configuration
>>> configuration = SegformerConfig()
>>> # Initializing a model from the nvidia/segformer-b0-finetuned-ade-512-512 style configuration
>>> model = SegformerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "segformer"
def __init__(
self,
num_channels=3,
num_encoder_blocks=4,
depths=[2, 2, 2, 2],
sr_ratios=[8, 4, 2, 1],
hidden_sizes=[32, 64, 160, 256],
patch_sizes=[7, 3, 3, 3],
strides=[4, 2, 2, 2],
num_attention_heads=[1, 2, 5, 8],
mlp_ratios=[4, 4, 4, 4],
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
classifier_dropout_prob=0.1,
initializer_range=0.02,
drop_path_rate=0.1,
layer_norm_eps=1e-6,
decoder_hidden_size=256,
semantic_loss_ignore_index=255,
**kwargs,
):
super().__init__(**kwargs)
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
"Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be"
" removed, as the behaviour will default to that of reshape_last_stage = True.",
FutureWarning,
)
self.num_channels = num_channels
self.num_encoder_blocks = num_encoder_blocks
self.depths = depths
self.sr_ratios = sr_ratios
self.hidden_sizes = hidden_sizes
self.patch_sizes = patch_sizes
self.strides = strides
self.mlp_ratios = mlp_ratios
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.classifier_dropout_prob = classifier_dropout_prob
self.initializer_range = initializer_range
self.drop_path_rate = drop_path_rate
self.layer_norm_eps = layer_norm_eps
self.decoder_hidden_size = decoder_hidden_size
self.reshape_last_stage = kwargs.get("reshape_last_stage", True)
self.semantic_loss_ignore_index = semantic_loss_ignore_index
class SegformerOnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-4
@property
def default_onnx_opset(self) -> int:
return 12
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/segformer/convert_segformer_original_to_pytorch.py | # coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert SegFormer checkpoints."""
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def rename_keys(state_dict, encoder_only=False):
new_state_dict = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith("head"):
key = "segformer.encoder." + key
if key.startswith("backbone"):
key = key.replace("backbone", "segformer.encoder")
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
idx = key[key.find("patch_embed") + len("patch_embed")]
key = key.replace(f"patch_embed{idx}", f"patch_embeddings.{int(idx)-1}")
if "norm" in key:
key = key.replace("norm", "layer_norm")
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
idx = key[key.find("segformer.encoder.layer_norm") + len("segformer.encoder.layer_norm")]
key = key.replace(f"layer_norm{idx}", f"layer_norm.{int(idx)-1}")
if "layer_norm1" in key:
key = key.replace("layer_norm1", "layer_norm_1")
if "layer_norm2" in key:
key = key.replace("layer_norm2", "layer_norm_2")
if "block" in key:
# replace for example block1 by block.0
idx = key[key.find("block") + len("block")]
key = key.replace(f"block{idx}", f"block.{int(idx)-1}")
if "attn.q" in key:
key = key.replace("attn.q", "attention.self.query")
if "attn.proj" in key:
key = key.replace("attn.proj", "attention.output.dense")
if "attn" in key:
key = key.replace("attn", "attention.self")
if "fc1" in key:
key = key.replace("fc1", "dense1")
if "fc2" in key:
key = key.replace("fc2", "dense2")
if "linear_pred" in key:
key = key.replace("linear_pred", "classifier")
if "linear_fuse" in key:
key = key.replace("linear_fuse.conv", "linear_fuse")
key = key.replace("linear_fuse.bn", "batch_norm")
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
idx = key[key.find("linear_c") + len("linear_c")]
key = key.replace(f"linear_c{idx}", f"linear_c.{int(idx)-1}")
if key.startswith("head"):
key = key.replace("head", "classifier")
new_state_dict[key] = value
return new_state_dict
def read_in_k_v(state_dict, config):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks):
for j in range(config.depths[i]):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
kv_weight = state_dict.pop(f"segformer.encoder.block.{i}.{j}.attention.self.kv.weight")
kv_bias = state_dict.pop(f"segformer.encoder.block.{i}.{j}.attention.self.kv.bias")
# next, add keys and values (in that order) to the state dict
state_dict[f"segformer.encoder.block.{i}.{j}.attention.self.key.weight"] = kv_weight[
: config.hidden_sizes[i], :
]
state_dict[f"segformer.encoder.block.{i}.{j}.attention.self.key.bias"] = kv_bias[: config.hidden_sizes[i]]
state_dict[f"segformer.encoder.block.{i}.{j}.attention.self.value.weight"] = kv_weight[
config.hidden_sizes[i] :, :
]
state_dict[f"segformer.encoder.block.{i}.{j}.attention.self.value.bias"] = kv_bias[
config.hidden_sizes[i] :
]
# We will verify our results on a COCO image
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
return image
@torch.no_grad()
def convert_segformer_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path):
"""
Copy/paste/tweak model's weights to our SegFormer structure.
"""
# load default SegFormer configuration
config = SegformerConfig()
encoder_only = False
# set attributes based on model_name
repo_id = "huggingface/label-files"
if "segformer" in model_name:
size = model_name[len("segformer.") : len("segformer.") + 2]
if "ade" in model_name:
config.num_labels = 150
filename = "ade20k-id2label.json"
expected_shape = (1, 150, 128, 128)
elif "city" in model_name:
config.num_labels = 19
filename = "cityscapes-id2label.json"
expected_shape = (1, 19, 128, 128)
else:
raise ValueError(f"Model {model_name} not supported")
elif "mit" in model_name:
encoder_only = True
size = model_name[4:6]
config.num_labels = 1000
filename = "imagenet-1k-id2label.json"
expected_shape = (1, 1000)
else:
raise ValueError(f"Model {model_name} not supported")
# set config attributes
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
if size == "b0":
pass
elif size == "b1":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 256
elif size == "b2":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 768
config.depths = [3, 4, 6, 3]
elif size == "b3":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 768
config.depths = [3, 4, 18, 3]
elif size == "b4":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 768
config.depths = [3, 8, 27, 3]
elif size == "b5":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 768
config.depths = [3, 6, 40, 3]
else:
raise ValueError(f"Size {size} not supported")
# load image processor (only resize + normalize)
image_processor = SegformerImageProcessor(
image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False
)
# prepare image
image = prepare_img()
pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
logger.info(f"Converting model {model_name}...")
# load original state dict
if encoder_only:
state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu"))
else:
state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu"))["state_dict"]
# rename keys
state_dict = rename_keys(state_dict, encoder_only=encoder_only)
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(state_dict, config)
# create HuggingFace model and load state dict
if encoder_only:
config.reshape_last_stage = False
model = SegformerForImageClassification(config)
else:
model = SegformerForSemanticSegmentation(config)
model.load_state_dict(state_dict)
model.eval()
# forward pass
outputs = model(pixel_values)
logits = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]],
[[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]],
[[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]],
]
)
elif model_name == "segformer.b1.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]],
[[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]],
[[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]],
]
)
elif model_name == "segformer.b2.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]],
[[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]],
[[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]],
]
)
elif model_name == "segformer.b3.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]],
[[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]],
[[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]],
]
)
elif model_name == "segformer.b4.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]],
[[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]],
[[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]],
]
)
elif model_name == "segformer.b5.640x640.ade.160k":
expected_slice = torch.tensor(
[
[[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]],
[[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]],
[[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]],
]
)
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]],
[[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]],
[[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]],
]
)
elif model_name == "segformer.b0.512x1024.city.160k":
expected_slice = torch.tensor(
[
[[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]],
[[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]],
[[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]],
]
)
elif model_name == "segformer.b0.640x1280.city.160k":
expected_slice = torch.tensor(
[
[
[-1.1372e01, -1.2787e01, -1.3477e01],
[-1.2536e01, -1.4194e01, -1.4409e01],
[-1.3217e01, -1.4888e01, -1.5327e01],
],
[
[-1.4791e01, -1.7122e01, -1.8277e01],
[-1.7163e01, -1.9192e01, -1.9533e01],
[-1.7897e01, -1.9991e01, -2.0315e01],
],
[
[7.6723e-01, 4.1921e-01, -7.7878e-02],
[4.7772e-01, 9.5557e-03, -2.8082e-01],
[3.6032e-01, -2.4826e-01, -5.1168e-01],
],
]
)
elif model_name == "segformer.b0.768x768.city.160k":
expected_slice = torch.tensor(
[
[[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]],
[[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]],
[[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]],
]
)
elif model_name == "segformer.b1.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]],
[[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]],
[[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]],
]
)
elif model_name == "segformer.b2.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]],
[[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]],
[[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]],
]
)
elif model_name == "segformer.b3.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]],
[[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]],
[[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]],
]
)
elif model_name == "segformer.b4.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]],
[[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]],
[[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]],
]
)
elif model_name == "segformer.b5.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]],
[[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]],
[[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]],
]
)
else:
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-2)
# finally, save model and image processor
logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...")
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
model.save_pretrained(pytorch_dump_folder_path)
image_processor.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
default="segformer.b0.512x512.ade.160k",
type=str,
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
args = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/segformer/image_processing_segformer.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Segformer."""
import warnings
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging
if is_vision_available():
import PIL.Image
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class SegformerImageProcessor(BaseImageProcessor):
r"""
Constructs a Segformer image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `(size["height"],
size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"height": 512, "width": 512}`):
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
do_reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is
used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The
background label will be replaced by 255. Can be overridden by the `do_reduce_labels` parameter in the
`preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_reduce_labels: bool = False,
**kwargs,
) -> None:
if "reduce_labels" in kwargs:
warnings.warn(
"The `reduce_labels` parameter is deprecated and will be removed in a future version. Please use "
"`do_reduce_labels` instead.",
FutureWarning,
)
do_reduce_labels = kwargs.pop("reduce_labels")
super().__init__(**kwargs)
size = size if size is not None else {"height": 512, "width": 512}
size = get_size_dict(size)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self.do_reduce_labels = do_reduce_labels
@classmethod
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
"""
Overrides the `from_dict` method from the base class to make sure `do_reduce_labels` is updated if image
processor is created using from_dict and kwargs e.g. `SegformerImageProcessor.from_pretrained(checkpoint,
reduce_labels=True)`
"""
image_processor_dict = image_processor_dict.copy()
if "reduce_labels" in kwargs:
image_processor_dict["reduce_labels"] = kwargs.pop("reduce_labels")
return super().from_dict(image_processor_dict, **kwargs)
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
output_size = (size["height"], size["width"])
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
# Copied from transformers.models.beit.image_processing_beit.BeitImageProcessor.reduce_label
def reduce_label(self, label: ImageInput) -> np.ndarray:
label = to_numpy_array(label)
# Avoid using underflow conversion
label[label == 0] = 255
label = label - 1
label[label == 254] = 255
return label
def _preprocess(
self,
image: ImageInput,
do_reduce_labels: bool,
do_resize: bool,
do_rescale: bool,
do_normalize: bool,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None,
rescale_factor: Optional[float] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
if do_reduce_labels:
image = self.reduce_label(image)
if do_resize:
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
return image
def _preprocess_image(
self,
image: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""Preprocesses a single image."""
# All transformations expect numpy arrays.
image = to_numpy_array(image)
if is_scaled_image(image) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
image = self._preprocess(
image=image,
do_reduce_labels=False,
do_resize=do_resize,
size=size,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
input_data_format=input_data_format,
)
if data_format is not None:
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
return image
def _preprocess_mask(
self,
segmentation_map: ImageInput,
do_reduce_labels: bool = None,
do_resize: bool = None,
size: Dict[str, int] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""Preprocesses a single mask."""
segmentation_map = to_numpy_array(segmentation_map)
# Add channel dimension if missing - needed for certain transformations
if segmentation_map.ndim == 2:
added_channel_dim = True
segmentation_map = segmentation_map[None, ...]
input_data_format = ChannelDimension.FIRST
else:
added_channel_dim = False
if input_data_format is None:
input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1)
# reduce zero label if needed
segmentation_map = self._preprocess(
image=segmentation_map,
do_reduce_labels=do_reduce_labels,
do_resize=do_resize,
resample=PILImageResampling.NEAREST,
size=size,
do_rescale=False,
do_normalize=False,
input_data_format=input_data_format,
)
# Remove extra channel dimension if added for processing
if added_channel_dim:
segmentation_map = segmentation_map.squeeze(0)
segmentation_map = segmentation_map.astype(np.int64)
return segmentation_map
def __call__(self, images, segmentation_maps=None, **kwargs):
"""
Preprocesses a batch of images and optionally segmentation maps.
Overrides the `__call__` method of the `Preprocessor` class so that both images and segmentation maps can be
passed in as positional arguments.
"""
return super().__call__(images, segmentation_maps=segmentation_maps, **kwargs)
def preprocess(
self,
images: ImageInput,
segmentation_maps: Optional[ImageInput] = None,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_reduce_labels: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
segmentation_maps (`ImageInput`, *optional*):
Segmentation map to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after `resize` is applied.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
do_reduce_labels (`bool`, *optional*, defaults to `self.do_reduce_labels`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0
is used for background, and background itself is not included in all classes of a dataset (e.g.
ADE20k). The background label will be replaced by 255.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels
resample = resample if resample is not None else self.resample
size = size if size is not None else self.size
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
images = make_list_of_images(images)
if segmentation_maps is not None:
segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if segmentation_maps is not None and not valid_images(segmentation_maps):
raise ValueError(
"Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
images = [
self._preprocess_image(
image=img,
do_resize=do_resize,
resample=resample,
size=size,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
input_data_format=input_data_format,
)
for img in images
]
data = {"pixel_values": images}
if segmentation_maps is not None:
segmentation_maps = [
self._preprocess_mask(
segmentation_map=segmentation_map,
do_reduce_labels=do_reduce_labels,
do_resize=do_resize,
size=size,
input_data_format=input_data_format,
)
for segmentation_map in segmentation_maps
]
data["labels"] = segmentation_maps
return BatchFeature(data=data, tensor_type=return_tensors)
# Copied from transformers.models.beit.image_processing_beit.BeitImageProcessor.post_process_semantic_segmentation with Beit->Segformer
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
"""
Converts the output of [`SegformerForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.
Args:
outputs ([`SegformerForSemanticSegmentation`]):
Raw outputs of the model.
target_sizes (`List[Tuple]` of length `batch_size`, *optional*):
List of tuples corresponding to the requested final size (height, width) of each prediction. If unset,
predictions will not be resized.
Returns:
semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
"""
# TODO: add support for other frameworks
logits = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
if is_torch_tensor(target_sizes):
target_sizes = target_sizes.numpy()
semantic_segmentation = []
for idx in range(len(logits)):
resized_logits = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
)
semantic_map = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(semantic_map)
else:
semantic_segmentation = logits.argmax(dim=1)
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/segformer/modeling_segformer.py | # coding=utf-8
# Copyright 2021 NVIDIA The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch SegFormer model."""
import math
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput, ImageClassifierOutput, SemanticSegmenterOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_segformer import SegformerConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "SegformerConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "nvidia/mit-b0"
_EXPECTED_OUTPUT_SHAPE = [1, 256, 16, 16]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "nvidia/mit-b0"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"nvidia/segformer-b0-finetuned-ade-512-512",
# See all SegFormer models at https://huggingface.co/models?filter=segformer
]
class SegFormerImageClassifierOutput(ImageClassifierOutput):
"""
Base class for outputs of image classification models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also
called feature maps) of the model at the output of each stage.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, patch_size,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.convnext.modeling_convnext.ConvNextDropPath with ConvNext->Segformer
class SegformerDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class SegformerOverlapPatchEmbeddings(nn.Module):
"""Construct the overlapping patch embeddings."""
def __init__(self, patch_size, stride, num_channels, hidden_size):
super().__init__()
self.proj = nn.Conv2d(
num_channels,
hidden_size,
kernel_size=patch_size,
stride=stride,
padding=patch_size // 2,
)
self.layer_norm = nn.LayerNorm(hidden_size)
def forward(self, pixel_values):
embeddings = self.proj(pixel_values)
_, _, height, width = embeddings.shape
# (batch_size, num_channels, height, width) -> (batch_size, num_channels, height*width) -> (batch_size, height*width, num_channels)
# this can be fed to a Transformer layer
embeddings = embeddings.flatten(2).transpose(1, 2)
embeddings = self.layer_norm(embeddings)
return embeddings, height, width
class SegformerEfficientSelfAttention(nn.Module):
"""SegFormer's efficient self-attention mechanism. Employs the sequence reduction process introduced in the [PvT
paper](https://arxiv.org/abs/2102.12122)."""
def __init__(self, config, hidden_size, num_attention_heads, sequence_reduction_ratio):
super().__init__()
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention "
f"heads ({self.num_attention_heads})"
)
self.attention_head_size = int(self.hidden_size / self.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(self.hidden_size, self.all_head_size)
self.key = nn.Linear(self.hidden_size, self.all_head_size)
self.value = nn.Linear(self.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.sr_ratio = sequence_reduction_ratio
if sequence_reduction_ratio > 1:
self.sr = nn.Conv2d(
hidden_size, hidden_size, kernel_size=sequence_reduction_ratio, stride=sequence_reduction_ratio
)
self.layer_norm = nn.LayerNorm(hidden_size)
def transpose_for_scores(self, hidden_states):
new_shape = hidden_states.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
hidden_states = hidden_states.view(new_shape)
return hidden_states.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
height,
width,
output_attentions=False,
):
query_layer = self.transpose_for_scores(self.query(hidden_states))
if self.sr_ratio > 1:
batch_size, seq_len, num_channels = hidden_states.shape
# Reshape to (batch_size, num_channels, height, width)
hidden_states = hidden_states.permute(0, 2, 1).reshape(batch_size, num_channels, height, width)
# Apply sequence reduction
hidden_states = self.sr(hidden_states)
# Reshape back to (batch_size, seq_len, num_channels)
hidden_states = hidden_states.reshape(batch_size, num_channels, -1).permute(0, 2, 1)
hidden_states = self.layer_norm(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class SegformerSelfOutput(nn.Module):
def __init__(self, config, hidden_size):
super().__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class SegformerAttention(nn.Module):
def __init__(self, config, hidden_size, num_attention_heads, sequence_reduction_ratio):
super().__init__()
self.self = SegformerEfficientSelfAttention(
config=config,
hidden_size=hidden_size,
num_attention_heads=num_attention_heads,
sequence_reduction_ratio=sequence_reduction_ratio,
)
self.output = SegformerSelfOutput(config, hidden_size=hidden_size)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, hidden_states, height, width, output_attentions=False):
self_outputs = self.self(hidden_states, height, width, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class SegformerDWConv(nn.Module):
def __init__(self, dim=768):
super().__init__()
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
def forward(self, hidden_states, height, width):
batch_size, seq_len, num_channels = hidden_states.shape
hidden_states = hidden_states.transpose(1, 2).view(batch_size, num_channels, height, width)
hidden_states = self.dwconv(hidden_states)
hidden_states = hidden_states.flatten(2).transpose(1, 2)
return hidden_states
class SegformerMixFFN(nn.Module):
def __init__(self, config, in_features, hidden_features=None, out_features=None):
super().__init__()
out_features = out_features or in_features
self.dense1 = nn.Linear(in_features, hidden_features)
self.dwconv = SegformerDWConv(hidden_features)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
self.dense2 = nn.Linear(hidden_features, out_features)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, height, width):
hidden_states = self.dense1(hidden_states)
hidden_states = self.dwconv(hidden_states, height, width)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense2(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class SegformerLayer(nn.Module):
"""This corresponds to the Block class in the original implementation."""
def __init__(self, config, hidden_size, num_attention_heads, drop_path, sequence_reduction_ratio, mlp_ratio):
super().__init__()
self.layer_norm_1 = nn.LayerNorm(hidden_size)
self.attention = SegformerAttention(
config,
hidden_size=hidden_size,
num_attention_heads=num_attention_heads,
sequence_reduction_ratio=sequence_reduction_ratio,
)
self.drop_path = SegformerDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.layer_norm_2 = nn.LayerNorm(hidden_size)
mlp_hidden_size = int(hidden_size * mlp_ratio)
self.mlp = SegformerMixFFN(config, in_features=hidden_size, hidden_features=mlp_hidden_size)
def forward(self, hidden_states, height, width, output_attentions=False):
self_attention_outputs = self.attention(
self.layer_norm_1(hidden_states), # in Segformer, layernorm is applied before self-attention
height,
width,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# first residual connection (with stochastic depth)
attention_output = self.drop_path(attention_output)
hidden_states = attention_output + hidden_states
mlp_output = self.mlp(self.layer_norm_2(hidden_states), height, width)
# second residual connection (with stochastic depth)
mlp_output = self.drop_path(mlp_output)
layer_output = mlp_output + hidden_states
outputs = (layer_output,) + outputs
return outputs
class SegformerEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
# stochastic depth decay rule
drop_path_decays = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
# patch embeddings
embeddings = []
for i in range(config.num_encoder_blocks):
embeddings.append(
SegformerOverlapPatchEmbeddings(
patch_size=config.patch_sizes[i],
stride=config.strides[i],
num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1],
hidden_size=config.hidden_sizes[i],
)
)
self.patch_embeddings = nn.ModuleList(embeddings)
# Transformer blocks
blocks = []
cur = 0
for i in range(config.num_encoder_blocks):
# each block consists of layers
layers = []
if i != 0:
cur += config.depths[i - 1]
for j in range(config.depths[i]):
layers.append(
SegformerLayer(
config,
hidden_size=config.hidden_sizes[i],
num_attention_heads=config.num_attention_heads[i],
drop_path=drop_path_decays[cur + j],
sequence_reduction_ratio=config.sr_ratios[i],
mlp_ratio=config.mlp_ratios[i],
)
)
blocks.append(nn.ModuleList(layers))
self.block = nn.ModuleList(blocks)
# Layer norms
self.layer_norm = nn.ModuleList(
[nn.LayerNorm(config.hidden_sizes[i]) for i in range(config.num_encoder_blocks)]
)
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
batch_size = pixel_values.shape[0]
hidden_states = pixel_values
for idx, x in enumerate(zip(self.patch_embeddings, self.block, self.layer_norm)):
embedding_layer, block_layer, norm_layer = x
# first, obtain patch embeddings
hidden_states, height, width = embedding_layer(hidden_states)
# second, send embeddings through blocks
for i, blk in enumerate(block_layer):
layer_outputs = blk(hidden_states, height, width, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
# third, apply layer norm
hidden_states = norm_layer(hidden_states)
# fourth, optionally reshape back to (batch_size, num_channels, height, width)
if idx != len(self.patch_embeddings) - 1 or (
idx == len(self.patch_embeddings) - 1 and self.config.reshape_last_stage
):
hidden_states = hidden_states.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous()
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class SegformerPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = SegformerConfig
base_model_prefix = "segformer"
main_input_name = "pixel_values"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
SEGFORMER_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`SegformerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SEGFORMER_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare SegFormer encoder (Mix-Transformer) outputting raw hidden-states without any specific head on top.",
SEGFORMER_START_DOCSTRING,
)
class SegformerModel(SegformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
# hierarchical Transformer encoder
self.encoder = SegformerEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_outputs = self.encoder(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""
SegFormer Model transformer with an image classification head on top (a linear layer on top of the final hidden
states) e.g. for ImageNet.
""",
SEGFORMER_START_DOCSTRING,
)
class SegformerForImageClassification(SegformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.segformer = SegformerModel(config)
# Classifier head
self.classifier = nn.Linear(config.hidden_sizes[-1], config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=SegFormerImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SegFormerImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.segformer(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
# convert last hidden states to (batch_size, height*width, hidden_size)
batch_size = sequence_output.shape[0]
if self.config.reshape_last_stage:
# (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels)
sequence_output = sequence_output.permute(0, 2, 3, 1)
sequence_output = sequence_output.reshape(batch_size, -1, self.config.hidden_sizes[-1])
# global average pooling
sequence_output = sequence_output.mean(dim=1)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return SegFormerImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class SegformerMLP(nn.Module):
"""
Linear Embedding.
"""
def __init__(self, config: SegformerConfig, input_dim):
super().__init__()
self.proj = nn.Linear(input_dim, config.decoder_hidden_size)
def forward(self, hidden_states: torch.Tensor):
hidden_states = hidden_states.flatten(2).transpose(1, 2)
hidden_states = self.proj(hidden_states)
return hidden_states
class SegformerDecodeHead(SegformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
# linear layers which will unify the channel dimension of each of the encoder blocks to the same config.decoder_hidden_size
mlps = []
for i in range(config.num_encoder_blocks):
mlp = SegformerMLP(config, input_dim=config.hidden_sizes[i])
mlps.append(mlp)
self.linear_c = nn.ModuleList(mlps)
# the following 3 layers implement the ConvModule of the original implementation
self.linear_fuse = nn.Conv2d(
in_channels=config.decoder_hidden_size * config.num_encoder_blocks,
out_channels=config.decoder_hidden_size,
kernel_size=1,
bias=False,
)
self.batch_norm = nn.BatchNorm2d(config.decoder_hidden_size)
self.activation = nn.ReLU()
self.dropout = nn.Dropout(config.classifier_dropout_prob)
self.classifier = nn.Conv2d(config.decoder_hidden_size, config.num_labels, kernel_size=1)
self.config = config
def forward(self, encoder_hidden_states: torch.FloatTensor) -> torch.Tensor:
batch_size = encoder_hidden_states[-1].shape[0]
all_hidden_states = ()
for encoder_hidden_state, mlp in zip(encoder_hidden_states, self.linear_c):
if self.config.reshape_last_stage is False and encoder_hidden_state.ndim == 3:
height = width = int(math.sqrt(encoder_hidden_state.shape[-1]))
encoder_hidden_state = (
encoder_hidden_state.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous()
)
# unify channel dimension
height, width = encoder_hidden_state.shape[2], encoder_hidden_state.shape[3]
encoder_hidden_state = mlp(encoder_hidden_state)
encoder_hidden_state = encoder_hidden_state.permute(0, 2, 1)
encoder_hidden_state = encoder_hidden_state.reshape(batch_size, -1, height, width)
# upsample
encoder_hidden_state = nn.functional.interpolate(
encoder_hidden_state, size=encoder_hidden_states[0].size()[2:], mode="bilinear", align_corners=False
)
all_hidden_states += (encoder_hidden_state,)
hidden_states = self.linear_fuse(torch.cat(all_hidden_states[::-1], dim=1))
hidden_states = self.batch_norm(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = self.dropout(hidden_states)
# logits are of shape (batch_size, num_labels, height/4, width/4)
logits = self.classifier(hidden_states)
return logits
@add_start_docstrings(
"""SegFormer Model transformer with an all-MLP decode head on top e.g. for ADE20k, CityScapes.""",
SEGFORMER_START_DOCSTRING,
)
class SegformerForSemanticSegmentation(SegformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.segformer = SegformerModel(config)
self.decode_head = SegformerDecodeHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SemanticSegmenterOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, SegformerForSemanticSegmentation
>>> from PIL import Image
>>> import requests
>>> image_processor = AutoImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
>>> model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
>>> list(logits.shape)
[1, 150, 128, 128]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
outputs = self.segformer(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=True, # we need the intermediate hidden states
return_dict=return_dict,
)
encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1]
logits = self.decode_head(encoder_hidden_states)
loss = None
if labels is not None:
# upsample logits to the images' original size
upsampled_logits = nn.functional.interpolate(
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
)
if self.config.num_labels > 1:
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
loss = loss_fct(upsampled_logits, labels)
elif self.config.num_labels == 1:
valid_mask = ((labels >= 0) & (labels != self.config.semantic_loss_ignore_index)).float()
loss_fct = BCEWithLogitsLoss(reduction="none")
loss = loss_fct(upsampled_logits.squeeze(1), labels.float())
loss = (loss * valid_mask).mean()
else:
raise ValueError(f"Number of labels should be >=0: {self.config.num_labels}")
if not return_dict:
if output_hidden_states:
output = (logits,) + outputs[1:]
else:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/segformer/modeling_tf_segformer.py | # coding=utf-8
# Copyright 2022 NVIDIA The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TensorFlow SegFormer model."""
from __future__ import annotations
import math
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...file_utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from ...modeling_tf_outputs import TFBaseModelOutput, TFSemanticSegmenterOutput, TFSequenceClassifierOutput
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list, stable_softmax
from ...utils import logging
from .configuration_segformer import SegformerConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "SegformerConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "nvidia/mit-b0"
_EXPECTED_OUTPUT_SHAPE = [1, 256, 16, 16]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "nvidia/mit-b0"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
TF_SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"nvidia/segformer-b0-finetuned-ade-512-512",
# See all SegFormer models at https://huggingface.co/models?filter=segformer
]
# Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextDropPath with ConvNext->Segformer
class TFSegformerDropPath(tf.keras.layers.Layer):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
References:
(1) github.com:rwightman/pytorch-image-models
"""
def __init__(self, drop_path: float, **kwargs):
super().__init__(**kwargs)
self.drop_path = drop_path
def call(self, x: tf.Tensor, training=None):
if training:
keep_prob = 1 - self.drop_path
shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1)
random_tensor = keep_prob + tf.random.uniform(shape, 0, 1)
random_tensor = tf.floor(random_tensor)
return (x / keep_prob) * random_tensor
return x
class TFSegformerOverlapPatchEmbeddings(tf.keras.layers.Layer):
"""Construct the overlapping patch embeddings."""
def __init__(self, patch_size, stride, num_channels, hidden_size, **kwargs):
super().__init__(**kwargs)
self.padding = tf.keras.layers.ZeroPadding2D(padding=patch_size // 2)
self.proj = tf.keras.layers.Conv2D(
filters=hidden_size, kernel_size=patch_size, strides=stride, padding="VALID", name="proj"
)
self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-05, name="layer_norm")
self.num_channels = num_channels
self.hidden_size = hidden_size
def call(self, pixel_values: tf.Tensor) -> Tuple[tf.Tensor, int, int]:
embeddings = self.proj(self.padding(pixel_values))
height = shape_list(embeddings)[1]
width = shape_list(embeddings)[2]
hidden_dim = shape_list(embeddings)[3]
# (batch_size, height, width, num_channels) -> (batch_size, height*width, num_channels)
# this can be fed to a Transformer layer
embeddings = tf.reshape(embeddings, (-1, height * width, hidden_dim))
embeddings = self.layer_norm(embeddings)
return embeddings, height, width
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "proj", None) is not None:
with tf.name_scope(self.proj.name):
self.proj.build([None, None, None, self.num_channels])
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.hidden_size])
class TFSegformerEfficientSelfAttention(tf.keras.layers.Layer):
"""SegFormer's efficient self-attention mechanism. Employs the sequence reduction process introduced in the [PvT
paper](https://arxiv.org/abs/2102.12122)."""
def __init__(
self,
config: SegformerConfig,
hidden_size: int,
num_attention_heads: int,
sequence_reduction_ratio: int,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention "
f"heads ({self.num_attention_heads})"
)
self.attention_head_size = self.hidden_size // self.num_attention_heads
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
self.query = tf.keras.layers.Dense(self.all_head_size, name="query")
self.key = tf.keras.layers.Dense(self.all_head_size, name="key")
self.value = tf.keras.layers.Dense(self.all_head_size, name="value")
self.dropout = tf.keras.layers.Dropout(config.attention_probs_dropout_prob)
self.sr_ratio = sequence_reduction_ratio
if sequence_reduction_ratio > 1:
self.sr = tf.keras.layers.Conv2D(
filters=hidden_size, kernel_size=sequence_reduction_ratio, strides=sequence_reduction_ratio, name="sr"
)
self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-05, name="layer_norm")
def transpose_for_scores(self, tensor: tf.Tensor) -> tf.Tensor:
# Reshape from [batch_size, seq_length, all_head_size]
# to [batch_size, seq_length, num_attention_heads, attention_head_size]
batch_size = shape_list(tensor)[0]
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size]
# to [batch_size, num_attention_heads, seq_length, attention_head_size]
return tf.transpose(tensor, perm=[0, 2, 1, 3])
def call(
self,
hidden_states: tf.Tensor,
height: int,
width: int,
output_attentions: bool = False,
training: bool = False,
) -> Union[tf.Tensor, Tuple[tf.Tensor, tf.Tensor]]:
batch_size = shape_list(hidden_states)[0]
num_channels = shape_list(hidden_states)[2]
query_layer = self.transpose_for_scores(self.query(hidden_states))
if self.sr_ratio > 1:
# Reshape to (batch_size, height, width, num_channels)
hidden_states = tf.reshape(hidden_states, (batch_size, height, width, num_channels))
# Apply sequence reduction
hidden_states = self.sr(hidden_states)
# Reshape back to (batch_size, seq_len, num_channels)
hidden_states = tf.reshape(hidden_states, (batch_size, -1, num_channels))
hidden_states = self.layer_norm(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
scale = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
attention_scores = tf.divide(attention_scores, scale)
# Normalize the attention scores to probabilities.
attention_probs = stable_softmax(logits=attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs, training=training)
context_layer = tf.matmul(attention_probs, value_layer)
context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3])
# (batch_size, seq_len_q, all_head_size)
context_layer = tf.reshape(context_layer, (batch_size, -1, self.all_head_size))
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "query", None) is not None:
with tf.name_scope(self.query.name):
self.query.build([None, None, self.hidden_size])
if getattr(self, "key", None) is not None:
with tf.name_scope(self.key.name):
self.key.build([None, None, self.hidden_size])
if getattr(self, "value", None) is not None:
with tf.name_scope(self.value.name):
self.value.build([None, None, self.hidden_size])
if getattr(self, "sr", None) is not None:
with tf.name_scope(self.sr.name):
self.sr.build([None, None, None, self.hidden_size])
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.hidden_size])
class TFSegformerSelfOutput(tf.keras.layers.Layer):
def __init__(self, config: SegformerConfig, hidden_size: int, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(hidden_size, name="dense")
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
self.hidden_size = hidden_size
def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.hidden_size])
class TFSegformerAttention(tf.keras.layers.Layer):
def __init__(
self,
config: SegformerConfig,
hidden_size: int,
num_attention_heads: int,
sequence_reduction_ratio: int,
**kwargs,
):
super().__init__(**kwargs)
self.self = TFSegformerEfficientSelfAttention(
config=config,
hidden_size=hidden_size,
num_attention_heads=num_attention_heads,
sequence_reduction_ratio=sequence_reduction_ratio,
name="self",
)
self.dense_output = TFSegformerSelfOutput(config, hidden_size=hidden_size, name="output")
def call(
self, hidden_states: tf.Tensor, height: int, width: int, output_attentions: bool = False
) -> Union[tf.Tensor, Tuple[tf.Tensor, tf.Tensor]]:
self_outputs = self.self(hidden_states, height, width, output_attentions)
attention_output = self.dense_output(self_outputs[0])
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self", None) is not None:
with tf.name_scope(self.self.name):
self.self.build(None)
if getattr(self, "dense_output", None) is not None:
with tf.name_scope(self.dense_output.name):
self.dense_output.build(None)
class TFSegformerDWConv(tf.keras.layers.Layer):
def __init__(self, dim: int = 768, **kwargs):
super().__init__(**kwargs)
self.depthwise_convolution = tf.keras.layers.Conv2D(
filters=dim, kernel_size=3, strides=1, padding="same", groups=dim, name="dwconv"
)
self.dim = dim
def call(self, hidden_states: tf.Tensor, height: int, width: int) -> tf.Tensor:
batch_size = shape_list(hidden_states)[0]
num_channels = shape_list(hidden_states)[-1]
hidden_states = tf.reshape(hidden_states, (batch_size, height, width, num_channels))
hidden_states = self.depthwise_convolution(hidden_states)
new_height = shape_list(hidden_states)[1]
new_width = shape_list(hidden_states)[2]
num_channels = shape_list(hidden_states)[3]
hidden_states = tf.reshape(hidden_states, (batch_size, new_height * new_width, num_channels))
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "depthwise_convolution", None) is not None:
with tf.name_scope(self.depthwise_convolution.name):
self.depthwise_convolution.build([None, None, None, self.dim])
class TFSegformerMixFFN(tf.keras.layers.Layer):
def __init__(
self,
config: SegformerConfig,
in_features: int,
hidden_features: int = None,
out_features: int = None,
**kwargs,
):
super().__init__(**kwargs)
out_features = out_features or in_features
self.dense1 = tf.keras.layers.Dense(hidden_features, name="dense1")
self.depthwise_convolution = TFSegformerDWConv(hidden_features, name="dwconv")
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
else:
self.intermediate_act_fn = config.hidden_act
self.dense2 = tf.keras.layers.Dense(out_features, name="dense2")
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
self.hidden_features = hidden_features
self.in_features = in_features
def call(self, hidden_states: tf.Tensor, height: int, width: int, training: bool = False) -> tf.Tensor:
hidden_states = self.dense1(hidden_states)
hidden_states = self.depthwise_convolution(hidden_states, height, width)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = self.dense2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense1", None) is not None:
with tf.name_scope(self.dense1.name):
self.dense1.build([None, None, self.in_features])
if getattr(self, "depthwise_convolution", None) is not None:
with tf.name_scope(self.depthwise_convolution.name):
self.depthwise_convolution.build(None)
if getattr(self, "dense2", None) is not None:
with tf.name_scope(self.dense2.name):
self.dense2.build([None, None, self.hidden_features])
class TFSegformerLayer(tf.keras.layers.Layer):
"""This corresponds to the Block class in the original implementation."""
def __init__(
self,
config,
hidden_size: int,
num_attention_heads: int,
drop_path: float,
sequence_reduction_ratio: int,
mlp_ratio: int,
**kwargs,
):
super().__init__(**kwargs)
self.layer_norm_1 = tf.keras.layers.LayerNormalization(epsilon=1e-05, name="layer_norm_1")
self.attention = TFSegformerAttention(
config,
hidden_size=hidden_size,
num_attention_heads=num_attention_heads,
sequence_reduction_ratio=sequence_reduction_ratio,
name="attention",
)
self.drop_path = TFSegformerDropPath(drop_path) if drop_path > 0.0 else tf.keras.layers.Activation("linear")
self.layer_norm_2 = tf.keras.layers.LayerNormalization(epsilon=1e-05, name="layer_norm_2")
mlp_hidden_size = int(hidden_size * mlp_ratio)
self.mlp = TFSegformerMixFFN(config, in_features=hidden_size, hidden_features=mlp_hidden_size, name="mlp")
self.hidden_size = hidden_size
def call(
self,
hidden_states: tf.Tensor,
height: int,
width: int,
output_attentions: bool = False,
training: bool = False,
) -> Tuple:
self_attention_outputs = self.attention(
self.layer_norm_1(hidden_states), # in Segformer, layernorm is applied before self-attention
height,
width,
output_attentions=output_attentions,
training=training,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# first residual connection (with stochastic depth)
attention_output = self.drop_path(attention_output, training=training)
hidden_states = attention_output + hidden_states
mlp_output = self.mlp(self.layer_norm_2(hidden_states), height, width)
# second residual connection (with stochastic depth)
mlp_output = self.drop_path(mlp_output, training=training)
layer_output = mlp_output + hidden_states
outputs = (layer_output,) + outputs
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layer_norm_1", None) is not None:
with tf.name_scope(self.layer_norm_1.name):
self.layer_norm_1.build([None, None, self.hidden_size])
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "layer_norm_2", None) is not None:
with tf.name_scope(self.layer_norm_2.name):
self.layer_norm_2.build([None, None, self.hidden_size])
if getattr(self, "mlp", None) is not None:
with tf.name_scope(self.mlp.name):
self.mlp.build(None)
class TFSegformerEncoder(tf.keras.layers.Layer):
def __init__(self, config: SegformerConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
# stochastic depth decay rule
drop_path_decays = [x.numpy() for x in tf.linspace(0.0, config.drop_path_rate, sum(config.depths))]
# patch embeddings
embeddings = []
for i in range(config.num_encoder_blocks):
embeddings.append(
TFSegformerOverlapPatchEmbeddings(
patch_size=config.patch_sizes[i],
stride=config.strides[i],
num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1],
hidden_size=config.hidden_sizes[i],
name=f"patch_embeddings.{i}",
)
)
self.embeddings = embeddings
# Transformer blocks
blocks = []
cur = 0
for i in range(config.num_encoder_blocks):
# each block consists of layers
layers = []
if i != 0:
cur += config.depths[i - 1]
for j in range(config.depths[i]):
layers.append(
TFSegformerLayer(
config,
hidden_size=config.hidden_sizes[i],
num_attention_heads=config.num_attention_heads[i],
drop_path=drop_path_decays[cur + j],
sequence_reduction_ratio=config.sr_ratios[i],
mlp_ratio=config.mlp_ratios[i],
name=f"block.{i}.{j}",
)
)
blocks.append(layers)
self.block = blocks
# Layer norms
self.layer_norms = [
tf.keras.layers.LayerNormalization(epsilon=1e-05, name=f"layer_norm.{i}")
for i in range(config.num_encoder_blocks)
]
def call(
self,
pixel_values: tf.Tensor,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
training: bool = False,
) -> Union[Tuple, TFBaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
batch_size = shape_list(pixel_values)[0]
hidden_states = pixel_values
for idx, x in enumerate(zip(self.embeddings, self.block, self.layer_norms)):
embedding_layer, block_layer, norm_layer = x
# first, obtain patch embeddings
hidden_states, height, width = embedding_layer(hidden_states)
# second, send embeddings through blocks
# (each block consists of multiple layers i.e., list of layers)
for i, blk in enumerate(block_layer):
layer_outputs = blk(
hidden_states,
height,
width,
output_attentions,
training=training,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
# third, apply layer norm
hidden_states = norm_layer(hidden_states)
# fourth, optionally reshape back to (batch_size, height, width, num_channels)
if idx != len(self.embeddings) - 1 or (idx == len(self.embeddings) - 1 and self.config.reshape_last_stage):
num_channels = shape_list(hidden_states)[-1]
hidden_states = tf.reshape(hidden_states, (batch_size, height, width, num_channels))
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layer_norms", None) is not None:
for layer, shape in zip(self.layer_norms, self.config.hidden_sizes):
with tf.name_scope(layer.name):
layer.build([None, None, shape])
if getattr(self, "block", None) is not None:
for block in self.block:
for layer in block:
with tf.name_scope(layer.name):
layer.build(None)
if getattr(self, "embeddings", None) is not None:
for layer in self.embeddings:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFSegformerMainLayer(tf.keras.layers.Layer):
config_class = SegformerConfig
def __init__(self, config: SegformerConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
# hierarchical Transformer encoder
self.encoder = TFSegformerEncoder(config, name="encoder")
@unpack_inputs
def call(
self,
pixel_values: tf.Tensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[Tuple, TFBaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
encoder_outputs = self.encoder(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
# Change to NCHW output format to have uniformity in the modules
sequence_output = tf.transpose(sequence_output, perm=[0, 3, 1, 2])
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]])
if not return_dict:
if tf.greater(len(encoder_outputs[1:]), 0):
transposed_encoder_outputs = tuple(tf.transpose(v, perm=[0, 3, 1, 2]) for v in encoder_outputs[1:][0])
return (sequence_output,) + (transposed_encoder_outputs,)
else:
return (sequence_output,) + encoder_outputs[1:]
return TFBaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
class TFSegformerPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = SegformerConfig
base_model_prefix = "segformer"
main_input_name = "pixel_values"
@property
def input_signature(self):
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 512, 512), dtype=tf.float32)}
SEGFORMER_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
Parameters:
config ([`SegformerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
SEGFORMER_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`SegformerImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False``):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare SegFormer encoder (Mix-Transformer) outputting raw hidden-states without any specific head on top.",
SEGFORMER_START_DOCSTRING,
)
class TFSegformerModel(TFSegformerPreTrainedModel):
def __init__(self, config: SegformerConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.config = config
# hierarchical Transformer encoder
self.segformer = TFSegformerMainLayer(config, name="segformer")
@unpack_inputs
@add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def call(
self,
pixel_values: tf.Tensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[Tuple, TFBaseModelOutput]:
outputs = self.segformer(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "segformer", None) is not None:
with tf.name_scope(self.segformer.name):
self.segformer.build(None)
@add_start_docstrings(
"""
SegFormer Model transformer with an image classification head on top (a linear layer on top of the final hidden
states) e.g. for ImageNet.
""",
SEGFORMER_START_DOCSTRING,
)
class TFSegformerForImageClassification(TFSegformerPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: SegformerConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.segformer = TFSegformerMainLayer(config, name="segformer")
# Classifier head
self.classifier = tf.keras.layers.Dense(config.num_labels, name="classifier")
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def call(
self,
pixel_values: tf.Tensor | None = None,
labels: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TFSequenceClassifierOutput]:
outputs = self.segformer(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
# convert last hidden states to (batch_size, height*width, hidden_size)
batch_size = shape_list(sequence_output)[0]
sequence_output = tf.transpose(sequence_output, perm=[0, 2, 3, 1])
sequence_output = tf.reshape(sequence_output, (batch_size, -1, self.config.hidden_sizes[-1]))
# global average pooling
sequence_output = tf.reduce_mean(sequence_output, axis=1)
logits = self.classifier(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "segformer", None) is not None:
with tf.name_scope(self.segformer.name):
self.segformer.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_sizes[-1]])
class TFSegformerMLP(tf.keras.layers.Layer):
"""
Linear Embedding.
"""
def __init__(self, input_dim: int, config: SegformerConfig, **kwargs):
super().__init__(**kwargs)
self.proj = tf.keras.layers.Dense(config.decoder_hidden_size, name="proj")
self.input_dim = input_dim
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
height = shape_list(hidden_states)[1]
width = shape_list(hidden_states)[2]
hidden_dim = shape_list(hidden_states)[-1]
hidden_states = tf.reshape(hidden_states, (-1, height * width, hidden_dim))
hidden_states = self.proj(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "proj", None) is not None:
with tf.name_scope(self.proj.name):
self.proj.build([None, None, self.input_dim])
class TFSegformerDecodeHead(TFSegformerPreTrainedModel):
def __init__(self, config: SegformerConfig, **kwargs):
super().__init__(config, **kwargs)
# linear layers which will unify the channel dimension of each of the encoder blocks to the same config.decoder_hidden_size
mlps = []
for i in range(config.num_encoder_blocks):
mlp = TFSegformerMLP(config=config, input_dim=config.hidden_sizes[i], name=f"linear_c.{i}")
mlps.append(mlp)
self.mlps = mlps
# the following 3 layers implement the ConvModule of the original implementation
self.linear_fuse = tf.keras.layers.Conv2D(
filters=config.decoder_hidden_size, kernel_size=1, use_bias=False, name="linear_fuse"
)
self.batch_norm = tf.keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name="batch_norm")
self.activation = tf.keras.layers.Activation("relu")
self.dropout = tf.keras.layers.Dropout(config.classifier_dropout_prob)
self.classifier = tf.keras.layers.Conv2D(filters=config.num_labels, kernel_size=1, name="classifier")
self.config = config
def call(self, encoder_hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
all_hidden_states = ()
for encoder_hidden_state, mlp in zip(encoder_hidden_states, self.mlps):
if self.config.reshape_last_stage is False and len(shape_list(encoder_hidden_state)) == 3:
height = tf.math.sqrt(tf.cast(shape_list(encoder_hidden_state)[1], tf.float32))
height = width = tf.cast(height, tf.int32)
channel_dim = shape_list(encoder_hidden_state)[-1]
encoder_hidden_state = tf.reshape(encoder_hidden_state, (-1, height, width, channel_dim))
# unify channel dimension
encoder_hidden_state = tf.transpose(encoder_hidden_state, perm=[0, 2, 3, 1])
height, width = shape_list(encoder_hidden_state)[1:3]
encoder_hidden_state = mlp(encoder_hidden_state)
channel_dim = shape_list(encoder_hidden_state)[-1]
encoder_hidden_state = tf.reshape(encoder_hidden_state, (-1, height, width, channel_dim))
# upsample
temp_state = tf.transpose(encoder_hidden_states[0], perm=[0, 2, 3, 1])
upsample_resolution = shape_list(temp_state)[1:-1]
encoder_hidden_state = tf.image.resize(encoder_hidden_state, size=upsample_resolution, method="bilinear")
all_hidden_states += (encoder_hidden_state,)
hidden_states = self.linear_fuse(tf.concat(all_hidden_states[::-1], axis=-1))
hidden_states = self.batch_norm(hidden_states, training=training)
hidden_states = self.activation(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
# logits of shape (batch_size, height/4, width/4, num_labels)
logits = self.classifier(hidden_states)
return logits
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "linear_fuse", None) is not None:
with tf.name_scope(self.linear_fuse.name):
self.linear_fuse.build(
[None, None, None, self.config.decoder_hidden_size * self.config.num_encoder_blocks]
)
if getattr(self, "batch_norm", None) is not None:
with tf.name_scope(self.batch_norm.name):
self.batch_norm.build([None, None, None, self.config.decoder_hidden_size])
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, None, self.config.decoder_hidden_size])
if getattr(self, "mlps", None) is not None:
for layer in self.mlps:
with tf.name_scope(layer.name):
layer.build(None)
@add_start_docstrings(
"""SegFormer Model transformer with an all-MLP decode head on top e.g. for ADE20k, CityScapes.""",
SEGFORMER_START_DOCSTRING,
)
class TFSegformerForSemanticSegmentation(TFSegformerPreTrainedModel):
def __init__(self, config: SegformerConfig, **kwargs):
super().__init__(config, **kwargs)
self.segformer = TFSegformerMainLayer(config, name="segformer")
self.decode_head = TFSegformerDecodeHead(config, name="decode_head")
def hf_compute_loss(self, logits, labels):
# upsample logits to the images' original size
# `labels` is of shape (batch_size, height, width)
label_interp_shape = shape_list(labels)[1:]
upsampled_logits = tf.image.resize(logits, size=label_interp_shape, method="bilinear")
# compute weighted loss
loss_fct = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction="none")
def masked_loss(real, pred):
unmasked_loss = loss_fct(real, pred)
mask = tf.cast(real != self.config.semantic_loss_ignore_index, dtype=unmasked_loss.dtype)
masked_loss = unmasked_loss * mask
# Reduction strategy in the similar spirit with
# https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_tf_utils.py#L210
reduced_masked_loss = tf.reduce_sum(masked_loss) / tf.reduce_sum(mask)
return tf.reshape(reduced_masked_loss, (1,))
return masked_loss(labels, upsampled_logits)
@unpack_inputs
@add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFSemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
pixel_values: tf.Tensor,
labels: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TFSemanticSegmenterOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1`, a (per-pixel) classification loss is computed
(Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, TFSegformerForSemanticSegmentation
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
>>> model = TFSegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
>>> inputs = image_processor(images=image, return_tensors="tf")
>>> outputs = model(**inputs, training=False)
>>> # logits are of shape (batch_size, num_labels, height/4, width/4)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 150, 128, 128]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
outputs = self.segformer(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=True, # we need the intermediate hidden states
return_dict=return_dict,
)
encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1]
logits = self.decode_head(encoder_hidden_states)
loss = None
if labels is not None:
if not self.config.num_labels > 1:
raise ValueError("The number of labels should be greater than one")
else:
loss = self.hf_compute_loss(logits=logits, labels=labels)
# make logits of shape (batch_size, num_labels, height, width) to
# keep them consistent across APIs
logits = tf.transpose(logits, perm=[0, 3, 1, 2])
if not return_dict:
if output_hidden_states:
output = (logits,) + outputs[1:]
else:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSemanticSegmenterOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "segformer", None) is not None:
with tf.name_scope(self.segformer.name):
self.segformer.build(None)
if getattr(self, "decode_head", None) is not None:
with tf.name_scope(self.decode_head.name):
self.decode_head.build(None)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/segformer/feature_extraction_segformer.py | # coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for SegFormer."""
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
logger = logging.get_logger(__name__)
class SegformerFeatureExtractor(SegformerImageProcessor):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
"The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use SegformerImageProcessor instead.",
FutureWarning,
)
super().__init__(*args, **kwargs)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/flava/convert_dalle_to_flava_codebook.py | # coding=utf-8
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import torch
from transformers import FlavaImageCodebook, FlavaImageCodebookConfig
def rreplace(s, old, new, occurrence):
li = s.rsplit(old, occurrence)
return new.join(li)
def count_parameters(state_dict):
# encoder.embeddings are double copied in original FLAVA
return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items())
def upgrade_state_dict(state_dict):
upgrade = {}
group_keys = ["group_1", "group_2", "group_3", "group_4"]
for key, value in state_dict.items():
for group_key in group_keys:
if group_key in key:
key = key.replace(f"{group_key}.", f"{group_key}.group.")
if "res_path" in key:
key = key.replace("res_path.", "res_path.path.")
if key.endswith(".w"):
key = rreplace(key, ".w", ".weight", 1)
if key.endswith(".b"):
key = rreplace(key, ".b", ".bias", 1)
upgrade[key] = value.float()
return upgrade
@torch.no_grad()
def convert_dalle_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path=None, save_checkpoint=True):
"""
Copy/paste/tweak model's weights to transformers design.
"""
from dall_e import Encoder
encoder = Encoder()
if os.path.exists(checkpoint_path):
ckpt = torch.load(checkpoint_path)
else:
ckpt = torch.hub.load_state_dict_from_url(checkpoint_path)
if isinstance(ckpt, Encoder):
ckpt = ckpt.state_dict()
encoder.load_state_dict(ckpt)
if config_path is not None:
config = FlavaImageCodebookConfig.from_pretrained(config_path)
else:
config = FlavaImageCodebookConfig()
hf_model = FlavaImageCodebook(config).eval()
state_dict = encoder.state_dict()
hf_state_dict = upgrade_state_dict(state_dict)
hf_model.load_state_dict(hf_state_dict)
hf_state_dict = hf_model.state_dict()
hf_count = count_parameters(hf_state_dict)
state_dict_count = count_parameters(state_dict)
assert torch.allclose(hf_count, state_dict_count, atol=1e-3)
if save_checkpoint:
hf_model.save_pretrained(pytorch_dump_folder_path)
else:
return hf_state_dict
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
args = parser.parse_args()
convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/flava/image_processing_flava.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Flava."""
import math
import random
from functools import lru_cache
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
logger = logging.get_logger(__name__)
# These values are taken from CLIP
FLAVA_IMAGE_MEAN = OPENAI_CLIP_MEAN
FLAVA_IMAGE_STD = OPENAI_CLIP_STD
FLAVA_CODEBOOK_MEAN = [0.0, 0.0, 0.0]
FLAVA_CODEBOOK_STD = [1.0, 1.0, 1.0]
LOGIT_LAPLACE_EPS: float = 0.1
# Inspired from https://github.com/microsoft/unilm/blob/master/beit/masking_generator.py
class FlavaMaskingGenerator:
def __init__(
self,
input_size: Union[int, Tuple[int, int]] = 14,
total_mask_patches: int = 75,
mask_group_max_patches: Optional[int] = None,
mask_group_min_patches: int = 16,
mask_group_min_aspect_ratio: Optional[float] = 0.3,
mask_group_max_aspect_ratio: float = None,
):
if not isinstance(input_size, tuple):
input_size = (input_size,) * 2
self.height, self.width = input_size
self.num_patches = self.height * self.width
self.total_mask_patches = total_mask_patches
self.mask_group_min_patches = mask_group_min_patches
self.mask_group_max_patches = total_mask_patches if mask_group_max_patches is None else mask_group_max_patches
mask_group_max_aspect_ratio = mask_group_max_aspect_ratio or 1 / mask_group_min_aspect_ratio
self.log_aspect_ratio = (math.log(mask_group_min_aspect_ratio), math.log(mask_group_max_aspect_ratio))
def __repr__(self):
repr_str = "MaskingGenerator(%d, %d -> [%d ~ %d], max = %d, %.3f ~ %.3f)" % (
self.height,
self.width,
self.mask_group_min_patches,
self.mask_group_max_patches,
self.total_mask_patches,
self.log_aspect_ratio[0],
self.log_aspect_ratio[1],
)
return repr_str
def get_shape(self):
return self.height, self.width
def _mask(self, mask, max_mask_patches):
delta = 0
for _attempt in range(10):
target_area = random.uniform(self.mask_group_min_patches, max_mask_patches)
aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio))
height = int(round(math.sqrt(target_area * aspect_ratio)))
width = int(round(math.sqrt(target_area / aspect_ratio)))
if width < self.width and height < self.height:
top = random.randint(0, self.height - height)
left = random.randint(0, self.width - width)
num_masked = mask[top : top + height, left : left + width].sum()
# Overlap
if 0 < height * width - num_masked <= max_mask_patches:
for i in range(top, top + height):
for j in range(left, left + width):
if mask[i, j] == 0:
mask[i, j] = 1
delta += 1
if delta > 0:
break
return delta
def __call__(self):
mask = np.zeros(shape=self.get_shape(), dtype=int)
mask_count = 0
while mask_count < self.total_mask_patches:
max_mask_patches = self.total_mask_patches - mask_count
max_mask_patches = min(max_mask_patches, self.mask_group_max_patches)
delta = self._mask(mask, max_mask_patches)
if delta == 0:
break
else:
mask_count += delta
return mask
class FlavaImageProcessor(BaseImageProcessor):
r"""
Constructs a Flava image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
`do_resize` parameter in `preprocess`.
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the image after resizing. Can be overridden by the `size` parameter in `preprocess`.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in
`preprocess`.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the images. Can be overridden by the `do_center_crop` parameter in `preprocess`.
crop_size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
Size of image after the center crop `(crop_size["height"], crop_size["width"])`. Can be overridden by the
`crop_size` parameter in `preprocess`.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in `preprocess`.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in
`preprocess`.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in `preprocess`.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
return_image_mask (`bool`, *optional*, defaults to `False`):
Whether to return the image mask. Can be overridden by the `return_image_mask` parameter in `preprocess`.
input_size_patches (`int`, *optional*, defaults to 14):
Number of patches in the image in height and width direction. 14x14 = 196 total patches. Can be overridden
by the `input_size_patches` parameter in `preprocess`.
total_mask_patches (`int`, *optional*, defaults to 75):
Total number of patches that should be masked. Can be overridden by the `total_mask_patches` parameter in
`preprocess`.
mask_group_min_patches (`int`, *optional*, defaults to 16):
Minimum number of patches that should be masked. Can be overridden by the `mask_group_min_patches`
parameter in `preprocess`.
mask_group_max_patches (`int`, *optional*):
Maximum number of patches that should be masked. Can be overridden by the `mask_group_max_patches`
parameter in `preprocess`.
mask_group_min_aspect_ratio (`float`, *optional*, defaults to 0.3):
Minimum aspect ratio of the mask window. Can be overridden by the `mask_group_min_aspect_ratio` parameter
in `preprocess`.
mask_group_max_aspect_ratio (`float`, *optional*):
Maximum aspect ratio of the mask window. Can be overridden by the `mask_group_max_aspect_ratio` parameter
in `preprocess`.
codebook_do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the input for codebook to a certain. Can be overridden by the `codebook_do_resize`
parameter in `preprocess`. `codebook_size`.
codebook_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Resize the input for codebook to the given size. Can be overridden by the `codebook_size` parameter in
`preprocess`.
codebook_resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.LANCZOS`):
Resampling filter to use if resizing the codebook image. Can be overridden by the `codebook_resample`
parameter in `preprocess`.
codebook_do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to crop the input for codebook at the center. If the input size is smaller than
`codebook_crop_size` along any edge, the image is padded with 0's and then center cropped. Can be
overridden by the `codebook_do_center_crop` parameter in `preprocess`.
codebook_crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Desired output size for codebook input when applying center-cropping. Can be overridden by the
`codebook_crop_size` parameter in `preprocess`.
codebook_do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the input for codebook by the specified scale `codebook_rescale_factor`. Can be
overridden by the `codebook_do_rescale` parameter in `preprocess`.
codebook_rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Defines the scale factor to use if rescaling the codebook image. Can be overridden by the
`codebook_rescale_factor` parameter in `preprocess`.
codebook_do_map_pixels (`bool`, *optional*, defaults to `True`):
Whether to map the pixel values of the codebook input to (1 - 2e)x + e. Can be overridden by the
`codebook_do_map_pixels` parameter in `preprocess`.
codebook_do_normalize (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the input for codebook with `codebook_image_mean` and `codebook_image_std`. Can
be overridden by the `codebook_do_normalize` parameter in `preprocess`.
codebook_image_mean (`Optional[Union[float, Iterable[float]]]`, *optional*, defaults to `[0, 0, 0]`):
The sequence of means for each channel, to be used when normalizing images for codebook. Can be overridden
by the `codebook_image_mean` parameter in `preprocess`.
codebook_image_std (`Optional[Union[float, Iterable[float]]]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
The sequence of standard deviations for each channel, to be used when normalizing images for codebook. Can
be overridden by the `codebook_image_std` parameter in `preprocess`.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, Iterable[float]]] = None,
image_std: Optional[Union[float, Iterable[float]]] = None,
# Mask related params
return_image_mask: bool = False,
input_size_patches: int = 14,
total_mask_patches: int = 75,
mask_group_min_patches: int = 16,
mask_group_max_patches: Optional[int] = None,
mask_group_min_aspect_ratio: float = 0.3,
mask_group_max_aspect_ratio: Optional[float] = None,
# Codebook related params
return_codebook_pixels: bool = False,
codebook_do_resize: bool = True,
codebook_size: bool = None,
codebook_resample: int = PILImageResampling.LANCZOS,
codebook_do_center_crop: bool = True,
codebook_crop_size: int = None,
codebook_do_rescale: bool = True,
codebook_rescale_factor: Union[int, float] = 1 / 255,
codebook_do_map_pixels: bool = True,
codebook_do_normalize: bool = True,
codebook_image_mean: Optional[Union[float, Iterable[float]]] = None,
codebook_image_std: Optional[Union[float, Iterable[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 224, "width": 224}
size = get_size_dict(size)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, param_name="crop_size")
codebook_size = codebook_size if codebook_size is not None else {"height": 112, "width": 112}
codebook_size = get_size_dict(codebook_size, param_name="codebook_size")
codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else {"height": 112, "width": 112}
codebook_crop_size = get_size_dict(codebook_crop_size, param_name="codebook_crop_size")
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else FLAVA_IMAGE_MEAN
self.image_std = image_std if image_std is not None else FLAVA_IMAGE_STD
self.return_image_mask = return_image_mask
self.input_size_patches = input_size_patches
self.total_mask_patches = total_mask_patches
self.mask_group_min_patches = mask_group_min_patches
self.mask_group_max_patches = mask_group_max_patches
self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio
self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio
self.return_codebook_pixels = return_codebook_pixels
self.codebook_do_resize = codebook_do_resize
self.codebook_size = codebook_size
self.codebook_resample = codebook_resample
self.codebook_do_center_crop = codebook_do_center_crop
self.codebook_crop_size = codebook_crop_size
self.codebook_do_rescale = codebook_do_rescale
self.codebook_rescale_factor = codebook_rescale_factor
self.codebook_do_map_pixels = codebook_do_map_pixels
self.codebook_do_normalize = codebook_do_normalize
self.codebook_image_mean = codebook_image_mean
self.codebook_image_mean = codebook_image_mean if codebook_image_mean is not None else FLAVA_CODEBOOK_MEAN
self.codebook_image_std = codebook_image_std if codebook_image_std is not None else FLAVA_CODEBOOK_STD
@classmethod
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
"""
Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is
created using from_dict and kwargs e.g. `FlavaImageProcessor.from_pretrained(checkpoint, codebook_size=600)`
"""
image_processor_dict = image_processor_dict.copy()
if "codebook_size" in kwargs:
image_processor_dict["codebook_size"] = kwargs.pop("codebook_size")
if "codebook_crop_size" in kwargs:
image_processor_dict["codebook_crop_size"] = kwargs.pop("codebook_crop_size")
return super().from_dict(image_processor_dict, **kwargs)
@lru_cache()
def masking_generator(
self,
input_size_patches,
total_mask_patches,
mask_group_min_patches,
mask_group_max_patches,
mask_group_min_aspect_ratio,
mask_group_max_aspect_ratio,
) -> FlavaMaskingGenerator:
return FlavaMaskingGenerator(
input_size=input_size_patches,
total_mask_patches=total_mask_patches,
mask_group_min_patches=mask_group_min_patches,
mask_group_max_patches=mask_group_max_patches,
mask_group_min_aspect_ratio=mask_group_min_aspect_ratio,
mask_group_max_aspect_ratio=mask_group_max_aspect_ratio,
)
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
output_size = (size["height"], size["width"])
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def map_pixels(self, image: np.ndarray) -> np.ndarray:
return (1 - 2 * LOGIT_LAPLACE_EPS) * image + LOGIT_LAPLACE_EPS
def _preprocess_image(
self,
image: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_map_pixels: bool = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[ChannelDimension] = None,
) -> np.ndarray:
"""Preprocesses a single image."""
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
image = to_numpy_array(image)
if is_scaled_image(image) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(image)
if do_resize:
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
if do_center_crop:
image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
if do_map_pixels:
image = self.map_pixels(image)
if data_format is not None:
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
return image
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None,
crop_size: Optional[Dict[str, int]] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
# Mask related params
return_image_mask: Optional[bool] = None,
input_size_patches: Optional[int] = None,
total_mask_patches: Optional[int] = None,
mask_group_min_patches: Optional[int] = None,
mask_group_max_patches: Optional[int] = None,
mask_group_min_aspect_ratio: Optional[float] = None,
mask_group_max_aspect_ratio: Optional[float] = None,
# Codebook related params
return_codebook_pixels: Optional[bool] = None,
codebook_do_resize: Optional[bool] = None,
codebook_size: Optional[Dict[str, int]] = None,
codebook_resample: Optional[int] = None,
codebook_do_center_crop: Optional[bool] = None,
codebook_crop_size: Optional[Dict[str, int]] = None,
codebook_do_rescale: Optional[bool] = None,
codebook_rescale_factor: Optional[float] = None,
codebook_do_map_pixels: Optional[bool] = None,
codebook_do_normalize: Optional[bool] = None,
codebook_image_mean: Optional[Iterable[float]] = None,
codebook_image_std: Optional[Iterable[float]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
return_image_mask (`bool`, *optional*, defaults to `self.return_image_mask`):
Whether to return the image mask.
input_size_patches (`int`, *optional*, defaults to `self.input_size_patches`):
Size of the patches to extract from the image.
total_mask_patches (`int`, *optional*, defaults to `self.total_mask_patches`):
Total number of patches to extract from the image.
mask_group_min_patches (`int`, *optional*, defaults to `self.mask_group_min_patches`):
Minimum number of patches to extract from the image.
mask_group_max_patches (`int`, *optional*, defaults to `self.mask_group_max_patches`):
Maximum number of patches to extract from the image.
mask_group_min_aspect_ratio (`float`, *optional*, defaults to `self.mask_group_min_aspect_ratio`):
Minimum aspect ratio of the patches to extract from the image.
mask_group_max_aspect_ratio (`float`, *optional*, defaults to `self.mask_group_max_aspect_ratio`):
Maximum aspect ratio of the patches to extract from the image.
return_codebook_pixels (`bool`, *optional*, defaults to `self.return_codebook_pixels`):
Whether to return the codebook pixels.
codebook_do_resize (`bool`, *optional*, defaults to `self.codebook_do_resize`):
Whether to resize the codebook pixels.
codebook_size (`Dict[str, int]`, *optional*, defaults to `self.codebook_size`):
Size of the codebook pixels.
codebook_resample (`int`, *optional*, defaults to `self.codebook_resample`):
Resampling filter to use if resizing the codebook pixels. This can be one of the enum
`PILImageResampling`, Only has an effect if `codebook_do_resize` is set to `True`.
codebook_do_center_crop (`bool`, *optional*, defaults to `self.codebook_do_center_crop`):
Whether to center crop the codebook pixels.
codebook_crop_size (`Dict[str, int]`, *optional*, defaults to `self.codebook_crop_size`):
Size of the center crop of the codebook pixels. Only has an effect if `codebook_do_center_crop` is set
to `True`.
codebook_do_rescale (`bool`, *optional*, defaults to `self.codebook_do_rescale`):
Whether to rescale the codebook pixels values between [0 - 1].
codebook_rescale_factor (`float`, *optional*, defaults to `self.codebook_rescale_factor`):
Rescale factor to rescale the codebook pixels by if `codebook_do_rescale` is set to `True`.
codebook_do_map_pixels (`bool`, *optional*, defaults to `self.codebook_do_map_pixels`):
Whether to map the codebook pixels values.
codebook_do_normalize (`bool`, *optional*, defaults to `self.codebook_do_normalize`):
Whether to normalize the codebook pixels.
codebook_image_mean (`float` or `List[float]`, *optional*, defaults to `self.codebook_image_mean`):
Codebook pixels mean to normalize the codebook pixels by if `codebook_do_normalize` is set to `True`.
codebook_image_std (`float` or `List[float]`, *optional*, defaults to `self.codebook_image_std`):
Codebook pixels standard deviation to normalize the codebook pixels by if `codebook_do_normalize` is
set to `True`.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size)
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size")
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
return_image_mask = return_image_mask if return_image_mask is not None else self.return_image_mask
input_size_patches = input_size_patches if input_size_patches is not None else self.input_size_patches
total_mask_patches = total_mask_patches if total_mask_patches is not None else self.total_mask_patches
mask_group_min_patches = (
mask_group_min_patches if mask_group_min_patches is not None else self.mask_group_min_patches
)
mask_group_max_patches = (
mask_group_max_patches if mask_group_max_patches is not None else self.mask_group_max_patches
)
mask_group_min_aspect_ratio = (
mask_group_min_aspect_ratio
if mask_group_min_aspect_ratio is not None
else self.mask_group_min_aspect_ratio
)
mask_group_max_aspect_ratio = (
mask_group_max_aspect_ratio
if mask_group_max_aspect_ratio is not None
else self.mask_group_max_aspect_ratio
)
return_codebook_pixels = (
return_codebook_pixels if return_codebook_pixels is not None else self.return_codebook_pixels
)
codebook_do_resize = codebook_do_resize if codebook_do_resize is not None else self.codebook_do_resize
codebook_size = codebook_size if codebook_size is not None else self.codebook_size
codebook_size = get_size_dict(codebook_size, param_name="codebook_size")
codebook_resample = codebook_resample if codebook_resample is not None else self.codebook_resample
codebook_do_rescale = codebook_do_rescale if codebook_do_rescale is not None else self.codebook_do_rescale
codebook_rescale_factor = (
codebook_rescale_factor if codebook_rescale_factor is not None else self.codebook_rescale_factor
)
codebook_do_center_crop = (
codebook_do_center_crop if codebook_do_center_crop is not None else self.codebook_do_center_crop
)
codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else self.codebook_crop_size
codebook_crop_size = get_size_dict(codebook_crop_size, param_name="codebook_crop_size")
codebook_do_map_pixels = (
codebook_do_map_pixels if codebook_do_map_pixels is not None else self.codebook_do_map_pixels
)
codebook_do_normalize = (
codebook_do_normalize if codebook_do_normalize is not None else self.codebook_do_normalize
)
codebook_image_mean = codebook_image_mean if codebook_image_mean is not None else self.codebook_image_mean
codebook_image_std = codebook_image_std if codebook_image_std is not None else self.codebook_image_std
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
processed_images = [
self._preprocess_image(
image=img,
do_resize=do_resize,
size=size,
resample=resample,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_map_pixels=False,
data_format=data_format,
input_data_format=input_data_format,
)
for img in images
]
data = {"pixel_values": processed_images}
if return_codebook_pixels:
codebook_images = [
self._preprocess_image(
image=img,
do_resize=codebook_do_resize,
size=codebook_size,
resample=codebook_resample,
do_center_crop=codebook_do_center_crop,
crop_size=codebook_crop_size,
do_rescale=codebook_do_rescale,
rescale_factor=codebook_rescale_factor,
do_normalize=codebook_do_normalize,
image_mean=codebook_image_mean,
image_std=codebook_image_std,
do_map_pixels=codebook_do_map_pixels,
data_format=data_format,
input_data_format=input_data_format,
)
for img in images
]
data["codebook_pixel_values"] = codebook_images
if return_image_mask:
mask_generator = self.masking_generator(
input_size_patches=input_size_patches,
total_mask_patches=total_mask_patches,
mask_group_min_patches=mask_group_min_patches,
mask_group_max_patches=mask_group_max_patches,
mask_group_min_aspect_ratio=mask_group_min_aspect_ratio,
mask_group_max_aspect_ratio=mask_group_max_aspect_ratio,
)
masks = [mask_generator() for _ in images]
data["bool_masked_pos"] = masks
return BatchFeature(data=data, tensor_type=return_tensors)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/flava/configuration_flava.py | # coding=utf-8
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" FLAVA model configurations"""
import os
from typing import Any, Dict, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/flava-full": "https://huggingface.co/facebook/flava-full/resolve/main/config.json",
}
class FlavaImageConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FlavaImageModel`]. It is used to instantiate an
FLAVA model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
[facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
mask_token (`bool`, *optional*, defaults to `True`):
Whether to use a mask token or not. Used in MIM (Masked Image Modeling) loss for FLAVA.
vocab_size (`int`, *optional*, defaults to 8192):
Vocabulary size of the [`FlavaImageCodebook`] used in conjunction with [`FlavaImageModel`] for MIM (Masked
Image Modeling) loss for FLAVA.
Example:
```python
>>> from transformers import FlavaImageConfig, FlavaImageModel
>>> # Initializing a FlavaImageModel with style configuration
>>> configuration = FlavaImageConfig()
>>> # Initializing a FlavaImageModel model (with random weights) from the style configuration
>>> model = FlavaImageModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "flava_image_model"
def __init__(
self,
hidden_size: int = 768,
num_hidden_layers: int = 12,
num_attention_heads: int = 12,
intermediate_size: int = 3072,
hidden_act: int = "gelu",
hidden_dropout_prob: float = 0.0,
attention_probs_dropout_prob: float = 0.0,
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-12,
image_size: int = 224,
patch_size: int = 16,
num_channels: int = 3,
qkv_bias: bool = True,
mask_token: bool = True,
vocab_size: int = 8192,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.qkv_bias = qkv_bias
self.mask_token = mask_token
self.vocab_size = vocab_size
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the image config dict if we are loading from FlavaConfig
if config_dict.get("model_type") == "flava":
config_dict = config_dict["image_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class FlavaTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FlavaTextModel`]. It is used to instantiate an
FLAVA model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
[facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`FlavaTextModel`].
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`FlavaTextModel`]. Note that even though
text encoder allows `token_type_ids`'s value as 2, for text-only pretraining and fine-tuning, only 1 is
used similar to RoBERTa.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048). For VL, max_length passed to model is 77.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
Example:
```python
>>> from transformers import FlavaTextConfig, FlavaTextModel
>>> # Initializing a FlavaTextModel with style configuration
>>> configuration = FlavaTextConfig()
>>> # Initializing a FlavaTextModel model (with random weights) from the style configuration
>>> model = FlavaTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "flava_text_model"
def __init__(
self,
vocab_size: int = 30522,
type_vocab_size: int = 2,
max_position_embeddings: int = 512,
position_embedding_type: str = "absolute",
hidden_size: int = 768,
num_hidden_layers: int = 12,
num_attention_heads: int = 12,
intermediate_size: int = 3072,
hidden_act: str = "gelu",
hidden_dropout_prob: float = 0.0,
attention_probs_dropout_prob: float = 0.0,
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-12,
pad_token_id: int = 0,
qkv_bias: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.type_vocab_size = type_vocab_size
self.max_position_embeddings = max_position_embeddings
self.position_embedding_type = position_embedding_type
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.qkv_bias = qkv_bias
self.pad_token_id = pad_token_id
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the text config dict if we are loading from FlavaConfig
if config_dict.get("model_type") == "flava":
config_dict = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class FlavaMultimodalConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FlavaMultimodalModel`]. It is used to instantiate
an FLAVA model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
[facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
use_cls_token (`bool`, *optional*, defaults to `True`):
Whether to use an extra CLS token for multimodal settings. Usually needed by the FLAVA model.
Example:
```python
>>> from transformers import FlavaMultimodalConfig, FlavaMultimodalModel
>>> # Initializing a FlavaMultimodalModel with style configuration
>>> configuration = FlavaMultimodalConfig()
>>> # Initializing a FlavaMultimodalModel model (with random weights) from the style configuration
>>> model = FlavaMultimodalModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "flava_multimodal_model"
def __init__(
self,
hidden_size: int = 768,
num_hidden_layers: int = 6,
num_attention_heads: int = 12,
intermediate_size: int = 3072,
hidden_act: int = "gelu",
hidden_dropout_prob: int = 0.0,
attention_probs_dropout_prob: int = 0.0,
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-12,
qkv_bias: bool = True,
use_cls_token: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.qkv_bias = qkv_bias
self.use_cls_token = use_cls_token
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the multimodal config dict if we are loading from FlavaConfig
if config_dict.get("model_type") == "flava":
config_dict = config_dict["multimodal_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class FlavaImageCodebookConfig(PretrainedConfig):
model_type = "flava_image_codebook"
r"""
[`FlavaImageCodebookConfig`] is the configuration class to store the configuration of a [`FlavaImageCodebook`]. It
is used to instantiate an FLAVA model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
[facebook/flava-image-codebook](https://huggingface.co/facebook/flava-image-codebook) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_groups (`int`, defaults to 4):
Number of groups to be created. This parameter as of now doesn't affect the model and is used for some
internal calculation and estimations.
input_channels (`int`, defaults to 3):
Number of channels in the image to be passed.
num_blocks_per_group (`int`, defaults to 2):
Number of conv-based blocks per group.
hidden_size (`int`, defaults to 256):
Size of hidden dim for the blocks.
vocab_size (`int`, defaults to 8192):
Size of the output vocabulary for the codebook.
freeze (`bool`, defaults to `True`):
Whether to freeze the weights of the model.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import FlavaImageCodebookConfig, FlavaImageCodebook
>>> # Initializing a FlavaImageCodebook with style configuration
>>> configuration = FlavaImageCodebookConfig()
>>> # Initializing a FlavaImageCodebook model (with random weights) from the style configuration
>>> model = FlavaImageCodebook(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
def __init__(
self,
num_groups: int = 4,
input_channels: int = 3,
num_blocks_per_group: int = 2,
hidden_size: int = 256,
vocab_size: int = 8192,
freeze: int = True,
initializer_range: float = 0.02,
**kwargs,
):
super().__init__(**kwargs)
self.num_groups = num_groups
self.input_channels = input_channels
self.num_blocks_per_group = num_blocks_per_group
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.freeze = freeze
self.initializer_range = initializer_range
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the image codebook config dict if we are loading from FlavaConfig
if config_dict.get("model_type") == "flava":
config_dict = config_dict["image_codebook_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class FlavaConfig(PretrainedConfig):
r"""
[`FlavaConfig`] is the configuration class to store the configuration of a [`FlavaModel`]. It is used to
instantiate FLAVA model according to the specified arguments, defining the text model, image model, image codebook
and multimodal model configs. Instantiating a configuration with the defaults will yield a similar configuration to
that of the FLAVA [facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`FlavaTextConfig`].
image_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`FlavaImageConfig`].
multimodal_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`FlavaMultimodalConfig`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
projection_dim (`int`, *optional*, defaults to 512):
Dimentionality of text and image projection layers.
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
The inital value of the *logit_scale* paramter. Default is used as per the original FLAVA/CLIP
implementation.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
ce_ignore_index (`int`, *optional*, defaults to -100):
Cross entropy index to ignore.
mim_weight (`float`, *optional*, defaults to 1.0):
Weight to be assigned to MIM (Masked Image Modeling) unimodal loss
mlm_weight (`float`, *optional*, defaults to 1.0):
Weight to be assigned to MLM (Masked Language Modeling) unimodal loss
global_contrastive_weight (`float`, *optional*, defaults to 1.0):
Weight to be assigned to global contrastive cross-alignment loss.
itm_weight (`float`, *optional*, defaults to 1.0):
Weight to be assigned to image-text matching multimodal loss.
mmm_image_weight (`float`, *optional*, defaults to 1.0):
Weight to be assigned to MMM loss's image part.
mmm_text_weight (`float`, *optional*, defaults to 1.0):
Weight to be assigned to MMM loss's text part.
global_backprop_contrastive (`bool`, *optional*, defaults to `True`):
Whether to use global backpropgation through all workers in contrastive loss.
skip_unmasked_multimodal_encoder (`bool`, *optional*, defaults to `True`):
Whether to skip running unmasked multimodal encoder whose outputs are not used by FLAVA losses.
return_loss (`bool`, *optional*, defaults to `True`):
Whether to return loss or not
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import FlavaConfig, FlavaModel, FlavaForPreTraining
>>> # Initializing a FlavaConfig with style configuration
>>> configuration = FlavaConfig()
>>> # Initializing a FlavaModel and FlavaForPreTraining model (with random weights) from the style configuration
>>> model = FlavaModel(configuration)
>>> model_pre = FlavaForPreTraining(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> configuration_pre = model_pre.config
```
"""
model_type = "flava"
def __init__(
self,
image_config: Dict[str, Any] = None,
text_config: Dict[str, Any] = None,
multimodal_config: Dict[str, Any] = None,
image_codebook_config: Dict[str, Any] = None,
hidden_size: int = 768,
layer_norm_eps: float = 1e-12,
projection_dim: int = 768,
init_codebook: bool = True,
logit_scale_init_value: float = 2.6592,
initializer_range: float = 0.02,
ce_ignore_index: int = -100,
mim_weight: float = 1.0,
mlm_weight: float = 1.0,
global_contrastive_weight: float = 1.0,
itm_weight: float = 1.0,
mmm_image_weight: float = 1.0,
mmm_text_weight: float = 1.0,
global_backprop_contrastive: bool = True,
skip_unmasked_multimodal_encoder: bool = True,
return_loss: bool = True,
**kwargs,
):
# If `_config_dict` exist, we use them for the backward compatibility.
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
# of confusion!).
text_config_dict = kwargs.pop("text_config_dict", None)
image_config_dict = kwargs.pop("image_config_dict", None)
multimodal_config_dict = kwargs.pop("multimodal_config_dict", None)
image_codebook_config_dict = kwargs.pop("image_codebook_config_dict", None)
super().__init__(**kwargs)
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
if text_config_dict is not None:
if text_config is None:
text_config = {}
# This is the complete result when using `text_config_dict`.
_text_config_dict = FlavaTextConfig(**text_config_dict).to_dict()
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
for key, value in _text_config_dict.items():
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
# If specified in `text_config_dict`
if key in text_config_dict:
message = (
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
f'The value `text_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`text_config_dict` is provided which will be used to initialize `FlavaTextConfig`. The "
f'value `text_config["{key}"]` will be overriden.'
)
logger.info(message)
# Update all values in `text_config` with the ones in `_text_config_dict`.
text_config.update(_text_config_dict)
if image_config_dict is not None:
if image_config is None:
image_config = {}
# This is the complete result when using `image_config_dict`.
_image_config_dict = FlavaImageConfig(**image_config_dict).to_dict()
# convert keys to string instead of integer
if "id2label" in _image_config_dict:
_image_config_dict["id2label"] = {
str(key): value for key, value in _image_config_dict["id2label"].items()
}
# Give a warning if the values exist in both `_image_config_dict` and `image_config` but being different.
for key, value in _image_config_dict.items():
if key in image_config and value != image_config[key] and key not in ["transformers_version"]:
# If specified in `image_config_dict`
if key in image_config_dict:
message = (
f"`{key}` is found in both `image_config_dict` and `image_config` but with different "
f'values. The value `image_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`image_config_dict` is provided which will be used to initialize `FlavaImageConfig`. "
f'The value `image_config["{key}"]` will be overriden.'
)
logger.info(message)
# Update all values in `image_config` with the ones in `_image_config_dict`.
image_config.update(_image_config_dict)
if multimodal_config_dict is not None:
if multimodal_config is None:
multimodal_config = {}
# This is the complete result when using `multimodal_config_dict`.
_multimodal_config_dict = FlavaMultimodalConfig(**multimodal_config_dict).to_dict()
# Give a warning if the values exist in both `_multimodal_config_dict` and `multimodal_config` but being
# different.
for key, value in _multimodal_config_dict.items():
if (
key in multimodal_config
and value != multimodal_config[key]
and key not in ["transformers_version"]
):
# If specified in `multimodal_config_dict`
if key in multimodal_config_dict:
message = (
f"`{key}` is found in both `multimodal_config_dict` and `multimodal_config` but with "
f'different values. The value `multimodal_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`multimodal_config_dict` is provided which will be used to initialize "
f'`FlavaMultimodalConfig`. The value `multimodal_config["{key}"]` will be overriden.'
)
logger.info(message)
# Update all values in `multimodal_config` with the ones in `_multimodal_config_dict`.
multimodal_config.update(_multimodal_config_dict)
if image_codebook_config_dict is not None:
if image_codebook_config is None:
image_codebook_config = {}
# This is the complete result when using `image_codebook_config_dict`.
_image_codebook_config_dict = FlavaImageCodebookConfig(**image_codebook_config_dict).to_dict()
# Give a warning if the values exist in both `_image_codebook_config_dict` and `image_codebook_config` but
# being different.
for key, value in _image_codebook_config_dict.items():
if (
key in image_codebook_config
and value != image_codebook_config[key]
and key not in ["transformers_version"]
):
# If specified in `image_codebook_config_dict`
if key in image_codebook_config_dict:
message = (
f"`{key}` is found in both `image_codebook_config_dict` and `image_codebook_config` but "
f'with different values. The value `image_codebook_config_dict["{key}"]` will be used '
"instead."
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`image_codebook_config_dict` is provided which will be used to initialize "
f'`FlavaImageCodebookConfig`. The value `image_codebook_config["{key}"]` will be overriden.'
)
logger.info(message)
# Update all values in `image_codebook_config` with the ones in `_image_codebook_config_dict`.
image_codebook_config.update(_image_codebook_config_dict)
if image_config is None:
image_config = {}
logger.info("`image_config` is `None`. initializing the `FlavaImageConfig` with default values.")
if text_config is None:
text_config = {}
logger.info("`text_config` is `None`. Initializing the `FlavaTextConfig` with default values.")
if multimodal_config is None:
multimodal_config = {}
logger.info("`multimodal_config` is `None`. initializing the `FlavaMultimodalConfig` with default values.")
if image_codebook_config is None:
image_codebook_config = {}
logger.info(
"`image_codebook_config` is `None`. initializing the `FlavaImageCodebookConfig` with default values."
)
self.image_config = FlavaImageConfig(**image_config)
self.text_config = FlavaTextConfig(**text_config)
self.multimodal_config = FlavaMultimodalConfig(**multimodal_config)
self.image_codebook_config = FlavaImageCodebookConfig(**image_codebook_config)
self.projection_dim = projection_dim
self.init_codebook = init_codebook
self.hidden_size = hidden_size
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
self.logit_scale_init_value = logit_scale_init_value
self.initializer_factor = 1.0
self.ce_ignore_index = ce_ignore_index
self.mim_weight = mim_weight
self.mlm_weight = mlm_weight
self.global_contrastive_weight = global_contrastive_weight
self.itm_weight = itm_weight
self.mmm_image_weight = mmm_image_weight
self.mmm_text_weight = mmm_text_weight
self.global_backprop_contrastive = global_backprop_contrastive
self.skip_unmasked_multimodal_encoder = skip_unmasked_multimodal_encoder
self.return_loss = return_loss
@classmethod
def from_configs(
cls,
image_config: FlavaImageConfig,
text_config: FlavaTextConfig,
multimodal_config: FlavaMultimodalConfig,
image_codebook_config: FlavaImageCodebookConfig,
**kwargs,
):
r"""
Instantiate a [`FlavaConfig`] (or a derived class) from flava text model configuration, flava image model
configuration, flava multimodal model and flava codebook model configuration.
Returns:
[`FlavaConfig`]: An instance of a configuration object
"""
return cls(
image_config=image_config.to_dict(),
text_config=text_config.to_dict(),
multimodal_config=multimodal_config.to_dict(),
image_codebook_config=image_codebook_config.to_dict(),
**kwargs,
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/flava/__init__.py | # Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_import_structure = {
"configuration_flava": [
"FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP",
"FlavaConfig",
"FlavaImageCodebookConfig",
"FlavaImageConfig",
"FlavaMultimodalConfig",
"FlavaTextConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["feature_extraction_flava"] = ["FlavaFeatureExtractor"]
_import_structure["image_processing_flava"] = ["FlavaImageProcessor"]
_import_structure["processing_flava"] = ["FlavaProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flava"] = [
"FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST",
"FlavaForPreTraining",
"FlavaImageCodebook",
"FlavaImageModel",
"FlavaModel",
"FlavaMultimodalModel",
"FlavaPreTrainedModel",
"FlavaTextModel",
]
if TYPE_CHECKING:
from .configuration_flava import (
FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP,
FlavaConfig,
FlavaImageCodebookConfig,
FlavaImageConfig,
FlavaMultimodalConfig,
FlavaTextConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_flava import FlavaFeatureExtractor
from .image_processing_flava import FlavaImageProcessor
from .processing_flava import FlavaProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flava import (
FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST,
FlavaForPreTraining,
FlavaImageCodebook,
FlavaImageModel,
FlavaModel,
FlavaMultimodalModel,
FlavaPreTrainedModel,
FlavaTextModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/flava/processing_flava.py | # coding=utf-8
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for FLAVA
"""
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class FlavaProcessor(ProcessorMixin):
r"""
Constructs a FLAVA processor which wraps a FLAVA image processor and a FLAVA tokenizer into a single processor.
[`FlavaProcessor`] offers all the functionalities of [`FlavaImageProcessor`] and [`BertTokenizerFast`]. See the
[`~FlavaProcessor.__call__`] and [`~FlavaProcessor.decode`] for more information.
Args:
image_processor ([`FlavaImageProcessor`], *optional*): The image processor is a required input.
tokenizer ([`BertTokenizerFast`], *optional*): The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "FlavaImageProcessor"
tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
feature_extractor = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead.",
FutureWarning,
)
feature_extractor = kwargs.pop("feature_extractor")
image_processor = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(image_processor, tokenizer)
self.current_processor = self.image_processor
def __call__(
self,
images: Optional[ImageInput] = None,
text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = False,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_image_mask: Optional[bool] = None,
return_codebook_pixels: Optional[bool] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs,
):
"""
This method uses [`FlavaImageProcessor.__call__`] method to prepare image(s) for the model, and
[`BertTokenizerFast.__call__`] to prepare text for the model.
Please refer to the docstring of the above two methods for more information.
"""
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none.")
if text is not None:
encoding = self.tokenizer(
text=text,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
return_tensors=return_tensors,
**kwargs,
)
if images is not None:
image_features = self.image_processor(
images,
return_image_mask=return_image_mask,
return_codebook_pixels=return_codebook_pixels,
return_tensors=return_tensors,
**kwargs,
)
if text is not None and images is not None:
encoding.update(image_features)
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
@property
def feature_extractor_class(self):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
FutureWarning,
)
return self.image_processor_class
@property
def feature_extractor(self):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
FutureWarning,
)
return self.image_processor
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/flava/convert_flava_original_pytorch_to_hf.py | # coding=utf-8
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def count_parameters(state_dict):
# encoder.embeddings are double copied in original FLAVA
return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items())
def upgrade_state_dict(state_dict, codebook_state_dict):
upgrade = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
key = key.replace("heads.cmd.mim_head.cls.predictions", "mmm_image_head")
key = key.replace("heads.cmd.mlm_head.cls.predictions", "mmm_text_head")
key = key.replace("heads.cmd.itm_head.cls", "itm_head")
key = key.replace("heads.cmd.itm_head.pooler", "itm_head.pooler")
key = key.replace("heads.cmd.clip_head.logit_scale", "flava.logit_scale")
key = key.replace("heads.fairseq_mlm.cls.predictions", "mlm_head")
key = key.replace("heads.imagenet.mim_head.cls.predictions", "mim_head")
key = key.replace("mm_text_projection", "flava.text_to_mm_projection")
key = key.replace("mm_image_projection", "flava.image_to_mm_projection")
key = key.replace("image_encoder.module", "flava.image_model")
key = key.replace("text_encoder.module", "flava.text_model")
key = key.replace("mm_encoder.module.encoder.cls_token", "flava.multimodal_model.cls_token")
key = key.replace("mm_encoder.module", "flava.multimodal_model")
key = key.replace("text_projection", "flava.text_projection")
key = key.replace("image_projection", "flava.image_projection")
upgrade[key] = value.float()
for key, value in codebook_state_dict.items():
upgrade[f"image_codebook.{key}"] = value
return upgrade
@torch.no_grad()
def convert_flava_checkpoint(checkpoint_path, codebook_path, pytorch_dump_folder_path, config_path=None):
"""
Copy/paste/tweak model's weights to transformers design.
"""
if config_path is not None:
config = FlavaConfig.from_pretrained(config_path)
else:
config = FlavaConfig()
hf_model = FlavaForPreTraining(config).eval()
codebook_state_dict = convert_dalle_checkpoint(codebook_path, None, save_checkpoint=False)
if os.path.exists(checkpoint_path):
state_dict = torch.load(checkpoint_path, map_location="cpu")
else:
state_dict = torch.hub.load_state_dict_from_url(checkpoint_path, map_location="cpu")
hf_state_dict = upgrade_state_dict(state_dict, codebook_state_dict)
hf_model.load_state_dict(hf_state_dict)
hf_state_dict = hf_model.state_dict()
hf_count = count_parameters(hf_state_dict)
state_dict_count = count_parameters(state_dict) + count_parameters(codebook_state_dict)
assert torch.allclose(hf_count, state_dict_count, atol=1e-3)
hf_model.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint")
parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
args = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/flava/feature_extraction_flava.py | # coding=utf-8
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for FLAVA."""
import warnings
from ...utils import logging
from .image_processing_flava import FlavaImageProcessor
logger = logging.get_logger(__name__)
class FlavaFeatureExtractor(FlavaImageProcessor):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
"The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use FlavaImageProcessor instead.",
FutureWarning,
)
super().__init__(*args, **kwargs)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/flava/modeling_flava.py | # coding=utf-8
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch FLAVA model."""
import collections
import math
from collections import OrderedDict
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Set, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_flava import (
FlavaConfig,
FlavaImageCodebookConfig,
FlavaImageConfig,
FlavaMultimodalConfig,
FlavaTextConfig,
)
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/flava-full"
# Codebook docstring
_CHECKPOINT_FOR_CODEBOOK_DOC = "facebook/flava-image-codebook"
_CONFIG_CLASS_FOR_IMAGE_MODEL_DOC = "FlavaImageConfig"
_CONFIG_CLASS_FOR_TEXT_MODEL_DOC = "FlavaTextConfig"
_CONFIG_CLASS_FOR_MULTIMODAL_MODEL_DOC = "FlavaMultimodalConfig"
_EXPECTED_IMAGE_OUTPUT_SHAPE = [1, 197, 768]
FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/flava-full",
# See all flava models at https://huggingface.co/models?filter=flava
]
FLAVA_CODEBOOK_PRETRAINED_MODEL_ARCHIVE_LIST = ["facebook/flava-image-codebook"]
LOGIT_SCALE_CLAMP_MIN = 0
LOGIT_SCALE_CLAMP_MAX = 4.6052
FlavaPossibleConfigs = Union[FlavaTextConfig, FlavaImageConfig, FlavaMultimodalConfig]
@dataclass
class FlavaModelOutput(ModelOutput):
"""
Output from FlavaModel containing embeddings and outputs from individual encoders.
Note that `image_embeddings` and `text_embeddigns` returned are similar to pooled output returned from a
transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and
`text_projection` layers on `image_embeddings` and `text_embeddings` respectively.
Args:
image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
The image embeddings which are basically the pooled output of [`FlavaImageModel`].
image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
The output of the [`FlavaImageModel`].
text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present):
The text embeddings which are basically the pooled output of [`FlavaTextModel`].
text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present):
The output of the [`FlavaTextModel`].
multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`):
The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`):
The output of the [`FlavaMultimodalModel`].
"""
image_embeddings: Optional[torch.FloatTensor] = None
image_output: Optional[BaseModelOutputWithPooling] = None
text_embeddings: Optional[torch.FloatTensor] = None
text_output: Optional[BaseModelOutputWithPooling] = None
multimodal_embeddings: Optional[torch.FloatTensor] = None
multimodal_output: Optional[BaseModelOutputWithPooling] = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_output", "image_output", "multimodal_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
@dataclass
class FlavaLosses(ModelOutput):
"""Class representing pretraining losses from FLAVA model
Args:
mim (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels` and `pixel_values` are present, `input_ids_masked` is absent and `mim_weight` > 0.:
Masked Image Modeling loss as used in BeIT calculated only for unimodal image data.
mlm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels` and `input_ids_masked` are present, `pixel_values` is absent and `mlm_weight` > 0.:
Masked Language Modeling loss as used in BERT calculated only for unimodal text data.
itm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `itm_labels`, `input_ids_masked`, `pixel_values` are present and `itm_weight` > 0.:
Image Text Matching (ITM) loss calculated for paired image-text data. Note that ITM loss is calculated on
masked pairs in FLAVA.
global_contrastive (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `input_ids` and `pixel_values` are present and `global_contrastive_weight` > 0.:
Contrastive loss for image-text similarity similar to CLIP but calculated globally for paired image-text
data. This is calculated on unmasked images and texts.
mmm_image (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_image_weight` > 0.:
Masked Multimodal Modeling loss's image component calculated on paired image-text data.
mmm_text (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_text_weight` > 0.:
Masked Multimodal Modeling loss's text component calculated on paired image-text data.
"""
mim: Optional[torch.FloatTensor] = None
mlm: Optional[torch.FloatTensor] = None
itm: Optional[torch.FloatTensor] = None
global_contrastive: Optional[torch.FloatTensor] = None
mmm_image: Optional[torch.FloatTensor] = None
mmm_text: Optional[torch.FloatTensor] = None
def all_none(self) -> bool:
all_none = True
for v in self.values():
if v is not None:
all_none = False
break
return all_none
@dataclass
class FlavaForPreTrainingOutput(ModelOutput):
"""
Output from FlavaForPreTraining containing embeddings, and outputs from individual encoders.
Note that `image_embeddings` and `text_embeddings` returned are similar to pooled output returned from a
transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and
`text_projection` layers on `image_embeddings` and `text_embeddings` respectively.
Args:
loss (`torch.FloatTensor`, *optional*, returned when `return_loss` is True):
Total loss calculated for this model.
loss_info (`FlavaLosses`):
Detailed info for FLAVA Pretraining losses. Check `FlavaLosses` class description for the information on
the keys.
image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
The image embeddings which are basically the pooled output of [`FlavaImageModel`].
image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
The output of the [`FlavaImageModel`].
text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present):
The text embeddings which are basically the pooled output of [`FlavaTextModel`].
text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present):
The output of the [`FlavaTextModel`].
multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`):
The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`):
The output of the [`FlavaMultimodalModel`].
image_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
The image embeddings which are basically the pooled output of [`FlavaImageModel`]. Uses `bool_masked_pos`
to create masked images.
image_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
The output of the [`FlavaImageModel`]. Uses `bool_masked_pos` to create masked images.
text_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids_masked` are present):
The text embeddings which are basically the pooled output of [`FlavaTextModel`].
text_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids_masked` are present):
The output of the [`FlavaTextModel`].
multimodal_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present):
The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
multimodal_masked_output (`BaseModelOutputWithPooling`, returned when `input_ids_masked` and `pixel_values` are present):
The output of the [`FlavaMultimodalModel`].
mim_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape `(total_masked_patches, image_vocab_size)` , *optional*, returned when `pixel_values` are present and `input_ids_masked` are not):
The logits for MIM unimodal loss. Uses `book_masked_pos` to get masked patches. The flattened output is
returned when `bool_masked_pos` has some of the patches masked.
mlm_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(total_masked_seq_length, text_vocab_size)`, *optional*, returned when `input_ids_masked` are present and `pixel_values` are not):
The logits for MLM unimodal loss. The flattened output is returned when `input_ids_masked` has some of
the tokens masked.
itm_logits (`torch.FloatTensor` of shape `(batch_size, 2)`, *optional*, returned when `input_ids_masked` and `pixel_values` are present):
The logits for ITM loss. Note that ITM loss is calculated on masked pairs in FLAVA.
mmm_image_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape`(total_masked_patches, image_vocab_size)`, *optional*, returned when `pixel_values` and `input_ids_masked` are present):
The logits for MMM image multimodal loss. Uses `book_masked_pos` to get masked patches. The flattened
output is returned when `bool_masked_pos` has some of the patches masked.
mmm_text_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(`(total_masked_seq_length, text_vocab_size)`), *optional*, returned when `pixel_values` and `input_ids_masked` are present):
The logits for MMM text multimodal loss. The flattened output is returned when `input_ids_masked` has
some of the tokens masked.
contrastive_logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeddings` and `text_embeddings` but passed through FLAVA's
`image_projection` and `text_projection` layers respectively. This represents the image-text similarity
scores. This is calculated on unmasked images and texts.
contrastive_logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
The scaled dot product scores between `text_embeddings` and `image_embeddings` but passed through FLAVA's
`text_projection` and `image_projection` layers respectively. This is calculated on unmasked images and
texts.
"""
loss: Optional[torch.FloatTensor] = None
loss_info: FlavaLosses = None
image_embeddings: Optional[torch.FloatTensor] = None
image_output: Optional[BaseModelOutputWithPooling] = None
text_embeddings: Optional[torch.FloatTensor] = None
text_output: Optional[BaseModelOutputWithPooling] = None
multimodal_embeddings: Optional[torch.FloatTensor] = None
multimodal_output: Optional[BaseModelOutputWithPooling] = None
image_masked_embeddings: Optional[torch.FloatTensor] = None
image_masked_output: Optional[BaseModelOutputWithPooling] = None
text_masked_embeddings: Optional[torch.FloatTensor] = None
text_masked_output: Optional[BaseModelOutputWithPooling] = None
multimodal_masked_embeddings: Optional[torch.FloatTensor] = None
multimodal_masked_output: Optional[BaseModelOutputWithPooling] = None
mim_logits: Optional[torch.FloatTensor] = None
mlm_logits: Optional[torch.FloatTensor] = None
itm_logits: Optional[torch.FloatTensor] = None
contrastive_logits_per_image: Optional[torch.FloatTensor] = None
contrastive_logits_per_text: Optional[torch.FloatTensor] = None
mmm_image_logits: Optional[torch.FloatTensor] = None
mmm_text_logits: Optional[torch.FloatTensor] = None
def to_tuple(self) -> Tuple[Any]:
transformer_outputs = [
"text_output",
"image_output",
"multimodal_output",
"text_masked_output",
"image_masked_output",
"multimodal_masked_output",
]
return tuple(self[k] if k not in transformer_outputs else getattr(self, k).to_tuple() for k in self.keys())
# Based on timm implementation, which can be found here:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/image_transformer.py
class FlavaImageEmbeddings(nn.Module):
"""
Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
"""
def __init__(self, config: FlavaImageConfig, use_mask_token: bool = False) -> None:
super().__init__()
use_mask_token = use_mask_token or config.mask_token
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None
self.patch_embeddings = PatchEmbeddings(
image_size=config.image_size,
patch_size=config.patch_size,
num_channels=config.num_channels,
embed_dim=config.hidden_size,
)
num_patches = self.patch_embeddings.num_patches
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.config = config
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
resolution images.
Source:
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/image_transformer.py#L174
"""
npatch = embeddings.shape[1] - 1
num_pos = self.position_embeddings.shape[1] - 1
if npatch == num_pos and height == width:
return self.position_embeddings
class_pos_embed = self.position_embeddings[:, 0]
patch_pos_embed = self.position_embeddings[:, 1:]
dim = embeddings.shape[-1]
num_h_patches = height // self.config.patch_size
num_w_patches = width // self.config.patch_size
# we add a small number to avoid floating point error in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
num_h_patches, num_w_patches = num_h_patches + 0.1, num_w_patches + 0.1
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.reshape(1, int(math.sqrt(num_pos)), int(math.sqrt(num_pos)), dim).permute(0, 3, 1, 2),
scale_factor=(num_h_patches / math.sqrt(num_pos), num_w_patches / math.sqrt(num_pos)),
mode="bicubic",
align_corners=False,
)
if int(num_h_patches) != patch_pos_embed.shape[-2] or int(num_w_patches) != patch_pos_embed.shape[-1]:
raise ValueError(
f"Number of patches for images ({int(num_h_patches), int(num_w_patches)}) don't match the "
f"shape of position embedding ({patch_pos_embed.shape[-2], patch_pos_embed.shape[-1]})"
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
def forward(
self,
pixel_values: torch.Tensor,
bool_masked_pos: Optional[torch.BoolTensor] = None,
interpolate_pos_encoding: bool = False,
) -> torch.Tensor:
batch_size, num_channels, height, width = pixel_values.shape
embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
batch_size, seq_len, _ = embeddings.size()
if bool_masked_pos is not None:
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
# B X H X W = B X HW
if bool_masked_pos.dim() == 3:
bool_masked_pos = bool_masked_pos.view(bool_masked_pos.size(0), -1)
# replace the masked visual tokens by mask_tokens
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
# add the [CLS] token to the embedded patch tokens
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
# add positional encoding to each token
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings)
return embeddings
# Based on timm implementation, which can be found here:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/image_transformer.py
class PatchEmbeddings(nn.Module):
"""
Image to Patch Embedding.
"""
def __init__(
self,
image_size: int = 224,
patch_size: Union[int, Tuple[int, int]] = 16,
num_channels: int = 3,
embed_dim: int = 768,
):
super().__init__()
if not isinstance(image_size, collections.abc.Iterable):
image_size = (image_size, image_size)
if not isinstance(patch_size, collections.abc.Iterable):
patch_size = (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_patches = num_patches
self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
batch_size, num_channels, height, width = pixel_values.shape
if not interpolate_pos_encoding:
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model"
f" ({self.image_size[0]}*{self.image_size[1]})."
)
x = self.projection(pixel_values).flatten(2).transpose(1, 2)
return x
class FlavaTextEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.register_buffer(
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
):
input_shape = input_ids.size()
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class FlavaSelfAttention(nn.Module):
def __init__(self, config: FlavaPossibleConfigs) -> None:
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class FlavaSelfOutput(nn.Module):
"""
The residual connection is defined in FlavaLayer (same as ViTLayer) instead of here (as is the case with other
models), due to the layernorm applied before each block.
"""
def __init__(self, config: FlavaPossibleConfigs) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class FlavaAttention(nn.Module):
def __init__(self, config: FlavaPossibleConfigs) -> None:
super().__init__()
self.attention = FlavaSelfAttention(config)
self.output = FlavaSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads: Set[int]) -> None:
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_outputs = self.attention(
hidden_states, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class FlavaIntermediate(nn.Module):
def __init__(self, config: FlavaPossibleConfigs) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate.forward
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class FlavaOutput(nn.Module):
def __init__(self, config: FlavaPossibleConfigs) -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# Copied from transformers.models.vit.modeling_vit.ViTOutput.forward
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
return hidden_states
class FlavaLayer(nn.Module):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config: FlavaPossibleConfigs) -> None:
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = FlavaAttention(config)
self.intermediate = FlavaIntermediate(config)
self.output = FlavaOutput(config)
# TODO: Check fp32 layer norm possiblity
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_attention_outputs = self.attention(
self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# first residual connection
hidden_states = attention_output + hidden_states
# in ViT, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
# second residual connection is done here
layer_output = self.output(layer_output, hidden_states)
outputs = (layer_output,) + outputs
return outputs
class FlavaEncoder(nn.Module):
def __init__(self, config: FlavaConfig) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([FlavaLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions
)
class FlavaPooler(nn.Module):
def __init__(self, config: FlavaPossibleConfigs):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
FLAVA_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`{config}`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
FLAVA_INPUTS_DOCSTRING_COMMON = r"""
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
FLAVA_IMAGE_INPUTS_DOCSTRING_BASE = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`FlavaImageProcessor.__call__`] for details.
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, image_num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
interpolate_pos_encoding (`bool`, *optional*):
Whether to interpolate the pre-trained position encodings.
"""
FLAVA_IMAGE_INPUTS_DOCSTRING = FLAVA_IMAGE_INPUTS_DOCSTRING_BASE + FLAVA_INPUTS_DOCSTRING_COMMON
FLAVA_TEXT_INPUTS_DOCSTRING_BASE = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
IDs?](../glossary#input-ids)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
"""
FLAVA_TEXT_INPUTS_DOCSTRING = FLAVA_TEXT_INPUTS_DOCSTRING_BASE + FLAVA_INPUTS_DOCSTRING_COMMON
FLAVA_MULTIMODAL_INPUTS_DOCSTRING = (
r"""
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, image_num_patches + text_seq_len, hidden_size)`):
The concatenated hidden states of unimodal encoders.
"""
+ FLAVA_INPUTS_DOCSTRING_COMMON
)
FLAVA_MODEL_INPUTS_DOCSTRING_BASE = r"""
Args:
skip_multimodal_encoder (*bool*, *optional*):
Skip any calculations for multimodal encoder. Useful if multimodal encoding is not going to be used.
"""
FLAVA_MODEL_INPUTS_DOCSTRING = (
FLAVA_IMAGE_INPUTS_DOCSTRING_BASE
+ FLAVA_TEXT_INPUTS_DOCSTRING_BASE
+ FLAVA_INPUTS_DOCSTRING_COMMON
+ FLAVA_MODEL_INPUTS_DOCSTRING_BASE
)
FLAVA_PRETRAINING_INPUTS_DOCSTRING = (
r"""
Args:
input_ids_masked (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary. These ones are the masked version of the original task
to be used with MLM. Indices can be obtained using [`AutoTokenizer`] along with
[`DataCollatorForMaskedLanguageModeling`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids)
"""
+ FLAVA_TEXT_INPUTS_DOCSTRING_BASE
+ FLAVA_IMAGE_INPUTS_DOCSTRING_BASE
+ r"""
image_attention_mask (`torch.FloatTensor` of shape `({1})`, *optional*):
Mask to avoid performing attention on padding token indices specifically for images. Mask values selected
in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
skip_unmasked_multimodal_encoder (*bool*, *optional*):
Skip any calculations for multimodal encoder for unmasked inputs. FLAVA pretraining doesn't need unmasked
multimodal embeddings or outputs as of now.
mlm_labels (`torch.LongTensor` of shape `(batch_size, text_seq_len)`, *optional*):
Labels for computing the left-to-right language and multimodal masked modeling loss (next word prediction).
Indices should be in `[-100, 0, ..., text_config.vocab_size - 1]` (see `input_ids` docstring). Tokens with
indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0,
..., text_config.vocab_size - 1]`.
mim_labels (`torch.LongTensor` of shape `(batch_size, image_num_patches)`, *optional*):
Labels for computing the image and multimodal masked modeling loss. Indices should be in `[-100, 0, ...,
image_config.vocab_size - 1]`. Tokens with indices set to `-100` are ignored (masked), the loss is only
computed for the tokens with labels in `[0, ..., image_config.vocab_size - 1]`. If not passed, they are
generated automatically using the image codebook assigned to the model. By default, it uses
[`FlavaImageCodebook`]. See [`FlavaImageCodebook`] to understand how to generate mim_labels.
itm_labels (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*):
Labels for computing the image-text matching loss. 0 means the pairs don't match and 1 means they match.
The pairs with 0 will be skipped for calculation of MMM and global contrastive losses as well.
return_loss (`bool`, *optional*, default to None):
Whether to return calculated loss or not.
"""
+ FLAVA_INPUTS_DOCSTRING_COMMON
)
FLAVA_PRETRAINING_START_DOCSTRING_EXTRA = r"""
Parameters:
image_codebook ([`nn.Module`]): If passed, the image codebook will be set to this. Otherwise. it will
be initialized using the image_codebook_config defined in the config first as the first parameter.
"""
class FlavaPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FlavaConfig
base_model_prefix = "flava"
supports_gradient_checkpointing = True
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
@add_start_docstrings(
"The bare FLAVA Image Model transformer outputting raw hidden-states without any specific head on top.",
FLAVA_START_DOCSTRING.format(config="FlavaImageConfig"),
)
class FlavaImageModel(FlavaPreTrainedModel):
config_class = FlavaImageConfig
# This override allows us to load FlavaImageModel from FlavaModel/FlavaForPreTraining checkpoints.
base_model_prefix = "flava.image_model"
main_input_name = "pixel_values"
def __init__(self, config: FlavaImageConfig, add_pooling_layer: bool = True):
super().__init__(config)
self.config = config
self.embeddings = FlavaImageEmbeddings(config)
self.encoder = FlavaEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pooler = FlavaPooler(config) if add_pooling_layer else None
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.embeddings.patch_embeddings
def set_input_embeddings(self, value: nn.Module):
self.embeddings.patch_embeddings = value
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(FLAVA_IMAGE_INPUTS_DOCSTRING.format("batch_size, image_num_patches"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_CLASS_FOR_IMAGE_MODEL_DOC,
modality="vision",
expected_output=_EXPECTED_IMAGE_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
interpolate_pos_encoding: Optional[bool] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The bare FLAVA Text Model transformer outputting raw hidden-states without any specific head on top.",
FLAVA_START_DOCSTRING.format(config="FlavaTextConfig"),
)
class FlavaTextModel(FlavaPreTrainedModel):
config_class = FlavaTextConfig
# This override allows us to load FlavaTextModel from FlavaModel/FlavaForPreTraining checkpoints.
base_model_prefix = "flava.text_model"
def __init__(self, config: FlavaTextConfig, add_pooling_layer: bool = True):
super().__init__(config)
self.config = config
self.embeddings = FlavaTextEmbeddings(config)
self.encoder = FlavaEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pooler = FlavaPooler(config) if add_pooling_layer else None
self.post_init()
def get_input_embeddings(self) -> PatchEmbeddings:
return self.embeddings.word_embeddings
def set_input_embeddings(self, value: nn.Module):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(FLAVA_TEXT_INPUTS_DOCSTRING.format("batch_size, text_seq_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_CLASS_FOR_TEXT_MODEL_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is None:
raise ValueError("You have to specify input_ids")
input_shape = input_ids.size()
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=input_ids.device)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
attention_mask, input_shape, input_ids.device
)
embedding_output = self.embeddings(
input_ids=input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The bare FLAVA Multimodal Model transformer outputting raw hidden-states without any specific head on top.",
FLAVA_START_DOCSTRING.format(config="FlavaMultimodalConfig"),
)
class FlavaMultimodalModel(FlavaPreTrainedModel):
config_class = FlavaMultimodalConfig
# This override allows us to load FlavaMultimodalModel from FlavaModel/FlavaForPreTraining checkpoints.
base_model_prefix = "flava.multimodal_model"
main_input_name = "hidden_states"
def __init__(self, config: FlavaMultimodalConfig, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.use_cls_token = self.config.use_cls_token
if self.use_cls_token:
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
self.encoder = FlavaEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pooler = FlavaPooler(config) if add_pooling_layer else None
self.post_init()
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(
FLAVA_MULTIMODAL_INPUTS_DOCSTRING.format("batch_size, image_num_patches + text_seq_len")
)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_CLASS_FOR_MULTIMODAL_MODEL_DOC,
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, seq_length, _ = hidden_states.size()
if self.use_cls_token:
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
hidden_states = torch.cat((cls_tokens, hidden_states), dim=1)
seq_length += 1
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_length), device=hidden_states.device)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
attention_mask, (batch_size, seq_length), hidden_states.device
)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The bare FLAVA Model transformer outputting raw hidden-states without any specific head on top.",
FLAVA_START_DOCSTRING.format(config="FlavaConfig"),
)
class FlavaModel(FlavaPreTrainedModel):
config_class = FlavaConfig
def __init__(self, config: FlavaConfig):
super().__init__(config)
if not isinstance(config.text_config, FlavaTextConfig):
raise ValueError(
"config.text_config is expected to be of type FlavaTextConfig but is of type"
f" {type(config.text_config)}."
)
if not isinstance(config.image_config, FlavaImageConfig):
raise ValueError(
"config.image_config is expected to be of type FlavaImageConfig but is of type"
f" {type(config.image_config)}."
)
if not isinstance(config.multimodal_config, FlavaMultimodalConfig):
raise ValueError(
"config.multimodal_config is expected to be of type FlavaMultimodalConfig but "
+ f"is of type {type(config.multimodal_config)}."
)
text_config = config.text_config
image_config = config.image_config
multimodal_config = config.multimodal_config
self.projection_dim = config.projection_dim
self.text_hidden_size = text_config.hidden_size
self.image_hidden_size = image_config.hidden_size
self.mm_hidden_size = multimodal_config.hidden_size
self.text_model = FlavaTextModel(text_config)
self.image_model = FlavaImageModel(image_config)
self.multimodal_model = FlavaMultimodalModel(multimodal_config)
self.image_projection = nn.Linear(self.image_hidden_size, self.projection_dim)
self.text_projection = nn.Linear(self.text_hidden_size, self.projection_dim)
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
self.image_to_mm_projection = nn.Linear(self.image_hidden_size, self.mm_hidden_size)
self.text_to_mm_projection = nn.Linear(self.text_hidden_size, self.mm_hidden_size)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FLAVA_TEXT_INPUTS_DOCSTRING.format("batch_size, text_seq_length"))
def get_text_features(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
applying the projection layer to the pooled output of [`FlavaTextModel`].
Examples:
```python
>>> from transformers import AutoProcessor, FlavaModel
>>> model = FlavaModel.from_pretrained("{0}")
>>> processor = AutoProcessor.from_pretrained("{0}")
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], max_length=77, padding="max_length", return_tensors="pt"
... )
>>> text_features = model.get_text_features(**inputs)
```""".format(_CHECKPOINT_FOR_DOC)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = text_outputs[0] # last_hidden_state
text_features = self.text_projection(pooled_output)
return text_features
@add_start_docstrings_to_model_forward(FLAVA_IMAGE_INPUTS_DOCSTRING.format("batch_size, image_num_patches"))
def get_image_features(
self,
pixel_values: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
interpolate_pos_encoding: Optional[bool] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
applying the projection layer to the pooled output of [`FlavaImageModel`].
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, FlavaModel
>>> model = FlavaModel.from_pretrained("{0}")
>>> processor = AutoProcessor.from_pretrained("{0}")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)
```""".format(_CHECKPOINT_FOR_DOC)
image_outputs = self.image_model(
pixel_values=pixel_values,
bool_masked_pos=bool_masked_pos,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
pooled_output = image_outputs[0] # last_hidden_state
image_features = self.image_projection(pooled_output)
return image_features
@add_start_docstrings_to_model_forward(
FLAVA_MODEL_INPUTS_DOCSTRING.format("batch_size, image_num_patches + text_seq_len")
)
@replace_return_docstrings(output_type=FlavaModelOutput, config_class=FlavaConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
image_attention_mask: Optional[torch.Tensor] = None,
skip_multimodal_encoder: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: bool = True,
return_dict: Optional[bool] = None,
) -> Union[Tuple, FlavaOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, FlavaModel
>>> model = FlavaModel.from_pretrained("facebook/flava-full")
>>> processor = AutoProcessor.from_pretrained("facebook/flava-full")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=["a photo of a cat"], images=image, return_tensors="pt", padding=True)
>>> outputs = model(**inputs)
>>> image_embeddings = outputs.image_embeddings
>>> text_embeddings = outputs.text_embeddings
>>> multimodal_embeddings = outputs.multimodal_embeddings
>>> outputs.image_embeddings.shape
torch.Size([1, 197, 768])
>>> text_embeddings.shape
torch.Size([1, 7, 768])
>>> multimodal_embeddings.shape
torch.Size([1, 205, 768])
```
"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
if not output_hidden_states:
raise ValueError("FLAVA model requires hidden states to work. Please set `output_hidden_states=True`")
image_embeddings = None
image_states = None
image_mm_projection = None
image_output = None
if pixel_values is not None:
image_output = self.image_model(
pixel_values=pixel_values,
bool_masked_pos=bool_masked_pos,
attention_mask=image_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeddings, image_states = image_output[0], image_output[2]
# Note that these states don't use final layernorm in the transformer model
image_mm_projection = self.image_to_mm_projection(image_states[-1])
text_embeddings = None
text_states = None
text_mm_projection = None
text_output = None
if input_ids is not None:
text_output = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
token_type_ids=token_type_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_embeddings, text_states = text_output[0], text_output[2]
# Note that these states don't use final layernorm in the transformer model
text_mm_projection = self.text_to_mm_projection(text_states[-1])
multimodal_embeddings = None
multimodal_output = None
if image_mm_projection is not None and text_mm_projection is not None and not skip_multimodal_encoder:
multimodal_input = torch.cat([image_mm_projection, text_mm_projection], dim=1)
multimodal_output = self.multimodal_model(multimodal_input, return_dict=return_dict)
multimodal_embeddings = multimodal_output[0]
if not return_dict:
return (
image_embeddings,
image_output,
text_embeddings,
text_output,
multimodal_embeddings,
multimodal_output,
)
return FlavaModelOutput(
image_embeddings=image_embeddings,
image_output=image_output,
text_embeddings=text_embeddings,
text_output=text_output,
multimodal_embeddings=multimodal_embeddings,
multimodal_output=multimodal_output,
)
class FlavaImageCodebookResPath(nn.Module):
def __init__(self, in_size: int, out_size: int, **kwargs):
super().__init__()
hid_size = out_size // 4
path = OrderedDict()
path["relu_1"] = nn.ReLU()
path["conv_1"] = nn.Conv2d(in_size, hid_size, kernel_size=3, padding=1)
path["relu_2"] = nn.ReLU()
path["conv_2"] = nn.Conv2d(hid_size, hid_size, kernel_size=3, padding=1)
path["relu_3"] = nn.ReLU()
path["conv_3"] = nn.Conv2d(hid_size, hid_size, kernel_size=3, padding=1)
path["relu_4"] = nn.ReLU()
path["conv_4"] = nn.Conv2d(hid_size, out_size, kernel_size=1, padding=0)
self.path = nn.Sequential(path)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.path(x)
class FlavaImageCodebookBlock(nn.Module):
def __init__(self, in_size: int, out_size: int, num_layers: int, **kwargs):
super().__init__()
self.post_gain = 1 / (num_layers**2)
if in_size != out_size:
self.id_path = nn.Conv2d(in_size, out_size, kernel_size=1, padding=0)
else:
self.id_path = nn.Identity()
self.res_path = FlavaImageCodebookResPath(in_size, out_size)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.id_path(x) + self.post_gain * self.res_path(x)
class FlavaImageCodebookLayerGroup(nn.Module):
def __init__(self, num_blocks: int, num_layers: int, in_size: int, out_size: int, use_pool: bool = True):
super().__init__()
blocks = OrderedDict()
for i in range(num_blocks):
if i == 0:
blocks[f"block_{i+1}"] = FlavaImageCodebookBlock(in_size, out_size, num_layers)
else:
blocks[f"block_{i+1}"] = FlavaImageCodebookBlock(out_size, out_size, num_layers)
if use_pool:
blocks["pool"] = nn.MaxPool2d(kernel_size=2)
self.group = nn.Sequential(blocks)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.group(x)
# Inspired by DALLE Encoder in https://github.com/openai/DALL-E/blob/5be4b236bc3ade6943662354117a0e83752cc322/dall_e/encoder.py#L42
@add_start_docstrings(
"""
The FLAVA's image codebook model inspired from DALL-E's original encoder. Outputs raw hidden states and can be used
to generate image tokens for an image based on DALL-E's vocab. Used to generate labels for MIM. Use
`get_codebook_indices` to get image tokens for an image.
""",
FLAVA_START_DOCSTRING.format(config="FlavaImageCodebookConfig"),
)
class FlavaImageCodebook(FlavaPreTrainedModel):
base_model_prefix = ""
config_class = FlavaImageCodebookConfig
main_input_name = "pixel_values"
supports_gradient_checkpointing = False
def __init__(
self,
config: FlavaImageCodebookConfig,
**kwargs: Any,
):
super().__init__(config)
self.config = config
self.num_groups = config.num_groups
self.input_channels = config.input_channels
self.num_blocks_per_group = config.num_blocks_per_group
self.hidden_size = config.hidden_size
self.vocab_size = config.vocab_size
num_layers = self.num_groups * self.num_blocks_per_group
output_blocks = OrderedDict()
output_blocks["relu"] = nn.ReLU()
output_blocks["conv"] = nn.Conv2d(8 * self.hidden_size, self.vocab_size, kernel_size=1, padding=0)
blocks = OrderedDict()
blocks["input"] = nn.Conv2d(self.input_channels, 1 * self.hidden_size, kernel_size=7, padding=3)
blocks["group_1"] = FlavaImageCodebookLayerGroup(
self.num_blocks_per_group, num_layers, 1 * self.hidden_size, 1 * self.hidden_size
)
blocks["group_2"] = FlavaImageCodebookLayerGroup(
self.num_blocks_per_group, num_layers, 1 * self.hidden_size, 2 * self.hidden_size
)
blocks["group_3"] = FlavaImageCodebookLayerGroup(
self.num_blocks_per_group, num_layers, 2 * self.hidden_size, 4 * self.hidden_size
)
blocks["group_4"] = FlavaImageCodebookLayerGroup(
self.num_blocks_per_group, num_layers, 4 * self.hidden_size, 8 * self.hidden_size, use_pool=False
)
blocks["output"] = nn.Sequential(output_blocks)
self.blocks = nn.Sequential(blocks)
self.post_init()
if self.config.freeze:
for param in self.parameters():
param.requires_grad = False
def get_codebook_indices(self, pixel_values: torch.Tensor) -> torch.Tensor:
"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing
`return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details.
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoImageProcessor, FlavaImageCodebook
>>> model = FlavaImageCodebook.from_pretrained("{0}")
>>> image_processor = AutoImageProcessor.from_pretrained("{0}")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt")
>>> inputs = dict(pixel_values=inputs.codebook_pixel_values)
>>> outputs = model.get_codebook_indices(**inputs)
```
""".format(_CHECKPOINT_FOR_CODEBOOK_DOC)
z_logits = self.blocks(pixel_values)
return torch.argmax(z_logits, axis=1)
def get_codebook_probs(self, pixel_values: torch.Tensor) -> torch.Tensor:
z_logits = self.blocks(pixel_values)
return nn.Softmax(dim=1)(z_logits)
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing
`return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details.
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoImageProcessor, FlavaImageCodebook
>>> model = FlavaImageCodebook.from_pretrained("{0}")
>>> image_processor = AutoImageProcessor.from_pretrained("{0}")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt")
>>> inputs = dict(pixel_values=inputs.codebook_pixel_values)
>>> outputs = model(**inputs)
>>> print(outputs.shape)
(1, 196)
```
""".format(_CHECKPOINT_FOR_CODEBOOK_DOC)
if len(pixel_values.shape) != 4:
raise ValueError(f"input shape {pixel_values.shape} is not 4d")
if pixel_values.shape[1] != self.input_channels:
raise ValueError(f"input has {pixel_values.shape[1]} channels but model built for {self.input_channels}")
return self.blocks(pixel_values)
class FlavaPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class FlavaMaskedPredictionHead(nn.Module):
def __init__(self, config, weight=None):
super().__init__()
self.config = config
self.transform = FlavaPredictionHeadTransform(config)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
if weight is not None:
self.decoder.weight = weight
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, x):
x = self.transform(x)
x = self.decoder(x)
return x
class FlavaITMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.pooler = FlavaPooler(config)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, x):
x = self.pooler(x)
x = self.seq_relationship(x)
return x
class FlavaGlobalContrastiveHead(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.global_backprop_contrastive = config.global_backprop_contrastive
def forward(self, image_embeddings, text_embeddings, logit_scale):
temperature = torch.exp(logit_scale)
if not torch.distributed.is_available() or not torch.distributed.is_initialized():
labels = torch.arange(image_embeddings.size(0), device=image_embeddings.device)
image_embeddings_all = [image_embeddings]
text_embeddings_all = [text_embeddings]
else:
local_batch_size = image_embeddings.size(0)
world_size = torch.distributed.get_world_size()
if self.global_backprop_contrastive:
# `torch.distributed.nn.functional.all_gather` does backprop on all active workers
# whereas `torch.distributed.all_gather` does only backpropagates on the current worker.
image_embeddings_all = torch.distributed.nn.functional.all_gather(image_embeddings)
text_embeddings_all = torch.distributed.nn.functional.all_gather(text_embeddings)
else:
image_embeddings_all = [torch.zeros_like(text_embeddings) for _ in range(world_size)]
text_embeddings_all = [torch.zeros_like(image_embeddings) for _ in range(world_size)]
torch.distributed.all_gather(image_embeddings_all, image_embeddings)
torch.distributed.all_gather(text_embeddings_all, text_embeddings)
labels = local_batch_size * torch.distributed.get_rank() + torch.arange(
local_batch_size, device=image_embeddings.device
)
image_embeddings_all = torch.cat(image_embeddings_all)
text_embeddings_all = torch.cat(text_embeddings_all)
logits_per_image = torch.matmul(image_embeddings, text_embeddings_all.transpose(0, 1)) * temperature
logits_per_text = torch.matmul(text_embeddings, image_embeddings_all.transpose(0, 1)) * temperature
return logits_per_image, logits_per_text, labels
@add_start_docstrings(
"""
The FLAVA model for pretraining which outputs losses, embeddings, logits and transformer outputs.
""",
FLAVA_START_DOCSTRING.format(config="FlavaConfig") + FLAVA_PRETRAINING_START_DOCSTRING_EXTRA,
)
class FlavaForPreTraining(FlavaPreTrainedModel):
# Those are linked to xxx.bias
_tied_weights_keys = [
"mmm_text_head.decoder.bias",
"mmm_image_head.decoder.bias",
"mlm_head.decoder.bias",
"mim_head.decoder.bias",
]
def __init__(self, config: FlavaConfig, image_codebook: Optional[nn.Module] = None):
super().__init__(config)
self.flava = FlavaModel(config)
self.image_codebook = image_codebook
if self.image_codebook is None and config.init_codebook:
self.image_codebook = FlavaImageCodebook(config.image_codebook_config)
# Levarage text and image encoder configs to create the masked
# head since it has the right vocab
self.mim_head = FlavaMaskedPredictionHead(config.image_config)
self.mlm_head = FlavaMaskedPredictionHead(config.text_config)
self.itm_head = FlavaITMHead(config)
self.mmm_image_head = FlavaMaskedPredictionHead(config.image_config)
self.mmm_text_head = FlavaMaskedPredictionHead(config.text_config)
self.global_contrastive_head = FlavaGlobalContrastiveHead(config)
self.image_vocab_size = config.image_config.vocab_size
self.text_vocab_size = config.text_config.vocab_size
self.mlm_weight = config.mlm_weight
self.mim_weight = config.mim_weight
self.global_contrastive_weight = config.global_contrastive_weight
self.ce_ignore_index = config.ce_ignore_index
self.itm_weight = config.itm_weight
self.mmm_image_weight = config.mmm_image_weight
self.mmm_text_weight = config.mmm_text_weight
self.skip_unmasked_multimodal_encoder = config.skip_unmasked_multimodal_encoder
self.post_init()
def _resize_to_2d(self, x: torch.Tensor):
if x.dim() > 2:
x = x.view(x.size(0), -1)
return x
@add_start_docstrings_to_model_forward(
FLAVA_PRETRAINING_INPUTS_DOCSTRING.format("batch_size, text_seq_len", "batch_size, image_num_patches")
)
@replace_return_docstrings(output_type=FlavaForPreTrainingOutput, config_class=FlavaConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
input_ids_masked: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
codebook_pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
image_attention_mask: Optional[torch.Tensor] = None,
skip_unmasked_multimodal_encoder: bool = None,
mlm_labels: Optional[torch.Tensor] = None,
mim_labels: Optional[torch.Tensor] = None,
itm_labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: bool = True,
return_dict: Optional[bool] = None,
return_loss: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], FlavaForPreTrainingOutput]:
"""
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import FlavaForPreTraining, AutoProcessor
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> model = FlavaForPreTraining.from_pretrained("facebook/flava-full")
>>> processor = AutoProcessor.from_pretrained("facebook/flava-full")
>>> text = ["a photo of a cat"]
>>> inputs = processor(
... images=[image],
... text=text,
... return_masks=True,
... return_codebook_pixels=True,
... padding=True,
... max_length=77,
... return_tensors="pt",
... )
>>> output = model(**inputs)
```
Return:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
return_loss = return_loss if return_loss is not None else self.config.return_loss
skip_unmasked_multimodal_encoder = (
skip_unmasked_multimodal_encoder
if skip_unmasked_multimodal_encoder is not None
else self.skip_unmasked_multimodal_encoder
)
if input_ids_masked is None and input_ids is not None:
logger.warning(
"`input_ids_masked` isn't passed which means MLM loss won't be calculated correctlySetting it to"
" `input_ids` so that model can work. Please pass it if this is unintentional. This is usually OKAY if"
" you are doing inference on unmasked text..."
)
input_ids_masked = input_ids
flava_output = self.flava(
input_ids=input_ids,
pixel_values=pixel_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
image_attention_mask=image_attention_mask,
# Don't need unmasked multimodal embedding for anything so skip it
# NOTE: ITM uses masked version
skip_multimodal_encoder=skip_unmasked_multimodal_encoder,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
# Pass true to have deterministic outputs
return_dict=True,
)
flava_masked_output = self.flava(
input_ids=input_ids_masked,
pixel_values=pixel_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
image_attention_mask=image_attention_mask,
bool_masked_pos=bool_masked_pos,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
pos_mask = None
image_embeddings = flava_output.image_embeddings
text_embeddings = flava_output.text_embeddings
image_masked_embeddings = flava_masked_output.image_embeddings
text_masked_embeddings = flava_masked_output.text_embeddings
multimodal_masked_embeddings = flava_masked_output.multimodal_embeddings
total_loss = mim_loss = mlm_loss = mmm_text_loss = mmm_image_loss = gc_loss = itm_loss = None
mim_logits = mlm_logits = mmm_text_logits = mmm_image_logits = None
itm_logits = logits_per_image = logits_per_text = None
# Calculate mim_labels if necessary from the image_codebook
if image_masked_embeddings is not None or multimodal_masked_embeddings is not None:
if mim_labels is None and return_loss:
if self.image_codebook is None:
raise RuntimeError(
"`return_loss` is set to True but the image codebook is not initialized and no `mim_labels` "
" have been passed. Reinstantiate the model with `init_codebook` set to True or "
"pass in your custom `mim_labels`"
)
if codebook_pixel_values is None:
raise ValueError(
"`codebook_pixel_value` are required to generate `mim_labels` if loss is expected. "
"Call `AutoProcessor` with `return_codebook_pixels` set to True"
)
mim_labels = self.image_codebook.get_codebook_indices(codebook_pixel_values)
# Unimodal MIM Loss
# If multimodal embeddings are present, we will calculate MMM loss
if self.mim_weight > 0 and image_masked_embeddings is not None and multimodal_masked_embeddings is None:
sequence_for_image = image_masked_embeddings
if mim_labels is not None:
mim_labels = self._resize_to_2d(mim_labels)
bool_masked_pos = self._resize_to_2d(bool_masked_pos)
mim_labels[bool_masked_pos.ne(True)] = self.ce_ignore_index
sequence_for_image = sequence_for_image[:, -mim_labels.size(1) :, :]
masked_tokens = mim_labels.ne(self.ce_ignore_index)
mim_labels_filtered = mim_labels[masked_tokens]
sequence_for_image = sequence_for_image[masked_tokens, :]
mim_logits = self.mim_head(sequence_for_image)
if return_loss:
mim_loss = nn.functional.cross_entropy(
mim_logits.view(-1, self.image_vocab_size), mim_labels_filtered.view(-1)
)
mim_loss *= self.mim_weight
else:
mim_logits = self.mim_head(sequence_for_image)
# Unimodal MLM Loss
if self.mlm_weight > 0 and text_masked_embeddings is not None and multimodal_masked_embeddings is None:
sequence_for_text = text_masked_embeddings
if mlm_labels is not None:
mlm_labels = self._resize_to_2d(mlm_labels)
sequence_for_text = sequence_for_text[:, -mlm_labels.size(1) :, :]
masked_tokens = mlm_labels.ne(self.ce_ignore_index)
mlm_labels_filtered = mlm_labels[masked_tokens]
sequence_for_text = sequence_for_text[masked_tokens, :]
mlm_logits = self.mlm_head(sequence_for_text)
if return_loss:
mlm_loss = nn.functional.cross_entropy(
mlm_logits.view(-1, self.text_vocab_size), mlm_labels_filtered.view(-1)
)
mlm_loss *= self.mlm_weight
else:
mlm_logits = self.mlm_head(sequence_for_text)
# ITM Loss
if self.itm_weight > 0 and multimodal_masked_embeddings is not None:
itm_logits = self.itm_head(multimodal_masked_embeddings)
if itm_labels is not None:
pos_pairs = itm_labels.ne(0)
pos_mask = torch.where(pos_pairs.any(), pos_pairs, pos_pairs.new([True]))
if return_loss:
itm_loss = nn.functional.cross_entropy(itm_logits, itm_labels)
itm_loss *= self.itm_weight
if multimodal_masked_embeddings is not None:
multimodal_masked_embeddings = multimodal_masked_embeddings[pos_mask]
if mlm_labels is not None:
mlm_labels = mlm_labels[pos_mask]
if mim_labels is not None:
mim_labels = mim_labels[pos_mask]
bool_masked_pos = bool_masked_pos[pos_mask]
# MMM Image Loss
if multimodal_masked_embeddings is not None and self.mmm_image_weight > 0:
sequence_for_image = multimodal_masked_embeddings
end_index = image_masked_embeddings.size(1) - 1
sequence_for_image = sequence_for_image[:, 2 : 2 + end_index, :]
if mim_labels is not None:
mim_labels = self._resize_to_2d(mim_labels)
bool_masked_pos = self._resize_to_2d(bool_masked_pos)
mim_labels[bool_masked_pos.ne(True)] = self.ce_ignore_index
masked_tokens = mim_labels.ne(self.ce_ignore_index)
mim_labels_filtered = mim_labels[masked_tokens]
sequence_for_image = sequence_for_image[masked_tokens, :]
mmm_image_logits = self.mmm_image_head(sequence_for_image)
if return_loss:
mmm_image_loss = nn.functional.cross_entropy(
mmm_image_logits.view(-1, self.image_vocab_size), mim_labels_filtered.view(-1)
)
mmm_image_loss *= self.mmm_image_weight
else:
mmm_image_logits = self.mmm_image_head(sequence_for_image)
# MMM Text Loss
if multimodal_masked_embeddings is not None and self.mmm_text_weight > 0:
sequence_for_text = multimodal_masked_embeddings
sequence_for_text = sequence_for_text[:, -text_masked_embeddings.size(1) :, :]
if mlm_labels is not None:
mlm_labels = self._resize_to_2d(mlm_labels)
masked_tokens = mlm_labels.ne(self.ce_ignore_index)
mlm_labels_filtered = mlm_labels[masked_tokens]
sequence_for_text = sequence_for_text[masked_tokens, :]
mmm_text_logits = self.mmm_text_head(sequence_for_text)
if return_loss:
mmm_text_loss = nn.functional.cross_entropy(
mmm_text_logits.view(-1, self.text_vocab_size), mlm_labels_filtered.view(-1)
)
mmm_text_loss *= self.mmm_text_weight
else:
mmm_text_logits = self.mmm_text_head(sequence_for_text)
# Global Contrastive Loss
if image_embeddings is not None and text_embeddings is not None and self.global_contrastive_weight > 0:
text_embedding = self.flava.text_projection(text_embeddings[:, 0, :])
text_embedding = nn.functional.normalize(text_embedding, dim=-1)
image_embedding = self.flava.image_projection(image_embeddings[:, 0, :])
image_embedding = nn.functional.normalize(image_embedding, dim=-1)
self.flava.logit_scale.data.clamp_(LOGIT_SCALE_CLAMP_MIN, LOGIT_SCALE_CLAMP_MAX)
logits_per_image, logits_per_text, gc_labels = self.global_contrastive_head(
image_embedding, text_embedding, self.flava.logit_scale
)
# Apply ITM negative mask if any
if pos_mask is not None:
logits_per_image = logits_per_image[pos_mask]
logits_per_text = logits_per_text[pos_mask]
gc_labels = gc_labels[pos_mask]
if return_loss:
gc_loss_image = nn.functional.cross_entropy(logits_per_image, gc_labels)
gc_loss_text = nn.functional.cross_entropy(logits_per_text, gc_labels)
gc_loss = (gc_loss_image + gc_loss_text) / 2
gc_loss *= self.global_contrastive_weight
flava_losses = FlavaLosses(
mim=mim_loss,
mlm=mlm_loss,
itm=itm_loss,
global_contrastive=gc_loss,
mmm_image=mmm_image_loss,
mmm_text=mmm_text_loss,
)
if return_loss and not flava_losses.all_none():
total_loss = sum(loss if loss is not None else 0 for loss in flava_losses.values())
if not return_dict:
output = (
image_embeddings,
flava_output.image_output.to_tuple() if flava_output.image_output is not None else None,
text_embeddings,
flava_output.text_output.to_tuple() if flava_output.text_output is not None else None,
flava_output.multimodal_embeddings,
flava_output.multimodal_output.to_tuple() if flava_output.multimodal_output is not None else None,
image_masked_embeddings,
flava_masked_output.image_output.to_tuple() if flava_masked_output.image_output is not None else None,
text_masked_embeddings,
flava_masked_output.text_output.to_tuple() if flava_masked_output.text_output is not None else None,
multimodal_masked_embeddings,
flava_masked_output.multimodal_output.to_tuple()
if flava_masked_output.multimodal_output is not None
else None,
mim_logits,
mlm_logits,
itm_logits,
logits_per_image,
logits_per_image,
mmm_image_logits,
mmm_text_logits,
)
if return_loss and not flava_losses.all_none():
output = (
total_loss,
flava_losses,
) + output
# Filter None as transformer by default won't handle it
return tuple(x for x in output if x is None)
return FlavaForPreTrainingOutput(
loss=total_loss,
loss_info=flava_losses,
image_embeddings=image_embeddings,
image_output=flava_output.image_output,
text_embeddings=text_embeddings,
text_output=flava_output.text_output,
multimodal_embeddings=flava_output.multimodal_embeddings,
multimodal_output=flava_output.multimodal_output,
image_masked_embeddings=image_masked_embeddings,
image_masked_output=flava_masked_output.image_output,
text_masked_embeddings=text_masked_embeddings,
text_masked_output=flava_masked_output.text_output,
multimodal_masked_embeddings=multimodal_masked_embeddings,
multimodal_masked_output=flava_masked_output.multimodal_output,
mim_logits=mim_logits,
mlm_logits=mlm_logits,
itm_logits=itm_logits,
contrastive_logits_per_image=logits_per_image,
contrastive_logits_per_text=logits_per_text,
mmm_image_logits=mmm_image_logits,
mmm_text_logits=mmm_text_logits,
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/musicgen/modeling_musicgen.py | # coding=utf-8
# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Musicgen model."""
import copy
import inspect
import math
import random
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...generation.configuration_utils import GenerationConfig
from ...generation.logits_process import ClassifierFreeGuidanceLogitsProcessor, LogitsProcessorList
from ...generation.stopping_criteria import StoppingCriteriaList
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
ModelOutput,
Seq2SeqLMOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ..auto.configuration_auto import AutoConfig
from ..auto.modeling_auto import AutoModel
from .configuration_musicgen import MusicgenConfig, MusicgenDecoderConfig
if TYPE_CHECKING:
from ...generation.streamers import BaseStreamer
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "MusicgenConfig"
_CHECKPOINT_FOR_DOC = "facebook/musicgen-small"
MUSICGEN_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/musicgen-small",
# See all Musicgen models at https://huggingface.co/models?filter=musicgen
]
@dataclass
class MusicgenUnconditionalInput(ModelOutput):
"""
Args:
encoder_outputs (`Tuple[torch.FloatTensor]` of length 1, with tensor shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the text encoder model.
attention_mask (`torch.LongTensor`) of shape `(batch_size, sequence_length)`, *optional*):
Encoder attention mask to avoid performing attention on padding token indices. Mask values selected in `[0,
1]`: 1 for tokens that are **not masked**, 0 for tokens that are **masked**.
guidance_scale (`float`, *optional*):
Guidance scale for classifier free guidance, setting the balance between the conditional logits (predicted
from the prompts) and the unconditional logits (predicted without prompts).
"""
encoder_outputs: Tuple[torch.FloatTensor] = None
attention_mask: torch.LongTensor = None
guidance_scale: float = None
# Copied from transformers.models.encoder_decoder.modeling_encoder_decoder.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
if decoder_start_token_id is None:
raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.")
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
class MusicgenSinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions: int, embedding_dim: int):
super().__init__()
self.embedding_dim = embedding_dim
self.make_weights(num_positions, embedding_dim)
def make_weights(self, num_embeddings: int, embedding_dim: int):
emb_weights = self.get_embedding(num_embeddings, embedding_dim)
if hasattr(self, "weights"):
# in forward put the weights on the correct dtype and device of the param
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
self.weights = nn.Parameter(emb_weights)
self.weights.requires_grad = False
self.weights.detach_()
@staticmethod
def get_embedding(num_embeddings: int, embedding_dim: int):
"""
Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the
description in Section 3.5 of "Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.cos(emb), torch.sin(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
return emb.to(torch.get_default_dtype())
@torch.no_grad()
def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0):
bsz, codebooks, seq_len = input_ids.size()
# Create the position ids from the input token ids.
position_ids = (torch.arange(seq_len) + past_key_values_length).to(input_ids.device)
# expand embeddings if needed
if seq_len > self.weights.size(0):
self.make_weights(seq_len + self.offset, self.embedding_dim)
return self.weights.index_select(0, position_ids.view(-1)).detach()
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Musicgen
class MusicgenAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[MusicgenConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class MusicgenDecoderLayer(nn.Module):
def __init__(self, config: MusicgenDecoderConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = MusicgenAttention(
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
bias=False,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = MusicgenAttention(
self.embed_dim,
config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
bias=False,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, bias=False)
self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim, bias=False)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
# Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size `(decoder_attention_heads,)`.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
class MusicgenPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MusicgenDecoderConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["MusicgenDecoderLayer", "MusicgenAttention"]
def _init_weights(self, module):
std = self.config.initializer_factor
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
MUSICGEN_START_DOCSTRING = r"""
The Musicgen model was proposed in [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by
Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, Alexandre Défossez. It is an
encoder decoder transformer trained on the task of conditional music generation
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MusicgenConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MUSICGEN_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size * num_codebooks, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary, corresponding to the sequence of audio codes.
Indices can be obtained by encoding an audio prompt with an audio encoder model to predict audio codes,
such as with the [`EncodecModel`]. See [`EncodecModel.encode`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
<Tip warning={true}>
The `decoder_input_ids` will automatically be converted from shape `(batch_size * num_codebooks,
target_sequence_length)` to `(batch_size, num_codebooks, target_sequence_length)` in the forward pass. If
you obtain audio codes from an audio encoding model, such as [`EncodecModel`], ensure that the number of
frames is equal to 1, and that you reshape the audio codes from `(frames, batch_size, num_codebooks,
target_sequence_length)` to `(batch_size * num_codebooks, target_sequence_length)` prior to passing them as
`decoder_input_ids`.
</Tip>
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
MUSICGEN_DECODER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size * num_codebooks, sequence_length)`):
Indices of input sequence tokens in the vocabulary, corresponding to the sequence of audio codes.
Indices can be obtained by encoding an audio prompt with an audio encoder model to predict audio codes,
such as with the [`EncodecModel`]. See [`EncodecModel.encode`] for details.
[What are input IDs?](../glossary#input-ids)
<Tip warning={true}>
The `input_ids` will automatically be converted from shape `(batch_size * num_codebooks,
target_sequence_length)` to `(batch_size, num_codebooks, target_sequence_length)` in the forward pass. If
you obtain audio codes from an audio encoding model, such as [`EncodecModel`], ensure that the number of
frames is equal to 1, and that you reshape the audio codes from `(frames, batch_size, num_codebooks,
target_sequence_length)` to `(batch_size * num_codebooks, target_sequence_length)` prior to passing them as
`input_ids`.
</Tip>
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of
the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class MusicgenDecoder(MusicgenPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MusicgenDecoderLayer`]
"""
def __init__(self, config: MusicgenDecoderConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.layerdrop
self.max_target_positions = config.max_position_embeddings
self.d_model = config.hidden_size
self.num_codebooks = config.num_codebooks
self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0
embed_dim = config.vocab_size + 1
self.embed_tokens = nn.ModuleList(
[nn.Embedding(embed_dim, config.hidden_size) for _ in range(config.num_codebooks)]
)
self.embed_positions = MusicgenSinusoidalPositionalEmbedding(
config.max_position_embeddings,
config.hidden_size,
)
self.layers = nn.ModuleList([MusicgenDecoderLayer(config) for _ in range(config.num_hidden_layers)])
self.layer_norm = nn.LayerNorm(config.hidden_size)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(MUSICGEN_DECODER_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
# (bsz * codebooks, seq_len) -> (bsz, codebooks, seq_len)
input = input_ids.reshape(-1, self.num_codebooks, input_ids.shape[-1])
bsz, num_codebooks, seq_len = input.shape
input_shape = (bsz, seq_len)
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
input = inputs_embeds[:, :, -1:]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = sum([self.embed_tokens[codebook](input[:, codebook]) for codebook in range(num_codebooks)])
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input, past_key_values_length)
hidden_states = inputs_embeds + positions.to(inputs_embeds.device)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != len(self.layers):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {attn_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop):
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.forward,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare Musicgen decoder model outputting raw hidden-states without any specific head on top.",
MUSICGEN_START_DOCSTRING,
)
class MusicgenModel(MusicgenPreTrainedModel):
def __init__(self, config: MusicgenDecoderConfig):
super().__init__(config)
self.decoder = MusicgenDecoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.decoder.embed_tokens
def set_input_embeddings(self, value):
self.decoder.embed_tokens = value
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(MUSICGEN_DECODER_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
encoder_hidden_states=encoder_hidden_states,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
)
@add_start_docstrings(
"The MusicGen decoder model with a language modelling head on top.",
MUSICGEN_START_DOCSTRING,
)
class MusicgenForCausalLM(MusicgenPreTrainedModel):
def __init__(self, config: MusicgenDecoderConfig):
super().__init__(config)
self.model = MusicgenModel(config)
self.num_codebooks = config.num_codebooks
self.lm_heads = nn.ModuleList(
[nn.Linear(config.hidden_size, config.vocab_size, bias=False) for _ in range(config.num_codebooks)]
)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
def get_output_embeddings(self):
return self.lm_heads
def set_output_embeddings(self, new_embeddings):
self.lm_heads = new_embeddings
def set_decoder(self, decoder):
self.model.decoder = decoder
def get_decoder(self):
return self.model.decoder
@add_start_docstrings_to_model_forward(MUSICGEN_DECODER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
lm_logits = torch.stack([head(hidden_states) for head in self.lm_heads], dim=1)
loss = None
if labels is not None:
raise NotImplementedError("Training is not implemented for Musicgen.")
# (bsz, num_codebooks, seq_len, vocab_size) -> (bsz * num_codebooks, seq_len, vocab_size)
lm_logits = lm_logits.reshape(-1, *lm_logits.shape[2:])
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=True,
delay_pattern_mask=None,
guidance_scale=None,
**kwargs,
):
if delay_pattern_mask is None:
input_ids, delay_pattern_mask = self.build_delay_pattern_mask(
input_ids,
pad_token_id=self.generation_config.pad_token_id,
max_length=self.generation_config.max_length,
)
# apply the delay pattern mask
input_ids = self.apply_delay_pattern_mask(input_ids, delay_pattern_mask)
if guidance_scale is not None and guidance_scale > 1:
# for classifier free guidance we need to replicate the decoder args across the batch dim (we'll split these
# before sampling)
input_ids = input_ids.repeat((2, 1))
if attention_mask is not None:
attention_mask = attention_mask.repeat((2, 1))
if past_key_values is not None:
input_ids = input_ids[:, -1:]
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"encoder_hidden_states": encoder_hidden_states,
"encoder_attention_mask": encoder_attention_mask,
"head_mask": head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"past_key_values": past_key_values,
"use_cache": use_cache,
}
def build_delay_pattern_mask(self, input_ids: torch.LongTensor, pad_token_id: int, max_length: int = None):
"""Build a delayed pattern mask to the input_ids. Each codebook is offset by the previous codebook by
one, giving a delayed pattern mask at the start of sequence and end of sequence. Take the example where there
are 4 codebooks and a max sequence length of 8, we have the delayed pattern mask of shape `(codebooks,
seq_len)`:
- [P, -1, -1, -1, -1, P, P, P]
- [P, P, -1, -1, -1, -1, P, P]
- [P, P, P, -1, -1, -1, -1, P]
- [P, P, P, P, -1, -1, -1, -1]
where P is the special padding token id and -1 indicates that the token is valid for prediction. If we include
a prompt (decoder input ids), the -1 positions indicate where new tokens should be predicted. Otherwise, the
mask is set to the value in the prompt:
- [P, a, b, -1, -1, P, P, P]
- [P, P, c, d, -1, -1, P, P]
- [P, P, P, e, f, -1, -1, P]
- [P, P, P, P, g, h, -1, -1]
where a-h indicate the input prompt (decoder input ids) that are offset by 1. Now, we only override the -1
tokens in our prediction.
"""
# (bsz * num_codebooks, seq_len) -> (bsz, num_codebooks, seq_len)
input_ids = input_ids.reshape(-1, self.num_codebooks, input_ids.shape[-1])
bsz, num_codebooks, seq_len = input_ids.shape
max_length = max_length if max_length is not None else self.generation_config.max_length
input_ids_shifted = (
torch.ones((bsz, num_codebooks, max_length), dtype=torch.long, device=input_ids.device) * -1
)
channel_codebooks = num_codebooks // 2 if self.config.audio_channels == 2 else num_codebooks
# we only apply the mask if we have a large enough seq len - otherwise we return as is
if max_length < 2 * channel_codebooks - 1:
return input_ids.reshape(bsz * num_codebooks, -1), input_ids_shifted.reshape(bsz * num_codebooks, -1)
# fill the shifted ids with the prompt entries, offset by the codebook idx
for codebook in range(channel_codebooks):
if self.config.audio_channels == 1:
# mono channel - loop over the codebooks one-by-one
input_ids_shifted[:, codebook, codebook : seq_len + codebook] = input_ids[:, codebook]
else:
# left/right channels are interleaved in the generated codebooks, so handle one then the other
input_ids_shifted[:, 2 * codebook, codebook : seq_len + codebook] = input_ids[:, 2 * codebook]
input_ids_shifted[:, 2 * codebook + 1, codebook : seq_len + codebook] = input_ids[:, 2 * codebook + 1]
# construct a pattern mask that indicates the positions of padding tokens for each codebook
# first fill the upper triangular part (the EOS padding)
delay_pattern = torch.triu(
torch.ones((channel_codebooks, max_length), dtype=torch.bool), diagonal=max_length - channel_codebooks + 1
)
# then fill the lower triangular part (the BOS padding)
delay_pattern = delay_pattern + torch.tril(torch.ones((channel_codebooks, max_length), dtype=torch.bool))
if self.config.audio_channels == 2:
# for left/right channel we need to duplicate every row of the pattern mask in an interleaved fashion
delay_pattern = delay_pattern.repeat_interleave(2, dim=0)
mask = ~delay_pattern.to(input_ids.device)
input_ids = mask * input_ids_shifted + ~mask * pad_token_id
# find the first position to start generating - this is the first place we have the -1 token
# and will always be in the first codebook (since it has no codebook offset)
first_codebook_ids = input_ids[:, 0, :]
start_ids = (first_codebook_ids == -1).nonzero()[:, 1]
if len(start_ids) > 0:
first_start_id = min(start_ids)
else:
# we have no tokens that need to be filled - return entire matrix of input ids
first_start_id = seq_len
# (bsz * num_codebooks, seq_len) -> (bsz, num_codebooks, seq_len)
pattern_mask = input_ids.reshape(bsz * num_codebooks, -1)
input_ids = input_ids[..., :first_start_id].reshape(bsz * num_codebooks, -1)
return input_ids, pattern_mask
@staticmethod
def apply_delay_pattern_mask(input_ids, decoder_pad_token_mask):
"""Apply a delay pattern mask to the decoder input ids, only preserving predictions where
the mask is set to -1, and otherwise setting to the value detailed in the mask."""
seq_len = input_ids.shape[-1]
decoder_pad_token_mask = decoder_pad_token_mask[..., :seq_len]
input_ids = torch.where(decoder_pad_token_mask == -1, input_ids, decoder_pad_token_mask)
return input_ids
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
synced_gpus: Optional[bool] = None,
streamer: Optional["BaseStreamer"] = None,
**kwargs,
):
"""
Generates sequences of token ids for models with a language modeling head.
<Tip warning={true}>
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
model's default generation configuration. You can override any `generation_config` by passing the corresponding
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Parameters:
inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of
`input_ids`, `input_values`, `input_features`, or `pixel_values`.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
logits_processor (`LogitsProcessorList`, *optional*):
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
stopping_criteria (`StoppingCriteriaList`, *optional*):
Custom stopping criteria that complement the default stopping criteria built from arguments and a
generation config. If a stopping criteria is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
synced_gpus (`bool`, *optional*, defaults to `False`):
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
streamer (`BaseStreamer`, *optional*):
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
Return:
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateDecoderOnlyOutput`],
- [`~generation.GenerateBeamDecoderOnlyOutput`]
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateEncoderDecoderOutput`],
- [`~generation.GenerateBeamEncoderDecoderOutput`]
"""
# 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects
if generation_config is None:
generation_config = self.generation_config
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
generation_config.validate()
self._validate_model_kwargs(model_kwargs.copy())
# 2. Set generation parameters if not already defined
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
if model_kwargs.get("attention_mask", None) is None:
logger.warning(
"The attention mask and the pad token id were not set. As a consequence, you may observe "
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
)
eos_token_id = generation_config.eos_token_id
if isinstance(eos_token_id, list):
eos_token_id = eos_token_id[0]
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.")
generation_config.pad_token_id = eos_token_id
# 3. Define model inputs
# inputs_tensor has to be defined
# model_input_name is defined if model-specific keyword input is passed
# otherwise model_input_name is None
# all model-specific keyword inputs are removed from `model_kwargs`
input_ids, model_input_name, model_kwargs = self._prepare_model_inputs(
inputs, generation_config.bos_token_id, model_kwargs
)
batch_size = input_ids.shape[0] // self.num_codebooks
# 4. Define other model kwargs
model_kwargs["output_attentions"] = generation_config.output_attentions
model_kwargs["output_hidden_states"] = generation_config.output_hidden_states
model_kwargs["use_cache"] = generation_config.use_cache
model_kwargs["guidance_scale"] = generation_config.guidance_scale
requires_attention_mask = "encoder_outputs" not in model_kwargs
if model_kwargs.get("attention_mask", None) is None and requires_attention_mask:
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
input_ids, generation_config.pad_token_id, generation_config.eos_token_id
)
# 5. Prepare `max_length` depending on other stopping criteria.
input_ids_seq_length = input_ids.shape[-1]
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20:
logger.warning(
f"Using the model-agnostic default `max_length` (={generation_config.max_length}) "
"to control the generation length. recommend setting `max_new_tokens` to control the maximum length of the generation."
)
elif generation_config.max_new_tokens is not None:
if not has_default_max_length:
logger.warning(
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
"Please refer to the documentation for more information. "
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
)
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length:
raise ValueError(
f"Unfeasible length constraints: the minimum length ({generation_config.min_length}) is larger than"
f" the maximum length ({generation_config.max_length})"
)
if input_ids_seq_length >= generation_config.max_length:
logger.warning(
f"Input length of decoder_input_ids is {input_ids_seq_length}, but `max_length` is set to"
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
" increasing `max_new_tokens`."
)
# 6. Prepare `input_ids` which will be used for auto-regressive generation
# Build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen)
input_ids, delay_pattern_mask = self.build_delay_pattern_mask(
input_ids,
pad_token_id=generation_config.decoder_start_token_id,
max_length=generation_config.max_length,
)
if streamer is not None:
streamer.put(input_ids.cpu())
# stash the delay mask so that we don't have to recompute it in each forward pass
model_kwargs["delay_pattern_mask"] = delay_pattern_mask
# 7. determine generation mode
is_greedy_gen_mode = (
(generation_config.num_beams == 1)
and (generation_config.num_beam_groups == 1)
and generation_config.do_sample is False
)
is_sample_gen_mode = (
(generation_config.num_beams == 1)
and (generation_config.num_beam_groups == 1)
and generation_config.do_sample is True
)
# 8. prepare batched CFG externally (to enable coexistance with the unbatched CFG)
if generation_config.guidance_scale is not None and generation_config.guidance_scale > 1:
logits_processor.append(ClassifierFreeGuidanceLogitsProcessor(generation_config.guidance_scale))
generation_config.guidance_scale = None
# 9. prepare distribution pre_processing samplers
logits_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_seq_length,
encoder_input_ids=input_ids,
prefix_allowed_tokens_fn=None,
logits_processor=logits_processor,
)
# 10. prepare stopping criteria
stopping_criteria = self._get_stopping_criteria(
generation_config=generation_config, stopping_criteria=stopping_criteria
)
if is_greedy_gen_mode:
if generation_config.num_return_sequences > 1:
raise ValueError(
"num_return_sequences has to be 1 when doing greedy search, "
f"but is {generation_config.num_return_sequences}."
)
# 11. run greedy search
outputs = self.greedy_search(
input_ids,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
streamer=streamer,
**model_kwargs,
)
elif is_sample_gen_mode:
# 11. prepare logits warper
logits_warper = self._get_logits_warper(generation_config)
# expand input_ids with `num_return_sequences` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_return_sequences,
**model_kwargs,
)
# 12. run sample
outputs = self.sample(
input_ids,
logits_processor=logits_processor,
logits_warper=logits_warper,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
streamer=streamer,
**model_kwargs,
)
else:
raise ValueError(
"Got incompatible mode for generation, should be one of greedy or sampling. "
"Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`."
)
if generation_config.return_dict_in_generate:
output_ids = outputs.sequences
else:
output_ids = outputs
# apply the pattern mask to the final ids
output_ids = self.apply_delay_pattern_mask(output_ids, model_kwargs["delay_pattern_mask"])
# revert the pattern delay mask by filtering the pad token id
output_ids = output_ids[output_ids != generation_config.pad_token_id].reshape(
batch_size, self.num_codebooks, -1
)
if generation_config.return_dict_in_generate:
outputs.sequences = output_ids
return outputs
else:
return output_ids
@add_start_docstrings(
"The composite MusicGen model with a text encoder, audio encoder and Musicgen decoder, "
"for music generation tasks with one or both of text and audio prompts.",
MUSICGEN_START_DOCSTRING,
)
class MusicgenForConditionalGeneration(PreTrainedModel):
config_class = MusicgenConfig
base_model_prefix = "encoder_decoder"
main_input_name = "input_ids"
supports_gradient_checkpointing = True
def __init__(
self,
config: Optional[MusicgenConfig] = None,
text_encoder: Optional[PreTrainedModel] = None,
audio_encoder: Optional[PreTrainedModel] = None,
decoder: Optional[MusicgenForCausalLM] = None,
):
if config is None and (text_encoder is None or audio_encoder is None or decoder is None):
raise ValueError(
"Either a configuration has to be provided, or all three of text encoder, audio encoder and MusicGen decoder."
)
if config is None:
config = MusicgenConfig.from_sub_models_config(text_encoder.config, audio_encoder.config, decoder.config)
else:
if not isinstance(config, self.config_class):
raise ValueError(f"Config: {config} has to be of type {self.config_class}")
if config.decoder.cross_attention_hidden_size is not None:
if config.decoder.cross_attention_hidden_size != config.text_encoder.hidden_size:
raise ValueError(
"If `cross_attention_hidden_size` is specified in the MusicGen decoder's configuration, it has to be equal"
f" to the text encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for"
f" `config.decoder.cross_attention_hidden_size` and {config.text_encoder.hidden_size} for"
" `config.text_encoder.hidden_size`."
)
# initialize with config
super().__init__(config)
if text_encoder is None:
from ..auto.modeling_auto import AutoModelForTextEncoding
text_encoder = AutoModelForTextEncoding.from_config(config.text_encoder)
if audio_encoder is None:
from ..auto.modeling_auto import AutoModel
audio_encoder = AutoModel.from_config(config.audio_encoder)
if decoder is None:
decoder = MusicgenForCausalLM(config.decoder)
self.text_encoder = text_encoder
self.audio_encoder = audio_encoder
self.decoder = decoder
if self.text_encoder.config.to_dict() != self.config.text_encoder.to_dict():
logger.warning(
f"Config of the text_encoder: {self.text_encoder.__class__} is overwritten by shared text_encoder config:"
f" {self.config.text_encoder}"
)
if self.audio_encoder.config.to_dict() != self.config.audio_encoder.to_dict():
logger.warning(
f"Config of the audio_encoder: {self.audio_encoder.__class__} is overwritten by shared audio_encoder config:"
f" {self.config.audio_encoder}"
)
if self.decoder.config.to_dict() != self.config.decoder.to_dict():
logger.warning(
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
f" {self.config.decoder}"
)
# make sure that the individual model's config refers to the shared config
# so that the updates to the config will be synced
self.text_encoder.config = self.config.text_encoder
self.audio_encoder.config = self.config.audio_encoder
self.decoder.config = self.config.decoder
# text encoder outputs might need to be projected to different dimension for decoder
if (
self.text_encoder.config.hidden_size != self.decoder.config.hidden_size
and self.decoder.config.cross_attention_hidden_size is None
):
self.enc_to_dec_proj = nn.Linear(self.text_encoder.config.hidden_size, self.decoder.config.hidden_size)
if self.text_encoder.get_output_embeddings() is not None:
raise ValueError(
f"The encoder {self.text_encoder} should not have a LM Head. Please use a model without and LM Head"
)
decoder_signature = set(inspect.signature(self.decoder.forward).parameters.keys())
if "encoder_hidden_states" not in decoder_signature:
raise ValueError(
"The selected decoder is not prepared for the encoder hidden states to be passed. Please see the "
"following discussion on GitHub: https://github.com/huggingface/transformers/issues/23350"
)
# tie text encoder, decoder weights if config set accordingly
self.tie_weights()
def tie_weights(self):
# tie text encoder & decoder if needed
if self.config.tie_encoder_decoder:
# tie text encoder and decoder base model
decoder_base_model_prefix = self.decoder.base_model_prefix
self._tie_encoder_decoder_weights(
self.text_encoder, self.decoder._modules[decoder_base_model_prefix], self.decoder.base_model_prefix
)
def get_audio_encoder(self):
return self.audio_encoder
def get_text_encoder(self):
return self.text_encoder
def get_encoder(self):
# get the text encoder to compute the encoder hidden-states for generation
return self.get_text_encoder()
def get_decoder(self):
return self.decoder
def get_input_embeddings(self):
return self.text_encoder.get_input_embeddings()
def get_output_embeddings(self):
return self.decoder.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
return self.decoder.set_output_embeddings(new_embeddings)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r"""
Example:
```python
>>> from transformers import MusicgenForConditionalGeneration
>>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
```"""
# At the moment fast initialization is not supported for composite models
if kwargs.get("_fast_init", False):
logger.warning(
"Fast initialization is currently not supported for MusicgenForConditionalGeneration. "
"Falling back to slow initialization..."
)
kwargs["_fast_init"] = False
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
@classmethod
def from_sub_models_pretrained(
cls,
text_encoder_pretrained_model_name_or_path: str = None,
audio_encoder_pretrained_model_name_or_path: str = None,
decoder_pretrained_model_name_or_path: str = None,
*model_args,
**kwargs,
) -> PreTrainedModel:
r"""
Instantiate a text encoder, an audio encoder, and a MusicGen decoder from one, two or three base classes of the
library from pretrained model checkpoints.
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
the model, you need to first set it back in training mode with `model.train()`.
Params:
text_encoder_pretrained_model_name_or_path (`str`, *optional*):
Information necessary to initiate the text encoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
Valid model ids can be located at the root-level, like `t5-base`, or namespaced under a user or
organization name, like `google/flan-t5-base.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
audio_encoder_pretrained_model_name_or_path (`str`, *optional*):
Information necessary to initiate the audio encoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
user or organization name, like `facebook/encodec_24khz`.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
Information necessary to initiate the decoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
Valid model ids can be located at the root-level, like `gpt2`, or namespaced under a user or
organization name, like `facebook/musicgen-small`.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
model_args (remaining positional arguments, *optional*):
All remaining positional arguments will be passed to the underlying model's `__init__` method.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`).
- To update the text encoder configuration, use the prefix *text_encoder_* for each configuration
parameter.
- To update the audio encoder configuration, use the prefix *audio_encoder_* for each configuration
parameter.
- To update the decoder configuration, use the prefix *decoder_* for each configuration parameter.
- To update the parent model configuration, do not use a prefix for each configuration parameter.
Behaves differently depending on whether a `config` is provided or automatically loaded.
Example:
```python
>>> from transformers import MusicgenForConditionalGeneration
>>> # initialize a musicgen model from a t5 text encoder, encodec audio encoder, and musicgen decoder
>>> model = MusicgenForConditionalGeneration.from_sub_models_pretrained(
... text_encoder_pretrained_model_name_or_path="t5-base",
... audio_encoder_pretrained_model_name_or_path="facebook/encodec_24khz",
... decoder_pretrained_model_name_or_path="facebook/musicgen-small",
... )
>>> # saving model after fine-tuning
>>> model.save_pretrained("./musicgen-ft")
>>> # load fine-tuned model
>>> model = MusicgenForConditionalGeneration.from_pretrained("./musicgen-ft")
```"""
kwargs_text_encoder = {
argument[len("text_encoder_") :]: value
for argument, value in kwargs.items()
if argument.startswith("text_encoder_")
}
kwargs_audio_encoder = {
argument[len("audio_encoder_") :]: value
for argument, value in kwargs.items()
if argument.startswith("audio_encoder_")
}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
# remove text encoder, audio encoder and decoder kwargs from kwargs
for key in kwargs_text_encoder.keys():
del kwargs["text_encoder_" + key]
for key in kwargs_audio_encoder.keys():
del kwargs["audio_encoder_" + key]
for key in kwargs_decoder.keys():
del kwargs["decoder_" + key]
# Load and initialize the encoder and decoder
# The distinction between encoder and decoder at the model level is made
# by the value of the flag `is_decoder` that we need to set correctly.
text_encoder = kwargs_text_encoder.pop("model", None)
if text_encoder is None:
if text_encoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `text_encoder_model` is not defined as an argument, a `text_encoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_text_encoder:
encoder_config, kwargs_text_encoder = AutoConfig.from_pretrained(
text_encoder_pretrained_model_name_or_path, **kwargs_text_encoder, return_unused_kwargs=True
)
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
logger.info(
f"Initializing {text_encoder_pretrained_model_name_or_path} as a text_encoder model "
"from a decoder model. Cross-attention and casual mask are disabled."
)
encoder_config.is_decoder = False
encoder_config.add_cross_attention = False
kwargs_text_encoder["config"] = encoder_config
text_encoder = AutoModel.from_pretrained(
text_encoder_pretrained_model_name_or_path, *model_args, **kwargs_text_encoder
)
audio_encoder = kwargs_audio_encoder.pop("model", None)
if audio_encoder is None:
if audio_encoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `audio_encoder_model` is not defined as an argument, an `audio_encoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_audio_encoder:
encoder_config, kwargs_audio_encoder = AutoConfig.from_pretrained(
audio_encoder_pretrained_model_name_or_path, **kwargs_audio_encoder, return_unused_kwargs=True
)
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
logger.info(
f"Initializing {audio_encoder_pretrained_model_name_or_path} as an audio_encoder model "
"from a decoder model. Cross-attention and casual mask are disabled."
)
encoder_config.is_decoder = False
encoder_config.add_cross_attention = False
kwargs_audio_encoder["config"] = encoder_config
audio_encoder = AutoModel.from_pretrained(
audio_encoder_pretrained_model_name_or_path, *model_args, **kwargs_audio_encoder
)
decoder = kwargs_decoder.pop("model", None)
if decoder is None:
if decoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_decoder:
decoder_config, kwargs_decoder = AutoConfig.from_pretrained(
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
)
if isinstance(decoder_config, MusicgenConfig):
decoder_config = decoder_config.decoder
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
logger.info(
f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
)
decoder_config.is_decoder = True
decoder_config.add_cross_attention = True
kwargs_decoder["config"] = decoder_config
if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
logger.warning(
f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
"passed to `.from_sub_models_pretrained(...)` are set to `True` or do not pass a "
"`decoder_config` to `.from_sub_models_pretrained(...)`"
)
decoder = MusicgenForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
# instantiate config with corresponding kwargs
config = MusicgenConfig.from_sub_models_config(
text_encoder.config, audio_encoder.config, decoder.config, **kwargs
)
return cls(text_encoder=text_encoder, audio_encoder=audio_encoder, decoder=decoder, config=config)
@add_start_docstrings_to_model_forward(MUSICGEN_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
input_values: Optional[torch.FloatTensor] = None,
padding_mask: Optional[torch.BoolTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Tuple[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, Seq2SeqLMOutput]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoProcessor, MusicgenForConditionalGeneration
>>> import torch
>>> processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
>>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
>>> inputs = processor(
... text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"],
... padding=True,
... return_tensors="pt",
... )
>>> pad_token_id = model.generation_config.pad_token_id
>>> decoder_input_ids = (
... torch.ones((inputs.input_ids.shape[0] * model.decoder.num_codebooks, 1), dtype=torch.long)
... * pad_token_id
... )
>>> logits = model(**inputs, decoder_input_ids=decoder_input_ids).logits
>>> logits.shape # (bsz * num_codebooks, tgt_len, vocab_size)
torch.Size([8, 1, 2048])
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
kwargs_text_encoder = {
argument[len("text_encoder_")]: value
for argument, value in kwargs.items()
if argument.startswith("text_encoder_")
}
kwargs_audio_encoder = {
argument[len("audio_encoder_")]: value
for argument, value in kwargs.items()
if argument.startswith("audio_encoder_")
}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
if encoder_outputs is None:
encoder_outputs = self.text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs_text_encoder,
)
elif isinstance(encoder_outputs, tuple):
encoder_outputs = BaseModelOutput(*encoder_outputs)
encoder_hidden_states = encoder_outputs[0]
# optionally project encoder_hidden_states
if (
self.text_encoder.config.hidden_size != self.decoder.config.hidden_size
and self.decoder.config.cross_attention_hidden_size is None
):
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
if attention_mask is not None:
encoder_hidden_states = encoder_hidden_states * attention_mask[..., None]
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
elif decoder_input_ids is None and decoder_inputs_embeds is None:
audio_encoder_outputs = self.audio_encoder(
input_values=input_values,
padding_mask=padding_mask,
**kwargs_audio_encoder,
)
audio_codes = audio_encoder_outputs.audio_codes
frames, bsz, codebooks, seq_len = audio_codes.shape
if frames != 1:
raise ValueError(
f"Expected 1 frame in the audio code outputs, got {frames} frames. Ensure chunking is "
"disabled by setting `chunk_length=None` in the audio encoder."
)
if self.config.decoder.audio_channels == 2 and audio_codes.shape[2] == self.decoder.num_codebooks // 2:
# mono input through encodec that we convert to stereo
audio_codes = audio_codes.repeat_interleave(2, dim=2)
decoder_input_ids = audio_codes[0, ...].reshape(bsz * self.decoder.num_codebooks, seq_len)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=attention_mask,
inputs_embeds=decoder_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
use_cache=use_cache,
past_key_values=past_key_values,
return_dict=return_dict,
**kwargs_decoder,
)
loss = None
if labels is not None:
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
if loss is not None:
return (loss,) + decoder_outputs + encoder_outputs
else:
return decoder_outputs + encoder_outputs
return Seq2SeqLMOutput(
loss=loss,
logits=decoder_outputs.logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
head_mask=None,
decoder_attention_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
decoder_delay_pattern_mask=None,
guidance_scale=None,
**kwargs,
):
if decoder_delay_pattern_mask is None:
decoder_input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask(
decoder_input_ids,
self.generation_config.pad_token_id,
max_length=self.generation_config.max_length,
)
# apply the delay pattern mask
decoder_input_ids = self.decoder.apply_delay_pattern_mask(decoder_input_ids, decoder_delay_pattern_mask)
if guidance_scale is not None and guidance_scale > 1:
# for classifier free guidance we need to replicate the decoder args across the batch dim (we'll split these
# before sampling)
decoder_input_ids = decoder_input_ids.repeat((2, 1))
if decoder_attention_mask is not None:
decoder_attention_mask = decoder_attention_mask.repeat((2, 1))
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if decoder_input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = decoder_input_ids.shape[1] - 1
decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache,
}
def _prepare_decoder_input_ids_for_generation(
self,
batch_size: int,
model_input_name: str,
model_kwargs: Dict[str, torch.Tensor],
decoder_start_token_id: int = None,
bos_token_id: int = None,
device: torch.device = None,
) -> Tuple[torch.LongTensor, Dict[str, torch.Tensor]]:
"""Prepares `decoder_input_ids` for generation with encoder-decoder models"""
# 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming,
# we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input.
if model_kwargs is not None and "decoder_input_ids" in model_kwargs:
decoder_input_ids = model_kwargs.pop("decoder_input_ids")
elif "input_ids" in model_kwargs and model_input_name != "input_ids":
decoder_input_ids = model_kwargs.pop("input_ids")
else:
decoder_input_ids = None
# 2. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that.
decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id)
if device is None:
device = self.device
decoder_input_ids_start = (
torch.ones((batch_size * self.decoder.num_codebooks, 1), dtype=torch.long, device=device)
* decoder_start_token_id
)
# no user input -> use decoder_start_token_id as decoder_input_ids
if decoder_input_ids is None:
decoder_input_ids = decoder_input_ids_start
# user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust
# decoder_attention_mask if provided)
elif (decoder_input_ids[..., 0] != decoder_start_token_id).all().item():
decoder_input_ids = torch.cat([decoder_input_ids_start, decoder_input_ids], dim=-1)
if "decoder_attention_mask" in model_kwargs:
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
decoder_attention_mask = torch.cat(
(torch.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask),
dim=-1,
)
model_kwargs["decoder_attention_mask"] = decoder_attention_mask
return decoder_input_ids, model_kwargs
def _prepare_text_encoder_kwargs_for_generation(
self,
inputs_tensor: torch.Tensor,
model_kwargs,
model_input_name: Optional[str] = None,
guidance_scale: Optional[float] = None,
) -> Dict[str, Any]:
# 1. get text encoder
encoder = self.get_text_encoder()
# Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device
# as the inputs.
if hasattr(encoder, "_hf_hook"):
encoder._hf_hook.io_same_device = True
# 2. Prepare encoder args and encoder kwargs from model kwargs.
irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"]
encoder_kwargs = {
argument: value
for argument, value in model_kwargs.items()
if not any(argument.startswith(p) for p in irrelevant_prefix)
}
encoder_signature = set(inspect.signature(encoder.forward).parameters)
encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature
if not encoder_accepts_wildcard:
encoder_kwargs = {
argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature
}
# 3. make sure that encoder returns `ModelOutput`
model_input_name = model_input_name if model_input_name is not None else self.text_encoder.main_input_name
encoder_kwargs["return_dict"] = True
encoder_kwargs[model_input_name] = inputs_tensor
last_hidden_state = encoder(**encoder_kwargs).last_hidden_state
# for classifier free guidance we need to add a 'null' input to our encoder hidden states
if guidance_scale is not None and guidance_scale > 1:
last_hidden_state = torch.concatenate([last_hidden_state, torch.zeros_like(last_hidden_state)], dim=0)
if "attention_mask" in model_kwargs:
model_kwargs["attention_mask"] = torch.concatenate(
[model_kwargs["attention_mask"], torch.zeros_like(model_kwargs["attention_mask"])], dim=0
)
model_kwargs["encoder_outputs"] = BaseModelOutput(last_hidden_state=last_hidden_state)
return model_kwargs
def _prepare_audio_encoder_kwargs_for_generation(
self, input_values, model_kwargs, model_input_name: Optional[str] = None
):
# 1. get audio encoder
encoder = self.get_audio_encoder()
# Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device
# as the inputs.
if hasattr(encoder, "_hf_hook"):
encoder._hf_hook.io_same_device = True
# 2. Prepare encoder args and encoder kwargs from model kwargs.
irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"]
encoder_kwargs = {
argument: value
for argument, value in model_kwargs.items()
if not any(argument.startswith(p) for p in irrelevant_prefix)
}
encoder_signature = set(inspect.signature(encoder.forward).parameters)
encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature
if not encoder_accepts_wildcard:
encoder_kwargs = {
argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature
}
# 3. make sure that encoder returns `ModelOutput`
model_input_name = model_input_name if model_input_name is not None else self.audio_encoder.main_input_name
encoder_kwargs["return_dict"] = True
if self.decoder.config.audio_channels == 1:
encoder_kwargs[model_input_name] = input_values
audio_encoder_outputs = encoder.encode(**encoder_kwargs)
audio_codes = audio_encoder_outputs.audio_codes
audio_scales = audio_encoder_outputs.audio_scales
frames, bsz, codebooks, seq_len = audio_codes.shape
else:
if input_values.shape[1] != 2:
raise ValueError(
f"Expected stereo audio (2-channels) but example has {input_values.shape[1]} channel."
)
encoder_kwargs[model_input_name] = input_values[:, :1, :]
audio_encoder_outputs_left = encoder.encode(**encoder_kwargs)
audio_codes_left = audio_encoder_outputs_left.audio_codes
audio_scales_left = audio_encoder_outputs_left.audio_scales
encoder_kwargs[model_input_name] = input_values[:, 1:, :]
audio_encoder_outputs_right = encoder.encode(**encoder_kwargs)
audio_codes_right = audio_encoder_outputs_right.audio_codes
audio_scales_right = audio_encoder_outputs_right.audio_scales
frames, bsz, codebooks, seq_len = audio_codes_left.shape
# copy alternating left/right channel codes into stereo codebook
audio_codes = audio_codes_left.new_ones((frames, bsz, 2 * codebooks, seq_len))
audio_codes[:, :, ::2, :] = audio_codes_left
audio_codes[:, :, 1::2, :] = audio_codes_right
if audio_scales_left != [None] or audio_scales_right != [None]:
audio_scales = torch.stack([audio_scales_left, audio_scales_right], dim=1)
else:
audio_scales = [None] * bsz
if frames != 1:
raise ValueError(
f"Expected 1 frame in the audio code outputs, got {frames} frames. Ensure chunking is "
"disabled by setting `chunk_length=None` in the audio encoder."
)
decoder_input_ids = audio_codes[0, ...].reshape(bsz * self.decoder.num_codebooks, seq_len)
model_kwargs["decoder_input_ids"] = decoder_input_ids
model_kwargs["audio_scales"] = audio_scales
return model_kwargs
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
def resize_token_embeddings(self, *args, **kwargs):
raise NotImplementedError(
"Resizing the embedding layers via the EncoderDecoderModel directly is not supported. Please use the"
" respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or"
" model.decoder.resize_token_embeddings(...))"
)
def _maybe_initialize_input_ids_for_generation(
self,
inputs: Optional[torch.Tensor] = None,
bos_token_id: Optional[int] = None,
model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
) -> torch.LongTensor:
"""Initializes input ids for generation, if necessary."""
if inputs is not None:
return inputs
encoder_outputs = model_kwargs.get("encoder_outputs")
if encoder_outputs is not None:
# make dummy input_ids with value -100, as a sanity check ensuring that they won't be used for encoding
shape = encoder_outputs[0].size()[:-1]
return torch.ones(shape, dtype=torch.long, device=self.device) * -100
if bos_token_id is None:
raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.")
# If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with
# soft-prompting or in multimodal implementations built on top of decoder-only language models.
batch_size = 1
for value in model_kwargs.values():
if isinstance(value, torch.Tensor):
batch_size = value.shape[0]
break
return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
synced_gpus: Optional[bool] = None,
streamer: Optional["BaseStreamer"] = None,
**kwargs,
):
"""
Generates sequences of token ids for models with a language modeling head.
<Tip warning={true}>
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
model's default generation configuration. You can override any `generation_config` by passing the corresponding
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Parameters:
inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of
`input_ids`, `input_values`, `input_features`, or `pixel_values`.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
logits_processor (`LogitsProcessorList`, *optional*):
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
stopping_criteria (`StoppingCriteriaList`, *optional*):
Custom stopping criteria that complement the default stopping criteria built from arguments and a
generation config. If a stopping criteria is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
synced_gpus (`bool`, *optional*, defaults to `False`):
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
streamer (`BaseStreamer`, *optional*):
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
Return:
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateDecoderOnlyOutput`],
- [`~generation.GenerateBeamDecoderOnlyOutput`]
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateEncoderDecoderOutput`],
- [`~generation.GenerateBeamEncoderDecoderOutput`]
"""
# 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects
if generation_config is None:
generation_config = self.generation_config
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
generation_config.validate()
self._validate_model_kwargs(model_kwargs.copy())
if model_kwargs.get("encoder_outputs") is not None and type(model_kwargs["encoder_outputs"]) == tuple:
# wrap the unconditional outputs as a BaseModelOutput for compatibility with the rest of generate
model_kwargs["encoder_outputs"] = BaseModelOutput(last_hidden_state=model_kwargs["encoder_outputs"][0])
# 2. Set generation parameters if not already defined
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
if model_kwargs.get("attention_mask", None) is None:
logger.warning(
"The attention mask and the pad token id were not set. As a consequence, you may observe "
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
)
eos_token_id = generation_config.eos_token_id
if isinstance(eos_token_id, list):
eos_token_id = eos_token_id[0]
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.")
generation_config.pad_token_id = eos_token_id
# 3. Define model inputs
# inputs_tensor has to be defined
# model_input_name is defined if model-specific keyword input is passed
# otherwise model_input_name is None
# all model-specific keyword inputs are removed from `model_kwargs`
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
inputs, generation_config.bos_token_id, model_kwargs
)
batch_size = inputs_tensor.shape[0]
# 4. Define other model kwargs
model_kwargs["output_attentions"] = generation_config.output_attentions
model_kwargs["output_hidden_states"] = generation_config.output_hidden_states
model_kwargs["use_cache"] = generation_config.use_cache
model_kwargs["guidance_scale"] = generation_config.guidance_scale
requires_attention_mask = "encoder_outputs" not in model_kwargs
if model_kwargs.get("attention_mask", None) is None and requires_attention_mask:
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id
)
if "encoder_outputs" not in model_kwargs:
# encoder_outputs are created and added to `model_kwargs`
model_kwargs = self._prepare_text_encoder_kwargs_for_generation(
inputs_tensor,
model_kwargs,
model_input_name,
guidance_scale=generation_config.guidance_scale,
)
if "decoder_input_ids" not in model_kwargs and "input_values" in model_kwargs:
model_kwargs = self._prepare_audio_encoder_kwargs_for_generation(
model_kwargs["input_values"],
model_kwargs,
)
# 5. Prepare `input_ids` which will be used for auto-regressive generation
input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
batch_size=batch_size,
model_input_name=model_input_name,
model_kwargs=model_kwargs,
decoder_start_token_id=generation_config.decoder_start_token_id,
bos_token_id=generation_config.bos_token_id,
device=inputs_tensor.device,
)
# 6. Prepare `max_length` depending on other stopping criteria.
input_ids_seq_length = input_ids.shape[-1]
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
if has_default_max_length and generation_config.max_new_tokens is None:
logger.warning(
f"Using the model-agnostic default `max_length` (={generation_config.max_length}) "
"to control the generation length. We recommend setting `max_new_tokens` to control the maximum length of the generation."
)
elif generation_config.max_new_tokens is not None:
if not has_default_max_length:
logger.warning(
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
"Please refer to the documentation for more information. "
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
)
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length:
raise ValueError(
f"Unfeasible length constraints: the minimum length ({generation_config.min_length}) is larger than"
f" the maximum length ({generation_config.max_length})"
)
if input_ids_seq_length >= generation_config.max_length:
logger.warning(
f"Input length of decoder_input_ids is {input_ids_seq_length}, but `max_length` is set to"
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
" increasing `max_new_tokens`."
)
# build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen)
input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask(
input_ids,
pad_token_id=generation_config.decoder_start_token_id,
max_length=generation_config.max_length,
)
# stash the delay mask so that we don't have to recompute in each forward pass
model_kwargs["decoder_delay_pattern_mask"] = decoder_delay_pattern_mask
# input_ids are ready to be placed on the streamer (if used)
if streamer is not None:
streamer.put(input_ids.cpu())
# 7. determine generation mode
is_greedy_gen_mode = (
(generation_config.num_beams == 1)
and (generation_config.num_beam_groups == 1)
and generation_config.do_sample is False
)
is_sample_gen_mode = (
(generation_config.num_beams == 1)
and (generation_config.num_beam_groups == 1)
and generation_config.do_sample is True
)
# 8. prepare batched CFG externally (to enable coexistance with the unbatched CFG)
if generation_config.guidance_scale is not None and generation_config.guidance_scale > 1:
logits_processor.append(ClassifierFreeGuidanceLogitsProcessor(generation_config.guidance_scale))
generation_config.guidance_scale = None
# 9. prepare distribution pre_processing samplers
logits_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_seq_length,
encoder_input_ids=inputs_tensor,
prefix_allowed_tokens_fn=None,
logits_processor=logits_processor,
)
# 10. prepare stopping criteria
stopping_criteria = self._get_stopping_criteria(
generation_config=generation_config, stopping_criteria=stopping_criteria
)
if is_greedy_gen_mode:
if generation_config.num_return_sequences > 1:
raise ValueError(
"num_return_sequences has to be 1 when doing greedy search, "
f"but is {generation_config.num_return_sequences}."
)
# 11. run greedy search
outputs = self.greedy_search(
input_ids,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
streamer=streamer,
**model_kwargs,
)
elif is_sample_gen_mode:
# 11. prepare logits warper
logits_warper = self._get_logits_warper(generation_config)
# expand input_ids with `num_return_sequences` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_return_sequences,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 12. run sample
outputs = self.sample(
input_ids,
logits_processor=logits_processor,
logits_warper=logits_warper,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
streamer=streamer,
**model_kwargs,
)
else:
raise ValueError(
"Got incompatible mode for generation, should be one of greedy or sampling. "
"Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`."
)
if generation_config.return_dict_in_generate:
output_ids = outputs.sequences
else:
output_ids = outputs
# apply the pattern mask to the final ids
output_ids = self.decoder.apply_delay_pattern_mask(output_ids, model_kwargs["decoder_delay_pattern_mask"])
# revert the pattern delay mask by filtering the pad token id
output_ids = output_ids[output_ids != generation_config.pad_token_id].reshape(
batch_size, self.decoder.num_codebooks, -1
)
# append the frame dimension back to the audio codes
output_ids = output_ids[None, ...]
audio_scales = model_kwargs.get("audio_scales")
if audio_scales is None:
audio_scales = [None] * batch_size
if self.decoder.config.audio_channels == 1:
output_values = self.audio_encoder.decode(
output_ids,
audio_scales=audio_scales,
).audio_values
else:
codec_outputs_left = self.audio_encoder.decode(output_ids[:, :, ::2, :], audio_scales=audio_scales)
output_values_left = codec_outputs_left.audio_values
codec_outputs_right = self.audio_encoder.decode(output_ids[:, :, 1::2, :], audio_scales=audio_scales)
output_values_right = codec_outputs_right.audio_values
output_values = torch.cat([output_values_left, output_values_right], dim=1)
if generation_config.return_dict_in_generate:
outputs.sequences = output_values
return outputs
else:
return output_values
def get_unconditional_inputs(self, num_samples=1):
"""
Helper function to get null inputs for unconditional generation, enabling the model to be used without the
feature extractor or tokenizer.
Args:
num_samples (int, *optional*):
Number of audio samples to unconditionally generate.
max_new_tokens (int, *optional*):
Number of tokens to generate for each sample. More tokens means longer audio samples, at the expense of
longer inference (since more audio tokens need to be generated per sample).
Example:
```python
>>> from transformers import MusicgenForConditionalGeneration
>>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
>>> # get the unconditional (or 'null') inputs for the model
>>> unconditional_inputs = model.get_unconditional_inputs(num_samples=1)
>>> audio_samples = model.generate(**unconditional_inputs, max_new_tokens=256)
```"""
last_hidden_state = torch.zeros(
(num_samples, 1, self.config.text_encoder.hidden_size), device=self.device, dtype=self.dtype
)
attention_mask = torch.zeros((num_samples, 1), device=self.device, dtype=torch.long)
return MusicgenUnconditionalInput(
encoder_outputs=(last_hidden_state,),
attention_mask=attention_mask,
guidance_scale=1.0,
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/musicgen/__init__.py | # Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_import_structure = {
"configuration_musicgen": [
"MUSICGEN_PRETRAINED_CONFIG_ARCHIVE_MAP",
"MusicgenConfig",
"MusicgenDecoderConfig",
],
"processing_musicgen": ["MusicgenProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_musicgen"] = [
"MUSICGEN_PRETRAINED_MODEL_ARCHIVE_LIST",
"MusicgenForConditionalGeneration",
"MusicgenForCausalLM",
"MusicgenModel",
"MusicgenPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_musicgen import (
MUSICGEN_PRETRAINED_CONFIG_ARCHIVE_MAP,
MusicgenConfig,
MusicgenDecoderConfig,
)
from .processing_musicgen import MusicgenProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_musicgen import (
MUSICGEN_PRETRAINED_MODEL_ARCHIVE_LIST,
MusicgenForCausalLM,
MusicgenForConditionalGeneration,
MusicgenModel,
MusicgenPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/musicgen/processing_musicgen.py | # coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Text/audio processor class for MusicGen
"""
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class MusicgenProcessor(ProcessorMixin):
r"""
Constructs a MusicGen processor which wraps an EnCodec feature extractor and a T5 tokenizer into a single processor
class.
[`MusicgenProcessor`] offers all the functionalities of [`EncodecFeatureExtractor`] and [`TTokenizer`]. See
[`~MusicgenProcessor.__call__`] and [`~MusicgenProcessor.decode`] for more information.
Args:
feature_extractor (`EncodecFeatureExtractor`):
An instance of [`EncodecFeatureExtractor`]. The feature extractor is a required input.
tokenizer (`T5Tokenizer`):
An instance of [`T5Tokenizer`]. The tokenizer is a required input.
"""
feature_extractor_class = "EncodecFeatureExtractor"
tokenizer_class = ("T5Tokenizer", "T5TokenizerFast")
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
self.current_processor = self.feature_extractor
self._in_target_context_manager = False
def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True):
return self.tokenizer.get_decoder_prompt_ids(task=task, language=language, no_timestamps=no_timestamps)
def __call__(self, *args, **kwargs):
"""
Forwards the `audio` argument to EncodecFeatureExtractor's [`~EncodecFeatureExtractor.__call__`] and the `text`
argument to [`~T5Tokenizer.__call__`]. Please refer to the doctsring of the above two methods for more
information.
"""
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*args, **kwargs)
audio = kwargs.pop("audio", None)
sampling_rate = kwargs.pop("sampling_rate", None)
text = kwargs.pop("text", None)
if len(args) > 0:
audio = args[0]
args = args[1:]
if audio is None and text is None:
raise ValueError("You need to specify either an `audio` or `text` input to process.")
if text is not None:
inputs = self.tokenizer(text, **kwargs)
if audio is not None:
audio_inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
inputs["input_values"] = audio_inputs["input_values"]
if "padding_mask" in audio_inputs:
inputs["padding_mask"] = audio_inputs["padding_mask"]
return inputs
def batch_decode(self, *args, **kwargs):
"""
This method is used to decode either batches of audio outputs from the MusicGen model, or batches of token ids
from the tokenizer. In the case of decoding token ids, this method forwards all its arguments to T5Tokenizer's
[`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information.
"""
audio_values = kwargs.pop("audio", None)
padding_mask = kwargs.pop("padding_mask", None)
if len(args) > 0:
audio_values = args[0]
args = args[1:]
if audio_values is not None:
return self._decode_audio(audio_values, padding_mask=padding_mask)
else:
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to T5Tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the
docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def _decode_audio(self, audio_values, padding_mask: Optional = None) -> List[np.ndarray]:
"""
This method strips any padding from the audio values to return a list of numpy audio arrays.
"""
audio_values = to_numpy(audio_values)
bsz, channels, seq_len = audio_values.shape
if padding_mask is None:
return list(audio_values)
padding_mask = to_numpy(padding_mask)
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
difference = seq_len - padding_mask.shape[-1]
padding_value = 1 - self.feature_extractor.padding_value
padding_mask = np.pad(padding_mask, ((0, 0), (0, difference)), "constant", constant_values=padding_value)
audio_values = audio_values.tolist()
for i in range(bsz):
sliced_audio = np.asarray(audio_values[i])[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
audio_values[i] = sliced_audio.reshape(channels, -1)
return audio_values
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/musicgen/convert_musicgen_transformers.py | # coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert MusicGen checkpoints from the original repository."""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
T5EncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
EXPECTED_MISSING_KEYS = ["model.decoder.embed_positions.weights"]
def rename_keys(name):
if "emb" in name:
name = name.replace("emb", "model.decoder.embed_tokens")
if "transformer" in name:
name = name.replace("transformer", "model.decoder")
if "cross_attention" in name:
name = name.replace("cross_attention", "encoder_attn")
if "linear1" in name:
name = name.replace("linear1", "fc1")
if "linear2" in name:
name = name.replace("linear2", "fc2")
if "norm1" in name:
name = name.replace("norm1", "self_attn_layer_norm")
if "norm_cross" in name:
name = name.replace("norm_cross", "encoder_attn_layer_norm")
if "norm2" in name:
name = name.replace("norm2", "final_layer_norm")
if "out_norm" in name:
name = name.replace("out_norm", "model.decoder.layer_norm")
if "linears" in name:
name = name.replace("linears", "lm_heads")
if "condition_provider.conditioners.description.output_proj" in name:
name = name.replace("condition_provider.conditioners.description.output_proj", "enc_to_dec_proj")
return name
def rename_state_dict(state_dict: OrderedDict, hidden_size: int) -> Tuple[Dict, Dict]:
"""Function that takes the fairseq Musicgen state dict and renames it according to the HF
module names. It further partitions the state dict into the decoder (LM) state dict, and that for the
encoder-decoder projection."""
keys = list(state_dict.keys())
enc_dec_proj_state_dict = {}
for key in keys:
val = state_dict.pop(key)
key = rename_keys(key)
if "in_proj_weight" in key:
# split fused qkv proj
state_dict[key.replace("in_proj_weight", "q_proj.weight")] = val[:hidden_size, :]
state_dict[key.replace("in_proj_weight", "k_proj.weight")] = val[hidden_size : 2 * hidden_size, :]
state_dict[key.replace("in_proj_weight", "v_proj.weight")] = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
enc_dec_proj_state_dict[key[len("enc_to_dec_proj.") :]] = val
else:
state_dict[key] = val
return state_dict, enc_dec_proj_state_dict
def decoder_config_from_checkpoint(checkpoint: str) -> MusicgenDecoderConfig:
if checkpoint == "small" or checkpoint == "facebook/musicgen-stereo-small":
# default config values
hidden_size = 1024
num_hidden_layers = 24
num_attention_heads = 16
elif checkpoint == "medium" or checkpoint == "facebook/musicgen-stereo-medium":
hidden_size = 1536
num_hidden_layers = 48
num_attention_heads = 24
elif checkpoint == "large" or checkpoint == "facebook/musicgen-stereo-large":
hidden_size = 2048
num_hidden_layers = 48
num_attention_heads = 32
else:
raise ValueError(
"Checkpoint should be one of `['small', 'medium', 'large']` for the mono checkpoints, "
"or `['facebook/musicgen-stereo-small', 'facebook/musicgen-stereo-medium', 'facebook/musicgen-stereo-large']` "
f"for the stereo checkpoints, got {checkpoint}."
)
if "stereo" in checkpoint:
audio_channels = 2
num_codebooks = 8
else:
audio_channels = 1
num_codebooks = 4
config = MusicgenDecoderConfig(
hidden_size=hidden_size,
ffn_dim=hidden_size * 4,
num_hidden_layers=num_hidden_layers,
num_attention_heads=num_attention_heads,
num_codebooks=num_codebooks,
audio_channels=audio_channels,
)
return config
@torch.no_grad()
def convert_musicgen_checkpoint(
checkpoint, pytorch_dump_folder=None, repo_id=None, device="cpu", safe_serialization=False
):
fairseq_model = MusicGen.get_pretrained(checkpoint, device=device)
decoder_config = decoder_config_from_checkpoint(checkpoint)
decoder_state_dict = fairseq_model.lm.state_dict()
decoder_state_dict, enc_dec_proj_state_dict = rename_state_dict(
decoder_state_dict, hidden_size=decoder_config.hidden_size
)
text_encoder = T5EncoderModel.from_pretrained("t5-base")
audio_encoder = EncodecModel.from_pretrained("facebook/encodec_32khz")
decoder = MusicgenForCausalLM(decoder_config).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
missing_keys, unexpected_keys = decoder.load_state_dict(decoder_state_dict, strict=False)
for key in missing_keys.copy():
if key.startswith(("text_encoder", "audio_encoder")) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(key)
if len(missing_keys) > 0:
raise ValueError(f"Missing key(s) in state_dict: {missing_keys}")
if len(unexpected_keys) > 0:
raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}")
# init the composite model
model = MusicgenForConditionalGeneration(text_encoder=text_encoder, audio_encoder=audio_encoder, decoder=decoder)
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(enc_dec_proj_state_dict)
# check we can do a forward pass
input_ids = torch.arange(0, 2 * decoder_config.num_codebooks, dtype=torch.long).reshape(2, -1)
decoder_input_ids = input_ids.reshape(2 * decoder_config.num_codebooks, -1)
with torch.no_grad():
logits = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids).logits
if logits.shape != (2 * decoder_config.num_codebooks, 1, 2048):
raise ValueError("Incorrect shape for logits")
# now construct the processor
tokenizer = AutoTokenizer.from_pretrained("t5-base")
feature_extractor = AutoFeatureExtractor.from_pretrained(
"facebook/encodec_32khz", padding_side="left", feature_size=decoder_config.audio_channels
)
processor = MusicgenProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer)
# set the appropriate bos/pad token ids
model.generation_config.decoder_start_token_id = 2048
model.generation_config.pad_token_id = 2048
# set other default generation config params
model.generation_config.max_length = int(30 * audio_encoder.config.frame_rate)
model.generation_config.do_sample = True
model.generation_config.guidance_scale = 3.0
if pytorch_dump_folder is not None:
Path(pytorch_dump_folder).mkdir(exist_ok=True)
logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}")
model.save_pretrained(pytorch_dump_folder, safe_serialization=safe_serialization)
processor.save_pretrained(pytorch_dump_folder)
if repo_id:
logger.info(f"Pushing model {checkpoint} to {repo_id}")
model.push_to_hub(repo_id, safe_serialization=safe_serialization)
processor.push_to_hub(repo_id)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: "
"`['small', 'medium', 'large']` for the mono checkpoints, or "
"`['facebook/musicgen-stereo-small', 'facebook/musicgen-stereo-medium', 'facebook/musicgen-stereo-large']` "
"for the stereo checkpoints.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
parser.add_argument(
"--safe_serialization",
action="store_true",
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).",
)
args = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/musicgen/configuration_musicgen.py | # coding=utf-8
# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" MusicGen model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
logger = logging.get_logger(__name__)
MUSICGEN_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/musicgen-small": "https://huggingface.co/facebook/musicgen-small/resolve/main/config.json",
# See all Musicgen models at https://huggingface.co/models?filter=musicgen
}
class MusicgenDecoderConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`MusicgenDecoder`]. It is used to instantiate a
MusicGen decoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the MusicGen
[facebook/musicgen-small](https://huggingface.co/facebook/musicgen-small) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 2048):
Vocabulary size of the MusicgenDecoder model. Defines the number of different tokens that can be
represented by the `inputs_ids` passed when calling [`MusicgenDecoder`].
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of decoder layers.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer block.
ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer block.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the decoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, text_encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically, set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_factor (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
scale_embedding (`bool`, *optional*, defaults to `False`):
Scale embeddings by diving by sqrt(hidden_size).
use_cache (`bool`, *optional*, defaults to `True`):
Whether the model should return the last key/values attentions (not used by all models)
num_codebooks (`int`, *optional*, defaults to 4):
The number of parallel codebooks forwarded to the model.
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
Whether input and output word embeddings should be tied.
audio_channels (`int`, *optional*, defaults to 1
Number of channels in the audio data. Either 1 for mono or 2 for stereo. Stereo models generate a separate
audio stream for the left/right output channels. Mono models generate a single audio stream output.
"""
model_type = "musicgen_decoder"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=2048,
max_position_embeddings=2048,
num_hidden_layers=24,
ffn_dim=4096,
num_attention_heads=16,
layerdrop=0.0,
use_cache=True,
activation_function="gelu",
hidden_size=1024,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
initializer_factor=0.02,
scale_embedding=False,
num_codebooks=4,
audio_channels=1,
pad_token_id=2048,
bos_token_id=2048,
eos_token_id=None,
tie_word_embeddings=False,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.ffn_dim = ffn_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.initializer_factor = initializer_factor
self.layerdrop = layerdrop
self.use_cache = use_cache
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
self.num_codebooks = num_codebooks
if audio_channels not in [1, 2]:
raise ValueError(f"Expected 1 (mono) or 2 (stereo) audio channels, got {audio_channels} channels.")
self.audio_channels = audio_channels
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
class MusicgenConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MusicgenModel`]. It is used to instantiate a
MusicGen model according to the specified arguments, defining the text encoder, audio encoder and MusicGen decoder
configs.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
kwargs (*optional*):
Dictionary of keyword arguments. Notably:
- **text_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
defines the text encoder config.
- **audio_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
defines the audio encoder config.
- **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines
the decoder config.
Example:
```python
>>> from transformers import (
... MusicgenConfig,
... MusicgenDecoderConfig,
... T5Config,
... EncodecConfig,
... MusicgenForConditionalGeneration,
... )
>>> # Initializing text encoder, audio encoder, and decoder model configurations
>>> text_encoder_config = T5Config()
>>> audio_encoder_config = EncodecConfig()
>>> decoder_config = MusicgenDecoderConfig()
>>> configuration = MusicgenConfig.from_sub_models_config(
... text_encoder_config, audio_encoder_config, decoder_config
... )
>>> # Initializing a MusicgenForConditionalGeneration (with random weights) from the facebook/musicgen-small style configuration
>>> model = MusicgenForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> config_text_encoder = model.config.text_encoder
>>> config_audio_encoder = model.config.audio_encoder
>>> config_decoder = model.config.decoder
>>> # Saving the model, including its configuration
>>> model.save_pretrained("musicgen-model")
>>> # loading model and config from pretrained folder
>>> musicgen_config = MusicgenConfig.from_pretrained("musicgen-model")
>>> model = MusicgenForConditionalGeneration.from_pretrained("musicgen-model", config=musicgen_config)
```"""
model_type = "musicgen"
is_composition = True
def __init__(self, **kwargs):
super().__init__(**kwargs)
if "text_encoder" not in kwargs or "audio_encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError("Config has to be initialized with text_encoder, audio_encoder and decoder config")
text_encoder_config = kwargs.pop("text_encoder")
text_encoder_model_type = text_encoder_config.pop("model_type")
audio_encoder_config = kwargs.pop("audio_encoder")
audio_encoder_model_type = audio_encoder_config.pop("model_type")
decoder_config = kwargs.pop("decoder")
self.text_encoder = AutoConfig.for_model(text_encoder_model_type, **text_encoder_config)
self.audio_encoder = AutoConfig.for_model(audio_encoder_model_type, **audio_encoder_config)
self.decoder = MusicgenDecoderConfig(**decoder_config)
self.is_encoder_decoder = True
@classmethod
def from_sub_models_config(
cls,
text_encoder_config: PretrainedConfig,
audio_encoder_config: PretrainedConfig,
decoder_config: MusicgenDecoderConfig,
**kwargs,
):
r"""
Instantiate a [`MusicgenConfig`] (or a derived class) from text encoder, audio encoder and decoder
configurations.
Returns:
[`MusicgenConfig`]: An instance of a configuration object
"""
return cls(
text_encoder=text_encoder_config.to_dict(),
audio_encoder=audio_encoder_config.to_dict(),
decoder=decoder_config.to_dict(),
**kwargs,
)
@property
# This is a property because you might want to change the codec model on the fly
def sampling_rate(self):
return self.audio_encoder.sampling_rate
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/focalnet/modeling_focalnet.py | # coding=utf-8
# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch FocalNet model."""
import collections.abc
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_focalnet import FocalNetConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "FocalNetConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "microsoft/focalnet-tiny"
_EXPECTED_OUTPUT_SHAPE = [1, 49, 768]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "microsoft/focalnet-tiny"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST = [
"microsoft/focalnet-tiny",
# See all FocalNet models at https://huggingface.co/models?filter=focalnet
]
@dataclass
class FocalNetEncoderOutput(ModelOutput):
"""
FocalNet encoder's outputs, with potential hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class FocalNetModelOutput(ModelOutput):
"""
FocalNet model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
Average pooling of the last layer hidden-state.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: torch.FloatTensor = None
pooler_output: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class FocalNetMaskedImageModelingOutput(ModelOutput):
"""
FocalNet masked image model outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `bool_masked_pos` is provided):
Masked image modeling (MLM) loss.
reconstruction (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Reconstructed pixel values.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
loss: Optional[torch.FloatTensor] = None
reconstruction: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class FocalNetImageClassifierOutput(ModelOutput):
"""
FocalNet outputs for image classification.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class FocalNetEmbeddings(nn.Module):
"""
Construct the patch embeddings and layernorm. Optionally, also the mask token.
"""
def __init__(self, config, use_mask_token=False):
super().__init__()
self.patch_embeddings = FocalNetPatchEmbeddings(
config=config,
image_size=config.image_size,
patch_size=config.patch_size,
num_channels=config.num_channels,
embed_dim=config.embed_dim,
use_conv_embed=config.use_conv_embed,
is_stem=True,
)
self.patch_grid = self.patch_embeddings.grid_size
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.embed_dim)) if use_mask_token else None
self.norm = nn.LayerNorm(config.embed_dim, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(
self, pixel_values: Optional[torch.FloatTensor], bool_masked_pos: Optional[torch.BoolTensor] = None
) -> Tuple[torch.Tensor]:
embeddings, output_dimensions = self.patch_embeddings(pixel_values)
embeddings = self.norm(embeddings)
batch_size, seq_len, _ = embeddings.size()
if bool_masked_pos is not None:
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
# replace the masked visual tokens by mask_tokens
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
embeddings = self.dropout(embeddings)
return embeddings, output_dimensions
class FocalNetPatchEmbeddings(nn.Module):
def __init__(
self,
config,
image_size,
patch_size,
num_channels,
embed_dim,
add_norm=False,
use_conv_embed=False,
is_stem=False,
):
super().__init__()
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
if use_conv_embed:
# if we choose to use conv embedding, then we treat the stem and non-stem differently
if is_stem:
kernel_size = 7
padding = 2
stride = 4
else:
kernel_size = 3
padding = 1
stride = 2
self.projection = nn.Conv2d(
num_channels, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
)
else:
self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
if add_norm:
self.norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
else:
self.norm = None
def maybe_pad(self, pixel_values, height, width):
if width % self.patch_size[1] != 0:
pad_values = (0, self.patch_size[1] - width % self.patch_size[1])
pixel_values = nn.functional.pad(pixel_values, pad_values)
if height % self.patch_size[0] != 0:
pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0])
pixel_values = nn.functional.pad(pixel_values, pad_values)
return pixel_values
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]:
_, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
# pad the input to be divisible by self.patch_size, if needed
pixel_values = self.maybe_pad(pixel_values, height, width)
embeddings = self.projection(pixel_values)
_, _, height, width = embeddings.shape
output_dimensions = (height, width)
embeddings = embeddings.flatten(2).transpose(1, 2)
if self.norm is not None:
embeddings = self.norm(embeddings)
return embeddings, output_dimensions
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->FocalNet
class FocalNetDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class FocalNetModulation(nn.Module):
def __init__(self, config, index, dim, focal_factor=2, bias=True, projection_dropout=0.0):
super().__init__()
self.dim = dim
self.focal_window = config.focal_windows[index]
self.focal_level = config.focal_levels[index]
self.focal_factor = focal_factor
self.use_post_layernorm_in_modulation = config.use_post_layernorm_in_modulation
self.normalize_modulator = config.normalize_modulator
self.projection_in = nn.Linear(dim, 2 * dim + (self.focal_level + 1), bias=bias)
self.projection_context = nn.Conv2d(dim, dim, kernel_size=1, stride=1, bias=bias)
self.activation = nn.GELU()
self.projection_out = nn.Linear(dim, dim)
self.projection_dropout = nn.Dropout(projection_dropout)
self.focal_layers = nn.ModuleList()
self.kernel_sizes = []
for k in range(self.focal_level):
kernel_size = self.focal_factor * k + self.focal_window
self.focal_layers.append(
nn.Sequential(
nn.Conv2d(
dim, dim, kernel_size=kernel_size, stride=1, groups=dim, padding=kernel_size // 2, bias=False
),
nn.GELU(),
)
)
self.kernel_sizes.append(kernel_size)
if self.use_post_layernorm_in_modulation:
self.layernorm = nn.LayerNorm(dim, eps=config.layer_norm_eps)
def forward(self, hidden_state):
"""
Args:
hidden_state:
Input features with shape of (batch_size, height, width, num_channels)
"""
num_channels = hidden_state.shape[-1]
# pre linear projection
x = self.projection_in(hidden_state).permute(0, 3, 1, 2).contiguous()
q, ctx, self.gates = torch.split(x, (num_channels, num_channels, self.focal_level + 1), 1)
# context aggreation
ctx_all = 0
for level in range(self.focal_level):
ctx = self.focal_layers[level](ctx)
ctx_all = ctx_all + ctx * self.gates[:, level : level + 1]
ctx_global = self.activation(ctx.mean(2, keepdim=True).mean(3, keepdim=True))
ctx_all = ctx_all + ctx_global * self.gates[:, self.focal_level :]
# normalize context
if self.normalize_modulator:
ctx_all = ctx_all / (self.focal_level + 1)
# focal modulation
self.modulator = self.projection_context(ctx_all)
x_out = q * self.modulator
x_out = x_out.permute(0, 2, 3, 1).contiguous()
if self.use_post_layernorm_in_modulation:
x_out = self.layernorm(x_out)
# post linear porjection
x_out = self.projection_out(x_out)
x_out = self.projection_dropout(x_out)
return x_out
class FocalNetMlp(nn.Module):
def __init__(self, config, in_features, hidden_features=None, out_features=None, drop=0.0):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.activation = ACT2FN[config.hidden_act]
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, hidden_state):
hidden_state = self.fc1(hidden_state)
hidden_state = self.activation(hidden_state)
hidden_state = self.drop(hidden_state)
hidden_state = self.fc2(hidden_state)
hidden_state = self.drop(hidden_state)
return hidden_state
class FocalNetLayer(nn.Module):
r"""Focal Modulation Network layer (block).
Args:
config (`FocalNetConfig`):
Model config.
index (`int`):
Layer index.
dim (`int`):
Number of input channels.
input_resolution (`Tuple[int]`):
Input resulotion.
drop_path (`float`, *optional*, defaults to 0.0):
Stochastic depth rate.
"""
def __init__(self, config, index, dim, input_resolution, drop_path=0.0):
super().__init__()
self.config = config
# layer-specific attributes
self.dim = dim
self.input_resolution = input_resolution
# general attributes
self.drop = config.hidden_dropout_prob
self.use_post_layernorm = config.use_post_layernorm
self.norm1 = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.modulation = FocalNetModulation(
config=config,
index=index,
dim=dim,
projection_dropout=self.drop,
)
self.drop_path = FocalNetDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = nn.LayerNorm(dim, eps=config.layer_norm_eps)
mlp_hidden_dim = int(dim * config.mlp_ratio)
self.mlp = FocalNetMlp(config=config, in_features=dim, hidden_features=mlp_hidden_dim, drop=self.drop)
self.gamma_1 = 1.0
self.gamma_2 = 1.0
if config.use_layerscale:
self.gamma_1 = nn.Parameter(config.layerscale_value * torch.ones((dim)), requires_grad=True)
self.gamma_2 = nn.Parameter(config.layerscale_value * torch.ones((dim)), requires_grad=True)
def forward(self, hidden_state, input_dimensions):
height, width = input_dimensions
batch_size, _, num_channels = hidden_state.shape
shortcut = hidden_state
# Focal Modulation
hidden_state = hidden_state if self.use_post_layernorm else self.norm1(hidden_state)
hidden_state = hidden_state.view(batch_size, height, width, num_channels)
hidden_state = self.modulation(hidden_state).view(batch_size, height * width, num_channels)
hidden_state = hidden_state if not self.use_post_layernorm else self.norm1(hidden_state)
# FFN
hidden_state = shortcut + self.drop_path(self.gamma_1 * hidden_state)
hidden_state = hidden_state + self.drop_path(
self.gamma_2
* (self.norm2(self.mlp(hidden_state)) if self.use_post_layernorm else self.mlp(self.norm2(hidden_state)))
)
return hidden_state
class FocalNetStage(nn.Module):
def __init__(self, config, index, input_resolution):
super().__init__()
self.config = config
self.num_stages = len(config.depths)
embed_dim = [config.embed_dim * (2**i) for i in range(self.num_stages)]
dim = embed_dim[index]
out_dim = embed_dim[index + 1] if (index < self.num_stages - 1) else None
downsample = FocalNetPatchEmbeddings if (index < self.num_stages - 1) else None
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
drop_path = dpr[sum(config.depths[:index]) : sum(config.depths[: index + 1])]
self.layers = nn.ModuleList(
[
FocalNetLayer(
config=config,
index=index,
dim=dim,
input_resolution=input_resolution,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
)
for i in range(config.depths[index])
]
)
if downsample is not None:
self.downsample = downsample(
config=config,
image_size=input_resolution,
patch_size=2,
num_channels=dim,
embed_dim=out_dim,
add_norm=True,
use_conv_embed=config.use_conv_embed,
is_stem=False,
)
else:
self.downsample = None
self.pointing = False
def forward(self, hidden_states: torch.Tensor, input_dimensions: Tuple[int, int]) -> Tuple[torch.Tensor]:
height, width = input_dimensions
for layer_module in self.layers:
hidden_states = layer_module(hidden_states, input_dimensions)
hidden_states_before_downsampling = hidden_states
if self.downsample is not None:
height, width = input_dimensions
hidden_states = hidden_states.transpose(1, 2).reshape(
hidden_states_before_downsampling.shape[0], -1, height, width
)
hidden_states, output_dimensions = self.downsample(hidden_states)
else:
output_dimensions = (height, width, height, width)
stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions)
return stage_outputs
class FocalNetEncoder(nn.Module):
def __init__(self, config, grid_size):
super().__init__()
self.num_stages = len(config.depths)
self.config = config
self.stages = nn.ModuleList(
[
FocalNetStage(
config=config,
index=i_layer,
input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)),
)
for i_layer in range(self.num_stages)
]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
input_dimensions: Tuple[int, int],
output_hidden_states: Optional[bool] = False,
output_hidden_states_before_downsampling: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, FocalNetEncoderOutput]:
all_hidden_states = () if output_hidden_states else None
all_reshaped_hidden_states = () if output_hidden_states else None
if output_hidden_states:
batch_size, _, hidden_size = hidden_states.shape
# rearrange b (h w) c -> b c h w
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
for i, stage_module in enumerate(self.stages):
if self.gradient_checkpointing and self.training:
stage_outputs = self._gradient_checkpointing_func(
stage_module.__call__,
hidden_states,
input_dimensions,
)
else:
stage_outputs = stage_module(hidden_states, input_dimensions)
hidden_states = stage_outputs[0]
hidden_states_before_downsampling = stage_outputs[1]
output_dimensions = stage_outputs[2]
input_dimensions = (output_dimensions[-2], output_dimensions[-1])
if output_hidden_states and output_hidden_states_before_downsampling:
batch_size, _, hidden_size = hidden_states_before_downsampling.shape
# rearrange b (h w) c -> b c h w
# here we use the original (not downsampled) height and width
reshaped_hidden_state = hidden_states_before_downsampling.view(
batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size
)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states_before_downsampling,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
elif output_hidden_states and not output_hidden_states_before_downsampling:
batch_size, _, hidden_size = hidden_states.shape
# rearrange b (h w) c -> b c h w
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return FocalNetEncoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
reshaped_hidden_states=all_reshaped_hidden_states,
)
# Copied from transformers.models.swin.modeling_swin.SwinPreTrainedModel with Swin->FocalNet,swin->focalnet
class FocalNetPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FocalNetConfig
base_model_prefix = "focalnet"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
FOCALNET_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`FocalNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
FOCALNET_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`AutoImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare FocalNet Model outputting raw hidden-states without any specific head on top.",
FOCALNET_START_DOCSTRING,
)
class FocalNetModel(FocalNetPreTrainedModel):
def __init__(self, config, add_pooling_layer=True, use_mask_token=False):
super().__init__(config)
self.config = config
self.num_stages = len(config.depths)
self.num_features = int(config.embed_dim * 2 ** (self.num_stages - 1))
self.embeddings = FocalNetEmbeddings(config, use_mask_token=use_mask_token)
self.encoder = FocalNetEncoder(config, self.embeddings.patch_grid)
self.layernorm = nn.LayerNorm(self.num_features, eps=config.layer_norm_eps)
self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(FOCALNET_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=FocalNetModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, FocalNetModelOutput]:
r"""
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output, input_dimensions = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos)
encoder_outputs = self.encoder(
embedding_output,
input_dimensions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = None
if self.pooler is not None:
pooled_output = self.pooler(sequence_output.transpose(1, 2))
pooled_output = torch.flatten(pooled_output, 1)
if not return_dict:
output = (sequence_output, pooled_output) + encoder_outputs[1:]
return output
return FocalNetModelOutput(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
reshaped_hidden_states=encoder_outputs.reshaped_hidden_states,
)
@add_start_docstrings(
"""FocalNet Model with a decoder on top for masked image modeling.
This follows the same implementation as in [SimMIM](https://arxiv.org/abs/2111.09886).
<Tip>
Note that we provide a script to pre-train this model on custom data in our [examples
directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
</Tip>
""",
FOCALNET_START_DOCSTRING,
)
class FocalNetForMaskedImageModeling(FocalNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.focalnet = FocalNetModel(config, add_pooling_layer=False, use_mask_token=True)
self.num_stages = len(config.depths)
num_features = int(config.embed_dim * 2 ** (self.num_stages - 1))
self.decoder = nn.Sequential(
nn.Conv2d(
in_channels=num_features, out_channels=config.encoder_stride**2 * config.num_channels, kernel_size=1
),
nn.PixelShuffle(config.encoder_stride),
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FOCALNET_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FocalNetMaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, FocalNetMaskedImageModelingOutput]:
r"""
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, FocalNetConfig, FocalNetForMaskedImageModeling
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/focalnet-base-simmim-window6-192")
>>> config = FocalNetConfig()
>>> model = FocalNetForMaskedImageModeling(config)
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
>>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
>>> # create random boolean mask of shape (batch_size, num_patches)
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
>>> loss, reconstructed_pixel_values = outputs.loss, outputs.logits
>>> list(reconstructed_pixel_values.shape)
[1, 3, 192, 192]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.focalnet(
pixel_values,
bool_masked_pos=bool_masked_pos,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
# Reshape to (batch_size, num_channels, height, width)
sequence_output = sequence_output.transpose(1, 2)
batch_size, num_channels, sequence_length = sequence_output.shape
height = width = math.floor(sequence_length**0.5)
sequence_output = sequence_output.reshape(batch_size, num_channels, height, width)
# Reconstruct pixel values
reconstructed_pixel_values = self.decoder(sequence_output)
masked_im_loss = None
if bool_masked_pos is not None:
size = self.config.image_size // self.config.patch_size
bool_masked_pos = bool_masked_pos.reshape(-1, size, size)
mask = (
bool_masked_pos.repeat_interleave(self.config.patch_size, 1)
.repeat_interleave(self.config.patch_size, 2)
.unsqueeze(1)
.contiguous()
)
reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none")
masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels
if not return_dict:
output = (reconstructed_pixel_values,) + outputs[2:]
return ((masked_im_loss,) + output) if masked_im_loss is not None else output
return FocalNetMaskedImageModelingOutput(
loss=masked_im_loss,
reconstruction=reconstructed_pixel_values,
hidden_states=outputs.hidden_states,
reshaped_hidden_states=outputs.reshaped_hidden_states,
)
@add_start_docstrings(
"""
FocalNet Model with an image classification head on top (a linear layer on top of the pooled output) e.g. for
ImageNet.
""",
FOCALNET_START_DOCSTRING,
)
class FocalNetForImageClassification(FocalNetPreTrainedModel):
# Copied from transformers.models.swin.modeling_swin.SwinForImageClassification.__init__ with Swin->FocalNet, swin->focalnet
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.focalnet = FocalNetModel(config)
# Classifier head
self.classifier = (
nn.Linear(self.focalnet.num_features, config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FOCALNET_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=FocalNetImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, FocalNetImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.focalnet(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return FocalNetImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
reshaped_hidden_states=outputs.reshaped_hidden_states,
)
@add_start_docstrings(
"""
FocalNet backbone, to be used with frameworks like X-Decoder.
""",
FOCALNET_START_DOCSTRING,
)
class FocalNetBackbone(FocalNetPreTrainedModel, BackboneMixin):
def __init__(self, config: FocalNetConfig):
super().__init__(config)
super()._init_backbone(config)
self.num_features = [config.embed_dim] + config.hidden_sizes
self.focalnet = FocalNetModel(config)
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FOCALNET_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.Tensor,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> BackboneOutput:
"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoBackbone
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny-lrf")
>>> model = AutoBackbone.from_pretrained("microsoft/focalnet-tiny-lrf")
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
outputs = self.focalnet(pixel_values, output_hidden_states=True, return_dict=True)
hidden_states = outputs.reshaped_hidden_states
feature_maps = ()
for idx, stage in enumerate(self.stage_names):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
output = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=None,
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/focalnet/configuration_focalnet.py | # coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" FocalNet model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json",
}
class FocalNetConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FocalNetModel`]. It is used to instantiate a
FocalNet model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the FocalNet
[microsoft/focalnet-tiny](https://huggingface.co/microsoft/focalnet-tiny) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 4):
The size (resolution) of each patch in the embeddings layer.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
embed_dim (`int`, *optional*, defaults to 96):
Dimensionality of patch embedding.
use_conv_embed (`bool`, *optional*, defaults to `False`):
Whether to use convolutional embedding. The authors noted that using convolutional embedding usually
improve the performance, but it's not used by default.
hidden_sizes (`List[int]`, *optional*, defaults to `[192, 384, 768, 768]`):
Dimensionality (hidden size) at each stage.
depths (`list(int)`, *optional*, defaults to `[2, 2, 6, 2]`):
Depth (number of layers) of each stage in the encoder.
focal_levels (`list(int)`, *optional*, defaults to `[2, 2, 2, 2]`):
Number of focal levels in each layer of the respective stages in the encoder.
focal_windows (`list(int)`, *optional*, defaults to `[3, 3, 3, 3]`):
Focal window size in each layer of the respective stages in the encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
`"selu"` and `"gelu_new"` are supported.
mlp_ratio (`float`, *optional*, defaults to 4.0):
Ratio of MLP hidden dimensionality to embedding dimensionality.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings and encoder.
drop_path_rate (`float`, *optional*, defaults to 0.1):
Stochastic depth rate.
use_layerscale (`bool`, *optional*, defaults to `False`):
Whether to use layer scale in the encoder.
layerscale_value (`float`, *optional*, defaults to 0.0001):
The initial value of the layer scale.
use_post_layernorm (`bool`, *optional*, defaults to `False`):
Whether to use post layer normalization in the encoder.
use_post_layernorm_in_modulation (`bool`, *optional*, defaults to `False`):
Whether to use post layer normalization in the modulation layer.
normalize_modulator (`bool`, *optional*, defaults to `False`):
Whether to normalize the modulator.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
encoder_stride (`int`, *optional*, defaults to 32):
Factor to increase the spatial resolution by in the decoder head for masked image modeling.
out_features (`List[str]`, *optional*):
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
out_indices (`List[int]`, *optional*):
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
If unset and `out_features` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
Example:
```python
>>> from transformers import FocalNetConfig, FocalNetModel
>>> # Initializing a FocalNet microsoft/focalnet-tiny style configuration
>>> configuration = FocalNetConfig()
>>> # Initializing a model (with random weights) from the microsoft/focalnet-tiny style configuration
>>> model = FocalNetModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "focalnet"
def __init__(
self,
image_size=224,
patch_size=4,
num_channels=3,
embed_dim=96,
use_conv_embed=False,
hidden_sizes=[192, 384, 768, 768],
depths=[2, 2, 6, 2],
focal_levels=[2, 2, 2, 2],
focal_windows=[3, 3, 3, 3],
hidden_act="gelu",
mlp_ratio=4.0,
hidden_dropout_prob=0.0,
drop_path_rate=0.1,
use_layerscale=False,
layerscale_value=1e-4,
use_post_layernorm=False,
use_post_layernorm_in_modulation=False,
normalize_modulator=False,
initializer_range=0.02,
layer_norm_eps=1e-5,
encoder_stride=32,
out_features=None,
out_indices=None,
**kwargs,
):
super().__init__(**kwargs)
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.embed_dim = embed_dim
self.use_conv_embed = use_conv_embed
self.hidden_sizes = hidden_sizes
self.depths = depths
self.focal_levels = focal_levels
self.focal_windows = focal_windows
self.hidden_act = hidden_act
self.mlp_ratio = mlp_ratio
self.hidden_dropout_prob = hidden_dropout_prob
self.drop_path_rate = drop_path_rate
self.use_layerscale = use_layerscale
self.layerscale_value = layerscale_value
self.use_post_layernorm = use_post_layernorm
self.use_post_layernorm_in_modulation = use_post_layernorm_in_modulation
self.normalize_modulator = normalize_modulator
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.encoder_stride = encoder_stride
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)]
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/focalnet/__init__.py | # Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_import_structure = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_focalnet"] = [
"FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"FocalNetForImageClassification",
"FocalNetForMaskedImageModeling",
"FocalNetBackbone",
"FocalNetModel",
"FocalNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_focalnet import (
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
FocalNetPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/focalnet/convert_focalnet_to_hf_format.py | # coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert FocalNet checkpoints from the original repository. URL: https://github.com/microsoft/FocalNet/tree/main"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def get_focalnet_config(model_name):
depths = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2]
use_conv_embed = True if "large" in model_name or "huge" in model_name else False
use_post_layernorm = True if "large" in model_name or "huge" in model_name else False
use_layerscale = True if "large" in model_name or "huge" in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
focal_levels = [3, 3, 3, 3]
focal_windows = [5, 5, 5, 5]
elif "fl4" in model_name:
focal_levels = [4, 4, 4, 4]
focal_windows = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
focal_windows = [3, 3, 3, 3]
if "lrf" in model_name:
focal_levels = [3, 3, 3, 3]
else:
focal_levels = [2, 2, 2, 2]
if "tiny" in model_name:
embed_dim = 96
elif "small" in model_name:
embed_dim = 96
elif "base" in model_name:
embed_dim = 128
elif "large" in model_name:
embed_dim = 192
elif "xlarge" in model_name:
embed_dim = 256
elif "huge" in model_name:
embed_dim = 352
# set label information
repo_id = "huggingface/label-files"
if "large" in model_name or "huge" in model_name:
filename = "imagenet-22k-id2label.json"
else:
filename = "imagenet-1k-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
label2id = {v: k for k, v in id2label.items()}
config = FocalNetConfig(
embed_dim=embed_dim,
depths=depths,
focal_levels=focal_levels,
focal_windows=focal_windows,
use_conv_embed=use_conv_embed,
id2label=id2label,
label2id=label2id,
use_post_layernorm=use_post_layernorm,
use_layerscale=use_layerscale,
)
return config
def rename_key(name):
if "patch_embed.proj" in name:
name = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection")
if "patch_embed.norm" in name:
name = name.replace("patch_embed.norm", "embeddings.norm")
if "layers" in name:
name = "encoder." + name
if "encoder.layers" in name:
name = name.replace("encoder.layers", "encoder.stages")
if "downsample.proj" in name:
name = name.replace("downsample.proj", "downsample.projection")
if "blocks" in name:
name = name.replace("blocks", "layers")
if "modulation.f.weight" in name or "modulation.f.bias" in name:
name = name.replace("modulation.f", "modulation.projection_in")
if "modulation.h.weight" in name or "modulation.h.bias" in name:
name = name.replace("modulation.h", "modulation.projection_context")
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
name = name.replace("modulation.proj", "modulation.projection_out")
if name == "norm.weight":
name = "layernorm.weight"
if name == "norm.bias":
name = "layernorm.bias"
if "head" in name:
name = name.replace("head", "classifier")
else:
name = "focalnet." + name
return name
def convert_focalnet_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub=False):
# fmt: off
model_name_to_url = {
"focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth",
"focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth",
"focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth",
"focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth",
"focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth",
"focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth",
"focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth",
"focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth",
"focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth",
"focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth",
}
# fmt: on
checkpoint_url = model_name_to_url[model_name]
print("Checkpoint URL: ", checkpoint_url)
state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")["model"]
# rename keys
for key in state_dict.copy().keys():
val = state_dict.pop(key)
state_dict[rename_key(key)] = val
config = get_focalnet_config(model_name)
model = FocalNetForImageClassification(config)
model.eval()
# load state dict
model.load_state_dict(state_dict)
# verify conversion
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
processor = BitImageProcessor(
do_resize=True,
size={"shortest_edge": 256},
resample=PILImageResampling.BILINEAR,
do_center_crop=True,
crop_size=224,
do_normalize=True,
image_mean=IMAGENET_DEFAULT_MEAN,
image_std=IMAGENET_DEFAULT_STD,
)
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt")
image_transforms = transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
original_pixel_values = image_transforms(image).unsqueeze(0)
# verify pixel_values
assert torch.allclose(inputs.pixel_values, original_pixel_values, atol=1e-4)
outputs = model(**inputs)
predicted_class_idx = outputs.logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
print("First values of logits:", outputs.logits[0, :3])
if model_name == "focalnet-tiny":
expected_slice = torch.tensor([0.2166, -0.4368, 0.2191])
elif model_name == "focalnet-tiny-lrf":
expected_slice = torch.tensor([1.1669, 0.0125, -0.1695])
elif model_name == "focalnet-small":
expected_slice = torch.tensor([0.4917, -0.0430, 0.1341])
elif model_name == "focalnet-small-lrf":
expected_slice = torch.tensor([-0.2588, -0.5342, -0.2331])
elif model_name == "focalnet-base":
expected_slice = torch.tensor([-0.1655, -0.4090, -0.1730])
elif model_name == "focalnet-base-lrf":
expected_slice = torch.tensor([0.5306, -0.0483, -0.3928])
assert torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)
print("Looks ok!")
if pytorch_dump_folder_path is not None:
print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
print(f"Pushing model and processor of {model_name} to the hub...")
model.push_to_hub(f"{model_name}")
processor.push_to_hub(f"{model_name}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="focalnet-tiny",
type=str,
help="Name of the FocalNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model and processor to the hub.",
)
args = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/gptj/modeling_flax_gptj.py | # coding=utf-8
# Copyright 2021 The EleutherAI and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput
from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_gptj import GPTJConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "gptj"
_CONFIG_FOR_DOC = "GPTJConfig"
GPTJ_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`GPTJConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
GPTJ_INPUTS_DOCSTRING = r"""
Args:
input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`):
`input_ids_length` = `sequence_length`. Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
def create_sinusoidal_positions(num_pos, dim):
inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))
sinusoid_inp = np.einsum("i , j -> i j", np.arange(num_pos), inv_freq).astype("float32")
sin, cos = np.sin(sinusoid_inp), np.cos(sinusoid_inp)
sentinel = dim // 2 + dim % 2
out = np.zeros((num_pos, dim))
out[:, 0:sentinel] = sin
out[:, sentinel:] = cos
return jnp.array(out)
def rotate_every_two(tensor):
rotate_half_tensor = jnp.stack((-tensor[:, :, :, 1::2], tensor[:, :, :, ::2]), axis=-1)
rotate_half_tensor = rotate_half_tensor.reshape(rotate_half_tensor.shape[:-2] + (-1,))
return rotate_half_tensor
def apply_rotary_pos_emb(tensor, sincos):
sin_pos, cos_pos = sincos
sin_pos = sin_pos[:, :, None, :].repeat(2, 3)
cos_pos = cos_pos[:, :, None, :].repeat(2, 3)
return (tensor * cos_pos) + (rotate_every_two(tensor) * sin_pos)
class FlaxGPTJAttention(nn.Module):
config: GPTJConfig
dtype: jnp.dtype = jnp.float32
causal: bool = True
is_cross_attention: bool = False
def setup(self):
config = self.config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
self.rotary_dim = config.rotary_dim
dense = partial(
nn.Dense,
self.embed_dim,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
self.out_proj = dense()
self.resid_dropout = nn.Dropout(rate=config.resid_pdrop)
self.causal_mask = make_causal_mask(jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool")
pos_embd_dim = self.rotary_dim or self.embed_dim
self.embed_positions = create_sinusoidal_positions(config.max_position_embeddings, pos_embd_dim)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
@nn.compact
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slighly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key
# positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states,
attention_mask,
position_ids,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
):
query = self.q_proj(hidden_states)
key = self.k_proj(hidden_states)
value = self.v_proj(hidden_states)
query = self._split_heads(query)
key = self._split_heads(key)
value = self._split_heads(value)
sincos = jnp.take(self.embed_positions, position_ids, axis=0)
sincos = jnp.split(sincos, 2, axis=-1)
if self.rotary_dim is not None:
k_rot = key[:, :, :, : self.rotary_dim]
k_pass = key[:, :, :, self.rotary_dim :]
q_rot = query[:, :, :, : self.rotary_dim]
q_pass = query[:, :, :, self.rotary_dim :]
k_rot = apply_rotary_pos_emb(k_rot, sincos)
q_rot = apply_rotary_pos_emb(q_rot, sincos)
key = jnp.concatenate([k_rot, k_pass], axis=-1)
query = jnp.concatenate([q_rot, q_pass], axis=-1)
else:
key = apply_rotary_pos_emb(key, sincos)
query = apply_rotary_pos_emb(query, sincos)
query_length, key_length = query.shape[1], key.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
batch_size = hidden_states.shape[0]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
dropout_rng = None
if not deterministic and self.config.attn_pdrop > 0.0:
dropout_rng = self.make_rng("dropout")
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.has_variable("cache", "cached_key") or init_cache:
key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)
# transform boolean mask into float mask
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
# usual dot product attention
attn_weights = dot_product_attention_weights(
query,
key,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.config.attn_pdrop,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
attn_output = self._merge_heads(attn_output)
attn_output = self.out_proj(attn_output)
attn_output = self.resid_dropout(attn_output, deterministic=deterministic)
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
class FlaxGPTJMLP(nn.Module):
config: GPTJConfig
intermediate_size: int
dtype: jnp.dtype = jnp.float32
def setup(self):
embed_dim = self.config.hidden_size
kernel_init = jax.nn.initializers.normal(self.config.initializer_range)
self.fc_in = nn.Dense(self.intermediate_size, dtype=self.dtype, kernel_init=kernel_init)
self.fc_out = nn.Dense(embed_dim, dtype=self.dtype, kernel_init=kernel_init)
self.act = ACT2FN[self.config.activation_function]
self.dropout = nn.Dropout(rate=self.config.resid_pdrop)
def __call__(self, hidden_states, deterministic: bool = True):
hidden_states = self.fc_in(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.fc_out(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states
class FlaxGPTJBlock(nn.Module):
config: GPTJConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
hidden_size = self.config.hidden_size
inner_dim = self.config.n_inner if self.config.n_inner is not None else 4 * hidden_size
self.ln_1 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
self.attn = FlaxGPTJAttention(self.config, dtype=self.dtype)
self.mlp = FlaxGPTJMLP(self.config, inner_dim, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask=None,
position_ids=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
):
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_outputs = self.attn(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0]
feed_forward_hidden_states = self.mlp(hidden_states, deterministic=deterministic)
# residual connection
hidden_states = attn_output + feed_forward_hidden_states + residual
return (hidden_states,) + attn_outputs[1:]
class FlaxGPTJPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GPTJConfig
base_model_prefix = "transformer"
module_class: nn.Module = None
def __init__(
self,
config: GPTJConfig,
input_shape: Tuple = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
if self.config.add_cross_attention:
encoder_hidden_states = jnp.zeros(input_shape + (self.config.n_embd,))
encoder_attention_mask = attention_mask
module_init_outputs = self.module.init(
rngs,
input_ids,
attention_mask,
position_ids,
encoder_hidden_states,
encoder_attention_mask,
return_dict=False,
)
else:
module_init_outputs = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)
random_params = module_init_outputs["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def init_cache(self, batch_size, max_length):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
"""
# init input variables to retrieve cache
input_ids = jnp.ones((batch_size, max_length))
attention_mask = jnp.ones_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
init_variables = self.module.init(
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
)
return init_variables["cache"]
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING)
def __call__(
self,
input_ids,
attention_mask=None,
position_ids=None,
params: dict = None,
past_key_values: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
batch_size, sequence_length = input_ids.shape
if position_ids is None:
if past_key_values is not None:
raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
if attention_mask is None:
attention_mask = jnp.ones((batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGPTJAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
jnp.array(position_ids, dtype="i4"),
not train,
False,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
mutable=mutable,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past_key_values = outputs
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past_key_values = outputs
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
return outputs
class FlaxGPTJBlockCollection(nn.Module):
config: GPTJConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.blocks = [
FlaxGPTJBlock(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
attention_mask=None,
position_ids=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for block in self.blocks:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = block(
hidden_states,
attention_mask,
position_ids=position_ids,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
# this contains possible `None` values - `FlaxGPTJModule` will filter them out
outputs = (hidden_states, all_hidden_states, all_attentions)
return outputs
class FlaxGPTJModule(nn.Module):
config: GPTJConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.embed_dim = self.config.hidden_size
self.wte = nn.Embed(
self.config.vocab_size,
self.config.hidden_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.dropout = nn.Dropout(rate=self.config.embd_pdrop)
self.h = FlaxGPTJBlockCollection(self.config, dtype=self.dtype)
self.ln_f = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
deterministic=True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
input_embeds = self.wte(input_ids.astype("i4"))
hidden_states = self.dropout(input_embeds, deterministic=deterministic)
outputs = self.h(
hidden_states,
attention_mask,
position_ids=position_ids,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.ln_f(hidden_states)
if output_hidden_states:
all_hidden_states = outputs[1] + (hidden_states,)
outputs = (hidden_states, all_hidden_states) + outputs[2:]
else:
outputs = (hidden_states,) + outputs[1:]
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=outputs[1],
attentions=outputs[-1],
)
@add_start_docstrings(
"The bare GPTJ Model transformer outputting raw hidden-states without any specific head on top.",
GPTJ_START_DOCSTRING,
)
class FlaxGPTJModel(FlaxGPTJPreTrainedModel):
module_class = FlaxGPTJModule
append_call_sample_docstring(
FlaxGPTJModel,
_CHECKPOINT_FOR_DOC,
FlaxCausalLMOutput,
_CONFIG_FOR_DOC,
)
class FlaxGPTJForCausalLMModule(nn.Module):
config: GPTJConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.transformer = FlaxGPTJModule(self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.config.vocab_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
outputs = self.transformer(
input_ids,
attention_mask,
position_ids,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_kernel = self.transformer.variables["params"]["wte"]["embedding"].T
lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states)
else:
lm_logits = self.lm_head(hidden_states)
if not return_dict:
return (lm_logits,) + outputs[1:]
return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
@add_start_docstrings(
"""
The GPTJ Model transformer with a language modeling head on top.
""",
GPTJ_START_DOCSTRING,
)
class FlaxGPTJForCausalLM(FlaxGPTJPreTrainedModel):
module_class = FlaxGPTJForCausalLMModule
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since GPTJ uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
position_ids = attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"attention_mask": extended_attention_mask,
"position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
return model_kwargs
append_call_sample_docstring(
FlaxGPTJForCausalLM,
_CHECKPOINT_FOR_DOC,
FlaxCausalLMOutput,
_CONFIG_FOR_DOC,
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/gptj/configuration_gptj.py | # coding=utf-8
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" GPT-J model configuration"""
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
logger = logging.get_logger(__name__)
GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json",
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class GPTJConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GPTJModel`]. It is used to instantiate a GPT-J
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the GPT-J
[EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) architecture. Configuration objects inherit from
[`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`]
for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50400):
Vocabulary size of the GPT-J model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GPTJModel`].
n_positions (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
n_embd (`int`, *optional*, defaults to 4096):
Dimensionality of the embeddings and hidden states.
n_layer (`int`, *optional*, defaults to 28):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
rotary_dim (`int`, *optional*, defaults to 64):
Number of dimensions in the embedding that Rotary Position Embedding is applied to.
n_inner (`int`, *optional*, defaults to None):
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
activation_function (`str`, *optional*, defaults to `"gelu_new"`):
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
resid_pdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
embd_pdrop (`int`, *optional*, defaults to 0.1):
The dropout ratio for the embeddings.
attn_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
The epsilon to use in the layer normalization layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
Example:
```python
>>> from transformers import GPTJModel, GPTJConfig
>>> # Initializing a GPT-J 6B configuration
>>> configuration = GPTJConfig()
>>> # Initializing a model from the configuration
>>> model = GPTJModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gptj"
attribute_map = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(
self,
vocab_size=50400,
n_positions=2048,
n_embd=4096,
n_layer=28,
n_head=16,
rotary_dim=64,
n_inner=None,
activation_function="gelu_new",
resid_pdrop=0.0,
embd_pdrop=0.0,
attn_pdrop=0.0,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
use_cache=True,
bos_token_id=50256,
eos_token_id=50256,
tie_word_embeddings=False,
**kwargs,
):
self.vocab_size = vocab_size
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.n_inner = n_inner
self.rotary_dim = rotary_dim
self.activation_function = activation_function
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.use_cache = use_cache
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
super().__init__(
bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
)
# Copied from transformers.models.gpt2.configuration_gpt2.GPT2OnnxConfig
class GPTJOnnxConfig(OnnxConfigWithPast):
def __init__(
self,
config: PretrainedConfig,
task: str = "default",
patching_specs: List[PatchingSpec] = None,
use_past: bool = False,
):
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
if not getattr(self._config, "pad_token_id", None):
# TODO: how to do that better?
self._config.pad_token_id = 0
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
else:
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
return common_inputs
@property
def num_layers(self) -> int:
return self._config.n_layer
@property
def num_attention_heads(self) -> int:
return self._config.n_head
def generate_dummy_inputs(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
# We need to order the input in the way they appears in the forward()
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, seqlen = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
past_key_values_length = seqlen + 2
past_shape = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
ordered_inputs["past_key_values"] = [
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers)
]
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
if self.use_past:
mask_dtype = ordered_inputs["attention_mask"].dtype
ordered_inputs["attention_mask"] = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
)
return ordered_inputs
@property
def default_onnx_opset(self) -> int:
return 13
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/gptj/__init__.py | # Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_import_structure = {"configuration_gptj": ["GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTJConfig", "GPTJOnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_gptj"] = [
"GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTJForCausalLM",
"GPTJForQuestionAnswering",
"GPTJForSequenceClassification",
"GPTJModel",
"GPTJPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_gptj"] = [
"TFGPTJForCausalLM",
"TFGPTJForQuestionAnswering",
"TFGPTJForSequenceClassification",
"TFGPTJModel",
"TFGPTJPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_gptj"] = [
"FlaxGPTJForCausalLM",
"FlaxGPTJModel",
"FlaxGPTJPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gptj import GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTJConfig, GPTJOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gptj import (
GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTJForCausalLM,
GPTJForQuestionAnswering,
GPTJForSequenceClassification,
GPTJModel,
GPTJPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_gptj import (
TFGPTJForCausalLM,
TFGPTJForQuestionAnswering,
TFGPTJForSequenceClassification,
TFGPTJModel,
TFGPTJPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel, FlaxGPTJPreTrainedModel
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/gptj/modeling_tf_gptj.py | # coding=utf-8
# Copyright 2022 The EleutherAI and HuggingFace Teams. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 GPT-J model."""
from __future__ import annotations
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...file_utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
)
from ...modeling_tf_outputs import (
TFBaseModelOutputWithPast,
TFCausalLMOutputWithPast,
TFQuestionAnsweringModelOutput,
TFSequenceClassifierOutputWithPast,
)
from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss,
TFModelInputType,
TFPreTrainedModel,
TFQuestionAnsweringLoss,
TFSequenceClassificationLoss,
TFSharedEmbeddings,
get_initializer,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import logging
from .configuration_gptj import GPTJConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-j-6B"
_CONFIG_FOR_DOC = "GPTJConfig"
GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST = [
"EleutherAI/gpt-j-6B",
# See all GPT-J models at https://huggingface.co/models?filter=gptj
]
def create_sinusoidal_positions(num_pos: int, dim: int) -> tf.Tensor:
inv_freq = tf.cast(1.0 / (10000 ** (tf.range(0, dim, 2) / dim)), tf.float32)
sinusoid_inp = tf.cast(tf.einsum("i , j -> i j", tf.range(num_pos, dtype=tf.float32), inv_freq), tf.float32)
sin, cos = tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)
out = tf.concat((sin, cos), axis=1)
return out
def rotate_every_two(x: tf.Tensor) -> tf.Tensor:
rotate_half_tensor = tf.stack((-x[:, :, :, 1::2], x[:, :, :, ::2]), axis=-1)
new_shape = shape_list(rotate_half_tensor)[:-2] + [tf.math.reduce_prod(shape_list(rotate_half_tensor)[-2:])]
rotate_half_tensor = tf.reshape(rotate_half_tensor, new_shape)
return rotate_half_tensor
def apply_rotary_pos_emb(tensor: tf.Tensor, sincos: tf.Tensor) -> tf.Tensor:
sin_pos, cos_pos = sincos
sin_pos = tf.repeat(sin_pos[:, :, None, :], 2, 3)
cos_pos = tf.repeat(cos_pos[:, :, None, :], 2, 3)
return (tensor * cos_pos) + (rotate_every_two(tensor) * sin_pos)
class TFGPTJAttention(tf.keras.layers.Layer):
def __init__(self, config: GPTJConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.hidden_size
self.num_attention_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_attention_heads
if self.head_dim * self.num_attention_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
f" `num_attention_heads`: {self.num_attention_heads})."
)
self.scale_attn = self.head_dim**0.5
self.rotary_dim = config.rotary_dim
self.attn_dropout = tf.keras.layers.Dropout(config.attn_pdrop)
self.resid_dropout = tf.keras.layers.Dropout(config.resid_pdrop)
self.q_proj = tf.keras.layers.Dense(
self.embed_dim,
use_bias=False,
kernel_initializer=get_initializer(config.initializer_range),
name="q_proj",
)
self.k_proj = tf.keras.layers.Dense(
self.embed_dim,
use_bias=False,
kernel_initializer=get_initializer(config.initializer_range),
name="k_proj",
)
self.v_proj = tf.keras.layers.Dense(
self.embed_dim,
use_bias=False,
kernel_initializer=get_initializer(config.initializer_range),
name="v_proj",
)
self.out_proj = tf.keras.layers.Dense(
self.embed_dim,
use_bias=False,
kernel_initializer=get_initializer(config.initializer_range),
name="out_proj",
)
self.max_positions = config.max_position_embeddings
self.lower_triangle_mask = tf.reshape(
tf.cast(tf.experimental.numpy.tril(tf.ones((self.max_positions, self.max_positions))), tf.int8),
(1, 1, self.max_positions, self.max_positions),
)
pos_embd_dim = self.rotary_dim or self.embed_dim
self.embed_positions = create_sinusoidal_positions(self.max_positions, pos_embd_dim)
def get_causal_mask(self, key_length, query_length) -> tf.Tensor:
return tf.cast(self.lower_triangle_mask[:, :, key_length - query_length : key_length, :key_length], tf.bool)
@staticmethod
def get_masked_bias(dtype: tf.DType) -> tf.Tensor:
return tf.cast(tf.constant(-1e9), dtype)
def _split_heads(self, hidden_states: tf.Tensor, rotary: bool) -> tf.Tensor:
"""
Splits hidden dim into attn_head_size and num_attention_heads
"""
new_shape = shape_list(hidden_states)[:-1] + [self.num_attention_heads, self.head_dim]
hidden_states = tf.reshape(hidden_states, new_shape)
if rotary:
return hidden_states
if len(shape_list(hidden_states)) == 4:
return tf.transpose(hidden_states, (0, 2, 1, 3)) # (batch, head, seq_length, head_features)
if len(shape_list(hidden_states)) == 5:
return tf.transpose(hidden_states, (0, 1, 3, 2, 4)) # (batch, blocks, head, block_length, head_features)
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(shape_list(hidden_states))}")
def _merge_heads(self, hidden_states: tf.Tensor) -> tf.Tensor:
"""
Merges attn_head_size dim and num_attn_heads dim into hidden dim
"""
if len(shape_list(hidden_states)) == 4:
hidden_states = tf.transpose(hidden_states, (0, 2, 1, 3))
elif len(shape_list(hidden_states)) == 5:
hidden_states = tf.transpose(hidden_states, (0, 1, 3, 2, 4))
else:
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(shape_list(hidden_states))}")
new_shape = shape_list(hidden_states)[:-2] + [self.num_attention_heads * self.head_dim]
return tf.reshape(hidden_states, new_shape)
def _attn(
self,
query: tf.Tensor,
key: tf.Tensor,
value: tf.Tensor,
attention_mask: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
) -> Tuple[tf.Tensor, tf.Tensor]:
# compute causal mask from causal mask buffer
query_length, key_length = shape_list(query)[-2], shape_list(key)[-2]
causal_mask = self.get_causal_mask(key_length, query_length)
# Keep the attention weights computation in fp32 to avoid overflow issues
query = tf.cast(query, tf.float32)
key = tf.cast(key, tf.float32)
attn_weights = tf.matmul(query, key, transpose_b=True)
attn_weights = tf.where(causal_mask, attn_weights, self.get_masked_bias(attn_weights.dtype))
attn_weights = attn_weights / self.scale_attn
if attention_mask is not None:
# Apply the attention mask
attn_weights = attn_weights + attention_mask
attn_weights = stable_softmax(attn_weights, axis=-1)
attn_weights = tf.cast(attn_weights, value.dtype)
attn_weights = self.attn_dropout(attn_weights)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_output = tf.matmul(attn_weights, value)
return attn_output, attn_weights
def call(
self,
hidden_states: tf.Tensor,
layer_past: Optional[Tuple[tf.Tensor, tf.Tensor]] = None,
attention_mask: tf.Tensor | None = None,
position_ids: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
use_cache: bool = False,
output_attentions: bool = False,
):
query = self.q_proj(hidden_states)
key = self.k_proj(hidden_states)
value = self.v_proj(hidden_states)
query = self._split_heads(query, True)
key = self._split_heads(key, True)
value = self._split_heads(value, False)
sincos = tf.cast(tf.gather(self.embed_positions, position_ids, axis=0), hidden_states.dtype)
sincos = tf.split(sincos, 2, axis=-1)
if self.rotary_dim is not None:
k_rot = key[:, :, :, : self.rotary_dim]
k_pass = key[:, :, :, self.rotary_dim :]
q_rot = query[:, :, :, : self.rotary_dim]
q_pass = query[:, :, :, self.rotary_dim :]
k_rot = apply_rotary_pos_emb(k_rot, sincos)
q_rot = apply_rotary_pos_emb(q_rot, sincos)
key = tf.concat((k_rot, k_pass), axis=-1)
query = tf.concat((q_rot, q_pass), axis=-1)
else:
key = apply_rotary_pos_emb(key, sincos)
query = apply_rotary_pos_emb(query, sincos)
key = tf.transpose(key, (0, 2, 1, 3))
query = tf.transpose(query, (0, 2, 1, 3))
if layer_past is not None:
past_key = layer_past[0]
past_value = layer_past[1]
key = tf.concat((past_key, key), axis=-2)
value = tf.concat((past_value, value), axis=-2)
if use_cache is True:
present = (key, value)
else:
present = None
# compute self-attention: V x Softmax(QK^T)
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
attn_output = self._merge_heads(attn_output)
attn_output = self.out_proj(attn_output)
attn_output = self.resid_dropout(attn_output)
outputs = (attn_output, present)
if output_attentions:
outputs += (attn_weights,)
return outputs # a, present, (attentions)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "q_proj", None) is not None:
with tf.name_scope(self.q_proj.name):
self.q_proj.build([None, None, self.embed_dim])
if getattr(self, "k_proj", None) is not None:
with tf.name_scope(self.k_proj.name):
self.k_proj.build([None, None, self.embed_dim])
if getattr(self, "v_proj", None) is not None:
with tf.name_scope(self.v_proj.name):
self.v_proj.build([None, None, self.embed_dim])
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build([None, None, self.embed_dim])
class TFGPTJMLP(tf.keras.layers.Layer):
def __init__(self, intermediate_size: int, config: GPTJConfig, **kwargs):
super().__init__(**kwargs)
embed_dim = config.n_embd
self.fc_in = tf.keras.layers.Dense(
intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="fc_in"
)
self.fc_out = tf.keras.layers.Dense(
embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="fc_out"
)
self.act = get_tf_activation(config.activation_function)
self.dropout = tf.keras.layers.Dropout(config.embd_pdrop)
self.embed_dim = config.n_embd
self.intermediate_size = intermediate_size
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.fc_in(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.fc_out(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "fc_in", None) is not None:
with tf.name_scope(self.fc_in.name):
self.fc_in.build([None, None, self.embed_dim])
if getattr(self, "fc_out", None) is not None:
with tf.name_scope(self.fc_out.name):
self.fc_out.build([None, None, self.intermediate_size])
class TFGPTJBlock(tf.keras.layers.Layer):
def __init__(self, config: GPTJConfig, **kwargs):
super().__init__(**kwargs)
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
self.ln_1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_1")
self.attn = TFGPTJAttention(config, name="attn")
self.mlp = TFGPTJMLP(inner_dim, config, name="mlp")
self.config = config
def call(
self,
hidden_states: tf.Tensor,
layer_past: tf.Tensor | None = None,
attention_mask: tf.Tensor | None = None,
position_ids: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
use_cache: bool = False,
output_attentions: bool = False,
):
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_outputs = self.attn(
hidden_states=hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
) # attn_outputs: attn_output, present, (attentions)
attn_output = attn_outputs[0]
outputs = attn_outputs[1:]
feed_forward_hidden_states = self.mlp(hidden_states)
hidden_states = attn_output + feed_forward_hidden_states + residual
if use_cache:
outputs = (hidden_states,) + outputs
else:
outputs = (hidden_states,) + outputs[1:]
return outputs # hidden_states, present, (attentions)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "ln_1", None) is not None:
with tf.name_scope(self.ln_1.name):
self.ln_1.build([None, None, self.config.n_embd])
if getattr(self, "attn", None) is not None:
with tf.name_scope(self.attn.name):
self.attn.build(None)
if getattr(self, "mlp", None) is not None:
with tf.name_scope(self.mlp.name):
self.mlp.build(None)
@keras_serializable
class TFGPTJMainLayer(tf.keras.layers.Layer):
config_class = GPTJConfig
def __init__(self, config: GPTJConfig, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
self.config = config
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.use_cache = config.use_cache
self.return_dict = config.use_return_dict
self.num_hidden_layers = config.n_layer
self.n_embd = config.n_embd
self.n_positions = config.n_positions
self.initializer_range = config.initializer_range
self.wte = TFSharedEmbeddings(
config.vocab_size, config.hidden_size, initializer_range=config.initializer_range, name="wte"
)
self.drop = tf.keras.layers.Dropout(config.embd_pdrop)
self.h = [TFGPTJBlock(config, name=f"h_._{i}") for i in range(config.n_layer)]
self.ln_f = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_f")
self.embed_dim = config.n_embd
def get_input_embeddings(self):
return self.wte
def set_input_embeddings(self, value: tf.Tensor):
self.wte.weight = value
self.wte.vocab_size = shape_list(value)[0]
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
"""
raise NotImplementedError
@unpack_inputs
def call(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]:
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
input_ids = tf.reshape(input_ids, [-1, input_shape[-1]])
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if past_key_values is None:
past_length = 0
past_key_values = [None] * len(self.h)
else:
past_length = shape_list(past_key_values[0][0])[-2]
if position_ids is None:
position_ids = tf.expand_dims(tf.range(past_length, input_shape[-1] + past_length), axis=0)
if attention_mask is not None:
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask_shape = shape_list(attention_mask)
attention_mask = tf.reshape(attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1]))
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
one_cst = tf.constant(1.0)
attention_mask = tf.cast(attention_mask, dtype=one_cst.dtype)
attention_mask = tf.multiply(tf.subtract(one_cst, attention_mask), tf.constant(-10000.0))
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.num_hidden_layers
# head_mask = tf.constant([0] * self.num_hidden_layers)
position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]])
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.wte.vocab_size)
inputs_embeds = self.wte(input_ids, mode="embedding")
if token_type_ids is not None:
token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]])
token_type_embeds = self.wte(token_type_ids, mode="embedding")
else:
token_type_embeds = tf.constant(0.0)
token_type_embeds = tf.cast(token_type_embeds, dtype=inputs_embeds.dtype)
hidden_states = inputs_embeds + token_type_embeds
hidden_states = self.drop(hidden_states, training=training)
output_shape = input_shape + [shape_list(hidden_states)[-1]]
presents = () if use_cache else None
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
if output_hidden_states:
all_hidden_states = all_hidden_states + (tf.reshape(hidden_states, output_shape),)
outputs = block(
hidden_states=hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask[i],
use_cache=use_cache,
output_attentions=output_attentions,
training=training,
)
hidden_states = outputs[0]
if use_cache:
presents = presents + (outputs[1],)
if output_attentions:
all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
hidden_states = self.ln_f(hidden_states)
hidden_states = tf.reshape(hidden_states, output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if output_attentions:
# let the number of heads free (-1) so we can extract attention even after head pruning
attention_output_shape = input_shape[:-1] + [-1] + shape_list(all_attentions[0])[-2:]
all_attentions = tuple(tf.reshape(t, attention_output_shape) for t in all_attentions)
if not return_dict:
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None)
return TFBaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "wte", None) is not None:
with tf.name_scope(self.wte.name):
self.wte.build(None)
if getattr(self, "ln_f", None) is not None:
with tf.name_scope(self.ln_f.name):
self.ln_f.build([None, None, self.embed_dim])
if getattr(self, "h", None) is not None:
for layer in self.h:
with tf.name_scope(layer.name):
layer.build(None)
class TFGPTJPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GPTJConfig
base_model_prefix = "transformer"
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"h.\d+.attn.bias"]
GPTJ_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Parameters:
config ([`GPTJConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
GPTJ_INPUTS_DOCSTRING = r"""
Args:
input_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, input_ids_length)`):
`input_ids_length` = `sequence_length` if `past` is `None` else `past[0].shape[-2]` (`sequence_length` of
input past key value states). Indices of input sequence tokens in the vocabulary.
If `past` is used, only input IDs that do not have their past calculated should be passed as `input_ids`.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
past_key_values (`List[tf.Tensor]` of length `config.n_layers`):
Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see
`past` output below). Can be used to speed up sequential decoding. The token ids which have their past
given to this model should not be passed as input ids as they have already been computed.
attention_mask (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. This argument can be used
in eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare GPT-J Model transformer outputting raw hidden-states without any specific head on top.",
GPTJ_START_DOCSTRING,
)
class TFGPTJModel(TFGPTJPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFGPTJMainLayer(config, name="transformer")
@unpack_inputs
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]:
r"""
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past`). Set to `False` during training, `True` during generation
"""
outputs = self.transformer(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
@add_start_docstrings(
"""
The GPT-J Model transformer with a language modeling head on top.
""",
GPTJ_START_DOCSTRING,
)
class TFGPTJForCausalLM(TFGPTJPreTrainedModel, TFCausalLanguageModelingLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFGPTJMainLayer(config, name="transformer")
self.lm_head = tf.keras.layers.Dense(
config.vocab_size, kernel_initializer=get_initializer(config.initializer_range), name="lm_head"
)
self.config = config
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def prepare_inputs_for_generation(self, inputs, past_key_values=None, use_cache=None, **kwargs):
token_type_ids = kwargs.get("token_type_ids", None)
# only last token for inputs_ids if past is defined in kwargs
if past_key_values:
inputs = tf.expand_dims(inputs[:, -1], -1)
if token_type_ids is not None:
token_type_ids = tf.expand_dims(token_type_ids[:, -1], -1)
position_ids = kwargs.get("position_ids", None)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None and position_ids is None:
position_ids = tf.math.cumsum(attention_mask, axis=-1, exclusive=True)
if past_key_values:
position_ids = tf.expand_dims(position_ids[:, -1], -1)
return {
"input_ids": inputs,
"attention_mask": attention_mask,
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": use_cache,
"token_type_ids": token_type_ids,
}
@unpack_inputs
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFCausalLMOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
labels: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFCausalLMOutputWithPast, Tuple[tf.Tensor]]:
r"""
labels (`np.ndarray` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
transformer_outputs = self.transformer(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
hidden_states = transformer_outputs[0]
lm_logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# shift labels to the left and cut last logit token
shifted_logits = lm_logits[:, :-1]
labels = labels[:, 1:]
loss = self.hf_compute_loss(labels, shifted_logits)
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFCausalLMOutputWithPast(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
if getattr(self, "lm_head", None) is not None:
with tf.name_scope(self.lm_head.name):
self.lm_head.build([None, None, self.config.n_embd])
@add_start_docstrings(
"""
The GPT-J Model transformer with a sequence classification head on top (linear layer).
[`GPTJForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT, GPT-2, GPT-Neo) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
GPTJ_START_DOCSTRING,
)
class TFGPTJForSequenceClassification(TFGPTJPreTrainedModel, TFSequenceClassificationLoss):
_keys_to_ignore_on_load_missing = [r"h.\d+.attn.masked_bias", r"h.\d+.attn.bias", r"lm_head.weight"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.transformer = TFGPTJMainLayer(config, name="transformer")
self.score = tf.keras.layers.Dense(
self.num_labels,
use_bias=False,
kernel_initializer=get_initializer(config.initializer_range),
name="score",
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFSequenceClassifierOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
labels: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFSequenceClassifierOutputWithPast, Tuple[tf.Tensor]]:
r"""
labels (`np.ndarray` or `tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
transformer_outputs = self.transformer(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
logits_shape = shape_list(logits)
in_logits = None
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = (
tf.argmax(tf.cast(tf.math.equal(input_ids, self.config.pad_token_id), input_ids.dtype), axis=-1)
- 1
)
sequence_lengths = tf.where(
sequence_lengths >= 0,
sequence_lengths,
tf.cast(shape_list(input_ids[-1]), sequence_lengths.dtype) - 1,
)
in_logits = tf.gather(logits, sequence_lengths, batch_dims=1, axis=1)
else:
sequence_lengths = -1
logger.warning(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
loss = None
if labels is not None:
if self.config.pad_token_id is None and logits_shape[0] != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if not tf.is_tensor(sequence_lengths):
in_logits = logits[0 : logits_shape[0], sequence_lengths]
loss = self.hf_compute_loss(tf.reshape(labels, [-1]), tf.reshape(in_logits, [-1, self.num_labels]))
pooled_logits = in_logits if in_logits is not None else logits
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
if getattr(self, "score", None) is not None:
with tf.name_scope(self.score.name):
self.score.build([None, None, self.config.n_embd])
@add_start_docstrings(
"""
The GPT-J Model transformer with a span classification head on top for extractive question-answering tasks like
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
GPTJ_START_DOCSTRING,
)
class TFGPTJForQuestionAnswering(TFGPTJPreTrainedModel, TFQuestionAnsweringLoss):
_keys_to_ignore_on_load_missing = [r"h.\d+.attn.masked_bias", r"h.\d+.attn.bias", r"lm_head.weight"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.transformer = TFGPTJMainLayer(config, name="transformer")
self.qa_outputs = tf.keras.layers.Dense(
self.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
start_positions: np.ndarray | tf.Tensor | None = None,
end_positions: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`np.ndarray` or `tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`np.ndarray` or `tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
transformer_outputs = self.transformer(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = transformer_outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = tf.split(logits, 2, axis=-1)
start_logits = tf.squeeze(start_logits, axis=-1)
end_logits = tf.squeeze(end_logits, axis=-1)
loss = None
if start_positions is not None and end_positions is not None:
labels = {"start_position": start_positions}
labels["end_position"] = end_positions
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
if not return_dict:
output = (start_logits, end_logits) + transformer_outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFQuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
if getattr(self, "qa_outputs", None) is not None:
with tf.name_scope(self.qa_outputs.name):
self.qa_outputs.build([None, None, self.config.hidden_size])
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/gptj/modeling_gptj.py | # coding=utf-8
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch GPT-J model."""
import warnings
from typing import Optional, Tuple, Union
import torch
import torch.fx
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torch_fx_proxy,
logging,
)
from ...utils.model_parallel_utils import assert_device_map, get_device_map
from .configuration_gptj import GPTJConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "hf-internal-testing/tiny-random-gptj"
_REAL_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-j-6B"
_CONFIG_FOR_DOC = "GPTJConfig"
GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST = [
"EleutherAI/gpt-j-6B",
# See all GPT-J models at https://huggingface.co/models?filter=gptj
]
def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor:
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.float), inv_freq).float()
return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1)
@torch.fx.wrap
def get_embed_positions(embed_positions, position_ids):
return embed_positions.to(position_ids.device).repeat(position_ids.shape[0], 1, 1)
def rotate_every_two(x: torch.Tensor) -> torch.Tensor:
x1 = x[:, :, :, ::2]
x2 = x[:, :, :, 1::2]
x = torch.stack((-x2, x1), dim=-1)
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')
def apply_rotary_pos_emb(tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor) -> torch.Tensor:
sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3)
cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3)
return (tensor * cos) + (rotate_every_two(tensor) * sin)
class GPTJAttention(nn.Module):
def __init__(self, config):
super().__init__()
max_positions = config.max_position_embeddings
self.register_buffer(
"bias",
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
1, 1, max_positions, max_positions
),
persistent=False,
)
self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False)
self.attn_dropout = nn.Dropout(config.attn_pdrop)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
self.embed_dim = config.hidden_size
self.num_attention_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_attention_heads
if self.head_dim * self.num_attention_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
f" `num_attention_heads`: {self.num_attention_heads})."
)
self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype())
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
self.rotary_dim = config.rotary_dim
pos_embd_dim = self.rotary_dim or self.embed_dim
self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim)
def _split_heads(self, tensor, num_attention_heads, attn_head_size, rotary):
"""
Splits hidden dim into attn_head_size and num_attention_heads
"""
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
tensor = tensor.view(new_shape)
if rotary:
return tensor
if len(tensor.shape) == 5:
return tensor.permute(0, 1, 3, 2, 4) # (batch, blocks, head, block_length, head_features)
elif len(tensor.shape) == 4:
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
else:
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
"""
Merges attn_head_size dim and num_attn_heads dim into hidden dim
"""
if len(tensor.shape) == 5:
tensor = tensor.permute(0, 1, 3, 2, 4).contiguous()
elif len(tensor.shape) == 4:
tensor = tensor.permute(0, 2, 1, 3).contiguous()
else:
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
return tensor.view(new_shape)
def _attn(
self,
query,
key,
value,
attention_mask=None,
head_mask=None,
):
# compute causal mask from causal mask buffer
query_length, key_length = query.size(-2), key.size(-2)
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
# Keep the attention weights computation in fp32 to avoid overflow issues
query = query.to(torch.float32)
key = key.to(torch.float32)
attn_weights = torch.matmul(query, key.transpose(-1, -2))
mask_value = torch.finfo(attn_weights.dtype).min
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
attn_weights = attn_weights / self.scale_attn
if attention_mask is not None:
# Apply the attention mask
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
attn_weights = attn_weights.to(value.dtype)
attn_weights = self.attn_dropout(attn_weights)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_output = torch.matmul(attn_weights, value)
return attn_output, attn_weights
def _get_embed_positions(self, position_ids):
embed_positions = self.embed_positions
if embed_positions.device != position_ids.device:
embed_positions = embed_positions.to(position_ids.device)
self.embed_positions = embed_positions
return embed_positions.repeat(position_ids.shape[0], 1, 1)
def forward(
self,
hidden_states: torch.FloatTensor,
layer_past: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
) -> Union[
Tuple[torch.Tensor, Tuple[torch.Tensor]],
Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
]:
query = self.q_proj(hidden_states)
key = self.k_proj(hidden_states)
value = self.v_proj(hidden_states)
query = self._split_heads(query, self.num_attention_heads, self.head_dim, True)
key = self._split_heads(key, self.num_attention_heads, self.head_dim, True)
value = self._split_heads(value, self.num_attention_heads, self.head_dim, False)
if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing():
# The logic to conditionally copy to GPU could not be traced, so we do this
# every time in the torch.fx case
embed_positions = get_embed_positions(self.embed_positions, position_ids)
else:
embed_positions = self._get_embed_positions(position_ids)
repeated_position_ids = position_ids.unsqueeze(-1).repeat(1, 1, embed_positions.shape[-1])
sincos = torch.gather(embed_positions, 1, repeated_position_ids)
sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1)
if self.rotary_dim is not None:
k_rot = key[:, :, :, : self.rotary_dim]
k_pass = key[:, :, :, self.rotary_dim :]
q_rot = query[:, :, :, : self.rotary_dim]
q_pass = query[:, :, :, self.rotary_dim :]
k_rot = apply_rotary_pos_emb(k_rot, sin, cos)
q_rot = apply_rotary_pos_emb(q_rot, sin, cos)
key = torch.cat([k_rot, k_pass], dim=-1)
query = torch.cat([q_rot, q_pass], dim=-1)
else:
key = apply_rotary_pos_emb(key, sin, cos)
query = apply_rotary_pos_emb(query, sin, cos)
key = key.permute(0, 2, 1, 3)
query = query.permute(0, 2, 1, 3)
if layer_past is not None:
past_key = layer_past[0]
past_value = layer_past[1]
key = torch.cat((past_key, key), dim=-2)
value = torch.cat((past_value, value), dim=-2)
if use_cache is True:
# Note that this cast is quite ugly, but is not implemented before ROPE as the original codebase keeps the key in float32 all along the computation.
# Reference: https://github.com/kingoflolz/mesh-transformer-jax/blob/f8315e3003033b23f21d78361b288953064e0e76/mesh_transformer/layers.py#L128
present = (key.to(hidden_states.dtype), value)
else:
present = None
# compute self-attention: V x Softmax(QK^T)
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
attn_output = self.out_proj(attn_output)
attn_output = self.resid_dropout(attn_output)
outputs = (attn_output, present)
if output_attentions:
outputs += (attn_weights,)
return outputs # a, present, (attentions)
class GPTJMLP(nn.Module):
def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim
super().__init__()
embed_dim = config.n_embd
self.fc_in = nn.Linear(embed_dim, intermediate_size)
self.fc_out = nn.Linear(intermediate_size, embed_dim)
self.act = ACT2FN[config.activation_function]
self.dropout = nn.Dropout(config.resid_pdrop)
def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor:
hidden_states = self.fc_in(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.fc_out(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class GPTJBlock(nn.Module):
def __init__(self, config):
super().__init__()
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.attn = GPTJAttention(config)
self.mlp = GPTJMLP(inner_dim, config)
def forward(
self,
hidden_states: Optional[torch.FloatTensor],
layer_past: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_outputs = self.attn(
hidden_states=hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
outputs = attn_outputs[1:]
feed_forward_hidden_states = self.mlp(hidden_states)
hidden_states = attn_output + feed_forward_hidden_states + residual
if use_cache:
outputs = (hidden_states,) + outputs
else:
outputs = (hidden_states,) + outputs[1:]
return outputs # hidden_states, present, (attentions)
class GPTJPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GPTJConfig
base_model_prefix = "transformer"
is_parallelizable = True
supports_gradient_checkpointing = True
_no_split_modules = ["GPTJBlock"]
_skip_keys_device_placement = "past_key_values"
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear,)):
# Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
GPTJ_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`GPTJConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
GPTJ_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
PARALLELIZE_DOCSTRING = r"""
This is an experimental feature and is a subject to change at a moment's notice. Uses a device map to distribute
attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks
across all devices.
Args:
device_map (`Dict[int, list]`, optional, defaults to None):
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
automatically mapped to the first device (for esoteric reasons). That means that the first device should
have fewer attention modules mapped to it than other devices. For reference, the GPT-J models have the
following number of attention modules:
- gpt-j-6B: 28
Example:
```python
# Here is an example of a device map on a machine with 4 GPUs using gpt-j-6B, which has a total of 28 attention modules:
model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
device_map = {
0: [0, 1, 2, 3, 4, 5, 6],
1: [7, 8, 9, 10, 11, 12, 13],
2: [14, 15, 16, 17, 18, 19, 20],
3: [21, 22, 23, 24, 25, 26, 27],
}
model.parallelize(device_map)
```
"""
DEPARALLELIZE_DOCSTRING = r"""
Moves the model to CPU from a model parallel state.
Example:
```python
# On a 4 GPU machine with gpt-j-6B:
model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
device_map = {
0: [0, 1, 2, 3, 4, 5, 6],
1: [7, 8, 9, 10, 11, 12, 13],
2: [14, 15, 16, 17, 18, 19, 20],
3: [21, 22, 23, 24, 25, 26, 27],
}
model.parallelize(device_map) # Splits the model across several devices
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
```
"""
@add_start_docstrings(
"The bare GPT-J Model transformer outputting raw hidden-states without any specific head on top.",
GPTJ_START_DOCSTRING,
)
class GPTJModel(GPTJPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.embed_dim = config.n_embd
self.vocab_size = config.vocab_size
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
self.drop = nn.Dropout(config.embd_pdrop)
self.h = nn.ModuleList([GPTJBlock(config) for _ in range(config.n_layer)])
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
# Model parallel
self.model_parallel = False
self.device_map = None
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings(PARALLELIZE_DOCSTRING)
def parallelize(self, device_map=None):
warnings.warn(
"`GPTJModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
" model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
" ...}",
FutureWarning,
)
# Check validity of device_map
self.device_map = (
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
)
assert_device_map(self.device_map, len(self.h))
self.model_parallel = True
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
self.last_device = "cuda:" + str(max(self.device_map.keys()))
self.wte = self.wte.to(self.first_device)
# Load onto devices
for k, v in self.device_map.items():
for block in v:
cuda_device = "cuda:" + str(k)
self.h[block] = self.h[block].to(cuda_device)
# ln_f to last
self.ln_f = self.ln_f.to(self.last_device)
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
def deparallelize(self):
warnings.warn(
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
self.model_parallel = False
self.device_map = None
self.first_device = "cpu"
self.last_device = "cpu"
self.wte = self.wte.to("cpu")
for index in range(len(self.h)):
self.h[index] = self.h[index].to("cpu")
self.ln_f = self.ln_f.to("cpu")
torch.cuda.empty_cache()
def get_input_embeddings(self):
return self.wte
def set_input_embeddings(self, new_embeddings):
self.wte = new_embeddings
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPast,
config_class=_CONFIG_FOR_DOC,
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, input_shape[-1])
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.h))
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0)
# Attention mask.
if attention_mask is not None:
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
attention_mask = attention_mask.view(batch_size, -1)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask = attention_mask[:, None, None, :]
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x num_attention_heads x N x N
# head_mask has shape n_layer x batch x num_attention_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
hidden_states = inputs_embeds
if token_type_ids is not None:
token_type_embeds = self.wte(token_type_ids)
hidden_states = hidden_states + token_type_embeds
hidden_states = self.drop(hidden_states)
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
# Model parallel
if self.model_parallel:
torch.cuda.set_device(hidden_states.device)
# Ensure layer_past is on same device as hidden_states (might not be correct)
if layer_past is not None:
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
# Ensure that attention_mask is always on the same device as hidden_states
if attention_mask is not None:
attention_mask = attention_mask.to(hidden_states.device)
if isinstance(head_mask, torch.Tensor):
head_mask = head_mask.to(hidden_states.device)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
outputs = self._gradient_checkpointing_func(
block.__call__,
hidden_states,
None,
attention_mask,
position_ids,
head_mask[i],
use_cache,
output_attentions,
)
else:
outputs = block(
hidden_states=hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask[i],
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
# Model Parallel: If it's the last layer for that device, put things on the next device
if self.model_parallel:
for k, v in self.device_map.items():
if i == v[-1] and "cuda:" + str(k) != self.last_device:
hidden_states = hidden_states.to("cuda:" + str(k + 1))
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
@add_start_docstrings(
"""
The GPT-J Model transformer with a language modeling head on top.
""",
GPTJ_START_DOCSTRING,
)
class GPTJForCausalLM(GPTJPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.transformer = GPTJModel(config)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
# Model parallel
self.model_parallel = False
self.device_map = None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings(PARALLELIZE_DOCSTRING)
def parallelize(self, device_map=None):
warnings.warn(
"`GPTJForCausalLM.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
" 0, 'transformer.h.1': 1, ...}",
FutureWarning,
)
self.device_map = (
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.transformer.h))
self.transformer.parallelize(self.device_map)
self.lm_head = self.lm_head.to(self.transformer.first_device)
self.model_parallel = True
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
def deparallelize(self):
warnings.warn(
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
self.transformer.deparallelize()
self.transformer = self.transformer.to("cpu")
self.lm_head = self.lm_head.to("cpu")
self.model_parallel = False
torch.cuda.empty_cache()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
token_type_ids = kwargs.get("token_type_ids", None)
# Omit tokens covered by past_key_values
if past_key_values:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
if token_type_ids is not None:
token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
)
return model_inputs
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutputWithPast,
config_class=_CONFIG_FOR_DOC,
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.transformer.first_device)
hidden_states = hidden_states.to(self.lm_head.weight.device)
# make sure sampling in fp16 works correctly and
# compute loss in fp32 to match with mesh-tf version
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
lm_logits = self.lm_head(hidden_states).to(torch.float32)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(lm_logits.device)
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
loss = loss.to(hidden_states.dtype)
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@staticmethod
def _reorder_cache(
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
) -> Tuple[Tuple[torch.Tensor]]:
"""
This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
[`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
"""
return tuple(
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
for layer_past in past_key_values
)
@add_start_docstrings(
"""
The GPT-J Model transformer with a sequence classification head on top (linear layer).
[`GPTJForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT, GPT-2, GPT-Neo) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
GPTJ_START_DOCSTRING,
)
class GPTJForSequenceClassification(GPTJPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = GPTJModel(config)
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
# Model parallel
self.model_parallel = False
self.device_map = None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="ydshieh/tiny-random-gptj-for-sequence-classification",
output_type=SequenceClassifierOutputWithPast,
config_class=_CONFIG_FOR_DOC,
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
logger.warning(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
labels = labels.to(pooled_logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
The GPT-J Model transformer with a span classification head on top for extractive question-answering tasks like
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
GPTJ_START_DOCSTRING,
)
class GPTJForQuestionAnswering(GPTJPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = GPTJModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Model parallel
self.model_parallel = False
self.device_map = None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1).to(start_logits.device)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1).to(end_logits.device)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/seamless_m4t_v2/convert_fairseq2_to_hf.py | # coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Converting Meta SeamlessM4Tv2 checkpoints from seamless_communication to HF."""
import argparse
import os
from pathlib import Path
import torch
from accelerate.utils.modeling import find_tied_parameters
from seamless_communication.inference import Translator
from transformers import (
SeamlessM4TFeatureExtractor,
SeamlessM4TProcessor,
SeamlessM4TTokenizer,
SeamlessM4Tv2Config,
SeamlessM4Tv2Model,
)
from transformers.utils import logging
# fmt: off
UNIT_SUPPORTED_LANGUAGES = ["__arb__", "__ben__", "__cat__", "__ces__", "__cmn__", "__cym__", "__dan__", "__deu__", "__eng__", "__est__", "__fin__", "__fra__", "__hin__", "__ind__", "__ita__", "__jpn__", "__kan__", "__kor__", "__mlt__", "__nld__", "__pes__", "__pol__", "__por__", "__ron__", "__rus__", "__slk__", "__spa__", "__swe__", "__swh__", "__tam__", "__tel__", "__tgl__", "__tha__", "__tur__", "__ukr__", "__urd__", "__uzn__", "__vie__", ]
# fmt: on
# fmt: off
VOCODER_SUPPORTED_LANGUAGES = ["__arb__", "__ben__", "__cat__", "__ces__", "__cmn__", "__cym__", "__dan__", "__deu__", "__eng__", "__est__", "__fin__", "__fra__", "__hin__", "__ind__", "__ita__", "__jpn__", "__kor__", "__mlt__", "__nld__", "__pes__", "__pol__", "__por__", "__ron__", "__rus__", "__slk__", "__spa__", "__swe__", "__swh__", "__tel__", "__tgl__", "__tha__", "__tur__", "__ukr__", "__urd__", "__uzn__", "__vie__",]
# fmt: on
# fmt: off
LARGE_SUPPORTED_LANGUAGES = ["afr","amh","arb","ary","arz","asm","azj","bel","ben","bos","bul","cat","ceb","ces","ckb","cmn","cmn_Hant","cym","dan","deu","ell","eng","est","eus","fin","fra","fuv","gaz","gle","glg","guj","heb","hin","hrv","hun","hye","ibo","ind","isl","ita","jav","jpn","kan","kat","kaz","khk","khm","kir","kor","lao","lit","lug","luo","lvs","mai","mal","mar","mkd","mlt","mni","mya","nld","nno","nob","npi","nya","ory","pan","pbt","pes","pol","por","ron","rus","sat","slk","slv","sna","snd","som","spa","srp","swe","swh","tam","tel","tgk","tgl","tha","tur","ukr","urd","uzn","vie","yor","yue","zlm","zul",]
# fmt: on
def assert_param_count(model_1, model_2):
count_1 = sum(p[1].numel() for p in model_1.named_parameters() if "final_proj" not in p[0])
count_2 = sum(p[1].numel() for p in model_2.named_parameters() if "final_proj" not in p[0])
assert count_1 == count_2, f"{model_1.__class__}: {count_1} != {model_2.__class__}: {count_2}"
def param_count(model):
return sum(p[1].numel() for p in model.named_parameters() if "final_proj" not in p[0])
def _grab_best_device(use_gpu=True):
if torch.cuda.device_count() > 0 and use_gpu:
device = "cuda"
else:
device = "cpu"
return torch.device(device)
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
vocoder_convert_list = [
("ups", "hifi_gan.upsampler"),
("conv_pre", "hifi_gan.conv_pre"),
("resblocks", "hifi_gan.resblocks"),
("conv_post", "hifi_gan.conv_post"),
("lang", "language_embedding"),
("spkr", "speaker_embedding"),
("dict.", "unit_embedding."),
("dur_predictor.conv1.0", "dur_predictor.conv1"),
("dur_predictor.conv2.0", "dur_predictor.conv2"),
]
# order is important
wav2vec_convert_list = [
("speech_encoder_frontend.model_dim_proj", "feature_projection.projection"),
("speech_encoder_frontend.post_extract_layer_norm", "feature_projection.layer_norm"),
("speech_encoder_frontend.pos_encoder.conv", "encoder.pos_conv_embed.conv"),
("speech_encoder.inner.layers", "encoder.layers"),
("speech_encoder.inner_layer_norm", "encoder.layer_norm"),
("speech_encoder.adaptor_layers", "adapter.layers"),
("inner_proj", "intermediate_dense"),
("self_attn.output_proj", "self_attn.linear_out"),
("output_proj", "output_dense"),
("self_attn.k_proj", "self_attn.linear_k"),
("self_attn.v_proj", "self_attn.linear_v"),
("self_attn.q_proj", "self_attn.linear_q"),
("self_attn.sdpa.u_bias", "self_attn.pos_bias_u"),
("self_attn.sdpa.v_bias", "self_attn.pos_bias_v"),
("self_attn.sdpa.rel_k_embed", "self_attn.distance_embedding"),
("self_attn.sdpa.r_proj", "self_attn.linear_pos"),
("conv.pointwise_conv1", "conv_module.pointwise_conv1"),
("conv.pointwise_conv2", "conv_module.pointwise_conv2"),
("conv.depthwise_conv", "conv_module.depthwise_conv"),
("conv.batch_norm", "conv_module.batch_norm"),
("conv.layer_norm", "conv_module.depthwise_layer_norm"),
("conv_layer_norm", "conv_module.layer_norm"),
("speech_encoder.proj1", "intermediate_ffn.intermediate_dense"),
("speech_encoder.proj2", "intermediate_ffn.output_dense"),
("speech_encoder.layer_norm", "inner_layer_norm"),
]
t2u_convert_list = [
("t2u_model.final_proj", "lm_head"),
("t2u_model.", "model."),
("encoder_decoder_attn_layer_norm", "cross_attention_layer_norm"),
("encoder_decoder_attn", "cross_attention"),
("linear_k", "k_proj"),
("linear_v", "v_proj"),
("linear_q", "q_proj"),
("ffn.inner_proj", "ffn.fc1"),
("ffn.output_proj", "ffn.fc2"),
("output_proj", "out_proj"),
("decoder_frontend.embed_char", "decoder.embed_char"),
("decoder_frontend.pos_emb_alpha_char", "decoder.pos_emb_alpha_char"),
("decoder_frontend.embed", "decoder.embed_tokens"),
("decoder_frontend.pos_emb_alpha", "decoder.pos_emb_alpha"),
("conv1d.conv", "conv"),
("conv1d_layer_norm", "conv_layer_norm"),
("decoder_frontend.variance_adaptor", "decoder"),
("duration_predictor.conv1.0", "duration_predictor.conv1"),
("duration_predictor.conv2.0", "duration_predictor.conv2"),
]
text_convert_list = [
("text_encoder.", ""),
("text_decoder.", ""),
("text_encoder_frontend.embed", "embed_tokens"),
("text_decoder_frontend.embed", "embed_tokens"),
("encoder_decoder_attn_layer_norm", "cross_attention_layer_norm"),
("encoder_decoder_attn", "cross_attention"),
("linear_k", "k_proj"),
("linear_v", "v_proj"),
("linear_q", "q_proj"),
("ffn.inner_proj", "ffn.fc1"),
("ffn.output_proj", "ffn.fc2"),
("output_proj", "out_proj"),
("final_proj", "lm_head"),
]
CUR_PATH = os.path.dirname(os.path.abspath(__file__))
default_cache_dir = os.path.join(os.path.expanduser("~"), ".cache")
CACHE_DIR = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "huggingface", "hub")
def _load_hf_config():
return SeamlessM4Tv2Config()
def _convert_model(
original_model,
hf_model,
convert_list,
device,
unwanted_prefix="model.",
filter_state_dict="speech",
exclude_state_dict=None,
):
state_dict = original_model.state_dict()
# filter func
if isinstance(filter_state_dict, str):
def filter_func(x):
return filter_state_dict in x[0]
else:
def filter_func(item):
if exclude_state_dict is not None and exclude_state_dict in item[0]:
return False
for filter_el in filter_state_dict:
if filter_el in item[0]:
return True
return False
state_dict = dict(filter(filter_func, state_dict.items()))
for k, v in list(state_dict.items()):
new_k = k[len(unwanted_prefix) :]
for old_layer_name, new_layer_name in convert_list:
if old_layer_name in new_k:
new_k = new_k.replace(old_layer_name, new_layer_name)
# must do it by hand
if ".layer_norm" in new_k and new_k.split(".layer_norm")[0][-1].isnumeric():
new_k = new_k.replace("layer_norm", "final_layer_norm")
state_dict[new_k] = state_dict.pop(k)
extra_keys = set(state_dict.keys()) - set(hf_model.state_dict().keys())
extra_keys = set(extra_keys)
missing_keys = set(hf_model.state_dict().keys()) - set(state_dict.keys())
missing_keys = set({k for k in missing_keys if "final_logits_bias" not in k})
if len(extra_keys) != 0:
raise ValueError(f"extra keys found: {extra_keys}")
if len(missing_keys) != 0:
raise ValueError(f"missing keys: {missing_keys}")
hf_model.load_state_dict(state_dict, strict=False)
n_params = param_count(hf_model)
logger.info(f"model loaded: {round(n_params/1e6,1)}M params")
hf_model.eval()
hf_model.to(device)
del state_dict
return hf_model
def load_model(save_dir, model_type, repo_id):
"""
Meta SeamlessM4Tv2 is made of 8 main components:
- speech_encoder (#1) and speech_encoder_frontend (#2)
- t2u_model (#3)
- text_encoder (#4) and text_encoder_frontend (#5)
- text_decoder (#6) [and text_decoder_frontend (#5) = equals to text_encoder_frontend]
- final_proj (#7)
- vocoder (#8)
"""
device = _grab_best_device()
name = "seamlessM4T_v2_large"
original_model = Translator(name, "vocoder_v2", device, dtype=torch.float32)
######### TOKENIZER
langs = LARGE_SUPPORTED_LANGUAGES
langs = [f"__{lang}__" for lang in langs]
vocab_file = os.path.join(os.path.expanduser("~"), "tokenizer", model_type, "tokenizer.model")
save_dir = os.path.join(save_dir, name)
Path(save_dir).mkdir(exist_ok=True)
tokenizer = SeamlessM4TTokenizer(vocab_file, additional_special_tokens=langs)
sanity_check_lang_id = tokenizer.convert_tokens_to_ids("__fra__")
tokenizer.save_pretrained(save_dir)
tokenizer = SeamlessM4TTokenizer.from_pretrained(save_dir)
if sanity_check_lang_id != tokenizer.convert_tokens_to_ids("__fra__"):
raise ValueError(
f"Error in tokenizer saving/loading - __fra__ lang id is not coherent: {sanity_check_lang_id} vs {tokenizer.convert_tokens_to_ids('__fra__')}"
)
####### get language to ids dict
text_decoder_lang_code_to_id = {lang.replace("__", ""): tokenizer.convert_tokens_to_ids(lang) for lang in langs}
# offset: vocoder unit vocab size + 5 (for EOS/PAD/BOS/UNK/MSK) + len(supported_languages)
t2u_lang_code_to_id = {
code.replace("__", ""): i + 10005 + len(UNIT_SUPPORTED_LANGUAGES)
for i, code in enumerate(UNIT_SUPPORTED_LANGUAGES)
}
vocoder_lang_code_to_id = {code.replace("__", ""): i for i, code in enumerate(VOCODER_SUPPORTED_LANGUAGES)}
######### FE
fe = SeamlessM4TFeatureExtractor(language_code=langs)
fe.save_pretrained(save_dir)
fe = SeamlessM4TFeatureExtractor.from_pretrained(save_dir)
processor = SeamlessM4TProcessor(feature_extractor=fe, tokenizer=tokenizer)
processor.save_pretrained(save_dir)
processor.push_to_hub(repo_id=repo_id, create_pr=True)
processor = SeamlessM4TProcessor.from_pretrained(save_dir)
######## Model
# init config
hf_config = _load_hf_config()
######## get id_to_text and char_to_id from original model tokenizers
id_to_text = {i: original_model.text_tokenizer.model.index_to_token(i) for i in range(hf_config.vocab_size)}
char_to_id = {
original_model.model.t2u_model.decoder_frontend.char_tokenizer.model.index_to_token(i): i for i in range(10904)
}
# init model
hf_model = SeamlessM4Tv2Model(hf_config)
hf_model.generation_config.__setattr__("text_decoder_lang_to_code_id", text_decoder_lang_code_to_id)
hf_model.generation_config.__setattr__("t2u_lang_code_to_id", t2u_lang_code_to_id)
hf_model.generation_config.__setattr__("vocoder_lang_code_to_id", vocoder_lang_code_to_id)
hf_model.generation_config.__setattr__("id_to_text", id_to_text)
hf_model.generation_config.__setattr__("char_to_id", char_to_id)
# -1. take care of vocoder
# similarly to speech T5 must apply and remove weight norm
hf_model.vocoder.apply_weight_norm()
hf_model.vocoder = _convert_model(
original_model,
hf_model.vocoder,
vocoder_convert_list,
device,
unwanted_prefix="vocoder.code_generator.",
filter_state_dict="vocoder",
)
hf_model.vocoder.remove_weight_norm()
# 1. take care of speech encoder
wav2vec = hf_model.speech_encoder
hf_model.speech_encoder = _convert_model(
original_model, wav2vec, wav2vec_convert_list, device, unwanted_prefix="model.", filter_state_dict="speech"
)
# 2. take care of t2u
hf_model.t2u_model = _convert_model(
original_model,
hf_model.t2u_model,
t2u_convert_list,
device,
unwanted_prefix="model.",
filter_state_dict="t2u_model",
)
# 3. take care of text encoder
hf_model.text_encoder = _convert_model(
original_model,
hf_model.text_encoder,
text_convert_list,
device,
unwanted_prefix="model.",
filter_state_dict=["model.text_encoder"],
exclude_state_dict="t2u_model",
)
# 4. take care of text decoder
hf_model.text_decoder = _convert_model(
original_model,
hf_model.text_decoder,
text_convert_list,
device,
unwanted_prefix="model.",
filter_state_dict=["model.text_decoder"],
exclude_state_dict="t2u_model",
)
# 5. take care of final proj
hf_model.lm_head = _convert_model(
original_model,
hf_model.lm_head,
[("final_proj.", "")],
device,
unwanted_prefix="model.",
filter_state_dict=["model.final_proj"],
exclude_state_dict="t2u_model",
)
# sanity check
print(find_tied_parameters(hf_model))
count_1 = param_count(hf_model)
count_2 = param_count(original_model)
print(f"HF MODEL:{count_1}, ORIGINAL_MODEL: {count_2}, diff:{count_1 - count_2}")
print(f"HF MODEL excluding embeddings:{hf_model.num_parameters(exclude_embeddings=True)}")
del original_model
hf_model.generation_config._from_model_config = False
hf_model.save_pretrained(save_dir)
hf_model.push_to_hub(repo_id=repo_id, create_pr=True)
hf_model = SeamlessM4Tv2Model.from_pretrained(save_dir)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_type",
default="large",
type=str,
help="Model type.",
)
parser.add_argument(
"--save_dir",
default="/home/ubuntu/weights_v2",
type=str,
help="Path to the output PyTorch model.",
)
parser.add_argument(
"--repo_id",
default="facebook/seamless-m4t-v2-large",
type=str,
help="Repo ID.",
)
args = parser.parse_args()
load_model(args.save_dir, args.model_type, args.repo_id)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/seamless_m4t_v2/configuration_seamless_m4t_v2.py | # coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" SeamlessM4Tv2 model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
SEAMLESS_M4T_V2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"": "https://huggingface.co//resolve/main/config.json",
}
class SeamlessM4Tv2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`~SeamlessM4Tv2Model`]. It is used to instantiate
an SeamlessM4Tv2 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the SeamlessM4Tv2
[""](https://huggingface.co/"") architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 256102):
Vocabulary size of the text modality of the SeamlessM4Tv2 model. Defines the number of different tokens
that can be represented by the `inputs_ids` passed when calling [`~SeamlessM4Tv2Model`],
[`~SeamlessM4Tv2ForTextToSpeech`] or [`~SeamlessM4Tv2ForTextToText`].
t2u_vocab_size (`int`, *optional*, defaults to 10082):
Unit vocabulary size of the SeamlessM4Tv2 model. Defines the number of different "unit tokens" that can be
represented by the `inputs_ids` passed when calling the Text-To-Units sub-model of [`~SeamlessM4Tv2Model`],
[`~SeamlessM4Tv2ForSpeechToSpeech`] or [`~SeamlessM4Tv2ForTextToSpeech`].
char_vocab_size (`int`, *optional*, defaults to 10943):
Character vocabulary size of the SeamlessM4Tv2 model. Defines the number of different character tokens that
can be represented by the `char_inputs_ids` passed when calling the Text-To-Units sub-model of
[`~SeamlessM4Tv2Model`], [`~SeamlessM4Tv2ForSpeechToSpeech`] or [`~SeamlessM4Tv2ForTextToSpeech`].
> Parameters shared across sub-models
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the "intermediate" layers in the architecture.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
max_position_embeddings (`int`, *optional*, defaults to 4096):
The maximum sequence length that this model text encoder and decoder might ever be used with. Typically set
this to something large just in case (e.g., 512 or 1024 or 2048).
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
Whether the model is used as an encoder/decoder or not.
encoder_layerdrop (`float`, *optional*, defaults to 0.05):
The LayerDrop probability for the encoders. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.05):
The LayerDrop probability for the decoders. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
The non-linear activation function (function or string) in the decoder and feed-forward layers. If string,
`"gelu"`, `"relu"`, `"selu"`, `"swish"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, decoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all attention layers.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for all activation layers in the model.
scale_embedding (`bool`, *optional*, defaults to `True`):
Scale embeddings by diving by sqrt(d_model).
> Text encoder and text decoder specific parameters
encoder_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer text encoder.
encoder_ffn_dim (`int`, *optional*, defaults to 8192):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text encoder.
encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer text encoder.
decoder_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer text decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 8192):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text decoder.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer text decoder.
decoder_start_token_id (`int`, *optional*, defaults to 3):
If an encoder-decoder model starts decoding with a different token than _bos_, the id of that token. Only
applied in the text decoder.
max_new_tokens (`int`, *optional*, defaults to 256):
The maximum numbers of text tokens to generate, ignoring the number of tokens in the prompt.
pad_token_id (`int`, *optional*, defaults to 0):
The id of the _padding_ text token. Only applied to the text-decoder model.
bos_token_id (`int`, *optional*, defaults to 2):
The id of the _beginning-of-stream_ text token. Only applied to the text-decoder model.
eos_token_id (`int`, *optional*, defaults to 3):
The id of the _end-of-stream_ text token. Only applied to the text-decoder model.
> Speech encoder specific parameters
speech_encoder_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer speech encoder.
speech_encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer speech encoder.
speech_encoder_intermediate_size (`int`, *optional*, defaults to 4096):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer speech encoder.
speech_encoder_hidden_act (`str` or `function`, *optional*, defaults to `"swish"`):
The non-linear activation function (function or string) in the speech encoder. If string, `"gelu"`,
`"relu"`, `"selu"`, `"swish"` and `"gelu_new"` are supported.
speech_encoder_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for all layers in the speech encoder.
add_adapter (`bool`, *optional*, defaults to `True`):
Add an adapter layer on top of the speech encoder.
speech_encoder_layerdrop (`float`, *optional*, defaults to 0.1):
The LayerDrop probability for the speech encoder. See the [LayerDrop paper](see
https://arxiv.org/abs/1909.11556) for more details.
feature_projection_input_dim (`int`, *optional*, defaults to 160):
Input dimension of the input feature projection of the speech encoder, i.e the dimension after processing
input audios with [`SeamlessM4TFeatureExtractor`].
adaptor_kernel_size (`int`, *optional*, defaults to 8):
Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
adaptor_stride (`int`, *optional*, defaults to 8):
Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
adaptor_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all layers in the speech adapter.
num_adapter_layers (`int`, *optional*, defaults to 1):
Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is
True`.
position_embeddings_type (`str`, *optional*, defaults to `"relative_key"`):
Can be specified to `relative_key`. If left to `None`, no relative position embedding is applied. Only
applied to the speech encoder. For more information on `"relative_key"`, please refer to [Self-Attention
with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
conv_depthwise_kernel_size (`int`, *optional*, defaults to 31):
Kernel size of convolutional depthwise 1D layer in Conformer blocks. Only applied to the speech encoder.
left_max_position_embeddings (`int`, *optional*, defaults to 64):
The left clipping value for relative positions.
right_max_position_embeddings (`int`, *optional*, defaults to 8):
The right clipping value for relative positions.
speech_encoder_chunk_size (`int`, *optional*, defaults to 20000): The size of each attention chunk.
speech_encoder_left_chunk_num (`int`, *optional*, defaults to 128):
Number of chunks on the left up to which lookahead is allowed.
> Text-To-Unit (t2u) model specific parameters
t2u_bos_token_id (`int`, *optional*, defaults to 0):
The id of the _beginning-of-stream_ unit token. Only applied to the text-to-unit seq2seq model.
t2u_pad_token_id (`int`, *optional*, defaults to 1):
The id of the _padding_ unit token. Only applied to the text-to-unit seq2seq model.
t2u_eos_token_id (`int`, *optional*, defaults to 2):
The id of the _end-of-stream_ unit token. Only applied to the text-to-unit seq2seq model.
t2u_encoder_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer text-to-unit encoder.
t2u_encoder_ffn_dim (`int`, *optional*, defaults to 8192):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text-to-unit encoder.
t2u_encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer text-to-unit encoder.
t2u_decoder_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer text-to-unit decoder.
t2u_decoder_ffn_dim (`int`, *optional*, defaults to 8192):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text-to-unit decoder.
t2u_decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer text-to-unit decoder.
t2u_max_position_embeddings (`int`, *optional*, defaults to 4096):
The maximum sequence length that this model text-to-unit component might ever be used with. Typically set
this to something large just in case (e.g., 512 or 1024 or 2048).
t2u_variance_predictor_embed_dim (`int`, *optional*, defaults to 1024):
The projection dimension of the text-to-unit's duration predictor.
t2u_variance_predictor_hidden_dim (`int`, *optional*, defaults to 256):
Internal dimension of the text-to-unit's duration predictor.
t2u_variance_predictor_kernel_size (`int`, *optional*, defaults to 3):
Kernel size of the convolutional layers of the text-to-unit's duration predictor.
t2u_variance_pred_dropout (`float`, *optional*, defaults to 0.5):
The dropout probabilitiy of the text-to-unit's duration predictor.
> Hifi-Gan Vocoder specific parameters
sampling_rate (`int`, *optional*, defaults to 16000):
The sampling rate at which the output audio will be generated, expressed in hertz (Hz).
upsample_initial_channel (`int`, *optional*, defaults to 512):
The number of input channels into the hifi-gan upsampling network. Applies to the vocoder only.
upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[5, 4, 4, 2, 2]`):
A tuple of integers defining the stride of each 1D convolutional layer in the vocoder upsampling network.
The length of *upsample_rates* defines the number of convolutional layers and has to match the length of
*upsample_kernel_sizes*. Applies to the vocoder only.
upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[11, 8, 8, 4, 4]`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the vocoder upsampling
network. The length of *upsample_kernel_sizes* defines the number of convolutional layers and has to match
the length of *upsample_rates*. Applies to the vocoder only.
resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`):
A tuple of integers defining the kernel sizes of the vocoder 1D convolutional layers in the multi-receptive
field fusion (MRF) module. Applies to the vocoder only.
resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`):
A nested tuple of integers defining the dilation rates of the vocoder dilated 1D convolutional layers in
the multi-receptive field fusion (MRF) module. Applies to the vocoder only.
leaky_relu_slope (`float`, *optional*, defaults to 0.1):
The angle of the negative slope used by the leaky ReLU activation in the vocoder. Applies to the vocoder
only.
unit_hifi_gan_vocab_size (`int`, *optional*, defaults to 10000):
Vocabulary size of the SeamlessM4Tv2 vocoder. Defines the number of different unit tokens that can be
represented by the `inputs_ids` passed when calling the vocoder of [`~SeamlessM4Tv2Model`],
[`~SeamlessM4Tv2ForSpeechToSpeech`] or [`~SeamlessM4Tv2ForTextToSpeech`].
unit_embed_dim (`int`, *optional*, defaults to 1280):
The projection dimension of the input ids given to the hifi-gan vocoder. Applies to the vocoder only.
lang_embed_dim (`int`, *optional*, defaults to 256):
The projection dimension of the target language given to the hifi-gan vocoder. Applies to the vocoder only.
spkr_embed_dim (`int`, *optional*, defaults to 256):
The projection dimension of the speaker id given to the hifi-gan vocoder. Applies to the vocoder only.
vocoder_num_langs (`int`, *optional*, defaults to 36):
Number of langs supported by the vocoder. Might be different from `t2u_num_langs`.
vocoder_num_spkrs (`int`, *optional*, defaults to 200):
Number of speakers supported by the vocoder.
variance_predictor_kernel_size (`int`, *optional*, defaults to 3):
Kernel size of the duration predictor. Applies to the vocoder only.
var_pred_dropout (`float`, *optional*, defaults to 0.5):
The dropout probabilitiy of the duration predictor. Applies to the vocoder only.
vocoder_offset (`int`, *optional*, defaults to 4):
Offset the unit token ids by this number to account for symbol tokens. Applies to the vocoder only.
```python
>>> from transformers import SeamlessM4Tv2Model, SeamlessM4Tv2Config
>>> # Initializing a SeamlessM4Tv2 "" style configuration
>>> configuration = SeamlessM4Tv2Config()
>>> # Initializing a model from the "" style configuration
>>> model = SeamlessM4Tv2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "seamless_m4t_v2"
def __init__(
self,
vocab_size=256102,
t2u_vocab_size=10082,
char_vocab_size=10943,
# shared config
hidden_size=1024,
initializer_range=0.02,
layer_norm_eps=1e-5,
use_cache=True,
max_position_embeddings=4096,
is_encoder_decoder=True,
encoder_layerdrop=0.05,
decoder_layerdrop=0.05,
activation_function="relu",
dropout=0.1,
attention_dropout=0.1,
activation_dropout=0.0,
scale_embedding=True,
# text encoder|decoder
encoder_layers=24,
encoder_ffn_dim=8192,
encoder_attention_heads=16,
decoder_layers=24,
decoder_ffn_dim=8192,
decoder_attention_heads=16,
decoder_start_token_id=3,
max_new_tokens=256,
pad_token_id=0,
bos_token_id=2,
eos_token_id=3,
# speech_encoder
speech_encoder_layers=24,
speech_encoder_attention_heads=16,
speech_encoder_intermediate_size=4096,
speech_encoder_hidden_act="swish",
speech_encoder_dropout=0.0,
add_adapter=True,
speech_encoder_layerdrop=0.1,
feature_projection_input_dim=160,
adaptor_kernel_size=8,
adaptor_stride=8,
adaptor_dropout=0.1,
num_adapter_layers=1,
position_embeddings_type="relative_key",
conv_depthwise_kernel_size=31,
left_max_position_embeddings=64,
right_max_position_embeddings=8,
speech_encoder_chunk_size=20000,
speech_encoder_left_chunk_num=128,
# t2u config
t2u_bos_token_id=0,
t2u_pad_token_id=1,
t2u_eos_token_id=2,
t2u_encoder_layers=6,
t2u_encoder_ffn_dim=8192,
t2u_encoder_attention_heads=16,
t2u_decoder_layers=6,
t2u_decoder_ffn_dim=8192,
t2u_decoder_attention_heads=16,
t2u_max_position_embeddings=4096,
t2u_variance_predictor_embed_dim=1024,
t2u_variance_predictor_hidden_dim=256,
t2u_variance_predictor_kernel_size=3,
t2u_variance_pred_dropout=0.5,
# hifi-gan vocoder config
sampling_rate=16000,
upsample_initial_channel=512,
upsample_rates=[5, 4, 4, 2, 2],
upsample_kernel_sizes=[11, 8, 8, 4, 4],
resblock_kernel_sizes=[3, 7, 11],
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
leaky_relu_slope=0.1,
# specific to Code Hifi-Gan
unit_hifi_gan_vocab_size=10000,
unit_embed_dim=1280,
lang_embed_dim=256,
spkr_embed_dim=256,
vocoder_num_langs=36,
vocoder_num_spkrs=200,
variance_predictor_kernel_size=3,
var_pred_dropout=0.5,
vocoder_offset=4,
**kwargs,
):
# overall_config
self.vocab_size = vocab_size
self.t2u_vocab_size = t2u_vocab_size
self.char_vocab_size = char_vocab_size
self.hidden_size = hidden_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.max_position_embeddings = max_position_embeddings
self.use_cache = use_cache
self.max_new_tokens = max_new_tokens
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.activation_function = activation_function
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.scale_embedding = scale_embedding
# for proper config init
self.num_attention_heads = decoder_attention_heads
self.num_hidden_layers = decoder_layers
# text|unit encoder|decoder
self.encoder_layers = encoder_layers
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_attention_heads = encoder_attention_heads
self.decoder_layers = decoder_layers
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_attention_heads = decoder_attention_heads
# speech_encoder
self.speech_encoder_layers = speech_encoder_layers
self.speech_encoder_hidden_act = speech_encoder_hidden_act
self.speech_encoder_dropout = speech_encoder_dropout
self.speech_encoder_attention_heads = speech_encoder_attention_heads
self.speech_encoder_layerdrop = speech_encoder_layerdrop
self.speech_encoder_intermediate_size = speech_encoder_intermediate_size
self.feature_projection_input_dim = feature_projection_input_dim
self.adaptor_kernel_size = adaptor_kernel_size
self.adaptor_stride = adaptor_stride
self.adaptor_dropout = adaptor_dropout
self.num_adapter_layers = num_adapter_layers
self.position_embeddings_type = position_embeddings_type
self.conv_depthwise_kernel_size = conv_depthwise_kernel_size
self.add_adapter = add_adapter
self.left_max_position_embeddings = left_max_position_embeddings
self.right_max_position_embeddings = right_max_position_embeddings
self.speech_encoder_chunk_size = speech_encoder_chunk_size
self.speech_encoder_left_chunk_num = speech_encoder_left_chunk_num
# t2u config
self.t2u_bos_token_id = t2u_bos_token_id
self.t2u_pad_token_id = t2u_pad_token_id
self.t2u_eos_token_id = t2u_eos_token_id
self.t2u_encoder_layers = t2u_encoder_layers
self.t2u_encoder_ffn_dim = t2u_encoder_ffn_dim
self.t2u_encoder_attention_heads = t2u_encoder_attention_heads
self.t2u_decoder_layers = t2u_decoder_layers
self.t2u_decoder_ffn_dim = t2u_decoder_ffn_dim
self.t2u_decoder_attention_heads = t2u_decoder_attention_heads
self.t2u_max_position_embeddings = t2u_max_position_embeddings
self.t2u_variance_predictor_embed_dim = t2u_variance_predictor_embed_dim # TODO: add to docstrings
self.t2u_variance_predictor_hidden_dim = t2u_variance_predictor_hidden_dim # TODO: add to docstrings
self.t2u_variance_predictor_kernel_size = t2u_variance_predictor_kernel_size # TODO: add to docstrings
self.t2u_variance_pred_dropout = t2u_variance_pred_dropout # TODO: add to docstrings
# hifi-gan vocoder config
# original parameters specific to Hifi-Gan
self.sampling_rate = sampling_rate
self.upsample_initial_channel = upsample_initial_channel
self.upsample_rates = upsample_rates
self.upsample_kernel_sizes = upsample_kernel_sizes
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.leaky_relu_slope = leaky_relu_slope
# specific to Code Hifi-Gan
self.unit_hifi_gan_vocab_size = unit_hifi_gan_vocab_size
self.unit_embed_dim = unit_embed_dim
self.lang_embed_dim = lang_embed_dim
self.spkr_embed_dim = spkr_embed_dim
self.vocoder_num_langs = vocoder_num_langs
self.vocoder_num_spkrs = vocoder_num_spkrs
self.variance_predictor_kernel_size = variance_predictor_kernel_size
self.var_pred_dropout = var_pred_dropout
self.vocoder_offset = vocoder_offset
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
decoder_start_token_id=decoder_start_token_id,
is_encoder_decoder=is_encoder_decoder,
max_position_embeddings=max_position_embeddings,
**kwargs,
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/seamless_m4t_v2/__init__.py | # Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
_import_structure = {
"configuration_seamless_m4t_v2": ["SEAMLESS_M4T_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", "SeamlessM4Tv2Config"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_seamless_m4t_v2"] = [
"SEAMLESS_M4T_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
"SeamlessM4Tv2ForTextToSpeech",
"SeamlessM4Tv2ForSpeechToSpeech",
"SeamlessM4Tv2ForTextToText",
"SeamlessM4Tv2ForSpeechToText",
"SeamlessM4Tv2Model",
"SeamlessM4Tv2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_seamless_m4t_v2 import SEAMLESS_M4T_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, SeamlessM4Tv2Config
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_seamless_m4t_v2 import (
SEAMLESS_M4T_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
SeamlessM4Tv2ForSpeechToSpeech,
SeamlessM4Tv2ForSpeechToText,
SeamlessM4Tv2ForTextToSpeech,
SeamlessM4Tv2ForTextToText,
SeamlessM4Tv2Model,
SeamlessM4Tv2PreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py | # coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch SeamlessM4Tv2 model."""
import copy
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...deepspeed import is_deepspeed_zero3_enabled
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
Wav2Vec2BaseModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from .configuration_seamless_m4t_v2 import SeamlessM4Tv2Config
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = ""
_CONFIG_FOR_DOC = "SeamlessM4Tv2Config"
SEAMLESS_M4T_V2_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/seamless-m4t-v2-large",
# See all SeamlessM4T-v2 models at https://huggingface.co/models?filter=seamless_m4t_v2
]
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP = {
"microsoft/speecht5_hifigan": "https://huggingface.co/microsoft/speecht5_hifigan/resolve/main/config.json",
}
@dataclass
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TGenerationOutput with SeamlessM4T->SeamlessM4Tv2
class SeamlessM4Tv2GenerationOutput(ModelOutput):
"""
Class defining the generated outputs from [`SeamlessM4Tv2Model`], [`SeamlessM4Tv2ForTextToText`],
[`SeamlessM4Tv2ForTextToSpeech`], [`SeamlessM4Tv2ForSpeechToSpeech`] and [`SeamlessM4Tv2ForTextToSpeech`].
Args:
waveform (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
The final audio waveform predicted by the model.
waveform_lengths (`torch.IntTensor` of shape `(batch_size,)`, *optional*):
The length in samples of each element in the `waveform` batch.
sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
The generated translated sequences. This is the output of the text-to-text or the speech-to-text models.
The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished
early due to the `eos_token_id`.
unit_sequences (`torch.LongTensor` of shape `(batch_size, unit_sequence_length)`, *optional*):
The generated translated unit sequences. This is the output of the text-to-units model. The second
dimension (unit_sequence_length) is either equal to `t2u_max_length` or shorter if all batches finished
early due to the `t2u_eos_token_id`.
"""
waveform: Optional[torch.FloatTensor] = None
waveform_lengths: Optional[torch.IntTensor] = None
sequences: Optional[Tuple[torch.FloatTensor]] = None
unit_sequences: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class SeamlessM4Tv2TextToUnitDecoderOutput(ModelOutput):
"""
Class defining the outputs from [`SeamlessM4Tv2TextToUnitDecoder`].
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
padding_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Indicates which inputs are to be ignored due to padding, where elements are either 1 for *not masked* or 0
for *masked*
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
padding_mask: Optional[torch.Tensor] = None
@dataclass
class SeamlessM4Tv2TextToUnitOutput(ModelOutput):
"""
Class defining the outputs from [`SeamlessM4Tv2TextToUnitForConditionalGeneration`] and
[`SeamlessM4Tv2TextToUnitModel`].
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
hidden_size)` is output.
padding_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Indicates which inputs are to be ignored due to padding, where elements are either 1 for *not masked* or 0
for *masked*
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss.
"""
last_hidden_state: torch.FloatTensor = None
padding_mask: Optional[torch.Tensor] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
loss: Optional[torch.FloatTensor] = None
SEAMLESS_M4T_V2_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`~SeamlessM4Tv2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SEAMLESS_M4T_V2_MULTIMODAL_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`):
Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the
[`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details.
"""
M4T_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
"""
M4T_SPEECH_INPUTS_DOCSTRING = r"""
Args:
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`):
Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the
[`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details.
"""
SEAMLESS_M4T_V2_END_INPUTS_DOCSTRING = r"""
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
Bart uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
For translation and summarization training, `decoder_input_ids` should be provided. If no
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
for denoising pre-training following the paper.
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
If you want to change padding behavior, you should read [`modeling_bart._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape`(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
M4T_MODEL_INPUTS_DOCSTRING = SEAMLESS_M4T_V2_MULTIMODAL_INPUTS_DOCSTRING + SEAMLESS_M4T_V2_END_INPUTS_DOCSTRING
M4T_TEXT_INPUTS_DOCSTRING = M4T_TEXT_INPUTS_DOCSTRING + SEAMLESS_M4T_V2_END_INPUTS_DOCSTRING
M4T_SPEECH_INPUTS_DOCSTRING = M4T_SPEECH_INPUTS_DOCSTRING + SEAMLESS_M4T_V2_END_INPUTS_DOCSTRING
M4T_TEXT_TO_UNITS_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
char_input_ids (`torch.LongTensor` of shape `(batch_size, char_sequence_length)`):
Character indices. The correspondence between characters and indices can be found in `char_to_id`, a
dictionary in the generation configuration.
char_count_per_id (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Number of characters per input id.
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
inputs_embeds (`torch.FloatTensor` of shape`(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
############ UTILS ################
# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
def _compute_new_attention_mask(hidden_states: torch.Tensor, seq_lens: torch.Tensor):
"""
Computes an attention mask of the form `(batch, seq_len)` with an attention for each element in the batch that
stops at the corresponding element in `seq_lens`.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch, seq_len, *)`):
The sequences to mask, where `*` is any number of sequence-specific dimensions including none.
seq_lens (`torch.Tensor` of shape `(batch)`:
Each element represents the length of the sequence at the same index in `hidden_states`
Returns:
`torch.FloatTensor`: The float attention mask of shape `(batch, seq_len)`
"""
batch_size, mask_seq_len = hidden_states.shape[:2]
indices = torch.arange(mask_seq_len, device=seq_lens.device).expand(batch_size, -1)
bool_mask = indices >= seq_lens.unsqueeze(1).expand(-1, mask_seq_len)
mask = hidden_states.new_ones((batch_size, mask_seq_len))
mask = mask.masked_fill(bool_mask, 0)
return mask
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.format_speech_generation_kwargs with SeamlessM4T->SeamlessM4Tv2
def format_speech_generation_kwargs(kwargs):
"""
Format kwargs for SeamlessM4Tv2 models that generate speech, attribute kwargs to either the text generation or the
speech generation models.
Args:
kwargs (`dict`)`:
Keyword arguments are of two types:
- Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model,
except for `decoder_input_ids` which will only be passed through the text components.
- With a *text_* or *speech_* prefix, they will be input for the `generate` method of the
text model and speech model respectively. It has the priority over the keywords without a prefix.
This means you can, for example, specify a generation strategy for one generation but not for the
other.
"""
# attribute kwargs to models
kwargs_text = {}
kwargs_speech = {}
for key, value in kwargs.items():
if key.startswith("text_"):
key = key[len("text_") :]
kwargs_text[key] = value
elif key.startswith("speech_"):
key = key[len("speech_") :]
kwargs_speech[key] = value
else:
# If the key is already in a specific config, then it's been set with a
# submodules specific value and we don't override
if key not in kwargs_text:
kwargs_text[key] = value
if key not in kwargs_speech:
kwargs_speech[key] = value
return kwargs_text, kwargs_speech
############ SPEECH ENCODER related code ################
class SeamlessM4Tv2ConformerFeatureProjection(nn.Module):
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TConformerFeatureProjection.__init__
def __init__(self, config):
super().__init__()
self.layer_norm = nn.LayerNorm(config.feature_projection_input_dim, eps=config.layer_norm_eps)
self.projection = nn.Linear(config.feature_projection_input_dim, config.hidden_size)
self.dropout = nn.Dropout(config.speech_encoder_dropout)
def forward(self, hidden_states):
# non-projected hidden states are needed for quantization
norm_hidden_states = self.layer_norm(hidden_states.to(self.layer_norm.weight.dtype))
hidden_states = self.projection(norm_hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TConformerFeedForward with SeamlessM4T->SeamlessM4Tv2
class SeamlessM4Tv2ConformerFeedForward(nn.Module):
def __init__(self, config, act_fn=None, dropout=None):
super().__init__()
dropout = dropout if dropout is not None else config.speech_encoder_dropout
act_fn = act_fn if act_fn is not None else config.speech_encoder_hidden_act
self.intermediate_dropout = nn.Dropout(dropout)
self.intermediate_dense = nn.Linear(config.hidden_size, config.speech_encoder_intermediate_size)
self.intermediate_act_fn = ACT2FN[act_fn] if isinstance(act_fn, str) else act_fn
self.output_dense = nn.Linear(config.speech_encoder_intermediate_size, config.hidden_size)
self.output_dropout = nn.Dropout(dropout)
def forward(self, hidden_states):
hidden_states = self.intermediate_dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.intermediate_dropout(hidden_states)
hidden_states = self.output_dense(hidden_states)
hidden_states = self.output_dropout(hidden_states)
return hidden_states
class SeamlessM4Tv2ConformerConvolutionModule(nn.Module):
"""Convolution block used in the conformer block. Uses a causal depthwise convolution similar to that
described in Section 2.1 of `https://doi.org/10.48550/arxiv.1609.03499"""
def __init__(self, config):
super().__init__()
if (config.conv_depthwise_kernel_size - 1) % 2 == 1:
raise ValueError("`config.conv_depthwise_kernel_size` should be a odd number for 'SAME' padding")
self.layer_norm = nn.LayerNorm(config.hidden_size)
self.pointwise_conv1 = nn.Conv1d(
config.hidden_size,
2 * config.hidden_size,
kernel_size=1,
stride=1,
padding=0,
bias=False,
)
self.glu = nn.GLU(dim=1)
self.depthwise_conv = nn.Conv1d(
config.hidden_size,
config.hidden_size,
config.conv_depthwise_kernel_size,
stride=1,
padding=0,
groups=config.hidden_size,
bias=False,
)
self.depthwise_layer_norm = nn.LayerNorm(config.hidden_size)
self.activation = ACT2FN[config.speech_encoder_hidden_act]
self.pointwise_conv2 = nn.Conv1d(
config.hidden_size,
config.hidden_size,
kernel_size=1,
stride=1,
padding=0,
bias=False,
)
self.dropout = nn.Dropout(config.speech_encoder_dropout)
def forward(self, hidden_states, attention_mask=None):
hidden_states = self.layer_norm(hidden_states)
# Ensure that we do not leak padded positions in depthwise convolution.
# Put 0 where necessary
if attention_mask is not None:
hidden_states = hidden_states.masked_fill(~attention_mask.bool().unsqueeze(-1), 0.0)
# exchange the temporal dimension and the feature dimension
hidden_states = hidden_states.transpose(1, 2)
# GLU mechanism
# => (batch, 2*channel, dim)
hidden_states = self.pointwise_conv1(hidden_states)
# => (batch, channel, dim)
hidden_states = self.glu(hidden_states)
# Pad the sequence entirely on the left because of causal convolution.
hidden_states = torch.nn.functional.pad(hidden_states, (self.depthwise_conv.kernel_size[0] - 1, 0))
# 1D Depthwise Conv
hidden_states = self.depthwise_conv(hidden_states)
hidden_states = self.depthwise_layer_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
hidden_states = self.activation(hidden_states)
hidden_states = self.pointwise_conv2(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states.transpose(1, 2)
return hidden_states
class SeamlessM4Tv2ConformerSelfAttention(nn.Module):
"""Construct a SeamlessM4Tv2ConformerSelfAttention object.
Can be enhanced with relative position embeddings.
"""
def __init__(self, config, use_position_embeddings=True):
super().__init__()
self.head_size = config.hidden_size // config.speech_encoder_attention_heads
self.num_heads = config.speech_encoder_attention_heads
self.position_embeddings_type = config.position_embeddings_type if use_position_embeddings else None
self.linear_q = nn.Linear(config.hidden_size, config.hidden_size)
self.linear_k = nn.Linear(config.hidden_size, config.hidden_size)
self.linear_v = nn.Linear(config.hidden_size, config.hidden_size)
self.linear_out = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(p=config.speech_encoder_dropout)
if self.position_embeddings_type == "relative_key":
self.left_max_position_embeddings = config.left_max_position_embeddings
self.right_max_position_embeddings = config.right_max_position_embeddings
num_positions = self.left_max_position_embeddings + self.right_max_position_embeddings + 1
self.distance_embedding = nn.Embedding(num_positions, self.head_size)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# self-attention mechanism
batch_size, sequence_length, hidden_size = hidden_states.size()
# make sure query/key states can be != value states
query_key_states = hidden_states
value_states = hidden_states
# project query_key_states and value_states
query = self.linear_q(query_key_states).view(batch_size, -1, self.num_heads, self.head_size)
key = self.linear_k(query_key_states).view(batch_size, -1, self.num_heads, self.head_size)
value = self.linear_v(value_states).view(batch_size, -1, self.num_heads, self.head_size)
# => (batch, head, time1, d_k)
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
attn_weights = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.head_size)
if self.position_embeddings_type == "relative_key":
query_length, key_length = query.shape[2], key.shape[2]
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_r - position_ids_l
distance = torch.clamp(distance, -self.left_max_position_embeddings, self.right_max_position_embeddings)
positional_embedding = self.distance_embedding(distance + self.left_max_position_embeddings)
positional_embedding = positional_embedding.to(dtype=query.dtype) # fp16 compatibility
relative_position_attn_weights = torch.einsum("bhld,lrd->bhlr", query, positional_embedding)
attn_weights = attn_weights + (relative_position_attn_weights / math.sqrt(self.head_size))
# apply attention_mask if necessary
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
# => (batch, head, time1, time2)
attn_weights = torch.softmax(attn_weights, dim=-1)
attn_weights = self.dropout(attn_weights)
# => (batch, head, time1, d_k)
attn_output = torch.matmul(attn_weights, value)
# => (batch, time1, hidden_size)
attn_output = attn_output.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_size)
attn_output = self.linear_out(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
class SeamlessM4Tv2ConformerEncoderLayer(nn.Module):
"""Conformer block based on https://arxiv.org/abs/2005.08100."""
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerEncoderLayer.__init__ with Wav2Vec2->SeamlessM4Tv2, attention_dropout->speech_encoder_dropout, torch.nn->nn
def __init__(self, config):
super().__init__()
embed_dim = config.hidden_size
dropout = config.speech_encoder_dropout
# Feed-forward 1
self.ffn1_layer_norm = nn.LayerNorm(embed_dim)
self.ffn1 = SeamlessM4Tv2ConformerFeedForward(config)
# Self-Attention
self.self_attn_layer_norm = nn.LayerNorm(embed_dim)
self.self_attn_dropout = nn.Dropout(dropout)
self.self_attn = SeamlessM4Tv2ConformerSelfAttention(config)
# Conformer Convolution
self.conv_module = SeamlessM4Tv2ConformerConvolutionModule(config)
# Feed-forward 2
self.ffn2_layer_norm = nn.LayerNorm(embed_dim)
self.ffn2 = SeamlessM4Tv2ConformerFeedForward(config)
self.final_layer_norm = nn.LayerNorm(embed_dim)
def forward(
self,
hidden_states,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
conv_attention_mask: Optional[torch.Tensor] = None,
):
hidden_states = hidden_states
# 1. Feed-Forward 1 layer
residual = hidden_states
hidden_states = self.ffn1_layer_norm(hidden_states)
hidden_states = self.ffn1(hidden_states)
hidden_states = hidden_states * 0.5 + residual
residual = hidden_states
# 2. Self-Attention layer
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = self.self_attn_dropout(hidden_states)
hidden_states = hidden_states + residual
# 3. Convolutional Layer
residual = hidden_states
hidden_states = self.conv_module(hidden_states, attention_mask=conv_attention_mask)
hidden_states = residual + hidden_states
# 4. Feed-Forward 2 Layer
residual = hidden_states
hidden_states = self.ffn2_layer_norm(hidden_states)
hidden_states = self.ffn2(hidden_states)
hidden_states = hidden_states * 0.5 + residual
hidden_states = self.final_layer_norm(hidden_states)
return hidden_states, attn_weights
class SeamlessM4Tv2ConformerEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.dropout = nn.Dropout(config.speech_encoder_dropout)
self.layers = nn.ModuleList(
[SeamlessM4Tv2ConformerEncoderLayer(config) for _ in range(config.speech_encoder_layers)]
)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.gradient_checkpointing = False
def _apply_chunk_attention(self, attention_mask, hidden_states):
"""
Creates a chunk attention mask. It creates a mask to prevent attention across chunks, ensuring that each
position attends only to positions within its own chunk. If a left chunk overlap is specified
(`speech_encoder_chunk_size` in the configuration), the attention mask is adjusted accordingly to allow each
position to also attends the `speech_encoder_chunk_size - 1` previous chunks.
"""
sequence_len = hidden_states.shape[1]
chunk_indices = torch.arange(sequence_len, device=hidden_states.device)
chunk_indices = torch.div(chunk_indices, self.config.speech_encoder_chunk_size).long()
start_indices = torch.full_like(chunk_indices, 0)
if self.config.speech_encoder_left_chunk_num >= 0:
start_indices = (chunk_indices - self.config.speech_encoder_left_chunk_num).clamp_(min=0)
start_indices = start_indices * self.config.speech_encoder_chunk_size
start_indices = start_indices
start_indices = start_indices.unsqueeze(1).expand(-1, sequence_len)
end_indices = ((chunk_indices + 1) * self.config.speech_encoder_chunk_size).clamp_(max=sequence_len)
end_indices = end_indices.unsqueeze(1).expand(-1, sequence_len)
indices = torch.arange(sequence_len, device=hidden_states.device).unsqueeze(0).expand(sequence_len, -1)
chunk_mask = (indices < start_indices) | (indices >= end_indices)
chunk_mask = chunk_mask.unsqueeze(0).unsqueeze(0)
attention_mask = chunk_mask if attention_mask is None else (attention_mask.bool() | chunk_mask)
attention_mask = attention_mask.to(dtype=hidden_states.dtype)
return attention_mask
def forward(
self,
hidden_states,
attention_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
conv_attention_mask = attention_mask
if attention_mask is not None:
# make sure padded tokens output 0
hidden_states = hidden_states.masked_fill(~attention_mask.bool().unsqueeze(-1), 0.0)
# extend attention_mask
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
attention_mask = attention_mask.expand(
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
)
if self.config.speech_encoder_chunk_size is not None:
attention_mask = self._apply_chunk_attention(attention_mask, hidden_states)
if attention_mask is not None:
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
hidden_states = self.dropout(hidden_states)
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = (
True if self.training and (dropout_probability < self.config.speech_encoder_layerdrop) else False
)
if not skip_the_layer or deepspeed_zero3_is_enabled:
# under deepspeed zero3 all gpus must run in sync
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
)
else:
layer_outputs = layer(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
conv_attention_mask=conv_attention_mask,
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TConformerAdapterLayer with SeamlessM4T->SeamlessM4Tv2
class SeamlessM4Tv2ConformerAdapterLayer(nn.Module):
def __init__(self, config):
super().__init__()
embed_dim = config.hidden_size
dropout = config.adaptor_dropout
self.kernel_size = config.adaptor_kernel_size
self.stride = config.adaptor_stride
# 1. residual convolution
self.residual_layer_norm = nn.LayerNorm(embed_dim)
self.residual_conv = nn.Conv1d(
embed_dim,
2 * embed_dim,
self.kernel_size,
stride=self.stride,
padding=self.stride // 2,
)
self.activation = nn.GLU(dim=1)
# Self-Attention
self.self_attn_layer_norm = nn.LayerNorm(embed_dim)
self.self_attn_conv = nn.Conv1d(
embed_dim,
2 * embed_dim,
self.kernel_size,
stride=self.stride,
padding=self.stride // 2,
)
self.self_attn = SeamlessM4Tv2ConformerSelfAttention(config, use_position_embeddings=False)
self.self_attn_dropout = nn.Dropout(dropout)
# Feed-forward
self.ffn_layer_norm = nn.LayerNorm(embed_dim)
self.ffn = SeamlessM4Tv2ConformerFeedForward(config, act_fn="relu", dropout=dropout)
def _compute_sub_sample_lengths_from_attention_mask(self, attention_mask):
pad = self.kernel_size // 2
seq_lens = attention_mask.size(1) - (1 - attention_mask.int()).sum(1)
seq_lens = ((seq_lens + 2 * pad - self.kernel_size) / self.stride) + 1
return seq_lens.floor()
def forward(
self,
hidden_states,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
):
residual = self.residual_layer_norm(hidden_states)
# Apply pooling to the residual to match the sequence length of the
# multi-head attention output.
# (batch, seq_len, feature_dim) -> (batch, feature_dim, seq_len)
residual = residual.transpose(1, 2)
residual = self.residual_conv(residual)
residual = self.activation(residual)
# (batch, feature_dim, seq_len) -> (batch, seq_len, feature_dim)
residual = residual.transpose(1, 2)
hidden_states = self.self_attn_layer_norm(hidden_states)
# Apply pooling before feeding to the multihead-attention layer.
# (batch, seq_len, feature_dim) -> (batch, feature_dim, seq_len)
hidden_states = hidden_states.transpose(1, 2)
hidden_states = self.self_attn_conv(hidden_states)
hidden_states = self.activation(hidden_states)
# (batch, feature_dim, seq_len) -> (batch, seq_len, feature_dim)
hidden_states = hidden_states.transpose(1, 2)
if attention_mask is not None:
sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to(
hidden_states.device
)
attention_mask = _compute_new_attention_mask(hidden_states=hidden_states, seq_lens=sub_sampled_lengths)
attention_mask = _prepare_4d_attention_mask(
attention_mask,
hidden_states.dtype,
)
# The rest of the computation is identical to a vanilla Transformer
# encoder layer.
hidden_states, attn_weigths = self.self_attn(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = self.self_attn_dropout(hidden_states)
hidden_states = hidden_states + residual
residual = hidden_states
hidden_states = self.ffn_layer_norm(hidden_states)
hidden_states = self.ffn(hidden_states) + residual
return hidden_states
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TConformerAdapter with SeamlessM4T->SeamlessM4Tv2
class SeamlessM4Tv2ConformerAdapter(nn.Module):
def __init__(self, config):
super().__init__()
self.layers = nn.ModuleList(
SeamlessM4Tv2ConformerAdapterLayer(config) for _ in range(config.num_adapter_layers)
)
def forward(self, hidden_states, attention_mask):
# down project hidden_states if necessary
for layer in self.layers:
hidden_states = layer(hidden_states, attention_mask)
return hidden_states
############ TEXT / UNITS related code ################
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding
class SeamlessM4Tv2SinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
super().__init__()
self.offset = 2
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
if hasattr(self, "weights"):
# in forward put the weights on the correct dtype and device of the param
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
self.register_buffer("weights", emb_weights, persistent=False)
@staticmethod
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
"""
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
"Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb.to(torch.get_default_dtype())
@torch.no_grad()
def forward(
self, input_ids: torch.Tensor = None, inputs_embeds: torch.Tensor = None, past_key_values_length: int = 0
):
if input_ids is not None:
bsz, seq_len = input_ids.size()
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to(
input_ids.device
)
else:
bsz, seq_len = inputs_embeds.size()[:-1]
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length)
# expand embeddings if needed
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
if max_pos > self.weights.size(0):
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach()
def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length
class SeamlessM4Tv2Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
# Copied from transformers.models.bart.modeling_bart.BartAttention.__init__ with Bart->SeamlessM4Tv2
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[SeamlessM4Tv2Config] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, projection: torch.Tensor) -> torch.Tensor:
new_projection_shape = projection.size()[:-1] + (self.num_heads, self.head_dim)
# move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3)
return new_projection
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
is_cross_attention = encoder_hidden_states is not None
batch_size, seq_length = hidden_states.shape[:2]
# use encoder_hidden_states if cross attention
current_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
# checking that the `sequence_length` of the `past_key_value` is the same as the he provided
# `encoder_hidden_states` to support prefix tuning
if is_cross_attention and past_key_value and past_key_value[0].shape[2] == current_states.shape[1]:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
else:
key_states = self._shape(self.k_proj(current_states))
value_states = self._shape(self.v_proj(current_states))
if past_key_value is not None and not is_cross_attention:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
query_states = self._shape(self.q_proj(hidden_states) * self.scaling)
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
# (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.softmax(attention_scores.float(), dim=-1).type_as(attention_scores)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# attn_output = torch.bmm(attn_probs, value_states) ?
context_states = torch.matmul(attn_weights, value_states)
# attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) ?
context_states = context_states.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_length, -1)
attn_output = self.out_proj(context_states)
if output_attentions:
return attn_output, attn_weights, past_key_value
else:
return attn_output, None, past_key_value
# Copied from transformers.models.nllb_moe.modeling_nllb_moe.NllbMoeDenseActDense with NllbMoe->SeamlessM4Tv2,DenseActDense->FeedForwardNetwork, d_model->hidden_size
class SeamlessM4Tv2FeedForwardNetwork(nn.Module):
def __init__(self, config: SeamlessM4Tv2Config, ffn_dim: int):
super().__init__()
self.fc1 = nn.Linear(config.hidden_size, ffn_dim)
self.fc2 = nn.Linear(ffn_dim, config.hidden_size)
self.dropout = nn.Dropout(config.activation_dropout)
self.act = ACT2FN[config.activation_function]
def forward(self, hidden_states):
hidden_states = self.fc1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dropout(hidden_states)
if (
isinstance(self.fc2.weight, torch.Tensor)
and hidden_states.dtype != self.fc2.weight.dtype
and (self.fc2.weight.dtype != torch.int8 and self.fc2.weight.dtype != torch.uint8)
):
hidden_states = hidden_states.to(self.fc2.weight.dtype)
hidden_states = self.fc2(hidden_states)
return hidden_states
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TEncoderLayer with SeamlessM4T->SeamlessM4Tv2
class SeamlessM4Tv2EncoderLayer(nn.Module):
def __init__(self, config: SeamlessM4Tv2Config, encoder_ffn_dim=None, encoder_attention_heads=None):
super().__init__()
encoder_ffn_dim = config.encoder_ffn_dim if encoder_ffn_dim is None else encoder_ffn_dim
encoder_attention_heads = (
config.encoder_attention_heads if encoder_attention_heads is None else encoder_attention_heads
)
self.embed_dim = config.hidden_size
self.self_attn = SeamlessM4Tv2Attention(
embed_dim=self.embed_dim,
num_heads=encoder_attention_heads,
dropout=config.attention_dropout,
)
self.attn_dropout = nn.Dropout(config.dropout)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.ffn = SeamlessM4Tv2FeedForwardNetwork(config, ffn_dim=encoder_ffn_dim)
self.ffn_layer_norm = nn.LayerNorm(config.hidden_size)
self.ffn_dropout = nn.Dropout(config.activation_dropout)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
output_attentions: bool = False,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`):
input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`):
attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very
large negative values.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = self.attn_dropout(hidden_states)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.ffn_layer_norm(hidden_states)
hidden_states = self.ffn(hidden_states)
hidden_states = self.ffn_dropout(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TDecoderLayer with SeamlessM4T->SeamlessM4Tv2
class SeamlessM4Tv2DecoderLayer(nn.Module):
def __init__(self, config: SeamlessM4Tv2Config, decoder_ffn_dim=None, decoder_attention_heads=None):
super().__init__()
decoder_ffn_dim = config.decoder_ffn_dim if decoder_ffn_dim is None else decoder_ffn_dim
decoder_attention_heads = (
config.decoder_attention_heads if decoder_attention_heads is None else decoder_attention_heads
)
self.embed_dim = config.hidden_size
self.self_attn = SeamlessM4Tv2Attention(
embed_dim=self.embed_dim,
num_heads=decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.attn_dropout = nn.Dropout(config.dropout)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.cross_attention = SeamlessM4Tv2Attention(
self.embed_dim, decoder_attention_heads, config.attention_dropout, is_decoder=True
)
self.cross_attention_layer_norm = nn.LayerNorm(self.embed_dim)
self.ffn = SeamlessM4Tv2FeedForwardNetwork(config, ffn_dim=decoder_ffn_dim)
self.ffn_layer_norm = nn.LayerNorm(config.hidden_size)
self.ffn_dropout = nn.Dropout(config.activation_dropout)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`):
input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`):
attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very
large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`):
encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by
very large negative values.
past_key_value (`Tuple(torch.FloatTensor)`):
cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = self.attn_dropout(hidden_states)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.cross_attention_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.cross_attention(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
past_key_value=cross_attn_past_key_value,
attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
)
hidden_states = self.attn_dropout(hidden_states)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value += cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.ffn_layer_norm(hidden_states)
hidden_states = self.ffn(hidden_states)
hidden_states = self.ffn_dropout(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, present_key_value)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
class SeamlessM4Tv2TextToUnitDecoderLayer(nn.Module):
def __init__(self, config: SeamlessM4Tv2Config, decoder_ffn_dim=None, decoder_attention_heads=None):
super().__init__()
decoder_ffn_dim = config.decoder_ffn_dim if decoder_ffn_dim is None else decoder_ffn_dim
decoder_attention_heads = (
config.decoder_attention_heads if decoder_attention_heads is None else decoder_attention_heads
)
self.dropout = config.dropout
self.embed_dim = config.hidden_size
self.self_attn = SeamlessM4Tv2Attention(
embed_dim=self.embed_dim,
num_heads=decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.conv1 = nn.Conv1d(self.embed_dim, self.embed_dim, kernel_size=7, stride=1, padding="same")
self.activation_fn = ACT2FN[config.activation_function]
self.conv2 = nn.Conv1d(self.embed_dim, self.embed_dim, kernel_size=7, stride=1, padding="same")
self.conv_layer_norm = nn.LayerNorm(config.hidden_size)
self.conv_dropout = nn.Dropout(self.dropout)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`):
input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`):
attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very
large negative values.
padding_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Indicates which inputs are to be ignored due to padding, where elements are either 1 for *not masked*
or 0 for *masked*
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Conv
residual = hidden_states
# Apply padding mask to avoid leaking padded positions in the convolution layer
if padding_mask is not None:
hidden_states = hidden_states.masked_fill(~padding_mask.bool().unsqueeze(-1), 0.0)
hidden_states = self.conv1(hidden_states.transpose(1, 2)).transpose(1, 2)
if padding_mask is not None:
hidden_states = hidden_states.masked_fill(~padding_mask.bool().unsqueeze(-1), 0.0)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.conv2(hidden_states.transpose(1, 2)).transpose(1, 2)
hidden_states = self.conv_dropout(hidden_states)
hidden_states = residual + hidden_states
hidden_states = self.conv_layer_norm(hidden_states)
outputs = (hidden_states, present_key_value)
if output_attentions:
outputs += self_attn_weights
return outputs
############ SUB-MODELS related code ################
class SeamlessM4Tv2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = SeamlessM4Tv2Config
base_model_prefix = "seamless_m4t_v2"
supports_gradient_checkpointing = True
_no_split_modules = [
"SeamlessM4Tv2EncoderLayer",
"SeamlessM4Tv2DecoderLayer",
"SeamlessM4Tv2ConformerEncoderLayer",
"SeamlessM4Tv2TextToUnitDecoderLayer",
]
def _init_weights(self, module):
"""Initialize the weights"""
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, SeamlessM4Tv2ConformerSelfAttention):
if hasattr(module, "pos_bias_u"):
nn.init.xavier_uniform_(module.pos_bias_u)
if hasattr(module, "pos_bias_v"):
nn.init.xavier_uniform_(module.pos_bias_v)
elif isinstance(module, SeamlessM4Tv2ConformerFeatureProjection):
k = math.sqrt(1 / module.projection.in_features)
nn.init.uniform_(module.projection.weight, a=-k, b=k)
nn.init.uniform_(module.projection.bias, a=-k, b=k)
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, (nn.Conv1d, nn.ConvTranspose1d)):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
nn.init.uniform_(module.bias, a=-k, b=k)
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TPreTrainedModel._compute_sub_sample_lengths_from_attention_mask
def _compute_sub_sample_lengths_from_attention_mask(self, attention_mask):
kernel_size, stride = self.config.adaptor_kernel_size, self.config.adaptor_stride
pad = kernel_size // 2
seq_lens = attention_mask.size(1) - (1 - attention_mask.int()).sum(1)
seq_lens = ((seq_lens + 2 * pad - kernel_size) / stride) + 1
return seq_lens.floor()
def _indices_to_subwords(self, input_ids):
"""
Returns the corresponding text string for each input id.
"""
if not hasattr(self.generation_config, "id_to_text"):
raise ValueError(
"""This model generation config doesn't have a `id_to_text` key which maps
token ids to subwords. Make sure to load the right generation config."""
)
batch_size, sequence_len = input_ids.shape
subwords_batch = []
for batch_id in range(batch_size):
subwords = []
for i in range(sequence_len):
subword = self.generation_config.id_to_text.get(str(input_ids[batch_id, i].item()))
subwords.append(str(subword))
subwords_batch.append(subwords)
return subwords_batch
def _count_character_length_in_subword(
self,
input_ids,
subwords_batch,
merge_space_with_prev_subword=False,
pad_token_id=0,
unk_token_id=1,
space="▁",
):
"""
Counts the number of characters per text string associated with the input token id.
Args:
input_ids (`torch.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
subwords_batch (`List[List[str]]` of shape `(batch_size, sequence_length)`):
Corresponding text string for each input id.
merge_space_with_prev_subword (`bool`, *optional*, defaults to `False`):
Indicates if the space character is merged with the previous subword. If `False`, it will be merged
with the next subword.
pad_token_id (`int`, *optional*, defaults to 0):
The id of the _padding_ text token. If it is encountered when calculating the length of a subword
sample, the lengths of subsequent subwords will be set to 0.
unk_token_id (`int`, *optional*, defaults to 1):
The id of the _unknown_ text token. Associated to a subword of length 1.
space (`str`, *optional*, defaults to `"▁"`):
The space character.
"""
batch_size, _ = input_ids.shape
char_count_per_id = input_ids.new_zeros(input_ids.size())
subword_lens = input_ids.ne(pad_token_id).sum(1)
for batch_id in range(batch_size):
# We slice out the tensor till the padding index.
subword_indices = input_ids[batch_id, : subword_lens[batch_id]]
subwords = subwords_batch[batch_id][: subword_lens[batch_id]]
is_next_start_with_space = [
len(subwords[i + 1]) > 1 and subwords[i + 1][0] == space if i < len(subwords) - 1 else False
for i in range(len(subwords))
]
is_punc = [
len(subwords[i]) == 1
and not subwords[i].isalpha()
and not subwords[i].isnumeric()
and subwords[i] != space
for i in range(len(subwords))
]
for i, (subword_idx, subword) in enumerate(zip(subword_indices, subwords)):
if subword_idx == pad_token_id:
break
if subword_idx == unk_token_id:
# We set char_len to 1 for an unk token.
char_len = 1
if merge_space_with_prev_subword and is_next_start_with_space[i]:
char_len += 1
else:
# By default, spaces are merged with the next subword.
# char_len includes the space.
char_len = len(subword)
if merge_space_with_prev_subword:
# Add the space for the next subword.
if is_next_start_with_space[i]:
char_len += 1
# Subtract the space for the current subword.
if i > 0 and is_next_start_with_space[i - 1]:
char_len -= 1
else:
# Merge space with punctuation mark by default.
if is_punc[i] and is_next_start_with_space[i]:
char_len += 1
# Subtract the space for the subword succeeding the punctuation mark.
elif i > 0 and is_punc[i - 1] and is_next_start_with_space[i - 1]:
char_len -= 1
char_count_per_id[batch_id, i] = char_len
return char_count_per_id
def _get_char_input_ids(self, input_ids, subwords_batch, char_count_per_id, pad_token_id=0, unk_token_id=1):
"""
Returns the corresponding character input id for each character of `subwords_batch`.
Args:
input_ids (`torch.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
subwords_batch (`List[List[str]]` of shape `(batch_size, sequence_length)`):
Corresponding text string for each input id.
char_count_per_id (`torch.Tensor` of shape `(batch_size, sequence_length)`):
Number of characters per input id.
pad_token_id (`int`, *optional*, defaults to 0):
The id of the _padding_ text token. If it is encountered when calculating the length of a subword
sample, the lengths of subsequent subwords will be set to 0.
unk_token_id (`int`, *optional*, defaults to 1):
The id of the _unknown_ text token. Associated to a subword of length 1.
Returns:
`torch.Tensor`: Tensor of shape `(batch_size, char_sequence_length)` containing the id of each character.
"""
if not hasattr(self.generation_config, "char_to_id"):
raise ValueError(
"""This model generation config doesn't have a `char_to_id` key which maps
characters to character ids. Make sure to load the right generation config."""
)
batch_size = input_ids.shape[0]
max_len = int(char_count_per_id.sum(1).max().item())
char_seqs = input_ids.new_zeros((batch_size, max_len)).fill_(pad_token_id)
subword_lens = input_ids.ne(pad_token_id).sum(1)
for batch_id in range(batch_size):
total = 0
subword_indices = input_ids[batch_id, : subword_lens[batch_id]]
subwords = subwords_batch[batch_id][: subword_lens[batch_id]]
for subword_idx, subword in zip(subword_indices, subwords):
if subword_idx == unk_token_id:
char_ids = [unk_token_id]
else:
# Get char token indices corresponding to the subwords.
char_ids = [self.generation_config.char_to_id.get(ch, unk_token_id) for ch in list(subword)]
char_seq_len = len(char_ids)
char_seqs[batch_id, total : total + char_seq_len] = torch.tensor(char_ids).to(char_seqs)
total += char_seq_len
return char_seqs
def _hard_upsample(self, hidden_states, durations):
"""
Repeats the time dimension of each sample in the batch based on the corresponding duration.
Args:
hidden_states (`torch.Tensor` of shape `(batch_size, sequence_length, *)`, *optional*):
The sequence to repeat, where `*` is any number of sequence-specific dimensions including none.
durations (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Indicates how many times to repeat time segments.
"""
if hidden_states.size(0) == 1:
hidden_states = torch.repeat_interleave(hidden_states, durations.view(-1), dim=1)
else:
# if batched sample, need to interleave per sample, and pad -> loss of parallelism
if hidden_states.shape[0] > 1 and self.training:
logger.warning_once(
"""`self.training=True` and you use batching. You lose parallelism during the hifigan
forward pass because the samples are interleaved."""
)
hidden_states = [
torch.repeat_interleave(hidden_state, duration, dim=0)
for (hidden_state, duration) in zip(hidden_states, durations)
]
hidden_states = nn.utils.rnn.pad_sequence(hidden_states, batch_first=True)
return hidden_states
@add_start_docstrings(
"""Transformer speech encoder consisting of *config.speech_encoder_layers* conformer self attention layers.
Each layer is a [`SeamlessM4Tv2ConformerEncoderLayer`].""",
SEAMLESS_M4T_V2_START_DOCSTRING,
)
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TSpeechEncoder with SeamlessM4T->SeamlessM4Tv2
class SeamlessM4Tv2SpeechEncoder(SeamlessM4Tv2PreTrainedModel):
main_input_name = "input_features"
def __init__(self, config: SeamlessM4Tv2Config):
super().__init__(config)
self.feature_projection = SeamlessM4Tv2ConformerFeatureProjection(config)
self.encoder = SeamlessM4Tv2ConformerEncoder(config)
self.intermediate_ffn = SeamlessM4Tv2ConformerFeedForward(config, act_fn="relu", dropout=0.0)
self.adapter = SeamlessM4Tv2ConformerAdapter(config) if config.add_adapter else None
self.inner_layer_norm = nn.LayerNorm(config.hidden_size)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_features: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_features is None:
raise ValueError(
"""Both `input_features` and `inputs_embeds` are `None` in `SeamlessM4Tv2SpeechEncoder.forward`.
Make sure one of them is not `None`."""
)
hidden_states = self.feature_projection(input_features)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
expanded_hidden_states = self.intermediate_ffn(hidden_states)
hidden_states = hidden_states + 0.5 * expanded_hidden_states
if self.adapter is not None:
hidden_states = self.adapter(hidden_states, attention_mask=attention_mask)
hidden_states = self.inner_layer_norm(hidden_states)
if not return_dict:
return (hidden_states,) + encoder_outputs[1:]
return Wav2Vec2BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
# inspired from MBart and NllbMoe
@add_start_docstrings(
"Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`SeamlessM4Tv2EncoderLayer`].",
SEAMLESS_M4T_V2_START_DOCSTRING,
"""
embed_tokens (`nn.Embedding`, *optional*):
Input embedding
is_t2u_encoder (`bool`, *optional*, defaults to `False`):
indicates if it belongs to the text-to-units model, in which case it won't have input embeddings
""",
)
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TEncoder with SeamlessM4T->SeamlessM4Tv2
class SeamlessM4Tv2Encoder(SeamlessM4Tv2PreTrainedModel):
def __init__(
self,
config: SeamlessM4Tv2Config,
embed_tokens: Optional[nn.Embedding] = None,
is_t2u_encoder: bool = False,
):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
self.padding_idx = config.pad_token_id
embed_dim = config.hidden_size
self.is_t2u_encoder = is_t2u_encoder
self.max_source_positions = config.max_position_embeddings
if not self.is_t2u_encoder:
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = SeamlessM4Tv2SinusoidalPositionalEmbedding(
self.max_source_positions,
embed_dim,
self.padding_idx,
)
layers = []
for _ in range(config.encoder_layers):
layers.append(
SeamlessM4Tv2EncoderLayer(
config,
encoder_attention_heads=config.encoder_attention_heads,
encoder_ffn_dim=config.encoder_ffn_dim,
)
)
self.layers = nn.ModuleList(layers)
self.layer_norm = nn.LayerNorm(config.hidden_size)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and self.is_t2u_encoder:
raise ValueError(
"You cannot pass input_ids to the encoder of the text_to_units model. Pass inputs_embeds instead."
)
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_shape = input.shape
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
if not self.is_t2u_encoder:
embed_pos = self.embed_positions(input)
hidden_states = inputs_embeds + embed_pos.to(inputs_embeds.device)
else:
hidden_states = inputs_embeds
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.forward,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
@add_start_docstrings(
"Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`SeamlessM4Tv2DecoderLayer`].",
SEAMLESS_M4T_V2_START_DOCSTRING,
"""
embed_tokens (`nn.Embedding`, *optional*):
Input embedding
""",
)
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TDecoder with SeamlessM4T->SeamlessM4Tv2
class SeamlessM4Tv2Decoder(SeamlessM4Tv2PreTrainedModel):
def __init__(
self,
config: SeamlessM4Tv2Config,
embed_tokens: Optional[nn.Embedding] = None,
):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0
if embed_tokens is not None:
# if embed_tokens defined, use its shape instead
self.embed_tokens = nn.Embedding(embed_tokens.num_embeddings, embed_tokens.embedding_dim, self.padding_idx)
self.embed_tokens.weight = embed_tokens.weight
else:
self.embed_tokens = nn.Embedding(self.vocab_size, config.hidden_size, self.padding_idx)
self.embed_positions = SeamlessM4Tv2SinusoidalPositionalEmbedding(
self.max_target_positions,
config.hidden_size,
padding_idx=self.padding_idx,
)
layers = []
for _ in range(config.decoder_layers):
layers.append(
SeamlessM4Tv2DecoderLayer(
config,
decoder_attention_heads=config.decoder_attention_heads,
decoder_ffn_dim=config.decoder_ffn_dim,
)
)
self.layers = nn.ModuleList(layers)
self.layer_norm = nn.LayerNorm(config.hidden_size)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_shape = input.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input, past_key_values_length=past_key_values_length)
hidden_states = inputs_embeds + positions.to(inputs_embeds.device)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[1],)
if output_attentions:
all_self_attns += (layer_outputs[2],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[3],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`SeamlessM4Tv2DecoderLayer`].",
SEAMLESS_M4T_V2_START_DOCSTRING,
"""
embed_tokens (`nn.Embedding`, *optional*):
Input embedding
""",
)
class SeamlessM4Tv2TextToUnitDecoder(SeamlessM4Tv2PreTrainedModel):
def __init__(
self,
config: SeamlessM4Tv2Config,
embed_tokens: Optional[nn.Embedding] = None,
):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0
if embed_tokens is not None:
# if embed_tokens defined, use its shape instead
self.embed_tokens = nn.Embedding(embed_tokens.num_embeddings, embed_tokens.embedding_dim, self.padding_idx)
self.embed_tokens.weight = embed_tokens.weight
else:
self.embed_tokens = nn.Embedding(self.vocab_size, config.hidden_size, self.padding_idx)
self.embed_char = nn.Embedding(config.char_vocab_size, config.hidden_size)
self.embed_char_positions = SeamlessM4Tv2SinusoidalPositionalEmbedding(
self.max_target_positions,
config.hidden_size,
padding_idx=self.padding_idx,
)
self.pos_emb_alpha_char = nn.Parameter(torch.ones(1))
self.pos_emb_alpha = nn.Parameter(torch.ones(1))
self.duration_predictor = SeamlessM4Tv2VariancePredictor(
config.variance_predictor_embed_dim,
config.variance_predictor_hidden_dim,
config.variance_predictor_kernel_size,
config.variance_pred_dropout,
)
self.embed_positions = SeamlessM4Tv2SinusoidalPositionalEmbedding(
self.max_target_positions,
config.hidden_size,
padding_idx=self.padding_idx,
)
layers = []
for _ in range(config.decoder_layers):
layers.append(
SeamlessM4Tv2TextToUnitDecoderLayer(
config,
decoder_attention_heads=config.decoder_attention_heads,
decoder_ffn_dim=config.decoder_ffn_dim,
)
)
self.layers = nn.ModuleList(layers)
self.layer_norm = nn.LayerNorm(config.hidden_size)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
char_input_ids: torch.LongTensor = None,
char_count_per_id: torch.LongTensor = None,
encoder_hidden_states: torch.FloatTensor = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SeamlessM4Tv2TextToUnitDecoderOutput]:
r"""
Args:
char_input_ids (`torch.LongTensor` of shape `(batch_size, char_sequence_length)`):
Character indices. The correspondence between characters and indices can be found in `char_to_id`, a
dictionary in the generation configuration.
char_count_per_id (`torch.Tensor` of shape `(batch_size, encoder_sequence_length)`):
Number of characters per text input id.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# create padding mask for character lengths
char_padding_mask = _compute_new_attention_mask(char_input_ids, char_count_per_id.sum(1))
# upsample hidden states according to characters sequence lengths
char_hidden_states = self._hard_upsample(encoder_hidden_states, char_count_per_id)
# embed char positions
char_positions = self.pos_emb_alpha_char * self.embed_char_positions(inputs_embeds=char_hidden_states)
# update char hidden states with positions and char embeddings
char_hidden_states = self.embed_char(char_input_ids) * self.embed_scale + char_positions + char_hidden_states
# predict duration
log_dur_pred = self.duration_predictor(char_hidden_states, padding_mask=char_padding_mask)
dur_out = torch.clamp(torch.round((torch.exp(log_dur_pred) - 1)).long(), min=1)
dur_out = dur_out.masked_fill(~char_padding_mask.bool(), 0.0)
# upsample char hidden states according to predicted duration
char_hidden_states = self._hard_upsample(char_hidden_states, dur_out)
positions = self.pos_emb_alpha * self.embed_positions(inputs_embeds=char_hidden_states)
hidden_states = char_hidden_states + positions
padding_mask = _compute_new_attention_mask(hidden_states, dur_out.sum(1))
attention_mask = _prepare_4d_attention_mask(padding_mask, hidden_states.dtype)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
padding_mask,
output_attentions,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
padding_mask=padding_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[2],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attns, padding_mask] if v is not None)
return SeamlessM4Tv2TextToUnitDecoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attns,
padding_mask=padding_mask,
)
@add_start_docstrings(
"Transformer bare text-to-unit encoder-decoder. The encoder is a [`SeamlessM4Tv2Encoder`] without embeddings and the decoder is a [`SeamlessM4Tv2TextToUnitDecoder`].",
SEAMLESS_M4T_V2_START_DOCSTRING,
"""
embed_tokens_decoder (`nn.Embedding`, *optional*): input embedding of the decoder.
""",
)
class SeamlessM4Tv2TextToUnitModel(SeamlessM4Tv2PreTrainedModel):
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitModel.__init__ with SeamlessM4T->SeamlessM4Tv2, Decoder->TextToUnitDecoder
def __init__(
self,
config: SeamlessM4Tv2Config,
embed_tokens_decoder: Optional[nn.Embedding] = None,
):
super().__init__(config)
self.encoder = SeamlessM4Tv2Encoder(config, is_t2u_encoder=True)
self.decoder = SeamlessM4Tv2TextToUnitDecoder(config, embed_tokens_decoder)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
char_input_ids: torch.LongTensor = None,
char_count_per_id: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, dec_hidden, dec_attn, padding_mask)
decoder_outputs = self.decoder(
char_input_ids=char_input_ids,
char_count_per_id=char_count_per_id,
encoder_hidden_states=encoder_outputs[0],
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return SeamlessM4Tv2TextToUnitOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
padding_mask=decoder_outputs.padding_mask,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"Transformer text-to-unit encoder-decoder with a language model head. The base encoder-decoder model is a [`SeamlessM4Tv2TextToUnitModel`].",
SEAMLESS_M4T_V2_START_DOCSTRING,
"""
embed_tokens_decoder (`nn.Embedding`, *optional*): input embedding of the decoder.
""",
)
class SeamlessM4Tv2TextToUnitForConditionalGeneration(SeamlessM4Tv2PreTrainedModel):
_keys_to_ignore_on_load_missing = [
"vocoder",
"speech_encoder",
"text_encoder",
"text_decoder",
]
_tied_weights_keys = ["decoder.embed_tokens.weight", "lm_head.weight"]
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitForConditionalGeneration.__init__ with SeamlessM4T->SeamlessM4Tv2
def __init__(
self,
config: SeamlessM4Tv2Config,
embed_tokens_decoder: Optional[nn.Embedding] = None,
):
# update config - used principaly for bos_token_id etc.
config = copy.deepcopy(config)
for param, val in config.to_dict().items():
if param.startswith("t2u_"):
config.__setattr__(param[4:], val)
super().__init__(config)
self.model = SeamlessM4Tv2TextToUnitModel(config, embed_tokens_decoder)
self.lm_head = nn.Linear(config.hidden_size, config.t2u_vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitForConditionalGeneration.get_encoder
def get_encoder(self):
return self.model.encoder
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitForConditionalGeneration.get_decoder
def get_decoder(self):
return self.model.decoder
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitForConditionalGeneration.get_output_embeddings
def get_output_embeddings(self):
return self.lm_head
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitForConditionalGeneration.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitForConditionalGeneration.get_input_embeddings
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitForConditionalGeneration.set_input_embeddings
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
@add_start_docstrings_to_model_forward(M4T_TEXT_TO_UNITS_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
char_input_ids: torch.LongTensor = None,
char_count_per_id: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids,
char_input_ids=char_input_ids,
char_count_per_id=char_count_per_id,
attention_mask=attention_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(lm_logits.device)
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return SeamlessM4Tv2TextToUnitOutput(
last_hidden_state=lm_logits,
padding_mask=outputs.padding_mask,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
loss=masked_lm_loss,
)
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitForConditionalGeneration._tie_weights
def _tie_weights(self) -> None:
if getattr(self.config, "tie_word_embeddings", True):
output_embeddings = self.get_output_embeddings()
if output_embeddings is not None:
self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
############ VOCODER related code ################
HIFIGAN_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`SeamlessM4Tv2Config`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
# Copied from transformers.models.speecht5.modeling_speecht5.HifiGanResidualBlock
class HifiGanResidualBlock(nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1):
super().__init__()
self.leaky_relu_slope = leaky_relu_slope
self.convs1 = nn.ModuleList(
[
nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=dilation[i],
padding=self.get_padding(kernel_size, dilation[i]),
)
for i in range(len(dilation))
]
)
self.convs2 = nn.ModuleList(
[
nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=1,
padding=self.get_padding(kernel_size, 1),
)
for _ in range(len(dilation))
]
)
def get_padding(self, kernel_size, dilation=1):
return (kernel_size * dilation - dilation) // 2
def apply_weight_norm(self):
for layer in self.convs1:
nn.utils.weight_norm(layer)
for layer in self.convs2:
nn.utils.weight_norm(layer)
def remove_weight_norm(self):
for layer in self.convs1:
nn.utils.remove_weight_norm(layer)
for layer in self.convs2:
nn.utils.remove_weight_norm(layer)
def forward(self, hidden_states):
for conv1, conv2 in zip(self.convs1, self.convs2):
residual = hidden_states
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = conv1(hidden_states)
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = conv2(hidden_states)
hidden_states = hidden_states + residual
return hidden_states
class SeamlessM4Tv2VariancePredictor(nn.Module):
def __init__(self, embed_dim, hidden_dim, kernel_size, var_pred_dropout):
super().__init__()
self.conv1 = nn.Conv1d(
embed_dim,
hidden_dim,
kernel_size=kernel_size,
padding="same",
)
self.activation_fuction = nn.ReLU()
self.ln1 = nn.LayerNorm(hidden_dim)
self.dropout_module = nn.Dropout(p=var_pred_dropout)
self.conv2 = nn.Conv1d(
hidden_dim,
hidden_dim,
kernel_size=kernel_size,
padding="same",
)
self.ln2 = nn.LayerNorm(hidden_dim)
self.proj = nn.Linear(hidden_dim, 1)
def forward(self, hidden_states: Tensor, padding_mask: Tensor = None) -> Tensor:
# Input: B x T x C; Output: B x T
if padding_mask is not None:
hidden_states = hidden_states.masked_fill(~padding_mask.bool().unsqueeze(-1), 0.0)
hidden_states = self.conv1(hidden_states.transpose(1, 2))
hidden_states = self.activation_fuction(hidden_states).transpose(1, 2)
hidden_states = self.dropout_module(self.ln1(hidden_states))
if padding_mask is not None:
hidden_states = hidden_states.masked_fill(~padding_mask.bool().unsqueeze(-1), 0.0)
hidden_states = self.conv2(hidden_states.transpose(1, 2))
hidden_states = self.activation_fuction(hidden_states).transpose(1, 2)
hidden_states = self.dropout_module(self.ln2(hidden_states))
return self.proj(hidden_states).squeeze(dim=2)
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4THifiGan with SeamlessM4T->SeamlessM4Tv2
class SeamlessM4Tv2HifiGan(nn.Module):
def __init__(self, config: SeamlessM4Tv2Config):
super().__init__()
model_in_dim = config.unit_embed_dim + config.lang_embed_dim + config.spkr_embed_dim
self.leaky_relu_slope = config.leaky_relu_slope
self.num_kernels = len(config.resblock_kernel_sizes)
self.num_upsamples = len(config.upsample_rates)
self.conv_pre = nn.Conv1d(
model_in_dim,
config.upsample_initial_channel,
kernel_size=7,
stride=1,
padding=3,
)
self.upsampler = nn.ModuleList()
for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)):
self.upsampler.append(
nn.ConvTranspose1d(
config.upsample_initial_channel // (2**i),
config.upsample_initial_channel // (2 ** (i + 1)),
kernel_size=kernel_size,
stride=upsample_rate,
padding=(kernel_size - upsample_rate) // 2,
)
)
self.resblocks = nn.ModuleList()
for i in range(len(self.upsampler)):
channels = config.upsample_initial_channel // (2 ** (i + 1))
for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes):
self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope))
self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3)
def forward(self, input_embeds: torch.FloatTensor) -> torch.FloatTensor:
r"""
Converts a log-mel spectrogram into a speech waveform. Passing a batch of log-mel spectrograms returns a batch
of speech waveforms. Passing a single, un-batched log-mel spectrogram returns a single, un-batched speech
waveform.
Args:
spectrogram (`torch.FloatTensor`):
Tensor containing the log-mel spectrograms. Can be batched and of shape `(batch_size, sequence_length,
model_in_dim)`, or un-batched and of shape `(sequence_length, model_in_dim)`. Note that `model_in_dim`
is the sum of `config.unit_embed_dim`, `config.lang_embed_dim` and `config.spkr_embed_dim`.
Returns:
`torch.FloatTensor`: Tensor containing the speech waveform. If the input spectrogram is batched, will be of
shape `(batch_size, num_frames,)`. If un-batched, will be of shape `(num_frames,)`.
"""
hidden_states = self.conv_pre(input_embeds)
for i in range(self.num_upsamples):
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = self.upsampler[i](hidden_states)
res_state = self.resblocks[i * self.num_kernels](hidden_states)
for j in range(1, self.num_kernels):
res_state += self.resblocks[i * self.num_kernels + j](hidden_states)
hidden_states = res_state / self.num_kernels
hidden_states = nn.functional.leaky_relu(hidden_states)
hidden_states = self.conv_post(hidden_states)
hidden_states = torch.tanh(hidden_states)
# remove seq-len dim since this collapses to 1
waveform = hidden_states.squeeze(1)
return waveform
@add_start_docstrings(
"""Code HiFi-GAN vocoder as described in this [repository](https://github.com/facebookresearch/speech-resynthesis).""",
HIFIGAN_START_DOCSTRING,
)
class SeamlessM4Tv2CodeHifiGan(PreTrainedModel):
config_class = SeamlessM4Tv2Config
main_input_name = "input_embeds"
_no_split_modules = []
def __init__(self, config):
super().__init__(config)
self.pad_token_id = config.t2u_pad_token_id
embed_dim = config.unit_embed_dim
kernel_size = config.variance_predictor_kernel_size
var_pred_dropout = config.var_pred_dropout
self.dur_predictor = SeamlessM4Tv2VariancePredictor(embed_dim, embed_dim, kernel_size, var_pred_dropout)
self.unit_embedding = nn.Embedding(config.unit_hifi_gan_vocab_size, config.unit_embed_dim)
self.speaker_embedding = nn.Embedding(config.vocoder_num_spkrs, config.spkr_embed_dim)
self.language_embedding = nn.Embedding(config.vocoder_num_langs, config.lang_embed_dim)
self.hifi_gan = SeamlessM4Tv2HifiGan(config)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TCodeHifiGan._get_dur_output_lengths
def _get_dur_output_lengths(self, input_ids, dur_out):
"""
Computes the output length after the duration layer.
"""
unit_lengths = (input_ids != self.pad_token_id).sum(1)
# take care of edge cases where no padding or too many padding
unit_lengths = torch.clamp(unit_lengths, 0, dur_out.shape[1] - 1)
cumulative_dur_out = torch.cumsum(dur_out, dim=1)
unit_lengths = cumulative_dur_out.gather(dim=1, index=unit_lengths.unsqueeze(1)).squeeze()
return unit_lengths
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TCodeHifiGan._get_output_hifigan_lengths
def _get_output_hifigan_lengths(self, input_lengths: Union[torch.LongTensor, int]):
"""
Computes the output length of the hifigan convolutional layers
"""
def _conv_out_length(input_length, kernel_size, stride, pad, dilation=1):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return (
torch.div(input_length + 2 * pad - dilation * (kernel_size - 1) - 1, stride, rounding_mode="floor") + 1
)
def _transpose_conv_out_length(input_length, kernel_size, stride, pad, dilation=1):
return (input_length - 1) * stride - 2 * pad + dilation * (kernel_size - 1) + 1
# conv_pre
input_lengths = _conv_out_length(input_lengths, 7, 1, 3)
# upsampler
for i, (upsample_rate, kernel_size) in enumerate(
zip(self.config.upsample_rates, self.config.upsample_kernel_sizes)
):
input_lengths = _transpose_conv_out_length(
input_lengths, kernel_size, upsample_rate, (kernel_size - upsample_rate) // 2
)
# resblock
for i in range(len(self.config.upsample_rates)):
for kernel_size, dilation in zip(self.config.resblock_kernel_sizes, self.config.resblock_dilation_sizes):
for dil in dilation:
input_lengths = _conv_out_length(
input_lengths, kernel_size, 1, (kernel_size - 1) * dil // 2, dilation=dil
)
for dil in dilation:
input_lengths = _conv_out_length(input_lengths, kernel_size, 1, (kernel_size - 1) // 2, dilation=1)
# conv_post
input_lengths = _conv_out_length(input_lengths, 7, 1, 3)
return input_lengths
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TCodeHifiGan.forward with SeamlessM4T->SeamlessM4Tv2, spkr_id->speaker_id
def forward(
self, input_ids: torch.LongTensor, speaker_id: torch.Tensor, lang_id: torch.Tensor
) -> Tuple[torch.Tensor]:
"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`SeamlessM4Tv2TextToUnitForConditionalGeneration`]. [What are input
IDs?](../glossary#input-ids)
speaker_id (`int`, *optional*):
The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`.
tgt_lang (`str`, *optional*):
The language id to use as target language for translation.
"""
hidden_states = self.unit_embedding(input_ids).transpose(1, 2)
spkr = self.speaker_embedding(speaker_id).transpose(1, 2)
lang = self.language_embedding(lang_id).transpose(1, 2)
log_dur_pred = self.dur_predictor(hidden_states.transpose(1, 2))
dur_out = torch.clamp(torch.round((torch.exp(log_dur_pred) - 1)).long(), min=1)
# B x C x T
if hidden_states.size(0) == 1:
hidden_states = torch.repeat_interleave(hidden_states, dur_out.view(-1), dim=2)
else:
# if batched sample, need to interleave per sample, and pad -> loss of parallelism
if hidden_states.shape[0] > 1 and self.training:
logger.warning(
"""`self.training=True` and you use batching. You lose parallelism during the hifigan
forward pass because the samples are interleaved."""
)
hidden_states = [
torch.repeat_interleave(hidden_state, duration, dim=-1).transpose(0, 1)
for (hidden_state, duration) in zip(hidden_states, dur_out)
]
hidden_states = nn.utils.rnn.pad_sequence(hidden_states, batch_first=True).transpose(1, 2)
spkr = spkr.repeat(1, 1, hidden_states.shape[-1])
lang = lang.repeat(1, 1, hidden_states.shape[-1])
hidden_states = torch.cat([lang, hidden_states, spkr], dim=1)
hidden_states = self.hifi_gan(hidden_states)
unit_lengths = self._get_dur_output_lengths(input_ids, dur_out)
lengths = self._get_output_hifigan_lengths(unit_lengths)
return hidden_states, lengths
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TCodeHifiGan._init_weights
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear, nn.Conv1d, nn.ConvTranspose1d)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TCodeHifiGan.apply_weight_norm
def apply_weight_norm(self):
nn.utils.weight_norm(self.hifi_gan.conv_pre)
for layer in self.hifi_gan.upsampler:
nn.utils.weight_norm(layer)
for layer in self.hifi_gan.resblocks:
layer.apply_weight_norm()
nn.utils.weight_norm(self.hifi_gan.conv_post)
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TCodeHifiGan.remove_weight_norm
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.hifi_gan.conv_pre)
for layer in self.hifi_gan.upsampler:
nn.utils.remove_weight_norm(layer)
for layer in self.hifi_gan.resblocks:
layer.remove_weight_norm()
nn.utils.remove_weight_norm(self.hifi_gan.conv_post)
############ WHOLE MODEL related code ################
@add_start_docstrings(
"The text-to-text SeamlessM4Tv2 Model transformer which can be used for T2TT.",
SEAMLESS_M4T_V2_START_DOCSTRING,
)
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToText with SeamlessM4T->SeamlessM4Tv2,SeamlessM4Tv2Tokenizer->SeamlessM4TTokenizer, SeamlessM4Tv2Processor->SeamlessM4TProcessor
class SeamlessM4Tv2ForTextToText(SeamlessM4Tv2PreTrainedModel):
_keys_to_ignore_on_load_missing = ["speech_encoder", "t2u_model", "vocoder"]
main_input_name = "input_ids"
_tied_weights_keys = [
"lm_head.weight",
"text_encoder.embed_tokens.weight",
"text_decoder.embed_tokens.weight",
]
def __init__(self, config: SeamlessM4Tv2Config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
self.text_encoder = SeamlessM4Tv2Encoder(config, self.shared)
self.text_decoder = SeamlessM4Tv2Decoder(config, self.shared)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.text_encoder
def get_decoder(self):
return self.text_decoder
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_input_embeddings(self):
return self.text_decoder.embed_tokens
def set_input_embeddings(self, value):
self.text_encoder.embed_tokens = value
self.text_decoder.embed_tokens = value
self.shared = value
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.text_encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.lm_head, self.shared)
@add_start_docstrings_to_model_forward(M4T_TEXT_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
encoder_attention_mask = attention_mask
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.text_decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(decoder_outputs[0])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(lm_logits.device)
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
outputs = decoder_outputs + encoder_outputs
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def generate(
self,
input_ids=None,
tgt_lang=None,
generation_config=None,
logits_processor=None,
stopping_criteria=None,
prefix_allowed_tokens_fn=None,
synced_gpus=False,
**kwargs,
):
"""
Generates sequences of token ids.
<Tip warning={true}>
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
model's default generation configuration. You can override any `generation_config` by passing the corresponding
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Parameters:
input_ids (`torch.Tensor` of varying shape depending on the modality, *optional*):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
tgt_lang (`str`, *optional*):
The language to use as target language for translation.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
logits_processor (`LogitsProcessorList`, *optional*):
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
stopping_criteria (`StoppingCriteriaList`, *optional*):
Custom stopping criteria that complement the default stopping criteria built from arguments and a
generation config. If a stopping criteria is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
If provided, this function constraints the beam search to allowed tokens only at each step. If not
provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
`input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
Retrieval](https://arxiv.org/abs/2010.00904).
synced_gpus (`bool`, *optional*, defaults to `False`):
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model.
Return:
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. The possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateEncoderDecoderOutput`],
- [`~generation.GenerateBeamEncoderDecoderOutput`]
"""
# prepare text_decoder_input_ids
text_decoder_input_ids = kwargs.pop("decoder_input_ids", None)
# overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids.
if tgt_lang is not None:
batch_size = len(input_ids) if input_ids is not None else len(kwargs.get("inputs_embeds"))
if hasattr(self.generation_config, "text_decoder_lang_to_code_id"):
# also accept __xxx__
tgt_lang = tgt_lang.replace("__", "")
if tgt_lang not in self.generation_config.text_decoder_lang_to_code_id:
raise ValueError(
f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in
{', '.join(self.generation_config.text_decoder_lang_to_code_id.keys())}"""
)
# tgt_lang gets priority over decoder input ids
text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang)
text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device)
else:
raise ValueError(
"""This model generation config doesn't have a `text_decoder_lang_to_code_id` key which maps
the target language to the right token id. Make sure to load the right generation config."""
)
else:
# only a warning, otherwise errors appear in the tests
logger.warning(
"""You must either specify a `tgt_lang` or pass a correct `text_decoder_input_ids` to get
a correct generation, otherwise the generation will probably make no sense."""
)
return super().generate(
input_ids,
generation_config,
logits_processor,
stopping_criteria,
prefix_allowed_tokens_fn,
synced_gpus,
decoder_input_ids=text_decoder_input_ids,
**kwargs,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past is used
if past_key_values is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"use_cache": use_cache,
}
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
)
return reordered_past
@add_start_docstrings(
"The speech-to-text SeamlessM4Tv2 Model transformer which can be used for S2TT.",
SEAMLESS_M4T_V2_START_DOCSTRING,
)
class SeamlessM4Tv2ForSpeechToText(SeamlessM4Tv2PreTrainedModel):
_keys_to_ignore_on_load_missing = ["text_decoder", "t2u_model", "vocoder"]
main_input_name = "input_features"
_tied_weights_keys = [
"lm_head.weight",
"text_decoder.embed_tokens.weight",
]
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.__init__ with SeamlessM4T->SeamlessM4Tv2
def __init__(self, config: SeamlessM4Tv2Config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
self.speech_encoder = SeamlessM4Tv2SpeechEncoder(config)
self.text_decoder = SeamlessM4Tv2Decoder(config, self.shared)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.get_encoder
def get_encoder(self):
return self.speech_encoder
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.get_decoder
def get_decoder(self):
return self.text_decoder
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.get_output_embeddings
def get_output_embeddings(self):
return self.lm_head
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.get_input_embeddings
def get_input_embeddings(self):
return self.text_decoder.embed_tokens
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.set_input_embeddings
def set_input_embeddings(self, value):
self.text_decoder.embed_tokens = value
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText._tie_weights
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.lm_head, self.shared)
@add_start_docstrings_to_model_forward(M4T_SPEECH_INPUTS_DOCSTRING)
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.forward
def forward(
self,
input_features: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.speech_encoder(
input_features=input_features,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
encoder_attention_mask = attention_mask
if attention_mask is not None:
sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to(
encoder_outputs[0].device
)
encoder_attention_mask = _compute_new_attention_mask(
hidden_states=encoder_outputs[0], seq_lens=sub_sampled_lengths
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.text_decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(decoder_outputs[0])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(lm_logits.device)
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
outputs = decoder_outputs + encoder_outputs
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.generate
def generate(
self,
input_features=None,
tgt_lang=None,
generation_config=None,
logits_processor=None,
stopping_criteria=None,
prefix_allowed_tokens_fn=None,
synced_gpus=False,
**kwargs,
):
"""
Generates sequences of token ids.
<Tip warning={true}>
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
model's default generation configuration. You can override any `generation_config` by passing the corresponding
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Parameters:
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`):
Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the
[`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details.
tgt_lang (`str`, *optional*):
The language to use as target language for translation.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
logits_processor (`LogitsProcessorList`, *optional*):
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
stopping_criteria (`StoppingCriteriaList`, *optional*):
Custom stopping criteria that complement the default stopping criteria built from arguments and a
generation config. If a stopping criteria is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
If provided, this function constraints the beam search to allowed tokens only at each step. If not
provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
`input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
Retrieval](https://arxiv.org/abs/2010.00904).
synced_gpus (`bool`, *optional*, defaults to `False`):
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model.
Return:
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. The possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateEncoderDecoderOutput`],
- [`~generation.GenerateBeamEncoderDecoderOutput`]
"""
text_decoder_input_ids = kwargs.pop("decoder_input_ids", None)
# overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids.
if tgt_lang is not None:
inputs = kwargs.get("input_embeds") if input_features is None else input_features
inputs = (
inputs
if inputs is not None
else kwargs.get("encoder_outputs", {"last_hidden_state": None})["last_hidden_state"]
)
batch_size = len(inputs)
if hasattr(self.generation_config, "text_decoder_lang_to_code_id"):
# also accept __xxx__
tgt_lang = tgt_lang.replace("__", "")
if tgt_lang not in self.generation_config.text_decoder_lang_to_code_id:
raise ValueError(
f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in
{', '.join(self.generation_config.text_decoder_lang_to_code_id.keys())}"""
)
# tgt_lang gets priority over decoder input ids
text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang)
text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device)
else:
raise ValueError(
"""This model generation config doesn't have a `text_decoder_lang_to_code_id` key which maps
the target language to the right token id. Make sure to load the right generation config."""
)
else:
# only a warning, otherwise errors appear in the tests
logger.warning(
"""You must either specify a `tgt_lang` or pass a correct `text_decoder_input_ids` to get
a correct generation, otherwise the generation will probably make no sense."""
)
return super().generate(
input_features,
generation_config,
logits_processor,
stopping_criteria,
prefix_allowed_tokens_fn,
synced_gpus,
decoder_input_ids=text_decoder_input_ids,
**kwargs,
)
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.prepare_inputs_for_generation
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past is used
if past_key_values is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"use_cache": use_cache,
}
@staticmethod
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText._reorder_cache
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
)
return reordered_past
@add_start_docstrings(
"The text-to-speech SeamlessM4Tv2 Model transformer which can be used for T2ST.",
SEAMLESS_M4T_V2_START_DOCSTRING,
)
class SeamlessM4Tv2ForTextToSpeech(SeamlessM4Tv2PreTrainedModel):
_keys_to_ignore_on_load_missing = ["speech_encoder"]
main_input_name = "input_ids"
_tied_weights_keys = [
"lm_head.weight",
"text_encoder.embed_tokens.weight",
"text_decoder.embed_tokens.weight",
]
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.__init__ with SeamlessM4T->SeamlessM4Tv2
def __init__(self, config: SeamlessM4Tv2Config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
self.text_encoder = SeamlessM4Tv2Encoder(config, self.shared)
self.text_decoder = SeamlessM4Tv2Decoder(config, self.shared)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
self.t2u_model = SeamlessM4Tv2TextToUnitForConditionalGeneration(config)
self.vocoder = SeamlessM4Tv2CodeHifiGan(config)
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.get_encoder
def get_encoder(self):
return self.text_encoder
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.get_decoder
def get_decoder(self):
return self.text_decoder
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.get_output_embeddings
def get_output_embeddings(self):
return self.lm_head
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.get_input_embeddings
def get_input_embeddings(self):
return self.text_decoder.embed_tokens
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.set_input_embeddings
def set_input_embeddings(self, value):
self.text_encoder.embed_tokens = value
self.text_decoder.embed_tokens = value
self.shared = value
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech._tie_weights
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.text_encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.lm_head, self.shared)
@add_start_docstrings_to_model_forward(M4T_TEXT_INPUTS_DOCSTRING)
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.forward with SeamlessM4T->SeamlessM4Tv2
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
# if encoder_outputs is not None, it's probably used within a .generate method so no need to warn
logger.warning(
"This is the same forward method as `SeamlessM4Tv2ForTextToText`."
"It doesn't use the text-to-unit model `SeamlessM4Tv2TextToUnitForConditionalGeneration`."
"If you want to generate speech, use the `.generate` method."
)
encoder_outputs = self.text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
encoder_attention_mask = attention_mask
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.text_decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(decoder_outputs[0])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(lm_logits.device)
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
outputs = decoder_outputs + encoder_outputs
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@torch.no_grad()
def generate(
self,
input_ids: Optional[torch.Tensor] = None,
return_intermediate_token_ids: Optional[bool] = None,
tgt_lang: Optional[str] = None,
speaker_id: Optional[int] = 0,
**kwargs,
) -> Union[torch.Tensor, SeamlessM4Tv2GenerationOutput]:
"""
Generates translated audio waveforms.
<Tip>
This method successively calls the `.generate` function of two different sub-models. You can specify keyword
arguments at two different levels: general arguments that will be passed to both models, or prefixed arguments
that will be passed to one of them.
For example, calling `.generate(input_ids, num_beams=4, speech_do_sample=True)` will successively perform
beam-search decoding on the text model, and multinomial beam-search sampling on the speech model.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
return_intermediate_token_ids (`bool`, *optional*):
If `True`, also returns the intermediate generated text and unit tokens. Set to `True` if you also want
to get translated text alongside the audio.
tgt_lang (`str`, *optional*):
The language to use as target language for translation.
speaker_id (`int`, *optional*, defaults to 0):
The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`.
kwargs (*optional*):
Remaining dictionary of keyword arguments that will be passed to [`GenerationMixin.generate`]. Keyword
arguments are of two types:
- Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model,
except for `decoder_input_ids` which will only be passed through the text components.
- With a *text_* or *speech_* prefix, they will be input for the `generate` method of the
text model and speech model respectively. It has the priority over the keywords without a prefix.
This means you can, for example, specify a generation strategy for one generation but not for the
other.
Returns:
`Union[SeamlessM4Tv2GenerationOutput, Tuple[Tensor]]`:
- If `return_intermediate_token_ids`, returns [`SeamlessM4Tv2GenerationOutput`].
- If not `return_intermediate_token_ids`, returns a tuple composed of waveforms of shape `(batch_size,
sequence_length)`and and `waveform_lengths` which gives the length of each sample.
"""
batch_size = len(input_ids) if input_ids is not None else len(kwargs.get("inputs_embeds"))
if tgt_lang is None:
raise ValueError("You must specify a `tgt_lang` to generate translated speech.")
else:
# also accept __xxx__
tgt_lang = tgt_lang.replace("__", "")
for key in ["text_decoder_lang_to_code_id", "t2u_lang_code_to_id", "vocoder_lang_code_to_id"]:
lang_code_to_id = getattr(self.generation_config, key, None)
if lang_code_to_id is None:
raise ValueError(
f"""This model generation config doesn't have a `{key}` key which maps the target language
to the right token id. Make sure to load the right generation config."""
)
elif tgt_lang not in lang_code_to_id:
raise ValueError(
f"""`tgt_lang={tgt_lang}` is not supported by this model.
Please specify a `tgt_lang` in {','.join(lang_code_to_id.keys())}. Note that SeamlessM4Tv2 supports
more languages for text translation than for speech synthesis."""
)
kwargs_text, kwargs_speech = format_speech_generation_kwargs(kwargs)
kwargs_text["output_hidden_states"] = True
kwargs_text["return_dict_in_generate"] = True
kwargs_text["output_scores"] = True
text_decoder_input_ids = kwargs_text.get("decoder_input_ids")
# overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids.
text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang)
text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device)
kwargs_text["decoder_input_ids"] = text_decoder_input_ids
# first generation
text_generation_output = super().generate(input_ids, **kwargs_text)
sequences = text_generation_output.sequences
# prepare second generation
num_return_sequences = len(sequences) // batch_size
attention_mask = kwargs_speech.get("attention_mask", kwargs_text.get("attention_mask", None))
if attention_mask is not None:
# repeat attention mask alongside batch dimension
attention_mask = torch.repeat_interleave(attention_mask, num_return_sequences, dim=0)
encoder_hidden_states = text_generation_output.encoder_hidden_states[-1]
# repeat attention mask alongside batch dimension
encoder_hidden_states = torch.repeat_interleave(encoder_hidden_states, num_return_sequences, dim=0)
# get decoder last hidden state - must do a pass through the text decoder
t2u_input_embeds = self.text_decoder(
input_ids=sequences[:, :-1], # Manually trim the final EOS token
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=attention_mask,
).last_hidden_state
pad_token_id = self.generation_config.pad_token_id
# Compute new attention mask
seq_lens = (sequences[:, :-1] != pad_token_id).int().sum(1)
t2u_model_attention_mask = _compute_new_attention_mask(t2u_input_embeds, seq_lens)
kwargs_speech["attention_mask"] = t2u_model_attention_mask
# REMOVE EOS and lang_id
t2u_input_ids = sequences[:, 2:-1]
# replace every other EOS
t2u_input_ids = torch.masked_fill(
t2u_input_ids, t2u_input_ids == self.generation_config.eos_token_id, pad_token_id
)
# compute t2u_char_input_ids
t2u_subwords = self._indices_to_subwords(t2u_input_ids)
t2u_char_count_per_id = self._count_character_length_in_subword(
t2u_input_ids, t2u_subwords, pad_token_id=pad_token_id
)
# Add pads for lang, EOS tokens as per NLLB "source" tokenizer mode.
pad_zero = t2u_char_count_per_id.new_zeros((t2u_char_count_per_id.shape[0], 1))
t2u_char_count_per_id = torch.cat([pad_zero, t2u_char_count_per_id, pad_zero], dim=1)
t2u_char_input_ids = self._get_char_input_ids(
t2u_input_ids, t2u_subwords, t2u_char_count_per_id, pad_token_id=pad_token_id
)
# second pass
t2u_output = self.t2u_model(
inputs_embeds=t2u_input_embeds,
char_input_ids=t2u_char_input_ids,
char_count_per_id=t2u_char_count_per_id,
**kwargs_speech,
)
t2u_logits = t2u_output[0]
padding_mask = t2u_output[1].bool()
# The text-to-unit model is non auto-regressive. We keep the ability to use sampling with temperature
temperature = kwargs_speech.get("temperature", None)
if (temperature is None or temperature == 1.0) or not kwargs_speech.get("do_sample", False):
unit_ids = t2u_logits.argmax(dim=-1)
else:
t2u_logits = t2u_logits / temperature
# apply softmax
probs = nn.functional.softmax(t2u_logits, dim=-1)
# reshape to 2D: (batch_size, seq_len, t2u_vocab_size) -> (batch_size*seq_len, t2u_vocab_size)
probs = probs.reshape((-1, probs.shape[2]))
# multinomial then reshape : (batch_size*seq_len)-> (batch_size,seq_len)
unit_ids = torch.multinomial(probs, num_samples=1).view(t2u_logits.shape[0], -1)
output_unit_ids = unit_ids.detach().clone()
replace_mask = (unit_ids == self.config.t2u_eos_token_id) | (~padding_mask)
# replace eos per pad
unit_ids = unit_ids.masked_fill(replace_mask, self.config.t2u_pad_token_id)
# offset of control symbols
unit_ids = torch.where(
unit_ids == self.config.t2u_pad_token_id, unit_ids, unit_ids - self.config.vocoder_offset
)
vocoder_tgt_lang_id = self.generation_config.vocoder_lang_code_to_id.get(tgt_lang)
vocoder_tgt_lang_id = torch.tensor([[vocoder_tgt_lang_id]] * len(unit_ids)).to(self.device)
speaker_id = torch.tensor([[speaker_id]] * len(unit_ids)).to(self.device)
waveform, waveform_lengths = self.vocoder(
input_ids=unit_ids, speaker_id=speaker_id, lang_id=vocoder_tgt_lang_id
)
if return_intermediate_token_ids:
return SeamlessM4Tv2GenerationOutput(
waveform=waveform,
waveform_lengths=waveform_lengths,
sequences=sequences,
unit_sequences=output_unit_ids,
)
return waveform, waveform_lengths
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.prepare_inputs_for_generation
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past is used
if past_key_values is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"use_cache": use_cache,
}
@staticmethod
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech._reorder_cache
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
)
return reordered_past
@add_start_docstrings(
"The speech-to-speech SeamlessM4Tv2 Model transformer which can be used for S2ST.",
SEAMLESS_M4T_V2_START_DOCSTRING,
)
class SeamlessM4Tv2ForSpeechToSpeech(SeamlessM4Tv2PreTrainedModel):
_keys_to_ignore_on_load_missing = ["text_encoder"]
main_input_name = "input_features"
_tied_weights_keys = [
"lm_head.weight",
"text_decoder.embed_tokens.weight",
]
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.__init__ with SeamlessM4T->SeamlessM4Tv2
def __init__(self, config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
self.speech_encoder = SeamlessM4Tv2SpeechEncoder(config)
self.text_decoder = SeamlessM4Tv2Decoder(config, self.shared)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
self.t2u_model = SeamlessM4Tv2TextToUnitForConditionalGeneration(config)
self.vocoder = SeamlessM4Tv2CodeHifiGan(config)
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.get_encoder
def get_encoder(self):
return self.speech_encoder
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.get_decoder
def get_decoder(self):
return self.text_decoder
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.get_output_embeddings
def get_output_embeddings(self):
return self.lm_head
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.get_input_embeddings
def get_input_embeddings(self):
return self.text_decoder.embed_tokens
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.set_input_embeddings
def set_input_embeddings(self, value):
self.text_decoder.embed_tokens = value
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech._tie_weights
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.lm_head, self.shared)
@add_start_docstrings_to_model_forward(M4T_SPEECH_INPUTS_DOCSTRING)
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.forward with SeamlessM4T->SeamlessM4Tv2
def forward(
self,
input_features: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
# if encoder_outputs is not None, it's probably used within a .generate method so no need to warn
logger.warning(
"This is the same forward method as `SeamlessM4Tv2ForSpeechToText`. It doesn't use `self.t2u_model`."
"If you want to generate speech, use the `generate` method."
)
encoder_outputs = self.speech_encoder(
input_features=input_features,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
encoder_attention_mask = attention_mask
if attention_mask is not None:
sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to(
encoder_outputs[0].device
)
encoder_attention_mask = _compute_new_attention_mask(
hidden_states=encoder_outputs[0], seq_lens=sub_sampled_lengths
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.text_decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(decoder_outputs[0])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(lm_logits.device)
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
outputs = decoder_outputs + encoder_outputs
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@torch.no_grad()
def generate(
self,
input_features: Optional[torch.Tensor] = None,
return_intermediate_token_ids: Optional[bool] = None,
tgt_lang: Optional[str] = None,
speaker_id: Optional[int] = 0,
**kwargs,
) -> Union[torch.Tensor, SeamlessM4Tv2GenerationOutput]:
"""
Generates translated audio waveforms.
<Tip>
This method successively calls the `.generate` function of two different sub-models. You can specify keyword
arguments at two different levels: general arguments that will be passed to both models, or prefixed arguments
that will be passed to one of them.
For example, calling `.generate(input_features, num_beams=4, speech_do_sample=True)` will successively perform
beam-search decoding on the text model, and multinomial beam-search sampling on the speech model.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Args:
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`):
Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the
[`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details.
return_intermediate_token_ids (`bool`, *optional*):
If `True`, also returns the intermediate generated text and unit tokens. Set to `True` if you also want
to get translated text alongside the audio.
tgt_lang (`str`, *optional*):
The language to use as target language for translation.
speaker_id (`int`, *optional*, defaults to 0):
The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`.
kwargs (*optional*):
Remaining dictionary of keyword arguments that will be passed to [`GenerationMixin.generate`]. Keyword
arguments are of two types:
- Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model,
except for `decoder_input_ids` which will only be passed through the text components.
- With a *text_* or *speech_* prefix, they will be input for the `generate` method of the
text model and speech model respectively. It has the priority over the keywords without a prefix.
This means you can, for example, specify a generation strategy for one generation but not for the
other.
Returns:
`Union[SeamlessM4Tv2GenerationOutput, Tuple[Tensor]]`:
- If `return_intermediate_token_ids`, returns [`SeamlessM4Tv2GenerationOutput`].
- If not `return_intermediate_token_ids`, returns a tuple composed of waveforms of shape `(batch_size,
sequence_length)`and and `waveform_lengths` which gives the length of each sample.
"""
batch_size = len(input_features) if input_features is not None else len(kwargs.get("inputs_embeds"))
if tgt_lang is None:
raise ValueError("You must specify a `tgt_lang` to generate translated speech.")
else:
# also accept __xxx__
tgt_lang = tgt_lang.replace("__", "")
for key in ["text_decoder_lang_to_code_id", "t2u_lang_code_to_id", "vocoder_lang_code_to_id"]:
lang_code_to_id = getattr(self.generation_config, key, None)
if lang_code_to_id is None:
raise ValueError(
f"""This model generation config doesn't have a `{key}` key which maps the target language
to the right token id. Make sure to load the right generation config."""
)
elif tgt_lang not in lang_code_to_id:
raise ValueError(
f"""`tgt_lang={tgt_lang}` is not supported by this model.
Please specify a `tgt_lang` in {','.join(lang_code_to_id.keys())}. Note that SeamlessM4Tv2 supports
more languages for text translation than for speech synthesis."""
)
kwargs_text, kwargs_speech = format_speech_generation_kwargs(kwargs)
kwargs_text["output_hidden_states"] = True
kwargs_text["return_dict_in_generate"] = True
kwargs_text["output_scores"] = True
text_decoder_input_ids = kwargs_text.get("decoder_input_ids")
# overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids.
text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang)
text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device)
kwargs_text["decoder_input_ids"] = text_decoder_input_ids
# first generation
text_generation_output = super().generate(input_features, **kwargs_text)
sequences = text_generation_output.sequences
# prepare second generation
num_return_sequences = len(sequences) // batch_size
attention_mask = kwargs_speech.get("attention_mask", kwargs_text.get("attention_mask", None))
# get last_hidden_state from encoder
encoder_hidden_states = self.speech_encoder(input_features=input_features, attention_mask=attention_mask)[0]
# input modality = speech so new attention mask for the decoder
if attention_mask is not None:
sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to(
encoder_hidden_states.device
)
attention_mask = _compute_new_attention_mask(
hidden_states=encoder_hidden_states, seq_lens=sub_sampled_lengths
)
# repeat attention mask alongside batch dimension
attention_mask = torch.repeat_interleave(attention_mask, num_return_sequences, dim=0)
# repeat attention mask alongside batch dimension
encoder_hidden_states = torch.repeat_interleave(encoder_hidden_states, num_return_sequences, dim=0)
# get decoder last hidden state - must do a pass through the text decoder
t2u_input_embeds = self.text_decoder(
input_ids=sequences[:, :-1], # Manually trim the final EOS token
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=attention_mask,
).last_hidden_state
pad_token_id = self.generation_config.pad_token_id
# Compute new attention mask
seq_lens = (sequences[:, :-1] != pad_token_id).int().sum(1)
t2u_model_attention_mask = _compute_new_attention_mask(t2u_input_embeds, seq_lens)
kwargs_speech["attention_mask"] = t2u_model_attention_mask
# REMOVE EOS and lang_id
t2u_input_ids = sequences[:, 2:-1]
# replace every other EOS
t2u_input_ids = torch.masked_fill(
t2u_input_ids, t2u_input_ids == self.generation_config.eos_token_id, pad_token_id
)
# compute t2u_char_input_ids
t2u_subwords = self._indices_to_subwords(t2u_input_ids)
t2u_char_count_per_id = self._count_character_length_in_subword(
t2u_input_ids, t2u_subwords, pad_token_id=pad_token_id
)
# Add pads for lang, EOS tokens as per NLLB "source" tokenizer mode.
pad_zero = t2u_char_count_per_id.new_zeros((t2u_char_count_per_id.shape[0], 1))
t2u_char_count_per_id = torch.cat([pad_zero, t2u_char_count_per_id, pad_zero], dim=1)
t2u_char_input_ids = self._get_char_input_ids(
t2u_input_ids, t2u_subwords, t2u_char_count_per_id, pad_token_id=pad_token_id
)
# second pass
t2u_output = self.t2u_model(
inputs_embeds=t2u_input_embeds,
char_input_ids=t2u_char_input_ids,
char_count_per_id=t2u_char_count_per_id,
**kwargs_speech,
)
t2u_logits = t2u_output[0]
padding_mask = t2u_output[1].bool()
# The text-to-unit model is non auto-regressive. We keep the ability to use sampling with temperature
temperature = kwargs_speech.get("temperature", None)
if (temperature is None or temperature == 1.0) or not kwargs_speech.get("do_sample", False):
unit_ids = t2u_logits.argmax(dim=-1)
else:
t2u_logits = t2u_logits / temperature
# apply softmax
probs = nn.functional.softmax(t2u_logits, dim=-1)
# reshape to 2D: (batch_size, seq_len, t2u_vocab_size) -> (batch_size*seq_len, t2u_vocab_size)
probs = probs.reshape((-1, probs.shape[2]))
# multinomial then reshape : (batch_size*seq_len)-> (batch_size,seq_len)
unit_ids = torch.multinomial(probs, num_samples=1).view(t2u_logits.shape[0], -1)
output_unit_ids = unit_ids.detach().clone()
replace_mask = (unit_ids == self.config.t2u_eos_token_id) | (~padding_mask)
# replace eos per pad
unit_ids = unit_ids.masked_fill(replace_mask, self.config.t2u_pad_token_id)
# offset of control symbols
unit_ids = torch.where(
unit_ids == self.config.t2u_pad_token_id, unit_ids, unit_ids - self.config.vocoder_offset
)
vocoder_tgt_lang_id = self.generation_config.vocoder_lang_code_to_id.get(tgt_lang)
vocoder_tgt_lang_id = torch.tensor([[vocoder_tgt_lang_id]] * len(unit_ids)).to(self.device)
speaker_id = torch.tensor([[speaker_id]] * len(unit_ids)).to(self.device)
waveform, waveform_lengths = self.vocoder(
input_ids=unit_ids, speaker_id=speaker_id, lang_id=vocoder_tgt_lang_id
)
if return_intermediate_token_ids:
return SeamlessM4Tv2GenerationOutput(
waveform=waveform,
waveform_lengths=waveform_lengths,
sequences=sequences,
unit_sequences=output_unit_ids,
)
return waveform, waveform_lengths
@staticmethod
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech._reorder_cache
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
)
return reordered_past
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.prepare_inputs_for_generation
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past is used
if past_key_values is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"use_cache": use_cache,
}
@add_start_docstrings(
"The original SeamlessM4Tv2 Model transformer which can be used for every tasks available (S2ST, S2TT, T2TT, T2ST).",
SEAMLESS_M4T_V2_START_DOCSTRING,
"""
current_modality (`str`, *optional*, defaults to `"text"`):
Default modality. Used only to initialize the model. It can be set to `"text"` or `"speech"`.
This will be updated automatically according to the modality passed to the forward and generate passes (`input_ids` for text and `input_features` for audio).
""",
)
class SeamlessM4Tv2Model(SeamlessM4Tv2PreTrainedModel):
_tied_weights_keys = [
"lm_head.weight",
"text_encoder.embed_tokens.weight",
"text_decoder.embed_tokens.weight",
]
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.__init__ with SeamlessM4T->SeamlessM4Tv2
def __init__(self, config, current_modality="text"):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
self.text_encoder = SeamlessM4Tv2Encoder(config, self.shared)
self.speech_encoder = SeamlessM4Tv2SpeechEncoder(config)
self.text_decoder = SeamlessM4Tv2Decoder(config, self.shared)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
self.current_modality = current_modality
if current_modality == "speech":
self.main_input_name = "input_features"
# these models already call post_init in their initialization
self.t2u_model = SeamlessM4Tv2TextToUnitForConditionalGeneration(config)
self.vocoder = SeamlessM4Tv2CodeHifiGan(config)
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.set_modality
def set_modality(self, modality="text"):
if modality == "text":
self.main_input_name = "input_ids"
self.current_modality = "text"
elif modality == "speech":
self.main_input_name = "input_features"
self.current_modality = "speech"
else:
raise ValueError(f"`modality={modality}` is not a valid modality. It must be `text` or `speech`.")
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.get_encoder
def get_encoder(self):
if self.current_modality == "text":
return self.text_encoder
else:
return self.speech_encoder
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.get_output_embeddings
def get_output_embeddings(self):
return self.lm_head
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.get_input_embeddings
def get_input_embeddings(self):
return self.text_decoder.embed_tokens
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.set_input_embeddings
def set_input_embeddings(self, value):
self.text_encoder.embed_tokens = value
self.text_decoder.embed_tokens = value
self.shared = value
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel._tie_weights
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.text_encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.lm_head, self.shared)
@add_start_docstrings_to_model_forward(M4T_MODEL_INPUTS_DOCSTRING)
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.forward with SeamlessM4T->SeamlessM4Tv2
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
input_features: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
if input_ids is None and input_features is None and inputs_embeds is None and encoder_outputs is None:
raise ValueError(
"`input_ids`,`input_features`, `inputs_embeds` and `encoder_outputs` are all empty. Make sure at least one of them is not."
)
elif input_features is not None:
if input_ids is not None:
logger.warning(
"`input_ids` is not `None` but `input_features` has been given."
"`input_features` will be used in priority through the `speech_encoder`. "
"Make sure that `input_features` and `input_ids` are mutually exclusive."
)
if inputs_embeds is not None:
logger.warning(
"`inputs_embeds` is not `None` but `input_features` has been given."
"`input_features` will be used in priority through `speech_encoder`. "
"`inputs_embeds` will be ignored."
)
# if encoder_outputs is not None, it's probably used within a .generate method so no need to warn
logger.warning(
"This calls the same method `forward` as `SeamlessM4Tv2ForTextToText` and `SeamlessM4Tv2ForSpeechToText`"
"depending on the input modality. If you want to generate speech, use the `generate` method."
)
self.set_modality("speech")
encoder_outputs = self.speech_encoder(
input_features=input_features,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif input_ids is not None or inputs_embeds is not None:
# if encoder_outputs is not None, it's probably used within a .generate method so no need to warn
logger.warning(
"This calls the same method `forward` as `SeamlessM4Tv2ForTextToText` and `SeamlessM4Tv2ForSpeechToText`"
"depending on the input modality. If you want to generate speech, use the `generate` method."
)
self.set_modality("text")
encoder_outputs = self.text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
encoder_attention_mask = attention_mask
# input modality = speech so new attention mask
if self.current_modality == "speech" and attention_mask is not None:
sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to(
encoder_outputs[0].device
)
encoder_attention_mask = _compute_new_attention_mask(
hidden_states=encoder_outputs[0], seq_lens=sub_sampled_lengths
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.text_decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(decoder_outputs[0])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(lm_logits.device)
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
outputs = decoder_outputs + encoder_outputs
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@torch.no_grad()
def generate(
self,
input_ids: Optional[torch.Tensor] = None,
input_features: Optional[torch.Tensor] = None,
return_intermediate_token_ids: Optional[bool] = None,
tgt_lang: Optional[str] = None,
speaker_id: Optional[int] = 0,
generate_speech: Optional[bool] = True,
**kwargs,
) -> Union[torch.Tensor, SeamlessM4Tv2GenerationOutput]:
"""
Generates translated token ids and/or translated audio waveforms.
<Tip>
This method successively calls the `.generate` function of two different sub-models. You can specify keyword
arguments at two different levels: general arguments that will be passed to both models, or prefixed arguments
that will be passed to one of them.
For example, calling `.generate(input_ids=input_ids, num_beams=4, speech_do_sample=True)` will successively
perform beam-search decoding on the text model, and multinomial beam-search sampling on the speech model.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`, *optional*):
Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the
[`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details.
return_intermediate_token_ids (`bool`, *optional*):
If `True`, also returns the intermediate generated text and unit tokens. Set to `True` if you also want
to get translated text alongside the audio. Note that if `generate_speech=True`, this parameter will be
ignored.
tgt_lang (`str`, *optional*):
The language to use as target language for translation.
speaker_id (`int`, *optional*, defaults to 0):
The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`.
generate_speech (`bool`, *optional*, defaults to `True`):
If `False`, will only returns the text tokens and won't generate speech.
kwargs (*optional*):
Remaining dictioy of keyword arguments that will be passed to [`GenerationMixin.generate`]. Keyword
arguments are of two types:
- Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model,
except for `decoder_input_ids` which will only be passed through the text components.
- With a *text_* or *speech_* prefix, they will be input for the `generate` method of the
text model and speech model respectively. It has the priority over the keywords without a prefix.
This means you can, for example, specify a generation strategy for one generation but not for the
other.
Returns:
`Union[SeamlessM4Tv2GenerationOutput, Tuple[Tensor], ModelOutput]`:
- If `generate_speech` and `return_intermediate_token_ids`, returns [`SeamlessM4Tv2GenerationOutput`].
- If `generate_speech` and not `return_intermediate_token_ids`, returns a tuple composed of waveforms of
shape `(batch_size, sequence_length)`and and `waveform_lengths` which gives the length of each sample.
- If `generate_speech=False`, it will returns `ModelOutput`.
"""
if input_ids is None and input_features is None and kwargs.get("inputs_embeds", None) is None:
raise ValueError(
"`input_ids`,`input_features` and `inputs_embeds` are all empty. Make sure at least one of them is not."
)
if generate_speech and tgt_lang is None:
raise ValueError("You must specify a `tgt_lang` to generate translated speech.")
if tgt_lang is not None:
# also accept __xxx__
tgt_lang = tgt_lang.replace("__", "")
if generate_speech:
keys_to_check = ["text_decoder_lang_to_code_id", "t2u_lang_code_to_id", "vocoder_lang_code_to_id"]
else:
keys_to_check = ["text_decoder_lang_to_code_id"]
for key in keys_to_check:
lang_code_to_id = getattr(self.generation_config, key, None)
if lang_code_to_id is None:
raise ValueError(
f"""This model generation config doesn't have a `{key}` key which maps the target language
to the right token id. Make sure to load the right generation config."""
)
elif tgt_lang not in lang_code_to_id:
raise ValueError(
f"""`tgt_lang={tgt_lang}` is not supported by this model.
Please specify a `tgt_lang` in {','.join(lang_code_to_id.keys())}. Note that SeamlessM4Tv2 supports
more languages for text translation than for speech synthesis."""
)
batch_size = (
len(input_features)
if input_features is not None
else (len(input_ids) if input_ids is not None else len(kwargs.get("inputs_embeds")))
)
kwargs_text, kwargs_speech = format_speech_generation_kwargs(kwargs)
kwargs_text["output_hidden_states"] = True
kwargs_text["return_dict_in_generate"] = True
kwargs_text["output_scores"] = True
text_decoder_input_ids = kwargs_text.get("decoder_input_ids")
# overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids.
if tgt_lang is not None:
# tgt_lang gets priority over decoder input ids
text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang)
text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device)
kwargs_text["decoder_input_ids"] = text_decoder_input_ids
# first generation
if input_features is not None:
self.set_modality("speech")
if input_ids is not None:
logger.warning(
"`input_features` and `input_ids` are both non empty. `input_features` will be used in priority "
"through the speech encoder. Make sure `input_features=None` if you want to use the text encoder."
)
text_generation_output = super().generate(input_features=input_features, **kwargs_text)
else:
self.set_modality("text")
text_generation_output = super().generate(input_ids=input_ids, input_features=None, **kwargs_text)
sequences = text_generation_output.sequences
if not generate_speech:
return text_generation_output
# prepare second generation
num_return_sequences = len(sequences) // batch_size
attention_mask = kwargs_speech.get("attention_mask", kwargs_text.get("attention_mask", None))
# get encoder last hidden states
if self.current_modality == "speech":
# get last_hidden_state from encoder - must do a pass through the speech encoder
encoder_hidden_states = self.speech_encoder(
input_features=input_features, attention_mask=attention_mask
).last_hidden_state
# input modality = speech so new attention mask for the decoder
if attention_mask is not None:
sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to(
encoder_hidden_states.device
)
attention_mask = _compute_new_attention_mask(
hidden_states=encoder_hidden_states, seq_lens=sub_sampled_lengths
)
else:
encoder_hidden_states = text_generation_output.encoder_hidden_states[-1]
if attention_mask is not None:
# repeat attention mask alongside batch dimension
attention_mask = torch.repeat_interleave(attention_mask, num_return_sequences, dim=0)
# repeat attention mask alongside batch dimension
encoder_hidden_states = torch.repeat_interleave(encoder_hidden_states, num_return_sequences, dim=0)
# get decoder last hidden state - must do a pass through the text decoder
t2u_input_embeds = self.text_decoder(
input_ids=sequences[:, :-1], # Manually trim the final EOS token
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=attention_mask,
).last_hidden_state
pad_token_id = self.generation_config.pad_token_id
# Compute new attention mask
seq_lens = (sequences[:, :-1] != pad_token_id).int().sum(1)
t2u_model_attention_mask = _compute_new_attention_mask(t2u_input_embeds, seq_lens)
kwargs_speech["attention_mask"] = t2u_model_attention_mask
# REMOVE EOS and lang_id
t2u_input_ids = sequences[:, 2:-1]
# replace every other EOS
t2u_input_ids = torch.masked_fill(
t2u_input_ids, t2u_input_ids == self.generation_config.eos_token_id, pad_token_id
)
# compute t2u_char_input_ids
t2u_subwords = self._indices_to_subwords(t2u_input_ids)
t2u_char_count_per_id = self._count_character_length_in_subword(
t2u_input_ids, t2u_subwords, pad_token_id=pad_token_id
)
# Add pads for lang, EOS tokens as per NLLB "source" tokenizer mode.
pad_zero = t2u_char_count_per_id.new_zeros((t2u_char_count_per_id.shape[0], 1))
t2u_char_count_per_id = torch.cat([pad_zero, t2u_char_count_per_id, pad_zero], dim=1)
t2u_char_input_ids = self._get_char_input_ids(
t2u_input_ids, t2u_subwords, t2u_char_count_per_id, pad_token_id=pad_token_id
)
# second pass
t2u_output = self.t2u_model(
inputs_embeds=t2u_input_embeds,
char_input_ids=t2u_char_input_ids,
char_count_per_id=t2u_char_count_per_id,
**kwargs_speech,
)
t2u_logits = t2u_output[0]
padding_mask = t2u_output[1].bool()
# The text-to-unit model is non auto-regressive. We keep the ability to use sampling with temperature
temperature = kwargs_speech.get("temperature", None)
if (temperature is None or temperature == 1.0) or not kwargs_speech.get("do_sample", False):
unit_ids = t2u_logits.argmax(dim=-1)
else:
t2u_logits = t2u_logits / temperature
# apply softmax
probs = nn.functional.softmax(t2u_logits, dim=-1)
# reshape to 2D: (batch_size, seq_len, t2u_vocab_size) -> (batch_size*seq_len, t2u_vocab_size)
probs = probs.reshape((-1, probs.shape[2]))
# multinomial then reshape : (batch_size*seq_len)-> (batch_size,seq_len)
unit_ids = torch.multinomial(probs, num_samples=1).view(t2u_logits.shape[0], -1)
output_unit_ids = unit_ids.detach().clone()
replace_mask = (unit_ids == self.config.t2u_eos_token_id) | (~padding_mask)
# replace eos per pad
unit_ids = unit_ids.masked_fill(replace_mask, self.config.t2u_pad_token_id)
# offset of control symbols
unit_ids = torch.where(
unit_ids == self.config.t2u_pad_token_id, unit_ids, unit_ids - self.config.vocoder_offset
)
vocoder_tgt_lang_id = self.generation_config.vocoder_lang_code_to_id.get(tgt_lang)
vocoder_tgt_lang_id = torch.tensor([[vocoder_tgt_lang_id]] * len(unit_ids)).to(self.device)
speaker_id = torch.tensor([[speaker_id]] * len(unit_ids)).to(self.device)
waveform, waveform_lengths = self.vocoder(
input_ids=unit_ids, speaker_id=speaker_id, lang_id=vocoder_tgt_lang_id
)
if return_intermediate_token_ids:
return SeamlessM4Tv2GenerationOutput(
waveform=waveform,
waveform_lengths=waveform_lengths,
sequences=sequences,
unit_sequences=output_unit_ids,
)
return waveform, waveform_lengths
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.prepare_inputs_for_generation
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past is used
if past_key_values is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"use_cache": use_cache,
}
@staticmethod
# Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel._reorder_cache
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
)
return reordered_past
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/beit/modeling_flax_beit.py | # coding=utf-8
# Copyright 2021 Microsoft Research and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, List, Optional, Tuple
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from ...modeling_flax_outputs import (
FlaxBaseModelOutput,
FlaxBaseModelOutputWithPooling,
FlaxMaskedLMOutput,
FlaxSequenceClassifierOutput,
)
from ...modeling_flax_utils import (
ACT2FN,
FlaxPreTrainedModel,
append_replace_return_docstrings,
overwrite_call_docstring,
)
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward
from .configuration_beit import BeitConfig
@flax.struct.dataclass
class FlaxBeitModelOutputWithPooling(FlaxBaseModelOutputWithPooling):
"""
Class for outputs of [`FlaxBeitModel`].
Args:
last_hidden_state (`jnp.ndarray` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`jnp.ndarray` of shape `(batch_size, hidden_size)`):
Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if
*config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token
will be returned.
hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus
the initial embedding outputs.
attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
BEIT_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a
[flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`BeitConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
BEIT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`AutoImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
def relative_position_index_init(window_size: Tuple[int, int]) -> jnp.ndarray:
"""
get pair-wise relative position index for each token inside the window
"""
num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
coords_h = np.arange(window_size[0])
coords_w = np.arange(window_size[1])
coords = np.stack(np.meshgrid(coords_h, coords_w, indexing="ij")) # 2, Wh, Ww
coords_flatten = np.reshape(coords, (2, -1))
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = np.transpose(relative_coords, (1, 2, 0)) # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = np.zeros(shape=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = num_relative_distance - 3
relative_position_index[0:, 0] = num_relative_distance - 2
relative_position_index[0, 0] = num_relative_distance - 1
return jnp.array(relative_position_index)
def ones_with_scale(key, shape, scale, dtype=jnp.float32):
return jnp.ones(shape, dtype) * scale
class FlaxBeitDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
rate: float
@nn.module.compact
def __call__(self, inputs, deterministic: Optional[bool] = True):
if self.rate == 0.0:
return inputs
keep_prob = 1.0 - self.rate
if deterministic:
return inputs
else:
shape = (inputs.shape[0],) + (1,) * (inputs.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
rng = self.make_rng("droppath")
random_tensor = keep_prob + jax.random.uniform(rng, shape=shape, dtype=inputs.dtype)
binary_tensor = jnp.floor(random_tensor)
output = inputs / keep_prob * binary_tensor
return output
class FlaxBeitPatchEmbeddings(nn.Module):
config: BeitConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.num_channels = self.config.num_channels
image_size = self.config.image_size
patch_size = self.config.patch_size
num_patches = (image_size // patch_size) * (image_size // patch_size)
patch_shape = (image_size // patch_size, image_size // patch_size)
self.num_patches = num_patches
self.patch_shape = patch_shape
self.projection = nn.Conv(
self.config.hidden_size,
kernel_size=(patch_size, patch_size),
strides=(patch_size, patch_size),
padding="VALID",
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
def __call__(self, pixel_values):
num_channels = pixel_values.shape[-1]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
embeddings = self.projection(pixel_values)
batch_size, _, _, channels = embeddings.shape
return jnp.reshape(embeddings, (batch_size, -1, channels))
class FlaxBeitEmbeddings(nn.Module):
"""Construct the CLS token, position and patch embeddings."""
config: BeitConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.cls_token = self.param("cls_token", nn.initializers.zeros, (1, 1, self.config.hidden_size))
if self.config.use_mask_token:
self.mask_token = self.param("mask_token", nn.initializers.zeros, (1, 1, self.config.hidden_size))
self.patch_embeddings = FlaxBeitPatchEmbeddings(self.config, dtype=self.dtype)
num_patches = self.patch_embeddings.num_patches
if self.config.use_absolute_position_embeddings:
self.position_embeddings = self.param(
"position_embeddings", nn.initializers.zeros, (1, num_patches + 1, self.config.hidden_size)
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, pixel_values, bool_masked_pos=None, deterministic=True):
embeddings = self.patch_embeddings(pixel_values)
batch_size, seq_len, _ = embeddings.shape
cls_tokens = jnp.broadcast_to(self.cls_token, (batch_size, 1, self.config.hidden_size))
cls_tokens = cls_tokens.astype(embeddings.dtype)
if bool_masked_pos is not None:
mask_tokens = jnp.broadcast_to(self.mask_token, (batch_size, seq_len, self.config.hidden_size))
mask_tokens = mask_tokens.astype(embeddings.dtype)
# replace the masked visual tokens by mask_tokens
w = jnp.expand_dims(bool_masked_pos, axis=-1)
embeddings = embeddings * (1 - w) + mask_tokens * w
embeddings = jnp.concatenate((cls_tokens, embeddings), axis=1)
if self.config.use_absolute_position_embeddings:
embeddings = embeddings + self.position_embeddings.astype(embeddings.dtype)
embeddings = self.dropout(embeddings, deterministic=deterministic)
return embeddings
class FlaxBeitRelativePositionBias(nn.Module):
config: BeitConfig
window_size: Tuple[int, int]
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
num_relative_distance = (2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1) + 3
self.relative_position_bias_table = self.param(
"relative_position_bias_table",
nn.initializers.zeros,
(num_relative_distance, self.config.num_attention_heads),
) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
self.relative_position_index = relative_position_index_init(self.window_size)
def __call__(self):
index = self.relative_position_index.reshape(-1)
shape = (self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1)
relative_position_bias = self.relative_position_bias_table[index].reshape(shape) # Wh*Ww,Wh*Ww,nH
return jnp.transpose(relative_position_bias, (2, 0, 1))
class FlaxBeitSelfAttention(nn.Module):
config: BeitConfig
window_size: Tuple[int, int]
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
if self.config.hidden_size % self.config.num_attention_heads != 0 and not hasattr(
self.config, "embedding_size"
):
raise ValueError(
f"The hidden size {self.config.hidden_size,} is not a multiple of the number of attention "
f"heads {self.config.num_attention_heads}."
)
self.query = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.key = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
use_bias=False,
)
self.value = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.relative_position_bias = (
FlaxBeitRelativePositionBias(self.config, window_size=self.window_size, dtype=self.dtype)
if self.window_size
else None
)
def __call__(
self, hidden_states, relative_position_bias=None, deterministic: bool = True, output_attentions: bool = False
):
head_dim = self.config.hidden_size // self.config.num_attention_heads
query_states = self.query(hidden_states).reshape(
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
)
value_states = self.value(hidden_states).reshape(
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
)
key_states = self.key(hidden_states).reshape(
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
)
dropout_rng = None
if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
dropout_rng = self.make_rng("dropout")
attention_bias = jnp.array(0.0, dtype=self.dtype)
# Add relative position bias if present.
if self.relative_position_bias is not None:
attention_bias = jnp.expand_dims(self.relative_position_bias(), 0)
attention_bias = attention_bias.astype(query_states.dtype)
# Add shared relative position bias if provided.
if relative_position_bias is not None:
attention_bias = attention_bias + relative_position_bias.astype(attention_bias.dtype)
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.config.attention_probs_dropout_prob,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
class FlaxBeitSelfOutput(nn.Module):
config: BeitConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, hidden_states, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states
class FlaxBeitAttention(nn.Module):
config: BeitConfig
window_size: Tuple[int, int]
dtype: jnp.dtype = jnp.float32
def setup(self):
self.attention = FlaxBeitSelfAttention(self.config, self.window_size, dtype=self.dtype)
self.output = FlaxBeitSelfOutput(self.config, dtype=self.dtype)
def __call__(
self, hidden_states, relative_position_bias=None, deterministic=True, output_attentions: bool = False
):
attn_outputs = self.attention(
hidden_states, relative_position_bias, deterministic=deterministic, output_attentions=output_attentions
)
attn_output = attn_outputs[0]
attn_output = self.output(attn_output, deterministic=deterministic)
outputs = (attn_output,)
if output_attentions:
outputs += (attn_outputs[1],)
return outputs
class FlaxBeitIntermediate(nn.Module):
config: BeitConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.intermediate_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.activation = ACT2FN[self.config.hidden_act]
def __call__(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
class FlaxBeitOutput(nn.Module):
config: BeitConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, hidden_states, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states
class FlaxBeitLayer(nn.Module):
config: BeitConfig
window_size: Tuple[int, int]
drop_path_rate: float
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.attention = FlaxBeitAttention(self.config, self.window_size, dtype=self.dtype)
self.intermediate = FlaxBeitIntermediate(self.config, dtype=self.dtype)
self.output = FlaxBeitOutput(self.config, dtype=self.dtype)
self.layernorm_before = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.drop_path = FlaxBeitDropPath(rate=self.drop_path_rate)
self.layernorm_after = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.init_values = self.config.layer_scale_init_value
if self.init_values > 0:
self.lambda_1 = self.param("lambda_1", ones_with_scale, (self.config.hidden_size), self.init_values)
self.lambda_2 = self.param("lambda_2", ones_with_scale, (self.config.hidden_size), self.init_values)
else:
self.lambda_1 = None
self.lambda_2 = None
def __call__(
self, hidden_states, relative_position_bias=None, deterministic: bool = True, output_attentions: bool = False
):
self_attention_outputs = self.attention(
self.layernorm_before(hidden_states), # in BEiT, layernorm is applied before self-attention
relative_position_bias,
deterministic=deterministic,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
# apply lambda_1 if present
if self.lambda_1 is not None:
attention_output = self.lambda_1.astype(attention_output.dtype) * attention_output
# first residual connection
hidden_states = self.drop_path(attention_output, deterministic=deterministic) + hidden_states
# in BEiT, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = self.output(layer_output, deterministic=deterministic)
# apply lambda_2 if present
if self.lambda_2 is not None:
layer_output = self.lambda_2.astype(layer_output.dtype) * layer_output
# second residual connection
layer_output = self.drop_path(layer_output, deterministic=deterministic) + hidden_states
outputs = (layer_output,)
if output_attentions:
outputs += (self_attention_outputs[1],)
return outputs
class FlaxBeitLayerCollection(nn.Module):
config: BeitConfig
window_size: Tuple[int, int]
drop_path_rates: List[float]
relative_position_bias: Callable[[], jnp.ndarray]
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxBeitLayer(
self.config,
window_size=self.window_size if self.config.use_relative_position_bias else None,
drop_path_rate=self.drop_path_rates[i],
name=str(i),
dtype=self.dtype,
)
for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
relative_position_bias = self.relative_position_bias() if self.relative_position_bias is not None else None
layer_outputs = layer(
hidden_states, relative_position_bias, deterministic=deterministic, output_attentions=output_attentions
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states,)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
class FlaxBeitEncoder(nn.Module):
config: BeitConfig
window_size: Tuple[int, int]
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
if self.config.use_shared_relative_position_bias:
self.relative_position_bias = FlaxBeitRelativePositionBias(
config=self.config, window_size=self.window_size, dtype=self.dtype
)
# stochastic depth decay rule
drop_path_rates = list(np.linspace(0, self.config.drop_path_rate, self.config.num_hidden_layers))
self.layer = FlaxBeitLayerCollection(
self.config,
window_size=self.window_size,
drop_path_rates=drop_path_rates,
relative_position_bias=self.relative_position_bias
if self.config.use_shared_relative_position_bias
else None,
dtype=self.dtype,
)
def __call__(
self,
hidden_states,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
return self.layer(
hidden_states,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class FlaxBeitPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BeitConfig
base_model_prefix = "beit"
main_input_name = "pixel_values"
module_class: nn.Module = None
def __init__(
self,
config: BeitConfig,
input_shape=None,
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
if input_shape is None:
input_shape = (1, config.image_size, config.image_size, config.num_channels)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
pixel_values = jnp.zeros(input_shape, dtype=self.dtype)
params_rng, dropout_rng = jax.random.split(rng)
dropout_rng, droppath_rng = jax.random.split(dropout_rng)
rngs = {"params": params_rng, "dropout": dropout_rng, "droppath": droppath_rng}
random_params = self.module.init(rngs, pixel_values, return_dict=False)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def __call__(
self,
pixel_values,
bool_masked_pos=None,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
dropout_rng, droppath_rng = jax.random.split(dropout_rng)
rngs["dropout"] = dropout_rng
rngs["droppath"] = droppath_rng
return self.module.apply(
{"params": params or self.params},
jnp.array(pixel_values, dtype=jnp.float32),
bool_masked_pos,
not train,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
)
class FlaxBeitPooler(nn.Module):
config: BeitConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
if self.config.use_mean_pooling:
self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
def __call__(self, hidden_states):
if self.config.use_mean_pooling:
# Mean pool the final hidden states of the patch tokens
patch_tokens = hidden_states[:, 1:, :]
pooled_output = self.layernorm(jnp.mean(patch_tokens, axis=1))
else:
# Pool by simply taking the final hidden state of the [CLS] token
pooled_output = hidden_states[:, 0]
return pooled_output
class FlaxBeitModule(nn.Module):
config: BeitConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
add_pooling_layer: bool = True
def setup(self):
self.embeddings = FlaxBeitEmbeddings(self.config, dtype=self.dtype)
self.encoder = FlaxBeitEncoder(
self.config, window_size=self.embeddings.patch_embeddings.patch_shape, dtype=self.dtype
)
if not self.config.use_mean_pooling:
self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.pooler = FlaxBeitPooler(self.config, dtype=self.dtype) if self.add_pooling_layer else None
def __call__(
self,
pixel_values,
bool_masked_pos=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
hidden_states = self.embeddings(pixel_values, bool_masked_pos, deterministic=deterministic)
outputs = self.encoder(
hidden_states,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if not self.config.use_mean_pooling:
hidden_states = self.layernorm(hidden_states)
pooled = self.pooler(hidden_states) if self.add_pooling_layer else None
if not return_dict:
# if pooled is None, don't return it
if pooled is None:
return (hidden_states,) + outputs[1:]
return (hidden_states, pooled) + outputs[1:]
return FlaxBeitModelOutputWithPooling(
last_hidden_state=hidden_states,
pooler_output=pooled,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"The bare Beit Model transformer outputting raw hidden-states without any specific head on top.",
BEIT_START_DOCSTRING,
)
class FlaxBeitModel(FlaxBeitPreTrainedModel):
module_class = FlaxBeitModule
FLAX_BEIT_MODEL_DOCSTRING = """
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, FlaxBeitModel
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k-ft22k")
>>> model = FlaxBeitModel.from_pretrained("microsoft/beit-base-patch16-224-pt22k-ft22k")
>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
```
"""
overwrite_call_docstring(FlaxBeitModel, FLAX_BEIT_MODEL_DOCSTRING)
append_replace_return_docstrings(FlaxBeitModel, output_type=FlaxBeitModelOutputWithPooling, config_class=BeitConfig)
class FlaxBeitForMaskedImageModelingModule(nn.Module):
config: BeitConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.beit = FlaxBeitModule(self.config, add_pooling_layer=False, dtype=self.dtype)
# Classifier head
self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.lm_head = nn.Dense(
self.config.vocab_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
def __call__(
self,
pixel_values=None,
bool_masked_pos=None,
deterministic: bool = True,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.beit(
pixel_values,
bool_masked_pos,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.layernorm(sequence_output)
prediction_scores = self.lm_head(sequence_output[:, 1:])
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return output
return FlaxMaskedLMOutput(
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"Beit Model transformer with a 'language' modeling head on top (to predict visual tokens).",
BEIT_START_DOCSTRING,
)
class FlaxBeitForMaskedImageModeling(FlaxBeitPreTrainedModel):
module_class = FlaxBeitForMaskedImageModelingModule
FLAX_BEIT_MLM_DOCSTRING = """
bool_masked_pos (`numpy.ndarray` of shape `(batch_size, num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, BeitForMaskedImageModeling
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
>>> model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
```
"""
overwrite_call_docstring(FlaxBeitForMaskedImageModeling, FLAX_BEIT_MLM_DOCSTRING)
append_replace_return_docstrings(
FlaxBeitForMaskedImageModeling, output_type=FlaxMaskedLMOutput, config_class=BeitConfig
)
class FlaxBeitForImageClassificationModule(nn.Module):
config: BeitConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.beit = FlaxBeitModule(config=self.config, dtype=self.dtype, add_pooling_layer=True)
self.classifier = nn.Dense(
self.config.num_labels,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
def __call__(
self,
pixel_values=None,
bool_masked_pos=None,
deterministic: bool = True,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.beit(
pixel_values,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
logits = self.classifier(pooled_output)
if not return_dict:
output = (logits,) + outputs[2:]
return output
return FlaxSequenceClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final
hidden states of the patch tokens) e.g. for ImageNet.
""",
BEIT_START_DOCSTRING,
)
class FlaxBeitForImageClassification(FlaxBeitPreTrainedModel):
module_class = FlaxBeitForImageClassificationModule
FLAX_BEIT_CLASSIF_DOCSTRING = """
Returns:
Example:
```python
>>> from transformers import AutoImageProcessor, FlaxBeitForImageClassification
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224")
>>> model = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224")
>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = logits.argmax(-1).item()
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
```
"""
overwrite_call_docstring(FlaxBeitForImageClassification, FLAX_BEIT_CLASSIF_DOCSTRING)
append_replace_return_docstrings(
FlaxBeitForImageClassification, output_type=FlaxSequenceClassifierOutput, config_class=BeitConfig
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/beit/convert_beit_unilm_to_pytorch.py | # coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert BEiT checkpoints from the unilm repository."""
import argparse
import json
from pathlib import Path
import requests
import torch
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BeitConfig,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitImageProcessor,
)
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
def create_rename_keys(config, has_lm_head=False, is_semantic=False):
prefix = "backbone." if is_semantic else ""
rename_keys = []
for i in range(config.num_hidden_layers):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"{prefix}blocks.{i}.norm1.weight", f"beit.encoder.layer.{i}.layernorm_before.weight"))
rename_keys.append((f"{prefix}blocks.{i}.norm1.bias", f"beit.encoder.layer.{i}.layernorm_before.bias"))
rename_keys.append(
(f"{prefix}blocks.{i}.attn.proj.weight", f"beit.encoder.layer.{i}.attention.output.dense.weight")
)
rename_keys.append(
(f"{prefix}blocks.{i}.attn.proj.bias", f"beit.encoder.layer.{i}.attention.output.dense.bias")
)
rename_keys.append((f"{prefix}blocks.{i}.norm2.weight", f"beit.encoder.layer.{i}.layernorm_after.weight"))
rename_keys.append((f"{prefix}blocks.{i}.norm2.bias", f"beit.encoder.layer.{i}.layernorm_after.bias"))
rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.weight", f"beit.encoder.layer.{i}.intermediate.dense.weight"))
rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.bias", f"beit.encoder.layer.{i}.intermediate.dense.bias"))
rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.weight", f"beit.encoder.layer.{i}.output.dense.weight"))
rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.bias", f"beit.encoder.layer.{i}.output.dense.bias"))
# projection layer + position embeddings
rename_keys.extend(
[
(f"{prefix}cls_token", "beit.embeddings.cls_token"),
(f"{prefix}patch_embed.proj.weight", "beit.embeddings.patch_embeddings.projection.weight"),
(f"{prefix}patch_embed.proj.bias", "beit.embeddings.patch_embeddings.projection.bias"),
]
)
if has_lm_head:
# mask token + shared relative position bias + layernorm
rename_keys.extend(
[
("mask_token", "beit.embeddings.mask_token"),
(
"rel_pos_bias.relative_position_bias_table",
"beit.encoder.relative_position_bias.relative_position_bias_table",
),
(
"rel_pos_bias.relative_position_index",
"beit.encoder.relative_position_bias.relative_position_index",
),
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
]
)
elif is_semantic:
# semantic segmentation classification heads
rename_keys.extend(
[
("decode_head.conv_seg.weight", "decode_head.classifier.weight"),
("decode_head.conv_seg.bias", "decode_head.classifier.bias"),
("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"),
("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"),
]
)
else:
# layernorm + classification head
rename_keys.extend(
[
("fc_norm.weight", "beit.pooler.layernorm.weight"),
("fc_norm.bias", "beit.pooler.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
]
)
return rename_keys
# we split up the matrix of each encoder layer into queries, keys and values
def read_in_q_k_v(state_dict, config, has_lm_head=False, is_semantic=False):
for i in range(config.num_hidden_layers):
prefix = "backbone." if is_semantic else ""
# queries, keys and values
in_proj_weight = state_dict.pop(f"{prefix}blocks.{i}.attn.qkv.weight")
q_bias = state_dict.pop(f"{prefix}blocks.{i}.attn.q_bias")
v_bias = state_dict.pop(f"{prefix}blocks.{i}.attn.v_bias")
state_dict[f"beit.encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[
: config.hidden_size, :
]
state_dict[f"beit.encoder.layer.{i}.attention.attention.query.bias"] = q_bias
state_dict[f"beit.encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
state_dict[f"beit.encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[
-config.hidden_size :, :
]
state_dict[f"beit.encoder.layer.{i}.attention.attention.value.bias"] = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
gamma_1 = state_dict.pop(f"{prefix}blocks.{i}.gamma_1")
gamma_2 = state_dict.pop(f"{prefix}blocks.{i}.gamma_2")
state_dict[f"beit.encoder.layer.{i}.lambda_1"] = gamma_1
state_dict[f"beit.encoder.layer.{i}.lambda_2"] = gamma_2
# relative_position bias table + index
if not has_lm_head:
# each layer has its own relative position bias
table = state_dict.pop(f"{prefix}blocks.{i}.attn.relative_position_bias_table")
index = state_dict.pop(f"{prefix}blocks.{i}.attn.relative_position_index")
state_dict[
f"beit.encoder.layer.{i}.attention.attention.relative_position_bias.relative_position_bias_table"
] = table
state_dict[
f"beit.encoder.layer.{i}.attention.attention.relative_position_bias.relative_position_index"
] = index
def rename_key(dct, old, new):
val = dct.pop(old)
dct[new] = val
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@torch.no_grad()
def convert_beit_checkpoint(checkpoint_url, pytorch_dump_folder_path):
"""
Copy/paste/tweak model's weights to our BEiT structure.
"""
# define default BEiT configuration
config = BeitConfig()
has_lm_head = False
is_semantic = False
repo_id = "huggingface/label-files"
# set config parameters based on URL
if checkpoint_url[-9:-4] == "pt22k":
# masked image modeling
config.use_shared_relative_position_bias = True
config.use_mask_token = True
has_lm_head = True
elif checkpoint_url[-9:-4] == "ft22k":
# intermediate fine-tuning on ImageNet-22k
config.use_relative_position_bias = True
config.num_labels = 21841
filename = "imagenet-22k-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
# this dataset contains 21843 labels but the model only has 21841
# we delete the classes as mentioned in https://github.com/google-research/big_transfer/issues/18
del id2label[9205]
del id2label[15027]
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
elif checkpoint_url[-8:-4] == "to1k":
# fine-tuning on ImageNet-1k
config.use_relative_position_bias = True
config.num_labels = 1000
filename = "imagenet-1k-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
if "384" in checkpoint_url:
config.image_size = 384
if "512" in checkpoint_url:
config.image_size = 512
elif "ade20k" in checkpoint_url:
# fine-tuning
config.use_relative_position_bias = True
config.num_labels = 150
filename = "ade20k-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
config.image_size = 640
is_semantic = True
else:
raise ValueError("Checkpoint not supported, URL should either end with 'pt22k', 'ft22k', 'to1k' or 'ade20k'")
# size of the architecture
if "base" in checkpoint_url:
pass
elif "large" in checkpoint_url:
config.hidden_size = 1024
config.intermediate_size = 4096
config.num_hidden_layers = 24
config.num_attention_heads = 16
if "ade20k" in checkpoint_url:
config.image_size = 640
config.out_indices = [7, 11, 15, 23]
else:
raise ValueError("Should either find 'base' or 'large' in checkpoint URL")
# load state_dict of original model, remove and rename some keys
state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu", check_hash=True)
state_dict = state_dict["model"] if "ade20k" not in checkpoint_url else state_dict["state_dict"]
rename_keys = create_rename_keys(config, has_lm_head=has_lm_head, is_semantic=is_semantic)
for src, dest in rename_keys:
rename_key(state_dict, src, dest)
read_in_q_k_v(state_dict, config, has_lm_head=has_lm_head, is_semantic=is_semantic)
if is_semantic:
# add prefix to decoder keys
for key, val in state_dict.copy().items():
val = state_dict.pop(key)
if key.startswith("backbone.fpn"):
key = key.replace("backbone.fpn", "fpn")
state_dict[key] = val
# load HuggingFace model
if checkpoint_url[-9:-4] == "pt22k":
model = BeitForMaskedImageModeling(config)
elif "ade20k" in checkpoint_url:
model = BeitForSemanticSegmentation(config)
else:
model = BeitForImageClassification(config)
model.eval()
model.load_state_dict(state_dict)
# Check outputs on an image
if is_semantic:
image_processor = BeitImageProcessor(size=config.image_size, do_center_crop=False)
ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
image = Image.open(ds[0]["file"])
else:
image_processor = BeitImageProcessor(
size=config.image_size, resample=PILImageResampling.BILINEAR, do_center_crop=False
)
image = prepare_img()
encoding = image_processor(images=image, return_tensors="pt")
pixel_values = encoding["pixel_values"]
outputs = model(pixel_values)
logits = outputs.logits
# verify logits
expected_shape = torch.Size([1, 1000])
if checkpoint_url[:-4].endswith("beit_base_patch16_224_pt22k"):
expected_shape = torch.Size([1, 196, 8192])
elif checkpoint_url[:-4].endswith("beit_large_patch16_224_pt22k"):
expected_shape = torch.Size([1, 196, 8192])
elif checkpoint_url[:-4].endswith("beit_base_patch16_224_pt22k_ft22k"):
expected_shape = torch.Size([1, 21841])
expected_logits = torch.tensor([2.2288, 2.4671, 0.7395])
expected_class_idx = 2397
elif checkpoint_url[:-4].endswith("beit_large_patch16_224_pt22k_ft22k"):
expected_shape = torch.Size([1, 21841])
expected_logits = torch.tensor([1.6881, -0.2787, 0.5901])
expected_class_idx = 2396
elif checkpoint_url[:-4].endswith("beit_base_patch16_224_pt22k_ft1k"):
expected_logits = torch.tensor([0.1241, 0.0798, -0.6569])
expected_class_idx = 285
elif checkpoint_url[:-4].endswith("beit_base_patch16_224_pt22k_ft22kto1k"):
expected_logits = torch.tensor([-1.2385, -1.0987, -1.0108])
expected_class_idx = 281
elif checkpoint_url[:-4].endswith("beit_base_patch16_384_pt22k_ft22kto1k"):
expected_logits = torch.tensor([-1.5303, -0.9484, -0.3147])
expected_class_idx = 761
elif checkpoint_url[:-4].endswith("beit_large_patch16_224_pt22k_ft1k"):
expected_logits = torch.tensor([0.4610, -0.0928, 0.2086])
expected_class_idx = 761
elif checkpoint_url[:-4].endswith("beit_large_patch16_224_pt22k_ft22kto1k"):
expected_logits = torch.tensor([-0.4804, 0.6257, -0.1837])
expected_class_idx = 761
elif checkpoint_url[:-4].endswith("beit_large_patch16_384_pt22k_ft22kto1k"):
expected_logits = torch.tensor([[-0.5122, 0.5117, -0.2113]])
expected_class_idx = 761
elif checkpoint_url[:-4].endswith("beit_large_patch16_512_pt22k_ft22kto1k"):
expected_logits = torch.tensor([-0.3062, 0.7261, 0.4852])
expected_class_idx = 761
elif checkpoint_url[:-4].endswith("beit_base_patch16_640_pt22k_ft22ktoade20k"):
expected_shape = (1, 150, 160, 160)
expected_logits = torch.tensor(
[
[[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]],
[[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]],
[[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]],
]
)
elif checkpoint_url[:-4].endswith("beit_large_patch16_640_pt22k_ft22ktoade20k"):
expected_shape = (1, 150, 160, 160)
expected_logits = torch.tensor(
[
[[-4.3305, -2.3049, -3.0161], [-2.9591, -1.5305, -2.2251], [-3.4198, -1.8004, -2.9062]],
[[-5.8922, -3.7435, -4.3978], [-4.2063, -2.7872, -3.4755], [-4.2791, -3.1874, -4.1681]],
[[0.9895, 4.3467, 4.7663], [4.2476, 5.6830, 6.1518], [4.5550, 6.2495, 6.5154]],
]
)
else:
raise ValueError("Can't verify logits as model is not supported")
if logits.shape != expected_shape:
raise ValueError(f"Shape of logits not as expected. {logits.shape=}, {expected_shape=}")
if not has_lm_head:
if is_semantic:
if not torch.allclose(logits[0, :3, :3, :3], expected_logits, atol=1e-3):
raise ValueError("First elements of logits not as expected")
else:
print("Predicted class idx:", logits.argmax(-1).item())
if not torch.allclose(logits[0, :3], expected_logits, atol=1e-3):
raise ValueError("First elements of logits not as expected")
if logits.argmax(-1).item() != expected_class_idx:
raise ValueError("Predicted class index not as expected")
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
print(f"Saving model to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving image processor to {pytorch_dump_folder_path}")
image_processor.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22kto1k.pth",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
args = parser.parse_args()
convert_beit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/beit/configuration_beit.py | # coding=utf-8
# Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BEiT model configuration"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/beit-base-patch16-224-pt22k": (
"https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json"
),
# See all BEiT models at https://huggingface.co/models?filter=beit
}
class BeitConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BeitModel`]. It is used to instantiate an BEiT
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the BEiT
[microsoft/beit-base-patch16-224-pt22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k) architecture.
Args:
vocab_size (`int`, *optional*, defaults to 8192):
Vocabulary size of the BEiT model. Defines the number of different image tokens that can be used during
pre-training.
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
use_mask_token (`bool`, *optional*, defaults to `False`):
Whether to use a mask token for masked image modeling.
use_absolute_position_embeddings (`bool`, *optional*, defaults to `False`):
Whether to use BERT-style absolute position embeddings.
use_relative_position_bias (`bool`, *optional*, defaults to `False`):
Whether to use T5-style relative position embeddings in the self-attention layers.
use_shared_relative_position_bias (`bool`, *optional*, defaults to `False`):
Whether to use the same relative position embeddings across all self-attention layers of the Transformer.
layer_scale_init_value (`float`, *optional*, defaults to 0.1):
Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale.
drop_path_rate (`float`, *optional*, defaults to 0.1):
Stochastic depth rate per sample (when applied in the main path of residual layers).
use_mean_pooling (`bool`, *optional*, defaults to `True`):
Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the
CLS token, before applying the classification head.
pool_scales (`Tuple[int]`, *optional*, defaults to `[1, 2, 3, 6]`):
Pooling scales used in Pooling Pyramid Module applied on the last feature map.
use_auxiliary_head (`bool`, *optional*, defaults to `True`):
Whether to use an auxiliary head during training.
auxiliary_loss_weight (`float`, *optional*, defaults to 0.4):
Weight of the cross-entropy loss of the auxiliary head.
auxiliary_channels (`int`, *optional*, defaults to 256):
Number of channels to use in the auxiliary head.
auxiliary_num_convs (`int`, *optional*, defaults to 1):
Number of convolutional layers to use in the auxiliary head.
auxiliary_concat_input (`bool`, *optional*, defaults to `False`):
Whether to concatenate the output of the auxiliary head with the input before the classification layer.
semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
The index that is ignored by the loss function of the semantic segmentation model.
out_features (`List[str]`, *optional*):
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
out_indices (`List[int]`, *optional*):
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
If unset and `out_features` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
add_fpn (`bool`, *optional*, defaults to `False`):
Whether to add a FPN as part of the backbone. Only relevant for [`BeitBackbone`].
reshape_hidden_states (`bool`, *optional*, defaults to `True`):
Whether to reshape the feature maps to 4D tensors of shape `(batch_size, hidden_size, height, width)` in
case the model is used as backbone. If `False`, the feature maps will be 3D tensors of shape `(batch_size,
seq_len, hidden_size)`. Only relevant for [`BeitBackbone`].
Example:
```python
>>> from transformers import BeitConfig, BeitModel
>>> # Initializing a BEiT beit-base-patch16-224-pt22k style configuration
>>> configuration = BeitConfig()
>>> # Initializing a model (with random weights) from the beit-base-patch16-224-pt22k style configuration
>>> model = BeitModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "beit"
def __init__(
self,
vocab_size=8192,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-12,
image_size=224,
patch_size=16,
num_channels=3,
use_mask_token=False,
use_absolute_position_embeddings=False,
use_relative_position_bias=False,
use_shared_relative_position_bias=False,
layer_scale_init_value=0.1,
drop_path_rate=0.1,
use_mean_pooling=True,
pool_scales=[1, 2, 3, 6],
use_auxiliary_head=True,
auxiliary_loss_weight=0.4,
auxiliary_channels=256,
auxiliary_num_convs=1,
auxiliary_concat_input=False,
semantic_loss_ignore_index=255,
out_features=None,
out_indices=None,
add_fpn=False,
reshape_hidden_states=True,
**kwargs,
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.use_mask_token = use_mask_token
self.use_absolute_position_embeddings = use_absolute_position_embeddings
self.use_relative_position_bias = use_relative_position_bias
self.use_shared_relative_position_bias = use_shared_relative_position_bias
self.layer_scale_init_value = layer_scale_init_value
self.drop_path_rate = drop_path_rate
self.use_mean_pooling = use_mean_pooling
# decode head attributes (semantic segmentation)
self.pool_scales = pool_scales
# auxiliary head attributes (semantic segmentation)
self.use_auxiliary_head = use_auxiliary_head
self.auxiliary_loss_weight = auxiliary_loss_weight
self.auxiliary_channels = auxiliary_channels
self.auxiliary_num_convs = auxiliary_num_convs
self.auxiliary_concat_input = auxiliary_concat_input
self.semantic_loss_ignore_index = semantic_loss_ignore_index
# handle backwards compatibility
if "segmentation_indices" in kwargs:
logger.warning(
"The `segmentation_indices` argument is deprecated and will be removed in a future version, use `out_indices` instead.",
FutureWarning,
)
out_indices = kwargs.pop("segmentation_indices")
# backbone attributes
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, self.num_hidden_layers + 1)]
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
self.add_fpn = add_fpn
self.reshape_hidden_states = reshape_hidden_states
# Copied from transformers.models.vit.configuration_vit.ViTOnnxConfig
class BeitOnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-4
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/beit/__init__.py | # Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_torch_available,
is_vision_available,
)
_import_structure = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["feature_extraction_beit"] = ["BeitFeatureExtractor"]
_import_structure["image_processing_beit"] = ["BeitImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_beit"] = [
"BEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BeitForImageClassification",
"BeitForMaskedImageModeling",
"BeitForSemanticSegmentation",
"BeitModel",
"BeitPreTrainedModel",
"BeitBackbone",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_beit"] = [
"FlaxBeitForImageClassification",
"FlaxBeitForMaskedImageModeling",
"FlaxBeitModel",
"FlaxBeitPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_beit import BeitFeatureExtractor
from .image_processing_beit import BeitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_beit import (
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
BeitBackbone,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
BeitPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_beit import (
FlaxBeitForImageClassification,
FlaxBeitForMaskedImageModeling,
FlaxBeitModel,
FlaxBeitPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/beit/image_processing_beit.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Beit."""
import warnings
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging
if is_vision_available():
import PIL
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class BeitImageProcessor(BaseImageProcessor):
r"""
Constructs a BEiT image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
`do_resize` parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"height": 256, "width": 256}`):
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the
`preprocess` method.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`.
Can be overridden by the `crop_size` parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
The mean to use if normalizing the image. This is a float or list of floats of length of the number of
channels of the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
The standard deviation to use if normalizing the image. This is a float or list of floats of length of the
number of channels of the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
do_reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is
used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The
background label will be replaced by 255. Can be overridden by the `do_reduce_labels` parameter in the
`preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
rescale_factor: Union[int, float] = 1 / 255,
do_rescale: bool = True,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_reduce_labels: bool = False,
**kwargs,
) -> None:
if "reduce_labels" in kwargs:
warnings.warn(
"The `reduce_labels` parameter is deprecated and will be removed in a future version. Please use"
" `do_reduce_labels` instead.",
FutureWarning,
)
do_reduce_labels = kwargs.pop("reduce_labels")
super().__init__(**kwargs)
size = size if size is not None else {"height": 256, "width": 256}
size = get_size_dict(size)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, param_name="crop_size")
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
self.do_reduce_labels = do_reduce_labels
@classmethod
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
"""
Overrides the `from_dict` method from the base class to make sure `reduce_labels` is updated if image processor
is created using from_dict and kwargs e.g. `BeitImageProcessor.from_pretrained(checkpoint, reduce_labels=True)`
"""
image_processor_dict = image_processor_dict.copy()
if "reduce_labels" in kwargs:
image_processor_dict["reduce_labels"] = kwargs.pop("reduce_labels")
return super().from_dict(image_processor_dict, **kwargs)
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to (size["height"], size["width"]).
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PIL.Image.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
size = get_size_dict(size, default_to_square=True, param_name="size")
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` argument must contain `height` and `width` keys. Got {size.keys()}")
return resize(
image,
size=(size["height"], size["width"]),
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def reduce_label(self, label: ImageInput) -> np.ndarray:
label = to_numpy_array(label)
# Avoid using underflow conversion
label[label == 0] = 255
label = label - 1
label[label == 254] = 255
return label
def _preprocess(
self,
image: ImageInput,
do_reduce_labels: bool = None,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
if do_reduce_labels:
image = self.reduce_label(image)
if do_resize:
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
if do_center_crop:
image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
return image
def _preprocess_image(
self,
image: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""Preprocesses a single image."""
# All transformations expect numpy arrays.
image = to_numpy_array(image)
if is_scaled_image(image) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
image = self._preprocess(
image,
do_reduce_labels=False,
do_resize=do_resize,
size=size,
resample=resample,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
input_data_format=input_data_format,
)
if data_format is not None:
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
return image
def _preprocess_segmentation_map(
self,
segmentation_map: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_reduce_labels: bool = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""Preprocesses a single segmentation map."""
# All transformations expect numpy arrays.
segmentation_map = to_numpy_array(segmentation_map)
# Add an axis to the segmentation maps for transformations.
if segmentation_map.ndim == 2:
segmentation_map = segmentation_map[None, ...]
added_dimension = True
input_data_format = ChannelDimension.FIRST
else:
added_dimension = False
if input_data_format is None:
input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1)
segmentation_map = self._preprocess(
image=segmentation_map,
do_reduce_labels=do_reduce_labels,
do_resize=do_resize,
resample=resample,
size=size,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_normalize=False,
do_rescale=False,
input_data_format=ChannelDimension.FIRST,
)
# Remove extra axis if added
if added_dimension:
segmentation_map = np.squeeze(segmentation_map, axis=0)
segmentation_map = segmentation_map.astype(np.int64)
return segmentation_map
def __call__(self, images, segmentation_maps=None, **kwargs):
# Overrides the `__call__` method of the `Preprocessor` class such that the images and segmentation maps can both
# be passed in as positional arguments.
return super().__call__(images, segmentation_maps=segmentation_maps, **kwargs)
def preprocess(
self,
images: ImageInput,
segmentation_maps: Optional[ImageInput] = None,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_reduce_labels: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be
padded with zeros and then cropped
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
do_reduce_labels (`bool`, *optional*, defaults to `self.do_reduce_labels`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0
is used for background, and background itself is not included in all classes of a dataset (e.g.
ADE20k). The background label will be replaced by 255.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=True, param_name="size")
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels
images = make_list_of_images(images)
if segmentation_maps is not None:
segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if segmentation_maps is not None and not valid_images(segmentation_maps):
raise ValueError(
"Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
images = [
self._preprocess_image(
image=img,
do_resize=do_resize,
do_center_crop=do_center_crop,
do_rescale=do_rescale,
do_normalize=do_normalize,
resample=resample,
size=size,
rescale_factor=rescale_factor,
crop_size=crop_size,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
input_data_format=input_data_format,
)
for img in images
]
data = {"pixel_values": images}
if segmentation_maps is not None:
segmentation_maps = [
self._preprocess_segmentation_map(
segmentation_map=segmentation_map,
do_reduce_labels=do_reduce_labels,
do_resize=do_resize,
resample=resample,
size=size,
do_center_crop=do_center_crop,
crop_size=crop_size,
)
for segmentation_map in segmentation_maps
]
data["labels"] = segmentation_maps
return BatchFeature(data=data, tensor_type=return_tensors)
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
"""
Converts the output of [`BeitForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.
Args:
outputs ([`BeitForSemanticSegmentation`]):
Raw outputs of the model.
target_sizes (`List[Tuple]` of length `batch_size`, *optional*):
List of tuples corresponding to the requested final size (height, width) of each prediction. If unset,
predictions will not be resized.
Returns:
semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
"""
# TODO: add support for other frameworks
logits = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
if is_torch_tensor(target_sizes):
target_sizes = target_sizes.numpy()
semantic_segmentation = []
for idx in range(len(logits)):
resized_logits = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
)
semantic_map = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(semantic_map)
else:
semantic_segmentation = logits.argmax(dim=1)
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/beit/feature_extraction_beit.py | # coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for BEiT."""
import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
logger = logging.get_logger(__name__)
class BeitFeatureExtractor(BeitImageProcessor):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
"The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use BeitImageProcessor instead.",
FutureWarning,
)
super().__init__(*args, **kwargs)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/beit/modeling_beit.py | # coding=utf-8
# Copyright 2021 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch BEiT model."""
import collections.abc
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutput,
BaseModelOutputWithPooling,
ImageClassifierOutput,
MaskedLMOutput,
SemanticSegmenterOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_beit import BeitConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "BeitConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "microsoft/beit-base-patch16-224-pt22k"
_EXPECTED_OUTPUT_SHAPE = [1, 197, 768]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "microsoft/beit-base-patch16-224"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"microsoft/beit-base-patch16-224",
# See all BEiT models at https://huggingface.co/models?filter=beit
]
@dataclass
class BeitModelOutputWithPooling(BaseModelOutputWithPooling):
"""
Class for outputs of [`BeitModel`].
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if
*config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token
will be returned.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
class BeitDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
# Based on timm implementation, which can be found here:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
class BeitEmbeddings(nn.Module):
"""
Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
"""
def __init__(self, config: BeitConfig) -> None:
super().__init__()
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
if config.use_mask_token:
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
else:
self.mask_token = None
self.patch_embeddings = BeitPatchEmbeddings(config)
num_patches = self.patch_embeddings.num_patches
if config.use_absolute_position_embeddings:
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
else:
self.position_embeddings = None
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None) -> torch.Tensor:
embeddings, (patch_height, patch_width) = self.patch_embeddings(
pixel_values, self.position_embeddings[:, 1:, :] if self.position_embeddings is not None else None
)
batch_size, seq_len, _ = embeddings.size()
if bool_masked_pos is not None:
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
# replace the masked visual tokens by mask_tokens
w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
embeddings = embeddings * (1 - w) + mask_tokens * w
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
if self.position_embeddings is not None:
cls_tokens = cls_tokens + self.position_embeddings[:, :1, :]
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
embeddings = self.dropout(embeddings)
return embeddings, (patch_height, patch_width)
class BeitPatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
super().__init__()
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.patch_shape = patch_shape
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
def forward(self, pixel_values: torch.Tensor, position_embedding: Optional[torch.Tensor] = None) -> torch.Tensor:
batch_size, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
embeddings = self.projection(pixel_values)
patch_height, patch_width = embeddings.shape[2], embeddings.shape[3]
if position_embedding is not None:
# interpolate the position embedding to the corresponding size
position_embedding = position_embedding.view(1, self.patch_shape[0], self.patch_shape[1], -1).permute(
0, 3, 1, 2
)
position_embedding = nn.functional.interpolate(
position_embedding, size=(patch_height, patch_width), mode="bicubic"
)
embeddings = embeddings + position_embedding
embeddings = embeddings.flatten(2).transpose(1, 2)
return embeddings, (patch_height, patch_width)
class BeitSelfAttention(nn.Module):
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None:
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
if window_size:
self.relative_position_bias = BeitRelativePositionBias(config, window_size=window_size)
else:
self.relative_position_bias = None
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
relative_position_bias: Optional["BeitRelativePositionBias"] = None,
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Add relative position bias if present.
if self.relative_position_bias is not None:
attention_scores = attention_scores + self.relative_position_bias().unsqueeze(0)
# Add shared relative position bias if provided.
if relative_position_bias is not None:
attention_scores = attention_scores + relative_position_bias
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class BeitSelfOutput(nn.Module):
"""
The residual connection is defined in BeitLayer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, config: BeitConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, gamma=None) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class BeitAttention(nn.Module):
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None:
super().__init__()
self.attention = BeitSelfAttention(config, window_size=window_size)
self.output = BeitSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
relative_position_bias: Optional["BeitRelativePositionBias"] = None,
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
self_outputs = self.attention(hidden_states, head_mask, output_attentions, relative_position_bias)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class BeitIntermediate(nn.Module):
def __init__(self, config: BeitConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BeitOutput(nn.Module):
def __init__(self, config: BeitConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class BeitLayer(nn.Module):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None, drop_path_rate: float = 0.0) -> None:
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = BeitAttention(config, window_size=window_size)
self.intermediate = BeitIntermediate(config)
self.output = BeitOutput(config)
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.drop_path = BeitDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
init_values = config.layer_scale_init_value
if init_values > 0:
self.lambda_1 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True)
self.lambda_2 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True)
else:
self.lambda_1, self.lambda_2 = None, None
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
relative_position_bias: Optional["BeitRelativePositionBias"] = None,
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
self_attention_outputs = self.attention(
self.layernorm_before(hidden_states), # in BEiT, layernorm is applied before self-attention
head_mask,
output_attentions=output_attentions,
relative_position_bias=relative_position_bias,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# apply lambda_1 if present
if self.lambda_1 is not None:
attention_output = self.lambda_1 * attention_output
# first residual connection
hidden_states = self.drop_path(attention_output) + hidden_states
# in BEiT, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = self.output(layer_output)
if self.lambda_2 is not None:
layer_output = self.lambda_2 * layer_output
# second residual connection
layer_output = self.drop_path(layer_output) + hidden_states
outputs = (layer_output,) + outputs
return outputs
class BeitRelativePositionBias(nn.Module):
def __init__(self, config: BeitConfig, window_size: tuple) -> None:
super().__init__()
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, config.num_attention_heads)
) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = torch.zeros(
size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype
)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index, persistent=False)
def forward(self) -> torch.Tensor:
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1
) # Wh*Ww,Wh*Ww,nH
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
class BeitEncoder(nn.Module):
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None:
super().__init__()
self.config = config
if config.use_shared_relative_position_bias:
self.relative_position_bias = BeitRelativePositionBias(config, window_size=window_size)
else:
self.relative_position_bias = None
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
self.layer = nn.ModuleList(
[
BeitLayer(
config,
window_size=window_size if config.use_relative_position_bias else None,
drop_path_rate=dpr[i],
)
for i in range(config.num_hidden_layers)
]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
layer_head_mask,
output_attentions,
)
else:
relative_position_bias = (
self.relative_position_bias() if self.relative_position_bias is not None else None
)
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class BeitPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BeitConfig
base_model_prefix = "beit"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
BEIT_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`BeitConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
BEIT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`BeitImageProcessor.__call__`] for details.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Beit Model transformer outputting raw hidden-states without any specific head on top.",
BEIT_START_DOCSTRING,
)
class BeitModel(BeitPreTrainedModel):
def __init__(self, config: BeitConfig, add_pooling_layer: bool = True) -> None:
super().__init__(config)
self.config = config
self.embeddings = BeitEmbeddings(config)
self.encoder = BeitEncoder(config, window_size=self.embeddings.patch_embeddings.patch_shape)
self.layernorm = (
nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
)
self.pooler = BeitPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BeitModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BeitModelOutputWithPooling]:
r"""
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output, (patch_height, patch_width) = self.embeddings(pixel_values, bool_masked_pos)
encoder_outputs = self.encoder(
embedding_output,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
return head_outputs + encoder_outputs[1:]
return BeitModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class BeitPooler(nn.Module):
def __init__(self, config: BeitConfig) -> None:
super().__init__()
self.layernorm = (
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.use_mean_pooling else None
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if self.layernorm is not None:
# Mean pool the final hidden states of the patch tokens
patch_tokens = hidden_states[:, 1:, :]
pooled_output = self.layernorm(patch_tokens.mean(1))
else:
# Pool by simply taking the final hidden state of the [CLS] token
pooled_output = hidden_states[:, 0]
return pooled_output
@add_start_docstrings(
"""Beit Model transformer with a 'language' modeling head on top. BEiT does masked image modeling by predicting
visual tokens of a Vector-Quantize Variational Autoencoder (VQ-VAE), whereas other vision models like ViT and DeiT
predict RGB pixel values. As a result, this class is incompatible with [`AutoModelForMaskedImageModeling`], so you
will need to use [`BeitForMaskedImageModeling`] directly if you wish to do masked image modeling with BEiT.""",
BEIT_START_DOCSTRING,
)
class BeitForMaskedImageModeling(BeitPreTrainedModel):
def __init__(self, config: BeitConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.beit = BeitModel(config, add_pooling_layer=False)
# Classifier head
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, MaskedLMOutput]:
r"""
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, BeitForMaskedImageModeling
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
>>> model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
>>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
>>> # create random boolean mask of shape (batch_size, num_patches)
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
>>> loss, logits = outputs.loss, outputs.logits
>>> list(logits.shape)
[1, 196, 8192]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.beit(
pixel_values,
bool_masked_pos=bool_masked_pos,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.layernorm(sequence_output)
prediction_scores = self.lm_head(sequence_output[:, 1:])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores[bool_masked_pos], labels)
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final
hidden states of the patch tokens) e.g. for ImageNet.
""",
BEIT_START_DOCSTRING,
)
class BeitForImageClassification(BeitPreTrainedModel):
def __init__(self, config: BeitConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.beit = BeitModel(config, add_pooling_layer=True)
# Classifier head
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.beit(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class BeitConvModule(nn.Module):
"""
A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution
layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int]],
padding: Union[int, Tuple[int, int], str] = 0,
bias: bool = False,
dilation: Union[int, Tuple[int, int]] = 1,
) -> None:
super().__init__()
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
padding=padding,
bias=bias,
dilation=dilation,
)
self.bn = nn.BatchNorm2d(out_channels)
self.activation = nn.ReLU()
def forward(self, input: torch.Tensor) -> torch.Tensor:
output = self.conv(input)
output = self.bn(output)
output = self.activation(output)
return output
class BeitPyramidPoolingBlock(nn.Module):
def __init__(self, pool_scale: int, in_channels: int, channels: int) -> None:
super().__init__()
self.layers = [
nn.AdaptiveAvgPool2d(pool_scale),
BeitConvModule(in_channels, channels, kernel_size=1),
]
for i, layer in enumerate(self.layers):
self.add_module(str(i), layer)
def forward(self, input: torch.Tensor) -> torch.Tensor:
hidden_state = input
for layer in self.layers:
hidden_state = layer(hidden_state)
return hidden_state
class BeitPyramidPoolingModule(nn.Module):
"""
Pyramid Pooling Module (PPM) used in PSPNet.
Args:
pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
Module.
in_channels (int): Input channels.
channels (int): Channels after modules, before conv_seg.
align_corners (bool): align_corners argument of F.interpolate.
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
"""
def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, channels: int, align_corners: bool) -> None:
super().__init__()
self.pool_scales = pool_scales
self.align_corners = align_corners
self.in_channels = in_channels
self.channels = channels
self.blocks = []
for i, pool_scale in enumerate(pool_scales):
block = BeitPyramidPoolingBlock(pool_scale=pool_scale, in_channels=in_channels, channels=channels)
self.blocks.append(block)
self.add_module(str(i), block)
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
ppm_outs = []
for ppm in self.blocks:
ppm_out = ppm(x)
upsampled_ppm_out = nn.functional.interpolate(
ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners
)
ppm_outs.append(upsampled_ppm_out)
return ppm_outs
class BeitUperHead(nn.Module):
"""
Unified Perceptual Parsing for Scene Understanding. This head is the implementation of
[UPerNet](https://arxiv.org/abs/1807.10221).
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
"""
def __init__(self, config: BeitConfig) -> None:
super().__init__()
self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6)
self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768]
self.channels = config.hidden_size
self.align_corners = False
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
# PSP Module
self.psp_modules = BeitPyramidPoolingModule(
self.pool_scales,
self.in_channels[-1],
self.channels,
align_corners=self.align_corners,
)
self.bottleneck = BeitConvModule(
self.in_channels[-1] + len(self.pool_scales) * self.channels,
self.channels,
kernel_size=3,
padding=1,
)
# FPN Module
self.lateral_convs = nn.ModuleList()
self.fpn_convs = nn.ModuleList()
for in_channels in self.in_channels[:-1]: # skip the top layer
l_conv = BeitConvModule(in_channels, self.channels, kernel_size=1)
fpn_conv = BeitConvModule(self.channels, self.channels, kernel_size=3, padding=1)
self.lateral_convs.append(l_conv)
self.fpn_convs.append(fpn_conv)
self.fpn_bottleneck = BeitConvModule(
len(self.in_channels) * self.channels,
self.channels,
kernel_size=3,
padding=1,
)
def psp_forward(self, inputs):
x = inputs[-1]
psp_outs = [x]
psp_outs.extend(self.psp_modules(x))
psp_outs = torch.cat(psp_outs, dim=1)
output = self.bottleneck(psp_outs)
return output
def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
# build laterals
laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)]
laterals.append(self.psp_forward(encoder_hidden_states))
# build top-down path
used_backbone_levels = len(laterals)
for i in range(used_backbone_levels - 1, 0, -1):
prev_shape = laterals[i - 1].shape[2:]
laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate(
laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners
)
# build outputs
fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)]
# append psp feature
fpn_outs.append(laterals[-1])
for i in range(used_backbone_levels - 1, 0, -1):
fpn_outs[i] = nn.functional.interpolate(
fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners
)
fpn_outs = torch.cat(fpn_outs, dim=1)
output = self.fpn_bottleneck(fpn_outs)
output = self.classifier(output)
return output
class BeitFCNHead(nn.Module):
"""
Fully Convolution Networks for Semantic Segmentation. This head is implemented of
[FCNNet](https://arxiv.org/abs/1411.4038>).
Args:
config (BeitConfig): Configuration.
in_channels
kernel_size (int): The kernel size for convs in the head. Default: 3.
dilation (int): The dilation rate for convs in the head. Default: 1.
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
"""
def __init__(
self, config: BeitConfig, in_index: int = 2, kernel_size: int = 3, dilation: Union[int, Tuple[int, int]] = 1
) -> None:
super().__init__()
self.in_channels = config.hidden_size
self.channels = config.auxiliary_channels
self.num_convs = config.auxiliary_num_convs
self.concat_input = config.auxiliary_concat_input
self.in_index = in_index
conv_padding = (kernel_size // 2) * dilation
convs = []
convs.append(
BeitConvModule(
self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
)
)
for i in range(self.num_convs - 1):
convs.append(
BeitConvModule(
self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
)
)
if self.num_convs == 0:
self.convs = nn.Identity()
else:
self.convs = nn.Sequential(*convs)
if self.concat_input:
self.conv_cat = BeitConvModule(
self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2
)
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
# just take the relevant feature maps
hidden_states = encoder_hidden_states[self.in_index]
output = self.convs(hidden_states)
if self.concat_input:
output = self.conv_cat(torch.cat([hidden_states, output], dim=1))
output = self.classifier(output)
return output
@add_start_docstrings(
"""
Beit Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes.
""",
BEIT_START_DOCSTRING,
)
class BeitForSemanticSegmentation(BeitPreTrainedModel):
def __init__(self, config: BeitConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.beit = BeitModel(config, add_pooling_layer=False)
# FPNs
if len(self.config.out_indices) != 4:
raise ValueError(
"BeitForSemanticSegmentation requires config.out_indices to be a list of 4 integers, "
"specifying which features to use from the backbone. One can use [3, 5, 7, 11] in case of "
"a base-sized architecture."
)
self.fpn1 = nn.Sequential(
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
nn.BatchNorm2d(config.hidden_size),
nn.GELU(),
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
)
self.fpn2 = nn.Sequential(
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
)
self.fpn3 = nn.Identity()
self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)
# Semantic segmentation head(s)
self.decode_head = BeitUperHead(config)
self.auxiliary_head = BeitFCNHead(config) if config.use_auxiliary_head else None
# Initialize weights and apply final processing
self.post_init()
def compute_loss(self, logits, auxiliary_logits, labels):
# upsample logits to the images' original size
upsampled_logits = nn.functional.interpolate(
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
)
if auxiliary_logits is not None:
upsampled_auxiliary_logits = nn.functional.interpolate(
auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
)
# compute weighted loss
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
main_loss = loss_fct(upsampled_logits, labels)
loss = main_loss
if auxiliary_logits is not None:
auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels)
loss += self.config.auxiliary_loss_weight * auxiliary_loss
return loss
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, SemanticSegmenterOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, BeitForSemanticSegmentation
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
>>> model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> # logits are of shape (batch_size, num_labels, height, width)
>>> logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
outputs = self.beit(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=True, # we need the intermediate hidden states
return_dict=return_dict,
)
encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1]
# only keep certain features, and reshape
# note that we do +1 as the encoder_hidden_states also includes the initial embeddings
features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices]
batch_size = pixel_values.shape[0]
patch_resolution = self.config.image_size // self.config.patch_size
features = [
x[:, 1:, :].permute(0, 2, 1).reshape(batch_size, -1, patch_resolution, patch_resolution) for x in features
]
# apply FPNs
ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
for i in range(len(features)):
features[i] = ops[i](features[i])
logits = self.decode_head(features)
auxiliary_logits = None
if self.auxiliary_head is not None:
auxiliary_logits = self.auxiliary_head(features)
loss = None
if labels is not None:
if self.config.num_labels == 1:
raise ValueError("The number of labels should be greater than one")
else:
loss = self.compute_loss(logits, auxiliary_logits, labels)
if not return_dict:
if output_hidden_states:
output = (logits,) + outputs[1:]
else:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
BEiT backbone, to be used with frameworks like DETR and MaskFormer.
""",
BEIT_START_DOCSTRING,
)
class BeitBackbone(BeitPreTrainedModel, BackboneMixin):
def __init__(self, config):
super().__init__(config)
super()._init_backbone(config)
self.num_features = [config.hidden_size for _ in range(config.num_hidden_layers + 1)]
self.embeddings = BeitEmbeddings(config)
self.encoder = BeitEncoder(config, window_size=self.embeddings.patch_embeddings.patch_shape)
if config.add_fpn:
if len(self.config.out_indices) != 4:
raise ValueError(
"BeitBackbone requires config.out_indices to be a list of 4 integers, "
"specifying which features to use from the backbone. One can use [3, 5, 7, 11] in case of "
"a base-sized architecture."
)
hidden_size = config.hidden_size
self.fpn1 = nn.Sequential(
nn.ConvTranspose2d(hidden_size, hidden_size, kernel_size=2, stride=2),
nn.BatchNorm2d(hidden_size, eps=config.batch_norm_eps),
nn.GELU(),
nn.ConvTranspose2d(hidden_size, hidden_size, kernel_size=2, stride=2),
)
self.fpn2 = nn.Sequential(nn.ConvTranspose2d(hidden_size, hidden_size, kernel_size=2, stride=2))
self.fpn3 = nn.Identity()
self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)
# initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Tensor,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> BackboneOutput:
"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoBackbone
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224")
>>> model = AutoBackbone.from_pretrained(
... "microsoft/beit-base-patch16-224", out_features=["stage1", "stage2", "stage3", "stage4"]
... )
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> feature_maps = outputs.feature_maps
>>> list(feature_maps[-1].shape)
[1, 768, 14, 14]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
batch_size = pixel_values.shape[0]
embedding_output, (patch_height, patch_width) = self.embeddings(pixel_values)
outputs = self.encoder(
embedding_output, output_hidden_states=True, output_attentions=output_attentions, return_dict=return_dict
)
hidden_states = outputs.hidden_states if return_dict else outputs[1]
feature_maps = ()
for stage, hidden_state in zip(self.stage_names, hidden_states):
if stage in self.out_features:
if self.config.reshape_hidden_states:
hidden_state = hidden_state[:, 1:, :]
hidden_state = hidden_state.permute(0, 2, 1)
hidden_state = hidden_state.reshape(batch_size, -1, patch_height, patch_width)
feature_maps += (hidden_state,)
if self.config.add_fpn:
feature_maps = [
self.fpn1(feature_maps[0]),
self.fpn2(feature_maps[1]),
self.fpn3(feature_maps[2]),
self.fpn4(feature_maps[3]),
]
feature_maps = tuple(feature_maps)
if not return_dict:
if output_hidden_states:
output = (feature_maps,) + outputs[1:]
else:
output = (feature_maps,) + outputs[2:]
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/nystromformer/convert_nystromformer_original_pytorch_checkpoint_to_pytorch.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Nystromformer checkpoints from the original repository."""
import argparse
import torch
from transformers import NystromformerConfig, NystromformerForMaskedLM
def rename_key(orig_key):
if "model" in orig_key:
orig_key = orig_key.replace("model.", "")
if "norm1" in orig_key:
orig_key = orig_key.replace("norm1", "attention.output.LayerNorm")
if "norm2" in orig_key:
orig_key = orig_key.replace("norm2", "output.LayerNorm")
if "norm" in orig_key:
orig_key = orig_key.replace("norm", "LayerNorm")
if "transformer" in orig_key:
layer_num = orig_key.split(".")[0].split("_")[-1]
orig_key = orig_key.replace(f"transformer_{layer_num}", f"encoder.layer.{layer_num}")
if "mha.attn" in orig_key:
orig_key = orig_key.replace("mha.attn", "attention.self")
if "mha" in orig_key:
orig_key = orig_key.replace("mha", "attention")
if "W_q" in orig_key:
orig_key = orig_key.replace("W_q", "self.query")
if "W_k" in orig_key:
orig_key = orig_key.replace("W_k", "self.key")
if "W_v" in orig_key:
orig_key = orig_key.replace("W_v", "self.value")
if "ff1" in orig_key:
orig_key = orig_key.replace("ff1", "intermediate.dense")
if "ff2" in orig_key:
orig_key = orig_key.replace("ff2", "output.dense")
if "ff" in orig_key:
orig_key = orig_key.replace("ff", "output.dense")
if "mlm_class" in orig_key:
orig_key = orig_key.replace("mlm.mlm_class", "cls.predictions.decoder")
if "mlm" in orig_key:
orig_key = orig_key.replace("mlm", "cls.predictions.transform")
if "cls" not in orig_key:
orig_key = "nystromformer." + orig_key
return orig_key
def convert_checkpoint_helper(config, orig_state_dict):
for key in orig_state_dict.copy().keys():
val = orig_state_dict.pop(key)
if ("pooler" in key) or ("sen_class" in key) or ("conv.bias" in key):
continue
else:
orig_state_dict[rename_key(key)] = val
orig_state_dict["cls.predictions.bias"] = orig_state_dict["cls.predictions.decoder.bias"]
orig_state_dict["nystromformer.embeddings.position_ids"] = (
torch.arange(config.max_position_embeddings).expand((1, -1)) + 2
)
return orig_state_dict
def convert_nystromformer_checkpoint(checkpoint_path, nystromformer_config_file, pytorch_dump_path):
orig_state_dict = torch.load(checkpoint_path, map_location="cpu")["model_state_dict"]
config = NystromformerConfig.from_json_file(nystromformer_config_file)
model = NystromformerForMaskedLM(config)
new_state_dict = convert_checkpoint_helper(config, orig_state_dict)
model.load_state_dict(new_state_dict)
model.eval()
model.save_pretrained(pytorch_dump_path)
print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--pytorch_model_path", default=None, type=str, required=True, help="Path to Nystromformer pytorch checkpoint."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The json file for Nystromformer model config.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
args = parser.parse_args()
convert_nystromformer_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/nystromformer/__init__.py | # Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_import_structure = {
"configuration_nystromformer": ["NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "NystromformerConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_nystromformer"] = [
"NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"NystromformerForMaskedLM",
"NystromformerForMultipleChoice",
"NystromformerForQuestionAnswering",
"NystromformerForSequenceClassification",
"NystromformerForTokenClassification",
"NystromformerLayer",
"NystromformerModel",
"NystromformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_nystromformer import NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, NystromformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nystromformer import (
NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
NystromformerForMaskedLM,
NystromformerForMultipleChoice,
NystromformerForQuestionAnswering,
NystromformerForSequenceClassification,
NystromformerForTokenClassification,
NystromformerLayer,
NystromformerModel,
NystromformerPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/nystromformer/modeling_nystromformer.py | # coding=utf-8
# Copyright 2022 UW-Madison The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Nystromformer model."""
import math
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_nystromformer import NystromformerConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "uw-madison/nystromformer-512"
_CONFIG_FOR_DOC = "NystromformerConfig"
NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"uw-madison/nystromformer-512",
# See all Nyströmformer models at https://huggingface.co/models?filter=nystromformer
]
class NystromformerEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings + 2, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + 2, persistent=False
)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),
persistent=False,
)
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class NystromformerSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.num_landmarks = config.num_landmarks
self.seq_len = config.segment_means_seq_len
self.conv_kernel_size = config.conv_kernel_size
if config.inv_coeff_init_option:
self.init_option = config["inv_init_coeff_option"]
else:
self.init_option = "original"
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.conv_kernel_size is not None:
self.conv = nn.Conv2d(
in_channels=self.num_attention_heads,
out_channels=self.num_attention_heads,
kernel_size=(self.conv_kernel_size, 1),
padding=(self.conv_kernel_size // 2, 0),
bias=False,
groups=self.num_attention_heads,
)
# Function to approximate Moore-Penrose inverse via the iterative method
def iterative_inv(self, mat, n_iter=6):
identity = torch.eye(mat.size(-1), device=mat.device)
key = mat
# The entries of key are positive and ||key||_{\infty} = 1 due to softmax
if self.init_option == "original":
# This original implementation is more conservative to compute coefficient of Z_0.
value = 1 / torch.max(torch.sum(key, dim=-2)) * key.transpose(-1, -2)
else:
# This is the exact coefficient computation, 1 / ||key||_1, of initialization of Z_0, leading to faster convergence.
value = 1 / torch.max(torch.sum(key, dim=-2), dim=-1).values[:, :, None, None] * key.transpose(-1, -2)
for _ in range(n_iter):
key_value = torch.matmul(key, value)
value = torch.matmul(
0.25 * value,
13 * identity
- torch.matmul(key_value, 15 * identity - torch.matmul(key_value, 7 * identity - key_value)),
)
return value
def transpose_for_scores(self, layer):
new_layer_shape = layer.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
layer = layer.view(*new_layer_shape)
return layer.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
query_layer = query_layer / math.sqrt(math.sqrt(self.attention_head_size))
key_layer = key_layer / math.sqrt(math.sqrt(self.attention_head_size))
if self.num_landmarks == self.seq_len:
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in NystromformerModel forward() function)
attention_scores = attention_scores + attention_mask
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
context_layer = torch.matmul(attention_probs, value_layer)
else:
q_landmarks = query_layer.reshape(
-1,
self.num_attention_heads,
self.num_landmarks,
self.seq_len // self.num_landmarks,
self.attention_head_size,
).mean(dim=-2)
k_landmarks = key_layer.reshape(
-1,
self.num_attention_heads,
self.num_landmarks,
self.seq_len // self.num_landmarks,
self.attention_head_size,
).mean(dim=-2)
kernel_1 = torch.nn.functional.softmax(torch.matmul(query_layer, k_landmarks.transpose(-1, -2)), dim=-1)
kernel_2 = torch.nn.functional.softmax(torch.matmul(q_landmarks, k_landmarks.transpose(-1, -2)), dim=-1)
attention_scores = torch.matmul(q_landmarks, key_layer.transpose(-1, -2))
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in NystromformerModel forward() function)
attention_scores = attention_scores + attention_mask
kernel_3 = nn.functional.softmax(attention_scores, dim=-1)
attention_probs = torch.matmul(kernel_1, self.iterative_inv(kernel_2))
new_value_layer = torch.matmul(kernel_3, value_layer)
context_layer = torch.matmul(attention_probs, new_value_layer)
if self.conv_kernel_size is not None:
context_layer += self.conv(value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
class NystromformerSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class NystromformerAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = NystromformerSelfAttention(config, position_embedding_type=position_embedding_type)
self.output = NystromformerSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
self_outputs = self.self(hidden_states, attention_mask, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Nystromformer
class NystromformerIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Nystromformer
class NystromformerOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class NystromformerLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = NystromformerAttention(config)
self.add_cross_attention = config.add_cross_attention
self.intermediate = NystromformerIntermediate(config)
self.output = NystromformerOutput(config)
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
self_attention_outputs = self.attention(hidden_states, attention_mask, output_attentions=output_attentions)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class NystromformerEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([NystromformerLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, attention_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->Nystromformer
class NystromformerPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Nystromformer
class NystromformerLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = NystromformerPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Nystromformer
class NystromformerOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = NystromformerLMPredictionHead(config)
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class NystromformerPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = NystromformerConfig
base_model_prefix = "nystromformer"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
NYSTROMFORMER_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`NystromformerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
NYSTROMFORMER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Nyströmformer Model transformer outputting raw hidden-states without any specific head on top.",
NYSTROMFORMER_START_DOCSTRING,
)
class NystromformerModel(NystromformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = NystromformerEmbeddings(config)
self.encoder = NystromformerEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(NYSTROMFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPastAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings("""Nyströmformer Model with a `language modeling` head on top.""", NYSTROMFORMER_START_DOCSTRING)
class NystromformerForMaskedLM(NystromformerPreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder"]
def __init__(self, config):
super().__init__(config)
self.nystromformer = NystromformerModel(config)
self.cls = NystromformerOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
@add_start_docstrings_to_model_forward(NYSTROMFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.nystromformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class NystromformerClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
self.config = config
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = ACT2FN[self.config.hidden_act](x)
x = self.dropout(x)
x = self.out_proj(x)
return x
@add_start_docstrings(
"""
Nyströmformer Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
NYSTROMFORMER_START_DOCSTRING,
)
class NystromformerForSequenceClassification(NystromformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.nystromformer = NystromformerModel(config)
self.classifier = NystromformerClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(NYSTROMFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.nystromformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Nyströmformer Model with a multiple choice classification head on top (a linear layer on top of the pooled output
and a softmax) e.g. for RocStories/SWAG tasks.
""",
NYSTROMFORMER_START_DOCSTRING,
)
class NystromformerForMultipleChoice(NystromformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.nystromformer = NystromformerModel(config)
self.pre_classifier = nn.Linear(config.hidden_size, config.hidden_size)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(
NYSTROMFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.nystromformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_state = outputs[0] # (bs * num_choices, seq_len, dim)
pooled_output = hidden_state[:, 0] # (bs * num_choices, dim)
pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim)
pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Nyströmformer Model with a token classification head on top (a linear layer on top of the hidden-states output)
e.g. for Named-Entity-Recognition (NER) tasks.
""",
NYSTROMFORMER_START_DOCSTRING,
)
class NystromformerForTokenClassification(NystromformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.nystromformer = NystromformerModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(NYSTROMFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.nystromformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Nyströmformer Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
NYSTROMFORMER_START_DOCSTRING,
)
class NystromformerForQuestionAnswering(NystromformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
config.num_labels = 2
self.num_labels = config.num_labels
self.nystromformer = NystromformerModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(NYSTROMFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.nystromformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/nystromformer/configuration_nystromformer.py | # coding=utf-8
# Copyright 2022 UW-Madison and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Nystromformer model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"uw-madison/nystromformer-512": "https://huggingface.co/uw-madison/nystromformer-512/resolve/main/config.json",
# See all Nystromformer models at https://huggingface.co/models?filter=nystromformer
}
class NystromformerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`NystromformerModel`]. It is used to instantiate
an Nystromformer model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Nystromformer
[uw-madison/nystromformer-512](https://huggingface.co/uw-madison/nystromformer-512) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30000):
Vocabulary size of the Nystromformer model. Defines the number of different tokens that can be represented
by the `inputs_ids` passed when calling [`NystromformerModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`NystromformerModel`].
segment_means_seq_len (`int`, *optional*, defaults to 64):
Sequence length used in segment-means.
num_landmarks (`int`, *optional*, defaults to 64):
The number of landmark (or Nystrom) points to use in Nystrom approximation of the softmax self-attention
matrix.
conv_kernel_size (`int`, *optional*, defaults to 65):
The kernel size of depthwise convolution used in Nystrom approximation.
inv_coeff_init_option (`bool`, *optional*, defaults to `False`):
Whether or not to use exact coefficient computation for the initial values for the iterative method of
calculating the Moore-Penrose inverse of a matrix.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
Example:
```python
>>> from transformers import NystromformerModel, NystromformerConfig
>>> # Initializing a Nystromformer uw-madison/nystromformer-512 style configuration
>>> configuration = NystromformerConfig()
>>> # Initializing a model from the uw-madison/nystromformer-512 style configuration
>>> model = NystromformerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "nystromformer"
def __init__(
self,
vocab_size=30000,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu_new",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=510,
type_vocab_size=2,
segment_means_seq_len=64,
num_landmarks=64,
conv_kernel_size=65,
inv_coeff_init_option=False,
initializer_range=0.02,
layer_norm_eps=1e-5,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.segment_means_seq_len = segment_means_seq_len
self.num_landmarks = num_landmarks
self.conv_kernel_size = conv_kernel_size
self.inv_coeff_init_option = inv_coeff_init_option
self.layer_norm_eps = layer_norm_eps
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/bert_generation/__init__.py | # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available
_import_structure = {"configuration_bert_generation": ["BertGenerationConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_bert_generation"] = ["BertGenerationTokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_bert_generation"] = [
"BertGenerationDecoder",
"BertGenerationEncoder",
"BertGenerationPreTrainedModel",
"load_tf_weights_in_bert_generation",
]
if TYPE_CHECKING:
from .configuration_bert_generation import BertGenerationConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_generation import BertGenerationTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert_generation import (
BertGenerationDecoder,
BertGenerationEncoder,
BertGenerationPreTrainedModel,
load_tf_weights_in_bert_generation,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models | hf_public_repos/transformers/src/transformers/models/bert_generation/modeling_bert_generation.py | # coding=utf-8
# Copyright 2020 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model specific for generation."""
import math
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_bert_generation import BertGenerationConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/bert_for_seq_generation_L-24_bbc_encoder"
_CONFIG_FOR_DOC = "BertGenerationConfig"
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->BertGeneration
class BertGenerationSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->BertGeneration
class BertGenerationSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
use_cache = past_key_value is not None
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
if use_cache:
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
-1, 1
)
else:
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertGenerationModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->BertGeneration
class BertGenerationAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = BertGenerationSelfAttention(config, position_embedding_type=position_embedding_type)
self.output = BertGenerationSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->BertGeneration
class BertGenerationIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->BertGeneration
class BertGenerationOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->BertGeneration
class BertGenerationLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = BertGenerationAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = BertGenerationAttention(config, position_embedding_type="absolute")
self.intermediate = BertGenerationIntermediate(config)
self.output = BertGenerationOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->BertGeneration
class BertEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([BertGenerationLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
def load_tf_weights_in_bert_generation(
model, tf_hub_path, model_class, is_encoder_named_decoder=False, is_encoder=False
):
try:
import numpy as np
import tensorflow.compat.v1 as tf
import tensorflow_hub as hub
import tensorflow_text # noqa: F401
tf.disable_eager_execution()
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_model = hub.Module(tf_hub_path)
init = tf.global_variables_initializer()
with tf.Session() as sess:
init.run()
all_variables = tf_model.variable_map
keep_track_variables = all_variables.copy()
for key in list(all_variables.keys()):
if "global" in key:
logger.info(f"Skipping {key}...")
continue
if not is_encoder:
model_pointer = getattr(model, model_class)
else:
model_pointer = model
is_embedding = False
logger.info(f"Trying to match {key}...")
# remove start_string = "module/bert/"
sub_layers = key.split("/")[2:]
if is_encoder_named_decoder and sub_layers[0] == "encoder":
logger.info(f"Skipping encoder layer {key} for decoder")
continue
if is_encoder and sub_layers[0] == "decoder":
logger.info(f"Skipping decoder layer {key} for encoder")
continue
for i, sub_layer in enumerate(sub_layers):
if sub_layer == "embeddings":
is_embedding = True
elif sub_layer == "LayerNorm":
is_embedding = False
if "layer" in sub_layer:
model_pointer = model_pointer.layer[int(sub_layer.split("_")[-1])]
elif sub_layer in ["kernel", "gamma"]:
model_pointer = model_pointer.weight
elif sub_layer == "beta":
model_pointer = model_pointer.bias
elif sub_layer == "encdec":
model_pointer = model_pointer.crossattention.self
elif sub_layer == "encdec_output":
model_pointer = model_pointer.crossattention.output
elif is_encoder_named_decoder and sub_layer == "decoder":
model_pointer = model_pointer.encoder
else:
if sub_layer == "attention" and "encdec" in sub_layers[i + 1]:
continue
try:
model_pointer = getattr(model_pointer, sub_layer)
except AttributeError:
logger.info(f"Skipping to initialize {key} at {sub_layer}...")
raise AttributeError
array = np.asarray(sess.run(all_variables[key]))
if not is_embedding:
logger.info(f"Transposing numpy weight of shape {array.shape} for {key}")
array = np.transpose(array)
else:
model_pointer = model_pointer.weight
if model_pointer.shape != array.shape:
raise ValueError(f"Pointer shape {model_pointer.shape} and array shape {array.shape} mismatched")
logger.info(f"Initialize PyTorch weight {key}")
model_pointer.data = torch.from_numpy(array.astype(np.float32))
keep_track_variables.pop(key, None)
logger.info(f"Weights not copied to PyTorch model: {', '.join(keep_track_variables.keys())}")
return model
class BertGenerationEmbeddings(nn.Module):
"""Construct the embeddings from word and position embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def forward(self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
embeddings = inputs_embeds + position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BertGenerationPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BertGenerationConfig
base_model_prefix = "bert"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
BERT_GENERATION_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`BertGenerationConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
BERT_GENERATION_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare BertGeneration model transformer outputting raw hidden-states without any specific head on top.",
BERT_GENERATION_START_DOCSTRING,
)
class BertGenerationEncoder(BertGenerationPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
This model should be used when leveraging Bert or Roberta checkpoints for the [`EncoderDecoderModel`] class as
described in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461)
by Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
"""
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = BertGenerationEmbeddings(config)
self.encoder = BertEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(BERT_GENERATION_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPastAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: `1` for
tokens that are NOT MASKED, `0` for MASKED tokens.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask = None
if not use_cache:
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=sequence_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
class BertGenerationOnlyLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
self.decoder.bias = self.bias
def forward(self, hidden_states):
logits = self.decoder(hidden_states)
return logits
def _tie_weights(self):
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
self.bias = self.decoder.bias
@add_start_docstrings(
"""BertGeneration Model with a `language modeling` head on top for CLM fine-tuning.""",
BERT_GENERATION_START_DOCSTRING,
)
class BertGenerationDecoder(BertGenerationPreTrainedModel):
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
def __init__(self, config):
super().__init__(config)
if not config.is_decoder:
logger.warning("If you want to use `BertGenerationDecoder` as a standalone, add `is_decoder=True.`")
self.bert = BertGenerationEncoder(config)
self.lm_head = BertGenerationOnlyLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head.decoder
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
@add_start_docstrings_to_model_forward(BERT_GENERATION_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, BertGenerationDecoder, BertGenerationConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
>>> config = BertGenerationConfig.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
>>> config.is_decoder = True
>>> model = BertGenerationDecoder.from_pretrained(
... "google/bert_for_seq_generation_L-24_bbc_encoder", config=config
... )
>>> inputs = tokenizer("Hello, my dog is cute", return_token_type_ids=False, return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
lm_loss = None
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
# cut decoder_input_ids if past_key_values is used
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
| 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.