repo_id
stringlengths
15
89
file_path
stringlengths
27
180
content
stringlengths
1
2.23M
__index_level_0__
int64
0
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/custom_diffusion/README.md
# Custom Diffusion training example [Custom Diffusion](https://arxiv.org/abs/2212.04488) is a method to customize text-to-image models like Stable Diffusion given just a few (4~5) images of a subject. The `train_custom_diffusion.py` script shows how to implement the training procedure and adapt it for stable diffusion. ## Running locally with PyTorch ### Installing the dependencies Before running the scripts, make sure to install the library's training dependencies: **Important** To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install -e . ``` Then cd in the example folder and run ```bash pip install -r requirements.txt pip install clip-retrieval ``` And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: ```bash accelerate config ``` Or for a default accelerate configuration without answering questions about your environment ```bash accelerate config default ``` Or if your environment doesn't support an interactive shell e.g. a notebook ```python from accelerate.utils import write_basic_config write_basic_config() ``` ### Cat example 😺 Now let's get our dataset. Download dataset from [here](https://www.cs.cmu.edu/~custom-diffusion/assets/data.zip) and unzip it. We also collect 200 real images using `clip-retrieval` which are combined with the target images in the training dataset as a regularization. This prevents overfitting to the given target image. The following flags enable the regularization `with_prior_preservation`, `real_prior` with `prior_loss_weight=1.`. The `class_prompt` should be the category name same as target image. The collected real images are with text captions similar to the `class_prompt`. The retrieved image are saved in `class_data_dir`. You can disable `real_prior` to use generated images as regularization. To collect the real images use this command first before training. ```bash pip install clip-retrieval python retrieve.py --class_prompt cat --class_data_dir real_reg/samples_cat --num_class_images 200 ``` **___Note: Change the `resolution` to 768 if you are using the [stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) 768x768 model.___** ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export OUTPUT_DIR="path-to-save-model" export INSTANCE_DIR="./data/cat" accelerate launch train_custom_diffusion.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --output_dir=$OUTPUT_DIR \ --class_data_dir=./real_reg/samples_cat/ \ --with_prior_preservation --real_prior --prior_loss_weight=1.0 \ --class_prompt="cat" --num_class_images=200 \ --instance_prompt="photo of a <new1> cat" \ --resolution=512 \ --train_batch_size=2 \ --learning_rate=1e-5 \ --lr_warmup_steps=0 \ --max_train_steps=250 \ --scale_lr --hflip \ --modifier_token "<new1>" ``` **Use `--enable_xformers_memory_efficient_attention` for faster training with lower VRAM requirement (16GB per GPU). Follow [this guide](https://github.com/facebookresearch/xformers) for installation instructions.** To track your experiments using Weights and Biases (`wandb`) and to save intermediate results (which we HIGHLY recommend), follow these steps: * Install `wandb`: `pip install wandb`. * Authorize: `wandb login`. * Then specify a `validation_prompt` and set `report_to` to `wandb` while launching training. You can also configure the following related arguments: * `num_validation_images` * `validation_steps` Here is an example command: ```bash accelerate launch train_custom_diffusion.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --output_dir=$OUTPUT_DIR \ --class_data_dir=./real_reg/samples_cat/ \ --with_prior_preservation --real_prior --prior_loss_weight=1.0 \ --class_prompt="cat" --num_class_images=200 \ --instance_prompt="photo of a <new1> cat" \ --resolution=512 \ --train_batch_size=2 \ --learning_rate=1e-5 \ --lr_warmup_steps=0 \ --max_train_steps=250 \ --scale_lr --hflip \ --modifier_token "<new1>" \ --validation_prompt="<new1> cat sitting in a bucket" \ --report_to="wandb" ``` Here is an example [Weights and Biases page](https://wandb.ai/sayakpaul/custom-diffusion/runs/26ghrcau) where you can check out the intermediate results along with other training details. If you specify `--push_to_hub`, the learned parameters will be pushed to a repository on the Hugging Face Hub. Here is an [example repository](https://huggingface.co/sayakpaul/custom-diffusion-cat). ### Training on multiple concepts 🐱🪵 Provide a [json](https://github.com/adobe-research/custom-diffusion/blob/main/assets/concept_list.json) file with the info about each concept, similar to [this](https://github.com/ShivamShrirao/diffusers/blob/main/examples/dreambooth/train_dreambooth.py). To collect the real images run this command for each concept in the json file. ```bash pip install clip-retrieval python retrieve.py --class_prompt {} --class_data_dir {} --num_class_images 200 ``` And then we're ready to start training! ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export OUTPUT_DIR="path-to-save-model" accelerate launch train_custom_diffusion.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --output_dir=$OUTPUT_DIR \ --concepts_list=./concept_list.json \ --with_prior_preservation --real_prior --prior_loss_weight=1.0 \ --resolution=512 \ --train_batch_size=2 \ --learning_rate=1e-5 \ --lr_warmup_steps=0 \ --max_train_steps=500 \ --num_class_images=200 \ --scale_lr --hflip \ --modifier_token "<new1>+<new2>" ``` Here is an example [Weights and Biases page](https://wandb.ai/sayakpaul/custom-diffusion/runs/3990tzkg) where you can check out the intermediate results along with other training details. ### Training on human faces For fine-tuning on human faces we found the following configuration to work better: `learning_rate=5e-6`, `max_train_steps=1000 to 2000`, and `freeze_model=crossattn` with at least 15-20 images. To collect the real images use this command first before training. ```bash pip install clip-retrieval python retrieve.py --class_prompt person --class_data_dir real_reg/samples_person --num_class_images 200 ``` Then start training! ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export OUTPUT_DIR="path-to-save-model" export INSTANCE_DIR="path-to-images" accelerate launch train_custom_diffusion.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --output_dir=$OUTPUT_DIR \ --class_data_dir=./real_reg/samples_person/ \ --with_prior_preservation --real_prior --prior_loss_weight=1.0 \ --class_prompt="person" --num_class_images=200 \ --instance_prompt="photo of a <new1> person" \ --resolution=512 \ --train_batch_size=2 \ --learning_rate=5e-6 \ --lr_warmup_steps=0 \ --max_train_steps=1000 \ --scale_lr --hflip --noaug \ --freeze_model crossattn \ --modifier_token "<new1>" \ --enable_xformers_memory_efficient_attention ``` ## Inference Once you have trained a model using the above command, you can run inference using the below command. Make sure to include the `modifier token` (e.g. \<new1\> in above example) in your prompt. ```python import torch from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16 ).to("cuda") pipe.unet.load_attn_procs( "path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin" ) pipe.load_textual_inversion("path-to-save-model", weight_name="<new1>.bin") image = pipe( "<new1> cat sitting in a bucket", num_inference_steps=100, guidance_scale=6.0, eta=1.0, ).images[0] image.save("cat.png") ``` It's possible to directly load these parameters from a Hub repository: ```python import torch from huggingface_hub.repocard import RepoCard from diffusers import DiffusionPipeline model_id = "sayakpaul/custom-diffusion-cat" card = RepoCard.load(model_id) base_model_id = card.data.to_dict()["base_model"] pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16).to( "cuda") pipe.unet.load_attn_procs(model_id, weight_name="pytorch_custom_diffusion_weights.bin") pipe.load_textual_inversion(model_id, weight_name="<new1>.bin") image = pipe( "<new1> cat sitting in a bucket", num_inference_steps=100, guidance_scale=6.0, eta=1.0, ).images[0] image.save("cat.png") ``` Here is an example of performing inference with multiple concepts: ```python import torch from huggingface_hub.repocard import RepoCard from diffusers import DiffusionPipeline model_id = "sayakpaul/custom-diffusion-cat-wooden-pot" card = RepoCard.load(model_id) base_model_id = card.data.to_dict()["base_model"] pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16).to( "cuda") pipe.unet.load_attn_procs(model_id, weight_name="pytorch_custom_diffusion_weights.bin") pipe.load_textual_inversion(model_id, weight_name="<new1>.bin") pipe.load_textual_inversion(model_id, weight_name="<new2>.bin") image = pipe( "the <new1> cat sculpture in the style of a <new2> wooden pot", num_inference_steps=100, guidance_scale=6.0, eta=1.0, ).images[0] image.save("multi-subject.png") ``` Here, `cat` and `wooden pot` refer to the multiple concepts. ### Inference from a training checkpoint You can also perform inference from one of the complete checkpoint saved during the training process, if you used the `--checkpointing_steps` argument. TODO. ## Set grads to none To save even more memory, pass the `--set_grads_to_none` argument to the script. This will set grads to None instead of zero. However, be aware that it changes certain behaviors, so if you start experiencing any problems, remove this argument. More info: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html ## Experimental results You can refer to [our webpage](https://www.cs.cmu.edu/~custom-diffusion/) that discusses our experiments in detail. We also released a more extensive dataset of 101 concepts for evaluating model customization methods. For more details please refer to our [dataset webpage](https://www.cs.cmu.edu/~custom-diffusion/dataset.html).
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/custom_diffusion/requirements.txt
accelerate torchvision transformers>=4.25.1 ftfy tensorboard Jinja2
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/custom_diffusion/retrieve.py
# Copyright 2023 Custom Diffusion authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def retrieve(class_prompt, class_data_dir, num_class_images): factor = 1.5 num_images = int(factor * num_class_images) client = ClipClient( url="https://knn.laion.ai/knn-service", indice_name="laion_400m", num_images=num_images, aesthetic_weight=0.1 ) os.makedirs(f"{class_data_dir}/images", exist_ok=True) if len(list(Path(f"{class_data_dir}/images").iterdir())) >= num_class_images: return while True: class_images = client.query(text=class_prompt) if len(class_images) >= factor * num_class_images or num_images > 1e4: break else: num_images = int(factor * num_images) client = ClipClient( url="https://knn.laion.ai/knn-service", indice_name="laion_400m", num_images=num_images, aesthetic_weight=0.1, ) count = 0 total = 0 pbar = tqdm(desc="downloading real regularization images", total=num_class_images) with open(f"{class_data_dir}/caption.txt", "w") as f1, open(f"{class_data_dir}/urls.txt", "w") as f2, open( f"{class_data_dir}/images.txt", "w" ) as f3: while total < num_class_images: images = class_images[count] count += 1 try: img = requests.get(images["url"], timeout=30) if img.status_code == 200: _ = Image.open(BytesIO(img.content)) with open(f"{class_data_dir}/images/{total}.jpg", "wb") as f: f.write(img.content) f1.write(images["caption"] + "\n") f2.write(images["url"] + "\n") f3.write(f"{class_data_dir}/images/{total}.jpg" + "\n") total += 1 pbar.update(1) else: continue except Exception: continue return def parse_args(): parser = argparse.ArgumentParser("", add_help=False) parser.add_argument("--class_prompt", help="text prompt to retrieve images", required=True, type=str) parser.add_argument("--class_data_dir", help="path to save images", required=True, type=str) parser.add_argument("--num_class_images", help="number of images to download", default=200, type=int) return parser.parse_args() if __name__ == "__main__": args = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/custom_diffusion/train_custom_diffusion.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 Custom Diffusion authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import argparse import itertools import json import logging import math import os import random import shutil import warnings from pathlib import Path import numpy as np import safetensors import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from huggingface_hub import HfApi, create_repo from huggingface_hub.utils import insecure_hashlib from packaging import version from PIL import Image from torch.utils.data import Dataset from torchvision import transforms from tqdm.auto import tqdm from transformers import AutoTokenizer, PretrainedConfig import diffusers from diffusers import ( AutoencoderKL, DDPMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, UNet2DConditionModel, ) from diffusers.loaders import AttnProcsLayers from diffusers.models.attention_processor import ( CustomDiffusionAttnProcessor, CustomDiffusionAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor, ) from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version, is_wandb_available from diffusers.utils.import_utils import is_xformers_available # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.26.0.dev0") logger = get_logger(__name__) def freeze_params(params): for param in params: param.requires_grad = False def save_model_card(repo_id: str, images=None, base_model=str, prompt=str, repo_folder=None): img_str = "" for i, image in enumerate(images): image.save(os.path.join(repo_folder, f"image_{i}.png")) img_str += f"![img_{i}](./image_{i}.png)\n" yaml = f""" --- license: creativeml-openrail-m base_model: {base_model} instance_prompt: {prompt} tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - custom-diffusion inference: true --- """ model_card = f""" # Custom Diffusion - {repo_id} These are Custom Diffusion adaption weights for {base_model}. The weights were trained on {prompt} using [Custom Diffusion](https://www.cs.cmu.edu/~custom-diffusion). You can find some example images in the following. \n {img_str} \nFor more details on the training, please follow [this link](https://github.com/huggingface/diffusers/blob/main/examples/custom_diffusion). """ with open(os.path.join(repo_folder, "README.md"), "w") as f: f.write(yaml + model_card) def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str): text_encoder_config = PretrainedConfig.from_pretrained( pretrained_model_name_or_path, subfolder="text_encoder", revision=revision, ) model_class = text_encoder_config.architectures[0] if model_class == "CLIPTextModel": from transformers import CLIPTextModel return CLIPTextModel elif model_class == "RobertaSeriesModelWithTransformation": from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation return RobertaSeriesModelWithTransformation else: raise ValueError(f"{model_class} is not supported.") def collate_fn(examples, with_prior_preservation): input_ids = [example["instance_prompt_ids"] for example in examples] pixel_values = [example["instance_images"] for example in examples] mask = [example["mask"] for example in examples] # Concat class and instance examples for prior preservation. # We do this to avoid doing two forward passes. if with_prior_preservation: input_ids += [example["class_prompt_ids"] for example in examples] pixel_values += [example["class_images"] for example in examples] mask += [example["class_mask"] for example in examples] input_ids = torch.cat(input_ids, dim=0) pixel_values = torch.stack(pixel_values) mask = torch.stack(mask) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() mask = mask.to(memory_format=torch.contiguous_format).float() batch = {"input_ids": input_ids, "pixel_values": pixel_values, "mask": mask.unsqueeze(1)} return batch class PromptDataset(Dataset): "A simple dataset to prepare the prompts to generate class images on multiple GPUs." def __init__(self, prompt, num_samples): self.prompt = prompt self.num_samples = num_samples def __len__(self): return self.num_samples def __getitem__(self, index): example = {} example["prompt"] = self.prompt example["index"] = index return example class CustomDiffusionDataset(Dataset): """ A dataset to prepare the instance and class images with the prompts for fine-tuning the model. It pre-processes the images and the tokenizes prompts. """ def __init__( self, concepts_list, tokenizer, size=512, mask_size=64, center_crop=False, with_prior_preservation=False, num_class_images=200, hflip=False, aug=True, ): self.size = size self.mask_size = mask_size self.center_crop = center_crop self.tokenizer = tokenizer self.interpolation = Image.BILINEAR self.aug = aug self.instance_images_path = [] self.class_images_path = [] self.with_prior_preservation = with_prior_preservation for concept in concepts_list: inst_img_path = [ (x, concept["instance_prompt"]) for x in Path(concept["instance_data_dir"]).iterdir() if x.is_file() ] self.instance_images_path.extend(inst_img_path) if with_prior_preservation: class_data_root = Path(concept["class_data_dir"]) if os.path.isdir(class_data_root): class_images_path = list(class_data_root.iterdir()) class_prompt = [concept["class_prompt"] for _ in range(len(class_images_path))] else: with open(class_data_root, "r") as f: class_images_path = f.read().splitlines() with open(concept["class_prompt"], "r") as f: class_prompt = f.read().splitlines() class_img_path = list(zip(class_images_path, class_prompt)) self.class_images_path.extend(class_img_path[:num_class_images]) random.shuffle(self.instance_images_path) self.num_instance_images = len(self.instance_images_path) self.num_class_images = len(self.class_images_path) self._length = max(self.num_class_images, self.num_instance_images) self.flip = transforms.RandomHorizontalFlip(0.5 * hflip) self.image_transforms = transforms.Compose( [ self.flip, transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __len__(self): return self._length def preprocess(self, image, scale, resample): outer, inner = self.size, scale factor = self.size // self.mask_size if scale > self.size: outer, inner = scale, self.size top, left = np.random.randint(0, outer - inner + 1), np.random.randint(0, outer - inner + 1) image = image.resize((scale, scale), resample=resample) image = np.array(image).astype(np.uint8) image = (image / 127.5 - 1.0).astype(np.float32) instance_image = np.zeros((self.size, self.size, 3), dtype=np.float32) mask = np.zeros((self.size // factor, self.size // factor)) if scale > self.size: instance_image = image[top : top + inner, left : left + inner, :] mask = np.ones((self.size // factor, self.size // factor)) else: instance_image[top : top + inner, left : left + inner, :] = image mask[ top // factor + 1 : (top + scale) // factor - 1, left // factor + 1 : (left + scale) // factor - 1 ] = 1.0 return instance_image, mask def __getitem__(self, index): example = {} instance_image, instance_prompt = self.instance_images_path[index % self.num_instance_images] instance_image = Image.open(instance_image) if not instance_image.mode == "RGB": instance_image = instance_image.convert("RGB") instance_image = self.flip(instance_image) # apply resize augmentation and create a valid image region mask random_scale = self.size if self.aug: random_scale = ( np.random.randint(self.size // 3, self.size + 1) if np.random.uniform() < 0.66 else np.random.randint(int(1.2 * self.size), int(1.4 * self.size)) ) instance_image, mask = self.preprocess(instance_image, random_scale, self.interpolation) if random_scale < 0.6 * self.size: instance_prompt = np.random.choice(["a far away ", "very small "]) + instance_prompt elif random_scale > self.size: instance_prompt = np.random.choice(["zoomed in ", "close up "]) + instance_prompt example["instance_images"] = torch.from_numpy(instance_image).permute(2, 0, 1) example["mask"] = torch.from_numpy(mask) example["instance_prompt_ids"] = self.tokenizer( instance_prompt, truncation=True, padding="max_length", max_length=self.tokenizer.model_max_length, return_tensors="pt", ).input_ids if self.with_prior_preservation: class_image, class_prompt = self.class_images_path[index % self.num_class_images] class_image = Image.open(class_image) if not class_image.mode == "RGB": class_image = class_image.convert("RGB") example["class_images"] = self.image_transforms(class_image) example["class_mask"] = torch.ones_like(example["mask"]) example["class_prompt_ids"] = self.tokenizer( class_prompt, truncation=True, padding="max_length", max_length=self.tokenizer.model_max_length, return_tensors="pt", ).input_ids return example def save_new_embed(text_encoder, modifier_token_id, accelerator, args, output_dir, safe_serialization=True): """Saves the new token embeddings from the text encoder.""" logger.info("Saving embeddings") learned_embeds = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight for x, y in zip(modifier_token_id, args.modifier_token): learned_embeds_dict = {} learned_embeds_dict[y] = learned_embeds[x] filename = f"{output_dir}/{y}.bin" if safe_serialization: safetensors.torch.save_file(learned_embeds_dict, filename, metadata={"format": "pt"}) else: torch.save(learned_embeds_dict, filename) def parse_args(input_args=None): parser = argparse.ArgumentParser(description="Custom Diffusion training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--variant", type=str, default=None, help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--instance_data_dir", type=str, default=None, help="A folder containing the training data of instance images.", ) parser.add_argument( "--class_data_dir", type=str, default=None, help="A folder containing the training data of class images.", ) parser.add_argument( "--instance_prompt", type=str, default=None, help="The prompt with identifier specifying the instance", ) parser.add_argument( "--class_prompt", type=str, default=None, help="The prompt to specify images in the same class as provided instance images.", ) parser.add_argument( "--validation_prompt", type=str, default=None, help="A prompt that is used during validation to verify that the model is learning.", ) parser.add_argument( "--num_validation_images", type=int, default=2, help="Number of images that should be generated during validation with `validation_prompt`.", ) parser.add_argument( "--validation_steps", type=int, default=50, help=( "Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`." ), ) parser.add_argument( "--with_prior_preservation", default=False, action="store_true", help="Flag to add prior preservation loss.", ) parser.add_argument( "--real_prior", default=False, action="store_true", help="real images as prior.", ) parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") parser.add_argument( "--num_class_images", type=int, default=200, help=( "Minimal class images for prior preservation loss. If there are not enough images already present in" " class_data_dir, additional images will be sampled with class_prompt." ), ) parser.add_argument( "--output_dir", type=str, default="custom-diffusion-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument( "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." ) parser.add_argument( "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." ) parser.add_argument("--num_train_epochs", type=int, default=1) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--checkpointing_steps", type=int, default=250, help=( "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=("Max number of checkpoints to store."), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--dataloader_num_workers", type=int, default=2, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument( "--freeze_model", type=str, default="crossattn_kv", choices=["crossattn_kv", "crossattn"], help="crossattn to enable fine-tuning of all params in the cross attention", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--prior_generation_precision", type=str, default=None, choices=["no", "fp32", "fp16", "bf16"], help=( "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32." ), ) parser.add_argument( "--concepts_list", type=str, default=None, help="Path to json containing multiple concepts, will overwrite parameters like instance_prompt, class_prompt, etc.", ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) parser.add_argument( "--set_grads_to_none", action="store_true", help=( "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" " behaviors, so disable this argument if it causes any problems. More info:" " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" ), ) parser.add_argument( "--modifier_token", type=str, default=None, help="A token to use as a modifier for the concept.", ) parser.add_argument( "--initializer_token", type=str, default="ktn+pll+ucd", help="A token to use as initializer word." ) parser.add_argument("--hflip", action="store_true", help="Apply horizontal flip data augmentation.") parser.add_argument( "--noaug", action="store_true", help="Dont apply augmentation during data augmentation when this flag is enabled.", ) parser.add_argument( "--no_safe_serialization", action="store_true", help="If specified save the checkpoint not in `safetensors` format, but in original PyTorch format instead.", ) if input_args is not None: args = parser.parse_args(input_args) else: args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.with_prior_preservation: if args.concepts_list is None: if args.class_data_dir is None: raise ValueError("You must specify a data directory for class images.") if args.class_prompt is None: raise ValueError("You must specify prompt for class images.") else: # logger is not available yet if args.class_data_dir is not None: warnings.warn("You need not use --class_data_dir without --with_prior_preservation.") if args.class_prompt is not None: warnings.warn("You need not use --class_prompt without --with_prior_preservation.") return args def main(args): logging_dir = Path(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) if args.report_to == "wandb": if not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") import wandb # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models. # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate. # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("custom-diffusion", config=vars(args)) # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) if args.concepts_list is None: args.concepts_list = [ { "instance_prompt": args.instance_prompt, "class_prompt": args.class_prompt, "instance_data_dir": args.instance_data_dir, "class_data_dir": args.class_data_dir, } ] else: with open(args.concepts_list, "r") as f: args.concepts_list = json.load(f) # Generate class images if prior preservation is enabled. if args.with_prior_preservation: for i, concept in enumerate(args.concepts_list): class_images_dir = Path(concept["class_data_dir"]) if not class_images_dir.exists(): class_images_dir.mkdir(parents=True, exist_ok=True) if args.real_prior: assert ( class_images_dir / "images" ).exists(), f"Please run: python retrieve.py --class_prompt \"{concept['class_prompt']}\" --class_data_dir {class_images_dir} --num_class_images {args.num_class_images}" assert ( len(list((class_images_dir / "images").iterdir())) == args.num_class_images ), f"Please run: python retrieve.py --class_prompt \"{concept['class_prompt']}\" --class_data_dir {class_images_dir} --num_class_images {args.num_class_images}" assert ( class_images_dir / "caption.txt" ).exists(), f"Please run: python retrieve.py --class_prompt \"{concept['class_prompt']}\" --class_data_dir {class_images_dir} --num_class_images {args.num_class_images}" assert ( class_images_dir / "images.txt" ).exists(), f"Please run: python retrieve.py --class_prompt \"{concept['class_prompt']}\" --class_data_dir {class_images_dir} --num_class_images {args.num_class_images}" concept["class_prompt"] = os.path.join(class_images_dir, "caption.txt") concept["class_data_dir"] = os.path.join(class_images_dir, "images.txt") args.concepts_list[i] = concept accelerator.wait_for_everyone() else: cur_class_images = len(list(class_images_dir.iterdir())) if cur_class_images < args.num_class_images: torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 if args.prior_generation_precision == "fp32": torch_dtype = torch.float32 elif args.prior_generation_precision == "fp16": torch_dtype = torch.float16 elif args.prior_generation_precision == "bf16": torch_dtype = torch.bfloat16 pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, torch_dtype=torch_dtype, safety_checker=None, revision=args.revision, variant=args.variant, ) pipeline.set_progress_bar_config(disable=True) num_new_images = args.num_class_images - cur_class_images logger.info(f"Number of class images to sample: {num_new_images}.") sample_dataset = PromptDataset(args.class_prompt, num_new_images) sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) sample_dataloader = accelerator.prepare(sample_dataloader) pipeline.to(accelerator.device) for example in tqdm( sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process, ): images = pipeline(example["prompt"]).images for i, image in enumerate(images): hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest() image_filename = ( class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" ) image.save(image_filename) del pipeline if torch.cuda.is_available(): torch.cuda.empty_cache() # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load the tokenizer if args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained( args.tokenizer_name, revision=args.revision, use_fast=False, ) elif args.pretrained_model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, use_fast=False, ) # import correct text encoder class text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision) # Load scheduler and models noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") text_encoder = text_encoder_cls.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant ) vae = AutoencoderKL.from_pretrained( args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant ) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant ) # Adding a modifier token which is optimized #### # Code taken from https://github.com/huggingface/diffusers/blob/main/examples/textual_inversion/textual_inversion.py modifier_token_id = [] initializer_token_id = [] if args.modifier_token is not None: args.modifier_token = args.modifier_token.split("+") args.initializer_token = args.initializer_token.split("+") if len(args.modifier_token) > len(args.initializer_token): raise ValueError("You must specify + separated initializer token for each modifier token.") for modifier_token, initializer_token in zip( args.modifier_token, args.initializer_token[: len(args.modifier_token)] ): # Add the placeholder token in tokenizer num_added_tokens = tokenizer.add_tokens(modifier_token) if num_added_tokens == 0: raise ValueError( f"The tokenizer already contains the token {modifier_token}. Please pass a different" " `modifier_token` that is not already in the tokenizer." ) # Convert the initializer_token, placeholder_token to ids token_ids = tokenizer.encode([initializer_token], add_special_tokens=False) print(token_ids) # Check if initializer_token is a single token or a sequence of tokens if len(token_ids) > 1: raise ValueError("The initializer token must be a single token.") initializer_token_id.append(token_ids[0]) modifier_token_id.append(tokenizer.convert_tokens_to_ids(modifier_token)) # Resize the token embeddings as we are adding new special tokens to the tokenizer text_encoder.resize_token_embeddings(len(tokenizer)) # Initialise the newly added placeholder token with the embeddings of the initializer token token_embeds = text_encoder.get_input_embeddings().weight.data for x, y in zip(modifier_token_id, initializer_token_id): token_embeds[x] = token_embeds[y] # Freeze all parameters except for the token embeddings in text encoder params_to_freeze = itertools.chain( text_encoder.text_model.encoder.parameters(), text_encoder.text_model.final_layer_norm.parameters(), text_encoder.text_model.embeddings.position_embedding.parameters(), ) freeze_params(params_to_freeze) ######################################################## ######################################################## vae.requires_grad_(False) if args.modifier_token is None: text_encoder.requires_grad_(False) unet.requires_grad_(False) # For mixed precision training we cast the text_encoder and vae weights to half-precision # as these models are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move unet, vae and text_encoder to device and cast to weight_dtype if accelerator.mixed_precision != "fp16" and args.modifier_token is not None: text_encoder.to(accelerator.device, dtype=weight_dtype) unet.to(accelerator.device, dtype=weight_dtype) vae.to(accelerator.device, dtype=weight_dtype) attention_class = ( CustomDiffusionAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else CustomDiffusionAttnProcessor ) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warn( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) attention_class = CustomDiffusionXFormersAttnProcessor else: raise ValueError("xformers is not available. Make sure it is installed correctly") # now we will add new Custom Diffusion weights to the attention layers # It's important to realize here how many attention weights will be added and of which sizes # The sizes of the attention layers consist only of two different variables: # 1) - the "hidden_size", which is increased according to `unet.config.block_out_channels`. # 2) - the "cross attention size", which is set to `unet.config.cross_attention_dim`. # Let's first see how many attention processors we will have to set. # For Stable Diffusion, it should be equal to: # - down blocks (2x attention layers) * (2x transformer layers) * (3x down blocks) = 12 # - mid blocks (2x attention layers) * (1x transformer layers) * (1x mid blocks) = 2 # - up blocks (2x attention layers) * (3x transformer layers) * (3x down blocks) = 18 # => 32 layers # Only train key, value projection layers if freeze_model = 'crossattn_kv' else train all params in the cross attention layer train_kv = True train_q_out = False if args.freeze_model == "crossattn_kv" else True custom_diffusion_attn_procs = {} st = unet.state_dict() for name, _ in unet.attn_processors.items(): cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim if name.startswith("mid_block"): hidden_size = unet.config.block_out_channels[-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(unet.config.block_out_channels))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = unet.config.block_out_channels[block_id] layer_name = name.split(".processor")[0] weights = { "to_k_custom_diffusion.weight": st[layer_name + ".to_k.weight"], "to_v_custom_diffusion.weight": st[layer_name + ".to_v.weight"], } if train_q_out: weights["to_q_custom_diffusion.weight"] = st[layer_name + ".to_q.weight"] weights["to_out_custom_diffusion.0.weight"] = st[layer_name + ".to_out.0.weight"] weights["to_out_custom_diffusion.0.bias"] = st[layer_name + ".to_out.0.bias"] if cross_attention_dim is not None: custom_diffusion_attn_procs[name] = attention_class( train_kv=train_kv, train_q_out=train_q_out, hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, ).to(unet.device) custom_diffusion_attn_procs[name].load_state_dict(weights) else: custom_diffusion_attn_procs[name] = attention_class( train_kv=False, train_q_out=False, hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, ) del st unet.set_attn_processor(custom_diffusion_attn_procs) custom_diffusion_layers = AttnProcsLayers(unet.attn_processors) accelerator.register_for_checkpointing(custom_diffusion_layers) if args.gradient_checkpointing: unet.enable_gradient_checkpointing() if args.modifier_token is not None: text_encoder.gradient_checkpointing_enable() # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) if args.with_prior_preservation: args.learning_rate = args.learning_rate * 2.0 # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." ) optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW # Optimizer creation optimizer = optimizer_class( itertools.chain(text_encoder.get_input_embeddings().parameters(), custom_diffusion_layers.parameters()) if args.modifier_token is not None else custom_diffusion_layers.parameters(), lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # Dataset and DataLoaders creation: train_dataset = CustomDiffusionDataset( concepts_list=args.concepts_list, tokenizer=tokenizer, with_prior_preservation=args.with_prior_preservation, size=args.resolution, mask_size=vae.encode( torch.randn(1, 3, args.resolution, args.resolution).to(dtype=weight_dtype).to(accelerator.device) ) .latent_dist.sample() .size()[-1], center_crop=args.center_crop, num_class_images=args.num_class_images, hflip=args.hflip, aug=not args.noaug, ) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation), num_workers=args.dataloader_num_workers, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, ) # Prepare everything with our `accelerator`. if args.modifier_token is not None: custom_diffusion_layers, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( custom_diffusion_layers, text_encoder, optimizer, train_dataloader, lr_scheduler ) else: custom_diffusion_layers, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( custom_diffusion_layers, optimizer, train_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num batches each epoch = {len(train_dataloader)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None initial_global_step = 0 else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) initial_global_step = global_step first_epoch = global_step // num_update_steps_per_epoch else: initial_global_step = 0 progress_bar = tqdm( range(0, args.max_train_steps), initial=initial_global_step, desc="Steps", # Only show the progress bar once on each machine. disable=not accelerator.is_local_main_process, ) for epoch in range(first_epoch, args.num_train_epochs): unet.train() if args.modifier_token is not None: text_encoder.train() for step, batch in enumerate(train_dataloader): with accelerator.accumulate(unet), accelerator.accumulate(text_encoder): # Convert images to latent space latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() latents = latents * vae.config.scaling_factor # Sample noise that we'll add to the latents noise = torch.randn_like(latents) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # Get the text embedding for conditioning encoder_hidden_states = text_encoder(batch["input_ids"])[0] # Predict the noise residual model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") if args.with_prior_preservation: # Chunk the noise and model_pred into two parts and compute the loss on each part separately. model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) target, target_prior = torch.chunk(target, 2, dim=0) mask = torch.chunk(batch["mask"], 2, dim=0)[0] # Compute instance loss loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") loss = ((loss * mask).sum([1, 2, 3]) / mask.sum([1, 2, 3])).mean() # Compute prior loss prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") # Add the prior loss to the instance loss. loss = loss + args.prior_loss_weight * prior_loss else: mask = batch["mask"] loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") loss = ((loss * mask).sum([1, 2, 3]) / mask.sum([1, 2, 3])).mean() accelerator.backward(loss) # Zero out the gradients for all token embeddings except the newly added # embeddings for the concept, as we only want to optimize the concept embeddings if args.modifier_token is not None: if accelerator.num_processes > 1: grads_text_encoder = text_encoder.module.get_input_embeddings().weight.grad else: grads_text_encoder = text_encoder.get_input_embeddings().weight.grad # Get the index for tokens that we want to zero the grads for index_grads_to_zero = torch.arange(len(tokenizer)) != modifier_token_id[0] for i in range(len(modifier_token_id[1:])): index_grads_to_zero = index_grads_to_zero & ( torch.arange(len(tokenizer)) != modifier_token_id[i] ) grads_text_encoder.data[index_grads_to_zero, :] = grads_text_encoder.data[ index_grads_to_zero, : ].fill_(0) if accelerator.sync_gradients: params_to_clip = ( itertools.chain(text_encoder.parameters(), custom_diffusion_layers.parameters()) if args.modifier_token is not None else custom_diffusion_layers.parameters() ) accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad(set_to_none=args.set_grads_to_none) # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 if global_step % args.checkpointing_steps == 0: if accelerator.is_main_process: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: checkpoints = os.listdir(args.output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= args.checkpoints_total_limit: num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break if accelerator.is_main_process: images = [] if args.validation_prompt is not None and global_step % args.validation_steps == 0: logger.info( f"Running validation... \n Generating {args.num_validation_images} images with prompt:" f" {args.validation_prompt}." ) # create pipeline pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, unet=accelerator.unwrap_model(unet), text_encoder=accelerator.unwrap_model(text_encoder), tokenizer=tokenizer, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) # run inference generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) images = [ pipeline(args.validation_prompt, num_inference_steps=25, generator=generator, eta=1.0).images[ 0 ] for _ in range(args.num_validation_images) ] for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "validation": [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) del pipeline torch.cuda.empty_cache() # Save the custom diffusion layers accelerator.wait_for_everyone() if accelerator.is_main_process: unet = unet.to(torch.float32) unet.save_attn_procs(args.output_dir, safe_serialization=not args.no_safe_serialization) save_new_embed( text_encoder, modifier_token_id, accelerator, args, args.output_dir, safe_serialization=not args.no_safe_serialization, ) # Final inference # Load previous pipeline pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype ) pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) pipeline = pipeline.to(accelerator.device) # load attention processors weight_name = ( "pytorch_custom_diffusion_weights.safetensors" if not args.no_safe_serialization else "pytorch_custom_diffusion_weights.bin" ) pipeline.unet.load_attn_procs(args.output_dir, weight_name=weight_name) for token in args.modifier_token: token_weight_name = f"{token}.safetensors" if not args.no_safe_serialization else f"{token}.bin" pipeline.load_textual_inversion(args.output_dir, weight_name=token_weight_name) # run inference if args.validation_prompt and args.num_validation_images > 0: generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None images = [ pipeline(args.validation_prompt, num_inference_steps=25, generator=generator, eta=1.0).images[0] for _ in range(args.num_validation_images) ] for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "test": [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) if args.push_to_hub: save_model_card( repo_id, images=images, base_model=args.pretrained_model_name_or_path, prompt=args.instance_prompt, repo_folder=args.output_dir, ) api = HfApi(token=args.hub_token) api.upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": args = parse_args() main(args)
0
hf_public_repos/diffusers/examples/wuerstchen
hf_public_repos/diffusers/examples/wuerstchen/text_to_image/README.md
# Würstchen text-to-image fine-tuning ## Running locally with PyTorch Before running the scripts, make sure to install the library's training dependencies: **Important** To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date. To do this, execute the following steps in a new virtual environment: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install . ``` Then cd into the example folder and run ```bash cd examples/wuerstchen/text_to_image pip install -r requirements.txt ``` And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: ```bash accelerate config ``` For this example we want to directly store the trained LoRA embeddings on the Hub, so we need to be logged in and add the `--push_to_hub` flag to the training script. To log in, run: ```bash huggingface-cli login ``` ## Prior training You can fine-tune the Würstchen prior model with the `train_text_to_image_prior.py` script. Note that we currently support `--gradient_checkpointing` for prior model fine-tuning so you can use it for more GPU memory constrained setups. <br> <!-- accelerate_snippet_start --> ```bash export DATASET_NAME="lambdalabs/pokemon-blip-captions" accelerate launch train_text_to_image_prior.py \ --mixed_precision="fp16" \ --dataset_name=$DATASET_NAME \ --resolution=768 \ --train_batch_size=4 \ --gradient_accumulation_steps=4 \ --gradient_checkpointing \ --dataloader_num_workers=4 \ --max_train_steps=15000 \ --learning_rate=1e-05 \ --max_grad_norm=1 \ --checkpoints_total_limit=3 \ --lr_scheduler="constant" --lr_warmup_steps=0 \ --validation_prompts="A robot pokemon, 4k photo" \ --report_to="wandb" \ --push_to_hub \ --output_dir="wuerstchen-prior-pokemon-model" ``` <!-- accelerate_snippet_end --> ## Training with LoRA Low-Rank Adaption of Large Language Models (or LoRA) was first introduced by Microsoft in [LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685) by *Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen*. In a nutshell, LoRA allows adapting pretrained models by adding pairs of rank-decomposition matrices to existing weights and **only** training those newly added weights. This has a couple of advantages: - Previous pretrained weights are kept frozen so that the model is not prone to [catastrophic forgetting](https://www.pnas.org/doi/10.1073/pnas.1611835114). - Rank-decomposition matrices have significantly fewer parameters than original model, which means that trained LoRA weights are easily portable. - LoRA attention layers allow to control to which extent the model is adapted toward new training images via a `scale` parameter. ### Prior Training First, you need to set up your development environment as explained in the [installation](#Running-locally-with-PyTorch) section. Make sure to set the `DATASET_NAME` environment variable. Here, we will use the [Pokemon captions dataset](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions). ```bash export DATASET_NAME="lambdalabs/pokemon-blip-captions" accelerate launch train_text_to_image_lora_prior.py \ --mixed_precision="fp16" \ --dataset_name=$DATASET_NAME --caption_column="text" \ --resolution=768 \ --train_batch_size=8 \ --num_train_epochs=100 --checkpointing_steps=5000 \ --learning_rate=1e-04 --lr_scheduler="constant" --lr_warmup_steps=0 \ --seed=42 \ --rank=4 \ --validation_prompt="cute dragon creature" \ --report_to="wandb" \ --push_to_hub \ --output_dir="wuerstchen-prior-pokemon-lora" ```
0
hf_public_repos/diffusers/examples/wuerstchen
hf_public_repos/diffusers/examples/wuerstchen/text_to_image/requirements.txt
accelerate>=0.16.0 torchvision transformers>=4.25.1 wandb huggingface-cli bitsandbytes deepspeed peft>=0.6.0
0
hf_public_repos/diffusers/examples/wuerstchen
hf_public_repos/diffusers/examples/wuerstchen/text_to_image/train_text_to_image_prior.py
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import argparse import logging import math import os import random import shutil from pathlib import Path import accelerate import datasets import numpy as np import torch import torch.nn.functional as F import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.state import AcceleratorState, is_initialized from accelerate.utils import ProjectConfiguration, set_seed from datasets import load_dataset from huggingface_hub import create_repo, hf_hub_download, upload_folder from modeling_efficient_net_encoder import EfficientNetEncoder from packaging import version from torchvision import transforms from tqdm import tqdm from transformers import CLIPTextModel, PreTrainedTokenizerFast from transformers.utils import ContextManagers from diffusers import AutoPipelineForText2Image, DDPMWuerstchenScheduler from diffusers.optimization import get_scheduler from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS, WuerstchenPrior from diffusers.training_utils import EMAModel from diffusers.utils import check_min_version, is_wandb_available, make_image_grid from diffusers.utils.logging import set_verbosity_error, set_verbosity_info if is_wandb_available(): import wandb # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.26.0.dev0") logger = get_logger(__name__, log_level="INFO") DATASET_NAME_MAPPING = { "lambdalabs/pokemon-blip-captions": ("image", "text"), } def save_model_card( args, repo_id: str, images=None, repo_folder=None, ): img_str = "" if len(images) > 0: image_grid = make_image_grid(images, 1, len(args.validation_prompts)) image_grid.save(os.path.join(repo_folder, "val_imgs_grid.png")) img_str += "![val_imgs_grid](./val_imgs_grid.png)\n" yaml = f""" --- license: mit base_model: {args.pretrained_prior_model_name_or_path} datasets: - {args.dataset_name} tags: - wuerstchen - text-to-image - diffusers inference: true --- """ model_card = f""" # Finetuning - {repo_id} This pipeline was finetuned from **{args.pretrained_prior_model_name_or_path}** on the **{args.dataset_name}** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: {args.validation_prompts}: \n {img_str} ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipe_prior = DiffusionPipeline.from_pretrained("{repo_id}", torch_dtype={args.weight_dtype}) pipe_t2i = DiffusionPipeline.from_pretrained("{args.pretrained_decoder_model_name_or_path}", torch_dtype={args.weight_dtype}) prompt = "{args.validation_prompts[0]}" (image_embeds,) = pipe_prior(prompt).to_tuple() image = pipe_t2i(image_embeddings=image_embeds, prompt=prompt).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: {args.num_train_epochs} * Learning rate: {args.learning_rate} * Batch size: {args.train_batch_size} * Gradient accumulation steps: {args.gradient_accumulation_steps} * Image resolution: {args.resolution} * Mixed-precision: {args.mixed_precision} """ wandb_info = "" if is_wandb_available(): wandb_run_url = None if wandb.run is not None: wandb_run_url = wandb.run.url if wandb_run_url is not None: wandb_info = f""" More information on all the CLI arguments and the environment are available on your [`wandb` run page]({wandb_run_url}). """ model_card += wandb_info with open(os.path.join(repo_folder, "README.md"), "w") as f: f.write(yaml + model_card) def log_validation(text_encoder, tokenizer, prior, args, accelerator, weight_dtype, epoch): logger.info("Running validation... ") pipeline = AutoPipelineForText2Image.from_pretrained( args.pretrained_decoder_model_name_or_path, prior_prior=accelerator.unwrap_model(prior), prior_text_encoder=accelerator.unwrap_model(text_encoder), prior_tokenizer=tokenizer, torch_dtype=weight_dtype, ) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) if args.seed is None: generator = None else: generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) images = [] for i in range(len(args.validation_prompts)): with torch.autocast("cuda"): image = pipeline( args.validation_prompts[i], prior_timesteps=DEFAULT_STAGE_C_TIMESTEPS, generator=generator, height=args.resolution, width=args.resolution, ).images[0] images.append(image) for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") elif tracker.name == "wandb": tracker.log( { "validation": [ wandb.Image(image, caption=f"{i}: {args.validation_prompts[i]}") for i, image in enumerate(images) ] } ) else: logger.warn(f"image logging not implemented for {tracker.name}") del pipeline torch.cuda.empty_cache() return images def parse_args(): parser = argparse.ArgumentParser(description="Simple example of finetuning Würstchen Prior.") parser.add_argument( "--pretrained_decoder_model_name_or_path", type=str, default="warp-ai/wuerstchen", required=False, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--pretrained_prior_model_name_or_path", type=str, default="warp-ai/wuerstchen-prior", required=False, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--dataset_name", type=str, default=None, help=( "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that 🤗 Datasets can understand." ), ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The config of the Dataset, leave as None if there's only one config.", ) parser.add_argument( "--train_data_dir", type=str, default=None, help=( "A folder containing the training data. Folder contents must follow the structure described in" " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." ), ) parser.add_argument( "--image_column", type=str, default="image", help="The column of the dataset containing an image." ) parser.add_argument( "--caption_column", type=str, default="text", help="The column of the dataset containing a caption or a list of captions.", ) parser.add_argument( "--max_train_samples", type=int, default=None, help=( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ), ) parser.add_argument( "--validation_prompts", type=str, default=None, nargs="+", help=("A set of prompts evaluated every `--validation_epochs` and logged to `--report_to`."), ) parser.add_argument( "--output_dir", type=str, default="wuerstchen-model-finetuned", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--train_batch_size", type=int, default=1, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=100) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="learning rate", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument( "--adam_weight_decay", type=float, default=0.0, required=False, help="weight decay_to_use", ) parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=("Max number of checkpoints to store."), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--validation_epochs", type=int, default=5, help="Run validation every X epochs.", ) parser.add_argument( "--tracker_project_name", type=str, default="text2image-fine-tune", help=( "The `project_name` argument passed to Accelerator.init_trackers for" " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" ), ) args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank # Sanity checks if args.dataset_name is None and args.train_data_dir is None: raise ValueError("Need either a dataset name or a training folder.") return args def main(): args = parse_args() logging_dir = os.path.join(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration( total_limit=args.checkpoints_total_limit, project_dir=args.output_dir, logging_dir=logging_dir ) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load scheduler, effnet, tokenizer, clip_model noise_scheduler = DDPMWuerstchenScheduler() tokenizer = PreTrainedTokenizerFast.from_pretrained( args.pretrained_prior_model_name_or_path, subfolder="tokenizer" ) def deepspeed_zero_init_disabled_context_manager(): """ returns either a context list that includes one that will disable zero.Init or an empty context list """ deepspeed_plugin = AcceleratorState().deepspeed_plugin if is_initialized() else None if deepspeed_plugin is None: return [] return [deepspeed_plugin.zero3_init_context_manager(enable=False)] weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 with ContextManagers(deepspeed_zero_init_disabled_context_manager()): pretrained_checkpoint_file = hf_hub_download("dome272/wuerstchen", filename="model_v2_stage_b.pt") state_dict = torch.load(pretrained_checkpoint_file, map_location="cpu") image_encoder = EfficientNetEncoder() image_encoder.load_state_dict(state_dict["effnet_state_dict"]) image_encoder.eval() text_encoder = CLIPTextModel.from_pretrained( args.pretrained_prior_model_name_or_path, subfolder="text_encoder", torch_dtype=weight_dtype ).eval() # Freeze text_encoder and image_encoder text_encoder.requires_grad_(False) image_encoder.requires_grad_(False) # load prior model prior = WuerstchenPrior.from_pretrained(args.pretrained_prior_model_name_or_path, subfolder="prior") # Create EMA for the prior if args.use_ema: ema_prior = WuerstchenPrior.from_pretrained(args.pretrained_prior_model_name_or_path, subfolder="prior") ema_prior = EMAModel(ema_prior.parameters(), model_cls=WuerstchenPrior, model_config=ema_prior.config) ema_prior.to(accelerator.device) # `accelerate` 0.16.0 will have better support for customized saving if version.parse(accelerate.__version__) >= version.parse("0.16.0"): # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if args.use_ema: ema_prior.save_pretrained(os.path.join(output_dir, "prior_ema")) for i, model in enumerate(models): model.save_pretrained(os.path.join(output_dir, "prior")) # make sure to pop weight so that corresponding model is not saved again weights.pop() def load_model_hook(models, input_dir): if args.use_ema: load_model = EMAModel.from_pretrained(os.path.join(input_dir, "prior_ema"), WuerstchenPrior) ema_prior.load_state_dict(load_model.state_dict()) ema_prior.to(accelerator.device) del load_model for i in range(len(models)): # pop models so that they are not loaded again model = models.pop() # load diffusers style into model load_model = WuerstchenPrior.from_pretrained(input_dir, subfolder="prior") model.register_to_config(**load_model.config) model.load_state_dict(load_model.state_dict()) del load_model accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) if args.gradient_checkpointing: prior.enable_gradient_checkpointing() if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" ) optimizer_cls = bnb.optim.AdamW8bit else: optimizer_cls = torch.optim.AdamW optimizer = optimizer_cls( prior.parameters(), lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # Get the datasets: you can either provide your own training and evaluation files (see below) # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, ) else: data_files = {} if args.train_data_dir is not None: data_files["train"] = os.path.join(args.train_data_dir, "**") dataset = load_dataset( "imagefolder", data_files=data_files, cache_dir=args.cache_dir, ) # See more about loading custom images at # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder # Preprocessing the datasets. # We need to tokenize inputs and targets. column_names = dataset["train"].column_names # Get the column names for input/target. dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None) if args.image_column is None: image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] else: image_column = args.image_column if image_column not in column_names: raise ValueError( f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}" ) if args.caption_column is None: caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1] else: caption_column = args.caption_column if caption_column not in column_names: raise ValueError( f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}" ) # Preprocessing the datasets. # We need to tokenize input captions and transform the images def tokenize_captions(examples, is_train=True): captions = [] for caption in examples[caption_column]: if isinstance(caption, str): captions.append(caption) elif isinstance(caption, (list, np.ndarray)): # take a random caption if there are multiple captions.append(random.choice(caption) if is_train else caption[0]) else: raise ValueError( f"Caption column `{caption_column}` should contain either strings or lists of strings." ) inputs = tokenizer( captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" ) text_input_ids = inputs.input_ids text_mask = inputs.attention_mask.bool() return text_input_ids, text_mask effnet_transforms = transforms.Compose( [ transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR, antialias=True), transforms.CenterCrop(args.resolution), transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), ] ) def preprocess_train(examples): images = [image.convert("RGB") for image in examples[image_column]] examples["effnet_pixel_values"] = [effnet_transforms(image) for image in images] examples["text_input_ids"], examples["text_mask"] = tokenize_captions(examples) return examples with accelerator.main_process_first(): if args.max_train_samples is not None: dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) # Set the training transforms train_dataset = dataset["train"].with_transform(preprocess_train) def collate_fn(examples): effnet_pixel_values = torch.stack([example["effnet_pixel_values"] for example in examples]) effnet_pixel_values = effnet_pixel_values.to(memory_format=torch.contiguous_format).float() text_input_ids = torch.stack([example["text_input_ids"] for example in examples]) text_mask = torch.stack([example["text_mask"] for example in examples]) return {"effnet_pixel_values": effnet_pixel_values, "text_input_ids": text_input_ids, "text_mask": text_mask} # DataLoaders creation: train_dataloader = torch.utils.data.DataLoader( train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=args.train_batch_size, num_workers=args.dataloader_num_workers, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, ) prior, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( prior, optimizer, train_dataloader, lr_scheduler ) image_encoder.to(accelerator.device, dtype=weight_dtype) text_encoder.to(accelerator.device, dtype=weight_dtype) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: tracker_config = dict(vars(args)) tracker_config.pop("validation_prompts") accelerator.init_trackers(args.tracker_project_name, tracker_config) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) resume_global_step = global_step * args.gradient_accumulation_steps first_epoch = global_step // num_update_steps_per_epoch resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) # Only show the progress bar once on each machine. progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) progress_bar.set_description("Steps") for epoch in range(first_epoch, args.num_train_epochs): prior.train() train_loss = 0.0 for step, batch in enumerate(train_dataloader): # Skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: if step % args.gradient_accumulation_steps == 0: progress_bar.update(1) continue with accelerator.accumulate(prior): # Convert images to latent space text_input_ids, text_mask, effnet_images = ( batch["text_input_ids"], batch["text_mask"], batch["effnet_pixel_values"].to(weight_dtype), ) with torch.no_grad(): text_encoder_output = text_encoder(text_input_ids, attention_mask=text_mask) prompt_embeds = text_encoder_output.last_hidden_state image_embeds = image_encoder(effnet_images) # scale image_embeds = image_embeds.add(1.0).div(42.0) # Sample noise that we'll add to the image_embeds noise = torch.randn_like(image_embeds) bsz = image_embeds.shape[0] # Sample a random timestep for each image timesteps = torch.rand((bsz,), device=image_embeds.device, dtype=weight_dtype) # add noise to latent noisy_latents = noise_scheduler.add_noise(image_embeds, noise, timesteps) # Predict the noise residual and compute losscd pred_noise = prior(noisy_latents, timesteps, prompt_embeds) # vanilla loss loss = F.mse_loss(pred_noise.float(), noise.float(), reduction="mean") # Gather the losses across all processes for logging (if we use distributed training). avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() train_loss += avg_loss.item() / args.gradient_accumulation_steps # Backpropagate accelerator.backward(loss) if accelerator.sync_gradients: accelerator.clip_grad_norm_(prior.parameters(), args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: if args.use_ema: ema_prior.step(prior.parameters()) progress_bar.update(1) global_step += 1 accelerator.log({"train_loss": train_loss}, step=global_step) train_loss = 0.0 if global_step % args.checkpointing_steps == 0: if accelerator.is_main_process: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: checkpoints = os.listdir(args.output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= args.checkpoints_total_limit: num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) if global_step >= args.max_train_steps: break if accelerator.is_main_process: if args.validation_prompts is not None and epoch % args.validation_epochs == 0: if args.use_ema: # Store the UNet parameters temporarily and load the EMA parameters to perform inference. ema_prior.store(prior.parameters()) ema_prior.copy_to(prior.parameters()) log_validation(text_encoder, tokenizer, prior, args, accelerator, weight_dtype, global_step) if args.use_ema: # Switch back to the original UNet parameters. ema_prior.restore(prior.parameters()) # Create the pipeline using the trained modules and save it. accelerator.wait_for_everyone() if accelerator.is_main_process: prior = accelerator.unwrap_model(prior) if args.use_ema: ema_prior.copy_to(prior.parameters()) pipeline = AutoPipelineForText2Image.from_pretrained( args.pretrained_decoder_model_name_or_path, prior_prior=prior, prior_text_encoder=accelerator.unwrap_model(text_encoder), prior_tokenizer=tokenizer, ) pipeline.prior_pipe.save_pretrained(os.path.join(args.output_dir, "prior_pipeline")) # Run a final round of inference. images = [] if args.validation_prompts is not None: logger.info("Running inference for collecting generated images...") pipeline = pipeline.to(accelerator.device, torch_dtype=weight_dtype) pipeline.set_progress_bar_config(disable=True) if args.seed is None: generator = None else: generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) for i in range(len(args.validation_prompts)): with torch.autocast("cuda"): image = pipeline( args.validation_prompts[i], prior_timesteps=DEFAULT_STAGE_C_TIMESTEPS, generator=generator, width=args.resolution, height=args.resolution, ).images[0] images.append(image) if args.push_to_hub: save_model_card(args, repo_id, images, repo_folder=args.output_dir) upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": main()
0
hf_public_repos/diffusers/examples/wuerstchen
hf_public_repos/diffusers/examples/wuerstchen/text_to_image/modeling_efficient_net_encoder.py
import torch.nn as nn from torchvision.models import efficientnet_v2_l, efficientnet_v2_s from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models.modeling_utils import ModelMixin class EfficientNetEncoder(ModelMixin, ConfigMixin): @register_to_config def __init__(self, c_latent=16, c_cond=1280, effnet="efficientnet_v2_s"): super().__init__() if effnet == "efficientnet_v2_s": self.backbone = efficientnet_v2_s(weights="DEFAULT").features else: self.backbone = efficientnet_v2_l(weights="DEFAULT").features self.mapper = nn.Sequential( nn.Conv2d(c_cond, c_latent, kernel_size=1, bias=False), nn.BatchNorm2d(c_latent), # then normalize them to have mean 0 and std 1 ) def forward(self, x): return self.mapper(self.backbone(x))
0
hf_public_repos/diffusers/examples/wuerstchen
hf_public_repos/diffusers/examples/wuerstchen/text_to_image/train_text_to_image_lora_prior.py
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import argparse import logging import math import os import random import shutil from pathlib import Path import datasets import numpy as np import torch import torch.nn.functional as F import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.state import AcceleratorState, is_initialized from accelerate.utils import ProjectConfiguration, set_seed from datasets import load_dataset from huggingface_hub import create_repo, hf_hub_download, upload_folder from modeling_efficient_net_encoder import EfficientNetEncoder from peft import LoraConfig from peft.utils import get_peft_model_state_dict from torchvision import transforms from tqdm import tqdm from transformers import CLIPTextModel, PreTrainedTokenizerFast from transformers.utils import ContextManagers from diffusers import AutoPipelineForText2Image, DDPMWuerstchenScheduler, WuerstchenPriorPipeline from diffusers.optimization import get_scheduler from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS, WuerstchenPrior from diffusers.utils import check_min_version, is_wandb_available, make_image_grid from diffusers.utils.logging import set_verbosity_error, set_verbosity_info if is_wandb_available(): import wandb # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.26.0.dev0") logger = get_logger(__name__, log_level="INFO") DATASET_NAME_MAPPING = { "lambdalabs/pokemon-blip-captions": ("image", "text"), } def save_model_card( args, repo_id: str, images=None, repo_folder=None, ): img_str = "" if len(images) > 0: image_grid = make_image_grid(images, 1, len(args.validation_prompts)) image_grid.save(os.path.join(repo_folder, "val_imgs_grid.png")) img_str += "![val_imgs_grid](./val_imgs_grid.png)\n" yaml = f""" --- license: mit base_model: {args.pretrained_prior_model_name_or_path} datasets: - {args.dataset_name} tags: - wuerstchen - text-to-image - diffusers - lora inference: true --- """ model_card = f""" # LoRA Finetuning - {repo_id} This pipeline was finetuned from **{args.pretrained_prior_model_name_or_path}** on the **{args.dataset_name}** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: {args.validation_prompts}: \n {img_str} ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipeline = AutoPipelineForText2Image.from_pretrained( "{args.pretrained_decoder_model_name_or_path}", torch_dtype={args.weight_dtype} ) # load lora weights from folder: pipeline.prior_pipe.load_lora_weights("{repo_id}", torch_dtype={args.weight_dtype}) image = pipeline(prompt=prompt).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * LoRA rank: {args.rank} * Epochs: {args.num_train_epochs} * Learning rate: {args.learning_rate} * Batch size: {args.train_batch_size} * Gradient accumulation steps: {args.gradient_accumulation_steps} * Image resolution: {args.resolution} * Mixed-precision: {args.mixed_precision} """ wandb_info = "" if is_wandb_available(): wandb_run_url = None if wandb.run is not None: wandb_run_url = wandb.run.url if wandb_run_url is not None: wandb_info = f""" More information on all the CLI arguments and the environment are available on your [`wandb` run page]({wandb_run_url}). """ model_card += wandb_info with open(os.path.join(repo_folder, "README.md"), "w") as f: f.write(yaml + model_card) def log_validation(text_encoder, tokenizer, prior, args, accelerator, weight_dtype, epoch): logger.info("Running validation... ") pipeline = AutoPipelineForText2Image.from_pretrained( args.pretrained_decoder_model_name_or_path, prior=accelerator.unwrap_model(prior), prior_text_encoder=accelerator.unwrap_model(text_encoder), prior_tokenizer=tokenizer, torch_dtype=weight_dtype, ) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) if args.seed is None: generator = None else: generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) images = [] for i in range(len(args.validation_prompts)): with torch.cuda.amp.autocast(): image = pipeline( args.validation_prompts[i], prior_timesteps=DEFAULT_STAGE_C_TIMESTEPS, generator=generator, height=args.resolution, width=args.resolution, ).images[0] images.append(image) for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") elif tracker.name == "wandb": tracker.log( { "validation": [ wandb.Image(image, caption=f"{i}: {args.validation_prompts[i]}") for i, image in enumerate(images) ] } ) else: logger.warn(f"image logging not implemented for {tracker.name}") del pipeline torch.cuda.empty_cache() return images def parse_args(): parser = argparse.ArgumentParser(description="Simple example of finetuning Würstchen Prior.") parser.add_argument( "--rank", type=int, default=4, help=("The dimension of the LoRA update matrices."), ) parser.add_argument( "--pretrained_decoder_model_name_or_path", type=str, default="warp-ai/wuerstchen", required=False, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--pretrained_prior_model_name_or_path", type=str, default="warp-ai/wuerstchen-prior", required=False, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--dataset_name", type=str, default=None, help=( "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that 🤗 Datasets can understand." ), ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The config of the Dataset, leave as None if there's only one config.", ) parser.add_argument( "--train_data_dir", type=str, default=None, help=( "A folder containing the training data. Folder contents must follow the structure described in" " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." ), ) parser.add_argument( "--image_column", type=str, default="image", help="The column of the dataset containing an image." ) parser.add_argument( "--caption_column", type=str, default="text", help="The column of the dataset containing a caption or a list of captions.", ) parser.add_argument( "--max_train_samples", type=int, default=None, help=( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ), ) parser.add_argument( "--validation_prompts", type=str, default=None, nargs="+", help=("A set of prompts evaluated every `--validation_epochs` and logged to `--report_to`."), ) parser.add_argument( "--output_dir", type=str, default="wuerstchen-model-finetuned-lora", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--train_batch_size", type=int, default=1, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=100) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="learning rate", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument( "--adam_weight_decay", type=float, default=0.0, required=False, help="weight decay_to_use", ) parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=("Max number of checkpoints to store."), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--validation_epochs", type=int, default=5, help="Run validation every X epochs.", ) parser.add_argument( "--tracker_project_name", type=str, default="text2image-fine-tune", help=( "The `project_name` argument passed to Accelerator.init_trackers for" " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" ), ) args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank # Sanity checks if args.dataset_name is None and args.train_data_dir is None: raise ValueError("Need either a dataset name or a training folder.") return args def main(): args = parse_args() logging_dir = os.path.join(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration( total_limit=args.checkpoints_total_limit, project_dir=args.output_dir, logging_dir=logging_dir ) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load scheduler, effnet, tokenizer, clip_model noise_scheduler = DDPMWuerstchenScheduler() tokenizer = PreTrainedTokenizerFast.from_pretrained( args.pretrained_prior_model_name_or_path, subfolder="tokenizer" ) def deepspeed_zero_init_disabled_context_manager(): """ returns either a context list that includes one that will disable zero.Init or an empty context list """ deepspeed_plugin = AcceleratorState().deepspeed_plugin if is_initialized() else None if deepspeed_plugin is None: return [] return [deepspeed_plugin.zero3_init_context_manager(enable=False)] weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 with ContextManagers(deepspeed_zero_init_disabled_context_manager()): pretrained_checkpoint_file = hf_hub_download("dome272/wuerstchen", filename="model_v2_stage_b.pt") state_dict = torch.load(pretrained_checkpoint_file, map_location="cpu") image_encoder = EfficientNetEncoder() image_encoder.load_state_dict(state_dict["effnet_state_dict"]) image_encoder.eval() text_encoder = CLIPTextModel.from_pretrained( args.pretrained_prior_model_name_or_path, subfolder="text_encoder", torch_dtype=weight_dtype ).eval() # Freeze text_encoder, cast to weight_dtype and image_encoder and move to device text_encoder.requires_grad_(False) image_encoder.requires_grad_(False) image_encoder.to(accelerator.device, dtype=weight_dtype) text_encoder.to(accelerator.device, dtype=weight_dtype) # load prior model, cast to weight_dtype and move to device prior = WuerstchenPrior.from_pretrained(args.pretrained_prior_model_name_or_path, subfolder="prior") prior.to(accelerator.device, dtype=weight_dtype) # lora attn processor prior_lora_config = LoraConfig( r=args.rank, lora_alpha=args.rank, target_modules=["to_k", "to_q", "to_v", "to_out.0", "add_k_proj", "add_v_proj"], ) # Add adapter and make sure the trainable params are in float32. prior.add_adapter(prior_lora_config) if args.mixed_precision == "fp16": for param in prior.parameters(): # only upcast trainable parameters (LoRA) into fp32 if param.requires_grad: param.data = param.to(torch.float32) # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: prior_lora_layers_to_save = None for model in models: if isinstance(model, type(accelerator.unwrap_model(prior))): prior_lora_layers_to_save = get_peft_model_state_dict(model) else: raise ValueError(f"unexpected save model: {model.__class__}") # make sure to pop weight so that corresponding model is not saved again weights.pop() WuerstchenPriorPipeline.save_lora_weights( output_dir, unet_lora_layers=prior_lora_layers_to_save, ) def load_model_hook(models, input_dir): prior_ = None while len(models) > 0: model = models.pop() if isinstance(model, type(accelerator.unwrap_model(prior))): prior_ = model else: raise ValueError(f"unexpected save model: {model.__class__}") lora_state_dict, network_alphas = WuerstchenPriorPipeline.lora_state_dict(input_dir) WuerstchenPriorPipeline.load_lora_into_unet(lora_state_dict, network_alphas=network_alphas, unet=prior_) WuerstchenPriorPipeline.load_lora_into_text_encoder( lora_state_dict, network_alphas=network_alphas, ) accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" ) optimizer_cls = bnb.optim.AdamW8bit else: optimizer_cls = torch.optim.AdamW params_to_optimize = list(filter(lambda p: p.requires_grad, prior.parameters())) optimizer = optimizer_cls( params_to_optimize, lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # Get the datasets: you can either provide your own training and evaluation files (see below) # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, ) else: data_files = {} if args.train_data_dir is not None: data_files["train"] = os.path.join(args.train_data_dir, "**") dataset = load_dataset( "imagefolder", data_files=data_files, cache_dir=args.cache_dir, ) # See more about loading custom images at # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder # Preprocessing the datasets. # We need to tokenize inputs and targets. column_names = dataset["train"].column_names # Get the column names for input/target. dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None) if args.image_column is None: image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] else: image_column = args.image_column if image_column not in column_names: raise ValueError( f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}" ) if args.caption_column is None: caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1] else: caption_column = args.caption_column if caption_column not in column_names: raise ValueError( f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}" ) # Preprocessing the datasets. # We need to tokenize input captions and transform the images def tokenize_captions(examples, is_train=True): captions = [] for caption in examples[caption_column]: if isinstance(caption, str): captions.append(caption) elif isinstance(caption, (list, np.ndarray)): # take a random caption if there are multiple captions.append(random.choice(caption) if is_train else caption[0]) else: raise ValueError( f"Caption column `{caption_column}` should contain either strings or lists of strings." ) inputs = tokenizer( captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" ) text_input_ids = inputs.input_ids text_mask = inputs.attention_mask.bool() return text_input_ids, text_mask effnet_transforms = transforms.Compose( [ transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR, antialias=True), transforms.CenterCrop(args.resolution), transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), ] ) def preprocess_train(examples): images = [image.convert("RGB") for image in examples[image_column]] examples["effnet_pixel_values"] = [effnet_transforms(image) for image in images] examples["text_input_ids"], examples["text_mask"] = tokenize_captions(examples) return examples with accelerator.main_process_first(): if args.max_train_samples is not None: dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) # Set the training transforms train_dataset = dataset["train"].with_transform(preprocess_train) def collate_fn(examples): effnet_pixel_values = torch.stack([example["effnet_pixel_values"] for example in examples]) effnet_pixel_values = effnet_pixel_values.to(memory_format=torch.contiguous_format).float() text_input_ids = torch.stack([example["text_input_ids"] for example in examples]) text_mask = torch.stack([example["text_mask"] for example in examples]) return {"effnet_pixel_values": effnet_pixel_values, "text_input_ids": text_input_ids, "text_mask": text_mask} # DataLoaders creation: train_dataloader = torch.utils.data.DataLoader( train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=args.train_batch_size, num_workers=args.dataloader_num_workers, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, ) prior, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( prior, optimizer, train_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: tracker_config = dict(vars(args)) tracker_config.pop("validation_prompts") accelerator.init_trackers(args.tracker_project_name, tracker_config) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) resume_global_step = global_step * args.gradient_accumulation_steps first_epoch = global_step // num_update_steps_per_epoch resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) # Only show the progress bar once on each machine. progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) progress_bar.set_description("Steps") for epoch in range(first_epoch, args.num_train_epochs): prior.train() train_loss = 0.0 for step, batch in enumerate(train_dataloader): # Skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: if step % args.gradient_accumulation_steps == 0: progress_bar.update(1) continue with accelerator.accumulate(prior): # Convert images to latent space text_input_ids, text_mask, effnet_images = ( batch["text_input_ids"], batch["text_mask"], batch["effnet_pixel_values"].to(weight_dtype), ) with torch.no_grad(): text_encoder_output = text_encoder(text_input_ids, attention_mask=text_mask) prompt_embeds = text_encoder_output.last_hidden_state image_embeds = image_encoder(effnet_images) # scale image_embeds = image_embeds.add(1.0).div(42.0) # Sample noise that we'll add to the image_embeds noise = torch.randn_like(image_embeds) bsz = image_embeds.shape[0] # Sample a random timestep for each image timesteps = torch.rand((bsz,), device=image_embeds.device, dtype=weight_dtype) # add noise to latent noisy_latents = noise_scheduler.add_noise(image_embeds, noise, timesteps) # Predict the noise residual and compute losscd pred_noise = prior(noisy_latents, timesteps, prompt_embeds) # vanilla loss loss = F.mse_loss(pred_noise.float(), noise.float(), reduction="mean") # Gather the losses across all processes for logging (if we use distributed training). avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() train_loss += avg_loss.item() / args.gradient_accumulation_steps # Backpropagate accelerator.backward(loss) if accelerator.sync_gradients: accelerator.clip_grad_norm_(params_to_optimize, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 accelerator.log({"train_loss": train_loss}, step=global_step) train_loss = 0.0 if global_step % args.checkpointing_steps == 0: if accelerator.is_main_process: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: checkpoints = os.listdir(args.output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= args.checkpoints_total_limit: num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) if global_step >= args.max_train_steps: break if accelerator.is_main_process: if args.validation_prompts is not None and epoch % args.validation_epochs == 0: log_validation(text_encoder, tokenizer, prior, args, accelerator, weight_dtype, global_step) # Create the pipeline using the trained modules and save it. accelerator.wait_for_everyone() if accelerator.is_main_process: prior = accelerator.unwrap_model(prior) prior = prior.to(torch.float32) prior_lora_state_dict = get_peft_model_state_dict(prior) WuerstchenPriorPipeline.save_lora_weights( save_directory=args.output_dir, unet_lora_layers=prior_lora_state_dict, ) # Run a final round of inference. images = [] if args.validation_prompts is not None: logger.info("Running inference for collecting generated images...") pipeline = AutoPipelineForText2Image.from_pretrained( args.pretrained_decoder_model_name_or_path, prior_text_encoder=accelerator.unwrap_model(text_encoder), prior_tokenizer=tokenizer, torch_dtype=weight_dtype, ) pipeline = pipeline.to(accelerator.device) # load lora weights pipeline.prior_pipe.load_lora_weights(args.output_dir, weight_name="pytorch_lora_weights.safetensors") pipeline.set_progress_bar_config(disable=True) if args.seed is None: generator = None else: generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) for i in range(len(args.validation_prompts)): with torch.cuda.amp.autocast(): image = pipeline( args.validation_prompts[i], prior_timesteps=DEFAULT_STAGE_C_TIMESTEPS, generator=generator, width=args.resolution, height=args.resolution, ).images[0] images.append(image) if args.push_to_hub: save_model_card(args, repo_id, images, repo_folder=args.output_dir) upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": main()
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/unconditional_image_generation/README.md
## Training an unconditional diffusion model Creating a training image set is [described in a different document](https://huggingface.co/docs/datasets/image_process#image-datasets). ### Installing the dependencies Before running the scripts, make sure to install the library's training dependencies: **Important** To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install . ``` Then cd in the example folder and run ```bash pip install -r requirements.txt ``` And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: ```bash accelerate config ``` ### Unconditional Flowers The command to train a DDPM UNet model on the Oxford Flowers dataset: ```bash accelerate launch train_unconditional.py \ --dataset_name="huggan/flowers-102-categories" \ --resolution=64 --center_crop --random_flip \ --output_dir="ddpm-ema-flowers-64" \ --train_batch_size=16 \ --num_epochs=100 \ --gradient_accumulation_steps=1 \ --use_ema \ --learning_rate=1e-4 \ --lr_warmup_steps=500 \ --mixed_precision=no \ --push_to_hub ``` An example trained model: https://huggingface.co/anton-l/ddpm-ema-flowers-64 A full training run takes 2 hours on 4xV100 GPUs. <img src="https://user-images.githubusercontent.com/26864830/180248660-a0b143d0-b89a-42c5-8656-2ebf6ece7e52.png" width="700" /> ### Unconditional Pokemon The command to train a DDPM UNet model on the Pokemon dataset: ```bash accelerate launch train_unconditional.py \ --dataset_name="huggan/pokemon" \ --resolution=64 --center_crop --random_flip \ --output_dir="ddpm-ema-pokemon-64" \ --train_batch_size=16 \ --num_epochs=100 \ --gradient_accumulation_steps=1 \ --use_ema \ --learning_rate=1e-4 \ --lr_warmup_steps=500 \ --mixed_precision=no \ --push_to_hub ``` An example trained model: https://huggingface.co/anton-l/ddpm-ema-pokemon-64 A full training run takes 2 hours on 4xV100 GPUs. <img src="https://user-images.githubusercontent.com/26864830/180248200-928953b4-db38-48db-b0c6-8b740fe6786f.png" width="700" /> ### Training with multiple GPUs `accelerate` allows for seamless multi-GPU training. Follow the instructions [here](https://huggingface.co/docs/accelerate/basic_tutorials/launch) for running distributed training with `accelerate`. Here is an example command: ```bash accelerate launch --mixed_precision="fp16" --multi_gpu train_unconditional.py \ --dataset_name="huggan/pokemon" \ --resolution=64 --center_crop --random_flip \ --output_dir="ddpm-ema-pokemon-64" \ --train_batch_size=16 \ --num_epochs=100 \ --gradient_accumulation_steps=1 \ --use_ema \ --learning_rate=1e-4 \ --lr_warmup_steps=500 \ --mixed_precision="fp16" \ --logger="wandb" ``` To be able to use Weights and Biases (`wandb`) as a logger you need to install the library: `pip install wandb`. ### Using your own data To use your own dataset, there are 2 ways: - you can either provide your own folder as `--train_data_dir` - or you can upload your dataset to the hub (possibly as a private repo, if you prefer so), and simply pass the `--dataset_name` argument. Below, we explain both in more detail. #### Provide the dataset as a folder If you provide your own folders with images, the script expects the following directory structure: ```bash data_dir/xxx.png data_dir/xxy.png data_dir/[...]/xxz.png ``` In other words, the script will take care of gathering all images inside the folder. You can then run the script like this: ```bash accelerate launch train_unconditional.py \ --train_data_dir <path-to-train-directory> \ <other-arguments> ``` Internally, the script will use the [`ImageFolder`](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder) feature which will automatically turn the folders into 🤗 Dataset objects. #### Upload your data to the hub, as a (possibly private) repo It's very easy (and convenient) to upload your image dataset to the hub using the [`ImageFolder`](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder) feature available in 🤗 Datasets. Simply do the following: ```python from datasets import load_dataset # example 1: local folder dataset = load_dataset("imagefolder", data_dir="path_to_your_folder") # example 2: local files (supported formats are tar, gzip, zip, xz, rar, zstd) dataset = load_dataset("imagefolder", data_files="path_to_zip_file") # example 3: remote files (supported formats are tar, gzip, zip, xz, rar, zstd) dataset = load_dataset("imagefolder", data_files="https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.zip") # example 4: providing several splits dataset = load_dataset("imagefolder", data_files={"train": ["path/to/file1", "path/to/file2"], "test": ["path/to/file3", "path/to/file4"]}) ``` `ImageFolder` will create an `image` column containing the PIL-encoded images. Next, push it to the hub! ```python # assuming you have ran the huggingface-cli login command in a terminal dataset.push_to_hub("name_of_your_dataset") # if you want to push to a private repo, simply pass private=True: dataset.push_to_hub("name_of_your_dataset", private=True) ``` and that's it! You can now train your model by simply setting the `--dataset_name` argument to the name of your dataset on the hub. More on this can also be found in [this blog post](https://huggingface.co/blog/image-search-datasets).
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/unconditional_image_generation/requirements.txt
accelerate>=0.16.0 torchvision datasets
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/unconditional_image_generation/test_unconditional.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys import tempfile sys.path.append("..") from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class Unconditional(ExamplesTestsAccelerate): def test_train_unconditional(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/unconditional_image_generation/train_unconditional.py --dataset_name hf-internal-testing/dummy_image_class_data --model_config_name_or_path diffusers/ddpm_dummy --resolution 64 --output_dir {tmpdir} --train_batch_size 2 --num_epochs 1 --gradient_accumulation_steps 1 --ddpm_num_inference_steps 2 --learning_rate 1e-3 --lr_warmup_steps 5 """.split() run_command(self._launch_args + test_args, return_stdout=True) # save_pretrained smoke test self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors"))) self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) def test_unconditional_checkpointing_checkpoints_total_limit(self): with tempfile.TemporaryDirectory() as tmpdir: initial_run_args = f""" examples/unconditional_image_generation/train_unconditional.py --dataset_name hf-internal-testing/dummy_image_class_data --model_config_name_or_path diffusers/ddpm_dummy --resolution 64 --output_dir {tmpdir} --train_batch_size 1 --num_epochs 1 --gradient_accumulation_steps 1 --ddpm_num_inference_steps 2 --learning_rate 1e-3 --lr_warmup_steps 5 --checkpointing_steps=2 --checkpoints_total_limit=2 """.split() run_command(self._launch_args + initial_run_args) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, # checkpoint-2 should have been deleted {"checkpoint-4", "checkpoint-6"}, ) def test_unconditional_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): with tempfile.TemporaryDirectory() as tmpdir: initial_run_args = f""" examples/unconditional_image_generation/train_unconditional.py --dataset_name hf-internal-testing/dummy_image_class_data --model_config_name_or_path diffusers/ddpm_dummy --resolution 64 --output_dir {tmpdir} --train_batch_size 1 --num_epochs 1 --gradient_accumulation_steps 1 --ddpm_num_inference_steps 1 --learning_rate 1e-3 --lr_warmup_steps 5 --checkpointing_steps=2 """.split() run_command(self._launch_args + initial_run_args) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4", "checkpoint-6"}, ) resume_run_args = f""" examples/unconditional_image_generation/train_unconditional.py --dataset_name hf-internal-testing/dummy_image_class_data --model_config_name_or_path diffusers/ddpm_dummy --resolution 64 --output_dir {tmpdir} --train_batch_size 1 --num_epochs 2 --gradient_accumulation_steps 1 --ddpm_num_inference_steps 1 --learning_rate 1e-3 --lr_warmup_steps 5 --resume_from_checkpoint=checkpoint-6 --checkpointing_steps=2 --checkpoints_total_limit=2 """.split() run_command(self._launch_args + resume_run_args) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-10", "checkpoint-12"}, )
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/unconditional_image_generation/train_unconditional.py
import argparse import inspect import logging import math import os import shutil from datetime import timedelta from pathlib import Path import accelerate import datasets import torch import torch.nn.functional as F from accelerate import Accelerator, InitProcessGroupKwargs from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration from datasets import load_dataset from huggingface_hub import create_repo, upload_folder from packaging import version from torchvision import transforms from tqdm.auto import tqdm import diffusers from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel from diffusers.optimization import get_scheduler from diffusers.training_utils import EMAModel from diffusers.utils import check_min_version, is_accelerate_version, is_tensorboard_available, is_wandb_available from diffusers.utils.import_utils import is_xformers_available # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.26.0.dev0") logger = get_logger(__name__, log_level="INFO") def _extract_into_tensor(arr, timesteps, broadcast_shape): """ Extract values from a 1-D numpy array for a batch of indices. :param arr: the 1-D numpy array. :param timesteps: a tensor of indices into the array to extract. :param broadcast_shape: a larger shape of K dimensions with the batch dimension equal to the length of timesteps. :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. """ if not isinstance(arr, torch.Tensor): arr = torch.from_numpy(arr) res = arr[timesteps].float().to(timesteps.device) while len(res.shape) < len(broadcast_shape): res = res[..., None] return res.expand(broadcast_shape) def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--dataset_name", type=str, default=None, help=( "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that HF Datasets can understand." ), ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The config of the Dataset, leave as None if there's only one config.", ) parser.add_argument( "--model_config_name_or_path", type=str, default=None, help="The config of the UNet model to train, leave as None to use standard DDPM configuration.", ) parser.add_argument( "--train_data_dir", type=str, default=None, help=( "A folder containing the training data. Folder contents must follow the structure described in" " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." ), ) parser.add_argument( "--output_dir", type=str, default="ddpm-model-64", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--overwrite_output_dir", action="store_true") parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument( "--resolution", type=int, default=64, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument( "--random_flip", default=False, action="store_true", help="whether to randomly flip images horizontally", ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." ) parser.add_argument( "--eval_batch_size", type=int, default=16, help="The number of images to generate for evaluation." ) parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main" " process." ), ) parser.add_argument("--num_epochs", type=int, default=100) parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.") parser.add_argument( "--save_model_epochs", type=int, default=10, help="How often to save the model during training." ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--lr_scheduler", type=str, default="cosine", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument( "--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer." ) parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.") parser.add_argument( "--use_ema", action="store_true", help="Whether to use Exponential Moving Average for the final model weights.", ) parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.") parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.") parser.add_argument("--ema_max_decay", type=float, default=0.9999, help="The maximum decay magnitude for EMA.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--hub_private_repo", action="store_true", help="Whether or not to create a private repository." ) parser.add_argument( "--logger", type=str, default="tensorboard", choices=["tensorboard", "wandb"], help=( "Whether to use [tensorboard](https://www.tensorflow.org/tensorboard) or [wandb](https://www.wandb.ai)" " for experiment tracking and logging of model metrics and model checkpoints" ), ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ), ) parser.add_argument( "--prediction_type", type=str, default="epsilon", choices=["epsilon", "sample"], help="Whether the model should predict the 'epsilon'/noise error or directly the reconstructed image 'x0'.", ) parser.add_argument("--ddpm_num_steps", type=int, default=1000) parser.add_argument("--ddpm_num_inference_steps", type=int, default=1000) parser.add_argument("--ddpm_beta_schedule", type=str, default="linear") parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=("Max number of checkpoints to store."), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.dataset_name is None and args.train_data_dir is None: raise ValueError("You must specify either a dataset name from the hub or a train data directory.") return args def main(args): logging_dir = os.path.join(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=7200)) # a big number for high resolution or big dataset accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.logger, project_config=accelerator_project_config, kwargs_handlers=[kwargs], ) if args.logger == "tensorboard": if not is_tensorboard_available(): raise ImportError("Make sure to install tensorboard if you want to use it for logging during training.") elif args.logger == "wandb": if not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") import wandb # `accelerate` 0.16.0 will have better support for customized saving if version.parse(accelerate.__version__) >= version.parse("0.16.0"): # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: if args.use_ema: ema_model.save_pretrained(os.path.join(output_dir, "unet_ema")) for i, model in enumerate(models): model.save_pretrained(os.path.join(output_dir, "unet")) # make sure to pop weight so that corresponding model is not saved again weights.pop() def load_model_hook(models, input_dir): if args.use_ema: load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DModel) ema_model.load_state_dict(load_model.state_dict()) ema_model.to(accelerator.device) del load_model for i in range(len(models)): # pop models so that they are not loaded again model = models.pop() # load diffusers style into model load_model = UNet2DModel.from_pretrained(input_dir, subfolder="unet") model.register_to_config(**load_model.config) model.load_state_dict(load_model.state_dict()) del load_model accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Initialize the model if args.model_config_name_or_path is None: model = UNet2DModel( sample_size=args.resolution, in_channels=3, out_channels=3, layers_per_block=2, block_out_channels=(128, 128, 256, 256, 512, 512), down_block_types=( "DownBlock2D", "DownBlock2D", "DownBlock2D", "DownBlock2D", "AttnDownBlock2D", "DownBlock2D", ), up_block_types=( "UpBlock2D", "AttnUpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", ), ) else: config = UNet2DModel.load_config(args.model_config_name_or_path) model = UNet2DModel.from_config(config) # Create EMA for the model. if args.use_ema: ema_model = EMAModel( model.parameters(), decay=args.ema_max_decay, use_ema_warmup=True, inv_gamma=args.ema_inv_gamma, power=args.ema_power, model_cls=UNet2DModel, model_config=model.config, ) weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 args.mixed_precision = accelerator.mixed_precision elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 args.mixed_precision = accelerator.mixed_precision if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warn( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) model.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") # Initialize the scheduler accepts_prediction_type = "prediction_type" in set(inspect.signature(DDPMScheduler.__init__).parameters.keys()) if accepts_prediction_type: noise_scheduler = DDPMScheduler( num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule, prediction_type=args.prediction_type, ) else: noise_scheduler = DDPMScheduler(num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule) # Initialize the optimizer optimizer = torch.optim.AdamW( model.parameters(), lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # Get the datasets: you can either provide your own training and evaluation files (see below) # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if args.dataset_name is not None: dataset = load_dataset( args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, split="train", ) else: dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train") # See more about loading custom images at # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder # Preprocessing the datasets and DataLoaders creation. augmentations = transforms.Compose( [ transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution), transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def transform_images(examples): images = [augmentations(image.convert("RGB")) for image in examples["image"]] return {"input": images} logger.info(f"Dataset size: {len(dataset)}") dataset.set_transform(transform_images) train_dataloader = torch.utils.data.DataLoader( dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers ) # Initialize the learning rate scheduler lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, num_training_steps=(len(train_dataloader) * args.num_epochs), ) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, lr_scheduler ) if args.use_ema: ema_model.to(accelerator.device) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: run = os.path.split(__file__)[-1].split(".")[0] accelerator.init_trackers(run) total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) max_train_steps = args.num_epochs * num_update_steps_per_epoch logger.info("***** Running training *****") logger.info(f" Num examples = {len(dataset)}") logger.info(f" Num Epochs = {args.num_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) resume_global_step = global_step * args.gradient_accumulation_steps first_epoch = global_step // num_update_steps_per_epoch resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) # Train! for epoch in range(first_epoch, args.num_epochs): model.train() progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process) progress_bar.set_description(f"Epoch {epoch}") for step, batch in enumerate(train_dataloader): # Skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: if step % args.gradient_accumulation_steps == 0: progress_bar.update(1) continue clean_images = batch["input"].to(weight_dtype) # Sample noise that we'll add to the images noise = torch.randn(clean_images.shape, dtype=weight_dtype, device=clean_images.device) bsz = clean_images.shape[0] # Sample a random timestep for each image timesteps = torch.randint( 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device ).long() # Add noise to the clean images according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps) with accelerator.accumulate(model): # Predict the noise residual model_output = model(noisy_images, timesteps).sample if args.prediction_type == "epsilon": loss = F.mse_loss(model_output.float(), noise.float()) # this could have different weights! elif args.prediction_type == "sample": alpha_t = _extract_into_tensor( noise_scheduler.alphas_cumprod, timesteps, (clean_images.shape[0], 1, 1, 1) ) snr_weights = alpha_t / (1 - alpha_t) # use SNR weighting from distillation paper loss = snr_weights * F.mse_loss(model_output.float(), clean_images.float(), reduction="none") loss = loss.mean() else: raise ValueError(f"Unsupported prediction type: {args.prediction_type}") accelerator.backward(loss) if accelerator.sync_gradients: accelerator.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: if args.use_ema: ema_model.step(model.parameters()) progress_bar.update(1) global_step += 1 if accelerator.is_main_process: if global_step % args.checkpointing_steps == 0: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: checkpoints = os.listdir(args.output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= args.checkpoints_total_limit: num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step} if args.use_ema: logs["ema_decay"] = ema_model.cur_decay_value progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) progress_bar.close() accelerator.wait_for_everyone() # Generate sample images for visual inspection if accelerator.is_main_process: if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1: unet = accelerator.unwrap_model(model) if args.use_ema: ema_model.store(unet.parameters()) ema_model.copy_to(unet.parameters()) pipeline = DDPMPipeline( unet=unet, scheduler=noise_scheduler, ) generator = torch.Generator(device=pipeline.device).manual_seed(0) # run pipeline in inference (sample random noise and denoise) images = pipeline( generator=generator, batch_size=args.eval_batch_size, num_inference_steps=args.ddpm_num_inference_steps, output_type="numpy", ).images if args.use_ema: ema_model.restore(unet.parameters()) # denormalize the images and save to tensorboard images_processed = (images * 255).round().astype("uint8") if args.logger == "tensorboard": if is_accelerate_version(">=", "0.17.0.dev0"): tracker = accelerator.get_tracker("tensorboard", unwrap=True) else: tracker = accelerator.get_tracker("tensorboard") tracker.add_images("test_samples", images_processed.transpose(0, 3, 1, 2), epoch) elif args.logger == "wandb": # Upcoming `log_images` helper coming in https://github.com/huggingface/accelerate/pull/962/files accelerator.get_tracker("wandb").log( {"test_samples": [wandb.Image(img) for img in images_processed], "epoch": epoch}, step=global_step, ) if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1: # save the model unet = accelerator.unwrap_model(model) if args.use_ema: ema_model.store(unet.parameters()) ema_model.copy_to(unet.parameters()) pipeline = DDPMPipeline( unet=unet, scheduler=noise_scheduler, ) pipeline.save_pretrained(args.output_dir) if args.use_ema: ema_model.restore(unet.parameters()) if args.push_to_hub: upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message=f"Epoch {epoch}", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": args = parse_args() main(args)
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/inference/README.md
# Inference Examples **The inference examples folder is deprecated and will be removed in a future version**. **Officially supported inference examples can be found in the [Pipelines folder](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines)**. - For `Image-to-Image text-guided generation with Stable Diffusion`, please have a look at the official [Pipeline examples](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines#examples) - For `In-painting using Stable Diffusion`, please have a look at the official [Pipeline examples](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines#examples) - For `Tweak prompts reusing seeds and latents`, please have a look at the official [Pipeline examples](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines#examples)
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/inference/image_to_image.py
import warnings from diffusers import StableDiffusionImg2ImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/inference/inpainting.py
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/reinforcement_learning/run_diffuser_locomotion.py
import d4rl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline config = { "n_samples": 64, "horizon": 32, "num_inference_steps": 20, "n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network "scale_grad_by_std": True, "scale": 0.1, "eta": 0.0, "t_grad_cutoff": 2, "device": "cpu", } if __name__ == "__main__": env_name = "hopper-medium-v2" env = gym.make(env_name) pipeline = ValueGuidedRLPipeline.from_pretrained( "bglick13/hopper-medium-v2-value-function-hor32", env=env, ) env.seed(0) obs = env.reset() total_reward = 0 total_score = 0 T = 1000 rollout = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy denorm_actions = pipeline(obs, planning_horizon=32) # execute action in environment next_observation, reward, terminal, _ = env.step(denorm_actions) score = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" f" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) obs = next_observation except KeyboardInterrupt: pass print(f"Total reward: {total_reward}")
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/reinforcement_learning/README.md
# Overview These examples show how to run [Diffuser](https://arxiv.org/abs/2205.09991) in Diffusers. There are two ways to use the script, `run_diffuser_locomotion.py`. The key option is a change of the variable `n_guide_steps`. When `n_guide_steps=0`, the trajectories are sampled from the diffusion model, but not fine-tuned to maximize reward in the environment. By default, `n_guide_steps=2` to match the original implementation. You will need some RL specific requirements to run the examples: ``` pip install -f https://download.pytorch.org/whl/torch_stable.html \ free-mujoco-py \ einops \ gym==0.24.1 \ protobuf==3.20.1 \ git+https://github.com/rail-berkeley/d4rl.git \ mediapy \ Pillow==9.0.0 ```
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/research_projects/README.md
# Research projects This folder contains various research projects using 🧨 Diffusers. They are not really maintained by the core maintainers of this library and often require a specific version of Diffusers that is indicated in the requirements file of each folder. Updating them to the most recent version of the library will require some work. To use any of them, just run the command ``` pip install -r requirements.txt ``` inside the folder of your choice. If you need help with any of those, please open an issue where you directly ping the author(s), as indicated at the top of the README of each folder.
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/intel_opts/README.md
## Diffusers examples with Intel optimizations **This research project is not actively maintained by the diffusers team. For any questions or comments, please make sure to tag @hshen14 .** This aims to provide diffusers examples with Intel optimizations such as Bfloat16 for training/fine-tuning acceleration and 8-bit integer (INT8) for inference acceleration on Intel platforms. ## Accelerating the fine-tuning for textual inversion We accelereate the fine-tuning for textual inversion with Intel Extension for PyTorch. The [examples](textual_inversion) enable both single node and multi-node distributed training with Bfloat16 support on Intel Xeon Scalable Processor. ## Accelerating the inference for Stable Diffusion using Bfloat16 We start the inference acceleration with Bfloat16 using Intel Extension for PyTorch. The [script](inference_bf16.py) is generally designed to support standard Stable Diffusion models with Bfloat16 support. ```bash pip install diffusers transformers accelerate scipy safetensors export KMP_BLOCKTIME=1 export KMP_SETTINGS=1 export KMP_AFFINITY=granularity=fine,compact,1,0 # Intel OpenMP export OMP_NUM_THREADS=< Cores to use > export LD_PRELOAD=${LD_PRELOAD}:/path/to/lib/libiomp5.so # Jemalloc is a recommended malloc implementation that emphasizes fragmentation avoidance and scalable concurrency support. export LD_PRELOAD=${LD_PRELOAD}:/path/to/lib/libjemalloc.so export MALLOC_CONF="oversize_threshold:1,background_thread:true,metadata_thp:auto,dirty_decay_ms:-1,muzzy_decay_ms:9000000000" # Launch with default DDIM numactl --membind <node N> -C <cpu list> python python inference_bf16.py # Launch with DPMSolverMultistepScheduler numactl --membind <node N> -C <cpu list> python python inference_bf16.py --dpm ``` ## Accelerating the inference for Stable Diffusion using INT8 Coming soon ...
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/intel_opts/inference_bf16.py
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline parser = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") args = parser.parse_args() device = "cpu" prompt = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" model_id = "path-to-your-trained-model" pipe = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe = pipe.to(device) # to channels last pipe.unet = pipe.unet.to(memory_format=torch.channels_last) pipe.vae = pipe.vae.to(memory_format=torch.channels_last) pipe.text_encoder = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: pipe.safety_checker = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex sample = torch.randn(2, 4, 64, 64) timestep = torch.rand(1) * 999 encoder_hidden_status = torch.randn(2, 77, 768) input_example = (sample, timestep, encoder_hidden_status) try: pipe.unet = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloat16, inplace=True, sample_input=input_example) except Exception: pipe.unet = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloat16, inplace=True) pipe.vae = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloat16, inplace=True) pipe.text_encoder = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloat16, inplace=True) if pipe.requires_safety_checker: pipe.safety_checker = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloat16, inplace=True) # compute seed = 666 generator = torch.Generator(device).manual_seed(seed) generate_kwargs = {"generator": generator} if args.steps is not None: generate_kwargs["num_inference_steps"] = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16): image = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
0
hf_public_repos/diffusers/examples/research_projects/intel_opts
hf_public_repos/diffusers/examples/research_projects/intel_opts/textual_inversion/README.md
## Textual Inversion fine-tuning example [Textual inversion](https://arxiv.org/abs/2208.01618) is a method to personalize text2image models like stable diffusion on your own images using just 3-5 examples. The `textual_inversion.py` script shows how to implement the training procedure and adapt it for stable diffusion. ## Training with Intel Extension for PyTorch Intel Extension for PyTorch provides the optimizations for faster training and inference on CPUs. You can leverage the training example "textual_inversion.py". Follow the [instructions](https://github.com/huggingface/diffusers/tree/main/examples/textual_inversion) to get the model and [dataset](https://huggingface.co/sd-concepts-library/dicoo2) before running the script. The example supports both single node and multi-node distributed training: ### Single node training ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export DATA_DIR="path-to-dir-containing-dicoo-images" python textual_inversion.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --train_data_dir=$DATA_DIR \ --learnable_property="object" \ --placeholder_token="<dicoo>" --initializer_token="toy" \ --seed=7 \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=1 \ --max_train_steps=3000 \ --learning_rate=2.5e-03 --scale_lr \ --output_dir="textual_inversion_dicoo" ``` Note: Bfloat16 is available on Intel Xeon Scalable Processors Cooper Lake or Sapphire Rapids. You may not get performance speedup without Bfloat16 support. ### Multi-node distributed training Before running the scripts, make sure to install the library's training dependencies successfully: ```bash python -m pip install oneccl_bind_pt==1.13 -f https://developer.intel.com/ipex-whl-stable-cpu ``` ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export DATA_DIR="path-to-dir-containing-dicoo-images" oneccl_bindings_for_pytorch_path=$(python -c "from oneccl_bindings_for_pytorch import cwd; print(cwd)") source $oneccl_bindings_for_pytorch_path/env/setvars.sh python -m intel_extension_for_pytorch.cpu.launch --distributed \ --hostfile hostfile --nnodes 2 --nproc_per_node 2 textual_inversion.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --train_data_dir=$DATA_DIR \ --learnable_property="object" \ --placeholder_token="<dicoo>" --initializer_token="toy" \ --seed=7 \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=1 \ --max_train_steps=750 \ --learning_rate=2.5e-03 --scale_lr \ --output_dir="textual_inversion_dicoo" ``` The above is a simple distributed training usage on 2 nodes with 2 processes on each node. Add the right hostname or ip address in the "hostfile" and make sure these 2 nodes are reachable from each other. For more details, please refer to the [user guide](https://github.com/intel/torch-ccl). ### Reference We publish a [Medium blog](https://medium.com/intel-analytics-software/personalized-stable-diffusion-with-few-shot-fine-tuning-on-a-single-cpu-f01a3316b13) on how to create your own Stable Diffusion model on CPUs using textual inversion. Try it out now, if you have interests.
0
hf_public_repos/diffusers/examples/research_projects/intel_opts
hf_public_repos/diffusers/examples/research_projects/intel_opts/textual_inversion/requirements.txt
accelerate>=0.16.0 torchvision transformers>=4.21.0 ftfy tensorboard Jinja2 intel_extension_for_pytorch>=1.13
0
hf_public_repos/diffusers/examples/research_projects/intel_opts
hf_public_repos/diffusers/examples/research_projects/intel_opts/textual_inversion/textual_inversion_bf16.py
import argparse import itertools import math import os import random from pathlib import Path import intel_extension_for_pytorch as ipex import numpy as np import PIL import torch import torch.nn.functional as F import torch.utils.checkpoint from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from huggingface_hub import create_repo, upload_folder # TODO: remove and import from diffusers.utils when the new version of diffusers is released from packaging import version from PIL import Image from torch.utils.data import Dataset from torchvision import transforms from tqdm.auto import tqdm from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, StableDiffusionPipeline, UNet2DConditionModel from diffusers.optimization import get_scheduler from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker from diffusers.utils import check_min_version if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): PIL_INTERPOLATION = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: PIL_INTERPOLATION = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } # ------------------------------------------------------------------------------ # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.13.0.dev0") logger = get_logger(__name__) def save_progress(text_encoder, placeholder_token_id, accelerator, args, save_path): logger.info("Saving embeddings") learned_embeds = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[placeholder_token_id] learned_embeds_dict = {args.placeholder_token: learned_embeds.detach().cpu()} torch.save(learned_embeds_dict, save_path) def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--save_steps", type=int, default=500, help="Save learned_embeds.bin every X updates steps.", ) parser.add_argument( "--only_save_embeds", action="store_true", default=False, help="Save only the embeddings for the new concept.", ) parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data." ) parser.add_argument( "--placeholder_token", type=str, default=None, required=True, help="A token to use as a placeholder for the concept.", ) parser.add_argument( "--initializer_token", type=str, default=None, required=True, help="A token to use as initializer word." ) parser.add_argument("--learnable_property", type=str, default="object", help="Choose between 'object' and 'style'") parser.add_argument("--repeats", type=int, default=100, help="How many times to repeat the training data.") parser.add_argument( "--output_dir", type=str, default="text-inversion-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution." ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=100) parser.add_argument( "--max_train_steps", type=int, default=5000, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=True, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.train_data_dir is None: raise ValueError("You must specify a train data directory.") return args imagenet_templates_small = [ "a photo of a {}", "a rendering of a {}", "a cropped photo of the {}", "the photo of a {}", "a photo of a clean {}", "a photo of a dirty {}", "a dark photo of the {}", "a photo of my {}", "a photo of the cool {}", "a close-up photo of a {}", "a bright photo of the {}", "a cropped photo of a {}", "a photo of the {}", "a good photo of the {}", "a photo of one {}", "a close-up photo of the {}", "a rendition of the {}", "a photo of the clean {}", "a rendition of a {}", "a photo of a nice {}", "a good photo of a {}", "a photo of the nice {}", "a photo of the small {}", "a photo of the weird {}", "a photo of the large {}", "a photo of a cool {}", "a photo of a small {}", ] imagenet_style_templates_small = [ "a painting in the style of {}", "a rendering in the style of {}", "a cropped painting in the style of {}", "the painting in the style of {}", "a clean painting in the style of {}", "a dirty painting in the style of {}", "a dark painting in the style of {}", "a picture in the style of {}", "a cool painting in the style of {}", "a close-up painting in the style of {}", "a bright painting in the style of {}", "a cropped painting in the style of {}", "a good painting in the style of {}", "a close-up painting in the style of {}", "a rendition in the style of {}", "a nice painting in the style of {}", "a small painting in the style of {}", "a weird painting in the style of {}", "a large painting in the style of {}", ] class TextualInversionDataset(Dataset): def __init__( self, data_root, tokenizer, learnable_property="object", # [object, style] size=512, repeats=100, interpolation="bicubic", flip_p=0.5, set="train", placeholder_token="*", center_crop=False, ): self.data_root = data_root self.tokenizer = tokenizer self.learnable_property = learnable_property self.size = size self.placeholder_token = placeholder_token self.center_crop = center_crop self.flip_p = flip_p self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)] self.num_images = len(self.image_paths) self._length = self.num_images if set == "train": self._length = self.num_images * repeats self.interpolation = { "linear": PIL_INTERPOLATION["linear"], "bilinear": PIL_INTERPOLATION["bilinear"], "bicubic": PIL_INTERPOLATION["bicubic"], "lanczos": PIL_INTERPOLATION["lanczos"], }[interpolation] self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p) def __len__(self): return self._length def __getitem__(self, i): example = {} image = Image.open(self.image_paths[i % self.num_images]) if not image.mode == "RGB": image = image.convert("RGB") placeholder_string = self.placeholder_token text = random.choice(self.templates).format(placeholder_string) example["input_ids"] = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.tokenizer.model_max_length, return_tensors="pt", ).input_ids[0] # default to score-sde preprocessing img = np.array(image).astype(np.uint8) if self.center_crop: crop = min(img.shape[0], img.shape[1]) ( h, w, ) = ( img.shape[0], img.shape[1], ) img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2] image = Image.fromarray(img) image = image.resize((self.size, self.size), resample=self.interpolation) image = self.flip_transform(image) image = np.array(image).astype(np.uint8) image = (image / 127.5 - 1.0).astype(np.float32) example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1) return example def freeze_params(params): for param in params: param.requires_grad = False def main(): args = parse_args() logging_dir = os.path.join(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load the tokenizer and add the placeholder token as a additional special token if args.tokenizer_name: tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) elif args.pretrained_model_name_or_path: tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") # Add the placeholder token in tokenizer num_added_tokens = tokenizer.add_tokens(args.placeholder_token) if num_added_tokens == 0: raise ValueError( f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different" " `placeholder_token` that is not already in the tokenizer." ) # Convert the initializer_token, placeholder_token to ids token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False) # Check if initializer_token is a single token or a sequence of tokens if len(token_ids) > 1: raise ValueError("The initializer token must be a single token.") initializer_token_id = token_ids[0] placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token) # Load models and create wrapper for stable diffusion text_encoder = CLIPTextModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, ) vae = AutoencoderKL.from_pretrained( args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, ) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, ) # Resize the token embeddings as we are adding new special tokens to the tokenizer text_encoder.resize_token_embeddings(len(tokenizer)) # Initialise the newly added placeholder token with the embeddings of the initializer token token_embeds = text_encoder.get_input_embeddings().weight.data token_embeds[placeholder_token_id] = token_embeds[initializer_token_id] # Freeze vae and unet freeze_params(vae.parameters()) freeze_params(unet.parameters()) # Freeze all parameters except for the token embeddings in text encoder params_to_freeze = itertools.chain( text_encoder.text_model.encoder.parameters(), text_encoder.text_model.final_layer_norm.parameters(), text_encoder.text_model.embeddings.position_embedding.parameters(), ) freeze_params(params_to_freeze) if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Initialize the optimizer optimizer = torch.optim.AdamW( text_encoder.get_input_embeddings().parameters(), # only optimize the embeddings lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") train_dataset = TextualInversionDataset( data_root=args.train_data_dir, tokenizer=tokenizer, size=args.resolution, placeholder_token=args.placeholder_token, repeats=args.repeats, learnable_property=args.learnable_property, center_crop=args.center_crop, set="train", ) train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.train_batch_size, shuffle=True) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, ) text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( text_encoder, optimizer, train_dataloader, lr_scheduler ) # Move vae and unet to device vae.to(accelerator.device) unet.to(accelerator.device) # Keep vae and unet in eval model as we don't train these vae.eval() unet.eval() unet = ipex.optimize(unet, dtype=torch.bfloat16, inplace=True) vae = ipex.optimize(vae, dtype=torch.bfloat16, inplace=True) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("textual_inversion", config=vars(args)) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) progress_bar.set_description("Steps") global_step = 0 text_encoder.train() text_encoder, optimizer = ipex.optimize(text_encoder, optimizer=optimizer, dtype=torch.bfloat16) for epoch in range(args.num_train_epochs): for step, batch in enumerate(train_dataloader): with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16): with accelerator.accumulate(text_encoder): # Convert images to latent space latents = vae.encode(batch["pixel_values"]).latent_dist.sample().detach() latents = latents * vae.config.scaling_factor # Sample noise that we'll add to the latents noise = torch.randn(latents.shape).to(latents.device) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint( 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device ).long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # Get the text embedding for conditioning encoder_hidden_states = text_encoder(batch["input_ids"])[0] # Predict the noise residual model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") loss = F.mse_loss(model_pred, target, reduction="none").mean([1, 2, 3]).mean() accelerator.backward(loss) # Zero out the gradients for all token embeddings except the newly added # embeddings for the concept, as we only want to optimize the concept embeddings if accelerator.num_processes > 1: grads = text_encoder.module.get_input_embeddings().weight.grad else: grads = text_encoder.get_input_embeddings().weight.grad # Get the index for tokens that we want to zero the grads for index_grads_to_zero = torch.arange(len(tokenizer)) != placeholder_token_id grads.data[index_grads_to_zero, :] = grads.data[index_grads_to_zero, :].fill_(0) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 if global_step % args.save_steps == 0: save_path = os.path.join(args.output_dir, f"learned_embeds-steps-{global_step}.bin") save_progress(text_encoder, placeholder_token_id, accelerator, args, save_path) logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break accelerator.wait_for_everyone() # Create the pipeline using using the trained modules and save it. if accelerator.is_main_process: if args.push_to_hub and args.only_save_embeds: logger.warn("Enabling full model saving because --push_to_hub=True was specified.") save_full_model = True else: save_full_model = not args.only_save_embeds if save_full_model: pipeline = StableDiffusionPipeline( text_encoder=accelerator.unwrap_model(text_encoder), vae=vae, unet=unet, tokenizer=tokenizer, scheduler=PNDMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler"), safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker"), feature_extractor=CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32"), ) pipeline.save_pretrained(args.output_dir) # Save the newly trained embeddings save_path = os.path.join(args.output_dir, "learned_embeds.bin") save_progress(text_encoder, placeholder_token_id, accelerator, args, save_path) if args.push_to_hub: upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": main()
0
hf_public_repos/diffusers/examples/research_projects/intel_opts
hf_public_repos/diffusers/examples/research_projects/intel_opts/textual_inversion_dfq/README.md
# Distillation for quantization on Textual Inversion models to personalize text2image [Textual inversion](https://arxiv.org/abs/2208.01618) is a method to personalize text2image models like stable diffusion on your own images._By using just 3-5 images new concepts can be taught to Stable Diffusion and the model personalized on your own images_ The `textual_inversion.py` script shows how to implement the training procedure and adapt it for stable diffusion. We have enabled distillation for quantization in `textual_inversion.py` to do quantization aware training as well as distillation on the model generated by Textual Inversion method. ## Installing the dependencies Before running the scripts, make sure to install the library's training dependencies: ```bash pip install -r requirements.txt ``` ## Prepare Datasets One picture which is from the huggingface datasets [sd-concepts-library/dicoo2](https://huggingface.co/sd-concepts-library/dicoo2) is needed, and save it to the `./dicoo` directory. The picture is shown below: <a href="https://huggingface.co/sd-concepts-library/dicoo2/blob/main/concept_images/1.jpeg"> <img src="https://huggingface.co/sd-concepts-library/dicoo2/resolve/main/concept_images/1.jpeg" width = "300" height="300"> </a> ## Get a FP32 Textual Inversion model Use the following command to fine-tune the Stable Diffusion model on the above dataset to obtain the FP32 Textual Inversion model. ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export DATA_DIR="./dicoo" accelerate launch textual_inversion.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --train_data_dir=$DATA_DIR \ --learnable_property="object" \ --placeholder_token="<dicoo>" --initializer_token="toy" \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --max_train_steps=3000 \ --learning_rate=5.0e-04 --scale_lr \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --output_dir="dicoo_model" ``` ## Do distillation for quantization Distillation for quantization is a method that combines [intermediate layer knowledge distillation](https://github.com/intel/neural-compressor/blob/master/docs/source/distillation.md#intermediate-layer-knowledge-distillation) and [quantization aware training](https://github.com/intel/neural-compressor/blob/master/docs/source/quantization.md#quantization-aware-training) in the same training process to improve the performance of the quantized model. Provided a FP32 model, the distillation for quantization approach will take this model itself as the teacher model and transfer the knowledges of the specified layers to the student model, i.e. quantized version of the FP32 model, during the quantization aware training process. Once you have the FP32 Textual Inversion model, the following command will take the FP32 Textual Inversion model as input to do distillation for quantization and generate the INT8 Textual Inversion model. ```bash export FP32_MODEL_NAME="./dicoo_model" export DATA_DIR="./dicoo" accelerate launch textual_inversion.py \ --pretrained_model_name_or_path=$FP32_MODEL_NAME \ --train_data_dir=$DATA_DIR \ --use_ema --learnable_property="object" \ --placeholder_token="<dicoo>" --initializer_token="toy" \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --max_train_steps=300 \ --learning_rate=5.0e-04 --max_grad_norm=3 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --output_dir="int8_model" \ --do_quantization --do_distillation --verify_loading ``` After the distillation for quantization process, the quantized UNet would be 4 times smaller (3279MB -> 827MB). ## Inference Once you have trained a INT8 model with the above command, the inference can be done simply using the `text2images.py` script. Make sure to include the `placeholder_token` in your prompt. ```bash export INT8_MODEL_NAME="./int8_model" python text2images.py \ --pretrained_model_name_or_path=$INT8_MODEL_NAME \ --caption "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings." \ --images_num 4 ``` Here is the comparison of images generated by the FP32 model (left) and INT8 model (right) respectively: <p float="left"> <img src="https://huggingface.co/datasets/Intel/textual_inversion_dicoo_dfq/resolve/main/FP32.png" width = "300" height = "300" alt="FP32" align=center /> <img src="https://huggingface.co/datasets/Intel/textual_inversion_dicoo_dfq/resolve/main/INT8.png" width = "300" height = "300" alt="INT8" align=center /> </p>
0
hf_public_repos/diffusers/examples/research_projects/intel_opts
hf_public_repos/diffusers/examples/research_projects/intel_opts/textual_inversion_dfq/textual_inversion.py
import argparse import itertools import math import os import random from pathlib import Path from typing import Iterable import numpy as np import PIL import torch import torch.nn.functional as F import torch.utils.checkpoint from accelerate import Accelerator from accelerate.utils import ProjectConfiguration, set_seed from huggingface_hub import create_repo, upload_folder from neural_compressor.utils import logger from packaging import version from PIL import Image from torch.utils.data import Dataset from torchvision import transforms from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel from diffusers.optimization import get_scheduler from diffusers.utils import make_image_grid if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): PIL_INTERPOLATION = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: PIL_INTERPOLATION = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } # ------------------------------------------------------------------------------ def save_progress(text_encoder, placeholder_token_id, accelerator, args, save_path): logger.info("Saving embeddings") learned_embeds = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[placeholder_token_id] learned_embeds_dict = {args.placeholder_token: learned_embeds.detach().cpu()} torch.save(learned_embeds_dict, save_path) def parse_args(): parser = argparse.ArgumentParser(description="Example of distillation for quantization on Textual Inversion.") parser.add_argument( "--save_steps", type=int, default=500, help="Save learned_embeds.bin every X updates steps.", ) parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data." ) parser.add_argument( "--placeholder_token", type=str, default=None, required=True, help="A token to use as a placeholder for the concept.", ) parser.add_argument( "--initializer_token", type=str, default=None, required=True, help="A token to use as initializer word." ) parser.add_argument("--learnable_property", type=str, default="object", help="Choose between 'object' and 'style'") parser.add_argument("--repeats", type=int, default=100, help="How many times to repeat the training data.") parser.add_argument( "--output_dir", type=str, default="text-inversion-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution" ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=100) parser.add_argument( "--max_train_steps", type=int, default=5000, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ), ) parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--do_quantization", action="store_true", help="Whether or not to do quantization.") parser.add_argument("--do_distillation", action="store_true", help="Whether or not to do distillation.") parser.add_argument( "--verify_loading", action="store_true", help="Whether or not to verify the loading of the quantized model." ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.train_data_dir is None: raise ValueError("You must specify a train data directory.") return args imagenet_templates_small = [ "a photo of a {}", "a rendering of a {}", "a cropped photo of the {}", "the photo of a {}", "a photo of a clean {}", "a photo of a dirty {}", "a dark photo of the {}", "a photo of my {}", "a photo of the cool {}", "a close-up photo of a {}", "a bright photo of the {}", "a cropped photo of a {}", "a photo of the {}", "a good photo of the {}", "a photo of one {}", "a close-up photo of the {}", "a rendition of the {}", "a photo of the clean {}", "a rendition of a {}", "a photo of a nice {}", "a good photo of a {}", "a photo of the nice {}", "a photo of the small {}", "a photo of the weird {}", "a photo of the large {}", "a photo of a cool {}", "a photo of a small {}", ] imagenet_style_templates_small = [ "a painting in the style of {}", "a rendering in the style of {}", "a cropped painting in the style of {}", "the painting in the style of {}", "a clean painting in the style of {}", "a dirty painting in the style of {}", "a dark painting in the style of {}", "a picture in the style of {}", "a cool painting in the style of {}", "a close-up painting in the style of {}", "a bright painting in the style of {}", "a cropped painting in the style of {}", "a good painting in the style of {}", "a close-up painting in the style of {}", "a rendition in the style of {}", "a nice painting in the style of {}", "a small painting in the style of {}", "a weird painting in the style of {}", "a large painting in the style of {}", ] # Adapted from torch-ema https://github.com/fadel/pytorch_ema/blob/master/torch_ema/ema.py#L14 class EMAModel: """ Exponential Moving Average of models weights """ def __init__(self, parameters: Iterable[torch.nn.Parameter], decay=0.9999): parameters = list(parameters) self.shadow_params = [p.clone().detach() for p in parameters] self.decay = decay self.optimization_step = 0 def get_decay(self, optimization_step): """ Compute the decay factor for the exponential moving average. """ value = (1 + optimization_step) / (10 + optimization_step) return 1 - min(self.decay, value) @torch.no_grad() def step(self, parameters): parameters = list(parameters) self.optimization_step += 1 self.decay = self.get_decay(self.optimization_step) for s_param, param in zip(self.shadow_params, parameters): if param.requires_grad: tmp = self.decay * (s_param - param) s_param.sub_(tmp) else: s_param.copy_(param) torch.cuda.empty_cache() def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None: """ Copy current averaged parameters into given collection of parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored moving averages. If `None`, the parameters with which this `ExponentialMovingAverage` was initialized will be used. """ parameters = list(parameters) for s_param, param in zip(self.shadow_params, parameters): param.data.copy_(s_param.data) def to(self, device=None, dtype=None) -> None: r"""Move internal buffers of the ExponentialMovingAverage to `device`. Args: device: like `device` argument to `torch.Tensor.to` """ # .to() on the tensors handles None correctly self.shadow_params = [ p.to(device=device, dtype=dtype) if p.is_floating_point() else p.to(device=device) for p in self.shadow_params ] class TextualInversionDataset(Dataset): def __init__( self, data_root, tokenizer, learnable_property="object", # [object, style] size=512, repeats=100, interpolation="bicubic", flip_p=0.5, set="train", placeholder_token="*", center_crop=False, ): self.data_root = data_root self.tokenizer = tokenizer self.learnable_property = learnable_property self.size = size self.placeholder_token = placeholder_token self.center_crop = center_crop self.flip_p = flip_p self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)] self.num_images = len(self.image_paths) self._length = self.num_images if set == "train": self._length = self.num_images * repeats self.interpolation = { "linear": PIL_INTERPOLATION["linear"], "bilinear": PIL_INTERPOLATION["bilinear"], "bicubic": PIL_INTERPOLATION["bicubic"], "lanczos": PIL_INTERPOLATION["lanczos"], }[interpolation] self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p) def __len__(self): return self._length def __getitem__(self, i): example = {} image = Image.open(self.image_paths[i % self.num_images]) if not image.mode == "RGB": image = image.convert("RGB") placeholder_string = self.placeholder_token text = random.choice(self.templates).format(placeholder_string) example["input_ids"] = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.tokenizer.model_max_length, return_tensors="pt", ).input_ids[0] # default to score-sde preprocessing img = np.array(image).astype(np.uint8) if self.center_crop: crop = min(img.shape[0], img.shape[1]) ( h, w, ) = ( img.shape[0], img.shape[1], ) img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2] image = Image.fromarray(img) image = image.resize((self.size, self.size), resample=self.interpolation) image = self.flip_transform(image) image = np.array(image).astype(np.uint8) image = (image / 127.5 - 1.0).astype(np.float32) example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1) return example def freeze_params(params): for param in params: param.requires_grad = False def generate_images(pipeline, prompt="", guidance_scale=7.5, num_inference_steps=50, num_images_per_prompt=1, seed=42): generator = torch.Generator(pipeline.device).manual_seed(seed) images = pipeline( prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, num_images_per_prompt=num_images_per_prompt, ).images _rows = int(math.sqrt(num_images_per_prompt)) grid = make_image_grid(images, rows=_rows, cols=num_images_per_prompt // _rows) return grid def main(): args = parse_args() logging_dir = os.path.join(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with="tensorboard", project_config=accelerator_project_config, ) # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load the tokenizer and add the placeholder token as a additional special token if args.tokenizer_name: tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) elif args.pretrained_model_name_or_path: tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") # Load models and create wrapper for stable diffusion noise_scheduler = DDPMScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler") text_encoder = CLIPTextModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, ) vae = AutoencoderKL.from_pretrained( args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, ) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, ) train_unet = False # Freeze vae and unet freeze_params(vae.parameters()) if not args.do_quantization and not args.do_distillation: # Add the placeholder token in tokenizer num_added_tokens = tokenizer.add_tokens(args.placeholder_token) if num_added_tokens == 0: raise ValueError( f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different" " `placeholder_token` that is not already in the tokenizer." ) # Convert the initializer_token, placeholder_token to ids token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False) # Check if initializer_token is a single token or a sequence of tokens if len(token_ids) > 1: raise ValueError("The initializer token must be a single token.") initializer_token_id = token_ids[0] placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token) # Resize the token embeddings as we are adding new special tokens to the tokenizer text_encoder.resize_token_embeddings(len(tokenizer)) # Initialise the newly added placeholder token with the embeddings of the initializer token token_embeds = text_encoder.get_input_embeddings().weight.data token_embeds[placeholder_token_id] = token_embeds[initializer_token_id] freeze_params(unet.parameters()) # Freeze all parameters except for the token embeddings in text encoder params_to_freeze = itertools.chain( text_encoder.text_model.encoder.parameters(), text_encoder.text_model.final_layer_norm.parameters(), text_encoder.text_model.embeddings.position_embedding.parameters(), ) freeze_params(params_to_freeze) else: train_unet = True freeze_params(text_encoder.parameters()) if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Initialize the optimizer optimizer = torch.optim.AdamW( # only optimize the unet or embeddings of text_encoder unet.parameters() if train_unet else text_encoder.get_input_embeddings().parameters(), lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) train_dataset = TextualInversionDataset( data_root=args.train_data_dir, tokenizer=tokenizer, size=args.resolution, placeholder_token=args.placeholder_token, repeats=args.repeats, learnable_property=args.learnable_property, center_crop=args.center_crop, set="train", ) train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.train_batch_size, shuffle=True) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, ) if not train_unet: text_encoder = accelerator.prepare(text_encoder) unet.to(accelerator.device) unet.eval() else: unet = accelerator.prepare(unet) text_encoder.to(accelerator.device) text_encoder.eval() optimizer, train_dataloader, lr_scheduler = accelerator.prepare(optimizer, train_dataloader, lr_scheduler) # Move vae to device vae.to(accelerator.device) # Keep vae in eval model as we don't train these vae.eval() compression_manager = None def train_func(model): if train_unet: unet_ = model text_encoder_ = text_encoder else: unet_ = unet text_encoder_ = model # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("textual_inversion", config=vars(args)) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) progress_bar.set_description("Steps") global_step = 0 if train_unet and args.use_ema: ema_unet = EMAModel(unet_.parameters()) for epoch in range(args.num_train_epochs): model.train() train_loss = 0.0 for step, batch in enumerate(train_dataloader): with accelerator.accumulate(model): # Convert images to latent space latents = vae.encode(batch["pixel_values"]).latent_dist.sample().detach() latents = latents * 0.18215 # Sample noise that we'll add to the latents noise = torch.randn(latents.shape).to(latents.device) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint( 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device ).long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # Get the text embedding for conditioning encoder_hidden_states = text_encoder_(batch["input_ids"])[0] # Predict the noise residual model_pred = unet_(noisy_latents, timesteps, encoder_hidden_states).sample loss = F.mse_loss(model_pred, noise, reduction="none").mean([1, 2, 3]).mean() if train_unet and compression_manager: unet_inputs = { "sample": noisy_latents, "timestep": timesteps, "encoder_hidden_states": encoder_hidden_states, } loss = compression_manager.callbacks.on_after_compute_loss(unet_inputs, model_pred, loss) # Gather the losses across all processes for logging (if we use distributed training). avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() train_loss += avg_loss.item() / args.gradient_accumulation_steps # Backpropagate accelerator.backward(loss) if train_unet: if accelerator.sync_gradients: accelerator.clip_grad_norm_(unet_.parameters(), args.max_grad_norm) else: # Zero out the gradients for all token embeddings except the newly added # embeddings for the concept, as we only want to optimize the concept embeddings if accelerator.num_processes > 1: grads = text_encoder_.module.get_input_embeddings().weight.grad else: grads = text_encoder_.get_input_embeddings().weight.grad # Get the index for tokens that we want to zero the grads for index_grads_to_zero = torch.arange(len(tokenizer)) != placeholder_token_id grads.data[index_grads_to_zero, :] = grads.data[index_grads_to_zero, :].fill_(0) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: if train_unet and args.use_ema: ema_unet.step(unet_.parameters()) progress_bar.update(1) global_step += 1 accelerator.log({"train_loss": train_loss}, step=global_step) train_loss = 0.0 if not train_unet and global_step % args.save_steps == 0: save_path = os.path.join(args.output_dir, f"learned_embeds-steps-{global_step}.bin") save_progress(text_encoder_, placeholder_token_id, accelerator, args, save_path) logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break accelerator.wait_for_everyone() if train_unet and args.use_ema: ema_unet.copy_to(unet_.parameters()) if not train_unet: return text_encoder_ if not train_unet: text_encoder = train_func(text_encoder) else: import copy model = copy.deepcopy(unet) confs = [] if args.do_quantization: from neural_compressor import QuantizationAwareTrainingConfig q_conf = QuantizationAwareTrainingConfig() confs.append(q_conf) if args.do_distillation: teacher_model = copy.deepcopy(model) def attention_fetcher(x): return x.sample layer_mappings = [ [ [ "conv_in", ] ], [ [ "time_embedding", ] ], [["down_blocks.0.attentions.0", attention_fetcher]], [["down_blocks.0.attentions.1", attention_fetcher]], [ [ "down_blocks.0.resnets.0", ] ], [ [ "down_blocks.0.resnets.1", ] ], [ [ "down_blocks.0.downsamplers.0", ] ], [["down_blocks.1.attentions.0", attention_fetcher]], [["down_blocks.1.attentions.1", attention_fetcher]], [ [ "down_blocks.1.resnets.0", ] ], [ [ "down_blocks.1.resnets.1", ] ], [ [ "down_blocks.1.downsamplers.0", ] ], [["down_blocks.2.attentions.0", attention_fetcher]], [["down_blocks.2.attentions.1", attention_fetcher]], [ [ "down_blocks.2.resnets.0", ] ], [ [ "down_blocks.2.resnets.1", ] ], [ [ "down_blocks.2.downsamplers.0", ] ], [ [ "down_blocks.3.resnets.0", ] ], [ [ "down_blocks.3.resnets.1", ] ], [ [ "up_blocks.0.resnets.0", ] ], [ [ "up_blocks.0.resnets.1", ] ], [ [ "up_blocks.0.resnets.2", ] ], [ [ "up_blocks.0.upsamplers.0", ] ], [["up_blocks.1.attentions.0", attention_fetcher]], [["up_blocks.1.attentions.1", attention_fetcher]], [["up_blocks.1.attentions.2", attention_fetcher]], [ [ "up_blocks.1.resnets.0", ] ], [ [ "up_blocks.1.resnets.1", ] ], [ [ "up_blocks.1.resnets.2", ] ], [ [ "up_blocks.1.upsamplers.0", ] ], [["up_blocks.2.attentions.0", attention_fetcher]], [["up_blocks.2.attentions.1", attention_fetcher]], [["up_blocks.2.attentions.2", attention_fetcher]], [ [ "up_blocks.2.resnets.0", ] ], [ [ "up_blocks.2.resnets.1", ] ], [ [ "up_blocks.2.resnets.2", ] ], [ [ "up_blocks.2.upsamplers.0", ] ], [["up_blocks.3.attentions.0", attention_fetcher]], [["up_blocks.3.attentions.1", attention_fetcher]], [["up_blocks.3.attentions.2", attention_fetcher]], [ [ "up_blocks.3.resnets.0", ] ], [ [ "up_blocks.3.resnets.1", ] ], [ [ "up_blocks.3.resnets.2", ] ], [["mid_block.attentions.0", attention_fetcher]], [ [ "mid_block.resnets.0", ] ], [ [ "mid_block.resnets.1", ] ], [ [ "conv_out", ] ], ] layer_names = [layer_mapping[0][0] for layer_mapping in layer_mappings] if not set(layer_names).issubset([n[0] for n in model.named_modules()]): raise ValueError( "Provided model is not compatible with the default layer_mappings, " 'please use the model fine-tuned from "CompVis/stable-diffusion-v1-4", ' "or modify the layer_mappings variable to fit your model." f"\nDefault layer_mappings are as such:\n{layer_mappings}" ) from neural_compressor.config import DistillationConfig, IntermediateLayersKnowledgeDistillationLossConfig distillation_criterion = IntermediateLayersKnowledgeDistillationLossConfig( layer_mappings=layer_mappings, loss_types=["MSE"] * len(layer_mappings), loss_weights=[1.0 / len(layer_mappings)] * len(layer_mappings), add_origin_loss=True, ) d_conf = DistillationConfig(teacher_model=teacher_model, criterion=distillation_criterion) confs.append(d_conf) from neural_compressor.training import prepare_compression compression_manager = prepare_compression(model, confs) compression_manager.callbacks.on_train_begin() model = compression_manager.model train_func(model) compression_manager.callbacks.on_train_end() # Save the resulting model and its corresponding configuration in the given directory model.save(args.output_dir) logger.info(f"Optimized model saved to: {args.output_dir}.") # change to framework model for further use model = model.model # Create the pipeline using using the trained modules and save it. templates = imagenet_style_templates_small if args.learnable_property == "style" else imagenet_templates_small prompt = templates[0].format(args.placeholder_token) if accelerator.is_main_process: pipeline = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=accelerator.unwrap_model(text_encoder), vae=vae, unet=accelerator.unwrap_model(unet), tokenizer=tokenizer, ) pipeline.save_pretrained(args.output_dir) pipeline = pipeline.to(unet.device) baseline_model_images = generate_images(pipeline, prompt=prompt, seed=args.seed) baseline_model_images.save( os.path.join(args.output_dir, "{}_baseline_model.png".format("_".join(prompt.split()))) ) if not train_unet: # Also save the newly trained embeddings save_path = os.path.join(args.output_dir, "learned_embeds.bin") save_progress(text_encoder, placeholder_token_id, accelerator, args, save_path) else: setattr(pipeline, "unet", accelerator.unwrap_model(model)) if args.do_quantization: pipeline = pipeline.to(torch.device("cpu")) optimized_model_images = generate_images(pipeline, prompt=prompt, seed=args.seed) optimized_model_images.save( os.path.join(args.output_dir, "{}_optimized_model.png".format("_".join(prompt.split()))) ) if args.push_to_hub: upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if args.do_quantization and args.verify_loading: # Load the model obtained after Intel Neural Compressor quantization from neural_compressor.utils.pytorch import load loaded_model = load(args.output_dir, model=unet) loaded_model.eval() setattr(pipeline, "unet", loaded_model) if args.do_quantization: pipeline = pipeline.to(torch.device("cpu")) loaded_model_images = generate_images(pipeline, prompt=prompt, seed=args.seed) if loaded_model_images != optimized_model_images: logger.info("The quantized model was not successfully loaded.") else: logger.info("The quantized model was successfully loaded.") if __name__ == "__main__": main()
0
hf_public_repos/diffusers/examples/research_projects/intel_opts
hf_public_repos/diffusers/examples/research_projects/intel_opts/textual_inversion_dfq/text2images.py
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNet2DConditionModel def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "-m", "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "-c", "--caption", type=str, default="robotic cat with wings", help="Text used to generate images.", ) parser.add_argument( "-n", "--images_num", type=int, default=4, help="How much images to generate.", ) parser.add_argument( "-s", "--seed", type=int, default=42, help="Seed for random process.", ) parser.add_argument( "-ci", "--cuda_id", type=int, default=0, help="cuda_id.", ) args = parser.parse_args() return args def image_grid(imgs, rows, cols): if not len(imgs) == rows * cols: raise ValueError("The specified number of rows and columns are not correct.") w, h = imgs[0].size grid = Image.new("RGB", size=(cols * w, rows * h)) grid_w, grid_h = grid.size for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) return grid def generate_images( pipeline, prompt="robotic cat with wings", guidance_scale=7.5, num_inference_steps=50, num_images_per_prompt=1, seed=42, ): generator = torch.Generator(pipeline.device).manual_seed(seed) images = pipeline( prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, num_images_per_prompt=num_images_per_prompt, ).images _rows = int(math.sqrt(num_images_per_prompt)) grid = image_grid(images, rows=_rows, cols=num_images_per_prompt // _rows) return grid, images args = parse_args() # Load models and create wrapper for stable diffusion tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") pipeline = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) pipeline.safety_checker = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, "best_model.pt")): unet = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, "unet", unet) else: unet = unet.to(torch.device("cuda", args.cuda_id)) pipeline = pipeline.to(unet.device) grid, images = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, "{}.png".format("_".join(args.caption.split())))) dirname = os.path.join(args.pretrained_model_name_or_path, "_".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, "{}.png".format(idx + 1)))
0
hf_public_repos/diffusers/examples/research_projects/intel_opts
hf_public_repos/diffusers/examples/research_projects/intel_opts/textual_inversion_dfq/requirements.txt
accelerate torchvision transformers>=4.25.0 ftfy tensorboard modelcards neural-compressor
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/diffusion_dpo/README.md
# Diffusion Model Alignment Using Direct Preference Optimization This directory provides LoRA implementations of Diffusion DPO proposed in [DiffusionModel Alignment Using Direct Preference Optimization](https://arxiv.org/abs/2311.12908) by Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam, Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. We provide implementations for both Stable Diffusion (SD) and Stable Diffusion XL (SDXL). The original checkpoints are available at the URLs below: * [mhdang/dpo-sd1.5-text2image-v1](https://huggingface.co/mhdang/dpo-sd1.5-text2image-v1) * [mhdang/dpo-sdxl-text2image-v1](https://huggingface.co/mhdang/dpo-sdxl-text2image-v1) > 💡 Note: The scripts are highly experimental and were only tested on low-data regimes. Proceed with caution. Feel free to let us know about your findings via GitHub issues. ## SD training command ```bash accelerate launch train_diffusion_dpo.py \ --pretrained_model_name_or_path=runwayml/stable-diffusion-v1-5 \ --output_dir="diffusion-dpo" \ --mixed_precision="fp16" \ --dataset_name=kashif/pickascore \ --resolution=512 \ --train_batch_size=16 \ --gradient_accumulation_steps=2 \ --gradient_checkpointing \ --use_8bit_adam \ --rank=8 \ --learning_rate=1e-5 \ --report_to="wandb" \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --max_train_steps=10000 \ --checkpointing_steps=2000 \ --run_validation --validation_steps=200 \ --seed="0" \ --report_to="wandb" \ --push_to_hub ``` ## SDXL training command ```bash accelerate launch train_diffusion_dpo_sdxl.py \ --pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0 \ --pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix \ --output_dir="diffusion-sdxl-dpo" \ --mixed_precision="fp16" \ --dataset_name=kashif/pickascore \ --train_batch_size=8 \ --gradient_accumulation_steps=2 \ --gradient_checkpointing \ --use_8bit_adam \ --rank=8 \ --learning_rate=1e-5 \ --report_to="wandb" \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --max_train_steps=2000 \ --checkpointing_steps=500 \ --run_validation --validation_steps=50 \ --seed="0" \ --report_to="wandb" \ --push_to_hub ``` ## Acknowledgements This is based on the amazing work done by [Bram](https://github.com/bram-w) here for Diffusion DPO: https://github.com/bram-w/trl/blob/dpo/.
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/diffusion_dpo/requirements.txt
accelerate>=0.16.0 torchvision transformers>=4.25.1 ftfy tensorboard Jinja2 peft wandb
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/diffusion_dpo/train_diffusion_dpo.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2024 bram-w, The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import argparse import contextlib import io import logging import math import os import shutil from pathlib import Path import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers import wandb from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from datasets import load_dataset from huggingface_hub import create_repo, upload_folder from packaging import version from peft import LoraConfig from peft.utils import get_peft_model_state_dict from PIL import Image from torchvision import transforms from tqdm.auto import tqdm from transformers import AutoTokenizer, PretrainedConfig import diffusers from diffusers import ( AutoencoderKL, DDPMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, UNet2DConditionModel, ) from diffusers.loaders import LoraLoaderMixin from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version, convert_state_dict_to_diffusers from diffusers.utils.import_utils import is_xformers_available # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.25.0.dev0") logger = get_logger(__name__) VALIDATION_PROMPTS = [ "portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography", "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece", ] def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str): text_encoder_config = PretrainedConfig.from_pretrained( pretrained_model_name_or_path, subfolder="text_encoder", revision=revision, ) model_class = text_encoder_config.architectures[0] if model_class == "CLIPTextModel": from transformers import CLIPTextModel return CLIPTextModel else: raise ValueError(f"{model_class} is not supported.") def log_validation(args, unet, accelerator, weight_dtype, epoch, is_final_validation=False): logger.info(f"Running validation... \n Generating images with prompts:\n" f" {VALIDATION_PROMPTS}.") # create pipeline pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) if not is_final_validation: pipeline.unet = accelerator.unwrap_model(unet) else: pipeline.load_lora_weights(args.output_dir, weight_name="pytorch_lora_weights.safetensors") pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) # run inference generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None images = [] context = contextlib.nullcontext() if is_final_validation else torch.cuda.amp.autocast() for prompt in VALIDATION_PROMPTS: with context: image = pipeline(prompt, num_inference_steps=25, generator=generator).images[0] images.append(image) tracker_key = "test" if is_final_validation else "validation" for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images(tracker_key, np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { tracker_key: [ wandb.Image(image, caption=f"{i}: {VALIDATION_PROMPTS[i]}") for i, image in enumerate(images) ] } ) # Also log images without the LoRA params for comparison. if is_final_validation: pipeline.disable_lora() no_lora_images = [ pipeline(prompt, num_inference_steps=25, generator=generator).images[0] for prompt in VALIDATION_PROMPTS ] for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in no_lora_images]) tracker.writer.add_images("test_without_lora", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "test_without_lora": [ wandb.Image(image, caption=f"{i}: {VALIDATION_PROMPTS[i]}") for i, image in enumerate(no_lora_images) ] } ) def parse_args(input_args=None): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--dataset_name", type=str, default=None, help=( "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that 🤗 Datasets can understand." ), ) parser.add_argument( "--dataset_split_name", type=str, default="validation", help="Dataset split to be used during training. Helpful to specify for conducting experimental runs.", ) parser.add_argument( "--variant", type=str, default=None, help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", ) parser.add_argument( "--run_validation", default=False, action="store_true", help="Whether to run validation inference in between training and also after training. Helps to track progress.", ) parser.add_argument( "--validation_steps", type=int, default=200, help="Run validation every X steps.", ) parser.add_argument( "--max_train_samples", type=int, default=None, help=( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ), ) parser.add_argument( "--output_dir", type=str, default="diffusion-dpo-lora", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--vae_encode_batch_size", type=int, default=8, help="Batch size to use for VAE encoding of the images for efficient processing.", ) parser.add_argument( "--no_hflip", action="store_true", help="whether to randomly flip images horizontally", ) parser.add_argument( "--random_crop", default=False, action="store_true", help=( "Whether to random crop the input images to the resolution. If not set, the images will be center-cropped." ), ) parser.add_argument( "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=1) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=("Max number of checkpoints to store."), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--beta_dpo", type=int, default=5000, help="DPO KL Divergence penalty.", ) parser.add_argument( "--learning_rate", type=float, default=5e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--lr_num_cycles", type=int, default=1, help="Number of hard resets of the lr in cosine_with_restarts scheduler.", ) parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--prior_generation_precision", type=str, default=None, choices=["no", "fp32", "fp16", "bf16"], help=( "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) parser.add_argument( "--rank", type=int, default=4, help=("The dimension of the LoRA update matrices."), ) parser.add_argument( "--tracker_name", type=str, default="diffusion-dpo-lora", help=("The name of the tracker to report results to."), ) if input_args is not None: args = parser.parse_args(input_args) else: args = parser.parse_args() if args.dataset_name is None: raise ValueError("Must provide a `dataset_name`.") env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank return args def tokenize_captions(tokenizer, examples): max_length = tokenizer.model_max_length captions = [] for caption in examples["caption"]: captions.append(caption) text_inputs = tokenizer( captions, truncation=True, padding="max_length", max_length=max_length, return_tensors="pt" ) return text_inputs.input_ids @torch.no_grad() def encode_prompt(text_encoder, input_ids): text_input_ids = input_ids.to(text_encoder.device) attention_mask = None prompt_embeds = text_encoder(text_input_ids, attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] return prompt_embeds def main(args): logging_dir = Path(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, use_fast=False, ) # import correct text encoder class text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision) # Load scheduler and models noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") text_encoder = text_encoder_cls.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant ) vae = AutoencoderKL.from_pretrained( args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant ) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant ) vae.requires_grad_(False) text_encoder.requires_grad_(False) unet.requires_grad_(False) # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision # as these weights are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move unet, vae and text_encoder to device and cast to weight_dtype unet.to(accelerator.device, dtype=weight_dtype) vae.to(accelerator.device, dtype=weight_dtype) text_encoder.to(accelerator.device, dtype=weight_dtype) # Set up LoRA. unet_lora_config = LoraConfig( r=args.rank, lora_alpha=args.rank, init_lora_weights="gaussian", target_modules=["to_k", "to_q", "to_v", "to_out.0"], ) # Add adapter and make sure the trainable params are in float32. unet.add_adapter(unet_lora_config) if args.mixed_precision == "fp16": for param in unet.parameters(): # only upcast trainable parameters (LoRA) into fp32 if param.requires_grad: param.data = param.to(torch.float32) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warn( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") if args.gradient_checkpointing: unet.enable_gradient_checkpointing() # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: # there are only two options here. Either are just the unet attn processor layers # or there are the unet and text encoder atten layers unet_lora_layers_to_save = None for model in models: if isinstance(model, type(accelerator.unwrap_model(unet))): unet_lora_layers_to_save = convert_state_dict_to_diffusers(get_peft_model_state_dict(model)) else: raise ValueError(f"unexpected save model: {model.__class__}") # make sure to pop weight so that corresponding model is not saved again weights.pop() LoraLoaderMixin.save_lora_weights( output_dir, unet_lora_layers=unet_lora_layers_to_save, text_encoder_lora_layers=None, ) def load_model_hook(models, input_dir): unet_ = None while len(models) > 0: model = models.pop() if isinstance(model, type(accelerator.unwrap_model(unet))): unet_ = model else: raise ValueError(f"unexpected save model: {model.__class__}") lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir) LoraLoaderMixin.load_lora_into_unet(lora_state_dict, network_alphas=network_alphas, unet=unet_) accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." ) optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW # Optimizer creation params_to_optimize = list(filter(lambda p: p.requires_grad, unet.parameters())) optimizer = optimizer_class( params_to_optimize, lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # Dataset and DataLoaders creation: train_dataset = load_dataset( args.dataset_name, cache_dir=args.cache_dir, split=args.dataset_split_name, ) train_transforms = transforms.Compose( [ transforms.Resize(int(args.resolution), interpolation=transforms.InterpolationMode.BILINEAR), transforms.RandomCrop(args.resolution) if args.random_crop else transforms.CenterCrop(args.resolution), transforms.Lambda(lambda x: x) if args.no_hflip else transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def preprocess_train(examples): all_pixel_values = [] for col_name in ["jpg_0", "jpg_1"]: images = [Image.open(io.BytesIO(im_bytes)).convert("RGB") for im_bytes in examples[col_name]] pixel_values = [train_transforms(image) for image in images] all_pixel_values.append(pixel_values) # Double on channel dim, jpg_y then jpg_w im_tup_iterator = zip(*all_pixel_values) combined_pixel_values = [] for im_tup, label_0 in zip(im_tup_iterator, examples["label_0"]): if label_0 == 0: im_tup = im_tup[::-1] combined_im = torch.cat(im_tup, dim=0) # no batch dim combined_pixel_values.append(combined_im) examples["pixel_values"] = combined_pixel_values examples["input_ids"] = tokenize_captions(tokenizer, examples) return examples with accelerator.main_process_first(): if args.max_train_samples is not None: train_dataset = train_dataset.shuffle(seed=args.seed).select(range(args.max_train_samples)) # Set the training transforms train_dataset = train_dataset.with_transform(preprocess_train) def collate_fn(examples): pixel_values = torch.stack([example["pixel_values"] for example in examples]) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() final_dict = {"pixel_values": pixel_values} final_dict["input_ids"] = torch.stack([example["input_ids"] for example in examples]) return final_dict train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn, num_workers=args.dataloader_num_workers, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, num_cycles=args.lr_num_cycles, power=args.lr_power, ) unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, optimizer, train_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers(args.tracker_name, config=vars(args)) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num batches each epoch = {len(train_dataloader)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the mos recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None initial_global_step = 0 else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) initial_global_step = global_step first_epoch = global_step // num_update_steps_per_epoch else: initial_global_step = 0 progress_bar = tqdm( range(0, args.max_train_steps), initial=initial_global_step, desc="Steps", # Only show the progress bar once on each machine. disable=not accelerator.is_local_main_process, ) unet.train() for epoch in range(first_epoch, args.num_train_epochs): for step, batch in enumerate(train_dataloader): with accelerator.accumulate(unet): # (batch_size, 2*channels, h, w) -> (2*batch_size, channels, h, w) pixel_values = batch["pixel_values"].to(dtype=weight_dtype) feed_pixel_values = torch.cat(pixel_values.chunk(2, dim=1)) latents = [] for i in range(0, feed_pixel_values.shape[0], args.vae_encode_batch_size): latents.append( vae.encode(feed_pixel_values[i : i + args.vae_encode_batch_size]).latent_dist.sample() ) latents = torch.cat(latents, dim=0) latents = latents * vae.config.scaling_factor # Sample noise that we'll add to the latents noise = torch.randn_like(latents).chunk(2)[0].repeat(2, 1, 1, 1) # Sample a random timestep for each image bsz = latents.shape[0] // 2 timesteps = torch.randint( 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device, dtype=torch.long ).repeat(2) # Add noise to the model input according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_model_input = noise_scheduler.add_noise(latents, noise, timesteps) # Get the text embedding for conditioning encoder_hidden_states = encode_prompt(text_encoder, batch["input_ids"]).repeat(2, 1, 1) # Predict the noise residual model_pred = unet( noisy_model_input, timesteps, encoder_hidden_states, ).sample # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") # Compute losses. model_losses = F.mse_loss(model_pred.float(), target.float(), reduction="none") model_losses = model_losses.mean(dim=list(range(1, len(model_losses.shape)))) model_losses_w, model_losses_l = model_losses.chunk(2) # For logging raw_model_loss = 0.5 * (model_losses_w.mean() + model_losses_l.mean()) model_diff = model_losses_w - model_losses_l # These are both LBS (as is t) # Reference model predictions. accelerator.unwrap_model(unet).disable_adapters() with torch.no_grad(): ref_preds = unet( noisy_model_input, timesteps, encoder_hidden_states, ).sample.detach() ref_loss = F.mse_loss(ref_preds.float(), target.float(), reduction="none") ref_loss = ref_loss.mean(dim=list(range(1, len(ref_loss.shape)))) ref_losses_w, ref_losses_l = ref_loss.chunk(2) ref_diff = ref_losses_w - ref_losses_l raw_ref_loss = ref_loss.mean() # Re-enable adapters. accelerator.unwrap_model(unet).enable_adapters() # Final loss. scale_term = -0.5 * args.beta_dpo inside_term = scale_term * (model_diff - ref_diff) loss = -1 * F.logsigmoid(inside_term.mean()) implicit_acc = (inside_term > 0).sum().float() / inside_term.size(0) implicit_acc += 0.5 * (inside_term == 0).sum().float() / inside_term.size(0) accelerator.backward(loss) if accelerator.sync_gradients: accelerator.clip_grad_norm_(params_to_optimize, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 if accelerator.is_main_process: if global_step % args.checkpointing_steps == 0: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: checkpoints = os.listdir(args.output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= args.checkpoints_total_limit: num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") if args.run_validation and global_step % args.validation_steps == 0: log_validation( args, unet=unet, accelerator=accelerator, weight_dtype=weight_dtype, epoch=epoch ) logs = { "loss": loss.detach().item(), "raw_model_loss": raw_model_loss.detach().item(), "ref_loss": raw_ref_loss.detach().item(), "implicit_acc": implicit_acc.detach().item(), "lr": lr_scheduler.get_last_lr()[0], } progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break # Save the lora layers accelerator.wait_for_everyone() if accelerator.is_main_process: unet = accelerator.unwrap_model(unet) unet = unet.to(torch.float32) unet_lora_state_dict = convert_state_dict_to_diffusers(get_peft_model_state_dict(unet)) LoraLoaderMixin.save_lora_weights( save_directory=args.output_dir, unet_lora_layers=unet_lora_state_dict, text_encoder_lora_layers=None ) # Final validation? if args.run_validation: log_validation( args, unet=None, accelerator=accelerator, weight_dtype=weight_dtype, epoch=epoch, is_final_validation=True, ) if args.push_to_hub: upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": args = parse_args() main(args)
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/diffusion_dpo/train_diffusion_dpo_sdxl.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2024 bram-w, The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import argparse import contextlib import io import logging import math import os import random import shutil from pathlib import Path import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers import wandb from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from datasets import load_dataset from huggingface_hub import create_repo, upload_folder from packaging import version from peft import LoraConfig from peft.utils import get_peft_model_state_dict from PIL import Image from torchvision import transforms from torchvision.transforms.functional import crop from tqdm.auto import tqdm from transformers import AutoTokenizer, PretrainedConfig import diffusers from diffusers import ( AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel, ) from diffusers.loaders import StableDiffusionXLLoraLoaderMixin from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version, convert_state_dict_to_diffusers from diffusers.utils.import_utils import is_xformers_available # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.25.0.dev0") logger = get_logger(__name__) VALIDATION_PROMPTS = [ "portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography", "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece", ] def import_model_class_from_model_name_or_path( pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" ): text_encoder_config = PretrainedConfig.from_pretrained( pretrained_model_name_or_path, subfolder=subfolder, revision=revision ) model_class = text_encoder_config.architectures[0] if model_class == "CLIPTextModel": from transformers import CLIPTextModel return CLIPTextModel elif model_class == "CLIPTextModelWithProjection": from transformers import CLIPTextModelWithProjection return CLIPTextModelWithProjection else: raise ValueError(f"{model_class} is not supported.") def log_validation(args, unet, vae, accelerator, weight_dtype, epoch, is_final_validation=False): logger.info(f"Running validation... \n Generating images with prompts:\n" f" {VALIDATION_PROMPTS}.") if is_final_validation: if args.mixed_precision == "fp16": vae.to(weight_dtype) # create pipeline pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, vae=vae, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) if not is_final_validation: pipeline.unet = accelerator.unwrap_model(unet) else: pipeline.load_lora_weights(args.output_dir, weight_name="pytorch_lora_weights.safetensors") pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) # run inference generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None images = [] context = contextlib.nullcontext() if is_final_validation else torch.cuda.amp.autocast() for prompt in VALIDATION_PROMPTS: with context: image = pipeline(prompt, num_inference_steps=25, generator=generator).images[0] images.append(image) tracker_key = "test" if is_final_validation else "validation" for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images(tracker_key, np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { tracker_key: [ wandb.Image(image, caption=f"{i}: {VALIDATION_PROMPTS[i]}") for i, image in enumerate(images) ] } ) # Also log images without the LoRA params for comparison. if is_final_validation: pipeline.disable_lora() no_lora_images = [ pipeline(prompt, num_inference_steps=25, generator=generator).images[0] for prompt in VALIDATION_PROMPTS ] for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in no_lora_images]) tracker.writer.add_images("test_without_lora", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "test_without_lora": [ wandb.Image(image, caption=f"{i}: {VALIDATION_PROMPTS[i]}") for i, image in enumerate(no_lora_images) ] } ) def parse_args(input_args=None): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--pretrained_vae_model_name_or_path", type=str, default=None, help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--dataset_name", type=str, default=None, help=( "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that 🤗 Datasets can understand." ), ) parser.add_argument( "--dataset_split_name", type=str, default="validation", help="Dataset split to be used during training. Helpful to specify for conducting experimental runs.", ) parser.add_argument( "--variant", type=str, default=None, help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", ) parser.add_argument( "--run_validation", default=False, action="store_true", help="Whether to run validation inference in between training and also after training. Helps to track progress.", ) parser.add_argument( "--validation_steps", type=int, default=200, help="Run validation every X steps.", ) parser.add_argument( "--max_train_samples", type=int, default=None, help=( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ), ) parser.add_argument( "--output_dir", type=str, default="diffusion-dpo-lora", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=1024, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--vae_encode_batch_size", type=int, default=8, help="Batch size to use for VAE encoding of the images for efficient processing.", ) parser.add_argument( "--no_hflip", action="store_true", help="whether to randomly flip images horizontally", ) parser.add_argument( "--random_crop", default=False, action="store_true", help=( "Whether to random crop the input images to the resolution. If not set, the images will be center-cropped." ), ) parser.add_argument( "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=1) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=("Max number of checkpoints to store."), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--beta_dpo", type=int, default=5000, help="DPO KL Divergence penalty.", ) parser.add_argument( "--learning_rate", type=float, default=5e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--lr_num_cycles", type=int, default=1, help="Number of hard resets of the lr in cosine_with_restarts scheduler.", ) parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--prior_generation_precision", type=str, default=None, choices=["no", "fp32", "fp16", "bf16"], help=( "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) parser.add_argument( "--rank", type=int, default=4, help=("The dimension of the LoRA update matrices."), ) parser.add_argument( "--tracker_name", type=str, default="diffusion-dpo-lora-sdxl", help=("The name of the tracker to report results to."), ) if input_args is not None: args = parser.parse_args(input_args) else: args = parser.parse_args() if args.dataset_name is None: raise ValueError("Must provide a `dataset_name`.") env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank return args def tokenize_captions(tokenizers, examples): captions = [] for caption in examples["caption"]: captions.append(caption) tokens_one = tokenizers[0]( captions, truncation=True, padding="max_length", max_length=tokenizers[0].model_max_length, return_tensors="pt" ).input_ids tokens_two = tokenizers[1]( captions, truncation=True, padding="max_length", max_length=tokenizers[1].model_max_length, return_tensors="pt" ).input_ids return tokens_one, tokens_two @torch.no_grad() def encode_prompt(text_encoders, text_input_ids_list): prompt_embeds_list = [] for i, text_encoder in enumerate(text_encoders): text_input_ids = text_input_ids_list[i] prompt_embeds = text_encoder( text_input_ids.to(text_encoder.device), output_hidden_states=True, ) # We are only ALWAYS interested in the pooled output of the final text encoder pooled_prompt_embeds = prompt_embeds[0] prompt_embeds = prompt_embeds.hidden_states[-2] bs_embed, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) prompt_embeds_list.append(prompt_embeds) prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1) return prompt_embeds, pooled_prompt_embeds def main(args): logging_dir = Path(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load the tokenizers tokenizer_one = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, use_fast=False, ) tokenizer_two = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer_2", revision=args.revision, use_fast=False, ) # import correct text encoder classes text_encoder_cls_one = import_model_class_from_model_name_or_path( args.pretrained_model_name_or_path, args.revision ) text_encoder_cls_two = import_model_class_from_model_name_or_path( args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2" ) # Load scheduler and models noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") text_encoder_one = text_encoder_cls_one.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant ) text_encoder_two = text_encoder_cls_two.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant ) vae_path = ( args.pretrained_model_name_or_path if args.pretrained_vae_model_name_or_path is None else args.pretrained_vae_model_name_or_path ) vae = AutoencoderKL.from_pretrained( vae_path, subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, revision=args.revision, variant=args.variant, ) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant ) # We only train the additional adapter LoRA layers vae.requires_grad_(False) text_encoder_one.requires_grad_(False) text_encoder_two.requires_grad_(False) unet.requires_grad_(False) # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision # as these weights are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move unet and text_encoders to device and cast to weight_dtype unet.to(accelerator.device, dtype=weight_dtype) text_encoder_one.to(accelerator.device, dtype=weight_dtype) text_encoder_two.to(accelerator.device, dtype=weight_dtype) # The VAE is always in float32 to avoid NaN losses. vae.to(accelerator.device, dtype=torch.float32) # Set up LoRA. unet_lora_config = LoraConfig( r=args.rank, lora_alpha=args.rank, init_lora_weights="gaussian", target_modules=["to_k", "to_q", "to_v", "to_out.0"], ) # Add adapter and make sure the trainable params are in float32. unet.add_adapter(unet_lora_config) if args.mixed_precision == "fp16": for param in unet.parameters(): # only upcast trainable parameters (LoRA) into fp32 if param.requires_grad: param.data = param.to(torch.float32) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warn( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") if args.gradient_checkpointing: unet.enable_gradient_checkpointing() # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: # there are only two options here. Either are just the unet attn processor layers # or there are the unet and text encoder atten layers unet_lora_layers_to_save = None for model in models: if isinstance(model, type(accelerator.unwrap_model(unet))): unet_lora_layers_to_save = convert_state_dict_to_diffusers(get_peft_model_state_dict(model)) else: raise ValueError(f"unexpected save model: {model.__class__}") # make sure to pop weight so that corresponding model is not saved again weights.pop() StableDiffusionXLLoraLoaderMixin.save_lora_weights(output_dir, unet_lora_layers=unet_lora_layers_to_save) def load_model_hook(models, input_dir): unet_ = None while len(models) > 0: model = models.pop() if isinstance(model, type(accelerator.unwrap_model(unet))): unet_ = model else: raise ValueError(f"unexpected save model: {model.__class__}") lora_state_dict, network_alphas = StableDiffusionXLLoraLoaderMixin.lora_state_dict(input_dir) StableDiffusionXLLoraLoaderMixin.load_lora_into_unet( lora_state_dict, network_alphas=network_alphas, unet=unet_ ) accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." ) optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW # Optimizer creation params_to_optimize = list(filter(lambda p: p.requires_grad, unet.parameters())) optimizer = optimizer_class( params_to_optimize, lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # Dataset and DataLoaders creation: train_dataset = load_dataset( args.dataset_name, cache_dir=args.cache_dir, split=args.dataset_split_name, ) # Preprocessing the datasets. train_resize = transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR) train_crop = transforms.RandomCrop(args.resolution) if args.random_crop else transforms.CenterCrop(args.resolution) train_flip = transforms.RandomHorizontalFlip(p=1.0) to_tensor = transforms.ToTensor() normalize = transforms.Normalize([0.5], [0.5]) def preprocess_train(examples): all_pixel_values = [] images = [Image.open(io.BytesIO(im_bytes)).convert("RGB") for im_bytes in examples["jpg_0"]] original_sizes = [(image.height, image.width) for image in images] crop_top_lefts = [] for col_name in ["jpg_0", "jpg_1"]: images = [Image.open(io.BytesIO(im_bytes)).convert("RGB") for im_bytes in examples[col_name]] if col_name == "jpg_1": # Need to bring down the image to the same resolution. # This seems like the simplest reasonable approach. # "::-1" because PIL resize takes (width, height). images = [image.resize(original_sizes[i][::-1]) for i, image in enumerate(images)] pixel_values = [to_tensor(image) for image in images] all_pixel_values.append(pixel_values) # Double on channel dim, jpg_y then jpg_w im_tup_iterator = zip(*all_pixel_values) combined_pixel_values = [] for im_tup, label_0 in zip(im_tup_iterator, examples["label_0"]): if label_0 == 0: im_tup = im_tup[::-1] combined_im = torch.cat(im_tup, dim=0) # no batch dim # Resize. combined_im = train_resize(combined_im) # Cropping. if not args.random_crop: y1 = max(0, int(round((combined_im.shape[1] - args.resolution) / 2.0))) x1 = max(0, int(round((combined_im.shape[2] - args.resolution) / 2.0))) combined_im = train_crop(combined_im) else: y1, x1, h, w = train_crop.get_params(combined_im, (args.resolution, args.resolution)) combined_im = crop(combined_im, y1, x1, h, w) # Flipping. if random.random() < 0.5: x1 = combined_im.shape[2] - x1 combined_im = train_flip(combined_im) crop_top_left = (y1, x1) crop_top_lefts.append(crop_top_left) combined_im = normalize(combined_im) combined_pixel_values.append(combined_im) examples["pixel_values"] = combined_pixel_values examples["original_sizes"] = original_sizes examples["crop_top_lefts"] = crop_top_lefts tokens_one, tokens_two = tokenize_captions([tokenizer_one, tokenizer_two], examples) examples["input_ids_one"] = tokens_one examples["input_ids_two"] = tokens_two return examples with accelerator.main_process_first(): if args.max_train_samples is not None: train_dataset = train_dataset.shuffle(seed=args.seed).select(range(args.max_train_samples)) # Set the training transforms train_dataset = train_dataset.with_transform(preprocess_train) def collate_fn(examples): pixel_values = torch.stack([example["pixel_values"] for example in examples]) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() original_sizes = [example["original_sizes"] for example in examples] crop_top_lefts = [example["crop_top_lefts"] for example in examples] input_ids_one = torch.stack([example["input_ids_one"] for example in examples]) input_ids_two = torch.stack([example["input_ids_two"] for example in examples]) return { "pixel_values": pixel_values, "input_ids_one": input_ids_one, "input_ids_two": input_ids_two, "original_sizes": original_sizes, "crop_top_lefts": crop_top_lefts, } train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn, num_workers=args.dataloader_num_workers, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, num_cycles=args.lr_num_cycles, power=args.lr_power, ) unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, optimizer, train_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers(args.tracker_name, config=vars(args)) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num batches each epoch = {len(train_dataloader)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the mos recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None initial_global_step = 0 else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) initial_global_step = global_step first_epoch = global_step // num_update_steps_per_epoch else: initial_global_step = 0 progress_bar = tqdm( range(0, args.max_train_steps), initial=initial_global_step, desc="Steps", # Only show the progress bar once on each machine. disable=not accelerator.is_local_main_process, ) unet.train() for epoch in range(first_epoch, args.num_train_epochs): for step, batch in enumerate(train_dataloader): with accelerator.accumulate(unet): # (batch_size, 2*channels, h, w) -> (2*batch_size, channels, h, w) pixel_values = batch["pixel_values"].to(dtype=vae.dtype) feed_pixel_values = torch.cat(pixel_values.chunk(2, dim=1)) latents = [] for i in range(0, feed_pixel_values.shape[0], args.vae_encode_batch_size): latents.append( vae.encode(feed_pixel_values[i : i + args.vae_encode_batch_size]).latent_dist.sample() ) latents = torch.cat(latents, dim=0) latents = latents * vae.config.scaling_factor if args.pretrained_vae_model_name_or_path is None: latents = latents.to(weight_dtype) # Sample noise that we'll add to the latents noise = torch.randn_like(latents).chunk(2)[0].repeat(2, 1, 1, 1) # Sample a random timestep for each image bsz = latents.shape[0] // 2 timesteps = torch.randint( 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device, dtype=torch.long ).repeat(2) # Add noise to the model input according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_model_input = noise_scheduler.add_noise(latents, noise, timesteps) # time ids def compute_time_ids(original_size, crops_coords_top_left): # Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids target_size = (args.resolution, args.resolution) add_time_ids = list(original_size + crops_coords_top_left + target_size) add_time_ids = torch.tensor([add_time_ids]) add_time_ids = add_time_ids.to(accelerator.device, dtype=weight_dtype) return add_time_ids add_time_ids = torch.cat( [compute_time_ids(s, c) for s, c in zip(batch["original_sizes"], batch["crop_top_lefts"])] ).repeat(2, 1) # Get the text embedding for conditioning prompt_embeds, pooled_prompt_embeds = encode_prompt( [text_encoder_one, text_encoder_two], [batch["input_ids_one"], batch["input_ids_two"]] ) prompt_embeds = prompt_embeds.repeat(2, 1, 1) pooled_prompt_embeds = pooled_prompt_embeds.repeat(2, 1) # Predict the noise residual model_pred = unet( noisy_model_input, timesteps, prompt_embeds, added_cond_kwargs={"time_ids": add_time_ids, "text_embeds": pooled_prompt_embeds}, ).sample # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") # Compute losses. model_losses = F.mse_loss(model_pred.float(), target.float(), reduction="none") model_losses = model_losses.mean(dim=list(range(1, len(model_losses.shape)))) model_losses_w, model_losses_l = model_losses.chunk(2) # For logging raw_model_loss = 0.5 * (model_losses_w.mean() + model_losses_l.mean()) model_diff = model_losses_w - model_losses_l # These are both LBS (as is t) # Reference model predictions. accelerator.unwrap_model(unet).disable_adapters() with torch.no_grad(): ref_preds = unet( noisy_model_input, timesteps, prompt_embeds, added_cond_kwargs={"time_ids": add_time_ids, "text_embeds": pooled_prompt_embeds}, ).sample ref_loss = F.mse_loss(ref_preds.float(), target.float(), reduction="none") ref_loss = ref_loss.mean(dim=list(range(1, len(ref_loss.shape)))) ref_losses_w, ref_losses_l = ref_loss.chunk(2) ref_diff = ref_losses_w - ref_losses_l raw_ref_loss = ref_loss.mean() # Re-enable adapters. accelerator.unwrap_model(unet).enable_adapters() # Final loss. scale_term = -0.5 * args.beta_dpo inside_term = scale_term * (model_diff - ref_diff) loss = -1 * F.logsigmoid(inside_term.mean()) implicit_acc = (inside_term > 0).sum().float() / inside_term.size(0) implicit_acc += 0.5 * (inside_term == 0).sum().float() / inside_term.size(0) accelerator.backward(loss) if accelerator.sync_gradients: accelerator.clip_grad_norm_(params_to_optimize, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 if accelerator.is_main_process: if global_step % args.checkpointing_steps == 0: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: checkpoints = os.listdir(args.output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= args.checkpoints_total_limit: num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") if args.run_validation and global_step % args.validation_steps == 0: log_validation( args, unet=unet, vae=vae, accelerator=accelerator, weight_dtype=weight_dtype, epoch=epoch ) logs = { "loss": loss.detach().item(), "raw_model_loss": raw_model_loss.detach().item(), "ref_loss": raw_ref_loss.detach().item(), "implicit_acc": implicit_acc.detach().item(), "lr": lr_scheduler.get_last_lr()[0], } progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break # Save the lora layers accelerator.wait_for_everyone() if accelerator.is_main_process: unet = accelerator.unwrap_model(unet) unet = unet.to(torch.float32) unet_lora_state_dict = convert_state_dict_to_diffusers(get_peft_model_state_dict(unet)) StableDiffusionXLLoraLoaderMixin.save_lora_weights( save_directory=args.output_dir, unet_lora_layers=unet_lora_state_dict, text_encoder_lora_layers=None, text_encoder_2_lora_layers=None, ) # Final validation? if args.run_validation: log_validation( args, unet=None, vae=vae, accelerator=accelerator, weight_dtype=weight_dtype, epoch=epoch, is_final_validation=True, ) if args.push_to_hub: upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": args = parse_args() main(args)
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/colossalai/train_dreambooth_colossalai.py
import argparse import math import os from pathlib import Path import colossalai import torch import torch.nn.functional as F import torch.utils.checkpoint from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.logging import disable_existing_loggers, get_dist_logger from colossalai.nn.optimizer.gemini_optimizer import GeminiAdamOptimizer from colossalai.nn.parallel.utils import get_static_torch_model from colossalai.utils import get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext from huggingface_hub import create_repo, upload_folder from huggingface_hub.utils import insecure_hashlib from PIL import Image from torch.utils.data import Dataset from torchvision import transforms from tqdm.auto import tqdm from transformers import AutoTokenizer, PretrainedConfig from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel from diffusers.optimization import get_scheduler disable_existing_loggers() logger = get_dist_logger() def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str): text_encoder_config = PretrainedConfig.from_pretrained( pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, ) model_class = text_encoder_config.architectures[0] if model_class == "CLIPTextModel": from transformers import CLIPTextModel return CLIPTextModel elif model_class == "RobertaSeriesModelWithTransformation": from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation return RobertaSeriesModelWithTransformation else: raise ValueError(f"{model_class} is not supported.") def parse_args(input_args=None): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--instance_data_dir", type=str, default=None, required=True, help="A folder containing the training data of instance images.", ) parser.add_argument( "--class_data_dir", type=str, default=None, required=False, help="A folder containing the training data of class images.", ) parser.add_argument( "--instance_prompt", type=str, default="a photo of sks dog", required=False, help="The prompt with identifier specifying the instance", ) parser.add_argument( "--class_prompt", type=str, default=None, help="The prompt to specify images in the same class as provided instance images.", ) parser.add_argument( "--with_prior_preservation", default=False, action="store_true", help="Flag to add prior preservation loss.", ) parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") parser.add_argument( "--num_class_images", type=int, default=100, help=( "Minimal class images for prior preservation loss. If there are not enough images already present in" " class_data_dir, additional images will be sampled with class_prompt." ), ) parser.add_argument( "--output_dir", type=str, default="text-inversion-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--placement", type=str, default="cpu", help="Placement Policy for Gemini. Valid when using colossalai as dist plan.", ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument( "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." ) parser.add_argument( "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." ) parser.add_argument("--num_train_epochs", type=int, default=1) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.") parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=5e-6, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") if input_args is not None: args = parser.parse_args(input_args) else: args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.with_prior_preservation: if args.class_data_dir is None: raise ValueError("You must specify a data directory for class images.") if args.class_prompt is None: raise ValueError("You must specify prompt for class images.") else: if args.class_data_dir is not None: logger.warning("You need not use --class_data_dir without --with_prior_preservation.") if args.class_prompt is not None: logger.warning("You need not use --class_prompt without --with_prior_preservation.") return args class DreamBoothDataset(Dataset): """ A dataset to prepare the instance and class images with the prompts for fine-tuning the model. It pre-processes the images and the tokenizes prompts. """ def __init__( self, instance_data_root, instance_prompt, tokenizer, class_data_root=None, class_prompt=None, size=512, center_crop=False, ): self.size = size self.center_crop = center_crop self.tokenizer = tokenizer self.instance_data_root = Path(instance_data_root) if not self.instance_data_root.exists(): raise ValueError("Instance images root doesn't exists.") self.instance_images_path = list(Path(instance_data_root).iterdir()) self.num_instance_images = len(self.instance_images_path) self.instance_prompt = instance_prompt self._length = self.num_instance_images if class_data_root is not None: self.class_data_root = Path(class_data_root) self.class_data_root.mkdir(parents=True, exist_ok=True) self.class_images_path = list(self.class_data_root.iterdir()) self.num_class_images = len(self.class_images_path) self._length = max(self.num_class_images, self.num_instance_images) self.class_prompt = class_prompt else: self.class_data_root = None self.image_transforms = transforms.Compose( [ transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __len__(self): return self._length def __getitem__(self, index): example = {} instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) if not instance_image.mode == "RGB": instance_image = instance_image.convert("RGB") example["instance_images"] = self.image_transforms(instance_image) example["instance_prompt_ids"] = self.tokenizer( self.instance_prompt, padding="do_not_pad", truncation=True, max_length=self.tokenizer.model_max_length, ).input_ids if self.class_data_root: class_image = Image.open(self.class_images_path[index % self.num_class_images]) if not class_image.mode == "RGB": class_image = class_image.convert("RGB") example["class_images"] = self.image_transforms(class_image) example["class_prompt_ids"] = self.tokenizer( self.class_prompt, padding="do_not_pad", truncation=True, max_length=self.tokenizer.model_max_length, ).input_ids return example class PromptDataset(Dataset): "A simple dataset to prepare the prompts to generate class images on multiple GPUs." def __init__(self, prompt, num_samples): self.prompt = prompt self.num_samples = num_samples def __len__(self): return self.num_samples def __getitem__(self, index): example = {} example["prompt"] = self.prompt example["index"] = index return example # Gemini + ZeRO DDP def gemini_zero_dpp(model: torch.nn.Module, placememt_policy: str = "auto"): from colossalai.nn.parallel import GeminiDDP model = GeminiDDP( model, device=get_current_device(), placement_policy=placememt_policy, pin_memory=True, search_range_mb=64 ) return model def main(args): if args.seed is None: colossalai.launch_from_torch(config={}) else: colossalai.launch_from_torch(config={}, seed=args.seed) local_rank = gpc.get_local_rank(ParallelMode.DATA) world_size = gpc.get_world_size(ParallelMode.DATA) if args.with_prior_preservation: class_images_dir = Path(args.class_data_dir) if not class_images_dir.exists(): class_images_dir.mkdir(parents=True) cur_class_images = len(list(class_images_dir.iterdir())) if cur_class_images < args.num_class_images: torch_dtype = torch.float16 if get_current_device() == "cuda" else torch.float32 pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, torch_dtype=torch_dtype, safety_checker=None, revision=args.revision, ) pipeline.set_progress_bar_config(disable=True) num_new_images = args.num_class_images - cur_class_images logger.info(f"Number of class images to sample: {num_new_images}.") sample_dataset = PromptDataset(args.class_prompt, num_new_images) sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) pipeline.to(get_current_device()) for example in tqdm( sample_dataloader, desc="Generating class images", disable=not local_rank == 0, ): images = pipeline(example["prompt"]).images for i, image in enumerate(images): hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest() image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" image.save(image_filename) del pipeline # Handle the repository creation if local_rank == 0: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load the tokenizer if args.tokenizer_name: logger.info(f"Loading tokenizer from {args.tokenizer_name}", ranks=[0]) tokenizer = AutoTokenizer.from_pretrained( args.tokenizer_name, revision=args.revision, use_fast=False, ) elif args.pretrained_model_name_or_path: logger.info("Loading tokenizer from pretrained model", ranks=[0]) tokenizer = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, use_fast=False, ) # import correct text encoder class text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path) # Load models and create wrapper for stable diffusion logger.info(f"Loading text_encoder from {args.pretrained_model_name_or_path}", ranks=[0]) text_encoder = text_encoder_cls.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, ) logger.info(f"Loading AutoencoderKL from {args.pretrained_model_name_or_path}", ranks=[0]) vae = AutoencoderKL.from_pretrained( args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, ) logger.info(f"Loading UNet2DConditionModel from {args.pretrained_model_name_or_path}", ranks=[0]) with ColoInitContext(device=get_current_device()): unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, low_cpu_mem_usage=False ) vae.requires_grad_(False) text_encoder.requires_grad_(False) if args.gradient_checkpointing: unet.enable_gradient_checkpointing() if args.scale_lr: args.learning_rate = args.learning_rate * args.train_batch_size * world_size unet = gemini_zero_dpp(unet, args.placement) # config optimizer for colossalai zero optimizer = GeminiAdamOptimizer(unet, lr=args.learning_rate, initial_scale=2**5, clipping_norm=args.max_grad_norm) # load noise_scheduler noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") # prepare dataset logger.info(f"Prepare dataset from {args.instance_data_dir}", ranks=[0]) train_dataset = DreamBoothDataset( instance_data_root=args.instance_data_dir, instance_prompt=args.instance_prompt, class_data_root=args.class_data_dir if args.with_prior_preservation else None, class_prompt=args.class_prompt, tokenizer=tokenizer, size=args.resolution, center_crop=args.center_crop, ) def collate_fn(examples): input_ids = [example["instance_prompt_ids"] for example in examples] pixel_values = [example["instance_images"] for example in examples] # Concat class and instance examples for prior preservation. # We do this to avoid doing two forward passes. if args.with_prior_preservation: input_ids += [example["class_prompt_ids"] for example in examples] pixel_values += [example["class_images"] for example in examples] pixel_values = torch.stack(pixel_values) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() input_ids = tokenizer.pad( {"input_ids": input_ids}, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt", ).input_ids batch = { "input_ids": input_ids, "pixel_values": pixel_values, } return batch train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn, num_workers=1 ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader)) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps, num_training_steps=args.max_train_steps, ) weight_dtype = torch.float32 if args.mixed_precision == "fp16": weight_dtype = torch.float16 elif args.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move text_encode and vae to gpu. # For mixed precision training we cast the text_encoder and vae weights to half-precision # as these models are only used for inference, keeping weights in full precision is not required. vae.to(get_current_device(), dtype=weight_dtype) text_encoder.to(get_current_device(), dtype=weight_dtype) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader)) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # Train! total_batch_size = args.train_batch_size * world_size logger.info("***** Running training *****", ranks=[0]) logger.info(f" Num examples = {len(train_dataset)}", ranks=[0]) logger.info(f" Num batches each epoch = {len(train_dataloader)}", ranks=[0]) logger.info(f" Num Epochs = {args.num_train_epochs}", ranks=[0]) logger.info(f" Instantaneous batch size per device = {args.train_batch_size}", ranks=[0]) logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}", ranks=[0]) logger.info(f" Total optimization steps = {args.max_train_steps}", ranks=[0]) # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not local_rank == 0) progress_bar.set_description("Steps") global_step = 0 torch.cuda.synchronize() for epoch in range(args.num_train_epochs): unet.train() for step, batch in enumerate(train_dataloader): torch.cuda.reset_peak_memory_stats() # Move batch to gpu for key, value in batch.items(): batch[key] = value.to(get_current_device(), non_blocking=True) # Convert images to latent space optimizer.zero_grad() latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() latents = latents * 0.18215 # Sample noise that we'll add to the latents noise = torch.randn_like(latents) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # Get the text embedding for conditioning encoder_hidden_states = text_encoder(batch["input_ids"])[0] # Predict the noise residual model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") if args.with_prior_preservation: # Chunk the noise and model_pred into two parts and compute the loss on each part separately. model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) target, target_prior = torch.chunk(target, 2, dim=0) # Compute instance loss loss = F.mse_loss(model_pred.float(), target.float(), reduction="none").mean([1, 2, 3]).mean() # Compute prior loss prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") # Add the prior loss to the instance loss. loss = loss + args.prior_loss_weight * prior_loss else: loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") optimizer.backward(loss) optimizer.step() lr_scheduler.step() logger.info(f"max GPU_mem cost is {torch.cuda.max_memory_allocated()/2**20} MB", ranks=[0]) # Checks if the accelerator has performed an optimization step behind the scenes progress_bar.update(1) global_step += 1 logs = { "loss": loss.detach().item(), "lr": optimizer.param_groups[0]["lr"], } # lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) if global_step % args.save_steps == 0: torch.cuda.synchronize() torch_unet = get_static_torch_model(unet) if local_rank == 0: pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, unet=torch_unet, revision=args.revision, ) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") pipeline.save_pretrained(save_path) logger.info(f"Saving model checkpoint to {save_path}", ranks=[0]) if global_step >= args.max_train_steps: break torch.cuda.synchronize() unet = get_static_torch_model(unet) if local_rank == 0: pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, unet=unet, revision=args.revision, ) pipeline.save_pretrained(args.output_dir) logger.info(f"Saving model checkpoint to {args.output_dir}", ranks=[0]) if args.push_to_hub: upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) if __name__ == "__main__": args = parse_args() main(args)
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/colossalai/inference.py
import torch from diffusers import StableDiffusionPipeline model_id = "path-to-your-trained-model" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") prompt = "A photo of sks dog in a bucket" image = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("dog-bucket.png")
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/colossalai/README.md
# [DreamBooth](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth) by [colossalai](https://github.com/hpcaitech/ColossalAI.git) [DreamBooth](https://arxiv.org/abs/2208.12242) is a method to personalize text2image models like stable diffusion given just a few(3~5) images of a subject. The `train_dreambooth_colossalai.py` script shows how to implement the training procedure and adapt it for stable diffusion. By accommodating model data in CPU and GPU and moving the data to the computing device when necessary, [Gemini](https://www.colossalai.org/docs/advanced_tutorials/meet_gemini), the Heterogeneous Memory Manager of [Colossal-AI](https://github.com/hpcaitech/ColossalAI) can breakthrough the GPU memory wall by using GPU and CPU memory (composed of CPU DRAM or nvme SSD memory) together at the same time. Moreover, the model scale can be further improved by combining heterogeneous training with the other parallel approaches, such as data parallel, tensor parallel and pipeline parallel. ## Installing the dependencies Before running the scripts, make sure to install the library's training dependencies: ```bash pip install -r requirements.txt ``` ## Install [ColossalAI](https://github.com/hpcaitech/ColossalAI.git) **From PyPI** ```bash pip install colossalai ``` **From source** ```bash git clone https://github.com/hpcaitech/ColossalAI.git cd ColossalAI # install colossalai pip install . ``` ## Dataset for Teyvat BLIP captions Dataset used to train [Teyvat characters text to image model](https://github.com/hpcaitech/ColossalAI/tree/main/examples/images/diffusion). BLIP generated captions for characters images from [genshin-impact fandom wiki](https://genshin-impact.fandom.com/wiki/Character#Playable_Characters)and [biligame wiki for genshin impact](https://wiki.biligame.com/ys/%E8%A7%92%E8%89%B2). For each row the dataset contains `image` and `text` keys. `image` is a varying size PIL png, and `text` is the accompanying text caption. Only a train split is provided. The `text` include the tag `Teyvat`, `Name`,`Element`, `Weapon`, `Region`, `Model type`, and `Description`, the `Description` is captioned with the [pre-trained BLIP model](https://github.com/salesforce/BLIP). ## Training The argument `placement` can be `cpu`, `auto`, `cuda`, with `cpu` the GPU RAM required can be minimized to 4GB but will deceleration, with `cuda` you can also reduce GPU memory by half but accelerated training, with `auto` a more balanced solution for speed and memory can be obtained。 **___Note: Change the `resolution` to 768 if you are using the [stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) 768x768 model.___** ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export INSTANCE_DIR="path-to-instance-images" export OUTPUT_DIR="path-to-save-model" torchrun --nproc_per_node 2 train_dreambooth_colossalai.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --output_dir=$OUTPUT_DIR \ --instance_prompt="a photo of sks dog" \ --resolution=512 \ --train_batch_size=1 \ --learning_rate=5e-6 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --max_train_steps=400 \ --placement="cuda" ``` ### Training with prior-preservation loss Prior-preservation is used to avoid overfitting and language-drift. Refer to the paper to learn more about it. For prior-preservation we first generate images using the model with a class prompt and then use those during training along with our data. According to the paper, it's recommended to generate `num_epochs * num_samples` images for prior-preservation. 200-300 works well for most cases. The `num_class_images` flag sets the number of images to generate with the class prompt. You can place existing images in `class_data_dir`, and the training script will generate any additional images so that `num_class_images` are present in `class_data_dir` during training time. ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export INSTANCE_DIR="path-to-instance-images" export CLASS_DIR="path-to-class-images" export OUTPUT_DIR="path-to-save-model" torchrun --nproc_per_node 2 train_dreambooth_colossalai.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --class_data_dir=$CLASS_DIR \ --output_dir=$OUTPUT_DIR \ --with_prior_preservation --prior_loss_weight=1.0 \ --instance_prompt="a photo of sks dog" \ --class_prompt="a photo of dog" \ --resolution=512 \ --train_batch_size=1 \ --learning_rate=5e-6 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --max_train_steps=800 \ --placement="cuda" ``` ## Inference Once you have trained a model using above command, the inference can be done simply using the `StableDiffusionPipeline`. Make sure to include the `identifier`(e.g. sks in above example) in your prompt. ```python from diffusers import StableDiffusionPipeline import torch model_id = "path-to-save-model" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") prompt = "A photo of sks dog in a bucket" image = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("dog-bucket.png") ```
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/colossalai/requirement.txt
diffusers torch torchvision ftfy tensorboard Jinja2 transformers
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/controlnetxs/README_sdxl.md
# ControlNet-XS with Stable Diffusion XL ControlNet-XS was introduced in [ControlNet-XS](https://vislearn.github.io/ControlNet-XS/) by Denis Zavadski and Carsten Rother. It is based on the observation that the control model in the [original ControlNet](https://huggingface.co/papers/2302.05543) can be made much smaller and still produce good results. Like the original ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process. ControlNet-XS generates images with comparable quality to a regular ControlNet, but it is 20-25% faster ([see benchmark](https://github.com/UmerHA/controlnet-xs-benchmark/blob/main/Speed%20Benchmark.ipynb)) and uses ~45% less memory. Here's the overview from the [project page](https://vislearn.github.io/ControlNet-XS/): *With increasing computing capabilities, current model architectures appear to follow the trend of simply upscaling all components without validating the necessity for doing so. In this project we investigate the size and architectural design of ControlNet [Zhang et al., 2023] for controlling the image generation process with stable diffusion-based models. We show that a new architecture with as little as 1% of the parameters of the base model achieves state-of-the art results, considerably better than ControlNet in terms of FID score. Hence we call it ControlNet-XS. We provide the code for controlling StableDiffusion-XL [Podell et al., 2023] (Model B, 48M Parameters) and StableDiffusion 2.1 [Rombach et al. 2022] (Model B, 14M Parameters), all under openrail license.* This model was contributed by [UmerHA](https://twitter.com/UmerHAdil). ❤️ > 🧠 Make sure to check out the Schedulers [guide](https://huggingface.co/docs/diffusers/main/en/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/controlnetxs/pipeline_controlnet_xs.py
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from typing import Any, Callable, Dict, List, Optional, Union import numpy as np import PIL.Image import torch import torch.nn.functional as F from controlnetxs import ControlNetXSModel from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers.image_processor import PipelineImageInput, VaeImageProcessor from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin from diffusers.models import AutoencoderKL, UNet2DConditionModel from diffusers.models.lora import adjust_lora_scale_text_encoder from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import ( USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers, ) from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor logger = logging.get_logger(__name__) # pylint: disable=invalid-name class StableDiffusionControlNetXSPipeline( DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin ): r""" Pipeline for text-to-image generation using Stable Diffusion with ControlNet-XS guidance. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). The pipeline also inherits the following loading methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. controlnet ([`ControlNetXSModel`]): Provides additional conditioning to the `unet` during the denoising process. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """ model_cpu_offload_seq = "text_encoder->unet->vae>controlnet" _optional_components = ["safety_checker", "feature_extractor"] _exclude_from_cpu_offload = ["safety_checker"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, controlnet: ControlNetXSModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, ): super().__init__() if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) vae_compatible, cnxs_condition_downsample_factor, vae_downsample_factor = controlnet._check_if_vae_compatible( vae ) if not vae_compatible: raise ValueError( f"The downsampling factors of the VAE ({vae_downsample_factor}) and the conditioning part of ControlNetXS model {cnxs_condition_downsample_factor} need to be equal. Consider building the ControlNetXS model with different `conditioning_block_sizes`." ) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) self.control_image_processor = VaeImageProcessor( vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False ) self.register_to_config(requires_safety_checker=requires_safety_checker) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing def enable_vae_slicing(self): r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.vae.enable_slicing() # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing def disable_vae_slicing(self): r""" Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_slicing() # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling def enable_vae_tiling(self): r""" Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images. """ self.vae.enable_tiling() # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling def disable_vae_tiling(self): r""" Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_tiling() # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, lora_scale: Optional[float] = None, **kwargs, ): deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) prompt_embeds_tuple = self.encode_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs, ) # concatenate for backwards comp prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) return prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, LoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: procecss multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer. prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt # textual inversion: procecss multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, image, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, controlnet_conditioning_scale=1.0, control_guidance_start=0.0, control_guidance_end=1.0, ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) # Check `image` is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( self.controlnet, torch._dynamo.eval_frame.OptimizedModule ) if ( isinstance(self.controlnet, ControlNetXSModel) or is_compiled and isinstance(self.controlnet._orig_mod, ControlNetXSModel) ): self.check_image(image, prompt, prompt_embeds) else: assert False # Check `controlnet_conditioning_scale` if ( isinstance(self.controlnet, ControlNetXSModel) or is_compiled and isinstance(self.controlnet._orig_mod, ControlNetXSModel) ): if not isinstance(controlnet_conditioning_scale, float): raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") else: assert False start, end = control_guidance_start, control_guidance_end if start >= end: raise ValueError( f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." ) if start < 0.0: raise ValueError(f"control guidance start: {start} can't be smaller than 0.") if end > 1.0: raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") def check_image(self, image, prompt, prompt_embeds): image_is_pil = isinstance(image, PIL.Image.Image) image_is_tensor = isinstance(image, torch.Tensor) image_is_np = isinstance(image, np.ndarray) image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) if ( not image_is_pil and not image_is_tensor and not image_is_np and not image_is_pil_list and not image_is_tensor_list and not image_is_np_list ): raise TypeError( f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" ) if image_is_pil: image_batch_size = 1 else: image_batch_size = len(image) if prompt is not None and isinstance(prompt, str): prompt_batch_size = 1 elif prompt is not None and isinstance(prompt, list): prompt_batch_size = len(prompt) elif prompt_embeds is not None: prompt_batch_size = prompt_embeds.shape[0] if image_batch_size != 1 and image_batch_size != prompt_batch_size: raise ValueError( f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" ) def prepare_image( self, image, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False, ): image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) image_batch_size = image.shape[0] if image_batch_size == 1: repeat_by = batch_size else: # image batch size is the same as prompt batch size repeat_by = num_images_per_prompt image = image.repeat_interleave(repeat_by, dim=0) image = image.to(device=device, dtype=dtype) if do_classifier_free_guidance: image = torch.cat([image] * 2) return image # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497. The suffixes after the scaling factors represent the stages where they are being applied. Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. Args: s1 (`float`): Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to mitigate "oversmoothing effect" in the enhanced denoising process. s2 (`float`): Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to mitigate "oversmoothing effect" in the enhanced denoising process. b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. """ if not hasattr(self, "unet"): raise ValueError("The pipeline must have `unet` for using FreeU.") self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu def disable_freeu(self): """Disables the FreeU mechanism if enabled.""" self.unet.disable_freeu() @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, image: PipelineImageInput = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, controlnet_conditioning_scale: Union[float, List[float]] = 1.0, control_guidance_start: float = 0.0, control_guidance_end: float = 1.0, clip_skip: Optional[int] = None, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): The ControlNet input condition to provide guidance to the `unet` for generation. If the type is specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`, images must be passed as a list such that each element of the list can be correctly batched for input to a single ControlNet. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set the corresponding scale as a list. control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): The percentage of total steps at which the ControlNet starts applying. control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): The percentage of total steps at which the ControlNet stops applying. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. Examples: Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, image, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, controlnet_conditioning_scale, control_guidance_start, control_guidance_end, ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=clip_skip, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) # 4. Prepare image if isinstance(controlnet, ControlNetXSModel): image = self.prepare_image( image=image, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=do_classifier_free_guidance, ) height, width = image.shape[-2:] else: assert False # 5. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 6. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 8. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order is_unet_compiled = is_compiled_module(self.unet) is_controlnet_compiled = is_compiled_module(self.controlnet) is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1") with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # Relevant thread: # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428 if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1: torch._inductor.cudagraph_mark_step_begin() # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual dont_control = ( i / len(timesteps) < control_guidance_start or (i + 1) / len(timesteps) > control_guidance_end ) if dont_control: noise_pred = self.unet( sample=latent_model_input, timestep=t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=True, ).sample else: noise_pred = self.controlnet( base_model=self.unet, sample=latent_model_input, timestep=t, encoder_hidden_states=prompt_embeds, controlnet_cond=image, conditioning_scale=controlnet_conditioning_scale, cross_attention_kwargs=cross_attention_kwargs, return_dict=True, ).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) # If we do sequential model offloading, let's offload unet and controlnet # manually for max memory savings if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.unet.to("cpu") self.controlnet.to("cpu") torch.cuda.empty_cache() if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ 0 ] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/controlnetxs/infer_sdxl_controlnetxs.py
# !pip install opencv-python transformers accelerate import argparse import cv2 import numpy as np import torch from controlnetxs import ControlNetXSModel from PIL import Image from pipeline_controlnet_xs import StableDiffusionControlNetXSPipeline from diffusers.utils import load_image parser = argparse.ArgumentParser() parser.add_argument( "--prompt", type=str, default="aerial view, a futuristic research complex in a bright foggy jungle, hard lighting" ) parser.add_argument("--negative_prompt", type=str, default="low quality, bad quality, sketches") parser.add_argument("--controlnet_conditioning_scale", type=float, default=0.7) parser.add_argument( "--image_path", type=str, default="https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png", ) parser.add_argument("--num_inference_steps", type=int, default=50) args = parser.parse_args() prompt = args.prompt negative_prompt = args.negative_prompt # download an image image = load_image(args.image_path) # initialize the models and pipeline controlnet_conditioning_scale = args.controlnet_conditioning_scale controlnet = ControlNetXSModel.from_pretrained("UmerHA/ConrolNetXS-SDXL-canny", torch_dtype=torch.float16) pipe = StableDiffusionControlNetXSPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16 ) pipe.enable_model_cpu_offload() # get canny image image = np.array(image) image = cv2.Canny(image, 100, 200) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) canny_image = Image.fromarray(image) num_inference_steps = args.num_inference_steps # generate image image = pipe( prompt, controlnet_conditioning_scale=controlnet_conditioning_scale, image=canny_image, num_inference_steps=num_inference_steps, ).images[0] image.save("cnxs_sdxl.canny.png")
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/controlnetxs/pipeline_controlnet_xs_sd_xl.py
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from typing import Any, Callable, Dict, List, Optional, Tuple, Union import numpy as np import PIL.Image import torch import torch.nn.functional as F from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers.image_processor import PipelineImageInput, VaeImageProcessor from diffusers.loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin from diffusers.models import AutoencoderKL, ControlNetXSModel, UNet2DConditionModel from diffusers.models.attention_processor import ( AttnProcessor2_0, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor, XFormersAttnProcessor, ) from diffusers.models.lora import adjust_lora_scale_text_encoder from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import ( USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers, ) from diffusers.utils.import_utils import is_invisible_watermark_available from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor if is_invisible_watermark_available(): from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker logger = logging.get_logger(__name__) # pylint: disable=invalid-name class StableDiffusionXLControlNetXSPipeline( DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionXLLoraLoaderMixin, FromSingleFileMixin ): r""" Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet-XS guidance. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). The pipeline also inherits the following loading methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]): Second frozen text-encoder ([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. tokenizer_2 ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. controlnet ([`ControlNetXSModel`]: Provides additional conditioning to the `unet` during the denoising process. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): Whether the negative prompt embeddings should always be set to 0. Also see the config of `stabilityai/stable-diffusion-xl-base-1-0`. add_watermarker (`bool`, *optional*): Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no watermarker is used. """ # leave controlnet out on purpose because it iterates with unet model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae->controlnet" _optional_components = ["tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: UNet2DConditionModel, controlnet: ControlNetXSModel, scheduler: KarrasDiffusionSchedulers, force_zeros_for_empty_prompt: bool = True, add_watermarker: Optional[bool] = None, ): super().__init__() vae_compatible, cnxs_condition_downsample_factor, vae_downsample_factor = controlnet._check_if_vae_compatible( vae ) if not vae_compatible: raise ValueError( f"The downsampling factors of the VAE ({vae_downsample_factor}) and the conditioning part of ControlNetXS model {cnxs_condition_downsample_factor} need to be equal. Consider building the ControlNetXS model with different `conditioning_block_sizes`." ) self.register_modules( vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, controlnet=controlnet, scheduler=scheduler, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) self.control_image_processor = VaeImageProcessor( vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False ) add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() if add_watermarker: self.watermark = StableDiffusionXLWatermarker() else: self.watermark = None self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing def enable_vae_slicing(self): r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.vae.enable_slicing() # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing def disable_vae_slicing(self): r""" Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_slicing() # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling def enable_vae_tiling(self): r""" Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images. """ self.vae.enable_tiling() # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling def disable_vae_tiling(self): r""" Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_tiling() # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt def encode_prompt( self, prompt: str, prompt_2: Optional[str] = None, device: Optional[torch.device] = None, num_images_per_prompt: int = 1, do_classifier_free_guidance: bool = True, negative_prompt: Optional[str] = None, negative_prompt_2: Optional[str] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is used in both text-encoders device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). negative_prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ device = device or self._execution_device # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if self.text_encoder is not None: if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None: if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) else: scale_lora_layers(self.text_encoder_2, lora_scale) prompt = [prompt] if isinstance(prompt, str) else prompt if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # Define tokenizers and text encoders tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] text_encoders = ( [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] ) if prompt_embeds is None: prompt_2 = prompt_2 or prompt prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 # textual inversion: procecss multi-vector tokens if necessary prompt_embeds_list = [] prompts = [prompt, prompt_2] for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, tokenizer) text_inputs = tokenizer( prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {tokenizer.model_max_length} tokens: {removed_text}" ) prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) # We are only ALWAYS interested in the pooled output of the final text encoder pooled_prompt_embeds = prompt_embeds[0] if clip_skip is None: prompt_embeds = prompt_embeds.hidden_states[-2] else: # "2" because SDXL always indexes from the penultimate layer. prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] prompt_embeds_list.append(prompt_embeds) prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) # get unconditional embeddings for classifier free guidance zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: negative_prompt_embeds = torch.zeros_like(prompt_embeds) negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) elif do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = negative_prompt or "" negative_prompt_2 = negative_prompt_2 or negative_prompt # normalize str to list negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt negative_prompt_2 = ( batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 ) uncond_tokens: List[str] if prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = [negative_prompt, negative_prompt_2] negative_prompt_embeds_list = [] for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): if isinstance(self, TextualInversionLoaderMixin): negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) max_length = prompt_embeds.shape[1] uncond_input = tokenizer( negative_prompt, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) negative_prompt_embeds = text_encoder( uncond_input.input_ids.to(device), output_hidden_states=True, ) # We are only ALWAYS interested in the pooled output of the final text encoder negative_pooled_prompt_embeds = negative_prompt_embeds[0] negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] negative_prompt_embeds_list.append(negative_prompt_embeds) negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) if self.text_encoder_2 is not None: prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) else: prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] if self.text_encoder_2 is not None: negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) else: negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( bs_embed * num_images_per_prompt, -1 ) if do_classifier_free_guidance: negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( bs_embed * num_images_per_prompt, -1 ) if self.text_encoder is not None: if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None: if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder_2, lora_scale) return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, prompt_2, image, callback_steps, negative_prompt=None, negative_prompt_2=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, controlnet_conditioning_scale=1.0, control_guidance_start=0.0, control_guidance_end=1.0, ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt_2 is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) elif negative_prompt_2 is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_embeds is not None and pooled_prompt_embeds is None: raise ValueError( "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." ) if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: raise ValueError( "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." ) # Check `image` is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( self.controlnet, torch._dynamo.eval_frame.OptimizedModule ) if ( isinstance(self.controlnet, ControlNetXSModel) or is_compiled and isinstance(self.controlnet._orig_mod, ControlNetXSModel) ): self.check_image(image, prompt, prompt_embeds) else: assert False # Check `controlnet_conditioning_scale` if ( isinstance(self.controlnet, ControlNetXSModel) or is_compiled and isinstance(self.controlnet._orig_mod, ControlNetXSModel) ): if not isinstance(controlnet_conditioning_scale, float): raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") else: assert False start, end = control_guidance_start, control_guidance_end if start >= end: raise ValueError( f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." ) if start < 0.0: raise ValueError(f"control guidance start: {start} can't be smaller than 0.") if end > 1.0: raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image def check_image(self, image, prompt, prompt_embeds): image_is_pil = isinstance(image, PIL.Image.Image) image_is_tensor = isinstance(image, torch.Tensor) image_is_np = isinstance(image, np.ndarray) image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) if ( not image_is_pil and not image_is_tensor and not image_is_np and not image_is_pil_list and not image_is_tensor_list and not image_is_np_list ): raise TypeError( f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" ) if image_is_pil: image_batch_size = 1 else: image_batch_size = len(image) if prompt is not None and isinstance(prompt, str): prompt_batch_size = 1 elif prompt is not None and isinstance(prompt, list): prompt_batch_size = len(prompt) elif prompt_embeds is not None: prompt_batch_size = prompt_embeds.shape[0] if image_batch_size != 1 and image_batch_size != prompt_batch_size: raise ValueError( f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" ) def prepare_image( self, image, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False, ): image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) image_batch_size = image.shape[0] if image_batch_size == 1: repeat_by = batch_size else: # image batch size is the same as prompt batch size repeat_by = num_images_per_prompt image = image.repeat_interleave(repeat_by, dim=0) image = image.to(device=device, dtype=dtype) if do_classifier_free_guidance: image = torch.cat([image] * 2) return image # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids def _get_add_time_ids( self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None ): add_time_ids = list(original_size + crops_coords_top_left + target_size) passed_add_embed_dim = ( self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim ) expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features if expected_add_embed_dim != passed_add_embed_dim: raise ValueError( f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." ) add_time_ids = torch.tensor([add_time_ids], dtype=dtype) return add_time_ids # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): dtype = self.vae.dtype self.vae.to(dtype=torch.float32) use_torch_2_0_or_xformers = isinstance( self.vae.decoder.mid_block.attentions[0].processor, ( AttnProcessor2_0, XFormersAttnProcessor, LoRAXFormersAttnProcessor, LoRAAttnProcessor2_0, ), ) # if xformers or torch_2_0 is used attention block does not need # to be in float32 which can save lots of memory if use_torch_2_0_or_xformers: self.vae.post_quant_conv.to(dtype) self.vae.decoder.conv_in.to(dtype) self.vae.decoder.mid_block.to(dtype) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497. The suffixes after the scaling factors represent the stages where they are being applied. Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. Args: s1 (`float`): Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to mitigate "oversmoothing effect" in the enhanced denoising process. s2 (`float`): Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to mitigate "oversmoothing effect" in the enhanced denoising process. b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. """ if not hasattr(self, "unet"): raise ValueError("The pipeline must have `unet` for using FreeU.") self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu def disable_freeu(self): """Disables the FreeU mechanism if enabled.""" self.unet.disable_freeu() @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, prompt_2: Optional[Union[str, List[str]]] = None, image: PipelineImageInput = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 5.0, negative_prompt: Optional[Union[str, List[str]]] = None, negative_prompt_2: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, controlnet_conditioning_scale: Union[float, List[float]] = 1.0, control_guidance_start: float = 0.0, control_guidance_end: float = 1.0, original_size: Tuple[int, int] = None, crops_coords_top_left: Tuple[int, int] = (0, 0), target_size: Tuple[int, int] = None, negative_original_size: Optional[Tuple[int, int]] = None, negative_crops_coords_top_left: Tuple[int, int] = (0, 0), negative_target_size: Optional[Tuple[int, int]] = None, clip_skip: Optional[int] = None, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is used in both text-encoders. image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): The ControlNet input condition to provide guidance to the `unet` for generation. If the type is specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`, images must be passed as a list such that each element of the list can be correctly batched for input to a single ControlNet. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. Anything below 512 pixels won't work well for [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) and checkpoints that are not specifically fine-tuned on low resolutions. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. Anything below 512 pixels won't work well for [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) and checkpoints that are not specifically fine-tuned on low resolutions. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 5.0): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). negative_prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, pooled text embeddings are generated from `prompt` input argument. negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added to the residual in the original `unet`. control_guidance_start (`float`, *optional*, defaults to 0.0): The percentage of total steps at which the ControlNet starts applying. control_guidance_end (`float`, *optional*, defaults to 1.0): The percentage of total steps at which the ControlNet stops applying. original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. `original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): For most cases, `target_size` should be set to the desired height and width of the generated image. If not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): To negatively condition the generation process based on a specific image resolution. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): To negatively condition the generation process based on a target image resolution. It should be as same as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. Examples: Returns: [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] is returned, otherwise a `tuple` is returned containing the output images. """ controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, prompt_2, image, callback_steps, negative_prompt, negative_prompt_2, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, controlnet_conditioning_scale, control_guidance_start, control_guidance_end, ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = self.encode_prompt( prompt, prompt_2, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=clip_skip, ) # 4. Prepare image if isinstance(controlnet, ControlNetXSModel): image = self.prepare_image( image=image, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=do_classifier_free_guidance, ) height, width = image.shape[-2:] else: assert False # 5. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 6. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7.1 Prepare added time ids & embeddings if isinstance(image, list): original_size = original_size or image[0].shape[-2:] else: original_size = original_size or image.shape[-2:] target_size = target_size or (height, width) add_text_embeds = pooled_prompt_embeds if self.text_encoder_2 is None: text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) else: text_encoder_projection_dim = self.text_encoder_2.config.projection_dim add_time_ids = self._get_add_time_ids( original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim, ) if negative_original_size is not None and negative_target_size is not None: negative_add_time_ids = self._get_add_time_ids( negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim, ) else: negative_add_time_ids = add_time_ids if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) prompt_embeds = prompt_embeds.to(device) add_text_embeds = add_text_embeds.to(device) add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) # 8. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order is_unet_compiled = is_compiled_module(self.unet) is_controlnet_compiled = is_compiled_module(self.controlnet) is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1") with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # Relevant thread: # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428 if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1: torch._inductor.cudagraph_mark_step_begin() # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} # predict the noise residual dont_control = ( i / len(timesteps) < control_guidance_start or (i + 1) / len(timesteps) > control_guidance_end ) if dont_control: noise_pred = self.unet( sample=latent_model_input, timestep=t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=True, ).sample else: noise_pred = self.controlnet( base_model=self.unet, sample=latent_model_input, timestep=t, encoder_hidden_states=prompt_embeds, controlnet_cond=image, conditioning_scale=controlnet_conditioning_scale, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=True, ).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) # manually for max memory savings if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: self.upcast_vae() latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) if not output_type == "latent": # make sure the VAE is in float32 mode, as it overflows in float16 needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: self.upcast_vae() latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] # cast back to fp16 if needed if needs_upcasting: self.vae.to(dtype=torch.float16) else: image = latents if not output_type == "latent": # apply watermark if available if self.watermark is not None: image = self.watermark.apply_watermark(image) image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return StableDiffusionXLPipelineOutput(images=image)
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/controlnetxs/README.md
# ControlNet-XS ControlNet-XS was introduced in [ControlNet-XS](https://vislearn.github.io/ControlNet-XS/) by Denis Zavadski and Carsten Rother. It is based on the observation that the control model in the [original ControlNet](https://huggingface.co/papers/2302.05543) can be made much smaller and still produce good results. Like the original ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process. ControlNet-XS generates images with comparable quality to a regular ControlNet, but it is 20-25% faster ([see benchmark](https://github.com/UmerHA/controlnet-xs-benchmark/blob/main/Speed%20Benchmark.ipynb) with StableDiffusion-XL) and uses ~45% less memory. Here's the overview from the [project page](https://vislearn.github.io/ControlNet-XS/): *With increasing computing capabilities, current model architectures appear to follow the trend of simply upscaling all components without validating the necessity for doing so. In this project we investigate the size and architectural design of ControlNet [Zhang et al., 2023] for controlling the image generation process with stable diffusion-based models. We show that a new architecture with as little as 1% of the parameters of the base model achieves state-of-the art results, considerably better than ControlNet in terms of FID score. Hence we call it ControlNet-XS. We provide the code for controlling StableDiffusion-XL [Podell et al., 2023] (Model B, 48M Parameters) and StableDiffusion 2.1 [Rombach et al. 2022] (Model B, 14M Parameters), all under openrail license.* This model was contributed by [UmerHA](https://twitter.com/UmerHAdil). ❤️ > 🧠 Make sure to check out the Schedulers [guide](https://huggingface.co/docs/diffusers/main/en/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/controlnetxs/infer_sd_controlnetxs.py
# !pip install opencv-python transformers accelerate import argparse import cv2 import numpy as np import torch from controlnetxs import ControlNetXSModel from PIL import Image from pipeline_controlnet_xs import StableDiffusionControlNetXSPipeline from diffusers.utils import load_image parser = argparse.ArgumentParser() parser.add_argument( "--prompt", type=str, default="aerial view, a futuristic research complex in a bright foggy jungle, hard lighting" ) parser.add_argument("--negative_prompt", type=str, default="low quality, bad quality, sketches") parser.add_argument("--controlnet_conditioning_scale", type=float, default=0.7) parser.add_argument( "--image_path", type=str, default="https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png", ) parser.add_argument("--num_inference_steps", type=int, default=50) args = parser.parse_args() prompt = args.prompt negative_prompt = args.negative_prompt # download an image image = load_image(args.image_path) # initialize the models and pipeline controlnet_conditioning_scale = args.controlnet_conditioning_scale controlnet = ControlNetXSModel.from_pretrained("UmerHA/ConrolNetXS-SD2.1-canny", torch_dtype=torch.float16) pipe = StableDiffusionControlNetXSPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1", controlnet=controlnet, torch_dtype=torch.float16 ) pipe.enable_model_cpu_offload() # get canny image image = np.array(image) image = cv2.Canny(image, 100, 200) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) canny_image = Image.fromarray(image) num_inference_steps = args.num_inference_steps # generate image image = pipe( prompt, controlnet_conditioning_scale=controlnet_conditioning_scale, image=canny_image, num_inference_steps=num_inference_steps, ).images[0] image.save("cnxs_sd.canny.png")
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/controlnetxs/controlnetxs.py
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from dataclasses import dataclass from typing import Any, Dict, List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import functional as F from torch.nn.modules.normalization import GroupNorm from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models.attention_processor import USE_PEFT_BACKEND, AttentionProcessor from diffusers.models.autoencoders import AutoencoderKL from diffusers.models.lora import LoRACompatibleConv from diffusers.models.modeling_utils import ModelMixin from diffusers.models.unet_2d_blocks import ( CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, Downsample2D, ResnetBlock2D, Transformer2DModel, UpBlock2D, Upsample2D, ) from diffusers.models.unet_2d_condition import UNet2DConditionModel from diffusers.utils import BaseOutput, logging logger = logging.get_logger(__name__) # pylint: disable=invalid-name @dataclass class ControlNetXSOutput(BaseOutput): """ The output of [`ControlNetXSModel`]. Args: sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): The output of the `ControlNetXSModel`. Unlike `ControlNetOutput` this is NOT to be added to the base model output, but is already the final output. """ sample: torch.FloatTensor = None # copied from diffusers.models.controlnet.ControlNetConditioningEmbedding class ControlNetConditioningEmbedding(nn.Module): """ Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full model) to encode image-space conditions ... into feature maps ..." """ def __init__( self, conditioning_embedding_channels: int, conditioning_channels: int = 3, block_out_channels: Tuple[int, ...] = (16, 32, 96, 256), ): super().__init__() self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1) self.blocks = nn.ModuleList([]) for i in range(len(block_out_channels) - 1): channel_in = block_out_channels[i] channel_out = block_out_channels[i + 1] self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1)) self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)) self.conv_out = zero_module( nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1) ) def forward(self, conditioning): embedding = self.conv_in(conditioning) embedding = F.silu(embedding) for block in self.blocks: embedding = block(embedding) embedding = F.silu(embedding) embedding = self.conv_out(embedding) return embedding class ControlNetXSModel(ModelMixin, ConfigMixin): r""" A ControlNet-XS model This model inherits from [`ModelMixin`] and [`ConfigMixin`]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving). Most of parameters for this model are passed into the [`UNet2DConditionModel`] it creates. Check the documentation of [`UNet2DConditionModel`] for them. Parameters: conditioning_channels (`int`, defaults to 3): Number of channels of conditioning input (e.g. an image) controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`): The channel order of conditional image. Will convert to `rgb` if it's `bgr`. conditioning_embedding_out_channels (`tuple[int]`, defaults to `(16, 32, 96, 256)`): The tuple of output channel for each block in the `controlnet_cond_embedding` layer. time_embedding_input_dim (`int`, defaults to 320): Dimension of input into time embedding. Needs to be same as in the base model. time_embedding_dim (`int`, defaults to 1280): Dimension of output from time embedding. Needs to be same as in the base model. learn_embedding (`bool`, defaults to `False`): Whether to use time embedding of the control model. If yes, the time embedding is a linear interpolation of the time embeddings of the control and base model with interpolation parameter `time_embedding_mix**3`. time_embedding_mix (`float`, defaults to 1.0): Linear interpolation parameter used if `learn_embedding` is `True`. A value of 1.0 means only the control model's time embedding will be used. A value of 0.0 means only the base model's time embedding will be used. base_model_channel_sizes (`Dict[str, List[Tuple[int]]]`): Channel sizes of each subblock of base model. Use `gather_subblock_sizes` on your base model to compute it. """ @classmethod def init_original(cls, base_model: UNet2DConditionModel, is_sdxl=True): """ Create a ControlNetXS model with the same parameters as in the original paper (https://github.com/vislearn/ControlNet-XS). Parameters: base_model (`UNet2DConditionModel`): Base UNet model. Needs to be either StableDiffusion or StableDiffusion-XL. is_sdxl (`bool`, defaults to `True`): Whether passed `base_model` is a StableDiffusion-XL model. """ def get_dim_attn_heads(base_model: UNet2DConditionModel, size_ratio: float, num_attn_heads: int): """ Currently, diffusers can only set the dimension of attention heads (see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why). The original ControlNet-XS model, however, define the number of attention heads. That's why compute the dimensions needed to get the correct number of attention heads. """ block_out_channels = [int(size_ratio * c) for c in base_model.config.block_out_channels] dim_attn_heads = [math.ceil(c / num_attn_heads) for c in block_out_channels] return dim_attn_heads if is_sdxl: return ControlNetXSModel.from_unet( base_model, time_embedding_mix=0.95, learn_embedding=True, size_ratio=0.1, conditioning_embedding_out_channels=(16, 32, 96, 256), num_attention_heads=get_dim_attn_heads(base_model, 0.1, 64), ) else: return ControlNetXSModel.from_unet( base_model, time_embedding_mix=1.0, learn_embedding=True, size_ratio=0.0125, conditioning_embedding_out_channels=(16, 32, 96, 256), num_attention_heads=get_dim_attn_heads(base_model, 0.0125, 8), ) @classmethod def _gather_subblock_sizes(cls, unet: UNet2DConditionModel, base_or_control: str): """To create correctly sized connections between base and control model, we need to know the input and output channels of each subblock. Parameters: unet (`UNet2DConditionModel`): Unet of which the subblock channels sizes are to be gathered. base_or_control (`str`): Needs to be either "base" or "control". If "base", decoder is also considered. """ if base_or_control not in ["base", "control"]: raise ValueError("`base_or_control` needs to be either `base` or `control`") channel_sizes = {"down": [], "mid": [], "up": []} # input convolution channel_sizes["down"].append((unet.conv_in.in_channels, unet.conv_in.out_channels)) # encoder blocks for module in unet.down_blocks: if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)): for r in module.resnets: channel_sizes["down"].append((r.in_channels, r.out_channels)) if module.downsamplers: channel_sizes["down"].append( (module.downsamplers[0].channels, module.downsamplers[0].out_channels) ) else: raise ValueError(f"Encountered unknown module of type {type(module)} while creating ControlNet-XS.") # middle block channel_sizes["mid"].append((unet.mid_block.resnets[0].in_channels, unet.mid_block.resnets[0].out_channels)) # decoder blocks if base_or_control == "base": for module in unet.up_blocks: if isinstance(module, (CrossAttnUpBlock2D, UpBlock2D)): for r in module.resnets: channel_sizes["up"].append((r.in_channels, r.out_channels)) else: raise ValueError( f"Encountered unknown module of type {type(module)} while creating ControlNet-XS." ) return channel_sizes @register_to_config def __init__( self, conditioning_channels: int = 3, conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256), controlnet_conditioning_channel_order: str = "rgb", time_embedding_input_dim: int = 320, time_embedding_dim: int = 1280, time_embedding_mix: float = 1.0, learn_embedding: bool = False, base_model_channel_sizes: Dict[str, List[Tuple[int]]] = { "down": [ (4, 320), (320, 320), (320, 320), (320, 320), (320, 640), (640, 640), (640, 640), (640, 1280), (1280, 1280), ], "mid": [(1280, 1280)], "up": [ (2560, 1280), (2560, 1280), (1920, 1280), (1920, 640), (1280, 640), (960, 640), (960, 320), (640, 320), (640, 320), ], }, sample_size: Optional[int] = None, down_block_types: Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ), up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), block_out_channels: Tuple[int] = (320, 640, 1280, 1280), norm_num_groups: Optional[int] = 32, cross_attention_dim: Union[int, Tuple[int]] = 1280, transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, num_attention_heads: Optional[Union[int, Tuple[int]]] = 8, upcast_attention: bool = False, ): super().__init__() # 1 - Create control unet self.control_model = UNet2DConditionModel( sample_size=sample_size, down_block_types=down_block_types, up_block_types=up_block_types, block_out_channels=block_out_channels, norm_num_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, transformer_layers_per_block=transformer_layers_per_block, attention_head_dim=num_attention_heads, use_linear_projection=True, upcast_attention=upcast_attention, time_embedding_dim=time_embedding_dim, ) # 2 - Do model surgery on control model # 2.1 - Allow to use the same time information as the base model adjust_time_dims(self.control_model, time_embedding_input_dim, time_embedding_dim) # 2.2 - Allow for information infusion from base model # We concat the output of each base encoder subblocks to the input of the next control encoder subblock # (We ignore the 1st element, as it represents the `conv_in`.) extra_input_channels = [input_channels for input_channels, _ in base_model_channel_sizes["down"][1:]] it_extra_input_channels = iter(extra_input_channels) for b, block in enumerate(self.control_model.down_blocks): for r in range(len(block.resnets)): increase_block_input_in_encoder_resnet( self.control_model, block_no=b, resnet_idx=r, by=next(it_extra_input_channels) ) if block.downsamplers: increase_block_input_in_encoder_downsampler( self.control_model, block_no=b, by=next(it_extra_input_channels) ) increase_block_input_in_mid_resnet(self.control_model, by=extra_input_channels[-1]) # 2.3 - Make group norms work with modified channel sizes adjust_group_norms(self.control_model) # 3 - Gather Channel Sizes self.ch_inout_ctrl = ControlNetXSModel._gather_subblock_sizes(self.control_model, base_or_control="control") self.ch_inout_base = base_model_channel_sizes # 4 - Build connections between base and control model self.down_zero_convs_out = nn.ModuleList([]) self.down_zero_convs_in = nn.ModuleList([]) self.middle_block_out = nn.ModuleList([]) self.middle_block_in = nn.ModuleList([]) self.up_zero_convs_out = nn.ModuleList([]) self.up_zero_convs_in = nn.ModuleList([]) for ch_io_base in self.ch_inout_base["down"]: self.down_zero_convs_in.append(self._make_zero_conv(in_channels=ch_io_base[1], out_channels=ch_io_base[1])) for i in range(len(self.ch_inout_ctrl["down"])): self.down_zero_convs_out.append( self._make_zero_conv(self.ch_inout_ctrl["down"][i][1], self.ch_inout_base["down"][i][1]) ) self.middle_block_out = self._make_zero_conv( self.ch_inout_ctrl["mid"][-1][1], self.ch_inout_base["mid"][-1][1] ) self.up_zero_convs_out.append( self._make_zero_conv(self.ch_inout_ctrl["down"][-1][1], self.ch_inout_base["mid"][-1][1]) ) for i in range(1, len(self.ch_inout_ctrl["down"])): self.up_zero_convs_out.append( self._make_zero_conv(self.ch_inout_ctrl["down"][-(i + 1)][1], self.ch_inout_base["up"][i - 1][1]) ) # 5 - Create conditioning hint embedding self.controlnet_cond_embedding = ControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0], block_out_channels=conditioning_embedding_out_channels, conditioning_channels=conditioning_channels, ) # In the mininal implementation setting, we only need the control model up to the mid block del self.control_model.up_blocks del self.control_model.conv_norm_out del self.control_model.conv_out @classmethod def from_unet( cls, unet: UNet2DConditionModel, conditioning_channels: int = 3, conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256), controlnet_conditioning_channel_order: str = "rgb", learn_embedding: bool = False, time_embedding_mix: float = 1.0, block_out_channels: Optional[Tuple[int]] = None, size_ratio: Optional[float] = None, num_attention_heads: Optional[Union[int, Tuple[int]]] = 8, norm_num_groups: Optional[int] = None, ): r""" Instantiate a [`ControlNetXSModel`] from [`UNet2DConditionModel`]. Parameters: unet (`UNet2DConditionModel`): The UNet model we want to control. The dimensions of the ControlNetXSModel will be adapted to it. conditioning_channels (`int`, defaults to 3): Number of channels of conditioning input (e.g. an image) conditioning_embedding_out_channels (`tuple[int]`, defaults to `(16, 32, 96, 256)`): The tuple of output channel for each block in the `controlnet_cond_embedding` layer. controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`): The channel order of conditional image. Will convert to `rgb` if it's `bgr`. learn_embedding (`bool`, defaults to `False`): Wether to use time embedding of the control model. If yes, the time embedding is a linear interpolation of the time embeddings of the control and base model with interpolation parameter `time_embedding_mix**3`. time_embedding_mix (`float`, defaults to 1.0): Linear interpolation parameter used if `learn_embedding` is `True`. block_out_channels (`Tuple[int]`, *optional*): Down blocks output channels in control model. Either this or `size_ratio` must be given. size_ratio (float, *optional*): When given, block_out_channels is set to a relative fraction of the base model's block_out_channels. Either this or `block_out_channels` must be given. num_attention_heads (`Union[int, Tuple[int]]`, *optional*): The dimension of the attention heads. The naming seems a bit confusing and it is, see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why. norm_num_groups (int, *optional*, defaults to `None`): The number of groups to use for the normalization of the control unet. If `None`, `int(unet.config.norm_num_groups * size_ratio)` is taken. """ # Check input fixed_size = block_out_channels is not None relative_size = size_ratio is not None if not (fixed_size ^ relative_size): raise ValueError( "Pass exactly one of `block_out_channels` (for absolute sizing) or `control_model_ratio` (for relative sizing)." ) # Create model if block_out_channels is None: block_out_channels = [int(size_ratio * c) for c in unet.config.block_out_channels] # Check that attention heads and group norms match channel sizes # - attention heads def attn_heads_match_channel_sizes(attn_heads, channel_sizes): if isinstance(attn_heads, (tuple, list)): return all(c % a == 0 for a, c in zip(attn_heads, channel_sizes)) else: return all(c % attn_heads == 0 for c in channel_sizes) num_attention_heads = num_attention_heads or unet.config.attention_head_dim if not attn_heads_match_channel_sizes(num_attention_heads, block_out_channels): raise ValueError( f"The dimension of attention heads ({num_attention_heads}) must divide `block_out_channels` ({block_out_channels}). If you didn't set `num_attention_heads` the default settings don't match your model. Set `num_attention_heads` manually." ) # - group norms def group_norms_match_channel_sizes(num_groups, channel_sizes): return all(c % num_groups == 0 for c in channel_sizes) if norm_num_groups is None: if group_norms_match_channel_sizes(unet.config.norm_num_groups, block_out_channels): norm_num_groups = unet.config.norm_num_groups else: norm_num_groups = min(block_out_channels) if group_norms_match_channel_sizes(norm_num_groups, block_out_channels): print( f"`norm_num_groups` was set to `min(block_out_channels)` (={norm_num_groups}) so it divides all block_out_channels` ({block_out_channels}). Set it explicitly to remove this information." ) else: raise ValueError( f"`block_out_channels` ({block_out_channels}) don't match the base models `norm_num_groups` ({unet.config.norm_num_groups}). Setting `norm_num_groups` to `min(block_out_channels)` ({norm_num_groups}) didn't fix this. Pass `norm_num_groups` explicitly so it divides all block_out_channels." ) def get_time_emb_input_dim(unet: UNet2DConditionModel): return unet.time_embedding.linear_1.in_features def get_time_emb_dim(unet: UNet2DConditionModel): return unet.time_embedding.linear_2.out_features # Clone params from base unet if # (i) it's required to build SD or SDXL, and # (ii) it's not used for the time embedding (as time embedding of control model is never used), and # (iii) it's not set further below anyway to_keep = [ "cross_attention_dim", "down_block_types", "sample_size", "transformer_layers_per_block", "up_block_types", "upcast_attention", ] kwargs = {k: v for k, v in dict(unet.config).items() if k in to_keep} kwargs.update(block_out_channels=block_out_channels) kwargs.update(num_attention_heads=num_attention_heads) kwargs.update(norm_num_groups=norm_num_groups) # Add controlnetxs-specific params kwargs.update( conditioning_channels=conditioning_channels, controlnet_conditioning_channel_order=controlnet_conditioning_channel_order, time_embedding_input_dim=get_time_emb_input_dim(unet), time_embedding_dim=get_time_emb_dim(unet), time_embedding_mix=time_embedding_mix, learn_embedding=learn_embedding, base_model_channel_sizes=ControlNetXSModel._gather_subblock_sizes(unet, base_or_control="base"), conditioning_embedding_out_channels=conditioning_embedding_out_channels, ) return cls(**kwargs) @property def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ return self.control_model.attn_processors def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ self.control_model.set_attn_processor(processor) def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ self.control_model.set_default_attn_processor() def set_attention_slice(self, slice_size): r""" Enable sliced attention computation. When this option is enabled, the attention module splits the input tensor in slices to compute attention in several steps. This is useful for saving some memory in exchange for a small decrease in speed. Args: slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` must be a multiple of `slice_size`. """ self.control_model.set_attention_slice(slice_size) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (UNet2DConditionModel)): if value: module.enable_gradient_checkpointing() else: module.disable_gradient_checkpointing() def forward( self, base_model: UNet2DConditionModel, sample: torch.FloatTensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, controlnet_cond: torch.Tensor, conditioning_scale: float = 1.0, class_labels: Optional[torch.Tensor] = None, timestep_cond: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, return_dict: bool = True, ) -> Union[ControlNetXSOutput, Tuple]: """ The [`ControlNetModel`] forward method. Args: base_model (`UNet2DConditionModel`): The base unet model we want to control. sample (`torch.FloatTensor`): The noisy input tensor. timestep (`Union[torch.Tensor, float, int]`): The number of timesteps to denoise an input. encoder_hidden_states (`torch.Tensor`): The encoder hidden states. controlnet_cond (`torch.FloatTensor`): The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. conditioning_scale (`float`, defaults to `1.0`): How much the control model affects the base model outputs. class_labels (`torch.Tensor`, *optional*, defaults to `None`): Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. timestep_cond (`torch.Tensor`, *optional*, defaults to `None`): Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep embeddings. attention_mask (`torch.Tensor`, *optional*, defaults to `None`): An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens. added_cond_kwargs (`dict`): Additional conditions for the Stable Diffusion XL UNet. cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`): A kwargs dictionary that if specified is passed along to the `AttnProcessor`. return_dict (`bool`, defaults to `True`): Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple. Returns: [`~models.controlnetxs.ControlNetXSOutput`] **or** `tuple`: If `return_dict` is `True`, a [`~models.controlnetxs.ControlNetXSOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ # check channel order channel_order = self.config.controlnet_conditioning_channel_order if channel_order == "rgb": # in rgb order by default ... elif channel_order == "bgr": controlnet_cond = torch.flip(controlnet_cond, dims=[1]) else: raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}") # scale control strength n_connections = len(self.down_zero_convs_out) + 1 + len(self.up_zero_convs_out) scale_list = torch.full((n_connections,), conditioning_scale) # prepare attention_mask if attention_mask is not None: attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 attention_mask = attention_mask.unsqueeze(1) # 1. time timesteps = timestep if not torch.is_tensor(timesteps): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = sample.device.type == "mps" if isinstance(timestep, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) elif len(timesteps.shape) == 0: timesteps = timesteps[None].to(sample.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timesteps = timesteps.expand(sample.shape[0]) t_emb = base_model.time_proj(timesteps) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=sample.dtype) if self.config.learn_embedding: ctrl_temb = self.control_model.time_embedding(t_emb, timestep_cond) base_temb = base_model.time_embedding(t_emb, timestep_cond) interpolation_param = self.config.time_embedding_mix**0.3 temb = ctrl_temb * interpolation_param + base_temb * (1 - interpolation_param) else: temb = base_model.time_embedding(t_emb) # added time & text embeddings aug_emb = None if base_model.class_embedding is not None: if class_labels is None: raise ValueError("class_labels should be provided when num_class_embeds > 0") if base_model.config.class_embed_type == "timestep": class_labels = base_model.time_proj(class_labels) class_emb = base_model.class_embedding(class_labels).to(dtype=self.dtype) temb = temb + class_emb if base_model.config.addition_embed_type is not None: if base_model.config.addition_embed_type == "text": aug_emb = base_model.add_embedding(encoder_hidden_states) elif base_model.config.addition_embed_type == "text_image": raise NotImplementedError() elif base_model.config.addition_embed_type == "text_time": # SDXL - style if "text_embeds" not in added_cond_kwargs: raise ValueError( f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" ) text_embeds = added_cond_kwargs.get("text_embeds") if "time_ids" not in added_cond_kwargs: raise ValueError( f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" ) time_ids = added_cond_kwargs.get("time_ids") time_embeds = base_model.add_time_proj(time_ids.flatten()) time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) add_embeds = add_embeds.to(temb.dtype) aug_emb = base_model.add_embedding(add_embeds) elif base_model.config.addition_embed_type == "image": raise NotImplementedError() elif base_model.config.addition_embed_type == "image_hint": raise NotImplementedError() temb = temb + aug_emb if aug_emb is not None else temb # text embeddings cemb = encoder_hidden_states # Preparation guided_hint = self.controlnet_cond_embedding(controlnet_cond) h_ctrl = h_base = sample hs_base, hs_ctrl = [], [] it_down_convs_in, it_down_convs_out, it_dec_convs_in, it_up_convs_out = map( iter, (self.down_zero_convs_in, self.down_zero_convs_out, self.up_zero_convs_in, self.up_zero_convs_out) ) scales = iter(scale_list) base_down_subblocks = to_sub_blocks(base_model.down_blocks) ctrl_down_subblocks = to_sub_blocks(self.control_model.down_blocks) base_mid_subblocks = to_sub_blocks([base_model.mid_block]) ctrl_mid_subblocks = to_sub_blocks([self.control_model.mid_block]) base_up_subblocks = to_sub_blocks(base_model.up_blocks) # Cross Control # 0 - conv in h_base = base_model.conv_in(h_base) h_ctrl = self.control_model.conv_in(h_ctrl) if guided_hint is not None: h_ctrl += guided_hint h_base = h_base + next(it_down_convs_out)(h_ctrl) * next(scales) # D - add ctrl -> base hs_base.append(h_base) hs_ctrl.append(h_ctrl) # 1 - down for m_base, m_ctrl in zip(base_down_subblocks, ctrl_down_subblocks): h_ctrl = torch.cat([h_ctrl, next(it_down_convs_in)(h_base)], dim=1) # A - concat base -> ctrl h_base = m_base(h_base, temb, cemb, attention_mask, cross_attention_kwargs) # B - apply base subblock h_ctrl = m_ctrl(h_ctrl, temb, cemb, attention_mask, cross_attention_kwargs) # C - apply ctrl subblock h_base = h_base + next(it_down_convs_out)(h_ctrl) * next(scales) # D - add ctrl -> base hs_base.append(h_base) hs_ctrl.append(h_ctrl) # 2 - mid h_ctrl = torch.cat([h_ctrl, next(it_down_convs_in)(h_base)], dim=1) # A - concat base -> ctrl for m_base, m_ctrl in zip(base_mid_subblocks, ctrl_mid_subblocks): h_base = m_base(h_base, temb, cemb, attention_mask, cross_attention_kwargs) # B - apply base subblock h_ctrl = m_ctrl(h_ctrl, temb, cemb, attention_mask, cross_attention_kwargs) # C - apply ctrl subblock h_base = h_base + self.middle_block_out(h_ctrl) * next(scales) # D - add ctrl -> base # 3 - up for i, m_base in enumerate(base_up_subblocks): h_base = h_base + next(it_up_convs_out)(hs_ctrl.pop()) * next(scales) # add info from ctrl encoder h_base = torch.cat([h_base, hs_base.pop()], dim=1) # concat info from base encoder+ctrl encoder h_base = m_base(h_base, temb, cemb, attention_mask, cross_attention_kwargs) h_base = base_model.conv_norm_out(h_base) h_base = base_model.conv_act(h_base) h_base = base_model.conv_out(h_base) if not return_dict: return h_base return ControlNetXSOutput(sample=h_base) def _make_zero_conv(self, in_channels, out_channels=None): # keep running track of channels sizes self.in_channels = in_channels self.out_channels = out_channels or in_channels return zero_module(nn.Conv2d(in_channels, out_channels, 1, padding=0)) @torch.no_grad() def _check_if_vae_compatible(self, vae: AutoencoderKL): condition_downscale_factor = 2 ** (len(self.config.conditioning_embedding_out_channels) - 1) vae_downscale_factor = 2 ** (len(vae.config.block_out_channels) - 1) compatible = condition_downscale_factor == vae_downscale_factor return compatible, condition_downscale_factor, vae_downscale_factor class SubBlock(nn.ModuleList): """A SubBlock is the largest piece of either base or control model, that is executed independently of the other model respectively. Before each subblock, information is concatted from base to control. And after each subblock, information is added from control to base. """ def __init__(self, ms, *args, **kwargs): if not is_iterable(ms): ms = [ms] super().__init__(ms, *args, **kwargs) def forward( self, x: torch.Tensor, temb: torch.Tensor, cemb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, ): """Iterate through children and pass correct information to each.""" for m in self: if isinstance(m, ResnetBlock2D): x = m(x, temb) elif isinstance(m, Transformer2DModel): x = m(x, cemb, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs).sample elif isinstance(m, Downsample2D): x = m(x) elif isinstance(m, Upsample2D): x = m(x) else: raise ValueError( f"Type of m is {type(m)} but should be `ResnetBlock2D`, `Transformer2DModel`, `Downsample2D` or `Upsample2D`" ) return x def adjust_time_dims(unet: UNet2DConditionModel, in_dim: int, out_dim: int): unet.time_embedding.linear_1 = nn.Linear(in_dim, out_dim) def increase_block_input_in_encoder_resnet(unet: UNet2DConditionModel, block_no, resnet_idx, by): """Increase channels sizes to allow for additional concatted information from base model""" r = unet.down_blocks[block_no].resnets[resnet_idx] old_norm1, old_conv1 = r.norm1, r.conv1 # norm norm_args = "num_groups num_channels eps affine".split(" ") for a in norm_args: assert hasattr(old_norm1, a) norm_kwargs = {a: getattr(old_norm1, a) for a in norm_args} norm_kwargs["num_channels"] += by # surgery done here # conv1 conv1_args = [ "in_channels", "out_channels", "kernel_size", "stride", "padding", "dilation", "groups", "bias", "padding_mode", ] if not USE_PEFT_BACKEND: conv1_args.append("lora_layer") for a in conv1_args: assert hasattr(old_conv1, a) conv1_kwargs = {a: getattr(old_conv1, a) for a in conv1_args} conv1_kwargs["bias"] = "bias" in conv1_kwargs # as param, bias is a boolean, but as attr, it's a tensor. conv1_kwargs["in_channels"] += by # surgery done here # conv_shortcut # as we changed the input size of the block, the input and output sizes are likely different, # therefore we need a conv_shortcut (simply adding won't work) conv_shortcut_args_kwargs = { "in_channels": conv1_kwargs["in_channels"], "out_channels": conv1_kwargs["out_channels"], # default arguments from resnet.__init__ "kernel_size": 1, "stride": 1, "padding": 0, "bias": True, } # swap old with new modules unet.down_blocks[block_no].resnets[resnet_idx].norm1 = GroupNorm(**norm_kwargs) unet.down_blocks[block_no].resnets[resnet_idx].conv1 = ( nn.Conv2d(**conv1_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv1_kwargs) ) unet.down_blocks[block_no].resnets[resnet_idx].conv_shortcut = ( nn.Conv2d(**conv_shortcut_args_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv_shortcut_args_kwargs) ) unet.down_blocks[block_no].resnets[resnet_idx].in_channels += by # surgery done here def increase_block_input_in_encoder_downsampler(unet: UNet2DConditionModel, block_no, by): """Increase channels sizes to allow for additional concatted information from base model""" old_down = unet.down_blocks[block_no].downsamplers[0].conv args = [ "in_channels", "out_channels", "kernel_size", "stride", "padding", "dilation", "groups", "bias", "padding_mode", ] if not USE_PEFT_BACKEND: args.append("lora_layer") for a in args: assert hasattr(old_down, a) kwargs = {a: getattr(old_down, a) for a in args} kwargs["bias"] = "bias" in kwargs # as param, bias is a boolean, but as attr, it's a tensor. kwargs["in_channels"] += by # surgery done here # swap old with new modules unet.down_blocks[block_no].downsamplers[0].conv = ( nn.Conv2d(**kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**kwargs) ) unet.down_blocks[block_no].downsamplers[0].channels += by # surgery done here def increase_block_input_in_mid_resnet(unet: UNet2DConditionModel, by): """Increase channels sizes to allow for additional concatted information from base model""" m = unet.mid_block.resnets[0] old_norm1, old_conv1 = m.norm1, m.conv1 # norm norm_args = "num_groups num_channels eps affine".split(" ") for a in norm_args: assert hasattr(old_norm1, a) norm_kwargs = {a: getattr(old_norm1, a) for a in norm_args} norm_kwargs["num_channels"] += by # surgery done here conv1_args = [ "in_channels", "out_channels", "kernel_size", "stride", "padding", "dilation", "groups", "bias", "padding_mode", ] if not USE_PEFT_BACKEND: conv1_args.append("lora_layer") conv1_kwargs = {a: getattr(old_conv1, a) for a in conv1_args} conv1_kwargs["bias"] = "bias" in conv1_kwargs # as param, bias is a boolean, but as attr, it's a tensor. conv1_kwargs["in_channels"] += by # surgery done here # conv_shortcut # as we changed the input size of the block, the input and output sizes are likely different, # therefore we need a conv_shortcut (simply adding won't work) conv_shortcut_args_kwargs = { "in_channels": conv1_kwargs["in_channels"], "out_channels": conv1_kwargs["out_channels"], # default arguments from resnet.__init__ "kernel_size": 1, "stride": 1, "padding": 0, "bias": True, } # swap old with new modules unet.mid_block.resnets[0].norm1 = GroupNorm(**norm_kwargs) unet.mid_block.resnets[0].conv1 = ( nn.Conv2d(**conv1_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv1_kwargs) ) unet.mid_block.resnets[0].conv_shortcut = ( nn.Conv2d(**conv_shortcut_args_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv_shortcut_args_kwargs) ) unet.mid_block.resnets[0].in_channels += by # surgery done here def adjust_group_norms(unet: UNet2DConditionModel, max_num_group: int = 32): def find_denominator(number, start): if start >= number: return number while start != 0: residual = number % start if residual == 0: return start start -= 1 for block in [*unet.down_blocks, unet.mid_block]: # resnets for r in block.resnets: if r.norm1.num_groups < max_num_group: r.norm1.num_groups = find_denominator(r.norm1.num_channels, start=max_num_group) if r.norm2.num_groups < max_num_group: r.norm2.num_groups = find_denominator(r.norm2.num_channels, start=max_num_group) # transformers if hasattr(block, "attentions"): for a in block.attentions: if a.norm.num_groups < max_num_group: a.norm.num_groups = find_denominator(a.norm.num_channels, start=max_num_group) def is_iterable(o): if isinstance(o, str): return False try: iter(o) return True except TypeError: return False def to_sub_blocks(blocks): if not is_iterable(blocks): blocks = [blocks] sub_blocks = [] for b in blocks: if hasattr(b, "resnets"): if hasattr(b, "attentions") and b.attentions is not None: for r, a in zip(b.resnets, b.attentions): sub_blocks.append([r, a]) num_resnets = len(b.resnets) num_attns = len(b.attentions) if num_resnets > num_attns: # we can have more resnets than attentions, so add each resnet as separate subblock for i in range(num_attns, num_resnets): sub_blocks.append([b.resnets[i]]) else: for r in b.resnets: sub_blocks.append([r]) # upsamplers are part of the same subblock if hasattr(b, "upsamplers") and b.upsamplers is not None: for u in b.upsamplers: sub_blocks[-1].extend([u]) # downsamplers are own subblock if hasattr(b, "downsamplers") and b.downsamplers is not None: for d in b.downsamplers: sub_blocks.append([d]) return list(map(SubBlock, sub_blocks)) def zero_module(module): for p in module.parameters(): nn.init.zeros_(p) return module
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/onnxruntime/README.md
## Diffusers examples with ONNXRuntime optimizations **This research project is not actively maintained by the diffusers team. For any questions or comments, please contact Prathik Rao (prathikr), Sunghoon Choi (hanbitmyths), Ashwini Khade (askhade), or Peng Wang (pengwa) on github with any questions.** This aims to provide diffusers examples with ONNXRuntime optimizations for training/fine-tuning unconditional image generation, text to image, and textual inversion. Please see individual directories for more details on how to run each task using ONNXRuntime.
0
hf_public_repos/diffusers/examples/research_projects/onnxruntime
hf_public_repos/diffusers/examples/research_projects/onnxruntime/textual_inversion/README.md
## Textual Inversion fine-tuning example [Textual inversion](https://arxiv.org/abs/2208.01618) is a method to personalize text2image models like stable diffusion on your own images using just 3-5 examples. The `textual_inversion.py` script shows how to implement the training procedure and adapt it for stable diffusion. ## Running on Colab Colab for training [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb) Colab for inference [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) ## Running locally with PyTorch ### Installing the dependencies Before running the scripts, make sure to install the library's training dependencies: **Important** To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install . ``` Then cd in the example folder and run ```bash pip install -r requirements.txt ``` And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: ```bash accelerate config ``` ### Cat toy example You need to accept the model license before downloading or using the weights. In this example we'll use model version `v1-5`, so you'll need to visit [its card](https://huggingface.co/runwayml/stable-diffusion-v1-5), read the license and tick the checkbox if you agree. You have to be a registered user in 🤗 Hugging Face Hub, and you'll also need to use an access token for the code to work. For more information on access tokens, please refer to [this section of the documentation](https://huggingface.co/docs/hub/security-tokens). Run the following command to authenticate your token ```bash huggingface-cli login ``` If you have already cloned the repo, then you won't need to go through these steps. <br> Now let's get our dataset. For this example we will use some cat images: https://huggingface.co/datasets/diffusers/cat_toy_example . Let's first download it locally: ```py from huggingface_hub import snapshot_download local_dir = "./cat" snapshot_download("diffusers/cat_toy_example", local_dir=local_dir, repo_type="dataset", ignore_patterns=".gitattributes") ``` This will be our training data. Now we can launch the training using ## Use ONNXRuntime to accelerate training In order to leverage onnxruntime to accelerate training, please use textual_inversion.py The command to train on custom data with onnxruntime: ```bash export MODEL_NAME="runwayml/stable-diffusion-v1-5" export DATA_DIR="path-to-dir-containing-images" accelerate launch textual_inversion.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --train_data_dir=$DATA_DIR \ --learnable_property="object" \ --placeholder_token="<cat-toy>" --initializer_token="toy" \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --max_train_steps=3000 \ --learning_rate=5.0e-04 --scale_lr \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --output_dir="textual_inversion_cat" ``` Please contact Prathik Rao (prathikr), Sunghoon Choi (hanbitmyths), Ashwini Khade (askhade), or Peng Wang (pengwa) on github with any questions.
0
hf_public_repos/diffusers/examples/research_projects/onnxruntime
hf_public_repos/diffusers/examples/research_projects/onnxruntime/textual_inversion/textual_inversion.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import argparse import logging import math import os import random import warnings from pathlib import Path import numpy as np import PIL import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from huggingface_hub import create_repo, upload_folder from onnxruntime.training.optim.fp16_optimizer import FP16_Optimizer as ORT_FP16_Optimizer from onnxruntime.training.ortmodule import ORTModule # TODO: remove and import from diffusers.utils when the new version of diffusers is released from packaging import version from PIL import Image from torch.utils.data import Dataset from torchvision import transforms from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, DDPMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, StableDiffusionPipeline, UNet2DConditionModel, ) from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version, is_wandb_available from diffusers.utils.import_utils import is_xformers_available if is_wandb_available(): import wandb if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): PIL_INTERPOLATION = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: PIL_INTERPOLATION = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } # ------------------------------------------------------------------------------ # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.17.0.dev0") logger = get_logger(__name__) def save_model_card(repo_id: str, images=None, base_model=str, repo_folder=None): img_str = "" for i, image in enumerate(images): image.save(os.path.join(repo_folder, f"image_{i}.png")) img_str += f"![img_{i}](./image_{i}.png)\n" yaml = f""" --- license: creativeml-openrail-m base_model: {base_model} tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- """ model_card = f""" # Textual inversion text2image fine-tuning - {repo_id} These are textual inversion adaption weights for {base_model}. You can find some example images in the following. \n {img_str} """ with open(os.path.join(repo_folder, "README.md"), "w") as f: f.write(yaml + model_card) def log_validation(text_encoder, tokenizer, unet, vae, args, accelerator, weight_dtype, epoch): logger.info( f"Running validation... \n Generating {args.num_validation_images} images with prompt:" f" {args.validation_prompt}." ) # create pipeline (note: unet and vae are loaded again in float32) pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=accelerator.unwrap_model(text_encoder), tokenizer=tokenizer, unet=unet, vae=vae, safety_checker=None, revision=args.revision, torch_dtype=weight_dtype, ) pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) # run inference generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed) images = [] for _ in range(args.num_validation_images): with torch.autocast("cuda"): image = pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0] images.append(image) for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "validation": [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) del pipeline torch.cuda.empty_cache() return images def save_progress(text_encoder, placeholder_token_ids, accelerator, args, save_path): logger.info("Saving embeddings") learned_embeds = ( accelerator.unwrap_model(text_encoder) .get_input_embeddings() .weight[min(placeholder_token_ids) : max(placeholder_token_ids) + 1] ) learned_embeds_dict = {args.placeholder_token: learned_embeds.detach().cpu()} torch.save(learned_embeds_dict, save_path) def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--save_steps", type=int, default=500, help="Save learned_embeds.bin every X updates steps.", ) parser.add_argument( "--save_as_full_pipeline", action="store_true", help="Save the complete stable diffusion pipeline.", ) parser.add_argument( "--num_vectors", type=int, default=1, help="How many textual inversion vectors shall be used to learn the concept.", ) parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data." ) parser.add_argument( "--placeholder_token", type=str, default=None, required=True, help="A token to use as a placeholder for the concept.", ) parser.add_argument( "--initializer_token", type=str, default=None, required=True, help="A token to use as initializer word." ) parser.add_argument("--learnable_property", type=str, default="object", help="Choose between 'object' and 'style'") parser.add_argument("--repeats", type=int, default=100, help="How many times to repeat the training data.") parser.add_argument( "--output_dir", type=str, default="text-inversion-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution." ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=100) parser.add_argument( "--max_train_steps", type=int, default=5000, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ), ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument( "--validation_prompt", type=str, default=None, help="A prompt that is used during validation to verify that the model is learning.", ) parser.add_argument( "--num_validation_images", type=int, default=4, help="Number of images that should be generated during validation with `validation_prompt`.", ) parser.add_argument( "--validation_steps", type=int, default=100, help=( "Run validation every X steps. Validation consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`" " and logging the images." ), ) parser.add_argument( "--validation_epochs", type=int, default=None, help=( "Deprecated in favor of validation_steps. Run validation every X epochs. Validation consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`" " and logging the images." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=( "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" " for more docs" ), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.train_data_dir is None: raise ValueError("You must specify a train data directory.") return args imagenet_templates_small = [ "a photo of a {}", "a rendering of a {}", "a cropped photo of the {}", "the photo of a {}", "a photo of a clean {}", "a photo of a dirty {}", "a dark photo of the {}", "a photo of my {}", "a photo of the cool {}", "a close-up photo of a {}", "a bright photo of the {}", "a cropped photo of a {}", "a photo of the {}", "a good photo of the {}", "a photo of one {}", "a close-up photo of the {}", "a rendition of the {}", "a photo of the clean {}", "a rendition of a {}", "a photo of a nice {}", "a good photo of a {}", "a photo of the nice {}", "a photo of the small {}", "a photo of the weird {}", "a photo of the large {}", "a photo of a cool {}", "a photo of a small {}", ] imagenet_style_templates_small = [ "a painting in the style of {}", "a rendering in the style of {}", "a cropped painting in the style of {}", "the painting in the style of {}", "a clean painting in the style of {}", "a dirty painting in the style of {}", "a dark painting in the style of {}", "a picture in the style of {}", "a cool painting in the style of {}", "a close-up painting in the style of {}", "a bright painting in the style of {}", "a cropped painting in the style of {}", "a good painting in the style of {}", "a close-up painting in the style of {}", "a rendition in the style of {}", "a nice painting in the style of {}", "a small painting in the style of {}", "a weird painting in the style of {}", "a large painting in the style of {}", ] class TextualInversionDataset(Dataset): def __init__( self, data_root, tokenizer, learnable_property="object", # [object, style] size=512, repeats=100, interpolation="bicubic", flip_p=0.5, set="train", placeholder_token="*", center_crop=False, ): self.data_root = data_root self.tokenizer = tokenizer self.learnable_property = learnable_property self.size = size self.placeholder_token = placeholder_token self.center_crop = center_crop self.flip_p = flip_p self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)] self.num_images = len(self.image_paths) self._length = self.num_images if set == "train": self._length = self.num_images * repeats self.interpolation = { "linear": PIL_INTERPOLATION["linear"], "bilinear": PIL_INTERPOLATION["bilinear"], "bicubic": PIL_INTERPOLATION["bicubic"], "lanczos": PIL_INTERPOLATION["lanczos"], }[interpolation] self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p) def __len__(self): return self._length def __getitem__(self, i): example = {} image = Image.open(self.image_paths[i % self.num_images]) if not image.mode == "RGB": image = image.convert("RGB") placeholder_string = self.placeholder_token text = random.choice(self.templates).format(placeholder_string) example["input_ids"] = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.tokenizer.model_max_length, return_tensors="pt", ).input_ids[0] # default to score-sde preprocessing img = np.array(image).astype(np.uint8) if self.center_crop: crop = min(img.shape[0], img.shape[1]) ( h, w, ) = ( img.shape[0], img.shape[1], ) img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2] image = Image.fromarray(img) image = image.resize((self.size, self.size), resample=self.interpolation) image = self.flip_transform(image) image = np.array(image).astype(np.uint8) image = (image / 127.5 - 1.0).astype(np.float32) example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1) return example def main(): args = parse_args() logging_dir = os.path.join(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration( total_limit=args.checkpoints_total_limit, project_dir=args.output_dir, logging_dir=logging_dir ) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) if args.report_to == "wandb": if not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load tokenizer if args.tokenizer_name: tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) elif args.pretrained_model_name_or_path: tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") # Load scheduler and models noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") text_encoder = CLIPTextModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision ) vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision ) # Add the placeholder token in tokenizer placeholder_tokens = [args.placeholder_token] if args.num_vectors < 1: raise ValueError(f"--num_vectors has to be larger or equal to 1, but is {args.num_vectors}") # add dummy tokens for multi-vector additional_tokens = [] for i in range(1, args.num_vectors): additional_tokens.append(f"{args.placeholder_token}_{i}") placeholder_tokens += additional_tokens num_added_tokens = tokenizer.add_tokens(placeholder_tokens) if num_added_tokens != args.num_vectors: raise ValueError( f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different" " `placeholder_token` that is not already in the tokenizer." ) # Convert the initializer_token, placeholder_token to ids token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False) # Check if initializer_token is a single token or a sequence of tokens if len(token_ids) > 1: raise ValueError("The initializer token must be a single token.") initializer_token_id = token_ids[0] placeholder_token_ids = tokenizer.convert_tokens_to_ids(placeholder_tokens) # Resize the token embeddings as we are adding new special tokens to the tokenizer text_encoder.resize_token_embeddings(len(tokenizer)) # Initialise the newly added placeholder token with the embeddings of the initializer token token_embeds = text_encoder.get_input_embeddings().weight.data with torch.no_grad(): for token_id in placeholder_token_ids: token_embeds[token_id] = token_embeds[initializer_token_id].clone() # Freeze vae and unet vae.requires_grad_(False) unet.requires_grad_(False) # Freeze all parameters except for the token embeddings in text encoder text_encoder.text_model.encoder.requires_grad_(False) text_encoder.text_model.final_layer_norm.requires_grad_(False) text_encoder.text_model.embeddings.position_embedding.requires_grad_(False) if args.gradient_checkpointing: # Keep unet in train mode if we are using gradient checkpointing to save memory. # The dropout cannot be != 0 so it doesn't matter if we are in eval or train mode. unet.train() text_encoder.gradient_checkpointing_enable() unet.enable_gradient_checkpointing() if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warn( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Initialize the optimizer optimizer = torch.optim.AdamW( text_encoder.get_input_embeddings().parameters(), # only optimize the embeddings lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) optimizer = ORT_FP16_Optimizer(optimizer) # Dataset and DataLoaders creation: train_dataset = TextualInversionDataset( data_root=args.train_data_dir, tokenizer=tokenizer, size=args.resolution, placeholder_token=args.placeholder_token, repeats=args.repeats, learnable_property=args.learnable_property, center_crop=args.center_crop, set="train", ) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers ) if args.validation_epochs is not None: warnings.warn( f"FutureWarning: You are doing logging with validation_epochs={args.validation_epochs}." " Deprecated validation_epochs in favor of `validation_steps`" f"Setting `args.validation_steps` to {args.validation_epochs * len(train_dataset)}", FutureWarning, stacklevel=2, ) args.validation_steps = args.validation_epochs * len(train_dataset) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, ) # Prepare everything with our `accelerator`. text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( text_encoder, optimizer, train_dataloader, lr_scheduler ) text_encoder = ORTModule(text_encoder) unet = ORTModule(unet) vae = ORTModule(vae) # For mixed precision training we cast the unet and vae weights to half-precision # as these models are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move vae and unet to device and cast to weight_dtype unet.to(accelerator.device, dtype=weight_dtype) vae.to(accelerator.device, dtype=weight_dtype) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("textual_inversion", config=vars(args)) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) resume_global_step = global_step * args.gradient_accumulation_steps first_epoch = global_step // num_update_steps_per_epoch resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) # Only show the progress bar once on each machine. progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) progress_bar.set_description("Steps") # keep original embeddings as reference orig_embeds_params = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight.data.clone() for epoch in range(first_epoch, args.num_train_epochs): text_encoder.train() for step, batch in enumerate(train_dataloader): # Skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: if step % args.gradient_accumulation_steps == 0: progress_bar.update(1) continue with accelerator.accumulate(text_encoder): # Convert images to latent space latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample().detach() latents = latents * vae.config.scaling_factor # Sample noise that we'll add to the latents noise = torch.randn_like(latents) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # Get the text embedding for conditioning encoder_hidden_states = text_encoder(batch["input_ids"])[0].to(dtype=weight_dtype) # Predict the noise residual model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Let's make sure we don't update any embedding weights besides the newly added token index_no_updates = torch.ones((len(tokenizer),), dtype=torch.bool) index_no_updates[min(placeholder_token_ids) : max(placeholder_token_ids) + 1] = False with torch.no_grad(): accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[ index_no_updates ] = orig_embeds_params[index_no_updates] # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: images = [] progress_bar.update(1) global_step += 1 if global_step % args.save_steps == 0: save_path = os.path.join(args.output_dir, f"learned_embeds-steps-{global_step}.bin") save_progress(text_encoder, placeholder_token_ids, accelerator, args, save_path) if accelerator.is_main_process: if global_step % args.checkpointing_steps == 0: save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") if args.validation_prompt is not None and global_step % args.validation_steps == 0: images = log_validation( text_encoder, tokenizer, unet, vae, args, accelerator, weight_dtype, epoch ) logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break # Create the pipeline using the trained modules and save it. accelerator.wait_for_everyone() if accelerator.is_main_process: if args.push_to_hub and not args.save_as_full_pipeline: logger.warn("Enabling full model saving because --push_to_hub=True was specified.") save_full_model = True else: save_full_model = args.save_as_full_pipeline if save_full_model: pipeline = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=accelerator.unwrap_model(text_encoder), vae=vae, unet=unet, tokenizer=tokenizer, ) pipeline.save_pretrained(args.output_dir) # Save the newly trained embeddings save_path = os.path.join(args.output_dir, "learned_embeds.bin") save_progress(text_encoder, placeholder_token_ids, accelerator, args, save_path) if args.push_to_hub: save_model_card( repo_id, images=images, base_model=args.pretrained_model_name_or_path, repo_folder=args.output_dir, ) upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": main()
0
hf_public_repos/diffusers/examples/research_projects/onnxruntime
hf_public_repos/diffusers/examples/research_projects/onnxruntime/textual_inversion/requirements.txt
accelerate>=0.16.0 torchvision transformers>=4.25.1 ftfy tensorboard modelcards
0
hf_public_repos/diffusers/examples/research_projects/onnxruntime
hf_public_repos/diffusers/examples/research_projects/onnxruntime/unconditional_image_generation/README.md
## Training examples Creating a training image set is [described in a different document](https://huggingface.co/docs/datasets/image_process#image-datasets). ### Installing the dependencies Before running the scripts, make sure to install the library's training dependencies: **Important** To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install . ``` Then cd in the example folder and run ```bash pip install -r requirements.txt ``` And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: ```bash accelerate config ``` #### Use ONNXRuntime to accelerate training In order to leverage onnxruntime to accelerate training, please use train_unconditional_ort.py The command to train a DDPM UNet model on the Oxford Flowers dataset with onnxruntime: ```bash accelerate launch train_unconditional.py \ --dataset_name="huggan/flowers-102-categories" \ --resolution=64 --center_crop --random_flip \ --output_dir="ddpm-ema-flowers-64" \ --use_ema \ --train_batch_size=16 \ --num_epochs=1 \ --gradient_accumulation_steps=1 \ --learning_rate=1e-4 \ --lr_warmup_steps=500 \ --mixed_precision=fp16 ``` Please contact Prathik Rao (prathikr), Sunghoon Choi (hanbitmyths), Ashwini Khade (askhade), or Peng Wang (pengwa) on github with any questions.
0
hf_public_repos/diffusers/examples/research_projects/onnxruntime
hf_public_repos/diffusers/examples/research_projects/onnxruntime/unconditional_image_generation/requirements.txt
accelerate>=0.16.0 torchvision datasets tensorboard
0
hf_public_repos/diffusers/examples/research_projects/onnxruntime
hf_public_repos/diffusers/examples/research_projects/onnxruntime/unconditional_image_generation/train_unconditional.py
import argparse import inspect import logging import math import os from pathlib import Path import accelerate import datasets import torch import torch.nn.functional as F from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration from datasets import load_dataset from huggingface_hub import create_repo, upload_folder from onnxruntime.training.optim.fp16_optimizer import FP16_Optimizer as ORT_FP16_Optimizer from onnxruntime.training.ortmodule import ORTModule from packaging import version from torchvision import transforms from tqdm.auto import tqdm import diffusers from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel from diffusers.optimization import get_scheduler from diffusers.training_utils import EMAModel from diffusers.utils import check_min_version, is_accelerate_version, is_tensorboard_available, is_wandb_available from diffusers.utils.import_utils import is_xformers_available # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.17.0.dev0") logger = get_logger(__name__, log_level="INFO") def _extract_into_tensor(arr, timesteps, broadcast_shape): """ Extract values from a 1-D numpy array for a batch of indices. :param arr: the 1-D numpy array. :param timesteps: a tensor of indices into the array to extract. :param broadcast_shape: a larger shape of K dimensions with the batch dimension equal to the length of timesteps. :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. """ if not isinstance(arr, torch.Tensor): arr = torch.from_numpy(arr) res = arr[timesteps].float().to(timesteps.device) while len(res.shape) < len(broadcast_shape): res = res[..., None] return res.expand(broadcast_shape) def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--dataset_name", type=str, default=None, help=( "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that HF Datasets can understand." ), ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The config of the Dataset, leave as None if there's only one config.", ) parser.add_argument( "--model_config_name_or_path", type=str, default=None, help="The config of the UNet model to train, leave as None to use standard DDPM configuration.", ) parser.add_argument( "--train_data_dir", type=str, default=None, help=( "A folder containing the training data. Folder contents must follow the structure described in" " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." ), ) parser.add_argument( "--output_dir", type=str, default="ddpm-model-64", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--overwrite_output_dir", action="store_true") parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument( "--resolution", type=int, default=64, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument( "--random_flip", default=False, action="store_true", help="whether to randomly flip images horizontally", ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." ) parser.add_argument( "--eval_batch_size", type=int, default=16, help="The number of images to generate for evaluation." ) parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main" " process." ), ) parser.add_argument("--num_epochs", type=int, default=100) parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.") parser.add_argument( "--save_model_epochs", type=int, default=10, help="How often to save the model during training." ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--lr_scheduler", type=str, default="cosine", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument( "--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer." ) parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.") parser.add_argument( "--use_ema", action="store_true", help="Whether to use Exponential Moving Average for the final model weights.", ) parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.") parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.") parser.add_argument("--ema_max_decay", type=float, default=0.9999, help="The maximum decay magnitude for EMA.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--hub_private_repo", action="store_true", help="Whether or not to create a private repository." ) parser.add_argument( "--logger", type=str, default="tensorboard", choices=["tensorboard", "wandb"], help=( "Whether to use [tensorboard](https://www.tensorflow.org/tensorboard) or [wandb](https://www.wandb.ai)" " for experiment tracking and logging of model metrics and model checkpoints" ), ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ), ) parser.add_argument( "--prediction_type", type=str, default="epsilon", choices=["epsilon", "sample"], help="Whether the model should predict the 'epsilon'/noise error or directly the reconstructed image 'x0'.", ) parser.add_argument("--ddpm_num_steps", type=int, default=1000) parser.add_argument("--ddpm_num_inference_steps", type=int, default=1000) parser.add_argument("--ddpm_beta_schedule", type=str, default="linear") parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=( "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" " for more docs" ), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.dataset_name is None and args.train_data_dir is None: raise ValueError("You must specify either a dataset name from the hub or a train data directory.") return args def main(args): logging_dir = os.path.join(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration( total_limit=args.checkpoints_total_limit, project_dir=args.output_dir, logging_dir=logging_dir ) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) if args.logger == "tensorboard": if not is_tensorboard_available(): raise ImportError("Make sure to install tensorboard if you want to use it for logging during training.") elif args.logger == "wandb": if not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") import wandb # `accelerate` 0.16.0 will have better support for customized saving if version.parse(accelerate.__version__) >= version.parse("0.16.0"): # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: if args.use_ema: ema_model.save_pretrained(os.path.join(output_dir, "unet_ema")) for i, model in enumerate(models): model.save_pretrained(os.path.join(output_dir, "unet")) # make sure to pop weight so that corresponding model is not saved again weights.pop() def load_model_hook(models, input_dir): if args.use_ema: load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DModel) ema_model.load_state_dict(load_model.state_dict()) ema_model.to(accelerator.device) del load_model for i in range(len(models)): # pop models so that they are not loaded again model = models.pop() # load diffusers style into model load_model = UNet2DModel.from_pretrained(input_dir, subfolder="unet") model.register_to_config(**load_model.config) model.load_state_dict(load_model.state_dict()) del load_model accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Initialize the model if args.model_config_name_or_path is None: model = UNet2DModel( sample_size=args.resolution, in_channels=3, out_channels=3, layers_per_block=2, block_out_channels=(128, 128, 256, 256, 512, 512), down_block_types=( "DownBlock2D", "DownBlock2D", "DownBlock2D", "DownBlock2D", "AttnDownBlock2D", "DownBlock2D", ), up_block_types=( "UpBlock2D", "AttnUpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", ), ) else: config = UNet2DModel.load_config(args.model_config_name_or_path) model = UNet2DModel.from_config(config) # Create EMA for the model. if args.use_ema: ema_model = EMAModel( model.parameters(), decay=args.ema_max_decay, use_ema_warmup=True, inv_gamma=args.ema_inv_gamma, power=args.ema_power, model_cls=UNet2DModel, model_config=model.config, ) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warn( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) model.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") # Initialize the scheduler accepts_prediction_type = "prediction_type" in set(inspect.signature(DDPMScheduler.__init__).parameters.keys()) if accepts_prediction_type: noise_scheduler = DDPMScheduler( num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule, prediction_type=args.prediction_type, ) else: noise_scheduler = DDPMScheduler(num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule) # Initialize the optimizer optimizer = torch.optim.AdamW( model.parameters(), lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) optimizer = ORT_FP16_Optimizer(optimizer) # Get the datasets: you can either provide your own training and evaluation files (see below) # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if args.dataset_name is not None: dataset = load_dataset( args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, split="train", ) else: dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train") # See more about loading custom images at # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder # Preprocessing the datasets and DataLoaders creation. augmentations = transforms.Compose( [ transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution), transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def transform_images(examples): images = [augmentations(image.convert("RGB")) for image in examples["image"]] return {"input": images} logger.info(f"Dataset size: {len(dataset)}") dataset.set_transform(transform_images) train_dataloader = torch.utils.data.DataLoader( dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers ) # Initialize the learning rate scheduler lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, num_training_steps=(len(train_dataloader) * args.num_epochs), ) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, lr_scheduler ) if args.use_ema: ema_model.to(accelerator.device) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: run = os.path.split(__file__)[-1].split(".")[0] accelerator.init_trackers(run) model = ORTModule(model) total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) max_train_steps = args.num_epochs * num_update_steps_per_epoch logger.info("***** Running training *****") logger.info(f" Num examples = {len(dataset)}") logger.info(f" Num Epochs = {args.num_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) resume_global_step = global_step * args.gradient_accumulation_steps first_epoch = global_step // num_update_steps_per_epoch resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) # Train! for epoch in range(first_epoch, args.num_epochs): model.train() progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process) progress_bar.set_description(f"Epoch {epoch}") for step, batch in enumerate(train_dataloader): # Skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: if step % args.gradient_accumulation_steps == 0: progress_bar.update(1) continue clean_images = batch["input"] # Sample noise that we'll add to the images noise = torch.randn( clean_images.shape, dtype=(torch.float32 if args.mixed_precision == "no" else torch.float16) ).to(clean_images.device) bsz = clean_images.shape[0] # Sample a random timestep for each image timesteps = torch.randint( 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device ).long() # Add noise to the clean images according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps) with accelerator.accumulate(model): # Predict the noise residual model_output = model(noisy_images, timesteps, return_dict=False)[0] if args.prediction_type == "epsilon": loss = F.mse_loss(model_output, noise) # this could have different weights! elif args.prediction_type == "sample": alpha_t = _extract_into_tensor( noise_scheduler.alphas_cumprod, timesteps, (clean_images.shape[0], 1, 1, 1) ) snr_weights = alpha_t / (1 - alpha_t) loss = snr_weights * F.mse_loss( model_output, clean_images, reduction="none" ) # use SNR weighting from distillation paper loss = loss.mean() else: raise ValueError(f"Unsupported prediction type: {args.prediction_type}") accelerator.backward(loss) if accelerator.sync_gradients: accelerator.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: if args.use_ema: ema_model.step(model.parameters()) progress_bar.update(1) global_step += 1 if global_step % args.checkpointing_steps == 0: if accelerator.is_main_process: save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step} if args.use_ema: logs["ema_decay"] = ema_model.cur_decay_value progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) progress_bar.close() accelerator.wait_for_everyone() # Generate sample images for visual inspection if accelerator.is_main_process: if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1: unet = accelerator.unwrap_model(model) if args.use_ema: ema_model.store(unet.parameters()) ema_model.copy_to(unet.parameters()) pipeline = DDPMPipeline( unet=unet, scheduler=noise_scheduler, ) generator = torch.Generator(device=pipeline.device).manual_seed(0) # run pipeline in inference (sample random noise and denoise) images = pipeline( generator=generator, batch_size=args.eval_batch_size, num_inference_steps=args.ddpm_num_inference_steps, output_type="numpy", ).images if args.use_ema: ema_model.restore(unet.parameters()) # denormalize the images and save to tensorboard images_processed = (images * 255).round().astype("uint8") if args.logger == "tensorboard": if is_accelerate_version(">=", "0.17.0.dev0"): tracker = accelerator.get_tracker("tensorboard", unwrap=True) else: tracker = accelerator.get_tracker("tensorboard") tracker.add_images("test_samples", images_processed.transpose(0, 3, 1, 2), epoch) elif args.logger == "wandb": # Upcoming `log_images` helper coming in https://github.com/huggingface/accelerate/pull/962/files accelerator.get_tracker("wandb").log( {"test_samples": [wandb.Image(img) for img in images_processed], "epoch": epoch}, step=global_step, ) if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1: # save the model unet = accelerator.unwrap_model(model) if args.use_ema: ema_model.store(unet.parameters()) ema_model.copy_to(unet.parameters()) pipeline = DDPMPipeline( unet=unet, scheduler=noise_scheduler, ) pipeline.save_pretrained(args.output_dir) if args.use_ema: ema_model.restore(unet.parameters()) if args.push_to_hub: upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message=f"Epoch {epoch}", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": args = parse_args() main(args)
0
hf_public_repos/diffusers/examples/research_projects/onnxruntime
hf_public_repos/diffusers/examples/research_projects/onnxruntime/text_to_image/README.md
# Stable Diffusion text-to-image fine-tuning The `train_text_to_image.py` script shows how to fine-tune stable diffusion model on your own dataset. ___Note___: ___This script is experimental. The script fine-tunes the whole model and often times the model overfits and runs into issues like catastrophic forgetting. It's recommended to try different hyperparamters to get the best result on your dataset.___ ## Running locally with PyTorch ### Installing the dependencies Before running the scripts, make sure to install the library's training dependencies: **Important** To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install . ``` Then cd in the example folder and run ```bash pip install -r requirements.txt ``` And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: ```bash accelerate config ``` ### Pokemon example You need to accept the model license before downloading or using the weights. In this example we'll use model version `v1-4`, so you'll need to visit [its card](https://huggingface.co/CompVis/stable-diffusion-v1-4), read the license and tick the checkbox if you agree. You have to be a registered user in 🤗 Hugging Face Hub, and you'll also need to use an access token for the code to work. For more information on access tokens, please refer to [this section of the documentation](https://huggingface.co/docs/hub/security-tokens). Run the following command to authenticate your token ```bash huggingface-cli login ``` If you have already cloned the repo, then you won't need to go through these steps. <br> ## Use ONNXRuntime to accelerate training In order to leverage onnxruntime to accelerate training, please use train_text_to_image.py The command to train a DDPM UNetCondition model on the Pokemon dataset with onnxruntime: ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export dataset_name="lambdalabs/pokemon-blip-captions" accelerate launch --mixed_precision="fp16" train_text_to_image.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --dataset_name=$dataset_name \ --use_ema \ --resolution=512 --center_crop --random_flip \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --gradient_checkpointing \ --max_train_steps=15000 \ --learning_rate=1e-05 \ --max_grad_norm=1 \ --lr_scheduler="constant" --lr_warmup_steps=0 \ --output_dir="sd-pokemon-model" ``` Please contact Prathik Rao (prathikr), Sunghoon Choi (hanbitmyths), Ashwini Khade (askhade), or Peng Wang (pengwa) on github with any questions.
0
hf_public_repos/diffusers/examples/research_projects/onnxruntime
hf_public_repos/diffusers/examples/research_projects/onnxruntime/text_to_image/requirements.txt
accelerate>=0.16.0 torchvision transformers>=4.25.1 datasets ftfy tensorboard modelcards
0
hf_public_repos/diffusers/examples/research_projects/onnxruntime
hf_public_repos/diffusers/examples/research_projects/onnxruntime/text_to_image/train_text_to_image.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import argparse import logging import math import os import random from pathlib import Path import accelerate import datasets import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.state import AcceleratorState from accelerate.utils import ProjectConfiguration, set_seed from datasets import load_dataset from huggingface_hub import create_repo, upload_folder from onnxruntime.training.optim.fp16_optimizer import FP16_Optimizer as ORT_FP16_Optimizer from onnxruntime.training.ortmodule import ORTModule from packaging import version from torchvision import transforms from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer from transformers.utils import ContextManagers import diffusers from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel from diffusers.optimization import get_scheduler from diffusers.training_utils import EMAModel, compute_snr from diffusers.utils import check_min_version, deprecate, is_wandb_available from diffusers.utils.import_utils import is_xformers_available if is_wandb_available(): import wandb # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.17.0.dev0") logger = get_logger(__name__, log_level="INFO") DATASET_NAME_MAPPING = { "lambdalabs/pokemon-blip-captions": ("image", "text"), } def log_validation(vae, text_encoder, tokenizer, unet, args, accelerator, weight_dtype, epoch): logger.info("Running validation... ") pipeline = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, vae=accelerator.unwrap_model(vae), text_encoder=accelerator.unwrap_model(text_encoder), tokenizer=tokenizer, unet=accelerator.unwrap_model(unet), safety_checker=None, revision=args.revision, torch_dtype=weight_dtype, ) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) if args.enable_xformers_memory_efficient_attention: pipeline.enable_xformers_memory_efficient_attention() if args.seed is None: generator = None else: generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) images = [] for i in range(len(args.validation_prompts)): with torch.autocast("cuda"): image = pipeline(args.validation_prompts[i], num_inference_steps=20, generator=generator).images[0] images.append(image) for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") elif tracker.name == "wandb": tracker.log( { "validation": [ wandb.Image(image, caption=f"{i}: {args.validation_prompts[i]}") for i, image in enumerate(images) ] } ) else: logger.warn(f"image logging not implemented for {tracker.name}") del pipeline torch.cuda.empty_cache() def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--input_pertubation", type=float, default=0, help="The scale of input pretubation. Recommended 0.1." ) parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--dataset_name", type=str, default=None, help=( "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that 🤗 Datasets can understand." ), ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The config of the Dataset, leave as None if there's only one config.", ) parser.add_argument( "--train_data_dir", type=str, default=None, help=( "A folder containing the training data. Folder contents must follow the structure described in" " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." ), ) parser.add_argument( "--image_column", type=str, default="image", help="The column of the dataset containing an image." ) parser.add_argument( "--caption_column", type=str, default="text", help="The column of the dataset containing a caption or a list of captions.", ) parser.add_argument( "--max_train_samples", type=int, default=None, help=( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ), ) parser.add_argument( "--validation_prompts", type=str, default=None, nargs="+", help=("A set of prompts evaluated every `--validation_epochs` and logged to `--report_to`."), ) parser.add_argument( "--output_dir", type=str, default="sd-model-finetuned", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument( "--random_flip", action="store_true", help="whether to randomly flip images horizontally", ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=100) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--snr_gamma", type=float, default=None, help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " "More details here: https://arxiv.org/abs/2303.09556.", ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") parser.add_argument( "--non_ema_revision", type=str, default=None, required=False, help=( "Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or" " remote repository specified with --pretrained_model_name_or_path." ), ) parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=( "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" " for more docs" ), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.") parser.add_argument( "--validation_epochs", type=int, default=5, help="Run validation every X epochs.", ) parser.add_argument( "--tracker_project_name", type=str, default="text2image-fine-tune", help=( "The `project_name` argument passed to Accelerator.init_trackers for" " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" ), ) args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank # Sanity checks if args.dataset_name is None and args.train_data_dir is None: raise ValueError("Need either a dataset name or a training folder.") # default to using the same revision for the non-ema model if not specified if args.non_ema_revision is None: args.non_ema_revision = args.revision return args def main(): args = parse_args() if args.non_ema_revision is not None: deprecate( "non_ema_revision!=None", "0.15.0", message=( "Downloading 'non_ema' weights from revision branches of the Hub is deprecated. Please make sure to" " use `--variant=non_ema` instead." ), ) logging_dir = os.path.join(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration( total_limit=args.checkpoints_total_limit, project_dir=args.output_dir, logging_dir=logging_dir ) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load scheduler, tokenizer and models. noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") tokenizer = CLIPTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision ) def deepspeed_zero_init_disabled_context_manager(): """ returns either a context list that includes one that will disable zero.Init or an empty context list """ deepspeed_plugin = AcceleratorState().deepspeed_plugin if accelerate.state.is_initialized() else None if deepspeed_plugin is None: return [] return [deepspeed_plugin.zero3_init_context_manager(enable=False)] # Currently Accelerate doesn't know how to handle multiple models under Deepspeed ZeRO stage 3. # For this to work properly all models must be run through `accelerate.prepare`. But accelerate # will try to assign the same optimizer with the same weights to all models during # `deepspeed.initialize`, which of course doesn't work. # # For now the following workaround will partially support Deepspeed ZeRO-3, by excluding the 2 # frozen models from being partitioned during `zero.Init` which gets called during # `from_pretrained` So CLIPTextModel and AutoencoderKL will not enjoy the parameter sharding # across multiple gpus and only UNet2DConditionModel will get ZeRO sharded. with ContextManagers(deepspeed_zero_init_disabled_context_manager()): text_encoder = CLIPTextModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision ) vae = AutoencoderKL.from_pretrained( args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision ) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.non_ema_revision ) # Freeze vae and text_encoder vae.requires_grad_(False) text_encoder.requires_grad_(False) # Create EMA for the unet. if args.use_ema: ema_unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision ) ema_unet = EMAModel(ema_unet.parameters(), model_cls=UNet2DConditionModel, model_config=ema_unet.config) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warn( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") # `accelerate` 0.16.0 will have better support for customized saving if version.parse(accelerate.__version__) >= version.parse("0.16.0"): # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: if args.use_ema: ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema")) for i, model in enumerate(models): model.save_pretrained(os.path.join(output_dir, "unet")) # make sure to pop weight so that corresponding model is not saved again weights.pop() def load_model_hook(models, input_dir): if args.use_ema: load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DConditionModel) ema_unet.load_state_dict(load_model.state_dict()) ema_unet.to(accelerator.device) del load_model for i in range(len(models)): # pop models so that they are not loaded again model = models.pop() # load diffusers style into model load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet") model.register_to_config(**load_model.config) model.load_state_dict(load_model.state_dict()) del load_model accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) if args.gradient_checkpointing: unet.enable_gradient_checkpointing() # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Initialize the optimizer if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" ) optimizer_cls = bnb.optim.AdamW8bit else: optimizer_cls = torch.optim.AdamW optimizer = optimizer_cls( unet.parameters(), lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) optimizer = ORT_FP16_Optimizer(optimizer) # Get the datasets: you can either provide your own training and evaluation files (see below) # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, ) else: data_files = {} if args.train_data_dir is not None: data_files["train"] = os.path.join(args.train_data_dir, "**") dataset = load_dataset( "imagefolder", data_files=data_files, cache_dir=args.cache_dir, ) # See more about loading custom images at # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder # Preprocessing the datasets. # We need to tokenize inputs and targets. column_names = dataset["train"].column_names # 6. Get the column names for input/target. dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None) if args.image_column is None: image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] else: image_column = args.image_column if image_column not in column_names: raise ValueError( f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}" ) if args.caption_column is None: caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1] else: caption_column = args.caption_column if caption_column not in column_names: raise ValueError( f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}" ) # Preprocessing the datasets. # We need to tokenize input captions and transform the images. def tokenize_captions(examples, is_train=True): captions = [] for caption in examples[caption_column]: if isinstance(caption, str): captions.append(caption) elif isinstance(caption, (list, np.ndarray)): # take a random caption if there are multiple captions.append(random.choice(caption) if is_train else caption[0]) else: raise ValueError( f"Caption column `{caption_column}` should contain either strings or lists of strings." ) inputs = tokenizer( captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" ) return inputs.input_ids # Preprocessing the datasets. train_transforms = transforms.Compose( [ transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution), transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def preprocess_train(examples): images = [image.convert("RGB") for image in examples[image_column]] examples["pixel_values"] = [train_transforms(image) for image in images] examples["input_ids"] = tokenize_captions(examples) return examples with accelerator.main_process_first(): if args.max_train_samples is not None: dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) # Set the training transforms train_dataset = dataset["train"].with_transform(preprocess_train) def collate_fn(examples): pixel_values = torch.stack([example["pixel_values"] for example in examples]) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() input_ids = torch.stack([example["input_ids"] for example in examples]) return {"pixel_values": pixel_values, "input_ids": input_ids} # DataLoaders creation: train_dataloader = torch.utils.data.DataLoader( train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=args.train_batch_size, num_workers=args.dataloader_num_workers, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, ) # Prepare everything with our `accelerator`. unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, optimizer, train_dataloader, lr_scheduler ) if args.use_ema: ema_unet.to(accelerator.device) unet = ORTModule(unet) # For mixed precision training we cast the text_encoder and vae weights to half-precision # as these models are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move text_encode and vae to gpu and cast to weight_dtype text_encoder.to(accelerator.device, dtype=weight_dtype) vae.to(accelerator.device, dtype=weight_dtype) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: tracker_config = dict(vars(args)) tracker_config.pop("validation_prompts") accelerator.init_trackers(args.tracker_project_name, tracker_config) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) resume_global_step = global_step * args.gradient_accumulation_steps first_epoch = global_step // num_update_steps_per_epoch resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) # Only show the progress bar once on each machine. progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) progress_bar.set_description("Steps") for epoch in range(first_epoch, args.num_train_epochs): unet.train() train_loss = 0.0 for step, batch in enumerate(train_dataloader): # Skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: if step % args.gradient_accumulation_steps == 0: progress_bar.update(1) continue with accelerator.accumulate(unet): # Convert images to latent space latents = vae.encode(batch["pixel_values"].to(weight_dtype)).latent_dist.sample() latents = latents * vae.config.scaling_factor # Sample noise that we'll add to the latents noise = torch.randn_like(latents) if args.noise_offset: # https://www.crosslabs.org//blog/diffusion-with-offset-noise noise += args.noise_offset * torch.randn( (latents.shape[0], latents.shape[1], 1, 1), device=latents.device ) if args.input_pertubation: new_noise = noise + args.input_pertubation * torch.randn_like(noise) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) if args.input_pertubation: noisy_latents = noise_scheduler.add_noise(latents, new_noise, timesteps) else: noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # Get the text embedding for conditioning encoder_hidden_states = text_encoder(batch["input_ids"])[0] # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") # Predict the noise residual and compute loss model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample if args.snr_gamma is None: loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") else: # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556. # Since we predict the noise instead of x_0, the original formulation is slightly changed. # This is discussed in Section 4.2 of the same paper. snr = compute_snr(noise_scheduler, timesteps) if noise_scheduler.config.prediction_type == "v_prediction": # Velocity objective requires that we add one to SNR values before we divide by them. snr = snr + 1 mse_loss_weights = ( torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr ) loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights loss = loss.mean() # Gather the losses across all processes for logging (if we use distributed training). avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() train_loss += avg_loss.item() / args.gradient_accumulation_steps # Backpropagate accelerator.backward(loss) if accelerator.sync_gradients: accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: if args.use_ema: ema_unet.step(unet.parameters()) progress_bar.update(1) global_step += 1 accelerator.log({"train_loss": train_loss}, step=global_step) train_loss = 0.0 if global_step % args.checkpointing_steps == 0: if accelerator.is_main_process: save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) if global_step >= args.max_train_steps: break if accelerator.is_main_process: if args.validation_prompts is not None and epoch % args.validation_epochs == 0: if args.use_ema: # Store the UNet parameters temporarily and load the EMA parameters to perform inference. ema_unet.store(unet.parameters()) ema_unet.copy_to(unet.parameters()) log_validation( vae, text_encoder, tokenizer, unet, args, accelerator, weight_dtype, global_step, ) if args.use_ema: # Switch back to the original UNet parameters. ema_unet.restore(unet.parameters()) # Create the pipeline using the trained modules and save it. accelerator.wait_for_everyone() if accelerator.is_main_process: unet = accelerator.unwrap_model(unet) if args.use_ema: ema_unet.copy_to(unet.parameters()) pipeline = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, revision=args.revision, ) pipeline.save_pretrained(args.output_dir) if args.push_to_hub: upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": main()
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/realfill/train_realfill.py
import argparse import copy import itertools import logging import math import os import random import shutil from pathlib import Path import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint import torchvision.transforms.v2 as transforms_v2 import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import set_seed from huggingface_hub import create_repo, upload_folder from packaging import version from peft import LoraConfig, PeftModel, get_peft_model from PIL import Image from PIL.ImageOps import exif_transpose from torch.utils.data import Dataset from tqdm.auto import tqdm from transformers import AutoTokenizer, CLIPTextModel import diffusers from diffusers import ( AutoencoderKL, DDPMScheduler, DPMSolverMultistepScheduler, StableDiffusionInpaintPipeline, UNet2DConditionModel, ) from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version, is_wandb_available from diffusers.utils.import_utils import is_xformers_available if is_wandb_available(): import wandb # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.20.1") logger = get_logger(__name__) def make_mask(images, resolution, times=30): mask, times = torch.ones_like(images[0:1, :, :]), np.random.randint(1, times) min_size, max_size, margin = np.array([0.03, 0.25, 0.01]) * resolution max_size = min(max_size, resolution - margin * 2) for _ in range(times): width = np.random.randint(int(min_size), int(max_size)) height = np.random.randint(int(min_size), int(max_size)) x_start = np.random.randint(int(margin), resolution - int(margin) - width + 1) y_start = np.random.randint(int(margin), resolution - int(margin) - height + 1) mask[:, y_start : y_start + height, x_start : x_start + width] = 0 mask = 1 - mask if random.random() < 0.5 else mask return mask def save_model_card( repo_id: str, images=None, base_model=str, repo_folder=None, ): img_str = "" for i, image in enumerate(images): image.save(os.path.join(repo_folder, f"image_{i}.png")) img_str += f"![img_{i}](./image_{i}.png)\n" yaml = f""" --- license: creativeml-openrail-m base_model: {base_model} prompt: "a photo of sks" tags: - stable-diffusion-inpainting - stable-diffusion-inpainting-diffusers - text-to-image - diffusers - realfill inference: true --- """ model_card = f""" # RealFill - {repo_id} This is a realfill model derived from {base_model}. The weights were trained using [RealFill](https://realfill.github.io/). You can find some example images in the following. \n {img_str} """ with open(os.path.join(repo_folder, "README.md"), "w") as f: f.write(yaml + model_card) def log_validation( text_encoder, tokenizer, unet, args, accelerator, weight_dtype, epoch, ): logger.info(f"Running validation... \nGenerating {args.num_validation_images} images") # create pipeline (note: unet and vae are loaded again in float32) pipeline = StableDiffusionInpaintPipeline.from_pretrained( args.pretrained_model_name_or_path, tokenizer=tokenizer, revision=args.revision, torch_dtype=weight_dtype, ) # set `keep_fp32_wrapper` to True because we do not want to remove # mixed precision hooks while we are still training pipeline.unet = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) pipeline.text_encoder = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) # run inference generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed) target_dir = Path(args.train_data_dir) / "target" target_image, target_mask = target_dir / "target.png", target_dir / "mask.png" image, mask_image = Image.open(target_image), Image.open(target_mask) if image.mode != "RGB": image = image.convert("RGB") images = [] for _ in range(args.num_validation_images): image = pipeline( prompt="a photo of sks", image=image, mask_image=mask_image, num_inference_steps=25, guidance_scale=5, generator=generator, ).images[0] images.append(image) for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log({"validation": [wandb.Image(image, caption=str(i)) for i, image in enumerate(images)]}) del pipeline torch.cuda.empty_cache() return images def parse_args(input_args=None): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data of images.", ) parser.add_argument( "--num_validation_images", type=int, default=4, help="Number of images that should be generated during validation with `validation_conditioning`.", ) parser.add_argument( "--validation_steps", type=int, default=100, help=( "Run realfill validation every X steps. RealFill validation consists of running the conditioning" " `args.validation_conditioning` multiple times: `args.num_validation_images`." ), ) parser.add_argument( "--output_dir", type=str, default="realfill-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=1) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=("Max number of checkpoints to store."), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--unet_learning_rate", type=float, default=2e-4, help="Learning rate to use for unet.", ) parser.add_argument( "--text_encoder_learning_rate", type=float, default=4e-5, help="Learning rate to use for text encoder.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--lr_num_cycles", type=int, default=1, help="Number of hard resets of the lr in cosine_with_restarts scheduler.", ) parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument( "--wandb_key", type=str, default=None, help=("If report to option is set to wandb, api-key for wandb used for login to wandb "), ) parser.add_argument( "--wandb_project_name", type=str, default=None, help=("If report to option is set to wandb, project name in wandb for log tracking "), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) parser.add_argument( "--set_grads_to_none", action="store_true", help=( "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" " behaviors, so disable this argument if it causes any problems. More info:" " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" ), ) parser.add_argument( "--lora_rank", type=int, default=16, help=("The dimension of the LoRA update matrices."), ) parser.add_argument( "--lora_alpha", type=int, default=27, help=("The alpha constant of the LoRA update matrices."), ) parser.add_argument( "--lora_dropout", type=float, default=0.0, help="The dropout rate of the LoRA update matrices.", ) parser.add_argument( "--lora_bias", type=str, default="none", help="The bias type of the Lora update matrices. Must be 'none', 'all' or 'lora_only'.", ) if input_args is not None: args = parser.parse_args(input_args) else: args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank return args class RealFillDataset(Dataset): """ A dataset to prepare the training and conditioning images and the masks with the dummy prompt for fine-tuning the model. It pre-processes the images, masks and tokenizes the prompts. """ def __init__( self, train_data_root, tokenizer, size=512, ): self.size = size self.tokenizer = tokenizer self.ref_data_root = Path(train_data_root) / "ref" self.target_image = Path(train_data_root) / "target" / "target.png" self.target_mask = Path(train_data_root) / "target" / "mask.png" if not (self.ref_data_root.exists() and self.target_image.exists() and self.target_mask.exists()): raise ValueError("Train images root doesn't exists.") self.train_images_path = list(self.ref_data_root.iterdir()) + [self.target_image] self.num_train_images = len(self.train_images_path) self.train_prompt = "a photo of sks" self.transform = transforms_v2.Compose( [ transforms_v2.ToImage(), transforms_v2.RandomResize(size, int(1.125 * size)), transforms_v2.RandomCrop(size), transforms_v2.ToDtype(torch.float32, scale=True), transforms_v2.Normalize([0.5], [0.5]), ] ) def __len__(self): return self.num_train_images def __getitem__(self, index): example = {} image = Image.open(self.train_images_path[index]) image = exif_transpose(image) if not image.mode == "RGB": image = image.convert("RGB") if index < len(self) - 1: weighting = Image.new("L", image.size) else: weighting = Image.open(self.target_mask) weighting = exif_transpose(weighting) image, weighting = self.transform(image, weighting) example["images"], example["weightings"] = image, weighting < 0 if random.random() < 0.1: example["masks"] = torch.ones_like(example["images"][0:1, :, :]) else: example["masks"] = make_mask(example["images"], self.size) example["conditioning_images"] = example["images"] * (example["masks"] < 0.5) train_prompt = "" if random.random() < 0.1 else self.train_prompt example["prompt_ids"] = self.tokenizer( train_prompt, truncation=True, padding="max_length", max_length=self.tokenizer.model_max_length, return_tensors="pt", ).input_ids return example def collate_fn(examples): input_ids = [example["prompt_ids"] for example in examples] images = [example["images"] for example in examples] masks = [example["masks"] for example in examples] weightings = [example["weightings"] for example in examples] conditioning_images = [example["conditioning_images"] for example in examples] images = torch.stack(images) images = images.to(memory_format=torch.contiguous_format).float() masks = torch.stack(masks) masks = masks.to(memory_format=torch.contiguous_format).float() weightings = torch.stack(weightings) weightings = weightings.to(memory_format=torch.contiguous_format).float() conditioning_images = torch.stack(conditioning_images) conditioning_images = conditioning_images.to(memory_format=torch.contiguous_format).float() input_ids = torch.cat(input_ids, dim=0) batch = { "input_ids": input_ids, "images": images, "masks": masks, "weightings": weightings, "conditioning_images": conditioning_images, } return batch def main(args): logging_dir = Path(args.output_dir, args.logging_dir) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_dir=logging_dir, ) if args.report_to == "wandb": if not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") wandb.login(key=args.wandb_key) wandb.init(project=args.wandb_project_name) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load the tokenizer if args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False) elif args.pretrained_model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, use_fast=False, ) # Load scheduler and models noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") text_encoder = CLIPTextModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision ) vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision ) config = LoraConfig( r=args.lora_rank, lora_alpha=args.lora_alpha, target_modules=["to_k", "to_q", "to_v", "key", "query", "value"], lora_dropout=args.lora_dropout, bias=args.lora_bias, ) unet = get_peft_model(unet, config) config = LoraConfig( r=args.lora_rank, lora_alpha=args.lora_alpha, target_modules=["k_proj", "q_proj", "v_proj"], lora_dropout=args.lora_dropout, bias=args.lora_bias, ) text_encoder = get_peft_model(text_encoder, config) vae.requires_grad_(False) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warn( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") if args.gradient_checkpointing: unet.enable_gradient_checkpointing() text_encoder.gradient_checkpointing_enable() # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: for model in models: sub_dir = ( "unet" if isinstance(model.base_model.model, type(accelerator.unwrap_model(unet).base_model.model)) else "text_encoder" ) model.save_pretrained(os.path.join(output_dir, sub_dir)) # make sure to pop weight so that corresponding model is not saved again weights.pop() def load_model_hook(models, input_dir): while len(models) > 0: # pop models so that they are not loaded again model = models.pop() sub_dir = ( "unet" if isinstance(model.base_model.model, type(accelerator.unwrap_model(unet).base_model.model)) else "text_encoder" ) model_cls = ( UNet2DConditionModel if isinstance(model.base_model.model, type(accelerator.unwrap_model(unet).base_model.model)) else CLIPTextModel ) load_model = model_cls.from_pretrained(args.pretrained_model_name_or_path, subfolder=sub_dir) load_model = PeftModel.from_pretrained(load_model, input_dir, subfolder=sub_dir) model.load_state_dict(load_model.state_dict()) del load_model accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.unet_learning_rate = ( args.unet_learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) args.text_encoder_learning_rate = ( args.text_encoder_learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." ) optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW # Optimizer creation optimizer = optimizer_class( [ {"params": unet.parameters(), "lr": args.unet_learning_rate}, {"params": text_encoder.parameters(), "lr": args.text_encoder_learning_rate}, ], betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # Dataset and DataLoaders creation: train_dataset = RealFillDataset( train_data_root=args.train_data_dir, tokenizer=tokenizer, size=args.resolution, ) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn, num_workers=1, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, num_cycles=args.lr_num_cycles, power=args.lr_power, ) # Prepare everything with our `accelerator`. unet, text_encoder, optimizer, train_dataloader = accelerator.prepare( unet, text_encoder, optimizer, train_dataloader ) # For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision # as these weights are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move vae to device and cast to weight_dtype vae.to(accelerator.device, dtype=weight_dtype) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: tracker_config = vars(copy.deepcopy(args)) accelerator.init_trackers("realfill", config=tracker_config) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num batches each epoch = {len(train_dataloader)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the mos recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None initial_global_step = 0 else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) initial_global_step = global_step first_epoch = global_step // num_update_steps_per_epoch else: initial_global_step = 0 progress_bar = tqdm( range(0, args.max_train_steps), initial=initial_global_step, desc="Steps", # Only show the progress bar once on each machine. disable=not accelerator.is_local_main_process, ) for epoch in range(first_epoch, args.num_train_epochs): unet.train() text_encoder.train() for step, batch in enumerate(train_dataloader): with accelerator.accumulate(unet, text_encoder): # Convert images to latent space latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample() latents = latents * 0.18215 # Convert masked images to latent space conditionings = vae.encode(batch["conditioning_images"].to(dtype=weight_dtype)).latent_dist.sample() conditionings = conditionings * 0.18215 # Downsample mask and weighting so that they match with the latents masks, size = batch["masks"].to(dtype=weight_dtype), latents.shape[2:] masks = F.interpolate(masks, size=size) weightings = batch["weightings"].to(dtype=weight_dtype) weightings = F.interpolate(weightings, size=size) # Sample noise that we'll add to the latents noise = torch.randn_like(latents) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # Concatenate noisy latents, masks and conditionings to get inputs to unet inputs = torch.cat([noisy_latents, masks, conditionings], dim=1) # Get the text embedding for conditioning encoder_hidden_states = text_encoder(batch["input_ids"])[0] # Predict the noise residual model_pred = unet(inputs, timesteps, encoder_hidden_states).sample # Compute the diffusion loss assert noise_scheduler.config.prediction_type == "epsilon" loss = (weightings * F.mse_loss(model_pred.float(), noise.float(), reduction="none")).mean() # Backpropagate accelerator.backward(loss) if accelerator.sync_gradients: params_to_clip = itertools.chain(unet.parameters(), text_encoder.parameters()) accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad(set_to_none=args.set_grads_to_none) # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) if args.report_to == "wandb": accelerator.print(progress_bar) global_step += 1 if accelerator.is_main_process: if global_step % args.checkpointing_steps == 0: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: checkpoints = os.listdir(args.output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= args.checkpoints_total_limit: num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") if global_step % args.validation_steps == 0: log_validation( text_encoder, tokenizer, unet, args, accelerator, weight_dtype, global_step, ) logs = {"loss": loss.detach().item()} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break # Save the lora layers accelerator.wait_for_everyone() if accelerator.is_main_process: pipeline = StableDiffusionInpaintPipeline.from_pretrained( args.pretrained_model_name_or_path, unet=accelerator.unwrap_model(unet, keep_fp32_wrapper=True).merge_and_unload(), text_encoder=accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True).merge_and_unload(), revision=args.revision, ) pipeline.save_pretrained(args.output_dir) # Final inference images = log_validation( text_encoder, tokenizer, unet, args, accelerator, weight_dtype, global_step, ) if args.push_to_hub: save_model_card( repo_id, images=images, base_model=args.pretrained_model_name_or_path, repo_folder=args.output_dir, ) upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": args = parse_args() main(args)
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/realfill/README.md
# RealFill [RealFill](https://arxiv.org/abs/2309.16668) is a method to personalize text2image inpainting models like stable diffusion inpainting given just a few(1~5) images of a scene. The `train_realfill.py` script shows how to implement the training procedure for stable diffusion inpainting. ## Running locally with PyTorch ### Installing the dependencies Before running the scripts, make sure to install the library's training dependencies: cd to the realfill folder and run ```bash cd realfill pip install -r requirements.txt ``` And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: ```bash accelerate config ``` Or for a default accelerate configuration without answering questions about your environment ```bash accelerate config default ``` Or if your environment doesn't support an interactive shell e.g. a notebook ```python from accelerate.utils import write_basic_config write_basic_config() ``` When running `accelerate config`, if we specify torch compile mode to True there can be dramatic speedups. ### Toy example Now let's fill the real. For this example, we will use some images of the flower girl example from the paper. We already provide some images for testing in [this link](https://github.com/thuanz123/realfill/tree/main/data/flowerwoman) You only have to launch the training using: ```bash export MODEL_NAME="stabilityai/stable-diffusion-2-inpainting" export TRAIN_DIR="data/flowerwoman" export OUTPUT_DIR="flowerwoman-model" accelerate launch train_realfill.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --train_data_dir=$TRAIN_DIR \ --output_dir=$OUTPUT_DIR \ --resolution=512 \ --train_batch_size=16 \ --gradient_accumulation_steps=1 \ --unet_learning_rate=2e-4 \ --text_encoder_learning_rate=4e-5 \ --lr_scheduler="constant" \ --lr_warmup_steps=100 \ --max_train_steps=2000 \ --lora_rank=8 \ --lora_dropout=0.1 \ --lora_alpha=16 \ ``` ### Training on a low-memory GPU: It is possible to run realfill on a low-memory GPU by using the following optimizations: - [gradient checkpointing and the 8-bit optimizer](#training-with-gradient-checkpointing-and-8-bit-optimizers) - [xformers](#training-with-xformers) - [setting grads to none](#set-grads-to-none) ```bash export MODEL_NAME="stabilityai/stable-diffusion-2-inpainting" export TRAIN_DIR="data/flowerwoman" export OUTPUT_DIR="flowerwoman-model" accelerate launch train_realfill.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --train_data_dir=$TRAIN_DIR \ --output_dir=$OUTPUT_DIR \ --resolution=512 \ --train_batch_size=16 \ --gradient_accumulation_steps=1 --gradient_checkpointing \ --use_8bit_adam \ --enable_xformers_memory_efficient_attention \ --set_grads_to_none \ --unet_learning_rate=2e-4 \ --text_encoder_learning_rate=4e-5 \ --lr_scheduler="constant" \ --lr_warmup_steps=100 \ --max_train_steps=2000 \ --lora_rank=8 \ --lora_dropout=0.1 \ --lora_alpha=16 \ ``` ### Training with gradient checkpointing and 8-bit optimizers: With the help of gradient checkpointing and the 8-bit optimizer from bitsandbytes it's possible to run train realfill on a 16GB GPU. To install `bitsandbytes` please refer to this [readme](https://github.com/TimDettmers/bitsandbytes#requirements--installation). ### Training with xformers: You can enable memory efficient attention by [installing xFormers](https://github.com/facebookresearch/xformers#installing-xformers) and padding the `--enable_xformers_memory_efficient_attention` argument to the script. ### Set grads to none To save even more memory, pass the `--set_grads_to_none` argument to the script. This will set grads to None instead of zero. However, be aware that it changes certain behaviors, so if you start experiencing any problems, remove this argument. More info: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html ## Acknowledge This repo is built upon the code of DreamBooth from diffusers and we thank the developers for their great works and efforts to release source code. Furthermore, a special "thank you" to RealFill's authors for publishing such an amazing work.
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/realfill/requirements.txt
diffusers==0.20.1 accelerate==0.23.0 transformers==4.36.0 peft==0.5.0 torch==2.0.1 torchvision>=0.16 ftfy==6.1.1 tensorboard==2.14.0 Jinja2==3.1.3
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/realfill/infer.py
import argparse import os import torch from PIL import Image, ImageFilter from transformers import CLIPTextModel from diffusers import DPMSolverMultistepScheduler, StableDiffusionInpaintPipeline, UNet2DConditionModel parser = argparse.ArgumentParser(description="Inference") parser.add_argument( "--model_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--validation_image", type=str, default=None, required=True, help="The directory of the validation image", ) parser.add_argument( "--validation_mask", type=str, default=None, required=True, help="The directory of the validation mask", ) parser.add_argument( "--output_dir", type=str, default="./test-infer/", help="The output directory where predictions are saved", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible inference.") args = parser.parse_args() if __name__ == "__main__": os.makedirs(args.output_dir, exist_ok=True) generator = None # create & load model pipe = StableDiffusionInpaintPipeline.from_pretrained( "stabilityai/stable-diffusion-2-inpainting", torch_dtype=torch.float32, revision=None ) pipe.unet = UNet2DConditionModel.from_pretrained( args.model_path, subfolder="unet", revision=None, ) pipe.text_encoder = CLIPTextModel.from_pretrained( args.model_path, subfolder="text_encoder", revision=None, ) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe = pipe.to("cuda") if args.seed is not None: generator = torch.Generator(device="cuda").manual_seed(args.seed) image = Image.open(args.validation_image) mask_image = Image.open(args.validation_mask) results = pipe( ["a photo of sks"] * 16, image=image, mask_image=mask_image, num_inference_steps=25, guidance_scale=5, generator=generator, ).images erode_kernel = ImageFilter.MaxFilter(3) mask_image = mask_image.filter(erode_kernel) blur_kernel = ImageFilter.BoxBlur(1) mask_image = mask_image.filter(blur_kernel) for idx, result in enumerate(results): result = Image.composite(result, image, mask_image) result.save(f"{args.output_dir}/{idx}.png") del pipe torch.cuda.empty_cache()
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/sdxl_flax/README.md
# Stable Diffusion XL for JAX + TPUv5e [TPU v5e](https://cloud.google.com/blog/products/compute/how-cloud-tpu-v5e-accelerates-large-scale-ai-inference) is a new generation of TPUs from Google Cloud. It is the most cost-effective, versatile, and scalable Cloud TPU to date. This makes them ideal for serving and scaling large diffusion models. [JAX](https://github.com/google/jax) is a high-performance numerical computation library that is well-suited to develop and deploy diffusion models: - **High performance**. All JAX operations are implemented in terms of operations in [XLA](https://www.tensorflow.org/xla/) - the Accelerated Linear Algebra compiler - **Compilation**. JAX uses just-in-time (jit) compilation of JAX Python functions so it can be executed efficiently in XLA. In order to get the best performance, we must use static shapes for jitted functions, this is because JAX transforms work by tracing a function and to determine its effect on inputs of a specific shape and type. When a new shape is introduced to an already compiled function, it retriggers compilation on the new shape, which can greatly reduce performance. **Note**: JIT compilation is particularly well-suited for text-to-image generation because all inputs and outputs (image input / output sizes) are static. - **Parallelization**. Workloads can be scaled across multiple devices using JAX's [pmap](https://jax.readthedocs.io/en/latest/_autosummary/jax.pmap.html), which expresses single-program multiple-data (SPMD) programs. Applying pmap to a function will compile a function with XLA, then execute in parallel on XLA devices. For text-to-image generation workloads this means that increasing the number of images rendered simultaneously is straightforward to implement and doesn't compromise performance. 👉 Try it out for yourself: [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/google/sdxl) ## Stable Diffusion XL pipeline in JAX Upon having access to a TPU VM (TPUs higher than version 3), you should first install a TPU-compatible version of JAX: ``` pip install jax[tpu] -f https://storage.googleapis.com/jax-releases/libtpu_releases.html ``` Next, we can install [flax](https://github.com/google/flax) and the diffusers library: ``` pip install flax diffusers transformers ``` In [sdxl_single.py](./sdxl_single.py) we give a simple example of how to write a text-to-image generation pipeline in JAX using [StabilityAI's Stable Diffusion XL](stabilityai/stable-diffusion-xl-base-1.0). Let's explain it step-by-step: **Imports and Setup** ```python import jax import jax.numpy as jnp import numpy as np from flax.jax_utils import replicate from diffusers import FlaxStableDiffusionXLPipeline from jax.experimental.compilation_cache import compilation_cache as cc cc.initialize_cache("/tmp/sdxl_cache") import time NUM_DEVICES = jax.device_count() ``` First, we import the necessary libraries: - `jax` is provides the primitives for TPU operations - `flax.jax_utils` contains some useful utility functions for `Flax`, a neural network library built on top of JAX - `diffusers` has all the code that is relevant for SDXL. - We also initialize a cache to speed up the JAX model compilation. - We automatically determine the number of available TPU devices. **1. Downloading Model and Loading Pipeline** ```python pipeline, params = FlaxStableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", revision="refs/pr/95", split_head_dim=True ) ``` Here, a pre-trained model `stable-diffusion-xl-base-1.0` from the namespace `stabilityai` is loaded. It returns a pipeline for inference and its parameters. **2. Casting Parameter Types** ```python scheduler_state = params.pop("scheduler") params = jax.tree_util.tree_map(lambda x: x.astype(jnp.bfloat16), params) params["scheduler"] = scheduler_state ``` This section adjusts the data types of the model parameters. We convert all parameters to `bfloat16` to speed-up the computation with model weights. **Note** that the scheduler parameters are **not** converted to `blfoat16` as the loss in precision is degrading the pipeline's performance too significantly. **3. Define Inputs to Pipeline** ```python default_prompt = ... default_neg_prompt = ... default_seed = 33 default_guidance_scale = 5.0 default_num_steps = 25 ``` Here, various default inputs for the pipeline are set, including the prompt, negative prompt, random seed, guidance scale, and the number of inference steps. **4. Tokenizing Inputs** ```python def tokenize_prompt(prompt, neg_prompt): prompt_ids = pipeline.prepare_inputs(prompt) neg_prompt_ids = pipeline.prepare_inputs(neg_prompt) return prompt_ids, neg_prompt_ids ``` This function tokenizes the given prompts. It's essential because the text encoders of SDXL don't understand raw text; they work with numbers. Tokenization converts text to numbers. **5. Parallelization and Replication** ```python p_params = replicate(params) def replicate_all(prompt_ids, neg_prompt_ids, seed): ... ``` To utilize JAX's parallel capabilities, the parameters and input tensors are duplicated across devices. The `replicate_all` function also ensures that every device produces a different image by creating a unique random seed for each device. **6. Putting Everything Together** ```python def generate(...): ... ``` This function integrates all the steps to produce the desired outputs from the model. It takes in prompts, tokenizes them, replicates them across devices, runs them through the pipeline, and converts the images to a format that's more interpretable (PIL format). **7. Compilation Step** ```python start = time.time() print(f"Compiling ...") generate(default_prompt, default_neg_prompt) print(f"Compiled in {time.time() - start}") ``` The initial run of the `generate` function will be slow because JAX compiles the function during this call. By running it once here, subsequent calls will be much faster. This section measures and prints the compilation time. **8. Fast Inference** ```python start = time.time() prompt = ... neg_prompt = ... images = generate(prompt, neg_prompt) print(f"Inference in {time.time() - start}") ``` Now that the function is compiled, this section shows how to use it for fast inference. It measures and prints the inference time. In summary, the code demonstrates how to load a pre-trained model using Flax and JAX, prepare it for inference, and run it efficiently using JAX's capabilities. ## Ahead of Time (AOT) Compilation FlaxStableDiffusionXLPipeline takes care of parallelization across multiple devices using jit. Now let's build parallelization ourselves. For this we will be using a JAX feature called [Ahead of Time](https://jax.readthedocs.io/en/latest/aot.html) (AOT) lowering and compilation. AOT allows to fully compile prior to execution time and have control over different parts of the compilation process. In [sdxl_single_aot.py](./sdxl_single_aot.py) we give a simple example of how to write our own parallelization logic for text-to-image generation pipeline in JAX using [StabilityAI's Stable Diffusion XL](stabilityai/stable-diffusion-xl-base-1.0) We add a `aot_compile` function that compiles the `pipeline._generate` function telling JAX which input arguments are static, that is, arguments that are known at compile time and won't change. In our case, it is num_inference_steps, height, width and return_latents. Once the function is compiled, these parameters are omitted from future calls and cannot be changed without modifying the code and recompiling. ```python def aot_compile( prompt=default_prompt, negative_prompt=default_neg_prompt, seed=default_seed, guidance_scale=default_guidance_scale, num_inference_steps=default_num_steps ): prompt_ids, neg_prompt_ids = tokenize_prompt(prompt, negative_prompt) prompt_ids, neg_prompt_ids, rng = replicate_all(prompt_ids, neg_prompt_ids, seed) g = jnp.array([guidance_scale] * prompt_ids.shape[0], dtype=jnp.float32) g = g[:, None] return pmap( pipeline._generate,static_broadcasted_argnums=[3, 4, 5, 9] ).lower( prompt_ids, p_params, rng, num_inference_steps, # num_inference_steps height, # height width, # width g, None, neg_prompt_ids, False # return_latents ).compile() ```` Next we can compile the generate function by executing `aot_compile`. ```python start = time.time() print("Compiling ...") p_generate = aot_compile() print(f"Compiled in {time.time() - start}") ``` And again we put everything together in a `generate` function. ```python def generate( prompt, negative_prompt, seed=default_seed, guidance_scale=default_guidance_scale ): prompt_ids, neg_prompt_ids = tokenize_prompt(prompt, negative_prompt) prompt_ids, neg_prompt_ids, rng = replicate_all(prompt_ids, neg_prompt_ids, seed) g = jnp.array([guidance_scale] * prompt_ids.shape[0], dtype=jnp.float32) g = g[:, None] images = p_generate( prompt_ids, p_params, rng, g, None, neg_prompt_ids) # convert the images to PIL images = images.reshape((images.shape[0] * images.shape[1], ) + images.shape[-3:]) return pipeline.numpy_to_pil(np.array(images)) ``` The first forward pass after AOT compilation still takes a while longer than subsequent passes, this is because on the first pass, JAX uses Python dispatch, which Fills the C++ dispatch cache. When using jit, this extra step is done automatically, but when using AOT compilation, it doesn't happen until the function call is made. ```python start = time.time() prompt = "photo of a rhino dressed suit and tie sitting at a table in a bar with a bar stools, award winning photography, Elke vogelsang" neg_prompt = "cartoon, illustration, animation. face. male, female" images = generate(prompt, neg_prompt) print(f"First inference in {time.time() - start}") ``` From this point forward, any calls to generate should result in a faster inference time and it won't change. ```python start = time.time() prompt = "photo of a rhino dressed suit and tie sitting at a table in a bar with a bar stools, award winning photography, Elke vogelsang" neg_prompt = "cartoon, illustration, animation. face. male, female" images = generate(prompt, neg_prompt) print(f"Inference in {time.time() - start}") ```
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/sdxl_flax/sdxl_single.py
# Show best practices for SDXL JAX import time import jax import jax.numpy as jnp import numpy as np from flax.jax_utils import replicate # Let's cache the model compilation, so that it doesn't take as long the next time around. from jax.experimental.compilation_cache import compilation_cache as cc from diffusers import FlaxStableDiffusionXLPipeline cc.initialize_cache("/tmp/sdxl_cache") NUM_DEVICES = jax.device_count() # 1. Let's start by downloading the model and loading it into our pipeline class # Adhering to JAX's functional approach, the model's parameters are returned seperatetely and # will have to be passed to the pipeline during inference pipeline, params = FlaxStableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", revision="refs/pr/95", split_head_dim=True ) # 2. We cast all parameters to bfloat16 EXCEPT the scheduler which we leave in # float32 to keep maximal precision scheduler_state = params.pop("scheduler") params = jax.tree_util.tree_map(lambda x: x.astype(jnp.bfloat16), params) params["scheduler"] = scheduler_state # 3. Next, we define the different inputs to the pipeline default_prompt = "a colorful photo of a castle in the middle of a forest with trees and bushes, by Ismail Inceoglu, shadows, high contrast, dynamic shading, hdr, detailed vegetation, digital painting, digital drawing, detailed painting, a detailed digital painting, gothic art, featured on deviantart" default_neg_prompt = "fog, grainy, purple" default_seed = 33 default_guidance_scale = 5.0 default_num_steps = 25 # 4. In order to be able to compile the pipeline # all inputs have to be tensors or strings # Let's tokenize the prompt and negative prompt def tokenize_prompt(prompt, neg_prompt): prompt_ids = pipeline.prepare_inputs(prompt) neg_prompt_ids = pipeline.prepare_inputs(neg_prompt) return prompt_ids, neg_prompt_ids # 5. To make full use of JAX's parallelization capabilities # the parameters and input tensors are duplicated across devices # To make sure every device generates a different image, we create # different seeds for each image. The model parameters won't change # during inference so we do not wrap them into a function p_params = replicate(params) def replicate_all(prompt_ids, neg_prompt_ids, seed): p_prompt_ids = replicate(prompt_ids) p_neg_prompt_ids = replicate(neg_prompt_ids) rng = jax.random.PRNGKey(seed) rng = jax.random.split(rng, NUM_DEVICES) return p_prompt_ids, p_neg_prompt_ids, rng # 6. Let's now put it all together in a generate function def generate( prompt, negative_prompt, seed=default_seed, guidance_scale=default_guidance_scale, num_inference_steps=default_num_steps, ): prompt_ids, neg_prompt_ids = tokenize_prompt(prompt, negative_prompt) prompt_ids, neg_prompt_ids, rng = replicate_all(prompt_ids, neg_prompt_ids, seed) images = pipeline( prompt_ids, p_params, rng, num_inference_steps=num_inference_steps, neg_prompt_ids=neg_prompt_ids, guidance_scale=guidance_scale, jit=True, ).images # convert the images to PIL images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) return pipeline.numpy_to_pil(np.array(images)) # 7. Remember that the first call will compile the function and hence be very slow. Let's run generate once # so that the pipeline call is compiled start = time.time() print("Compiling ...") generate(default_prompt, default_neg_prompt) print(f"Compiled in {time.time() - start}") # 8. Now the model forward pass will run very quickly, let's try it again start = time.time() prompt = "photo of a rhino dressed suit and tie sitting at a table in a bar with a bar stools, award winning photography, Elke vogelsang" neg_prompt = "cartoon, illustration, animation. face. male, female" images = generate(prompt, neg_prompt) print(f"Inference in {time.time() - start}") for i, image in enumerate(images): image.save(f"castle_{i}.png")
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/sdxl_flax/sdxl_single_aot.py
import time import jax import jax.numpy as jnp import numpy as np from flax.jax_utils import replicate from jax import pmap # Let's cache the model compilation, so that it doesn't take as long the next time around. from jax.experimental.compilation_cache import compilation_cache as cc from diffusers import FlaxStableDiffusionXLPipeline cc.initialize_cache("/tmp/sdxl_cache") NUM_DEVICES = jax.device_count() # 1. Let's start by downloading the model and loading it into our pipeline class # Adhering to JAX's functional approach, the model's parameters are returned seperatetely and # will have to be passed to the pipeline during inference pipeline, params = FlaxStableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", revision="refs/pr/95", split_head_dim=True ) # 2. We cast all parameters to bfloat16 EXCEPT the scheduler which we leave in # float32 to keep maximal precision scheduler_state = params.pop("scheduler") params = jax.tree_util.tree_map(lambda x: x.astype(jnp.bfloat16), params) params["scheduler"] = scheduler_state # 3. Next, we define the different inputs to the pipeline default_prompt = "a colorful photo of a castle in the middle of a forest with trees and bushes, by Ismail Inceoglu, shadows, high contrast, dynamic shading, hdr, detailed vegetation, digital painting, digital drawing, detailed painting, a detailed digital painting, gothic art, featured on deviantart" default_neg_prompt = "fog, grainy, purple" default_seed = 33 default_guidance_scale = 5.0 default_num_steps = 25 width = 1024 height = 1024 # 4. In order to be able to compile the pipeline # all inputs have to be tensors or strings # Let's tokenize the prompt and negative prompt def tokenize_prompt(prompt, neg_prompt): prompt_ids = pipeline.prepare_inputs(prompt) neg_prompt_ids = pipeline.prepare_inputs(neg_prompt) return prompt_ids, neg_prompt_ids # 5. To make full use of JAX's parallelization capabilities # the parameters and input tensors are duplicated across devices # To make sure every device generates a different image, we create # different seeds for each image. The model parameters won't change # during inference so we do not wrap them into a function p_params = replicate(params) def replicate_all(prompt_ids, neg_prompt_ids, seed): p_prompt_ids = replicate(prompt_ids) p_neg_prompt_ids = replicate(neg_prompt_ids) rng = jax.random.PRNGKey(seed) rng = jax.random.split(rng, NUM_DEVICES) return p_prompt_ids, p_neg_prompt_ids, rng # 6. To compile the pipeline._generate function, we must pass all parameters # to the function and tell JAX which are static arguments, that is, arguments that # are known at compile time and won't change. In our case, it is num_inference_steps, # height, width and return_latents. # Once the function is compiled, these parameters are ommited from future calls and # cannot be changed without modifying the code and recompiling. def aot_compile( prompt=default_prompt, negative_prompt=default_neg_prompt, seed=default_seed, guidance_scale=default_guidance_scale, num_inference_steps=default_num_steps, ): prompt_ids, neg_prompt_ids = tokenize_prompt(prompt, negative_prompt) prompt_ids, neg_prompt_ids, rng = replicate_all(prompt_ids, neg_prompt_ids, seed) g = jnp.array([guidance_scale] * prompt_ids.shape[0], dtype=jnp.float32) g = g[:, None] return ( pmap(pipeline._generate, static_broadcasted_argnums=[3, 4, 5, 9]) .lower( prompt_ids, p_params, rng, num_inference_steps, # num_inference_steps height, # height width, # width g, None, neg_prompt_ids, False, # return_latents ) .compile() ) start = time.time() print("Compiling ...") p_generate = aot_compile() print(f"Compiled in {time.time() - start}") # 7. Let's now put it all together in a generate function. def generate(prompt, negative_prompt, seed=default_seed, guidance_scale=default_guidance_scale): prompt_ids, neg_prompt_ids = tokenize_prompt(prompt, negative_prompt) prompt_ids, neg_prompt_ids, rng = replicate_all(prompt_ids, neg_prompt_ids, seed) g = jnp.array([guidance_scale] * prompt_ids.shape[0], dtype=jnp.float32) g = g[:, None] images = p_generate(prompt_ids, p_params, rng, g, None, neg_prompt_ids) # convert the images to PIL images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) return pipeline.numpy_to_pil(np.array(images)) # 8. The first forward pass after AOT compilation still takes a while longer than # subsequent passes, this is because on the first pass, JAX uses Python dispatch, which # Fills the C++ dispatch cache. # When using jit, this extra step is done automatically, but when using AOT compilation, # it doesn't happen until the function call is made. start = time.time() prompt = "photo of a rhino dressed suit and tie sitting at a table in a bar with a bar stools, award winning photography, Elke vogelsang" neg_prompt = "cartoon, illustration, animation. face. male, female" images = generate(prompt, neg_prompt) print(f"First inference in {time.time() - start}") # 9. From this point forward, any calls to generate should result in a faster inference # time and it won't change. start = time.time() prompt = "photo of a rhino dressed suit and tie sitting at a table in a bar with a bar stools, award winning photography, Elke vogelsang" neg_prompt = "cartoon, illustration, animation. face. male, female" images = generate(prompt, neg_prompt) print(f"Inference in {time.time() - start}") for i, image in enumerate(images): image.save(f"castle_{i}.png")
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/rdm/README.md
## Diffusers examples with ONNXRuntime optimizations **This research project is not actively maintained by the diffusers team. For any questions or comments, please contact Isamu Isozaki(isamu-isozaki) on github with any questions.** The aim of this project is to provide retrieval augmented diffusion models to diffusers!
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/rdm/retriever.py
import os from typing import List import faiss import numpy as np import torch from datasets import Dataset, load_dataset from PIL import Image from transformers import CLIPFeatureExtractor, CLIPModel, PretrainedConfig from diffusers import logging logger = logging.get_logger(__name__) # pylint: disable=invalid-name def normalize_images(images: List[Image.Image]): images = [np.array(image) for image in images] images = [image / 127.5 - 1 for image in images] return images def preprocess_images(images: List[np.array], feature_extractor: CLIPFeatureExtractor) -> torch.FloatTensor: """ Preprocesses a list of images into a batch of tensors. Args: images (:obj:`List[Image.Image]`): A list of images to preprocess. Returns: :obj:`torch.FloatTensor`: A batch of tensors. """ images = [np.array(image) for image in images] images = [(image + 1.0) / 2.0 for image in images] images = feature_extractor(images, return_tensors="pt").pixel_values return images class IndexConfig(PretrainedConfig): def __init__( self, clip_name_or_path="openai/clip-vit-large-patch14", dataset_name="Isamu136/oxford_pets_with_l14_emb", image_column="image", index_name="embeddings", index_path=None, dataset_set="train", metric_type=faiss.METRIC_L2, faiss_device=-1, **kwargs, ): super().__init__(**kwargs) self.clip_name_or_path = clip_name_or_path self.dataset_name = dataset_name self.image_column = image_column self.index_name = index_name self.index_path = index_path self.dataset_set = dataset_set self.metric_type = metric_type self.faiss_device = faiss_device class Index: """ Each index for a retrieval model is specific to the clip model used and the dataset used. """ def __init__(self, config: IndexConfig, dataset: Dataset): self.config = config self.dataset = dataset self.index_initialized = False self.index_name = config.index_name self.index_path = config.index_path self.init_index() def set_index_name(self, index_name: str): self.index_name = index_name def init_index(self): if not self.index_initialized: if self.index_path and self.index_name: try: self.dataset.add_faiss_index( column=self.index_name, metric_type=self.config.metric_type, device=self.config.faiss_device ) self.index_initialized = True except Exception as e: print(e) logger.info("Index not initialized") if self.index_name in self.dataset.features: self.dataset.add_faiss_index(column=self.index_name) self.index_initialized = True def build_index( self, model=None, feature_extractor: CLIPFeatureExtractor = None, torch_dtype=torch.float32, ): if not self.index_initialized: model = model or CLIPModel.from_pretrained(self.config.clip_name_or_path).to(dtype=torch_dtype) feature_extractor = feature_extractor or CLIPFeatureExtractor.from_pretrained( self.config.clip_name_or_path ) self.dataset = get_dataset_with_emb_from_clip_model( self.dataset, model, feature_extractor, image_column=self.config.image_column, index_name=self.config.index_name, ) self.init_index() def retrieve_imgs(self, vec, k: int = 20): vec = np.array(vec).astype(np.float32) return self.dataset.get_nearest_examples(self.index_name, vec, k=k) def retrieve_imgs_batch(self, vec, k: int = 20): vec = np.array(vec).astype(np.float32) return self.dataset.get_nearest_examples_batch(self.index_name, vec, k=k) def retrieve_indices(self, vec, k: int = 20): vec = np.array(vec).astype(np.float32) return self.dataset.search(self.index_name, vec, k=k) def retrieve_indices_batch(self, vec, k: int = 20): vec = np.array(vec).astype(np.float32) return self.dataset.search_batch(self.index_name, vec, k=k) class Retriever: def __init__( self, config: IndexConfig, index: Index = None, dataset: Dataset = None, model=None, feature_extractor: CLIPFeatureExtractor = None, ): self.config = config self.index = index or self._build_index(config, dataset, model=model, feature_extractor=feature_extractor) @classmethod def from_pretrained( cls, retriever_name_or_path: str, index: Index = None, dataset: Dataset = None, model=None, feature_extractor: CLIPFeatureExtractor = None, **kwargs, ): config = kwargs.pop("config", None) or IndexConfig.from_pretrained(retriever_name_or_path, **kwargs) return cls(config, index=index, dataset=dataset, model=model, feature_extractor=feature_extractor) @staticmethod def _build_index( config: IndexConfig, dataset: Dataset = None, model=None, feature_extractor: CLIPFeatureExtractor = None ): dataset = dataset or load_dataset(config.dataset_name) dataset = dataset[config.dataset_set] index = Index(config, dataset) index.build_index(model=model, feature_extractor=feature_extractor) return index def save_pretrained(self, save_directory): os.makedirs(save_directory, exist_ok=True) if self.config.index_path is None: index_path = os.path.join(save_directory, "hf_dataset_index.faiss") self.index.dataset.get_index(self.config.index_name).save(index_path) self.config.index_path = index_path self.config.save_pretrained(save_directory) def init_retrieval(self): logger.info("initializing retrieval") self.index.init_index() def retrieve_imgs(self, embeddings: np.ndarray, k: int): return self.index.retrieve_imgs(embeddings, k) def retrieve_imgs_batch(self, embeddings: np.ndarray, k: int): return self.index.retrieve_imgs_batch(embeddings, k) def retrieve_indices(self, embeddings: np.ndarray, k: int): return self.index.retrieve_indices(embeddings, k) def retrieve_indices_batch(self, embeddings: np.ndarray, k: int): return self.index.retrieve_indices_batch(embeddings, k) def __call__( self, embeddings, k: int = 20, ): return self.index.retrieve_imgs(embeddings, k) def map_txt_to_clip_feature(clip_model, tokenizer, prompt): text_inputs = tokenizer( prompt, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt", ) text_input_ids = text_inputs.input_ids if text_input_ids.shape[-1] > tokenizer.model_max_length: removed_text = tokenizer.batch_decode(text_input_ids[:, tokenizer.model_max_length :]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids[:, : tokenizer.model_max_length] text_embeddings = clip_model.get_text_features(text_input_ids.to(clip_model.device)) text_embeddings = text_embeddings / torch.linalg.norm(text_embeddings, dim=-1, keepdim=True) text_embeddings = text_embeddings[:, None, :] return text_embeddings[0][0].cpu().detach().numpy() def map_img_to_model_feature(model, feature_extractor, imgs, device): for i, image in enumerate(imgs): if not image.mode == "RGB": imgs[i] = image.convert("RGB") imgs = normalize_images(imgs) retrieved_images = preprocess_images(imgs, feature_extractor).to(device) image_embeddings = model(retrieved_images) image_embeddings = image_embeddings / torch.linalg.norm(image_embeddings, dim=-1, keepdim=True) image_embeddings = image_embeddings[None, ...] return image_embeddings.cpu().detach().numpy()[0][0] def get_dataset_with_emb_from_model(dataset, model, feature_extractor, image_column="image", index_name="embeddings"): return dataset.map( lambda example: { index_name: map_img_to_model_feature(model, feature_extractor, [example[image_column]], model.device) } ) def get_dataset_with_emb_from_clip_model( dataset, clip_model, feature_extractor, image_column="image", index_name="embeddings" ): return dataset.map( lambda example: { index_name: map_img_to_model_feature( clip_model.get_image_features, feature_extractor, [example[image_column]], clip_model.device ) } )
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/rdm/pipeline_rdm.py
import inspect from typing import Callable, List, Optional, Union import torch from PIL import Image from retriever import Retriever, normalize_images, preprocess_images from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, ImagePipelineOutput, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel, logging, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import is_accelerate_available, randn_tensor logger = logging.get_logger(__name__) # pylint: disable=invalid-name class RDMPipeline(DiffusionPipeline): r""" Pipeline for text-to-image generation using Retrieval Augmented Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. clip ([`CLIPModel`]): Frozen CLIP model. Retrieval Augmented Diffusion uses the CLIP model, specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. feature_extractor ([`CLIPFeatureExtractor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ def __init__( self, vae: AutoencoderKL, clip: CLIPModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ], feature_extractor: CLIPFeatureExtractor, retriever: Optional[Retriever] = None, ): super().__init__() self.register_modules( vae=vae, clip=clip, tokenizer=tokenizer, unet=unet, scheduler=scheduler, feature_extractor=feature_extractor, ) # Copy from statement here and all the methods we take from stable_diffusion_pipeline self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.retriever = retriever def enable_xformers_memory_efficient_attention(self): r""" Enable memory efficient attention as implemented in xformers. When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference time. Speed up at training time is not guaranteed. Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention is used. """ self.unet.set_use_memory_efficient_attention_xformers(True) def disable_xformers_memory_efficient_attention(self): r""" Disable memory efficient attention as implemented in xformers. """ self.unet.set_use_memory_efficient_attention_xformers(False) def enable_vae_slicing(self): r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.vae.enable_slicing() def disable_vae_slicing(self): r""" Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to computing decoding in one step. """ self.vae.disable_slicing() def enable_vae_tiling(self): r""" Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful to save a large amount of memory and to allow the processing of larger images. """ self.vae.enable_tiling() def disable_vae_tiling(self): r""" Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to computing decoding in one step. """ self.vae.disable_tiling() def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): r""" Enable sliced attention computation. When this option is enabled, the attention module will split the input tensor in slices, to compute attention in several steps. This is useful to save some memory in exchange for a small speed decrease. Args: slice_size (`str` or `int`, *optional*, defaults to `"auto"`): When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` must be a multiple of `slice_size`. """ if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory if isinstance(self.unet.config.attention_head_dim, int): slice_size = self.unet.config.attention_head_dim // 2 else: slice_size = self.unet.config.attention_head_dim[0] // 2 self.unet.set_attention_slice(slice_size) def disable_attention_slicing(self): r""" Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go back to computing attention in one step. """ # set slice_size = `None` to disable `attention slicing` self.enable_attention_slicing(None) def enable_sequential_cpu_offload(self): r""" Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. """ if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`") device = torch.device("cuda") for cpu_offloaded_model in [self.unet, self.clip, self.vae]: if cpu_offloaded_model is not None: cpu_offload(cpu_offloaded_model, device) @property def _execution_device(self): r""" Returns the device on which the pipeline's models will be executed. After calling `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module hooks. """ if not hasattr(self.unet, "_hf_hook"): return self.device for module in self.unet.modules(): if ( hasattr(module, "_hf_hook") and hasattr(module._hf_hook, "execution_device") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device def _encode_prompt(self, prompt): # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] prompt_embeds = self.clip.get_text_features(text_input_ids.to(self.device)) prompt_embeds = prompt_embeds / torch.linalg.norm(prompt_embeds, dim=-1, keepdim=True) prompt_embeds = prompt_embeds[:, None, :] return prompt_embeds def _encode_image(self, retrieved_images, batch_size): if len(retrieved_images[0]) == 0: return None for i in range(len(retrieved_images)): retrieved_images[i] = normalize_images(retrieved_images[i]) retrieved_images[i] = preprocess_images(retrieved_images[i], self.feature_extractor).to( self.clip.device, dtype=self.clip.dtype ) _, c, h, w = retrieved_images[0].shape retrieved_images = torch.reshape(torch.cat(retrieved_images, dim=0), (-1, c, h, w)) image_embeddings = self.clip.get_image_features(retrieved_images) image_embeddings = image_embeddings / torch.linalg.norm(image_embeddings, dim=-1, keepdim=True) _, d = image_embeddings.shape image_embeddings = torch.reshape(image_embeddings, (batch_size, -1, d)) return image_embeddings def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents def retrieve_images(self, retrieved_images, prompt_embeds, knn=10): if self.retriever is not None: additional_images = self.retriever.retrieve_imgs_batch(prompt_embeds[:, 0].cpu(), knn).total_examples for i in range(len(retrieved_images)): retrieved_images[i] += additional_images[i][self.retriever.config.image_column] return retrieved_images @torch.no_grad() def __call__( self, prompt: Union[str, List[str]], retrieved_images: Optional[List[Image.Image]] = None, height: int = 768, width: int = 768, num_inference_steps: int = 50, guidance_scale: float = 7.5, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[torch.Generator] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: Optional[int] = 1, knn: Optional[int] = 10, **kwargs, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. Returns: [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. """ height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor if isinstance(prompt, str): batch_size = 1 elif isinstance(prompt, list): batch_size = len(prompt) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if retrieved_images is not None: retrieved_images = [retrieved_images for _ in range(batch_size)] else: retrieved_images = [[] for _ in range(batch_size)] device = self._execution_device if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt_embeds is None: prompt_embeds = self._encode_prompt(prompt) retrieved_images = self.retrieve_images(retrieved_images, prompt_embeds, knn=knn) image_embeddings = self._encode_image(retrieved_images, batch_size) if image_embeddings is not None: prompt_embeds = torch.cat([prompt_embeds, image_embeddings], dim=1) # duplicate text embeddings for each generation per prompt, using mps friendly method bs_embed, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: uncond_embeddings = torch.zeros_like(prompt_embeds).to(prompt_embeds.device) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([uncond_embeddings, prompt_embeds]) # get the initial random noise unless the user supplied it num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # set timesteps self.scheduler.set_timesteps(num_inference_steps) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand timesteps_tensor = self.scheduler.timesteps.to(self.device) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator for i, t in enumerate(self.progress_bar(timesteps_tensor)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] else: image = latents image = self.image_processor.postprocess( image, output_type=output_type, do_denormalize=[True] * image.shape[0] ) # Offload last model to CPU if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (image,) return ImagePipelineOutput(images=image)
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/multi_subject_dreambooth/README.md
# Multi Subject DreamBooth training [DreamBooth](https://arxiv.org/abs/2208.12242) is a method to personalize text2image models like stable diffusion given just a few(3~5) images of a subject. This `train_multi_subject_dreambooth.py` script shows how to implement the training procedure for one or more subjects and adapt it for stable diffusion. Note that this code is based off of the `examples/dreambooth/train_dreambooth.py` script as of 01/06/2022. This script was added by @kopsahlong, and is not actively maintained. However, if you come across anything that could use fixing, feel free to open an issue and tag @kopsahlong. ## Running locally with PyTorch ### Installing the dependencies Before running the script, make sure to install the library's training dependencies: To start, execute the following steps in a new virtual environment: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install -e . ``` Then cd into the folder `diffusers/examples/research_projects/multi_subject_dreambooth` and run the following: ```bash pip install -r requirements.txt ``` And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: ```bash accelerate config ``` Or for a default accelerate configuration without answering questions about your environment ```bash accelerate config default ``` Or if your environment doesn't support an interactive shell e.g. a notebook ```python from accelerate.utils import write_basic_config write_basic_config() ``` ### Multi Subject Training Example In order to have your model learn multiple concepts at once, we simply add in the additional data directories and prompts to our `instance_data_dir` and `instance_prompt` (as well as `class_data_dir` and `class_prompt` if `--with_prior_preservation` is specified) as one comma separated string. See an example with 2 subjects below, which learns a model for one dog subject and one human subject: ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export OUTPUT_DIR="path-to-save-model" # Subject 1 export INSTANCE_DIR_1="path-to-instance-images-concept-1" export INSTANCE_PROMPT_1="a photo of a sks dog" export CLASS_DIR_1="path-to-class-images-dog" export CLASS_PROMPT_1="a photo of a dog" # Subject 2 export INSTANCE_DIR_2="path-to-instance-images-concept-2" export INSTANCE_PROMPT_2="a photo of a t@y person" export CLASS_DIR_2="path-to-class-images-person" export CLASS_PROMPT_2="a photo of a person" accelerate launch train_multi_subject_dreambooth.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir="$INSTANCE_DIR_1,$INSTANCE_DIR_2" \ --output_dir=$OUTPUT_DIR \ --train_text_encoder \ --instance_prompt="$INSTANCE_PROMPT_1,$INSTANCE_PROMPT_2" \ --with_prior_preservation \ --prior_loss_weight=1.0 \ --class_data_dir="$CLASS_DIR_1,$CLASS_DIR_2" \ --class_prompt="$CLASS_PROMPT_1,$CLASS_PROMPT_2"\ --num_class_images=50 \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=1 \ --learning_rate=1e-6 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --max_train_steps=1500 ``` This example shows training for 2 subjects, but please note that the model can be trained on any number of new concepts. This can be done by continuing to add in the corresponding directories and prompts to the corresponding comma separated string. Note also that in this script, `sks` and `t@y` were used as tokens to learn the new subjects ([this thread](https://github.com/XavierXiao/Dreambooth-Stable-Diffusion/issues/71) inspired the use of `t@y` as our second identifier). However, there may be better rare tokens to experiment with, and results also seemed to be good when more intuitive words are used. **Important**: New parameters are added to the script, making possible to validate the progress of the training by generating images at specified steps. Taking also into account that a comma separated list in a text field for a prompt it's never a good idea (simply because it is very common in prompts to have them as part of a regular text) we introduce the `concept_list` parameter: allowing to specify a json-like file where you can define the different configuration for each subject that you want to train. An example of how to generate the file: ```python import json # here we are using parameters for prior-preservation and validation as well. concepts_list = [ { "instance_prompt": "drawing of a t@y meme", "class_prompt": "drawing of a meme", "instance_data_dir": "/some_folder/meme_toy", "class_data_dir": "/data/meme", "validation_prompt": "drawing of a t@y meme about football in Uruguay", "validation_negative_prompt": "black and white" }, { "instance_prompt": "drawing of a sks sir", "class_prompt": "drawing of a sir", "instance_data_dir": "/some_other_folder/sir_sks", "class_data_dir": "/data/sir", "validation_prompt": "drawing of a sks sir with the Uruguayan sun in his chest", "validation_negative_prompt": "an old man", "validation_guidance_scale": 20, "validation_number_images": 3, "validation_inference_steps": 10 } ] with open("concepts_list.json", "w") as f: json.dump(concepts_list, f, indent=4) ``` And then just point to the file when executing the script: ```bash # exports... accelerate launch train_multi_subject_dreambooth.py \ # more parameters... --concepts_list="concepts_list.json" ``` You can use the helper from the script to get a better sense of each parameter. ### Inference Once you have trained a model using above command, the inference can be done simply using the `StableDiffusionPipeline`. Make sure to include the `identifier`(e.g. sks in above example) in your prompt. ```python from diffusers import StableDiffusionPipeline import torch model_id = "path-to-your-trained-model" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") prompt = "A photo of a t@y person petting an sks dog" image = pipe(prompt, num_inference_steps=200, guidance_scale=7.5).images[0] image.save("person-petting-dog.png") ``` ### Inference from a training checkpoint You can also perform inference from one of the checkpoints saved during the training process, if you used the `--checkpointing_steps` argument. Please, refer to [the documentation](https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint) to see how to do it. ## Additional Dreambooth documentation Because the `train_multi_subject_dreambooth.py` script here was forked from an original version of `train_dreambooth.py` in the `examples/dreambooth` folder, I've included the original applicable training documentation for single subject examples below. This should explain how to play with training variables such as prior preservation, fine tuning the text encoder, etc. which is still applicable to our multi subject training code. Note also that the examples below, which are single subject examples, also work with `train_multi_subject_dreambooth.py`, as this script supports 1 (or more) subjects. ### Single subject dog toy example Let's get our dataset. Download images from [here](https://drive.google.com/drive/folders/1BO_dyz-p65qhBRRMRA4TbZ8qW4rB99JZ) and save them in a directory. This will be our training data. And launch the training using **___Note: Change the `resolution` to 768 if you are using the [stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) 768x768 model.___** ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export INSTANCE_DIR="path-to-instance-images" export OUTPUT_DIR="path-to-save-model" accelerate launch train_dreambooth.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --output_dir=$OUTPUT_DIR \ --instance_prompt="a photo of sks dog" \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=1 \ --learning_rate=5e-6 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --max_train_steps=400 ``` ### Training with prior-preservation loss Prior-preservation is used to avoid overfitting and language-drift. Refer to the paper to learn more about it. For prior-preservation we first generate images using the model with a class prompt and then use those during training along with our data. According to the paper, it's recommended to generate `num_epochs * num_samples` images for prior-preservation. 200-300 works well for most cases. The `num_class_images` flag sets the number of images to generate with the class prompt. You can place existing images in `class_data_dir`, and the training script will generate any additional images so that `num_class_images` are present in `class_data_dir` during training time. ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export INSTANCE_DIR="path-to-instance-images" export CLASS_DIR="path-to-class-images" export OUTPUT_DIR="path-to-save-model" accelerate launch train_dreambooth.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --class_data_dir=$CLASS_DIR \ --output_dir=$OUTPUT_DIR \ --with_prior_preservation --prior_loss_weight=1.0 \ --instance_prompt="a photo of sks dog" \ --class_prompt="a photo of dog" \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=1 \ --learning_rate=5e-6 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --num_class_images=200 \ --max_train_steps=800 ``` ### Training on a 16GB GPU: With the help of gradient checkpointing and the 8-bit optimizer from bitsandbytes it's possible to run train dreambooth on a 16GB GPU. To install `bitandbytes` please refer to this [readme](https://github.com/TimDettmers/bitsandbytes#requirements--installation). ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export INSTANCE_DIR="path-to-instance-images" export CLASS_DIR="path-to-class-images" export OUTPUT_DIR="path-to-save-model" accelerate launch train_dreambooth.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --class_data_dir=$CLASS_DIR \ --output_dir=$OUTPUT_DIR \ --with_prior_preservation --prior_loss_weight=1.0 \ --instance_prompt="a photo of sks dog" \ --class_prompt="a photo of dog" \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=2 --gradient_checkpointing \ --use_8bit_adam \ --learning_rate=5e-6 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --num_class_images=200 \ --max_train_steps=800 ``` ### Training on a 8 GB GPU: By using [DeepSpeed](https://www.deepspeed.ai/) it's possible to offload some tensors from VRAM to either CPU or NVME allowing to train with less VRAM. DeepSpeed needs to be enabled with `accelerate config`. During configuration answer yes to "Do you want to use DeepSpeed?". With DeepSpeed stage 2, fp16 mixed precision and offloading both parameters and optimizer state to cpu it's possible to train on under 8 GB VRAM with a drawback of requiring significantly more RAM (about 25 GB). See [documentation](https://huggingface.co/docs/accelerate/usage_guides/deepspeed) for more DeepSpeed configuration options. Changing the default Adam optimizer to DeepSpeed's special version of Adam `deepspeed.ops.adam.DeepSpeedCPUAdam` gives a substantial speedup but enabling it requires CUDA toolchain with the same version as pytorch. 8-bit optimizer does not seem to be compatible with DeepSpeed at the moment. ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export INSTANCE_DIR="path-to-instance-images" export CLASS_DIR="path-to-class-images" export OUTPUT_DIR="path-to-save-model" accelerate launch --mixed_precision="fp16" train_dreambooth.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --class_data_dir=$CLASS_DIR \ --output_dir=$OUTPUT_DIR \ --with_prior_preservation --prior_loss_weight=1.0 \ --instance_prompt="a photo of sks dog" \ --class_prompt="a photo of dog" \ --resolution=512 \ --train_batch_size=1 \ --sample_batch_size=1 \ --gradient_accumulation_steps=1 --gradient_checkpointing \ --learning_rate=5e-6 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --num_class_images=200 \ --max_train_steps=800 ``` ### Fine-tune text encoder with the UNet. The script also allows to fine-tune the `text_encoder` along with the `unet`. It's been observed experimentally that fine-tuning `text_encoder` gives much better results especially on faces. Pass the `--train_text_encoder` argument to the script to enable training `text_encoder`. ___Note: Training text encoder requires more memory, with this option the training won't fit on 16GB GPU. It needs at least 24GB VRAM.___ ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export INSTANCE_DIR="path-to-instance-images" export CLASS_DIR="path-to-class-images" export OUTPUT_DIR="path-to-save-model" accelerate launch train_dreambooth.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --train_text_encoder \ --instance_data_dir=$INSTANCE_DIR \ --class_data_dir=$CLASS_DIR \ --output_dir=$OUTPUT_DIR \ --with_prior_preservation --prior_loss_weight=1.0 \ --instance_prompt="a photo of sks dog" \ --class_prompt="a photo of dog" \ --resolution=512 \ --train_batch_size=1 \ --use_8bit_adam \ --gradient_checkpointing \ --learning_rate=2e-6 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --num_class_images=200 \ --max_train_steps=800 ``` ### Using DreamBooth for other pipelines than Stable Diffusion Altdiffusion also support dreambooth now, the runing comman is basically the same as above, all you need to do is replace the `MODEL_NAME` like this: One can now simply change the `pretrained_model_name_or_path` to another architecture such as [`AltDiffusion`](https://huggingface.co/docs/diffusers/api/pipelines/alt_diffusion). ``` export MODEL_NAME="CompVis/stable-diffusion-v1-4" --> export MODEL_NAME="BAAI/AltDiffusion-m9" or export MODEL_NAME="CompVis/stable-diffusion-v1-4" --> export MODEL_NAME="BAAI/AltDiffusion" ``` ### Training with xformers: You can enable memory efficient attention by [installing xFormers](https://github.com/facebookresearch/xformers#installing-xformers) and padding the `--enable_xformers_memory_efficient_attention` argument to the script. This is not available with the Flax/JAX implementation. You can also use Dreambooth to train the specialized in-painting model. See [the script in the research folder for details](https://github.com/huggingface/diffusers/tree/main/examples/research_projects/dreambooth_inpaint).
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/multi_subject_dreambooth/requirements.txt
accelerate>=0.16.0 torchvision transformers>=4.25.1 ftfy tensorboard Jinja2
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/multi_subject_dreambooth/train_multi_subject_dreambooth.py
import argparse import itertools import json import logging import math import uuid import warnings from os import environ, listdir, makedirs from os.path import basename, join from pathlib import Path from typing import List import datasets import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from huggingface_hub import create_repo, upload_folder from huggingface_hub.utils import insecure_hashlib from PIL import Image from torch import dtype from torch.nn import Module from torch.utils.data import Dataset from torchvision import transforms from tqdm.auto import tqdm from transformers import AutoTokenizer, PretrainedConfig import diffusers from diffusers import ( AutoencoderKL, DDPMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, UNet2DConditionModel, ) from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version, is_wandb_available from diffusers.utils.import_utils import is_xformers_available if is_wandb_available(): import wandb # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.13.0.dev0") logger = get_logger(__name__) def log_validation_images_to_tracker( images: List[np.array], label: str, validation_prompt: str, accelerator: Accelerator, epoch: int ): logger.info(f"Logging images to tracker for validation prompt: {validation_prompt}.") for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "validation": [ wandb.Image(image, caption=f"{label}_{epoch}_{i}: {validation_prompt}") for i, image in enumerate(images) ] } ) # TODO: Add `prompt_embeds` and `negative_prompt_embeds` parameters to the function when `pre_compute_text_embeddings` # argument is implemented. def generate_validation_images( text_encoder: Module, tokenizer: Module, unet: Module, vae: Module, arguments: argparse.Namespace, accelerator: Accelerator, weight_dtype: dtype, ): logger.info("Running validation images.") pipeline_args = {} if text_encoder is not None: pipeline_args["text_encoder"] = accelerator.unwrap_model(text_encoder) if vae is not None: pipeline_args["vae"] = vae # create pipeline (note: unet and vae are loaded again in float32) pipeline = DiffusionPipeline.from_pretrained( arguments.pretrained_model_name_or_path, tokenizer=tokenizer, unet=accelerator.unwrap_model(unet), revision=arguments.revision, torch_dtype=weight_dtype, **pipeline_args, ) # We train on the simplified learning objective. If we were previously predicting a variance, we need the # scheduler to ignore it scheduler_args = {} if "variance_type" in pipeline.scheduler.config: variance_type = pipeline.scheduler.config.variance_type if variance_type in ["learned", "learned_range"]: variance_type = "fixed_small" scheduler_args["variance_type"] = variance_type pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, **scheduler_args) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) generator = ( None if arguments.seed is None else torch.Generator(device=accelerator.device).manual_seed(arguments.seed) ) images_sets = [] for vp, nvi, vnp, vis, vgs in zip( arguments.validation_prompt, arguments.validation_number_images, arguments.validation_negative_prompt, arguments.validation_inference_steps, arguments.validation_guidance_scale, ): images = [] if vp is not None: logger.info( f"Generating {nvi} images with prompt: '{vp}', negative prompt: '{vnp}', inference steps: {vis}, " f"guidance scale: {vgs}." ) pipeline_args = {"prompt": vp, "negative_prompt": vnp, "num_inference_steps": vis, "guidance_scale": vgs} # run inference # TODO: it would be good to measure whether it's faster to run inference on all images at once, one at a # time or in small batches for _ in range(nvi): with torch.autocast("cuda"): image = pipeline(**pipeline_args, num_images_per_prompt=1, generator=generator).images[0] images.append(image) images_sets.append(images) del pipeline if torch.cuda.is_available(): torch.cuda.empty_cache() return images_sets def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str): text_encoder_config = PretrainedConfig.from_pretrained( pretrained_model_name_or_path, subfolder="text_encoder", revision=revision, ) model_class = text_encoder_config.architectures[0] if model_class == "CLIPTextModel": from transformers import CLIPTextModel return CLIPTextModel elif model_class == "RobertaSeriesModelWithTransformation": from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation return RobertaSeriesModelWithTransformation else: raise ValueError(f"{model_class} is not supported.") def parse_args(input_args=None): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--instance_data_dir", type=str, default=None, required=False, help="A folder containing the training data of instance images.", ) parser.add_argument( "--class_data_dir", type=str, default=None, required=False, help="A folder containing the training data of class images.", ) parser.add_argument( "--instance_prompt", type=str, default=None, required=False, help="The prompt with identifier specifying the instance", ) parser.add_argument( "--class_prompt", type=str, default=None, help="The prompt to specify images in the same class as provided instance images.", ) parser.add_argument( "--with_prior_preservation", default=False, action="store_true", help="Flag to add prior preservation loss.", ) parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") parser.add_argument( "--num_class_images", type=int, default=100, help=( "Minimal class images for prior preservation loss. If there are not enough images already present in" " class_data_dir, additional images will be sampled with class_prompt." ), ) parser.add_argument( "--output_dir", type=str, default="text-inversion-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder") parser.add_argument( "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." ) parser.add_argument( "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." ) parser.add_argument("--num_train_epochs", type=int, default=1) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=( "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" " for more docs" ), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=5e-6, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--lr_num_cycles", type=int, default=1, help="Number of hard resets of the lr in cosine_with_restarts scheduler.", ) parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument( "--validation_steps", type=int, default=None, help=( "Run validation every X steps. Validation consists of running the prompt(s) `validation_prompt` " "multiple times (`validation_number_images`) and logging the images." ), ) parser.add_argument( "--validation_prompt", type=str, default=None, help="A prompt that is used during validation to verify that the model is learning. You can use commas to " "define multiple negative prompts. This parameter can be defined also within the file given by " "`concepts_list` parameter in the respective subject.", ) parser.add_argument( "--validation_number_images", type=int, default=4, help="Number of images that should be generated during validation with the validation parameters given. This " "can be defined within the file given by `concepts_list` parameter in the respective subject.", ) parser.add_argument( "--validation_negative_prompt", type=str, default=None, help="A negative prompt that is used during validation to verify that the model is learning. You can use commas" " to define multiple negative prompts, each one corresponding to a validation prompt. This parameter can " "be defined also within the file given by `concepts_list` parameter in the respective subject.", ) parser.add_argument( "--validation_inference_steps", type=int, default=25, help="Number of inference steps (denoising steps) to run during validation. This can be defined within the " "file given by `concepts_list` parameter in the respective subject.", ) parser.add_argument( "--validation_guidance_scale", type=float, default=7.5, help="To control how much the image generation process follows the text prompt. This can be defined within the " "file given by `concepts_list` parameter in the respective subject.", ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--prior_generation_precision", type=str, default=None, choices=["no", "fp32", "fp16", "bf16"], help=( "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) parser.add_argument( "--set_grads_to_none", action="store_true", help=( "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" " behaviors, so disable this argument if it causes any problems. More info:" " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" ), ) parser.add_argument( "--concepts_list", type=str, default=None, help="Path to json file containing a list of multiple concepts, will overwrite parameters like instance_prompt," " class_prompt, etc.", ) if input_args: args = parser.parse_args(input_args) else: args = parser.parse_args() if not args.concepts_list and (not args.instance_data_dir or not args.instance_prompt): raise ValueError( "You must specify either instance parameters (data directory, prompt, etc.) or use " "the `concept_list` parameter and specify them within the file." ) if args.concepts_list: if args.instance_prompt: raise ValueError("If you are using `concepts_list` parameter, define the instance prompt within the file.") if args.instance_data_dir: raise ValueError( "If you are using `concepts_list` parameter, define the instance data directory within the file." ) if args.validation_steps and (args.validation_prompt or args.validation_negative_prompt): raise ValueError( "If you are using `concepts_list` parameter, define validation parameters for " "each subject within the file:\n - `validation_prompt`." "\n - `validation_negative_prompt`.\n - `validation_guidance_scale`." "\n - `validation_number_images`.\n - `validation_prompt`." "\n - `validation_inference_steps`.\nThe `validation_steps` parameter is the only one " "that needs to be defined outside the file." ) env_local_rank = int(environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.with_prior_preservation: if not args.concepts_list: if not args.class_data_dir: raise ValueError("You must specify a data directory for class images.") if not args.class_prompt: raise ValueError("You must specify prompt for class images.") else: if args.class_data_dir: raise ValueError( "If you are using `concepts_list` parameter, define the class data directory within the file." ) if args.class_prompt: raise ValueError( "If you are using `concepts_list` parameter, define the class prompt within the file." ) else: # logger is not available yet if not args.class_data_dir: warnings.warn( "Ignoring `class_data_dir` parameter, you need to use it together with `with_prior_preservation`." ) if not args.class_prompt: warnings.warn( "Ignoring `class_prompt` parameter, you need to use it together with `with_prior_preservation`." ) return args class DreamBoothDataset(Dataset): """ A dataset to prepare the instance and class images with the prompts for fine-tuning the model. It pre-processes the images and then tokenizes prompts. """ def __init__( self, instance_data_root, instance_prompt, tokenizer, class_data_root=None, class_prompt=None, size=512, center_crop=False, ): self.size = size self.center_crop = center_crop self.tokenizer = tokenizer self.instance_data_root = [] self.instance_images_path = [] self.num_instance_images = [] self.instance_prompt = [] self.class_data_root = [] if class_data_root is not None else None self.class_images_path = [] self.num_class_images = [] self.class_prompt = [] self._length = 0 for i in range(len(instance_data_root)): self.instance_data_root.append(Path(instance_data_root[i])) if not self.instance_data_root[i].exists(): raise ValueError("Instance images root doesn't exists.") self.instance_images_path.append(list(Path(instance_data_root[i]).iterdir())) self.num_instance_images.append(len(self.instance_images_path[i])) self.instance_prompt.append(instance_prompt[i]) self._length += self.num_instance_images[i] if class_data_root is not None: self.class_data_root.append(Path(class_data_root[i])) self.class_data_root[i].mkdir(parents=True, exist_ok=True) self.class_images_path.append(list(self.class_data_root[i].iterdir())) self.num_class_images.append(len(self.class_images_path)) if self.num_class_images[i] > self.num_instance_images[i]: self._length -= self.num_instance_images[i] self._length += self.num_class_images[i] self.class_prompt.append(class_prompt[i]) self.image_transforms = transforms.Compose( [ transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __len__(self): return self._length def __getitem__(self, index): example = {} for i in range(len(self.instance_images_path)): instance_image = Image.open(self.instance_images_path[i][index % self.num_instance_images[i]]) if not instance_image.mode == "RGB": instance_image = instance_image.convert("RGB") example[f"instance_images_{i}"] = self.image_transforms(instance_image) example[f"instance_prompt_ids_{i}"] = self.tokenizer( self.instance_prompt[i], truncation=True, padding="max_length", max_length=self.tokenizer.model_max_length, return_tensors="pt", ).input_ids if self.class_data_root: for i in range(len(self.class_data_root)): class_image = Image.open(self.class_images_path[i][index % self.num_class_images[i]]) if not class_image.mode == "RGB": class_image = class_image.convert("RGB") example[f"class_images_{i}"] = self.image_transforms(class_image) example[f"class_prompt_ids_{i}"] = self.tokenizer( self.class_prompt[i], truncation=True, padding="max_length", max_length=self.tokenizer.model_max_length, return_tensors="pt", ).input_ids return example def collate_fn(num_instances, examples, with_prior_preservation=False): input_ids = [] pixel_values = [] for i in range(num_instances): input_ids += [example[f"instance_prompt_ids_{i}"] for example in examples] pixel_values += [example[f"instance_images_{i}"] for example in examples] # Concat class and instance examples for prior preservation. # We do this to avoid doing two forward passes. if with_prior_preservation: for i in range(num_instances): input_ids += [example[f"class_prompt_ids_{i}"] for example in examples] pixel_values += [example[f"class_images_{i}"] for example in examples] pixel_values = torch.stack(pixel_values) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() input_ids = torch.cat(input_ids, dim=0) batch = { "input_ids": input_ids, "pixel_values": pixel_values, } return batch class PromptDataset(Dataset): """A simple dataset to prepare the prompts to generate class images on multiple GPUs.""" def __init__(self, prompt, num_samples): self.prompt = prompt self.num_samples = num_samples def __len__(self): return self.num_samples def __getitem__(self, index): example = {} example["prompt"] = self.prompt example["index"] = index return example def main(args): logging_dir = Path(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration( total_limit=args.checkpoints_total_limit, project_dir=args.output_dir, logging_dir=logging_dir ) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) if args.report_to == "wandb": if not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models. # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate. if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1: raise ValueError( "Gradient accumulation is not supported when training the text encoder in distributed training. " "Please set gradient_accumulation_steps to 1. This feature will be supported in the future." ) instance_data_dir = [] instance_prompt = [] class_data_dir = [] if args.with_prior_preservation else None class_prompt = [] if args.with_prior_preservation else None if args.concepts_list: with open(args.concepts_list, "r") as f: concepts_list = json.load(f) if args.validation_steps: args.validation_prompt = [] args.validation_number_images = [] args.validation_negative_prompt = [] args.validation_inference_steps = [] args.validation_guidance_scale = [] for concept in concepts_list: instance_data_dir.append(concept["instance_data_dir"]) instance_prompt.append(concept["instance_prompt"]) if args.with_prior_preservation: try: class_data_dir.append(concept["class_data_dir"]) class_prompt.append(concept["class_prompt"]) except KeyError: raise KeyError( "`class_data_dir` or `class_prompt` not found in concepts_list while using " "`with_prior_preservation`." ) else: if "class_data_dir" in concept: warnings.warn( "Ignoring `class_data_dir` key, to use it you need to enable `with_prior_preservation`." ) if "class_prompt" in concept: warnings.warn( "Ignoring `class_prompt` key, to use it you need to enable `with_prior_preservation`." ) if args.validation_steps: args.validation_prompt.append(concept.get("validation_prompt", None)) args.validation_number_images.append(concept.get("validation_number_images", 4)) args.validation_negative_prompt.append(concept.get("validation_negative_prompt", None)) args.validation_inference_steps.append(concept.get("validation_inference_steps", 25)) args.validation_guidance_scale.append(concept.get("validation_guidance_scale", 7.5)) else: # Parse instance and class inputs, and double check that lengths match instance_data_dir = args.instance_data_dir.split(",") instance_prompt = args.instance_prompt.split(",") assert all( x == len(instance_data_dir) for x in [len(instance_data_dir), len(instance_prompt)] ), "Instance data dir and prompt inputs are not of the same length." if args.with_prior_preservation: class_data_dir = args.class_data_dir.split(",") class_prompt = args.class_prompt.split(",") assert all( x == len(instance_data_dir) for x in [len(instance_data_dir), len(instance_prompt), len(class_data_dir), len(class_prompt)] ), "Instance & class data dir or prompt inputs are not of the same length." if args.validation_steps: validation_prompts = args.validation_prompt.split(",") num_of_validation_prompts = len(validation_prompts) args.validation_prompt = validation_prompts args.validation_number_images = [args.validation_number_images] * num_of_validation_prompts negative_validation_prompts = [None] * num_of_validation_prompts if args.validation_negative_prompt: negative_validation_prompts = args.validation_negative_prompt.split(",") while len(negative_validation_prompts) < num_of_validation_prompts: negative_validation_prompts.append(None) args.validation_negative_prompt = negative_validation_prompts assert num_of_validation_prompts == len( negative_validation_prompts ), "The length of negative prompts for validation is greater than the number of validation prompts." args.validation_inference_steps = [args.validation_inference_steps] * num_of_validation_prompts args.validation_guidance_scale = [args.validation_guidance_scale] * num_of_validation_prompts # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Generate class images if prior preservation is enabled. if args.with_prior_preservation: for i in range(len(class_data_dir)): class_images_dir = Path(class_data_dir[i]) if not class_images_dir.exists(): class_images_dir.mkdir(parents=True) cur_class_images = len(list(class_images_dir.iterdir())) if cur_class_images < args.num_class_images: torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 if args.prior_generation_precision == "fp32": torch_dtype = torch.float32 elif args.prior_generation_precision == "fp16": torch_dtype = torch.float16 elif args.prior_generation_precision == "bf16": torch_dtype = torch.bfloat16 pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, torch_dtype=torch_dtype, safety_checker=None, revision=args.revision, ) pipeline.set_progress_bar_config(disable=True) num_new_images = args.num_class_images - cur_class_images logger.info(f"Number of class images to sample: {num_new_images}.") sample_dataset = PromptDataset(class_prompt[i], num_new_images) sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) sample_dataloader = accelerator.prepare(sample_dataloader) pipeline.to(accelerator.device) for example in tqdm( sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process ): images = pipeline(example["prompt"]).images for ii, image in enumerate(images): hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest() image_filename = ( class_images_dir / f"{example['index'][ii] + cur_class_images}-{hash_image}.jpg" ) image.save(image_filename) # Clean up the memory deleting one-time-use variables. del pipeline del sample_dataloader del sample_dataset if torch.cuda.is_available(): torch.cuda.empty_cache() # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load the tokenizer tokenizer = None if args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False) elif args.pretrained_model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, use_fast=False, ) # import correct text encoder class text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision) # Load scheduler and models noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") text_encoder = text_encoder_cls.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision ) vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision ) vae.requires_grad_(False) if not args.train_text_encoder: text_encoder.requires_grad_(False) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") if args.gradient_checkpointing: unet.enable_gradient_checkpointing() if args.train_text_encoder: text_encoder.gradient_checkpointing_enable() # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." ) optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW # Optimizer creation params_to_optimize = ( itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters() ) optimizer = optimizer_class( params_to_optimize, lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # Dataset and DataLoaders creation: train_dataset = DreamBoothDataset( instance_data_root=instance_data_dir, instance_prompt=instance_prompt, class_data_root=class_data_dir, class_prompt=class_prompt, tokenizer=tokenizer, size=args.resolution, center_crop=args.center_crop, ) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=lambda examples: collate_fn(len(instance_data_dir), examples, args.with_prior_preservation), num_workers=1, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, num_cycles=args.lr_num_cycles, power=args.lr_power, ) # Prepare everything with our `accelerator`. if args.train_text_encoder: unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, text_encoder, optimizer, train_dataloader, lr_scheduler ) else: unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, optimizer, train_dataloader, lr_scheduler ) # For mixed precision training we cast the text_encoder and vae weights to half-precision # as these models are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move vae and text_encoder to device and cast to weight_dtype vae.to(accelerator.device, dtype=weight_dtype) if not args.train_text_encoder: text_encoder.to(accelerator.device, dtype=weight_dtype) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initialize automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("dreambooth", config=vars(args)) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num batches each epoch = {len(train_dataloader)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = basename(args.resume_from_checkpoint) else: # Get the mos recent checkpoint dirs = listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(join(args.output_dir, path)) global_step = int(path.split("-")[1]) resume_global_step = global_step * args.gradient_accumulation_steps first_epoch = global_step // num_update_steps_per_epoch resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) # Only show the progress bar once on each machine. progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) progress_bar.set_description("Steps") for epoch in range(first_epoch, args.num_train_epochs): unet.train() if args.train_text_encoder: text_encoder.train() for step, batch in enumerate(train_dataloader): # Skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: if step % args.gradient_accumulation_steps == 0: progress_bar.update(1) continue with accelerator.accumulate(unet): # Convert images to latent space latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() latents = latents * vae.config.scaling_factor # Sample noise that we'll add to the latents noise = torch.randn_like(latents) bsz = latents.shape[0] # Sample a random timestep for each image time_steps = torch.randint( 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device ) time_steps = time_steps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, time_steps) # Get the text embedding for conditioning encoder_hidden_states = text_encoder(batch["input_ids"])[0] # Predict the noise residual model_pred = unet(noisy_latents, time_steps, encoder_hidden_states).sample # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, time_steps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") if args.with_prior_preservation: # Chunk the noise and model_pred into two parts and compute the loss on each part separately. model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) target, target_prior = torch.chunk(target, 2, dim=0) # Compute instance loss loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") # Compute prior loss prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") # Add the prior loss to the instance loss. loss = loss + args.prior_loss_weight * prior_loss else: loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") accelerator.backward(loss) if accelerator.sync_gradients: params_to_clip = ( itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters() ) accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad(set_to_none=args.set_grads_to_none) # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 if accelerator.is_main_process: if global_step % args.checkpointing_steps == 0: save_path = join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") if ( args.validation_steps and any(args.validation_prompt) and global_step % args.validation_steps == 0 ): images_set = generate_validation_images( text_encoder, tokenizer, unet, vae, args, accelerator, weight_dtype ) for images, validation_prompt in zip(images_set, args.validation_prompt): if len(images) > 0: label = str(uuid.uuid1())[:8] # generate an id for different set of images log_validation_images_to_tracker( images, label, validation_prompt, accelerator, global_step ) logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break # Create the pipeline using the trained modules and save it. accelerator.wait_for_everyone() if accelerator.is_main_process: pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, unet=accelerator.unwrap_model(unet), text_encoder=accelerator.unwrap_model(text_encoder), revision=args.revision, ) pipeline.save_pretrained(args.output_dir) if args.push_to_hub: upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": args = parse_args() main(args)
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/multi_token_textual_inversion/multi_token_clip.py
""" The main idea for this code is to provide a way for users to not need to bother with the hassle of multiple tokens for a concept by typing a photo of <concept>_0 <concept>_1 ... and so on and instead just do a photo of <concept> which gets translated to the above. This needs to work for both inference and training. For inference, the tokenizer encodes the text. So, we would want logic for our tokenizer to replace the placeholder token with it's underlying vectors For training, we would want to abstract away some logic like 1. Adding tokens 2. Updating gradient mask 3. Saving embeddings to our Util class here. so TODO: 1. have tokenizer keep track of concept, multiconcept pairs and replace during encode call x 2. have mechanism for adding tokens x 3. have mech for saving emebeddings x 4. get mask to update x 5. Loading tokens from embedding x 6. Integrate to training x 7. Test """ import copy import random from transformers import CLIPTokenizer class MultiTokenCLIPTokenizer(CLIPTokenizer): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.token_map = {} def try_adding_tokens(self, placeholder_token, *args, **kwargs): num_added_tokens = super().add_tokens(placeholder_token, *args, **kwargs) if num_added_tokens == 0: raise ValueError( f"The tokenizer already contains the token {placeholder_token}. Please pass a different" " `placeholder_token` that is not already in the tokenizer." ) def add_placeholder_tokens(self, placeholder_token, *args, num_vec_per_token=1, **kwargs): output = [] if num_vec_per_token == 1: self.try_adding_tokens(placeholder_token, *args, **kwargs) output.append(placeholder_token) else: output = [] for i in range(num_vec_per_token): ith_token = placeholder_token + f"_{i}" self.try_adding_tokens(ith_token, *args, **kwargs) output.append(ith_token) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"The tokenizer already has placeholder token {token} that can get confused with" f" {placeholder_token}keep placeholder tokens independent" ) self.token_map[placeholder_token] = output def replace_placeholder_tokens_in_text(self, text, vector_shuffle=False, prop_tokens_to_load=1.0): """ Here, we replace the placeholder tokens in text recorded in token_map so that the text_encoder can encode them vector_shuffle was inspired by https://github.com/rinongal/textual_inversion/pull/119 where shuffling tokens were found to force the model to learn the concepts more descriptively. """ if isinstance(text, list): output = [] for i in range(len(text)): output.append(self.replace_placeholder_tokens_in_text(text[i], vector_shuffle=vector_shuffle)) return output for placeholder_token in self.token_map: if placeholder_token in text: tokens = self.token_map[placeholder_token] tokens = tokens[: 1 + int(len(tokens) * prop_tokens_to_load)] if vector_shuffle: tokens = copy.copy(tokens) random.shuffle(tokens) text = text.replace(placeholder_token, " ".join(tokens)) return text def __call__(self, text, *args, vector_shuffle=False, prop_tokens_to_load=1.0, **kwargs): return super().__call__( self.replace_placeholder_tokens_in_text( text, vector_shuffle=vector_shuffle, prop_tokens_to_load=prop_tokens_to_load ), *args, **kwargs, ) def encode(self, text, *args, vector_shuffle=False, prop_tokens_to_load=1.0, **kwargs): return super().encode( self.replace_placeholder_tokens_in_text( text, vector_shuffle=vector_shuffle, prop_tokens_to_load=prop_tokens_to_load ), *args, **kwargs, )
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/multi_token_textual_inversion/README.md
## [Deprecated] Multi Token Textual Inversion **IMPORTART: This research project is deprecated. Multi Token Textual Inversion is now supported natively in [the official textual inversion example](https://github.com/huggingface/diffusers/tree/main/examples/textual_inversion#running-locally-with-pytorch).** The author of this project is [Isamu Isozaki](https://github.com/isamu-isozaki) - please make sure to tag the author for issue and PRs as well as @patrickvonplaten. We add multi token support to textual inversion. I added 1. num_vec_per_token for the number of used to reference that token 2. progressive_tokens for progressively training the token from 1 token to 2 token etc 3. progressive_tokens_max_steps for the max number of steps until we start full training 4. vector_shuffle to shuffle vectors Feel free to add these options to your training! In practice num_vec_per_token around 10+vector shuffle works great! ## Textual Inversion fine-tuning example [Textual inversion](https://arxiv.org/abs/2208.01618) is a method to personalize text2image models like stable diffusion on your own images using just 3-5 examples. The `textual_inversion.py` script shows how to implement the training procedure and adapt it for stable diffusion. ## Running on Colab Colab for training [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb) Colab for inference [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) ## Running locally with PyTorch ### Installing the dependencies Before running the scripts, make sure to install the library's training dependencies: **Important** To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install . ``` Then cd in the example folder and run ```bash pip install -r requirements.txt ``` And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: ```bash accelerate config ``` ### Cat toy example You need to accept the model license before downloading or using the weights. In this example we'll use model version `v1-5`, so you'll need to visit [its card](https://huggingface.co/runwayml/stable-diffusion-v1-5), read the license and tick the checkbox if you agree. You have to be a registered user in 🤗 Hugging Face Hub, and you'll also need to use an access token for the code to work. For more information on access tokens, please refer to [this section of the documentation](https://huggingface.co/docs/hub/security-tokens). Run the following command to authenticate your token ```bash huggingface-cli login ``` If you have already cloned the repo, then you won't need to go through these steps. <br> Now let's get our dataset.Download 3-4 images from [here](https://drive.google.com/drive/folders/1fmJMs25nxS_rSNqS5hTcRdLem_YQXbq5) and save them in a directory. This will be our training data. And launch the training using **___Note: Change the `resolution` to 768 if you are using the [stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) 768x768 model.___** ```bash export MODEL_NAME="runwayml/stable-diffusion-v1-5" export DATA_DIR="path-to-dir-containing-images" accelerate launch textual_inversion.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --train_data_dir=$DATA_DIR \ --learnable_property="object" \ --placeholder_token="<cat-toy>" --initializer_token="toy" \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --max_train_steps=3000 \ --learning_rate=5.0e-04 --scale_lr \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --output_dir="textual_inversion_cat" ``` A full training run takes ~1 hour on one V100 GPU. ### Inference Once you have trained a model using above command, the inference can be done simply using the `StableDiffusionPipeline`. Make sure to include the `placeholder_token` in your prompt. ```python from diffusers import StableDiffusionPipeline model_id = "path-to-your-trained-model" pipe = StableDiffusionPipeline.from_pretrained(model_id,torch_dtype=torch.float16).to("cuda") prompt = "A <cat-toy> backpack" image = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("cat-backpack.png") ``` ## Training with Flax/JAX For faster training on TPUs and GPUs you can leverage the flax training example. Follow the instructions above to get the model and dataset before running the script. Before running the scripts, make sure to install the library's training dependencies: ```bash pip install -U -r requirements_flax.txt ``` ```bash export MODEL_NAME="duongna/stable-diffusion-v1-4-flax" export DATA_DIR="path-to-dir-containing-images" python textual_inversion_flax.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --train_data_dir=$DATA_DIR \ --learnable_property="object" \ --placeholder_token="<cat-toy>" --initializer_token="toy" \ --resolution=512 \ --train_batch_size=1 \ --max_train_steps=3000 \ --learning_rate=5.0e-04 --scale_lr \ --output_dir="textual_inversion_cat" ``` It should be at least 70% faster than the PyTorch script with the same configuration. ### Training with xformers: You can enable memory efficient attention by [installing xFormers](https://github.com/facebookresearch/xformers#installing-xformers) and padding the `--enable_xformers_memory_efficient_attention` argument to the script. This is not available with the Flax/JAX implementation.
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/multi_token_textual_inversion/textual_inversion.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import argparse import logging import math import os import random from pathlib import Path import numpy as np import PIL import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from huggingface_hub import create_repo, upload_folder from multi_token_clip import MultiTokenCLIPTokenizer # TODO: remove and import from diffusers.utils when the new version of diffusers is released from packaging import version from PIL import Image from torch.utils.data import Dataset from torchvision import transforms from tqdm.auto import tqdm from transformers import CLIPTextModel import diffusers from diffusers import ( AutoencoderKL, DDPMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, StableDiffusionPipeline, UNet2DConditionModel, ) from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version, is_wandb_available from diffusers.utils.import_utils import is_xformers_available if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): PIL_INTERPOLATION = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: PIL_INTERPOLATION = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } # ------------------------------------------------------------------------------ # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.14.0.dev0") logger = get_logger(__name__) def add_tokens(tokenizer, text_encoder, placeholder_token, num_vec_per_token=1, initializer_token=None): """ Add tokens to the tokenizer and set the initial value of token embeddings """ tokenizer.add_placeholder_tokens(placeholder_token, num_vec_per_token=num_vec_per_token) text_encoder.resize_token_embeddings(len(tokenizer)) token_embeds = text_encoder.get_input_embeddings().weight.data placeholder_token_ids = tokenizer.encode(placeholder_token, add_special_tokens=False) if initializer_token: token_ids = tokenizer.encode(initializer_token, add_special_tokens=False) for i, placeholder_token_id in enumerate(placeholder_token_ids): token_embeds[placeholder_token_id] = token_embeds[token_ids[i * len(token_ids) // num_vec_per_token]] else: for i, placeholder_token_id in enumerate(placeholder_token_ids): token_embeds[placeholder_token_id] = torch.randn_like(token_embeds[placeholder_token_id]) return placeholder_token def save_progress(tokenizer, text_encoder, accelerator, save_path): for placeholder_token in tokenizer.token_map: placeholder_token_ids = tokenizer.encode(placeholder_token, add_special_tokens=False) learned_embeds = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[placeholder_token_ids] if len(placeholder_token_ids) == 1: learned_embeds = learned_embeds[None] learned_embeds_dict = {placeholder_token: learned_embeds.detach().cpu()} torch.save(learned_embeds_dict, save_path) def load_multitoken_tokenizer(tokenizer, text_encoder, learned_embeds_dict): for placeholder_token in learned_embeds_dict: placeholder_embeds = learned_embeds_dict[placeholder_token] num_vec_per_token = placeholder_embeds.shape[0] placeholder_embeds = placeholder_embeds.to(dtype=text_encoder.dtype) add_tokens(tokenizer, text_encoder, placeholder_token, num_vec_per_token=num_vec_per_token) placeholder_token_ids = tokenizer.encode(placeholder_token, add_special_tokens=False) token_embeds = text_encoder.get_input_embeddings().weight.data for i, placeholder_token_id in enumerate(placeholder_token_ids): token_embeds[placeholder_token_id] = placeholder_embeds[i] def load_multitoken_tokenizer_from_automatic(tokenizer, text_encoder, automatic_dict, placeholder_token): """ Automatic1111's tokens have format {'string_to_token': {'*': 265}, 'string_to_param': {'*': tensor([[ 0.0833, 0.0030, 0.0057, ..., -0.0264, -0.0616, -0.0529], [ 0.0058, -0.0190, -0.0584, ..., -0.0025, -0.0945, -0.0490], [ 0.0916, 0.0025, 0.0365, ..., -0.0685, -0.0124, 0.0728], [ 0.0812, -0.0199, -0.0100, ..., -0.0581, -0.0780, 0.0254]], requires_grad=True)}, 'name': 'FloralMarble-400', 'step': 399, 'sd_checkpoint': '4bdfc29c', 'sd_checkpoint_name': 'SD2.1-768'} """ learned_embeds_dict = {} learned_embeds_dict[placeholder_token] = automatic_dict["string_to_param"]["*"] load_multitoken_tokenizer(tokenizer, text_encoder, learned_embeds_dict) def get_mask(tokenizer, accelerator): # Get the mask of the weights that won't change mask = torch.ones(len(tokenizer)).to(accelerator.device, dtype=torch.bool) for placeholder_token in tokenizer.token_map: placeholder_token_ids = tokenizer.encode(placeholder_token, add_special_tokens=False) for i in range(len(placeholder_token_ids)): mask = mask & (torch.arange(len(tokenizer)) != placeholder_token_ids[i]).to(accelerator.device) return mask def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--progressive_tokens_max_steps", type=int, default=2000, help="The number of steps until all tokens will be used.", ) parser.add_argument( "--progressive_tokens", action="store_true", help="Progressively train the tokens. For example, first train for 1 token, then 2 tokens and so on.", ) parser.add_argument("--vector_shuffle", action="store_true", help="Shuffling tokens durint training") parser.add_argument( "--num_vec_per_token", type=int, default=1, help=( "The number of vectors used to represent the placeholder token. The higher the number, the better the" " result at the cost of editability. This can be fixed by prompt editing." ), ) parser.add_argument( "--save_steps", type=int, default=500, help="Save learned_embeds.bin every X updates steps.", ) parser.add_argument( "--only_save_embeds", action="store_true", default=False, help="Save only the embeddings for the new concept.", ) parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data." ) parser.add_argument( "--placeholder_token", type=str, default=None, required=True, help="A token to use as a placeholder for the concept.", ) parser.add_argument( "--initializer_token", type=str, default=None, required=True, help="A token to use as initializer word." ) parser.add_argument("--learnable_property", type=str, default="object", help="Choose between 'object' and 'style'") parser.add_argument("--repeats", type=int, default=100, help="How many times to repeat the training data.") parser.add_argument( "--output_dir", type=str, default="text-inversion-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution." ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=100) parser.add_argument( "--max_train_steps", type=int, default=5000, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ), ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument( "--validation_prompt", type=str, default=None, help="A prompt that is used during validation to verify that the model is learning.", ) parser.add_argument( "--num_validation_images", type=int, default=4, help="Number of images that should be generated during validation with `validation_prompt`.", ) parser.add_argument( "--validation_epochs", type=int, default=50, help=( "Run validation every X epochs. Validation consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`" " and logging the images." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=( "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" " for more docs" ), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.train_data_dir is None: raise ValueError("You must specify a train data directory.") return args imagenet_templates_small = [ "a photo of a {}", "a rendering of a {}", "a cropped photo of the {}", "the photo of a {}", "a photo of a clean {}", "a photo of a dirty {}", "a dark photo of the {}", "a photo of my {}", "a photo of the cool {}", "a close-up photo of a {}", "a bright photo of the {}", "a cropped photo of a {}", "a photo of the {}", "a good photo of the {}", "a photo of one {}", "a close-up photo of the {}", "a rendition of the {}", "a photo of the clean {}", "a rendition of a {}", "a photo of a nice {}", "a good photo of a {}", "a photo of the nice {}", "a photo of the small {}", "a photo of the weird {}", "a photo of the large {}", "a photo of a cool {}", "a photo of a small {}", ] imagenet_style_templates_small = [ "a painting in the style of {}", "a rendering in the style of {}", "a cropped painting in the style of {}", "the painting in the style of {}", "a clean painting in the style of {}", "a dirty painting in the style of {}", "a dark painting in the style of {}", "a picture in the style of {}", "a cool painting in the style of {}", "a close-up painting in the style of {}", "a bright painting in the style of {}", "a cropped painting in the style of {}", "a good painting in the style of {}", "a close-up painting in the style of {}", "a rendition in the style of {}", "a nice painting in the style of {}", "a small painting in the style of {}", "a weird painting in the style of {}", "a large painting in the style of {}", ] class TextualInversionDataset(Dataset): def __init__( self, data_root, tokenizer, learnable_property="object", # [object, style] size=512, repeats=100, interpolation="bicubic", flip_p=0.5, set="train", placeholder_token="*", center_crop=False, vector_shuffle=False, progressive_tokens=False, ): self.data_root = data_root self.tokenizer = tokenizer self.learnable_property = learnable_property self.size = size self.placeholder_token = placeholder_token self.center_crop = center_crop self.flip_p = flip_p self.vector_shuffle = vector_shuffle self.progressive_tokens = progressive_tokens self.prop_tokens_to_load = 0 self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)] self.num_images = len(self.image_paths) self._length = self.num_images if set == "train": self._length = self.num_images * repeats self.interpolation = { "linear": PIL_INTERPOLATION["linear"], "bilinear": PIL_INTERPOLATION["bilinear"], "bicubic": PIL_INTERPOLATION["bicubic"], "lanczos": PIL_INTERPOLATION["lanczos"], }[interpolation] self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p) def __len__(self): return self._length def __getitem__(self, i): example = {} image = Image.open(self.image_paths[i % self.num_images]) if not image.mode == "RGB": image = image.convert("RGB") placeholder_string = self.placeholder_token text = random.choice(self.templates).format(placeholder_string) example["input_ids"] = self.tokenizer.encode( text, padding="max_length", truncation=True, max_length=self.tokenizer.model_max_length, return_tensors="pt", vector_shuffle=self.vector_shuffle, prop_tokens_to_load=self.prop_tokens_to_load if self.progressive_tokens else 1.0, )[0] # default to score-sde preprocessing img = np.array(image).astype(np.uint8) if self.center_crop: crop = min(img.shape[0], img.shape[1]) ( h, w, ) = ( img.shape[0], img.shape[1], ) img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2] image = Image.fromarray(img) image = image.resize((self.size, self.size), resample=self.interpolation) image = self.flip_transform(image) image = np.array(image).astype(np.uint8) image = (image / 127.5 - 1.0).astype(np.float32) example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1) return example def main(): args = parse_args() logging_dir = os.path.join(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration( total_limit=args.checkpoints_total_limit, project_dir=args.output_dir, logging_dir=logging_dir ) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) if args.report_to == "wandb": if not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") import wandb # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load tokenizer if args.tokenizer_name: tokenizer = MultiTokenCLIPTokenizer.from_pretrained(args.tokenizer_name) elif args.pretrained_model_name_or_path: tokenizer = MultiTokenCLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") # Load scheduler and models noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") text_encoder = CLIPTextModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision ) vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision ) if is_xformers_available(): try: unet.enable_xformers_memory_efficient_attention() except Exception as e: logger.warning( "Could not enable memory efficient attention. Make sure xformers is installed" f" correctly and a GPU is available: {e}" ) add_tokens(tokenizer, text_encoder, args.placeholder_token, args.num_vec_per_token, args.initializer_token) # Freeze vae and unet vae.requires_grad_(False) unet.requires_grad_(False) # Freeze all parameters except for the token embeddings in text encoder text_encoder.text_model.encoder.requires_grad_(False) text_encoder.text_model.final_layer_norm.requires_grad_(False) text_encoder.text_model.embeddings.position_embedding.requires_grad_(False) if args.gradient_checkpointing: # Keep unet in train mode if we are using gradient checkpointing to save memory. # The dropout cannot be != 0 so it doesn't matter if we are in eval or train mode. unet.train() text_encoder.gradient_checkpointing_enable() unet.enable_gradient_checkpointing() if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warn( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Initialize the optimizer optimizer = torch.optim.AdamW( text_encoder.get_input_embeddings().parameters(), # only optimize the embeddings lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # Dataset and DataLoaders creation: train_dataset = TextualInversionDataset( data_root=args.train_data_dir, tokenizer=tokenizer, size=args.resolution, placeholder_token=args.placeholder_token, repeats=args.repeats, learnable_property=args.learnable_property, center_crop=args.center_crop, set="train", ) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, ) # Prepare everything with our `accelerator`. text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( text_encoder, optimizer, train_dataloader, lr_scheduler ) # For mixed precision training we cast the unet and vae weights to half-precision # as these models are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move vae and unet to device and cast to weight_dtype unet.to(accelerator.device, dtype=weight_dtype) vae.to(accelerator.device, dtype=weight_dtype) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("textual_inversion", config=vars(args)) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) resume_global_step = global_step * args.gradient_accumulation_steps first_epoch = global_step // num_update_steps_per_epoch resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) # Only show the progress bar once on each machine. progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) progress_bar.set_description("Steps") # keep original embeddings as reference orig_embeds_params = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight.data.clone() for epoch in range(first_epoch, args.num_train_epochs): text_encoder.train() for step, batch in enumerate(train_dataloader): # Skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: if step % args.gradient_accumulation_steps == 0: progress_bar.update(1) continue if args.progressive_tokens: train_dataset.prop_tokens_to_load = float(global_step) / args.progressive_tokens_max_steps with accelerator.accumulate(text_encoder): # Convert images to latent space latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample().detach() latents = latents * vae.config.scaling_factor # Sample noise that we'll add to the latents noise = torch.randn_like(latents) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # Get the text embedding for conditioning encoder_hidden_states = text_encoder(batch["input_ids"])[0].to(dtype=weight_dtype) # Predict the noise residual model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Let's make sure we don't update any embedding weights besides the newly added token index_no_updates = get_mask(tokenizer, accelerator) with torch.no_grad(): accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[ index_no_updates ] = orig_embeds_params[index_no_updates] # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 if global_step % args.save_steps == 0: save_path = os.path.join(args.output_dir, f"learned_embeds-steps-{global_step}.bin") save_progress(tokenizer, text_encoder, accelerator, save_path) if global_step % args.checkpointing_steps == 0: if accelerator.is_main_process: save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break if accelerator.is_main_process and args.validation_prompt is not None and epoch % args.validation_epochs == 0: logger.info( f"Running validation... \n Generating {args.num_validation_images} images with prompt:" f" {args.validation_prompt}." ) # create pipeline (note: unet and vae are loaded again in float32) pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=accelerator.unwrap_model(text_encoder), tokenizer=tokenizer, unet=unet, vae=vae, revision=args.revision, torch_dtype=weight_dtype, ) pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) # run inference generator = ( None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed) ) images = [] for _ in range(args.num_validation_images): with torch.autocast("cuda"): image = pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0] images.append(image) for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "validation": [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) del pipeline torch.cuda.empty_cache() # Create the pipeline using using the trained modules and save it. accelerator.wait_for_everyone() if accelerator.is_main_process: if args.push_to_hub and args.only_save_embeds: logger.warn("Enabling full model saving because --push_to_hub=True was specified.") save_full_model = True else: save_full_model = not args.only_save_embeds if save_full_model: pipeline = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=accelerator.unwrap_model(text_encoder), vae=vae, unet=unet, tokenizer=tokenizer, ) pipeline.save_pretrained(args.output_dir) # Save the newly trained embeddings save_path = os.path.join(args.output_dir, "learned_embeds.bin") save_progress(tokenizer, text_encoder, accelerator, save_path) if args.push_to_hub: upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": main()
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/multi_token_textual_inversion/requirements.txt
accelerate>=0.16.0 torchvision transformers>=4.25.1 ftfy tensorboard Jinja2
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/multi_token_textual_inversion/textual_inversion_flax.py
import argparse import logging import math import os import random from pathlib import Path import jax import jax.numpy as jnp import numpy as np import optax import PIL import torch import torch.utils.checkpoint import transformers from flax import jax_utils from flax.training import train_state from flax.training.common_utils import shard from huggingface_hub import create_repo, upload_folder # TODO: remove and import from diffusers.utils when the new version of diffusers is released from packaging import version from PIL import Image from torch.utils.data import Dataset from torchvision import transforms from tqdm.auto import tqdm from transformers import CLIPImageProcessor, CLIPTokenizer, FlaxCLIPTextModel, set_seed from diffusers import ( FlaxAutoencoderKL, FlaxDDPMScheduler, FlaxPNDMScheduler, FlaxStableDiffusionPipeline, FlaxUNet2DConditionModel, ) from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionSafetyChecker from diffusers.utils import check_min_version if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): PIL_INTERPOLATION = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: PIL_INTERPOLATION = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } # ------------------------------------------------------------------------------ # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.14.0.dev0") logger = logging.getLogger(__name__) def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data." ) parser.add_argument( "--placeholder_token", type=str, default=None, required=True, help="A token to use as a placeholder for the concept.", ) parser.add_argument( "--initializer_token", type=str, default=None, required=True, help="A token to use as initializer word." ) parser.add_argument("--learnable_property", type=str, default="object", help="Choose between 'object' and 'style'") parser.add_argument("--repeats", type=int, default=100, help="How many times to repeat the training data.") parser.add_argument( "--output_dir", type=str, default="text-inversion-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution." ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=100) parser.add_argument( "--max_train_steps", type=int, default=5000, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=True, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument( "--use_auth_token", action="store_true", help=( "Will use the token generated when running `huggingface-cli login` (necessary to use this script with" " private models)." ), ) parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.train_data_dir is None: raise ValueError("You must specify a train data directory.") return args imagenet_templates_small = [ "a photo of a {}", "a rendering of a {}", "a cropped photo of the {}", "the photo of a {}", "a photo of a clean {}", "a photo of a dirty {}", "a dark photo of the {}", "a photo of my {}", "a photo of the cool {}", "a close-up photo of a {}", "a bright photo of the {}", "a cropped photo of a {}", "a photo of the {}", "a good photo of the {}", "a photo of one {}", "a close-up photo of the {}", "a rendition of the {}", "a photo of the clean {}", "a rendition of a {}", "a photo of a nice {}", "a good photo of a {}", "a photo of the nice {}", "a photo of the small {}", "a photo of the weird {}", "a photo of the large {}", "a photo of a cool {}", "a photo of a small {}", ] imagenet_style_templates_small = [ "a painting in the style of {}", "a rendering in the style of {}", "a cropped painting in the style of {}", "the painting in the style of {}", "a clean painting in the style of {}", "a dirty painting in the style of {}", "a dark painting in the style of {}", "a picture in the style of {}", "a cool painting in the style of {}", "a close-up painting in the style of {}", "a bright painting in the style of {}", "a cropped painting in the style of {}", "a good painting in the style of {}", "a close-up painting in the style of {}", "a rendition in the style of {}", "a nice painting in the style of {}", "a small painting in the style of {}", "a weird painting in the style of {}", "a large painting in the style of {}", ] class TextualInversionDataset(Dataset): def __init__( self, data_root, tokenizer, learnable_property="object", # [object, style] size=512, repeats=100, interpolation="bicubic", flip_p=0.5, set="train", placeholder_token="*", center_crop=False, ): self.data_root = data_root self.tokenizer = tokenizer self.learnable_property = learnable_property self.size = size self.placeholder_token = placeholder_token self.center_crop = center_crop self.flip_p = flip_p self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)] self.num_images = len(self.image_paths) self._length = self.num_images if set == "train": self._length = self.num_images * repeats self.interpolation = { "linear": PIL_INTERPOLATION["linear"], "bilinear": PIL_INTERPOLATION["bilinear"], "bicubic": PIL_INTERPOLATION["bicubic"], "lanczos": PIL_INTERPOLATION["lanczos"], }[interpolation] self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p) def __len__(self): return self._length def __getitem__(self, i): example = {} image = Image.open(self.image_paths[i % self.num_images]) if not image.mode == "RGB": image = image.convert("RGB") placeholder_string = self.placeholder_token text = random.choice(self.templates).format(placeholder_string) example["input_ids"] = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.tokenizer.model_max_length, return_tensors="pt", ).input_ids[0] # default to score-sde preprocessing img = np.array(image).astype(np.uint8) if self.center_crop: crop = min(img.shape[0], img.shape[1]) ( h, w, ) = ( img.shape[0], img.shape[1], ) img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2] image = Image.fromarray(img) image = image.resize((self.size, self.size), resample=self.interpolation) image = self.flip_transform(image) image = np.array(image).astype(np.uint8) image = (image / 127.5 - 1.0).astype(np.float32) example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1) return example def resize_token_embeddings(model, new_num_tokens, initializer_token_id, placeholder_token_id, rng): if model.config.vocab_size == new_num_tokens or new_num_tokens is None: return model.config.vocab_size = new_num_tokens params = model.params old_embeddings = params["text_model"]["embeddings"]["token_embedding"]["embedding"] old_num_tokens, emb_dim = old_embeddings.shape initializer = jax.nn.initializers.normal() new_embeddings = initializer(rng, (new_num_tokens, emb_dim)) new_embeddings = new_embeddings.at[:old_num_tokens].set(old_embeddings) new_embeddings = new_embeddings.at[placeholder_token_id].set(new_embeddings[initializer_token_id]) params["text_model"]["embeddings"]["token_embedding"]["embedding"] = new_embeddings model.params = params return model def get_params_to_save(params): return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params)) def main(): args = parse_args() if args.seed is not None: set_seed(args.seed) if jax.process_index() == 0: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) if jax.process_index() == 0: transformers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() # Load the tokenizer and add the placeholder token as a additional special token if args.tokenizer_name: tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) elif args.pretrained_model_name_or_path: tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") # Add the placeholder token in tokenizer num_added_tokens = tokenizer.add_tokens(args.placeholder_token) if num_added_tokens == 0: raise ValueError( f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different" " `placeholder_token` that is not already in the tokenizer." ) # Convert the initializer_token, placeholder_token to ids token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False) # Check if initializer_token is a single token or a sequence of tokens if len(token_ids) > 1: raise ValueError("The initializer token must be a single token.") initializer_token_id = token_ids[0] placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token) # Load models and create wrapper for stable diffusion text_encoder = FlaxCLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") vae, vae_params = FlaxAutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") # Create sampling rng rng = jax.random.PRNGKey(args.seed) rng, _ = jax.random.split(rng) # Resize the token embeddings as we are adding new special tokens to the tokenizer text_encoder = resize_token_embeddings( text_encoder, len(tokenizer), initializer_token_id, placeholder_token_id, rng ) original_token_embeds = text_encoder.params["text_model"]["embeddings"]["token_embedding"]["embedding"] train_dataset = TextualInversionDataset( data_root=args.train_data_dir, tokenizer=tokenizer, size=args.resolution, placeholder_token=args.placeholder_token, repeats=args.repeats, learnable_property=args.learnable_property, center_crop=args.center_crop, set="train", ) def collate_fn(examples): pixel_values = torch.stack([example["pixel_values"] for example in examples]) input_ids = torch.stack([example["input_ids"] for example in examples]) batch = {"pixel_values": pixel_values, "input_ids": input_ids} batch = {k: v.numpy() for k, v in batch.items()} return batch total_train_batch_size = args.train_batch_size * jax.local_device_count() train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=total_train_batch_size, shuffle=True, drop_last=True, collate_fn=collate_fn ) # Optimization if args.scale_lr: args.learning_rate = args.learning_rate * total_train_batch_size constant_scheduler = optax.constant_schedule(args.learning_rate) optimizer = optax.adamw( learning_rate=constant_scheduler, b1=args.adam_beta1, b2=args.adam_beta2, eps=args.adam_epsilon, weight_decay=args.adam_weight_decay, ) def create_mask(params, label_fn): def _map(params, mask, label_fn): for k in params: if label_fn(k): mask[k] = "token_embedding" else: if isinstance(params[k], dict): mask[k] = {} _map(params[k], mask[k], label_fn) else: mask[k] = "zero" mask = {} _map(params, mask, label_fn) return mask def zero_grads(): # from https://github.com/deepmind/optax/issues/159#issuecomment-896459491 def init_fn(_): return () def update_fn(updates, state, params=None): return jax.tree_util.tree_map(jnp.zeros_like, updates), () return optax.GradientTransformation(init_fn, update_fn) # Zero out gradients of layers other than the token embedding layer tx = optax.multi_transform( {"token_embedding": optimizer, "zero": zero_grads()}, create_mask(text_encoder.params, lambda s: s == "token_embedding"), ) state = train_state.TrainState.create(apply_fn=text_encoder.__call__, params=text_encoder.params, tx=tx) noise_scheduler = FlaxDDPMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000 ) noise_scheduler_state = noise_scheduler.create_state() # Initialize our training train_rngs = jax.random.split(rng, jax.local_device_count()) # Define gradient train step fn def train_step(state, vae_params, unet_params, batch, train_rng): dropout_rng, sample_rng, new_train_rng = jax.random.split(train_rng, 3) def compute_loss(params): vae_outputs = vae.apply( {"params": vae_params}, batch["pixel_values"], deterministic=True, method=vae.encode ) latents = vae_outputs.latent_dist.sample(sample_rng) # (NHWC) -> (NCHW) latents = jnp.transpose(latents, (0, 3, 1, 2)) latents = latents * vae.config.scaling_factor noise_rng, timestep_rng = jax.random.split(sample_rng) noise = jax.random.normal(noise_rng, latents.shape) bsz = latents.shape[0] timesteps = jax.random.randint( timestep_rng, (bsz,), 0, noise_scheduler.config.num_train_timesteps, ) noisy_latents = noise_scheduler.add_noise(noise_scheduler_state, latents, noise, timesteps) encoder_hidden_states = state.apply_fn( batch["input_ids"], params=params, dropout_rng=dropout_rng, train=True )[0] # Predict the noise residual and compute loss model_pred = unet.apply( {"params": unet_params}, noisy_latents, timesteps, encoder_hidden_states, train=False ).sample # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(noise_scheduler_state, latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") loss = (target - model_pred) ** 2 loss = loss.mean() return loss grad_fn = jax.value_and_grad(compute_loss) loss, grad = grad_fn(state.params) grad = jax.lax.pmean(grad, "batch") new_state = state.apply_gradients(grads=grad) # Keep the token embeddings fixed except the newly added embeddings for the concept, # as we only want to optimize the concept embeddings token_embeds = original_token_embeds.at[placeholder_token_id].set( new_state.params["text_model"]["embeddings"]["token_embedding"]["embedding"][placeholder_token_id] ) new_state.params["text_model"]["embeddings"]["token_embedding"]["embedding"] = token_embeds metrics = {"loss": loss} metrics = jax.lax.pmean(metrics, axis_name="batch") return new_state, metrics, new_train_rng # Create parallel version of the train and eval step p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) # Replicate the train state on each device state = jax_utils.replicate(state) vae_params = jax_utils.replicate(vae_params) unet_params = jax_utils.replicate(unet_params) # Train! num_update_steps_per_epoch = math.ceil(len(train_dataloader)) # Scheduler and math around the number of training steps. if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel & distributed) = {total_train_batch_size}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 epochs = tqdm(range(args.num_train_epochs), desc=f"Epoch ... (1/{args.num_train_epochs})", position=0) for epoch in epochs: # ======================== Training ================================ train_metrics = [] steps_per_epoch = len(train_dataset) // total_train_batch_size train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False) # train for batch in train_dataloader: batch = shard(batch) state, train_metric, train_rngs = p_train_step(state, vae_params, unet_params, batch, train_rngs) train_metrics.append(train_metric) train_step_progress_bar.update(1) global_step += 1 if global_step >= args.max_train_steps: break train_metric = jax_utils.unreplicate(train_metric) train_step_progress_bar.close() epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})") # Create the pipeline using using the trained modules and save it. if jax.process_index() == 0: scheduler = FlaxPNDMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True ) safety_checker = FlaxStableDiffusionSafetyChecker.from_pretrained( "CompVis/stable-diffusion-safety-checker", from_pt=True ) pipeline = FlaxStableDiffusionPipeline( text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32"), ) pipeline.save_pretrained( args.output_dir, params={ "text_encoder": get_params_to_save(state.params), "vae": get_params_to_save(vae_params), "unet": get_params_to_save(unet_params), "safety_checker": safety_checker.params, }, ) # Also save the newly trained embeddings learned_embeds = get_params_to_save(state.params)["text_model"]["embeddings"]["token_embedding"]["embedding"][ placeholder_token_id ] learned_embeds_dict = {args.placeholder_token: learned_embeds} jnp.save(os.path.join(args.output_dir, "learned_embeds.npy"), learned_embeds_dict) if args.push_to_hub: upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) if __name__ == "__main__": main()
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/multi_token_textual_inversion/requirements_flax.txt
transformers>=4.25.1 flax optax torch torchvision ftfy tensorboard Jinja2
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/instructpix2pix_lora/train_instruct_pix2pix_lora.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Script to fine-tune Stable Diffusion for InstructPix2Pix.""" import argparse import logging import math import os import shutil from pathlib import Path import accelerate import datasets import numpy as np import PIL import requests import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from datasets import load_dataset from huggingface_hub import create_repo, upload_folder from packaging import version from torchvision import transforms from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer import diffusers from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionInstructPix2PixPipeline, UNet2DConditionModel from diffusers.models.lora import LoRALinearLayer from diffusers.optimization import get_scheduler from diffusers.training_utils import EMAModel from diffusers.utils import check_min_version, deprecate, is_wandb_available from diffusers.utils.import_utils import is_xformers_available # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.26.0.dev0") logger = get_logger(__name__, log_level="INFO") DATASET_NAME_MAPPING = { "fusing/instructpix2pix-1000-samples": ("input_image", "edit_prompt", "edited_image"), } WANDB_TABLE_COL_NAMES = ["original_image", "edited_image", "edit_prompt"] def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script for InstructPix2Pix.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--variant", type=str, default=None, help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", ) parser.add_argument( "--dataset_name", type=str, default=None, help=( "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that 🤗 Datasets can understand." ), ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The config of the Dataset, leave as None if there's only one config.", ) parser.add_argument( "--train_data_dir", type=str, default=None, help=( "A folder containing the training data. Folder contents must follow the structure described in" " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." ), ) parser.add_argument( "--original_image_column", type=str, default="input_image", help="The column of the dataset containing the original image on which edits where made.", ) parser.add_argument( "--edited_image_column", type=str, default="edited_image", help="The column of the dataset containing the edited image.", ) parser.add_argument( "--edit_prompt_column", type=str, default="edit_prompt", help="The column of the dataset containing the edit instruction.", ) parser.add_argument( "--val_image_url", type=str, default=None, help="URL to the original image that you would like to edit (used during inference for debugging purposes).", ) parser.add_argument( "--validation_prompt", type=str, default=None, help="A prompt that is sampled during training for inference." ) parser.add_argument( "--num_validation_images", type=int, default=4, help="Number of images that should be generated during validation with `validation_prompt`.", ) parser.add_argument( "--validation_epochs", type=int, default=1, help=( "Run fine-tuning validation every X epochs. The validation process consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`." ), ) parser.add_argument( "--max_train_samples", type=int, default=None, help=( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ), ) parser.add_argument( "--output_dir", type=str, default="instruct-pix2pix-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=256, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument( "--random_flip", action="store_true", help="whether to randomly flip images horizontally", ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=100) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--conditioning_dropout_prob", type=float, default=None, help="Conditioning dropout probability. Drops out the conditionings (image and edit prompt) used in training InstructPix2Pix. See section 3.2.1 in the paper: https://arxiv.org/abs/2211.09800.", ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") parser.add_argument( "--non_ema_revision", type=str, default=None, required=False, help=( "Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or" " remote repository specified with --pretrained_model_name_or_path." ), ) parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=("Max number of checkpoints to store."), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) parser.add_argument( "--rank", type=int, default=4, help=("The dimension of the LoRA update matrices."), ) args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank # Sanity checks if args.dataset_name is None and args.train_data_dir is None: raise ValueError("Need either a dataset name or a training folder.") # default to using the same revision for the non-ema model if not specified if args.non_ema_revision is None: args.non_ema_revision = args.revision return args def convert_to_np(image, resolution): image = image.convert("RGB").resize((resolution, resolution)) return np.array(image).transpose(2, 0, 1) def download_image(url): image = PIL.Image.open(requests.get(url, stream=True).raw) image = PIL.ImageOps.exif_transpose(image) image = image.convert("RGB") return image def main(): args = parse_args() if args.non_ema_revision is not None: deprecate( "non_ema_revision!=None", "0.15.0", message=( "Downloading 'non_ema' weights from revision branches of the Hub is deprecated. Please make sure to" " use `--variant=non_ema` instead." ), ) logging_dir = os.path.join(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.report_to == "wandb": if not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") import wandb # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load scheduler, tokenizer and models. noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") tokenizer = CLIPTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision ) text_encoder = CLIPTextModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant ) vae = AutoencoderKL.from_pretrained( args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant ) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.non_ema_revision ) # Freeze vae, text_encoder and unet vae.requires_grad_(False) text_encoder.requires_grad_(False) unet.requires_grad_(False) # referred to https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py unet_lora_parameters = [] for attn_processor_name, attn_processor in unet.attn_processors.items(): # Parse the attention module. attn_module = unet for n in attn_processor_name.split(".")[:-1]: attn_module = getattr(attn_module, n) # Set the `lora_layer` attribute of the attention-related matrices. attn_module.to_q.set_lora_layer( LoRALinearLayer( in_features=attn_module.to_q.in_features, out_features=attn_module.to_q.out_features, rank=args.rank ) ) attn_module.to_k.set_lora_layer( LoRALinearLayer( in_features=attn_module.to_k.in_features, out_features=attn_module.to_k.out_features, rank=args.rank ) ) attn_module.to_v.set_lora_layer( LoRALinearLayer( in_features=attn_module.to_v.in_features, out_features=attn_module.to_v.out_features, rank=args.rank ) ) attn_module.to_out[0].set_lora_layer( LoRALinearLayer( in_features=attn_module.to_out[0].in_features, out_features=attn_module.to_out[0].out_features, rank=args.rank, ) ) # Accumulate the LoRA params to optimize. unet_lora_parameters.extend(attn_module.to_q.lora_layer.parameters()) unet_lora_parameters.extend(attn_module.to_k.lora_layer.parameters()) unet_lora_parameters.extend(attn_module.to_v.lora_layer.parameters()) unet_lora_parameters.extend(attn_module.to_out[0].lora_layer.parameters()) # Create EMA for the unet. if args.use_ema: ema_unet = EMAModel(unet.parameters(), model_cls=UNet2DConditionModel, model_config=unet.config) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warn( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") # `accelerate` 0.16.0 will have better support for customized saving if version.parse(accelerate.__version__) >= version.parse("0.16.0"): # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: if args.use_ema: ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema")) for i, model in enumerate(models): model.save_pretrained(os.path.join(output_dir, "unet")) # make sure to pop weight so that corresponding model is not saved again weights.pop() def load_model_hook(models, input_dir): if args.use_ema: load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DConditionModel) ema_unet.load_state_dict(load_model.state_dict()) ema_unet.to(accelerator.device) del load_model for i in range(len(models)): # pop models so that they are not loaded again model = models.pop() # load diffusers style into model load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet") model.register_to_config(**load_model.config) model.load_state_dict(load_model.state_dict()) del load_model accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) if args.gradient_checkpointing: unet.enable_gradient_checkpointing() # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Initialize the optimizer if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" ) optimizer_cls = bnb.optim.AdamW8bit else: optimizer_cls = torch.optim.AdamW # train on only unet_lora_parameters optimizer = optimizer_cls( unet_lora_parameters, lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # Get the datasets: you can either provide your own training and evaluation files (see below) # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, ) else: data_files = {} if args.train_data_dir is not None: data_files["train"] = os.path.join(args.train_data_dir, "**") dataset = load_dataset( "imagefolder", data_files=data_files, cache_dir=args.cache_dir, ) # See more about loading custom images at # https://huggingface.co/docs/datasets/main/en/image_load#imagefolder # Preprocessing the datasets. # We need to tokenize inputs and targets. column_names = dataset["train"].column_names # 6. Get the column names for input/target. dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None) if args.original_image_column is None: original_image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] else: original_image_column = args.original_image_column if original_image_column not in column_names: raise ValueError( f"--original_image_column' value '{args.original_image_column}' needs to be one of: {', '.join(column_names)}" ) if args.edit_prompt_column is None: edit_prompt_column = dataset_columns[1] if dataset_columns is not None else column_names[1] else: edit_prompt_column = args.edit_prompt_column if edit_prompt_column not in column_names: raise ValueError( f"--edit_prompt_column' value '{args.edit_prompt_column}' needs to be one of: {', '.join(column_names)}" ) if args.edited_image_column is None: edited_image_column = dataset_columns[2] if dataset_columns is not None else column_names[2] else: edited_image_column = args.edited_image_column if edited_image_column not in column_names: raise ValueError( f"--edited_image_column' value '{args.edited_image_column}' needs to be one of: {', '.join(column_names)}" ) # Preprocessing the datasets. # We need to tokenize input captions and transform the images. def tokenize_captions(captions): inputs = tokenizer( captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" ) return inputs.input_ids # Preprocessing the datasets. train_transforms = transforms.Compose( [ transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution), transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x), ] ) def preprocess_images(examples): original_images = np.concatenate( [convert_to_np(image, args.resolution) for image in examples[original_image_column]] ) edited_images = np.concatenate( [convert_to_np(image, args.resolution) for image in examples[edited_image_column]] ) # We need to ensure that the original and the edited images undergo the same # augmentation transforms. images = np.concatenate([original_images, edited_images]) images = torch.tensor(images) images = 2 * (images / 255) - 1 return train_transforms(images) def preprocess_train(examples): # Preprocess images. preprocessed_images = preprocess_images(examples) # Since the original and edited images were concatenated before # applying the transformations, we need to separate them and reshape # them accordingly. original_images, edited_images = preprocessed_images.chunk(2) original_images = original_images.reshape(-1, 3, args.resolution, args.resolution) edited_images = edited_images.reshape(-1, 3, args.resolution, args.resolution) # Collate the preprocessed images into the `examples`. examples["original_pixel_values"] = original_images examples["edited_pixel_values"] = edited_images # Preprocess the captions. captions = list(examples[edit_prompt_column]) examples["input_ids"] = tokenize_captions(captions) return examples with accelerator.main_process_first(): if args.max_train_samples is not None: dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) # Set the training transforms train_dataset = dataset["train"].with_transform(preprocess_train) def collate_fn(examples): original_pixel_values = torch.stack([example["original_pixel_values"] for example in examples]) original_pixel_values = original_pixel_values.to(memory_format=torch.contiguous_format).float() edited_pixel_values = torch.stack([example["edited_pixel_values"] for example in examples]) edited_pixel_values = edited_pixel_values.to(memory_format=torch.contiguous_format).float() input_ids = torch.stack([example["input_ids"] for example in examples]) return { "original_pixel_values": original_pixel_values, "edited_pixel_values": edited_pixel_values, "input_ids": input_ids, } # DataLoaders creation: train_dataloader = torch.utils.data.DataLoader( train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=args.train_batch_size, num_workers=args.dataloader_num_workers, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, ) # Prepare everything with our `accelerator`. unet, unet_lora_parameters, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, unet_lora_parameters, optimizer, train_dataloader, lr_scheduler ) if args.use_ema: ema_unet.to(accelerator.device) # For mixed precision training we cast the text_encoder and vae weights to half-precision # as these models are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move text_encode and vae to gpu and cast to weight_dtype text_encoder.to(accelerator.device, dtype=weight_dtype) vae.to(accelerator.device, dtype=weight_dtype) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("instruct-pix2pix", config=vars(args)) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) resume_global_step = global_step * args.gradient_accumulation_steps first_epoch = global_step // num_update_steps_per_epoch resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) # Only show the progress bar once on each machine. progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) progress_bar.set_description("Steps") for epoch in range(first_epoch, args.num_train_epochs): unet.train() train_loss = 0.0 for step, batch in enumerate(train_dataloader): # Skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: if step % args.gradient_accumulation_steps == 0: progress_bar.update(1) continue with accelerator.accumulate(unet): # We want to learn the denoising process w.r.t the edited images which # are conditioned on the original image (which was edited) and the edit instruction. # So, first, convert images to latent space. latents = vae.encode(batch["edited_pixel_values"].to(weight_dtype)).latent_dist.sample() latents = latents * vae.config.scaling_factor # Sample noise that we'll add to the latents noise = torch.randn_like(latents) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # Get the text embedding for conditioning. encoder_hidden_states = text_encoder(batch["input_ids"])[0] # Get the additional image embedding for conditioning. # Instead of getting a diagonal Gaussian here, we simply take the mode. original_image_embeds = vae.encode(batch["original_pixel_values"].to(weight_dtype)).latent_dist.mode() # Conditioning dropout to support classifier-free guidance during inference. For more details # check out the section 3.2.1 of the original paper https://arxiv.org/abs/2211.09800. if args.conditioning_dropout_prob is not None: random_p = torch.rand(bsz, device=latents.device, generator=generator) # Sample masks for the edit prompts. prompt_mask = random_p < 2 * args.conditioning_dropout_prob prompt_mask = prompt_mask.reshape(bsz, 1, 1) # Final text conditioning. null_conditioning = text_encoder(tokenize_captions([""]).to(accelerator.device))[0] encoder_hidden_states = torch.where(prompt_mask, null_conditioning, encoder_hidden_states) # Sample masks for the original images. image_mask_dtype = original_image_embeds.dtype image_mask = 1 - ( (random_p >= args.conditioning_dropout_prob).to(image_mask_dtype) * (random_p < 3 * args.conditioning_dropout_prob).to(image_mask_dtype) ) image_mask = image_mask.reshape(bsz, 1, 1, 1) # Final image conditioning. original_image_embeds = image_mask * original_image_embeds # Concatenate the `original_image_embeds` with the `noisy_latents`. concatenated_noisy_latents = torch.cat([noisy_latents, original_image_embeds], dim=1) # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") # Predict the noise residual and compute loss model_pred = unet(concatenated_noisy_latents, timesteps, encoder_hidden_states).sample loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") # Gather the losses across all processes for logging (if we use distributed training). avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() train_loss += avg_loss.item() / args.gradient_accumulation_steps # Backpropagate accelerator.backward(loss) if accelerator.sync_gradients: accelerator.clip_grad_norm_(unet_lora_parameters, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: if args.use_ema: ema_unet.step(unet_lora_parameters) progress_bar.update(1) global_step += 1 accelerator.log({"train_loss": train_loss}, step=global_step) train_loss = 0.0 if global_step % args.checkpointing_steps == 0: if accelerator.is_main_process: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: checkpoints = os.listdir(args.output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= args.checkpoints_total_limit: num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) if global_step >= args.max_train_steps: break if accelerator.is_main_process: if ( (args.val_image_url is not None) and (args.validation_prompt is not None) and (epoch % args.validation_epochs == 0) ): logger.info( f"Running validation... \n Generating {args.num_validation_images} images with prompt:" f" {args.validation_prompt}." ) # create pipeline if args.use_ema: # Store the UNet parameters temporarily and load the EMA parameters to perform inference. ema_unet.store(unet.parameters()) ema_unet.copy_to(unet.parameters()) # The models need unwrapping because for compatibility in distributed training mode. pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained( args.pretrained_model_name_or_path, unet=accelerator.unwrap_model(unet), text_encoder=accelerator.unwrap_model(text_encoder), vae=accelerator.unwrap_model(vae), revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) # run inference original_image = download_image(args.val_image_url) edited_images = [] with torch.autocast( str(accelerator.device).replace(":0", ""), enabled=accelerator.mixed_precision == "fp16" ): for _ in range(args.num_validation_images): edited_images.append( pipeline( args.validation_prompt, image=original_image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=7, generator=generator, ).images[0] ) for tracker in accelerator.trackers: if tracker.name == "wandb": wandb_table = wandb.Table(columns=WANDB_TABLE_COL_NAMES) for edited_image in edited_images: wandb_table.add_data( wandb.Image(original_image), wandb.Image(edited_image), args.validation_prompt ) tracker.log({"validation": wandb_table}) if args.use_ema: # Switch back to the original UNet parameters. ema_unet.restore(unet.parameters()) del pipeline torch.cuda.empty_cache() # Create the pipeline using the trained modules and save it. accelerator.wait_for_everyone() if accelerator.is_main_process: unet = accelerator.unwrap_model(unet) if args.use_ema: ema_unet.copy_to(unet.parameters()) pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=accelerator.unwrap_model(text_encoder), vae=accelerator.unwrap_model(vae), unet=unet, revision=args.revision, variant=args.variant, ) # store only LORA layers unet.save_attn_procs(args.output_dir) if args.push_to_hub: upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) if args.validation_prompt is not None: edited_images = [] pipeline = pipeline.to(accelerator.device) with torch.autocast(str(accelerator.device).replace(":0", "")): for _ in range(args.num_validation_images): edited_images.append( pipeline( args.validation_prompt, image=original_image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=7, generator=generator, ).images[0] ) for tracker in accelerator.trackers: if tracker.name == "wandb": wandb_table = wandb.Table(columns=WANDB_TABLE_COL_NAMES) for edited_image in edited_images: wandb_table.add_data( wandb.Image(original_image), wandb.Image(edited_image), args.validation_prompt ) tracker.log({"test": wandb_table}) accelerator.end_training() if __name__ == "__main__": main()
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/instructpix2pix_lora/README.md
# InstructPix2Pix text-to-edit-image fine-tuning This extended LoRA training script was authored by [Aiden-Frost](https://github.com/Aiden-Frost). This is an experimental LoRA extension of [this example](https://github.com/huggingface/diffusers/blob/main/examples/instruct_pix2pix/train_instruct_pix2pix.py). This script provides further support add LoRA layers for unet model. ## Training script example ```bash export MODEL_ID="timbrooks/instruct-pix2pix" export DATASET_ID="instruction-tuning-sd/cartoonization" export OUTPUT_DIR="instructPix2Pix-cartoonization" accelerate launch finetune_instruct_pix2pix.py \ --pretrained_model_name_or_path=$MODEL_ID \ --dataset_name=$DATASET_ID \ --enable_xformers_memory_efficient_attention \ --resolution=256 --random_flip \ --train_batch_size=2 --gradient_accumulation_steps=4 --gradient_checkpointing \ --max_train_steps=15000 \ --checkpointing_steps=5000 --checkpoints_total_limit=1 \ --learning_rate=5e-05 --lr_warmup_steps=0 \ --val_image_url="https://hf.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" \ --validation_prompt="Generate a cartoonized version of the natural image" \ --seed=42 \ --rank=4 \ --output_dir=$OUTPUT_DIR \ --report_to=wandb \ --push_to_hub ``` ## Inference After training the model and the lora weight of the model is stored in the ```$OUTPUT_DIR```. ```bash # load the base model pipeline pipe_lora = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix") # Load LoRA weights from the provided path output_dir = "path/to/lora_weight_directory" pipe_lora.unet.load_attn_procs(output_dir) input_image_path = "/path/to/input_image" input_image = Image.open(input_image_path) edited_images = pipe_lora(num_images_per_prompt=1, prompt=args.edit_prompt, image=input_image, num_inference_steps=1000).images edited_images[0].show() ``` ## Results Here is an example of using the script to train a instructpix2pix model. Trained on google colab T4 GPU ```bash MODEL_ID="timbrooks/instruct-pix2pix" DATASET_ID="instruction-tuning-sd/cartoonization" TRAIN_EPOCHS=100 ``` Below are few examples for given the input image, edit_prompt and the edited_image (output of the model) <p align="center"> <img src="https://github.com/Aiden-Frost/Efficiently-teaching-counting-and-cartoonization-to-InstructPix2Pix.-/blob/main/diffusers_result_assets/edited_image_results.png?raw=true" alt="instructpix2pix-inputs" width=600/> </p> Here are some rough statistics about the training model using this script <p align="center"> <img src="https://github.com/Aiden-Frost/Efficiently-teaching-counting-and-cartoonization-to-InstructPix2Pix.-/blob/main/diffusers_result_assets/results.png?raw=true" alt="instructpix2pix-inputs" width=600/> </p> ## References * InstructPix2Pix - https://github.com/timothybrooks/instruct-pix2pix * Dataset and example training script - https://huggingface.co/blog/instruction-tuning-sd * For more information about the project - https://github.com/Aiden-Frost/Efficiently-teaching-counting-and-cartoonization-to-InstructPix2Pix.-
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/controlnet/train_controlnet_webdataset.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import argparse import functools import gc import itertools import json import logging import math import os import random import shutil from pathlib import Path from typing import List, Optional, Union import accelerate import cv2 import numpy as np import torch import torch.utils.checkpoint import transformers import webdataset as wds from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from braceexpand import braceexpand from huggingface_hub import create_repo, upload_folder from packaging import version from PIL import Image from torch.utils.data import default_collate from torchvision import transforms from tqdm.auto import tqdm from transformers import AutoTokenizer, DPTFeatureExtractor, DPTForDepthEstimation, PretrainedConfig from webdataset.tariterators import ( base_plus_ext, tar_file_expander, url_opener, valid_sample, ) import diffusers from diffusers import ( AutoencoderKL, ControlNetModel, EulerDiscreteScheduler, StableDiffusionXLControlNetPipeline, UNet2DConditionModel, ) from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version, is_wandb_available from diffusers.utils.import_utils import is_xformers_available MAX_SEQ_LENGTH = 77 if is_wandb_available(): import wandb # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.18.0.dev0") logger = get_logger(__name__) def filter_keys(key_set): def _f(dictionary): return {k: v for k, v in dictionary.items() if k in key_set} return _f def group_by_keys_nothrow(data, keys=base_plus_ext, lcase=True, suffixes=None, handler=None): """Return function over iterator that groups key, value pairs into samples. :param keys: function that splits the key into key and extension (base_plus_ext) :param lcase: convert suffixes to lower case (Default value = True) """ current_sample = None for filesample in data: assert isinstance(filesample, dict) fname, value = filesample["fname"], filesample["data"] prefix, suffix = keys(fname) if prefix is None: continue if lcase: suffix = suffix.lower() # FIXME webdataset version throws if suffix in current_sample, but we have a potential for # this happening in the current LAION400m dataset if a tar ends with same prefix as the next # begins, rare, but can happen since prefix aren't unique across tar files in that dataset if current_sample is None or prefix != current_sample["__key__"] or suffix in current_sample: if valid_sample(current_sample): yield current_sample current_sample = {"__key__": prefix, "__url__": filesample["__url__"]} if suffixes is None or suffix in suffixes: current_sample[suffix] = value if valid_sample(current_sample): yield current_sample def tarfile_to_samples_nothrow(src, handler=wds.warn_and_continue): # NOTE this is a re-impl of the webdataset impl with group_by_keys that doesn't throw streams = url_opener(src, handler=handler) files = tar_file_expander(streams, handler=handler) samples = group_by_keys_nothrow(files, handler=handler) return samples def control_transform(image): image = np.array(image) low_threshold = 100 high_threshold = 200 image = cv2.Canny(image, low_threshold, high_threshold) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) control_image = Image.fromarray(image) return control_image def canny_image_transform(example, resolution=1024): image = example["image"] image = transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BILINEAR)(image) # get crop coordinates c_top, c_left, _, _ = transforms.RandomCrop.get_params(image, output_size=(resolution, resolution)) image = transforms.functional.crop(image, c_top, c_left, resolution, resolution) control_image = control_transform(image) image = transforms.ToTensor()(image) image = transforms.Normalize([0.5], [0.5])(image) control_image = transforms.ToTensor()(control_image) example["image"] = image example["control_image"] = control_image example["crop_coords"] = (c_top, c_left) return example def depth_image_transform(example, feature_extractor, resolution=1024): image = example["image"] image = transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BILINEAR)(image) # get crop coordinates c_top, c_left, _, _ = transforms.RandomCrop.get_params(image, output_size=(resolution, resolution)) image = transforms.functional.crop(image, c_top, c_left, resolution, resolution) control_image = feature_extractor(images=image, return_tensors="pt").pixel_values.squeeze(0) image = transforms.ToTensor()(image) image = transforms.Normalize([0.5], [0.5])(image) example["image"] = image example["control_image"] = control_image example["crop_coords"] = (c_top, c_left) return example class WebdatasetFilter: def __init__(self, min_size=1024, max_pwatermark=0.5): self.min_size = min_size self.max_pwatermark = max_pwatermark def __call__(self, x): try: if "json" in x: x_json = json.loads(x["json"]) filter_size = (x_json.get("original_width", 0.0) or 0.0) >= self.min_size and x_json.get( "original_height", 0 ) >= self.min_size filter_watermark = (x_json.get("pwatermark", 1.0) or 1.0) <= self.max_pwatermark return filter_size and filter_watermark else: return False except Exception: return False class Text2ImageDataset: def __init__( self, train_shards_path_or_url: Union[str, List[str]], eval_shards_path_or_url: Union[str, List[str]], num_train_examples: int, per_gpu_batch_size: int, global_batch_size: int, num_workers: int, resolution: int = 256, center_crop: bool = True, random_flip: bool = False, shuffle_buffer_size: int = 1000, pin_memory: bool = False, persistent_workers: bool = False, control_type: str = "canny", feature_extractor: Optional[DPTFeatureExtractor] = None, ): if not isinstance(train_shards_path_or_url, str): train_shards_path_or_url = [list(braceexpand(urls)) for urls in train_shards_path_or_url] # flatten list using itertools train_shards_path_or_url = list(itertools.chain.from_iterable(train_shards_path_or_url)) if not isinstance(eval_shards_path_or_url, str): eval_shards_path_or_url = [list(braceexpand(urls)) for urls in eval_shards_path_or_url] # flatten list using itertools eval_shards_path_or_url = list(itertools.chain.from_iterable(eval_shards_path_or_url)) def get_orig_size(json): return (int(json.get("original_width", 0.0)), int(json.get("original_height", 0.0))) if control_type == "canny": image_transform = functools.partial(canny_image_transform, resolution=resolution) elif control_type == "depth": image_transform = functools.partial( depth_image_transform, feature_extractor=feature_extractor, resolution=resolution ) processing_pipeline = [ wds.decode("pil", handler=wds.ignore_and_continue), wds.rename( image="jpg;png;jpeg;webp", control_image="jpg;png;jpeg;webp", text="text;txt;caption", orig_size="json", handler=wds.warn_and_continue, ), wds.map(filter_keys({"image", "control_image", "text", "orig_size"})), wds.map_dict(orig_size=get_orig_size), wds.map(image_transform), wds.to_tuple("image", "control_image", "text", "orig_size", "crop_coords"), ] # Create train dataset and loader pipeline = [ wds.ResampledShards(train_shards_path_or_url), tarfile_to_samples_nothrow, wds.select(WebdatasetFilter(min_size=512)), wds.shuffle(shuffle_buffer_size), *processing_pipeline, wds.batched(per_gpu_batch_size, partial=False, collation_fn=default_collate), ] num_worker_batches = math.ceil(num_train_examples / (global_batch_size * num_workers)) # per dataloader worker num_batches = num_worker_batches * num_workers num_samples = num_batches * global_batch_size # each worker is iterating over this self._train_dataset = wds.DataPipeline(*pipeline).with_epoch(num_worker_batches) self._train_dataloader = wds.WebLoader( self._train_dataset, batch_size=None, shuffle=False, num_workers=num_workers, pin_memory=pin_memory, persistent_workers=persistent_workers, ) # add meta-data to dataloader instance for convenience self._train_dataloader.num_batches = num_batches self._train_dataloader.num_samples = num_samples # Create eval dataset and loader pipeline = [ wds.SimpleShardList(eval_shards_path_or_url), wds.split_by_worker, wds.tarfile_to_samples(handler=wds.ignore_and_continue), *processing_pipeline, wds.batched(per_gpu_batch_size, partial=False, collation_fn=default_collate), ] self._eval_dataset = wds.DataPipeline(*pipeline) self._eval_dataloader = wds.WebLoader( self._eval_dataset, batch_size=None, shuffle=False, num_workers=num_workers, pin_memory=pin_memory, persistent_workers=persistent_workers, ) @property def train_dataset(self): return self._train_dataset @property def train_dataloader(self): return self._train_dataloader @property def eval_dataset(self): return self._eval_dataset @property def eval_dataloader(self): return self._eval_dataloader def image_grid(imgs, rows, cols): assert len(imgs) == rows * cols w, h = imgs[0].size grid = Image.new("RGB", size=(cols * w, rows * h)) for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) return grid def log_validation(vae, unet, controlnet, args, accelerator, weight_dtype, step): logger.info("Running validation... ") controlnet = accelerator.unwrap_model(controlnet) pipeline = StableDiffusionXLControlNetPipeline.from_pretrained( args.pretrained_model_name_or_path, vae=vae, unet=unet, controlnet=controlnet, revision=args.revision, torch_dtype=weight_dtype, ) # pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) if args.enable_xformers_memory_efficient_attention: pipeline.enable_xformers_memory_efficient_attention() if args.seed is None: generator = None else: generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if len(args.validation_image) == len(args.validation_prompt): validation_images = args.validation_image validation_prompts = args.validation_prompt elif len(args.validation_image) == 1: validation_images = args.validation_image * len(args.validation_prompt) validation_prompts = args.validation_prompt elif len(args.validation_prompt) == 1: validation_images = args.validation_image validation_prompts = args.validation_prompt * len(args.validation_image) else: raise ValueError( "number of `args.validation_image` and `args.validation_prompt` should be checked in `parse_args`" ) image_logs = [] for validation_prompt, validation_image in zip(validation_prompts, validation_images): validation_image = Image.open(validation_image).convert("RGB") validation_image = validation_image.resize((args.resolution, args.resolution)) images = [] for _ in range(args.num_validation_images): with torch.autocast("cuda"): image = pipeline( validation_prompt, image=validation_image, num_inference_steps=20, generator=generator ).images[0] images.append(image) image_logs.append( {"validation_image": validation_image, "images": images, "validation_prompt": validation_prompt} ) for tracker in accelerator.trackers: if tracker.name == "tensorboard": for log in image_logs: images = log["images"] validation_prompt = log["validation_prompt"] validation_image = log["validation_image"] formatted_images = [] formatted_images.append(np.asarray(validation_image)) for image in images: formatted_images.append(np.asarray(image)) formatted_images = np.stack(formatted_images) tracker.writer.add_images(validation_prompt, formatted_images, step, dataformats="NHWC") elif tracker.name == "wandb": formatted_images = [] for log in image_logs: images = log["images"] validation_prompt = log["validation_prompt"] validation_image = log["validation_image"] formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning")) for image in images: image = wandb.Image(image, caption=validation_prompt) formatted_images.append(image) tracker.log({"validation": formatted_images}) else: logger.warn(f"image logging not implemented for {tracker.name}") del pipeline gc.collect() torch.cuda.empty_cache() return image_logs def import_model_class_from_model_name_or_path( pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" ): text_encoder_config = PretrainedConfig.from_pretrained( pretrained_model_name_or_path, subfolder=subfolder, revision=revision ) model_class = text_encoder_config.architectures[0] if model_class == "CLIPTextModel": from transformers import CLIPTextModel return CLIPTextModel elif model_class == "CLIPTextModelWithProjection": from transformers import CLIPTextModelWithProjection return CLIPTextModelWithProjection else: raise ValueError(f"{model_class} is not supported.") def save_model_card(repo_id: str, image_logs=None, base_model=str, repo_folder=None): img_str = "" if image_logs is not None: img_str = "You can find some example images below.\n" for i, log in enumerate(image_logs): images = log["images"] validation_prompt = log["validation_prompt"] validation_image = log["validation_image"] validation_image.save(os.path.join(repo_folder, "image_control.png")) img_str += f"prompt: {validation_prompt}\n" images = [validation_image] + images image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png")) img_str += f"![images_{i})](./images_{i}.png)\n" yaml = f""" --- license: creativeml-openrail-m base_model: {base_model} tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - controlnet inference: true --- """ model_card = f""" # controlnet-{repo_id} These are controlnet weights trained on {base_model} with new type of conditioning. {img_str} """ with open(os.path.join(repo_folder, "README.md"), "w") as f: f.write(yaml + model_card) def parse_args(input_args=None): parser = argparse.ArgumentParser(description="Simple example of a ControlNet training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--pretrained_vae_model_name_or_path", type=str, default=None, help="Path to an improved VAE to stabilize training. For more details check out: https://github.com/huggingface/diffusers/pull/4038.", ) parser.add_argument( "--controlnet_model_name_or_path", type=str, default=None, help="Path to pretrained controlnet model or model identifier from huggingface.co/models." " If not specified controlnet weights are initialized from unet.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help=( "Revision of pretrained model identifier from huggingface.co/models. Trainable model components should be" " float32 precision." ), ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--output_dir", type=str, default="controlnet-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--crops_coords_top_left_h", type=int, default=0, help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."), ) parser.add_argument( "--crops_coords_top_left_w", type=int, default=0, help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."), ) parser.add_argument( "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=1) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. " "In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference." "Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components." "See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step" "instructions." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=3, help=("Max number of checkpoints to store."), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=5e-6, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--lr_num_cycles", type=int, default=1, help="Number of hard resets of the lr in cosine_with_restarts scheduler.", ) parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument( "--dataloader_num_workers", type=int, default=1, help=("Number of subprocesses to use for data loading."), ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) parser.add_argument( "--set_grads_to_none", action="store_true", help=( "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" " behaviors, so disable this argument if it causes any problems. More info:" " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" ), ) parser.add_argument( "--train_shards_path_or_url", type=str, default=None, help=( "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that 🤗 Datasets can understand." ), ) parser.add_argument( "--eval_shards_path_or_url", type=str, default=None, help="The config of the Dataset, leave as None if there's only one config.", ) parser.add_argument( "--train_data_dir", type=str, default=None, help=( "A folder containing the training data. Folder contents must follow the structure described in" " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." ), ) parser.add_argument( "--image_column", type=str, default="image", help="The column of the dataset containing the target image." ) parser.add_argument( "--conditioning_image_column", type=str, default="conditioning_image", help="The column of the dataset containing the controlnet conditioning image.", ) parser.add_argument( "--caption_column", type=str, default="text", help="The column of the dataset containing a caption or a list of captions.", ) parser.add_argument( "--max_train_samples", type=int, default=None, help=( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ), ) parser.add_argument( "--proportion_empty_prompts", type=float, default=0, help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).", ) parser.add_argument( "--validation_prompt", type=str, default=None, nargs="+", help=( "A set of prompts evaluated every `--validation_steps` and logged to `--report_to`." " Provide either a matching number of `--validation_image`s, a single `--validation_image`" " to be used with all prompts, or a single prompt that will be used with all `--validation_image`s." ), ) parser.add_argument( "--validation_image", type=str, default=None, nargs="+", help=( "A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`" " and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a" " a single `--validation_prompt` to be used with all `--validation_image`s, or a single" " `--validation_image` that will be used with all `--validation_prompt`s." ), ) parser.add_argument( "--num_validation_images", type=int, default=4, help="Number of images to be generated for each `--validation_image`, `--validation_prompt` pair", ) parser.add_argument( "--validation_steps", type=int, default=100, help=( "Run validation every X steps. Validation consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`" " and logging the images." ), ) parser.add_argument( "--tracker_project_name", type=str, default="sd_xl_train_controlnet", help=( "The `project_name` argument passed to Accelerator.init_trackers for" " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" ), ) parser.add_argument( "--control_type", type=str, default="canny", help=("The type of controlnet conditioning image to use. One of `canny`, `depth`" " Defaults to `canny`."), ) parser.add_argument( "--transformer_layers_per_block", type=str, default=None, help=("The number of layers per block in the transformer. If None, defaults to" " `args.transformer_layers`."), ) parser.add_argument( "--old_style_controlnet", action="store_true", default=False, help=( "Use the old style controlnet, which is a single transformer layer with" " a single head. Defaults to False." ), ) if input_args is not None: args = parser.parse_args(input_args) else: args = parser.parse_args() if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1: raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].") if args.validation_prompt is not None and args.validation_image is None: raise ValueError("`--validation_image` must be set if `--validation_prompt` is set") if args.validation_prompt is None and args.validation_image is not None: raise ValueError("`--validation_prompt` must be set if `--validation_image` is set") if ( args.validation_image is not None and args.validation_prompt is not None and len(args.validation_image) != 1 and len(args.validation_prompt) != 1 and len(args.validation_image) != len(args.validation_prompt) ): raise ValueError( "Must provide either 1 `--validation_image`, 1 `--validation_prompt`," " or the same number of `--validation_prompt`s and `--validation_image`s" ) if args.resolution % 8 != 0: raise ValueError( "`--resolution` must be divisible by 8 for consistently sized encoded images between the VAE and the controlnet encoder." ) return args # Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt def encode_prompt(prompt_batch, text_encoders, tokenizers, proportion_empty_prompts, is_train=True): prompt_embeds_list = [] captions = [] for caption in prompt_batch: if random.random() < proportion_empty_prompts: captions.append("") elif isinstance(caption, str): captions.append(caption) elif isinstance(caption, (list, np.ndarray)): # take a random caption if there are multiple captions.append(random.choice(caption) if is_train else caption[0]) with torch.no_grad(): for tokenizer, text_encoder in zip(tokenizers, text_encoders): text_inputs = tokenizer( captions, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids prompt_embeds = text_encoder( text_input_ids.to(text_encoder.device), output_hidden_states=True, ) # We are only ALWAYS interested in the pooled output of the final text encoder pooled_prompt_embeds = prompt_embeds[0] prompt_embeds = prompt_embeds.hidden_states[-2] bs_embed, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) prompt_embeds_list.append(prompt_embeds) prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1) return prompt_embeds, pooled_prompt_embeds def main(args): logging_dir = Path(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token, private=True, ).repo_id # Load the tokenizers tokenizer_one = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, use_fast=False ) tokenizer_two = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer_2", revision=args.revision, use_fast=False ) # import correct text encoder classes text_encoder_cls_one = import_model_class_from_model_name_or_path( args.pretrained_model_name_or_path, args.revision ) text_encoder_cls_two = import_model_class_from_model_name_or_path( args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2" ) # Load scheduler and models # noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") noise_scheduler = EulerDiscreteScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") text_encoder_one = text_encoder_cls_one.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision ) text_encoder_two = text_encoder_cls_two.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision ) vae_path = ( args.pretrained_model_name_or_path if args.pretrained_vae_model_name_or_path is None else args.pretrained_vae_model_name_or_path ) vae = AutoencoderKL.from_pretrained( vae_path, subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, revision=args.revision, ) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision ) if args.controlnet_model_name_or_path: logger.info("Loading existing controlnet weights") pre_controlnet = ControlNetModel.from_pretrained(args.controlnet_model_name_or_path) else: logger.info("Initializing controlnet weights from unet") pre_controlnet = ControlNetModel.from_unet(unet) if args.transformer_layers_per_block is not None: transformer_layers_per_block = [int(x) for x in args.transformer_layers_per_block.split(",")] down_block_types = ["DownBlock2D" if l == 0 else "CrossAttnDownBlock2D" for l in transformer_layers_per_block] controlnet = ControlNetModel.from_config( pre_controlnet.config, down_block_types=down_block_types, transformer_layers_per_block=transformer_layers_per_block, ) controlnet.load_state_dict(pre_controlnet.state_dict(), strict=False) del pre_controlnet else: controlnet = pre_controlnet if args.control_type == "depth": feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas") depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas") depth_model.requires_grad_(False) else: feature_extractor = None depth_model = None # `accelerate` 0.16.0 will have better support for customized saving if version.parse(accelerate.__version__) >= version.parse("0.16.0"): # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: i = len(weights) - 1 while len(weights) > 0: weights.pop() model = models[i] sub_dir = "controlnet" model.save_pretrained(os.path.join(output_dir, sub_dir)) i -= 1 def load_model_hook(models, input_dir): while len(models) > 0: # pop models so that they are not loaded again model = models.pop() # load diffusers style into model load_model = ControlNetModel.from_pretrained(input_dir, subfolder="controlnet") model.register_to_config(**load_model.config) model.load_state_dict(load_model.state_dict()) del load_model accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) vae.requires_grad_(False) unet.requires_grad_(False) text_encoder_one.requires_grad_(False) text_encoder_two.requires_grad_(False) controlnet.train() if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warn( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) unet.enable_xformers_memory_efficient_attention() controlnet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") if args.gradient_checkpointing: controlnet.enable_gradient_checkpointing() # Check that all trainable models are in full precision low_precision_error_string = ( " Please make sure to always have all model weights in full float32 precision when starting training - even if" " doing mixed precision training, copy of the weights should still be float32." ) if accelerator.unwrap_model(controlnet).dtype != torch.float32: raise ValueError( f"Controlnet loaded as datatype {accelerator.unwrap_model(controlnet).dtype}. {low_precision_error_string}" ) # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." ) optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW # Optimizer creation params_to_optimize = controlnet.parameters() optimizer = optimizer_class( params_to_optimize, lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # For mixed precision training we cast the text_encoder and vae weights to half-precision # as these models are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move vae, unet and text_encoder to device and cast to weight_dtype # The VAE is in float32 to avoid NaN losses. if args.pretrained_vae_model_name_or_path is not None: vae.to(accelerator.device, dtype=weight_dtype) else: vae.to(accelerator.device, dtype=torch.float32) unet.to(accelerator.device, dtype=weight_dtype) text_encoder_one.to(accelerator.device, dtype=weight_dtype) text_encoder_two.to(accelerator.device, dtype=weight_dtype) if args.control_type == "depth": depth_model.to(accelerator.device, dtype=weight_dtype) # Here, we compute not just the text embeddings but also the additional embeddings # needed for the SD XL UNet to operate. def compute_embeddings( prompt_batch, original_sizes, crop_coords, proportion_empty_prompts, text_encoders, tokenizers, is_train=True ): target_size = (args.resolution, args.resolution) original_sizes = list(map(list, zip(*original_sizes))) crops_coords_top_left = list(map(list, zip(*crop_coords))) original_sizes = torch.tensor(original_sizes, dtype=torch.long) crops_coords_top_left = torch.tensor(crops_coords_top_left, dtype=torch.long) # crops_coords_top_left = (args.crops_coords_top_left_h, args.crops_coords_top_left_w) prompt_embeds, pooled_prompt_embeds = encode_prompt( prompt_batch, text_encoders, tokenizers, proportion_empty_prompts, is_train ) add_text_embeds = pooled_prompt_embeds # Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids # add_time_ids = list(crops_coords_top_left + target_size) add_time_ids = list(target_size) add_time_ids = torch.tensor([add_time_ids]) add_time_ids = add_time_ids.repeat(len(prompt_batch), 1) # add_time_ids = torch.cat([torch.tensor(original_sizes, dtype=torch.long), add_time_ids], dim=-1) add_time_ids = torch.cat([original_sizes, crops_coords_top_left, add_time_ids], dim=-1) add_time_ids = add_time_ids.to(accelerator.device, dtype=prompt_embeds.dtype) prompt_embeds = prompt_embeds.to(accelerator.device) add_text_embeds = add_text_embeds.to(accelerator.device) unet_added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} return {"prompt_embeds": prompt_embeds, **unet_added_cond_kwargs} def get_sigmas(timesteps, n_dim=4, dtype=torch.float32): sigmas = noise_scheduler.sigmas.to(device=accelerator.device, dtype=dtype) schedule_timesteps = noise_scheduler.timesteps.to(accelerator.device) timesteps = timesteps.to(accelerator.device) step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] sigma = sigmas[step_indices].flatten() while len(sigma.shape) < n_dim: sigma = sigma.unsqueeze(-1) return sigma dataset = Text2ImageDataset( train_shards_path_or_url=args.train_shards_path_or_url, eval_shards_path_or_url=args.eval_shards_path_or_url, num_train_examples=args.max_train_samples, per_gpu_batch_size=args.train_batch_size, global_batch_size=args.train_batch_size * accelerator.num_processes, num_workers=args.dataloader_num_workers, resolution=args.resolution, center_crop=False, random_flip=False, shuffle_buffer_size=1000, pin_memory=True, persistent_workers=True, control_type=args.control_type, feature_extractor=feature_extractor, ) train_dataloader = dataset.train_dataloader # Let's first compute all the embeddings so that we can free up the text encoders # from memory. text_encoders = [text_encoder_one, text_encoder_two] tokenizers = [tokenizer_one, tokenizer_two] compute_embeddings_fn = functools.partial( compute_embeddings, proportion_empty_prompts=args.proportion_empty_prompts, text_encoders=text_encoders, tokenizers=tokenizers, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(train_dataloader.num_batches / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, num_cycles=args.lr_num_cycles, power=args.lr_power, ) # Prepare everything with our `accelerator`. controlnet, optimizer, lr_scheduler = accelerator.prepare(controlnet, optimizer, lr_scheduler) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(train_dataloader.num_batches / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: tracker_config = dict(vars(args)) # tensorboard cannot handle list types for config tracker_config.pop("validation_prompt") tracker_config.pop("validation_image") accelerator.init_trackers(args.tracker_project_name, config=tracker_config) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num batches each epoch = {train_dataloader.num_batches}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None initial_global_step = 0 else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) initial_global_step = global_step first_epoch = global_step // num_update_steps_per_epoch else: initial_global_step = 0 progress_bar = tqdm( range(0, args.max_train_steps), initial=initial_global_step, desc="Steps", # Only show the progress bar once on each machine. disable=not accelerator.is_local_main_process, ) image_logs = None for epoch in range(first_epoch, args.num_train_epochs): for step, batch in enumerate(train_dataloader): with accelerator.accumulate(controlnet): image, control_image, text, orig_size, crop_coords = batch encoded_text = compute_embeddings_fn(text, orig_size, crop_coords) image = image.to(accelerator.device, non_blocking=True) control_image = control_image.to(accelerator.device, non_blocking=True) if args.pretrained_vae_model_name_or_path is not None: pixel_values = image.to(dtype=weight_dtype) if vae.dtype != weight_dtype: vae.to(dtype=weight_dtype) else: pixel_values = image # latents = vae.encode(pixel_values).latent_dist.sample() # encode pixel values with batch size of at most 8 latents = [] for i in range(0, pixel_values.shape[0], 8): latents.append(vae.encode(pixel_values[i : i + 8]).latent_dist.sample()) latents = torch.cat(latents, dim=0) latents = latents * vae.config.scaling_factor if args.pretrained_vae_model_name_or_path is None: latents = latents.to(weight_dtype) if args.control_type == "depth": control_image = control_image.to(weight_dtype) with torch.autocast("cuda"): depth_map = depth_model(control_image).predicted_depth depth_map = torch.nn.functional.interpolate( depth_map.unsqueeze(1), size=image.shape[2:], mode="bicubic", align_corners=False, ) depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True) depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True) depth_map = (depth_map - depth_min) / (depth_max - depth_min) control_image = (depth_map * 255.0).to(torch.uint8).float() / 255.0 # hack to match inference control_image = torch.cat([control_image] * 3, dim=1) # Sample noise that we'll add to the latents noise = torch.randn_like(latents) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) sigmas = get_sigmas(timesteps, len(noisy_latents.shape), noisy_latents.dtype) inp_noisy_latents = noisy_latents / ((sigmas**2 + 1) ** 0.5) # ControlNet conditioning. controlnet_image = control_image.to(dtype=weight_dtype) prompt_embeds = encoded_text.pop("prompt_embeds") down_block_res_samples, mid_block_res_sample = controlnet( inp_noisy_latents, timesteps, encoder_hidden_states=prompt_embeds, added_cond_kwargs=encoded_text, controlnet_cond=controlnet_image, return_dict=False, ) # Predict the noise residual model_pred = unet( inp_noisy_latents, timesteps, encoder_hidden_states=prompt_embeds, added_cond_kwargs=encoded_text, down_block_additional_residuals=[ sample.to(dtype=weight_dtype) for sample in down_block_res_samples ], mid_block_additional_residual=mid_block_res_sample.to(dtype=weight_dtype), ).sample model_pred = model_pred * (-sigmas) + noisy_latents weighing = sigmas**-2.0 # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = latents # compute loss against the denoised latents elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") loss = torch.mean( (weighing.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1), 1 ) loss = loss.mean() accelerator.backward(loss) if accelerator.sync_gradients: params_to_clip = controlnet.parameters() accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad(set_to_none=args.set_grads_to_none) # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 if accelerator.is_main_process: if global_step % args.checkpointing_steps == 0: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: checkpoints = os.listdir(args.output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= args.checkpoints_total_limit: num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") if args.validation_prompt is not None and global_step % args.validation_steps == 0: image_logs = log_validation( vae, unet, controlnet, args, accelerator, weight_dtype, global_step ) logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break # Create the pipeline using using the trained modules and save it. accelerator.wait_for_everyone() if accelerator.is_main_process: controlnet = accelerator.unwrap_model(controlnet) controlnet.save_pretrained(args.output_dir) if args.push_to_hub: save_model_card( repo_id, image_logs=image_logs, base_model=args.pretrained_model_name_or_path, repo_folder=args.output_dir, ) upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": args = parse_args() main(args)
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/dreambooth_inpaint/train_dreambooth_inpaint.py
import argparse import itertools import math import os import random from pathlib import Path import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from huggingface_hub import create_repo, upload_folder from huggingface_hub.utils import insecure_hashlib from PIL import Image, ImageDraw from torch.utils.data import Dataset from torchvision import transforms from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDPMScheduler, StableDiffusionInpaintPipeline, StableDiffusionPipeline, UNet2DConditionModel, ) from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.13.0.dev0") logger = get_logger(__name__) def prepare_mask_and_masked_image(image, mask): image = np.array(image.convert("RGB")) image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 mask = np.array(mask.convert("L")) mask = mask.astype(np.float32) / 255.0 mask = mask[None, None] mask[mask < 0.5] = 0 mask[mask >= 0.5] = 1 mask = torch.from_numpy(mask) masked_image = image * (mask < 0.5) return mask, masked_image # generate random masks def random_mask(im_shape, ratio=1, mask_full_image=False): mask = Image.new("L", im_shape, 0) draw = ImageDraw.Draw(mask) size = (random.randint(0, int(im_shape[0] * ratio)), random.randint(0, int(im_shape[1] * ratio))) # use this to always mask the whole image if mask_full_image: size = (int(im_shape[0] * ratio), int(im_shape[1] * ratio)) limits = (im_shape[0] - size[0] // 2, im_shape[1] - size[1] // 2) center = (random.randint(size[0] // 2, limits[0]), random.randint(size[1] // 2, limits[1])) draw_type = random.randint(0, 1) if draw_type == 0 or mask_full_image: draw.rectangle( (center[0] - size[0] // 2, center[1] - size[1] // 2, center[0] + size[0] // 2, center[1] + size[1] // 2), fill=255, ) else: draw.ellipse( (center[0] - size[0] // 2, center[1] - size[1] // 2, center[0] + size[0] // 2, center[1] + size[1] // 2), fill=255, ) return mask def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--instance_data_dir", type=str, default=None, required=True, help="A folder containing the training data of instance images.", ) parser.add_argument( "--class_data_dir", type=str, default=None, required=False, help="A folder containing the training data of class images.", ) parser.add_argument( "--instance_prompt", type=str, default=None, help="The prompt with identifier specifying the instance", ) parser.add_argument( "--class_prompt", type=str, default=None, help="The prompt to specify images in the same class as provided instance images.", ) parser.add_argument( "--with_prior_preservation", default=False, action="store_true", help="Flag to add prior preservation loss.", ) parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") parser.add_argument( "--num_class_images", type=int, default=100, help=( "Minimal class images for prior preservation loss. If not have enough images, additional images will be" " sampled with class_prompt." ), ) parser.add_argument( "--output_dir", type=str, default="text-inversion-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder") parser.add_argument( "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." ) parser.add_argument( "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." ) parser.add_argument("--num_train_epochs", type=int, default=1) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=5e-6, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" " checkpoints in case they are better than the last checkpoint and are suitable for resuming training" " using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=( "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" " for more docs" ), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.instance_data_dir is None: raise ValueError("You must specify a train data directory.") if args.with_prior_preservation: if args.class_data_dir is None: raise ValueError("You must specify a data directory for class images.") if args.class_prompt is None: raise ValueError("You must specify prompt for class images.") return args class DreamBoothDataset(Dataset): """ A dataset to prepare the instance and class images with the prompts for fine-tuning the model. It pre-processes the images and the tokenizes prompts. """ def __init__( self, instance_data_root, instance_prompt, tokenizer, class_data_root=None, class_prompt=None, size=512, center_crop=False, ): self.size = size self.center_crop = center_crop self.tokenizer = tokenizer self.instance_data_root = Path(instance_data_root) if not self.instance_data_root.exists(): raise ValueError("Instance images root doesn't exists.") self.instance_images_path = list(Path(instance_data_root).iterdir()) self.num_instance_images = len(self.instance_images_path) self.instance_prompt = instance_prompt self._length = self.num_instance_images if class_data_root is not None: self.class_data_root = Path(class_data_root) self.class_data_root.mkdir(parents=True, exist_ok=True) self.class_images_path = list(self.class_data_root.iterdir()) self.num_class_images = len(self.class_images_path) self._length = max(self.num_class_images, self.num_instance_images) self.class_prompt = class_prompt else: self.class_data_root = None self.image_transforms_resize_and_crop = transforms.Compose( [ transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), ] ) self.image_transforms = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __len__(self): return self._length def __getitem__(self, index): example = {} instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) if not instance_image.mode == "RGB": instance_image = instance_image.convert("RGB") instance_image = self.image_transforms_resize_and_crop(instance_image) example["PIL_images"] = instance_image example["instance_images"] = self.image_transforms(instance_image) example["instance_prompt_ids"] = self.tokenizer( self.instance_prompt, padding="do_not_pad", truncation=True, max_length=self.tokenizer.model_max_length, ).input_ids if self.class_data_root: class_image = Image.open(self.class_images_path[index % self.num_class_images]) if not class_image.mode == "RGB": class_image = class_image.convert("RGB") class_image = self.image_transforms_resize_and_crop(class_image) example["class_images"] = self.image_transforms(class_image) example["class_PIL_images"] = class_image example["class_prompt_ids"] = self.tokenizer( self.class_prompt, padding="do_not_pad", truncation=True, max_length=self.tokenizer.model_max_length, ).input_ids return example class PromptDataset(Dataset): "A simple dataset to prepare the prompts to generate class images on multiple GPUs." def __init__(self, prompt, num_samples): self.prompt = prompt self.num_samples = num_samples def __len__(self): return self.num_samples def __getitem__(self, index): example = {} example["prompt"] = self.prompt example["index"] = index return example def main(): args = parse_args() logging_dir = Path(args.output_dir, args.logging_dir) project_config = ProjectConfiguration( total_limit=args.checkpoints_total_limit, project_dir=args.output_dir, logging_dir=logging_dir ) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with="tensorboard", project_config=project_config, ) # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models. # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate. if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1: raise ValueError( "Gradient accumulation is not supported when training the text encoder in distributed training. " "Please set gradient_accumulation_steps to 1. This feature will be supported in the future." ) if args.seed is not None: set_seed(args.seed) if args.with_prior_preservation: class_images_dir = Path(args.class_data_dir) if not class_images_dir.exists(): class_images_dir.mkdir(parents=True) cur_class_images = len(list(class_images_dir.iterdir())) if cur_class_images < args.num_class_images: torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 pipeline = StableDiffusionInpaintPipeline.from_pretrained( args.pretrained_model_name_or_path, torch_dtype=torch_dtype, safety_checker=None ) pipeline.set_progress_bar_config(disable=True) num_new_images = args.num_class_images - cur_class_images logger.info(f"Number of class images to sample: {num_new_images}.") sample_dataset = PromptDataset(args.class_prompt, num_new_images) sample_dataloader = torch.utils.data.DataLoader( sample_dataset, batch_size=args.sample_batch_size, num_workers=1 ) sample_dataloader = accelerator.prepare(sample_dataloader) pipeline.to(accelerator.device) transform_to_pil = transforms.ToPILImage() for example in tqdm( sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process ): bsz = len(example["prompt"]) fake_images = torch.rand((3, args.resolution, args.resolution)) transform_to_pil = transforms.ToPILImage() fake_pil_images = transform_to_pil(fake_images) fake_mask = random_mask((args.resolution, args.resolution), ratio=1, mask_full_image=True) images = pipeline(prompt=example["prompt"], mask_image=fake_mask, image=fake_pil_images).images for i, image in enumerate(images): hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest() image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" image.save(image_filename) del pipeline if torch.cuda.is_available(): torch.cuda.empty_cache() # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load the tokenizer if args.tokenizer_name: tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) elif args.pretrained_model_name_or_path: tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") # Load models and create wrapper for stable diffusion text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") vae.requires_grad_(False) if not args.train_text_encoder: text_encoder.requires_grad_(False) if args.gradient_checkpointing: unet.enable_gradient_checkpointing() if args.train_text_encoder: text_encoder.gradient_checkpointing_enable() if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." ) optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW params_to_optimize = ( itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters() ) optimizer = optimizer_class( params_to_optimize, lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") train_dataset = DreamBoothDataset( instance_data_root=args.instance_data_dir, instance_prompt=args.instance_prompt, class_data_root=args.class_data_dir if args.with_prior_preservation else None, class_prompt=args.class_prompt, tokenizer=tokenizer, size=args.resolution, center_crop=args.center_crop, ) def collate_fn(examples): input_ids = [example["instance_prompt_ids"] for example in examples] pixel_values = [example["instance_images"] for example in examples] # Concat class and instance examples for prior preservation. # We do this to avoid doing two forward passes. if args.with_prior_preservation: input_ids += [example["class_prompt_ids"] for example in examples] pixel_values += [example["class_images"] for example in examples] pior_pil = [example["class_PIL_images"] for example in examples] masks = [] masked_images = [] for example in examples: pil_image = example["PIL_images"] # generate a random mask mask = random_mask(pil_image.size, 1, False) # prepare mask and masked image mask, masked_image = prepare_mask_and_masked_image(pil_image, mask) masks.append(mask) masked_images.append(masked_image) if args.with_prior_preservation: for pil_image in pior_pil: # generate a random mask mask = random_mask(pil_image.size, 1, False) # prepare mask and masked image mask, masked_image = prepare_mask_and_masked_image(pil_image, mask) masks.append(mask) masked_images.append(masked_image) pixel_values = torch.stack(pixel_values) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() input_ids = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids masks = torch.stack(masks) masked_images = torch.stack(masked_images) batch = {"input_ids": input_ids, "pixel_values": pixel_values, "masks": masks, "masked_images": masked_images} return batch train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, ) if args.train_text_encoder: unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, text_encoder, optimizer, train_dataloader, lr_scheduler ) else: unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, optimizer, train_dataloader, lr_scheduler ) accelerator.register_for_checkpointing(lr_scheduler) weight_dtype = torch.float32 if args.mixed_precision == "fp16": weight_dtype = torch.float16 elif args.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move text_encode and vae to gpu. # For mixed precision training we cast the text_encoder and vae weights to half-precision # as these models are only used for inference, keeping weights in full precision is not required. vae.to(accelerator.device, dtype=weight_dtype) if not args.train_text_encoder: text_encoder.to(accelerator.device, dtype=weight_dtype) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("dreambooth", config=vars(args)) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num batches each epoch = {len(train_dataloader)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) resume_global_step = global_step * args.gradient_accumulation_steps first_epoch = global_step // num_update_steps_per_epoch resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) # Only show the progress bar once on each machine. progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) progress_bar.set_description("Steps") for epoch in range(first_epoch, args.num_train_epochs): unet.train() for step, batch in enumerate(train_dataloader): # Skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: if step % args.gradient_accumulation_steps == 0: progress_bar.update(1) continue with accelerator.accumulate(unet): # Convert images to latent space latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() latents = latents * vae.config.scaling_factor # Convert masked images to latent space masked_latents = vae.encode( batch["masked_images"].reshape(batch["pixel_values"].shape).to(dtype=weight_dtype) ).latent_dist.sample() masked_latents = masked_latents * vae.config.scaling_factor masks = batch["masks"] # resize the mask to latents shape as we concatenate the mask to the latents mask = torch.stack( [ torch.nn.functional.interpolate(mask, size=(args.resolution // 8, args.resolution // 8)) for mask in masks ] ) mask = mask.reshape(-1, 1, args.resolution // 8, args.resolution // 8) # Sample noise that we'll add to the latents noise = torch.randn_like(latents) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # concatenate the noised latents with the mask and the masked latents latent_model_input = torch.cat([noisy_latents, mask, masked_latents], dim=1) # Get the text embedding for conditioning encoder_hidden_states = text_encoder(batch["input_ids"])[0] # Predict the noise residual noise_pred = unet(latent_model_input, timesteps, encoder_hidden_states).sample # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") if args.with_prior_preservation: # Chunk the noise and noise_pred into two parts and compute the loss on each part separately. noise_pred, noise_pred_prior = torch.chunk(noise_pred, 2, dim=0) target, target_prior = torch.chunk(target, 2, dim=0) # Compute instance loss loss = F.mse_loss(noise_pred.float(), target.float(), reduction="none").mean([1, 2, 3]).mean() # Compute prior loss prior_loss = F.mse_loss(noise_pred_prior.float(), target_prior.float(), reduction="mean") # Add the prior loss to the instance loss. loss = loss + args.prior_loss_weight * prior_loss else: loss = F.mse_loss(noise_pred.float(), target.float(), reduction="mean") accelerator.backward(loss) if accelerator.sync_gradients: params_to_clip = ( itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters() ) accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 if global_step % args.checkpointing_steps == 0: if accelerator.is_main_process: save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break accelerator.wait_for_everyone() # Create the pipeline using using the trained modules and save it. if accelerator.is_main_process: pipeline = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, unet=accelerator.unwrap_model(unet), text_encoder=accelerator.unwrap_model(text_encoder), ) pipeline.save_pretrained(args.output_dir) if args.push_to_hub: upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": main()
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/dreambooth_inpaint/train_dreambooth_inpaint_lora.py
import argparse import math import os import random from pathlib import Path import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from huggingface_hub import create_repo, upload_folder from huggingface_hub.utils import insecure_hashlib from PIL import Image, ImageDraw from torch.utils.data import Dataset from torchvision import transforms from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionInpaintPipeline, UNet2DConditionModel from diffusers.loaders import AttnProcsLayers from diffusers.models.attention_processor import LoRAAttnProcessor from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version from diffusers.utils.import_utils import is_xformers_available # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.13.0.dev0") logger = get_logger(__name__) def prepare_mask_and_masked_image(image, mask): image = np.array(image.convert("RGB")) image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 mask = np.array(mask.convert("L")) mask = mask.astype(np.float32) / 255.0 mask = mask[None, None] mask[mask < 0.5] = 0 mask[mask >= 0.5] = 1 mask = torch.from_numpy(mask) masked_image = image * (mask < 0.5) return mask, masked_image # generate random masks def random_mask(im_shape, ratio=1, mask_full_image=False): mask = Image.new("L", im_shape, 0) draw = ImageDraw.Draw(mask) size = (random.randint(0, int(im_shape[0] * ratio)), random.randint(0, int(im_shape[1] * ratio))) # use this to always mask the whole image if mask_full_image: size = (int(im_shape[0] * ratio), int(im_shape[1] * ratio)) limits = (im_shape[0] - size[0] // 2, im_shape[1] - size[1] // 2) center = (random.randint(size[0] // 2, limits[0]), random.randint(size[1] // 2, limits[1])) draw_type = random.randint(0, 1) if draw_type == 0 or mask_full_image: draw.rectangle( (center[0] - size[0] // 2, center[1] - size[1] // 2, center[0] + size[0] // 2, center[1] + size[1] // 2), fill=255, ) else: draw.ellipse( (center[0] - size[0] // 2, center[1] - size[1] // 2, center[0] + size[0] // 2, center[1] + size[1] // 2), fill=255, ) return mask def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--instance_data_dir", type=str, default=None, required=True, help="A folder containing the training data of instance images.", ) parser.add_argument( "--class_data_dir", type=str, default=None, required=False, help="A folder containing the training data of class images.", ) parser.add_argument( "--instance_prompt", type=str, default=None, help="The prompt with identifier specifying the instance", ) parser.add_argument( "--class_prompt", type=str, default=None, help="The prompt to specify images in the same class as provided instance images.", ) parser.add_argument( "--with_prior_preservation", default=False, action="store_true", help="Flag to add prior preservation loss.", ) parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") parser.add_argument( "--num_class_images", type=int, default=100, help=( "Minimal class images for prior preservation loss. If not have enough images, additional images will be" " sampled with class_prompt." ), ) parser.add_argument( "--output_dir", type=str, default="dreambooth-inpaint-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder") parser.add_argument( "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." ) parser.add_argument( "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." ) parser.add_argument("--num_train_epochs", type=int, default=1) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=5e-6, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" " checkpoints in case they are better than the last checkpoint and are suitable for resuming training" " using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=( "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" " for more docs" ), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.instance_data_dir is None: raise ValueError("You must specify a train data directory.") if args.with_prior_preservation: if args.class_data_dir is None: raise ValueError("You must specify a data directory for class images.") if args.class_prompt is None: raise ValueError("You must specify prompt for class images.") return args class DreamBoothDataset(Dataset): """ A dataset to prepare the instance and class images with the prompts for fine-tuning the model. It pre-processes the images and the tokenizes prompts. """ def __init__( self, instance_data_root, instance_prompt, tokenizer, class_data_root=None, class_prompt=None, size=512, center_crop=False, ): self.size = size self.center_crop = center_crop self.tokenizer = tokenizer self.instance_data_root = Path(instance_data_root) if not self.instance_data_root.exists(): raise ValueError("Instance images root doesn't exists.") self.instance_images_path = list(Path(instance_data_root).iterdir()) self.num_instance_images = len(self.instance_images_path) self.instance_prompt = instance_prompt self._length = self.num_instance_images if class_data_root is not None: self.class_data_root = Path(class_data_root) self.class_data_root.mkdir(parents=True, exist_ok=True) self.class_images_path = list(self.class_data_root.iterdir()) self.num_class_images = len(self.class_images_path) self._length = max(self.num_class_images, self.num_instance_images) self.class_prompt = class_prompt else: self.class_data_root = None self.image_transforms_resize_and_crop = transforms.Compose( [ transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), ] ) self.image_transforms = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __len__(self): return self._length def __getitem__(self, index): example = {} instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) if not instance_image.mode == "RGB": instance_image = instance_image.convert("RGB") instance_image = self.image_transforms_resize_and_crop(instance_image) example["PIL_images"] = instance_image example["instance_images"] = self.image_transforms(instance_image) example["instance_prompt_ids"] = self.tokenizer( self.instance_prompt, padding="do_not_pad", truncation=True, max_length=self.tokenizer.model_max_length, ).input_ids if self.class_data_root: class_image = Image.open(self.class_images_path[index % self.num_class_images]) if not class_image.mode == "RGB": class_image = class_image.convert("RGB") class_image = self.image_transforms_resize_and_crop(class_image) example["class_images"] = self.image_transforms(class_image) example["class_PIL_images"] = class_image example["class_prompt_ids"] = self.tokenizer( self.class_prompt, padding="do_not_pad", truncation=True, max_length=self.tokenizer.model_max_length, ).input_ids return example class PromptDataset(Dataset): "A simple dataset to prepare the prompts to generate class images on multiple GPUs." def __init__(self, prompt, num_samples): self.prompt = prompt self.num_samples = num_samples def __len__(self): return self.num_samples def __getitem__(self, index): example = {} example["prompt"] = self.prompt example["index"] = index return example def main(): args = parse_args() logging_dir = Path(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration( total_limit=args.checkpoints_total_limit, project_dir=args.output_dir, logging_dir=logging_dir ) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with="tensorboard", project_config=accelerator_project_config, ) # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models. # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate. if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1: raise ValueError( "Gradient accumulation is not supported when training the text encoder in distributed training. " "Please set gradient_accumulation_steps to 1. This feature will be supported in the future." ) if args.seed is not None: set_seed(args.seed) if args.with_prior_preservation: class_images_dir = Path(args.class_data_dir) if not class_images_dir.exists(): class_images_dir.mkdir(parents=True) cur_class_images = len(list(class_images_dir.iterdir())) if cur_class_images < args.num_class_images: torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 pipeline = StableDiffusionInpaintPipeline.from_pretrained( args.pretrained_model_name_or_path, torch_dtype=torch_dtype, safety_checker=None ) pipeline.set_progress_bar_config(disable=True) num_new_images = args.num_class_images - cur_class_images logger.info(f"Number of class images to sample: {num_new_images}.") sample_dataset = PromptDataset(args.class_prompt, num_new_images) sample_dataloader = torch.utils.data.DataLoader( sample_dataset, batch_size=args.sample_batch_size, num_workers=1 ) sample_dataloader = accelerator.prepare(sample_dataloader) pipeline.to(accelerator.device) transform_to_pil = transforms.ToPILImage() for example in tqdm( sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process ): bsz = len(example["prompt"]) fake_images = torch.rand((3, args.resolution, args.resolution)) transform_to_pil = transforms.ToPILImage() fake_pil_images = transform_to_pil(fake_images) fake_mask = random_mask((args.resolution, args.resolution), ratio=1, mask_full_image=True) images = pipeline(prompt=example["prompt"], mask_image=fake_mask, image=fake_pil_images).images for i, image in enumerate(images): hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest() image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" image.save(image_filename) del pipeline if torch.cuda.is_available(): torch.cuda.empty_cache() # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load the tokenizer if args.tokenizer_name: tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) elif args.pretrained_model_name_or_path: tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") # Load models and create wrapper for stable diffusion text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") # We only train the additional adapter LoRA layers vae.requires_grad_(False) text_encoder.requires_grad_(False) unet.requires_grad_(False) weight_dtype = torch.float32 if args.mixed_precision == "fp16": weight_dtype = torch.float16 elif args.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move text_encode and vae to gpu. # For mixed precision training we cast the text_encoder and vae weights to half-precision # as these models are only used for inference, keeping weights in full precision is not required. unet.to(accelerator.device, dtype=weight_dtype) vae.to(accelerator.device, dtype=weight_dtype) text_encoder.to(accelerator.device, dtype=weight_dtype) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") # now we will add new LoRA weights to the attention layers # It's important to realize here how many attention weights will be added and of which sizes # The sizes of the attention layers consist only of two different variables: # 1) - the "hidden_size", which is increased according to `unet.config.block_out_channels`. # 2) - the "cross attention size", which is set to `unet.config.cross_attention_dim`. # Let's first see how many attention processors we will have to set. # For Stable Diffusion, it should be equal to: # - down blocks (2x attention layers) * (2x transformer layers) * (3x down blocks) = 12 # - mid blocks (2x attention layers) * (1x transformer layers) * (1x mid blocks) = 2 # - up blocks (2x attention layers) * (3x transformer layers) * (3x down blocks) = 18 # => 32 layers # Set correct lora layers lora_attn_procs = {} for name in unet.attn_processors.keys(): cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim if name.startswith("mid_block"): hidden_size = unet.config.block_out_channels[-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(unet.config.block_out_channels))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = unet.config.block_out_channels[block_id] lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim) unet.set_attn_processor(lora_attn_procs) lora_layers = AttnProcsLayers(unet.attn_processors) accelerator.register_for_checkpointing(lora_layers) if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." ) optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW optimizer = optimizer_class( lora_layers.parameters(), lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") train_dataset = DreamBoothDataset( instance_data_root=args.instance_data_dir, instance_prompt=args.instance_prompt, class_data_root=args.class_data_dir if args.with_prior_preservation else None, class_prompt=args.class_prompt, tokenizer=tokenizer, size=args.resolution, center_crop=args.center_crop, ) def collate_fn(examples): input_ids = [example["instance_prompt_ids"] for example in examples] pixel_values = [example["instance_images"] for example in examples] # Concat class and instance examples for prior preservation. # We do this to avoid doing two forward passes. if args.with_prior_preservation: input_ids += [example["class_prompt_ids"] for example in examples] pixel_values += [example["class_images"] for example in examples] pior_pil = [example["class_PIL_images"] for example in examples] masks = [] masked_images = [] for example in examples: pil_image = example["PIL_images"] # generate a random mask mask = random_mask(pil_image.size, 1, False) # prepare mask and masked image mask, masked_image = prepare_mask_and_masked_image(pil_image, mask) masks.append(mask) masked_images.append(masked_image) if args.with_prior_preservation: for pil_image in pior_pil: # generate a random mask mask = random_mask(pil_image.size, 1, False) # prepare mask and masked image mask, masked_image = prepare_mask_and_masked_image(pil_image, mask) masks.append(mask) masked_images.append(masked_image) pixel_values = torch.stack(pixel_values) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() input_ids = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids masks = torch.stack(masks) masked_images = torch.stack(masked_images) batch = {"input_ids": input_ids, "pixel_values": pixel_values, "masks": masks, "masked_images": masked_images} return batch train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, ) # Prepare everything with our `accelerator`. lora_layers, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( lora_layers, optimizer, train_dataloader, lr_scheduler ) # accelerator.register_for_checkpointing(lr_scheduler) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("dreambooth-inpaint-lora", config=vars(args)) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num batches each epoch = {len(train_dataloader)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) resume_global_step = global_step * args.gradient_accumulation_steps first_epoch = global_step // num_update_steps_per_epoch resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) # Only show the progress bar once on each machine. progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) progress_bar.set_description("Steps") for epoch in range(first_epoch, args.num_train_epochs): unet.train() for step, batch in enumerate(train_dataloader): # Skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: if step % args.gradient_accumulation_steps == 0: progress_bar.update(1) continue with accelerator.accumulate(unet): # Convert images to latent space latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() latents = latents * vae.config.scaling_factor # Convert masked images to latent space masked_latents = vae.encode( batch["masked_images"].reshape(batch["pixel_values"].shape).to(dtype=weight_dtype) ).latent_dist.sample() masked_latents = masked_latents * vae.config.scaling_factor masks = batch["masks"] # resize the mask to latents shape as we concatenate the mask to the latents mask = torch.stack( [ torch.nn.functional.interpolate(mask, size=(args.resolution // 8, args.resolution // 8)) for mask in masks ] ).to(dtype=weight_dtype) mask = mask.reshape(-1, 1, args.resolution // 8, args.resolution // 8) # Sample noise that we'll add to the latents noise = torch.randn_like(latents) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # concatenate the noised latents with the mask and the masked latents latent_model_input = torch.cat([noisy_latents, mask, masked_latents], dim=1) # Get the text embedding for conditioning encoder_hidden_states = text_encoder(batch["input_ids"])[0] # Predict the noise residual noise_pred = unet(latent_model_input, timesteps, encoder_hidden_states).sample # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") if args.with_prior_preservation: # Chunk the noise and noise_pred into two parts and compute the loss on each part separately. noise_pred, noise_pred_prior = torch.chunk(noise_pred, 2, dim=0) target, target_prior = torch.chunk(target, 2, dim=0) # Compute instance loss loss = F.mse_loss(noise_pred.float(), target.float(), reduction="none").mean([1, 2, 3]).mean() # Compute prior loss prior_loss = F.mse_loss(noise_pred_prior.float(), target_prior.float(), reduction="mean") # Add the prior loss to the instance loss. loss = loss + args.prior_loss_weight * prior_loss else: loss = F.mse_loss(noise_pred.float(), target.float(), reduction="mean") accelerator.backward(loss) if accelerator.sync_gradients: params_to_clip = lora_layers.parameters() accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 if global_step % args.checkpointing_steps == 0: if accelerator.is_main_process: save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break accelerator.wait_for_everyone() # Save the lora layers if accelerator.is_main_process: unet = unet.to(torch.float32) unet.save_attn_procs(args.output_dir) if args.push_to_hub: upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": main()
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/dreambooth_inpaint/README.md
# Dreambooth for the inpainting model This script was added by @thedarkzeno . Please note that this script is not actively maintained, you can open an issue and tag @thedarkzeno or @patil-suraj though. ```bash export MODEL_NAME="runwayml/stable-diffusion-inpainting" export INSTANCE_DIR="path-to-instance-images" export OUTPUT_DIR="path-to-save-model" accelerate launch train_dreambooth_inpaint.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --output_dir=$OUTPUT_DIR \ --instance_prompt="a photo of sks dog" \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=1 \ --learning_rate=5e-6 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --max_train_steps=400 ``` ### Training with prior-preservation loss Prior-preservation is used to avoid overfitting and language-drift. Refer to the paper to learn more about it. For prior-preservation we first generate images using the model with a class prompt and then use those during training along with our data. According to the paper, it's recommended to generate `num_epochs * num_samples` images for prior-preservation. 200-300 works well for most cases. ```bash export MODEL_NAME="runwayml/stable-diffusion-inpainting" export INSTANCE_DIR="path-to-instance-images" export CLASS_DIR="path-to-class-images" export OUTPUT_DIR="path-to-save-model" accelerate launch train_dreambooth_inpaint.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --class_data_dir=$CLASS_DIR \ --output_dir=$OUTPUT_DIR \ --with_prior_preservation --prior_loss_weight=1.0 \ --instance_prompt="a photo of sks dog" \ --class_prompt="a photo of dog" \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=1 \ --learning_rate=5e-6 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --num_class_images=200 \ --max_train_steps=800 ``` ### Training with gradient checkpointing and 8-bit optimizer: With the help of gradient checkpointing and the 8-bit optimizer from bitsandbytes it's possible to run train dreambooth on a 16GB GPU. To install `bitandbytes` please refer to this [readme](https://github.com/TimDettmers/bitsandbytes#requirements--installation). ```bash export MODEL_NAME="runwayml/stable-diffusion-inpainting" export INSTANCE_DIR="path-to-instance-images" export CLASS_DIR="path-to-class-images" export OUTPUT_DIR="path-to-save-model" accelerate launch train_dreambooth_inpaint.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --class_data_dir=$CLASS_DIR \ --output_dir=$OUTPUT_DIR \ --with_prior_preservation --prior_loss_weight=1.0 \ --instance_prompt="a photo of sks dog" \ --class_prompt="a photo of dog" \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=2 --gradient_checkpointing \ --use_8bit_adam \ --learning_rate=5e-6 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --num_class_images=200 \ --max_train_steps=800 ``` ### Fine-tune text encoder with the UNet. The script also allows to fine-tune the `text_encoder` along with the `unet`. It's been observed experimentally that fine-tuning `text_encoder` gives much better results especially on faces. Pass the `--train_text_encoder` argument to the script to enable training `text_encoder`. ___Note: Training text encoder requires more memory, with this option the training won't fit on 16GB GPU. It needs at least 24GB VRAM.___ ```bash export MODEL_NAME="runwayml/stable-diffusion-inpainting" export INSTANCE_DIR="path-to-instance-images" export CLASS_DIR="path-to-class-images" export OUTPUT_DIR="path-to-save-model" accelerate launch train_dreambooth_inpaint.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --train_text_encoder \ --instance_data_dir=$INSTANCE_DIR \ --class_data_dir=$CLASS_DIR \ --output_dir=$OUTPUT_DIR \ --with_prior_preservation --prior_loss_weight=1.0 \ --instance_prompt="a photo of sks dog" \ --class_prompt="a photo of dog" \ --resolution=512 \ --train_batch_size=1 \ --use_8bit_adam \ --gradient_checkpointing \ --learning_rate=2e-6 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --num_class_images=200 \ --max_train_steps=800 ```
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/dreambooth_inpaint/requirements.txt
diffusers==0.9.0 accelerate>=0.16.0 torchvision transformers>=4.21.0 ftfy tensorboard Jinja2
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/multi_subject_dreambooth_inpainting/train_multi_subject_dreambooth_inpainting.py
import argparse import copy import itertools import logging import math import os import random from pathlib import Path import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from datasets import concatenate_datasets, load_dataset from PIL import Image from torch.utils.data import Dataset from torchvision import transforms from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDPMScheduler, StableDiffusionInpaintPipeline, UNet2DConditionModel, ) from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version, is_wandb_available if is_wandb_available(): import wandb # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.13.0.dev0") logger = get_logger(__name__) def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument("--instance_data_dir", nargs="+", help="Instance data directories") parser.add_argument( "--output_dir", type=str, default="text-inversion-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--train_text_encoder", default=False, action="store_true", help="Whether to train the text encoder" ) parser.add_argument( "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." ) parser.add_argument( "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." ) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--learning_rate", type=float, default=5e-6, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ), ) parser.add_argument( "--checkpointing_steps", type=int, default=1000, help=( "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" " checkpoints in case they are better than the last checkpoint and are suitable for resuming training" " using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpointing_from", type=int, default=1000, help=("Start to checkpoint from step"), ) parser.add_argument( "--validation_steps", type=int, default=50, help=( "Run validation every X steps. Validation consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`" " and logging the images." ), ) parser.add_argument( "--validation_from", type=int, default=0, help=("Start to validate from step"), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=( "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" " for more docs" ), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--validation_project_name", type=str, default=None, help="The w&b name.", ) parser.add_argument( "--report_to_wandb", default=False, action="store_true", help="Whether to report to weights and biases" ) args = parser.parse_args() return args def prepare_mask_and_masked_image(image, mask): image = np.array(image.convert("RGB")) image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 mask = np.array(mask.convert("L")) mask = mask.astype(np.float32) / 255.0 mask = mask[None, None] mask[mask < 0.5] = 0 mask[mask >= 0.5] = 1 mask = torch.from_numpy(mask) masked_image = image * (mask < 0.5) return mask, masked_image class DreamBoothDataset(Dataset): def __init__( self, tokenizer, datasets_paths, ): self.tokenizer = tokenizer self.datasets_paths = (datasets_paths,) self.datasets = [load_dataset(dataset_path) for dataset_path in self.datasets_paths[0]] self.train_data = concatenate_datasets([dataset["train"] for dataset in self.datasets]) self.test_data = concatenate_datasets([dataset["test"] for dataset in self.datasets]) self.image_normalize = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def set_image(self, img, switch): if img.mode not in ["RGB", "L"]: img = img.convert("RGB") if switch: img = img.transpose(Image.FLIP_LEFT_RIGHT) img = img.resize((512, 512), Image.BILINEAR) return img def __len__(self): return len(self.train_data) def __getitem__(self, index): # Lettings example = {} img_idx = index % len(self.train_data) switch = random.choice([True, False]) # Load image image = self.set_image(self.train_data[img_idx]["image"], switch) # Normalize image image_norm = self.image_normalize(image) # Tokenise prompt tokenized_prompt = self.tokenizer( self.train_data[img_idx]["prompt"], padding="do_not_pad", truncation=True, max_length=self.tokenizer.model_max_length, ).input_ids # Load masks for image masks = [ self.set_image(self.train_data[img_idx][key], switch) for key in self.train_data[img_idx] if "mask" in key ] # Build example example["PIL_image"] = image example["instance_image"] = image_norm example["instance_prompt_id"] = tokenized_prompt example["instance_masks"] = masks return example def weighted_mask(masks): # Convert each mask to a NumPy array and ensure it's binary mask_arrays = [np.array(mask) / 255 for mask in masks] # Normalizing to 0-1 range # Generate random weights and apply them to each mask weights = [random.random() for _ in masks] weights = [weight / sum(weights) for weight in weights] weighted_masks = [mask * weight for mask, weight in zip(mask_arrays, weights)] # Sum the weighted masks summed_mask = np.sum(weighted_masks, axis=0) # Apply a threshold to create the final mask threshold = 0.5 # This threshold can be adjusted result_mask = summed_mask >= threshold # Convert the result back to a PIL image return Image.fromarray(result_mask.astype(np.uint8) * 255) def collate_fn(examples, tokenizer): input_ids = [example["instance_prompt_id"] for example in examples] pixel_values = [example["instance_image"] for example in examples] masks, masked_images = [], [] for example in examples: # generate a random mask mask = weighted_mask(example["instance_masks"]) # prepare mask and masked image mask, masked_image = prepare_mask_and_masked_image(example["PIL_image"], mask) masks.append(mask) masked_images.append(masked_image) pixel_values = torch.stack(pixel_values).to(memory_format=torch.contiguous_format).float() masks = torch.stack(masks) masked_images = torch.stack(masked_images) input_ids = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids batch = {"input_ids": input_ids, "pixel_values": pixel_values, "masks": masks, "masked_images": masked_images} return batch def log_validation(pipeline, text_encoder, unet, val_pairs, accelerator): # update pipeline (note: unet and vae are loaded again in float32) pipeline.text_encoder = accelerator.unwrap_model(text_encoder) pipeline.unet = accelerator.unwrap_model(unet) with torch.autocast("cuda"): val_results = [{"data_or_path": pipeline(**pair).images[0], "caption": pair["prompt"]} for pair in val_pairs] torch.cuda.empty_cache() wandb.log({"validation": [wandb.Image(**val_result) for val_result in val_results]}) def checkpoint(args, global_step, accelerator): save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") def main(): args = parse_args() project_config = ProjectConfiguration( total_limit=args.checkpoints_total_limit, project_dir=args.output_dir, logging_dir=Path(args.output_dir, args.logging_dir), ) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, project_config=project_config, log_with="wandb" if args.report_to_wandb else None, ) if args.report_to_wandb and not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") if args.seed is not None: set_seed(args.seed) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) # Load the tokenizer & models and create wrapper for stable diffusion tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") text_encoder = CLIPTextModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder" ).requires_grad_(args.train_text_encoder) vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae").requires_grad_(False) unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) optimizer = torch.optim.AdamW( params=itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters(), lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") train_dataset = DreamBoothDataset( tokenizer=tokenizer, datasets_paths=args.instance_data_dir, ) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=lambda examples: collate_fn(examples, tokenizer), ) # Scheduler and math around the number of training steps. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, ) if args.train_text_encoder: unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, text_encoder, optimizer, train_dataloader, lr_scheduler ) else: unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, optimizer, train_dataloader, lr_scheduler ) accelerator.register_for_checkpointing(lr_scheduler) if args.mixed_precision == "fp16": weight_dtype = torch.float16 elif args.mixed_precision == "bf16": weight_dtype = torch.bfloat16 else: weight_dtype = torch.float32 # Move text_encode and vae to gpu. # For mixed precision training we cast the text_encoder and vae weights to half-precision # as these models are only used for inference, keeping weights in full precision is not required. vae.to(accelerator.device, dtype=weight_dtype) if not args.train_text_encoder: text_encoder.to(accelerator.device, dtype=weight_dtype) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) # Afterwards we calculate our number of training epochs num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: tracker_config = vars(copy.deepcopy(args)) accelerator.init_trackers(args.validation_project_name, config=tracker_config) # create validation pipeline (note: unet and vae are loaded again in float32) val_pipeline = StableDiffusionInpaintPipeline.from_pretrained( args.pretrained_model_name_or_path, tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, vae=vae, torch_dtype=weight_dtype, safety_checker=None, ) val_pipeline.set_progress_bar_config(disable=True) # prepare validation dataset val_pairs = [ { "image": example["image"], "mask_image": mask, "prompt": example["prompt"], } for example in train_dataset.test_data for mask in [example[key] for key in example if "mask" in key] ] # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: for model in models: sub_dir = "unet" if isinstance(model, type(accelerator.unwrap_model(unet))) else "text_encoder" model.save_pretrained(os.path.join(output_dir, sub_dir)) # make sure to pop weight so that corresponding model is not saved again weights.pop() accelerator.register_save_state_pre_hook(save_model_hook) print() # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num batches each epoch = {len(train_dataloader)}") logger.info(f" Num Epochs = {num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) resume_global_step = global_step * args.gradient_accumulation_steps first_epoch = global_step // num_update_steps_per_epoch resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) # Only show the progress bar once on each machine. progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) progress_bar.set_description("Steps") for epoch in range(first_epoch, num_train_epochs): unet.train() for step, batch in enumerate(train_dataloader): # Skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: if step % args.gradient_accumulation_steps == 0: progress_bar.update(1) continue with accelerator.accumulate(unet): # Convert images to latent space latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() latents = latents * vae.config.scaling_factor # Convert masked images to latent space masked_latents = vae.encode( batch["masked_images"].reshape(batch["pixel_values"].shape).to(dtype=weight_dtype) ).latent_dist.sample() masked_latents = masked_latents * vae.config.scaling_factor masks = batch["masks"] # resize the mask to latents shape as we concatenate the mask to the latents mask = torch.stack( [ torch.nn.functional.interpolate(mask, size=(args.resolution // 8, args.resolution // 8)) for mask in masks ] ) mask = mask.reshape(-1, 1, args.resolution // 8, args.resolution // 8) # Sample noise that we'll add to the latents noise = torch.randn_like(latents) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # concatenate the noised latents with the mask and the masked latents latent_model_input = torch.cat([noisy_latents, mask, masked_latents], dim=1) # Get the text embedding for conditioning encoder_hidden_states = text_encoder(batch["input_ids"])[0] # Predict the noise residual noise_pred = unet(latent_model_input, timesteps, encoder_hidden_states).sample # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") loss = F.mse_loss(noise_pred.float(), target.float(), reduction="mean") accelerator.backward(loss) if accelerator.sync_gradients: params_to_clip = ( itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters() ) accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 if accelerator.is_main_process: if ( global_step % args.validation_steps == 0 and global_step >= args.validation_from and args.report_to_wandb ): log_validation( val_pipeline, text_encoder, unet, val_pairs, accelerator, ) if global_step % args.checkpointing_steps == 0 and global_step >= args.checkpointing_from: checkpoint( args, global_step, accelerator, ) # Step logging logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break accelerator.wait_for_everyone() # Terminate training accelerator.end_training() if __name__ == "__main__": main()
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/multi_subject_dreambooth_inpainting/README.md
# Multi Subject Dreambooth for Inpainting Models Please note that this project is not actively maintained. However, you can open an issue and tag @gzguevara. [DreamBooth](https://arxiv.org/abs/2208.12242) is a method to personalize text2image models like stable diffusion given just a few(3~5) images of a subject. This project consists of **two parts**. Training Stable Diffusion for inpainting requieres prompt-image-mask pairs. The Unet of inpainiting models have 5 additional input channels (4 for the encoded masked-image and 1 for the mask itself). **The first part**, the `multi_inpaint_dataset.ipynb` notebook, demonstrates how make a 🤗 dataset of prompt-image-mask pairs. You can, however, skip the first part and move straight to the second part with the example datasets in this project. ([cat toy dataset masked](https://huggingface.co/datasets/gzguevara/cat_toy_masked), [mr. potato head dataset masked](https://huggingface.co/datasets/gzguevara/mr_potato_head_masked)) **The second part**, the `train_multi_subject_inpainting.py` training script, demonstrates how to implement a training procedure for one or more subjects and adapt it for stable diffusion for inpainting. ## 1. Data Collection: Make Prompt-Image-Mask Pairs Earlier training scripts have provided approaches like random masking for the training images. This project provides a notebook for more precise mask setting. The notebook can be found here: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1JNEASI_B7pLW1srxhgln6nM0HoGAQT32?usp=sharing) The `multi_inpaint_dataset.ipynb` notebook, takes training & validation images, on which the user draws masks and provides prompts to make a prompt-image-mask pairs. This ensures that during training, the loss is computed on the area masking the object of interest, rather than on random areas. Moreover, the `multi_inpaint_dataset.ipynb` notebook allows you to build a validation dataset with corresponding masks for monitoring the training process. Example below: ![train_val_pairs](https://drive.google.com/uc?id=1PzwH8E3icl_ubVmA19G0HZGLImFX3x5I) You can build multiple datasets for every subject and upload them to the 🤗 hub. Later, when launching the training script you can indicate the paths of the datasets, on which you would like to finetune Stable Diffusion for inpaining. ## 2. Train Multi Subject Dreambooth for Inpainting ### 2.1. Setting The Training Configuration Before launching the training script, make sure to select the inpainting the target model, the output directory and the 🤗 datasets. ```bash export MODEL_NAME="runwayml/stable-diffusion-inpainting" export OUTPUT_DIR="path-to-save-model" export DATASET_1="gzguevara/mr_potato_head_masked" export DATASET_2="gzguevara/cat_toy_masked" ... # Further paths to 🤗 datasets ``` ### 2.2. Launching The Training Script ```bash accelerate launch train_multi_subject_dreambooth_inpaint.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir $DATASET_1 $DATASET_2 \ --output_dir=$OUTPUT_DIR \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=2 \ --learning_rate=3e-6 \ --max_train_steps=500 \ --report_to_wandb ``` ### 2.3. Fine-tune text encoder with the UNet. The script also allows to fine-tune the `text_encoder` along with the `unet`. It's been observed experimentally that fine-tuning `text_encoder` gives much better results especially on faces. Pass the `--train_text_encoder` argument to the script to enable training `text_encoder`. ___Note: Training text encoder requires more memory, with this option the training won't fit on 16GB GPU. It needs at least 24GB VRAM.___ ```bash accelerate launch train_multi_subject_dreambooth_inpaint.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir $DATASET_1 $DATASET_2 \ --output_dir=$OUTPUT_DIR \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=2 \ --learning_rate=2e-6 \ --max_train_steps=500 \ --report_to_wandb \ --train_text_encoder ``` ## 3. Results A [![Weights & Biases](https://img.shields.io/badge/Weights%20&%20Biases-Report-blue)](https://wandb.ai/gzguevara/uncategorized/reports/Multi-Subject-Dreambooth-for-Inpainting--Vmlldzo2MzY5NDQ4?accessToken=y0nya2d7baguhbryxaikbfr1203amvn1jsmyl07vk122mrs7tnph037u1nqgse8t) is provided showing the training progress by every 50 steps. Note, the reported weights & baises run was performed on a A100 GPU with the following stetting: ```bash accelerate launch train_multi_subject_dreambooth_inpaint.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir $DATASET_1 $DATASET_2 \ --output_dir=$OUTPUT_DIR \ --resolution=512 \ --train_batch_size=10 \ --gradient_accumulation_steps=1 \ --learning_rate=1e-6 \ --max_train_steps=500 \ --report_to_wandb \ --train_text_encoder ``` Here you can see the target objects on my desk and next to my plant: ![Results](https://drive.google.com/uc?id=1kQisOiiF5cj4rOYjdq8SCZenNsUP2aK0)
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/multi_subject_dreambooth_inpainting/requirements.txt
accelerate>=0.16.0 torchvision transformers>=4.25.1 datasets>=2.16.0 wandb>=0.16.1 ftfy tensorboard Jinja2
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/lora/README.md
# Stable Diffusion text-to-image fine-tuning This extended LoRA training script was authored by [haofanwang](https://github.com/haofanwang). This is an experimental LoRA extension of [this example](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py). We further support add LoRA layers for text encoder. ## Training with LoRA Low-Rank Adaption of Large Language Models was first introduced by Microsoft in [LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685) by *Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen*. In a nutshell, LoRA allows adapting pretrained models by adding pairs of rank-decomposition matrices to existing weights and **only** training those newly added weights. This has a couple of advantages: - Previous pretrained weights are kept frozen so that model is not prone to [catastrophic forgetting](https://www.pnas.org/doi/10.1073/pnas.1611835114). - Rank-decomposition matrices have significantly fewer parameters than original model, which means that trained LoRA weights are easily portable. - LoRA attention layers allow to control to which extent the model is adapted toward new training images via a `scale` parameter. [cloneofsimo](https://github.com/cloneofsimo) was the first to try out LoRA training for Stable Diffusion in the popular [lora](https://github.com/cloneofsimo/lora) GitHub repository. With LoRA, it's possible to fine-tune Stable Diffusion on a custom image-caption pair dataset on consumer GPUs like Tesla T4, Tesla V100. ### Training First, you need to set up your development environment as is explained in the [installation section](#installing-the-dependencies). Make sure to set the `MODEL_NAME` and `DATASET_NAME` environment variables. Here, we will use [Stable Diffusion v1-4](https://hf.co/CompVis/stable-diffusion-v1-4) and the [Pokemons dataset](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions). **___Note: Change the `resolution` to 768 if you are using the [stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) 768x768 model.___** **___Note: It is quite useful to monitor the training progress by regularly generating sample images during training. [Weights and Biases](https://docs.wandb.ai/quickstart) is a nice solution to easily see generating images during training. All you need to do is to run `pip install wandb` before training to automatically log images.___** ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export DATASET_NAME="lambdalabs/pokemon-blip-captions" ``` For this example we want to directly store the trained LoRA embeddings on the Hub, so we need to be logged in and add the `--push_to_hub` flag. ```bash huggingface-cli login ``` Now we can start training! ```bash accelerate launch --mixed_precision="fp16" train_text_to_image_lora.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --dataset_name=$DATASET_NAME --caption_column="text" \ --resolution=512 --random_flip \ --train_batch_size=1 \ --num_train_epochs=100 --checkpointing_steps=5000 \ --learning_rate=1e-04 --lr_scheduler="constant" --lr_warmup_steps=0 \ --seed=42 \ --output_dir="sd-pokemon-model-lora" \ --validation_prompt="cute dragon creature" --report_to="wandb" --use_peft \ --lora_r=4 --lora_alpha=32 \ --lora_text_encoder_r=4 --lora_text_encoder_alpha=32 ``` The above command will also run inference as fine-tuning progresses and log the results to Weights and Biases. **___Note: When using LoRA we can use a much higher learning rate compared to non-LoRA fine-tuning. Here we use *1e-4* instead of the usual *1e-5*. Also, by using LoRA, it's possible to run `train_text_to_image_lora.py` in consumer GPUs like T4 or V100.___** The final LoRA embedding weights have been uploaded to [sayakpaul/sd-model-finetuned-lora-t4](https://huggingface.co/sayakpaul/sd-model-finetuned-lora-t4). **___Note: [The final weights](https://huggingface.co/sayakpaul/sd-model-finetuned-lora-t4/blob/main/pytorch_lora_weights.bin) are only 3 MB in size, which is orders of magnitudes smaller than the original model.___** You can check some inference samples that were logged during the course of the fine-tuning process [here](https://wandb.ai/sayakpaul/text2image-fine-tune/runs/q4lc0xsw). ### Inference Once you have trained a model using above command, the inference can be done simply using the `StableDiffusionPipeline` after loading the trained LoRA weights. You need to pass the `output_dir` for loading the LoRA weights which, in this case, is `sd-pokemon-model-lora`. ```python from diffusers import StableDiffusionPipeline import torch model_path = "sayakpaul/sd-model-finetuned-lora-t4" pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) pipe.unet.load_attn_procs(model_path) pipe.to("cuda") prompt = "A pokemon with green eyes and red legs." image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images[0] image.save("pokemon.png") ```
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/lora/requirements.txt
accelerate>=0.16.0 torchvision transformers>=4.25.1 datasets ftfy tensorboard Jinja2 git+https://github.com/huggingface/peft.git
0
hf_public_repos/diffusers/examples/research_projects
hf_public_repos/diffusers/examples/research_projects/lora/train_text_to_image_lora.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fine-tuning script for Stable Diffusion for text2image with support for LoRA.""" import argparse import itertools import json import logging import math import os import random from pathlib import Path import datasets import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from datasets import load_dataset from huggingface_hub import create_repo, upload_folder from packaging import version from torchvision import transforms from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer import diffusers from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel from diffusers.loaders import AttnProcsLayers from diffusers.models.attention_processor import LoRAAttnProcessor from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version, is_wandb_available from diffusers.utils.import_utils import is_xformers_available # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.14.0.dev0") logger = get_logger(__name__, log_level="INFO") def save_model_card(repo_id: str, images=None, base_model=str, dataset_name=str, repo_folder=None): img_str = "" for i, image in enumerate(images): image.save(os.path.join(repo_folder, f"image_{i}.png")) img_str += f"![img_{i}](./image_{i}.png)\n" yaml = f""" --- license: creativeml-openrail-m base_model: {base_model} tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- """ model_card = f""" # LoRA text2image fine-tuning - {repo_id} These are LoRA adaption weights for {base_model}. The weights were fine-tuned on the {dataset_name} dataset. You can find some example images in the following. \n {img_str} """ with open(os.path.join(repo_folder, "README.md"), "w") as f: f.write(yaml + model_card) def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--dataset_name", type=str, default=None, help=( "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that 🤗 Datasets can understand." ), ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The config of the Dataset, leave as None if there's only one config.", ) parser.add_argument( "--train_data_dir", type=str, default=None, help=( "A folder containing the training data. Folder contents must follow the structure described in" " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." ), ) parser.add_argument( "--image_column", type=str, default="image", help="The column of the dataset containing an image." ) parser.add_argument( "--caption_column", type=str, default="text", help="The column of the dataset containing a caption or a list of captions.", ) parser.add_argument( "--validation_prompt", type=str, default=None, help="A prompt that is sampled during training for inference." ) parser.add_argument( "--num_validation_images", type=int, default=4, help="Number of images that should be generated during validation with `validation_prompt`.", ) parser.add_argument( "--validation_epochs", type=int, default=1, help=( "Run fine-tuning validation every X epochs. The validation process consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`." ), ) parser.add_argument( "--max_train_samples", type=int, default=None, help=( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ), ) parser.add_argument( "--output_dir", type=str, default="sd-model-finetuned-lora", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument( "--random_flip", action="store_true", help="whether to randomly flip images horizontally", ) parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder") # lora args parser.add_argument("--use_peft", action="store_true", help="Whether to use peft to support lora") parser.add_argument("--lora_r", type=int, default=4, help="Lora rank, only used if use_lora is True") parser.add_argument("--lora_alpha", type=int, default=32, help="Lora alpha, only used if lora is True") parser.add_argument("--lora_dropout", type=float, default=0.0, help="Lora dropout, only used if use_lora is True") parser.add_argument( "--lora_bias", type=str, default="none", help="Bias type for Lora. Can be 'none', 'all' or 'lora_only', only used if use_lora is True", ) parser.add_argument( "--lora_text_encoder_r", type=int, default=4, help="Lora rank for text encoder, only used if `use_lora` and `train_text_encoder` are True", ) parser.add_argument( "--lora_text_encoder_alpha", type=int, default=32, help="Lora alpha for text encoder, only used if `use_lora` and `train_text_encoder` are True", ) parser.add_argument( "--lora_text_encoder_dropout", type=float, default=0.0, help="Lora dropout for text encoder, only used if `use_lora` and `train_text_encoder` are True", ) parser.add_argument( "--lora_text_encoder_bias", type=str, default="none", help="Bias type for Lora. Can be 'none', 'all' or 'lora_only', only used if use_lora and `train_text_encoder` are True", ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=100) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=( "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" " for more docs" ), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank # Sanity checks if args.dataset_name is None and args.train_data_dir is None: raise ValueError("Need either a dataset name or a training folder.") return args DATASET_NAME_MAPPING = { "lambdalabs/pokemon-blip-captions": ("image", "text"), } def main(): args = parse_args() logging_dir = os.path.join(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration( total_limit=args.checkpoints_total_limit, project_dir=args.output_dir, logging_dir=logging_dir ) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) if args.report_to == "wandb": if not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") import wandb # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load scheduler, tokenizer and models. noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") tokenizer = CLIPTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision ) text_encoder = CLIPTextModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision ) vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision ) # For mixed precision training we cast the text_encoder and vae weights to half-precision # as these models are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 if args.use_peft: from peft import LoraConfig, LoraModel, get_peft_model_state_dict, set_peft_model_state_dict UNET_TARGET_MODULES = ["to_q", "to_v", "query", "value"] TEXT_ENCODER_TARGET_MODULES = ["q_proj", "v_proj"] config = LoraConfig( r=args.lora_r, lora_alpha=args.lora_alpha, target_modules=UNET_TARGET_MODULES, lora_dropout=args.lora_dropout, bias=args.lora_bias, ) unet = LoraModel(config, unet) vae.requires_grad_(False) if args.train_text_encoder: config = LoraConfig( r=args.lora_text_encoder_r, lora_alpha=args.lora_text_encoder_alpha, target_modules=TEXT_ENCODER_TARGET_MODULES, lora_dropout=args.lora_text_encoder_dropout, bias=args.lora_text_encoder_bias, ) text_encoder = LoraModel(config, text_encoder) else: # freeze parameters of models to save more memory unet.requires_grad_(False) vae.requires_grad_(False) text_encoder.requires_grad_(False) # now we will add new LoRA weights to the attention layers # It's important to realize here how many attention weights will be added and of which sizes # The sizes of the attention layers consist only of two different variables: # 1) - the "hidden_size", which is increased according to `unet.config.block_out_channels`. # 2) - the "cross attention size", which is set to `unet.config.cross_attention_dim`. # Let's first see how many attention processors we will have to set. # For Stable Diffusion, it should be equal to: # - down blocks (2x attention layers) * (2x transformer layers) * (3x down blocks) = 12 # - mid blocks (2x attention layers) * (1x transformer layers) * (1x mid blocks) = 2 # - up blocks (2x attention layers) * (3x transformer layers) * (3x down blocks) = 18 # => 32 layers # Set correct lora layers lora_attn_procs = {} for name in unet.attn_processors.keys(): cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim if name.startswith("mid_block"): hidden_size = unet.config.block_out_channels[-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(unet.config.block_out_channels))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = unet.config.block_out_channels[block_id] lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim) unet.set_attn_processor(lora_attn_procs) lora_layers = AttnProcsLayers(unet.attn_processors) # Move unet, vae and text_encoder to device and cast to weight_dtype vae.to(accelerator.device, dtype=weight_dtype) if not args.train_text_encoder: text_encoder.to(accelerator.device, dtype=weight_dtype) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warn( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Initialize the optimizer if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" ) optimizer_cls = bnb.optim.AdamW8bit else: optimizer_cls = torch.optim.AdamW if args.use_peft: # Optimizer creation params_to_optimize = ( itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters() ) optimizer = optimizer_cls( params_to_optimize, lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) else: optimizer = optimizer_cls( lora_layers.parameters(), lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # Get the datasets: you can either provide your own training and evaluation files (see below) # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, ) else: data_files = {} if args.train_data_dir is not None: data_files["train"] = os.path.join(args.train_data_dir, "**") dataset = load_dataset( "imagefolder", data_files=data_files, cache_dir=args.cache_dir, ) # See more about loading custom images at # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder # Preprocessing the datasets. # We need to tokenize inputs and targets. column_names = dataset["train"].column_names # 6. Get the column names for input/target. dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None) if args.image_column is None: image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] else: image_column = args.image_column if image_column not in column_names: raise ValueError( f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}" ) if args.caption_column is None: caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1] else: caption_column = args.caption_column if caption_column not in column_names: raise ValueError( f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}" ) # Preprocessing the datasets. # We need to tokenize input captions and transform the images. def tokenize_captions(examples, is_train=True): captions = [] for caption in examples[caption_column]: if isinstance(caption, str): captions.append(caption) elif isinstance(caption, (list, np.ndarray)): # take a random caption if there are multiple captions.append(random.choice(caption) if is_train else caption[0]) else: raise ValueError( f"Caption column `{caption_column}` should contain either strings or lists of strings." ) inputs = tokenizer( captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" ) return inputs.input_ids # Preprocessing the datasets. train_transforms = transforms.Compose( [ transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution), transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def preprocess_train(examples): images = [image.convert("RGB") for image in examples[image_column]] examples["pixel_values"] = [train_transforms(image) for image in images] examples["input_ids"] = tokenize_captions(examples) return examples with accelerator.main_process_first(): if args.max_train_samples is not None: dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) # Set the training transforms train_dataset = dataset["train"].with_transform(preprocess_train) def collate_fn(examples): pixel_values = torch.stack([example["pixel_values"] for example in examples]) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() input_ids = torch.stack([example["input_ids"] for example in examples]) return {"pixel_values": pixel_values, "input_ids": input_ids} # DataLoaders creation: train_dataloader = torch.utils.data.DataLoader( train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=args.train_batch_size, num_workers=args.dataloader_num_workers, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, ) # Prepare everything with our `accelerator`. if args.use_peft: if args.train_text_encoder: unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, text_encoder, optimizer, train_dataloader, lr_scheduler ) else: unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, optimizer, train_dataloader, lr_scheduler ) else: lora_layers, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( lora_layers, optimizer, train_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("text2image-fine-tune", config=vars(args)) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) resume_global_step = global_step * args.gradient_accumulation_steps first_epoch = global_step // num_update_steps_per_epoch resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) # Only show the progress bar once on each machine. progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) progress_bar.set_description("Steps") for epoch in range(first_epoch, args.num_train_epochs): unet.train() if args.train_text_encoder: text_encoder.train() train_loss = 0.0 for step, batch in enumerate(train_dataloader): # Skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: if step % args.gradient_accumulation_steps == 0: progress_bar.update(1) continue with accelerator.accumulate(unet): # Convert images to latent space latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() latents = latents * vae.config.scaling_factor # Sample noise that we'll add to the latents noise = torch.randn_like(latents) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # Get the text embedding for conditioning encoder_hidden_states = text_encoder(batch["input_ids"])[0] # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") # Predict the noise residual and compute loss model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") # Gather the losses across all processes for logging (if we use distributed training). avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() train_loss += avg_loss.item() / args.gradient_accumulation_steps # Backpropagate accelerator.backward(loss) if accelerator.sync_gradients: if args.use_peft: params_to_clip = ( itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters() ) else: params_to_clip = lora_layers.parameters() accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 accelerator.log({"train_loss": train_loss}, step=global_step) train_loss = 0.0 if global_step % args.checkpointing_steps == 0: if accelerator.is_main_process: save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) if global_step >= args.max_train_steps: break if accelerator.is_main_process: if args.validation_prompt is not None and epoch % args.validation_epochs == 0: logger.info( f"Running validation... \n Generating {args.num_validation_images} images with prompt:" f" {args.validation_prompt}." ) # create pipeline pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, unet=accelerator.unwrap_model(unet), text_encoder=accelerator.unwrap_model(text_encoder), revision=args.revision, torch_dtype=weight_dtype, ) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) # run inference generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) images = [] for _ in range(args.num_validation_images): images.append( pipeline(args.validation_prompt, num_inference_steps=30, generator=generator).images[0] ) if accelerator.is_main_process: for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "validation": [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) del pipeline torch.cuda.empty_cache() # Save the lora layers accelerator.wait_for_everyone() if accelerator.is_main_process: if args.use_peft: lora_config = {} unwarpped_unet = accelerator.unwrap_model(unet) state_dict = get_peft_model_state_dict(unwarpped_unet, state_dict=accelerator.get_state_dict(unet)) lora_config["peft_config"] = unwarpped_unet.get_peft_config_as_dict(inference=True) if args.train_text_encoder: unwarpped_text_encoder = accelerator.unwrap_model(text_encoder) text_encoder_state_dict = get_peft_model_state_dict( unwarpped_text_encoder, state_dict=accelerator.get_state_dict(text_encoder) ) text_encoder_state_dict = {f"text_encoder_{k}": v for k, v in text_encoder_state_dict.items()} state_dict.update(text_encoder_state_dict) lora_config["text_encoder_peft_config"] = unwarpped_text_encoder.get_peft_config_as_dict( inference=True ) accelerator.save(state_dict, os.path.join(args.output_dir, f"{global_step}_lora.pt")) with open(os.path.join(args.output_dir, f"{global_step}_lora_config.json"), "w") as f: json.dump(lora_config, f) else: unet = unet.to(torch.float32) unet.save_attn_procs(args.output_dir) if args.push_to_hub: save_model_card( repo_id, images=images, base_model=args.pretrained_model_name_or_path, dataset_name=args.dataset_name, repo_folder=args.output_dir, ) upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) # Final inference # Load previous pipeline pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, revision=args.revision, torch_dtype=weight_dtype ) if args.use_peft: def load_and_set_lora_ckpt(pipe, ckpt_dir, global_step, device, dtype): with open(os.path.join(args.output_dir, f"{global_step}_lora_config.json"), "r") as f: lora_config = json.load(f) print(lora_config) checkpoint = os.path.join(args.output_dir, f"{global_step}_lora.pt") lora_checkpoint_sd = torch.load(checkpoint) unet_lora_ds = {k: v for k, v in lora_checkpoint_sd.items() if "text_encoder_" not in k} text_encoder_lora_ds = { k.replace("text_encoder_", ""): v for k, v in lora_checkpoint_sd.items() if "text_encoder_" in k } unet_config = LoraConfig(**lora_config["peft_config"]) pipe.unet = LoraModel(unet_config, pipe.unet) set_peft_model_state_dict(pipe.unet, unet_lora_ds) if "text_encoder_peft_config" in lora_config: text_encoder_config = LoraConfig(**lora_config["text_encoder_peft_config"]) pipe.text_encoder = LoraModel(text_encoder_config, pipe.text_encoder) set_peft_model_state_dict(pipe.text_encoder, text_encoder_lora_ds) if dtype in (torch.float16, torch.bfloat16): pipe.unet.half() pipe.text_encoder.half() pipe.to(device) return pipe pipeline = load_and_set_lora_ckpt(pipeline, args.output_dir, global_step, accelerator.device, weight_dtype) else: pipeline = pipeline.to(accelerator.device) # load attention processors pipeline.unet.load_attn_procs(args.output_dir) # run inference if args.seed is not None: generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) else: generator = None images = [] for _ in range(args.num_validation_images): images.append(pipeline(args.validation_prompt, num_inference_steps=30, generator=generator).images[0]) if accelerator.is_main_process: for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "test": [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) accelerator.end_training() if __name__ == "__main__": main()
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/text_to_image/README_sdxl.md
# Stable Diffusion XL text-to-image fine-tuning The `train_text_to_image_sdxl.py` script shows how to fine-tune Stable Diffusion XL (SDXL) on your own dataset. 🚨 This script is experimental. The script fine-tunes the whole model and often times the model overfits and runs into issues like catastrophic forgetting. It's recommended to try different hyperparamters to get the best result on your dataset. 🚨 ## Running locally with PyTorch ### Installing the dependencies Before running the scripts, make sure to install the library's training dependencies: **Important** To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install -e . ``` Then cd in the `examples/text_to_image` folder and run ```bash pip install -r requirements_sdxl.txt ``` And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: ```bash accelerate config ``` Or for a default accelerate configuration without answering questions about your environment ```bash accelerate config default ``` Or if your environment doesn't support an interactive shell (e.g., a notebook) ```python from accelerate.utils import write_basic_config write_basic_config() ``` When running `accelerate config`, if we specify torch compile mode to True there can be dramatic speedups. Note also that we use PEFT library as backend for LoRA training, make sure to have `peft>=0.6.0` installed in your environment. ### Training ```bash export MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0" export VAE_NAME="madebyollin/sdxl-vae-fp16-fix" export DATASET_NAME="lambdalabs/pokemon-blip-captions" accelerate launch train_text_to_image_sdxl.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --pretrained_vae_model_name_or_path=$VAE_NAME \ --dataset_name=$DATASET_NAME \ --enable_xformers_memory_efficient_attention \ --resolution=512 --center_crop --random_flip \ --proportion_empty_prompts=0.2 \ --train_batch_size=1 \ --gradient_accumulation_steps=4 --gradient_checkpointing \ --max_train_steps=10000 \ --use_8bit_adam \ --learning_rate=1e-06 --lr_scheduler="constant" --lr_warmup_steps=0 \ --mixed_precision="fp16" \ --report_to="wandb" \ --validation_prompt="a cute Sundar Pichai creature" --validation_epochs 5 \ --checkpointing_steps=5000 \ --output_dir="sdxl-pokemon-model" \ --push_to_hub ``` **Notes**: * The `train_text_to_image_sdxl.py` script pre-computes text embeddings and the VAE encodings and keeps them in memory. While for smaller datasets like [`lambdalabs/pokemon-blip-captions`](https://hf.co/datasets/lambdalabs/pokemon-blip-captions), it might not be a problem, it can definitely lead to memory problems when the script is used on a larger dataset. For those purposes, you would want to serialize these pre-computed representations to disk separately and load them during the fine-tuning process. Refer to [this PR](https://github.com/huggingface/diffusers/pull/4505) for a more in-depth discussion. * The training script is compute-intensive and may not run on a consumer GPU like Tesla T4. * The training command shown above performs intermediate quality validation in between the training epochs and logs the results to Weights and Biases. `--report_to`, `--validation_prompt`, and `--validation_epochs` are the relevant CLI arguments here. * SDXL's VAE is known to suffer from numerical instability issues. This is why we also expose a CLI argument namely `--pretrained_vae_model_name_or_path` that lets you specify the location of a better VAE (such as [this one](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix)). ### Inference ```python from diffusers import DiffusionPipeline import torch model_path = "you-model-id-goes-here" # <-- change this pipe = DiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16) pipe.to("cuda") prompt = "A pokemon with green eyes and red legs." image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images[0] image.save("pokemon.png") ``` ### Inference in Pytorch XLA ```python from diffusers import DiffusionPipeline import torch import torch_xla.core.xla_model as xm model_id = "stabilityai/stable-diffusion-xl-base-1.0" pipe = DiffusionPipeline.from_pretrained(model_id) device = xm.xla_device() pipe.to(device) prompt = "A pokemon with green eyes and red legs." start = time() image = pipe(prompt, num_inference_steps=inference_steps).images[0] print(f'Compilation time is {time()-start} sec') image.save("pokemon.png") start = time() image = pipe(prompt, num_inference_steps=inference_steps).images[0] print(f'Inference time is {time()-start} sec after compilation') ``` Note: There is a warmup step in PyTorch XLA. This takes longer because of compilation and optimization. To see the real benefits of Pytorch XLA and speedup, we need to call the pipe again on the input with the same length as the original prompt to reuse the optimized graph and get the performance boost. ## LoRA training example for Stable Diffusion XL (SDXL) Low-Rank Adaption of Large Language Models was first introduced by Microsoft in [LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685) by *Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen*. In a nutshell, LoRA allows adapting pretrained models by adding pairs of rank-decomposition matrices to existing weights and **only** training those newly added weights. This has a couple of advantages: - Previous pretrained weights are kept frozen so that model is not prone to [catastrophic forgetting](https://www.pnas.org/doi/10.1073/pnas.1611835114). - Rank-decomposition matrices have significantly fewer parameters than original model, which means that trained LoRA weights are easily portable. - LoRA attention layers allow to control to which extent the model is adapted toward new training images via a `scale` parameter. [cloneofsimo](https://github.com/cloneofsimo) was the first to try out LoRA training for Stable Diffusion in the popular [lora](https://github.com/cloneofsimo/lora) GitHub repository. With LoRA, it's possible to fine-tune Stable Diffusion on a custom image-caption pair dataset on consumer GPUs like Tesla T4, Tesla V100. ### Training First, you need to set up your development environment as is explained in the [installation section](#installing-the-dependencies). Make sure to set the `MODEL_NAME` and `DATASET_NAME` environment variables and, optionally, the `VAE_NAME` variable. Here, we will use [Stable Diffusion XL 1.0-base](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) and the [Pokemons dataset](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions). **___Note: It is quite useful to monitor the training progress by regularly generating sample images during training. [Weights and Biases](https://docs.wandb.ai/quickstart) is a nice solution to easily see generating images during training. All you need to do is to run `pip install wandb` before training to automatically log images.___** ```bash export MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0" export VAE_NAME="madebyollin/sdxl-vae-fp16-fix" export DATASET_NAME="lambdalabs/pokemon-blip-captions" ``` For this example we want to directly store the trained LoRA embeddings on the Hub, so we need to be logged in and add the `--push_to_hub` flag. ```bash huggingface-cli login ``` Now we can start training! ```bash accelerate launch train_text_to_image_lora_sdxl.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --pretrained_vae_model_name_or_path=$VAE_NAME \ --dataset_name=$DATASET_NAME --caption_column="text" \ --resolution=1024 --random_flip \ --train_batch_size=1 \ --num_train_epochs=2 --checkpointing_steps=500 \ --learning_rate=1e-04 --lr_scheduler="constant" --lr_warmup_steps=0 \ --mixed_precision="fp16" \ --seed=42 \ --output_dir="sd-pokemon-model-lora-sdxl" \ --validation_prompt="cute dragon creature" --report_to="wandb" \ --push_to_hub ``` The above command will also run inference as fine-tuning progresses and log the results to Weights and Biases. **Notes**: * SDXL's VAE is known to suffer from numerical instability issues. This is why we also expose a CLI argument namely `--pretrained_vae_model_name_or_path` that lets you specify the location of a better VAE (such as [this one](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix)). ### Finetuning the text encoder and UNet The script also allows you to finetune the `text_encoder` along with the `unet`. 🚨 Training the text encoder requires additional memory. Pass the `--train_text_encoder` argument to the training script to enable finetuning the `text_encoder` and `unet`: ```bash accelerate launch train_text_to_image_lora_sdxl.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --dataset_name=$DATASET_NAME --caption_column="text" \ --resolution=1024 --random_flip \ --train_batch_size=1 \ --num_train_epochs=2 --checkpointing_steps=500 \ --learning_rate=1e-04 --lr_scheduler="constant" --lr_warmup_steps=0 \ --seed=42 \ --output_dir="sd-pokemon-model-lora-sdxl-txt" \ --train_text_encoder \ --validation_prompt="cute dragon creature" --report_to="wandb" \ --push_to_hub ``` ### Inference Once you have trained a model using above command, the inference can be done simply using the `DiffusionPipeline` after loading the trained LoRA weights. You need to pass the `output_dir` for loading the LoRA weights which, in this case, is `sd-pokemon-model-lora-sdxl`. ```python from diffusers import DiffusionPipeline import torch model_path = "takuoko/sd-pokemon-model-lora-sdxl" pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16) pipe.to("cuda") pipe.load_lora_weights(model_path) prompt = "A pokemon with green eyes and red legs." image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images[0] image.save("pokemon.png") ```
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/text_to_image/requirements_sdxl.txt
accelerate>=0.22.0 torchvision transformers>=4.25.1 ftfy tensorboard Jinja2 datasets peft==0.7.0
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/text_to_image/train_text_to_image_lora_sdxl.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fine-tuning script for Stable Diffusion XL for text2image with support for LoRA.""" import argparse import logging import math import os import random import shutil from pathlib import Path import datasets import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed from datasets import load_dataset from huggingface_hub import create_repo, upload_folder from packaging import version from peft import LoraConfig from peft.utils import get_peft_model_state_dict from torchvision import transforms from torchvision.transforms.functional import crop from tqdm.auto import tqdm from transformers import AutoTokenizer, PretrainedConfig import diffusers from diffusers import ( AutoencoderKL, DDPMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, ) from diffusers.loaders import LoraLoaderMixin from diffusers.optimization import get_scheduler from diffusers.training_utils import cast_training_params, compute_snr from diffusers.utils import check_min_version, convert_state_dict_to_diffusers, is_wandb_available from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.torch_utils import is_compiled_module # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.26.0.dev0") logger = get_logger(__name__) def save_model_card( repo_id: str, images=None, base_model=str, dataset_name=str, train_text_encoder=False, repo_folder=None, vae_path=None, ): img_str = "" for i, image in enumerate(images): image.save(os.path.join(repo_folder, f"image_{i}.png")) img_str += f"![img_{i}](./image_{i}.png)\n" yaml = f""" --- license: creativeml-openrail-m base_model: {base_model} dataset: {dataset_name} tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- """ model_card = f""" # LoRA text2image fine-tuning - {repo_id} These are LoRA adaption weights for {base_model}. The weights were fine-tuned on the {dataset_name} dataset. You can find some example images in the following. \n {img_str} LoRA for the text encoder was enabled: {train_text_encoder}. Special VAE used for training: {vae_path}. """ with open(os.path.join(repo_folder, "README.md"), "w") as f: f.write(yaml + model_card) def import_model_class_from_model_name_or_path( pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" ): text_encoder_config = PretrainedConfig.from_pretrained( pretrained_model_name_or_path, subfolder=subfolder, revision=revision ) model_class = text_encoder_config.architectures[0] if model_class == "CLIPTextModel": from transformers import CLIPTextModel return CLIPTextModel elif model_class == "CLIPTextModelWithProjection": from transformers import CLIPTextModelWithProjection return CLIPTextModelWithProjection else: raise ValueError(f"{model_class} is not supported.") def parse_args(input_args=None): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--pretrained_vae_model_name_or_path", type=str, default=None, help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--variant", type=str, default=None, help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", ) parser.add_argument( "--dataset_name", type=str, default=None, help=( "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that 🤗 Datasets can understand." ), ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The config of the Dataset, leave as None if there's only one config.", ) parser.add_argument( "--train_data_dir", type=str, default=None, help=( "A folder containing the training data. Folder contents must follow the structure described in" " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." ), ) parser.add_argument( "--image_column", type=str, default="image", help="The column of the dataset containing an image." ) parser.add_argument( "--caption_column", type=str, default="text", help="The column of the dataset containing a caption or a list of captions.", ) parser.add_argument( "--validation_prompt", type=str, default=None, help="A prompt that is used during validation to verify that the model is learning.", ) parser.add_argument( "--num_validation_images", type=int, default=4, help="Number of images that should be generated during validation with `validation_prompt`.", ) parser.add_argument( "--validation_epochs", type=int, default=1, help=( "Run fine-tuning validation every X epochs. The validation process consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`." ), ) parser.add_argument( "--max_train_samples", type=int, default=None, help=( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ), ) parser.add_argument( "--output_dir", type=str, default="sd-model-finetuned-lora", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=1024, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument( "--random_flip", action="store_true", help="whether to randomly flip images horizontally", ) parser.add_argument( "--train_text_encoder", action="store_true", help="Whether to train the text encoder. If set, the text encoder should be float32 precision.", ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=100) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=("Max number of checkpoints to store."), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--snr_gamma", type=float, default=None, help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " "More details here: https://arxiv.org/abs/2303.09556.", ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--prediction_type", type=str, default=None, help="The prediction_type that shall be used for training. Choose between 'epsilon' or 'v_prediction' or leave `None`. If left to `None` the default prediction type of the scheduler: `noise_scheduler.config.prediciton_type` is chosen.", ) parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.") parser.add_argument( "--rank", type=int, default=4, help=("The dimension of the LoRA update matrices."), ) if input_args is not None: args = parser.parse_args(input_args) else: args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank # Sanity checks if args.dataset_name is None and args.train_data_dir is None: raise ValueError("Need either a dataset name or a training folder.") return args DATASET_NAME_MAPPING = { "lambdalabs/pokemon-blip-captions": ("image", "text"), } def tokenize_prompt(tokenizer, prompt): text_inputs = tokenizer( prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids return text_input_ids # Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt def encode_prompt(text_encoders, tokenizers, prompt, text_input_ids_list=None): prompt_embeds_list = [] for i, text_encoder in enumerate(text_encoders): if tokenizers is not None: tokenizer = tokenizers[i] text_input_ids = tokenize_prompt(tokenizer, prompt) else: assert text_input_ids_list is not None text_input_ids = text_input_ids_list[i] prompt_embeds = text_encoder( text_input_ids.to(text_encoder.device), output_hidden_states=True, return_dict=False ) # We are only ALWAYS interested in the pooled output of the final text encoder pooled_prompt_embeds = prompt_embeds[0] prompt_embeds = prompt_embeds[-1][-2] bs_embed, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) prompt_embeds_list.append(prompt_embeds) prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1) return prompt_embeds, pooled_prompt_embeds def main(args): logging_dir = Path(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, kwargs_handlers=[kwargs], ) if args.report_to == "wandb": if not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") import wandb # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load the tokenizers tokenizer_one = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, use_fast=False, ) tokenizer_two = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer_2", revision=args.revision, use_fast=False, ) # import correct text encoder classes text_encoder_cls_one = import_model_class_from_model_name_or_path( args.pretrained_model_name_or_path, args.revision ) text_encoder_cls_two = import_model_class_from_model_name_or_path( args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2" ) # Load scheduler and models noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") text_encoder_one = text_encoder_cls_one.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant ) text_encoder_two = text_encoder_cls_two.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant ) vae_path = ( args.pretrained_model_name_or_path if args.pretrained_vae_model_name_or_path is None else args.pretrained_vae_model_name_or_path ) vae = AutoencoderKL.from_pretrained( vae_path, subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, revision=args.revision, variant=args.variant, ) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant ) # We only train the additional adapter LoRA layers vae.requires_grad_(False) text_encoder_one.requires_grad_(False) text_encoder_two.requires_grad_(False) unet.requires_grad_(False) # For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision # as these weights are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move unet, vae and text_encoder to device and cast to weight_dtype # The VAE is in float32 to avoid NaN losses. unet.to(accelerator.device, dtype=weight_dtype) if args.pretrained_vae_model_name_or_path is None: vae.to(accelerator.device, dtype=torch.float32) else: vae.to(accelerator.device, dtype=weight_dtype) text_encoder_one.to(accelerator.device, dtype=weight_dtype) text_encoder_two.to(accelerator.device, dtype=weight_dtype) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warn( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") # now we will add new LoRA weights to the attention layers # Set correct lora layers unet_lora_config = LoraConfig( r=args.rank, lora_alpha=args.rank, init_lora_weights="gaussian", target_modules=["to_k", "to_q", "to_v", "to_out.0"], ) unet.add_adapter(unet_lora_config) # The text encoder comes from 🤗 transformers, we will also attach adapters to it. if args.train_text_encoder: # ensure that dtype is float32, even if rest of the model that isn't trained is loaded in fp16 text_lora_config = LoraConfig( r=args.rank, lora_alpha=args.rank, init_lora_weights="gaussian", target_modules=["q_proj", "k_proj", "v_proj", "out_proj"], ) text_encoder_one.add_adapter(text_lora_config) text_encoder_two.add_adapter(text_lora_config) # Make sure the trainable params are in float32. if args.mixed_precision == "fp16": models = [unet] if args.train_text_encoder: models.extend([text_encoder_one, text_encoder_two]) # only upcast trainable parameters (LoRA) into fp32 cast_training_params(models, dtype=torch.float32) def unwrap_model(model): model = accelerator.unwrap_model(model) model = model._orig_mod if is_compiled_module(model) else model return model # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: # there are only two options here. Either are just the unet attn processor layers # or there are the unet and text encoder atten layers unet_lora_layers_to_save = None text_encoder_one_lora_layers_to_save = None text_encoder_two_lora_layers_to_save = None for model in models: if isinstance(model, type(unwrap_model(unet))): unet_lora_layers_to_save = convert_state_dict_to_diffusers(get_peft_model_state_dict(model)) elif isinstance(model, type(unwrap_model(text_encoder_one))): text_encoder_one_lora_layers_to_save = convert_state_dict_to_diffusers( get_peft_model_state_dict(model) ) elif isinstance(model, type(unwrap_model(text_encoder_two))): text_encoder_two_lora_layers_to_save = convert_state_dict_to_diffusers( get_peft_model_state_dict(model) ) else: raise ValueError(f"unexpected save model: {model.__class__}") # make sure to pop weight so that corresponding model is not saved again weights.pop() StableDiffusionXLPipeline.save_lora_weights( output_dir, unet_lora_layers=unet_lora_layers_to_save, text_encoder_lora_layers=text_encoder_one_lora_layers_to_save, text_encoder_2_lora_layers=text_encoder_two_lora_layers_to_save, ) def load_model_hook(models, input_dir): unet_ = None text_encoder_one_ = None text_encoder_two_ = None while len(models) > 0: model = models.pop() if isinstance(model, type(unwrap_model(unet))): unet_ = model elif isinstance(model, type(unwrap_model(text_encoder_one))): text_encoder_one_ = model elif isinstance(model, type(unwrap_model(text_encoder_two))): text_encoder_two_ = model else: raise ValueError(f"unexpected save model: {model.__class__}") lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir) LoraLoaderMixin.load_lora_into_unet(lora_state_dict, network_alphas=network_alphas, unet=unet_) text_encoder_state_dict = {k: v for k, v in lora_state_dict.items() if "text_encoder." in k} LoraLoaderMixin.load_lora_into_text_encoder( text_encoder_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_one_ ) text_encoder_2_state_dict = {k: v for k, v in lora_state_dict.items() if "text_encoder_2." in k} LoraLoaderMixin.load_lora_into_text_encoder( text_encoder_2_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_two_ ) accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) if args.gradient_checkpointing: unet.enable_gradient_checkpointing() if args.train_text_encoder: text_encoder_one.gradient_checkpointing_enable() text_encoder_two.gradient_checkpointing_enable() # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." ) optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW # Optimizer creation params_to_optimize = list(filter(lambda p: p.requires_grad, unet.parameters())) if args.train_text_encoder: params_to_optimize = ( params_to_optimize + list(filter(lambda p: p.requires_grad, text_encoder_one.parameters())) + list(filter(lambda p: p.requires_grad, text_encoder_two.parameters())) ) optimizer = optimizer_class( params_to_optimize, lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # Get the datasets: you can either provide your own training and evaluation files (see below) # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, data_dir=args.train_data_dir ) else: data_files = {} if args.train_data_dir is not None: data_files["train"] = os.path.join(args.train_data_dir, "**") dataset = load_dataset( "imagefolder", data_files=data_files, cache_dir=args.cache_dir, ) # See more about loading custom images at # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder # Preprocessing the datasets. # We need to tokenize inputs and targets. column_names = dataset["train"].column_names # 6. Get the column names for input/target. dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None) if args.image_column is None: image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] else: image_column = args.image_column if image_column not in column_names: raise ValueError( f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}" ) if args.caption_column is None: caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1] else: caption_column = args.caption_column if caption_column not in column_names: raise ValueError( f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}" ) # Preprocessing the datasets. # We need to tokenize input captions and transform the images. def tokenize_captions(examples, is_train=True): captions = [] for caption in examples[caption_column]: if isinstance(caption, str): captions.append(caption) elif isinstance(caption, (list, np.ndarray)): # take a random caption if there are multiple captions.append(random.choice(caption) if is_train else caption[0]) else: raise ValueError( f"Caption column `{caption_column}` should contain either strings or lists of strings." ) tokens_one = tokenize_prompt(tokenizer_one, captions) tokens_two = tokenize_prompt(tokenizer_two, captions) return tokens_one, tokens_two # Preprocessing the datasets. train_resize = transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR) train_crop = transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution) train_flip = transforms.RandomHorizontalFlip(p=1.0) train_transforms = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def preprocess_train(examples): images = [image.convert("RGB") for image in examples[image_column]] # image aug original_sizes = [] all_images = [] crop_top_lefts = [] for image in images: original_sizes.append((image.height, image.width)) image = train_resize(image) if args.random_flip and random.random() < 0.5: # flip image = train_flip(image) if args.center_crop: y1 = max(0, int(round((image.height - args.resolution) / 2.0))) x1 = max(0, int(round((image.width - args.resolution) / 2.0))) image = train_crop(image) else: y1, x1, h, w = train_crop.get_params(image, (args.resolution, args.resolution)) image = crop(image, y1, x1, h, w) crop_top_left = (y1, x1) crop_top_lefts.append(crop_top_left) image = train_transforms(image) all_images.append(image) examples["original_sizes"] = original_sizes examples["crop_top_lefts"] = crop_top_lefts examples["pixel_values"] = all_images tokens_one, tokens_two = tokenize_captions(examples) examples["input_ids_one"] = tokens_one examples["input_ids_two"] = tokens_two return examples with accelerator.main_process_first(): if args.max_train_samples is not None: dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) # Set the training transforms train_dataset = dataset["train"].with_transform(preprocess_train) def collate_fn(examples): pixel_values = torch.stack([example["pixel_values"] for example in examples]) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() original_sizes = [example["original_sizes"] for example in examples] crop_top_lefts = [example["crop_top_lefts"] for example in examples] input_ids_one = torch.stack([example["input_ids_one"] for example in examples]) input_ids_two = torch.stack([example["input_ids_two"] for example in examples]) return { "pixel_values": pixel_values, "input_ids_one": input_ids_one, "input_ids_two": input_ids_two, "original_sizes": original_sizes, "crop_top_lefts": crop_top_lefts, } # DataLoaders creation: train_dataloader = torch.utils.data.DataLoader( train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=args.train_batch_size, num_workers=args.dataloader_num_workers, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, ) # Prepare everything with our `accelerator`. if args.train_text_encoder: unet, text_encoder_one, text_encoder_two, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, text_encoder_one, text_encoder_two, optimizer, train_dataloader, lr_scheduler ) else: unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, optimizer, train_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("text2image-fine-tune", config=vars(args)) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None initial_global_step = 0 else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) initial_global_step = global_step first_epoch = global_step // num_update_steps_per_epoch else: initial_global_step = 0 progress_bar = tqdm( range(0, args.max_train_steps), initial=initial_global_step, desc="Steps", # Only show the progress bar once on each machine. disable=not accelerator.is_local_main_process, ) for epoch in range(first_epoch, args.num_train_epochs): unet.train() if args.train_text_encoder: text_encoder_one.train() text_encoder_two.train() train_loss = 0.0 for step, batch in enumerate(train_dataloader): with accelerator.accumulate(unet): # Convert images to latent space if args.pretrained_vae_model_name_or_path is not None: pixel_values = batch["pixel_values"].to(dtype=weight_dtype) else: pixel_values = batch["pixel_values"] model_input = vae.encode(pixel_values).latent_dist.sample() model_input = model_input * vae.config.scaling_factor if args.pretrained_vae_model_name_or_path is None: model_input = model_input.to(weight_dtype) # Sample noise that we'll add to the latents noise = torch.randn_like(model_input) if args.noise_offset: # https://www.crosslabs.org//blog/diffusion-with-offset-noise noise += args.noise_offset * torch.randn( (model_input.shape[0], model_input.shape[1], 1, 1), device=model_input.device ) bsz = model_input.shape[0] # Sample a random timestep for each image timesteps = torch.randint( 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device ) timesteps = timesteps.long() # Add noise to the model input according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps) # time ids def compute_time_ids(original_size, crops_coords_top_left): # Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids target_size = (args.resolution, args.resolution) add_time_ids = list(original_size + crops_coords_top_left + target_size) add_time_ids = torch.tensor([add_time_ids]) add_time_ids = add_time_ids.to(accelerator.device, dtype=weight_dtype) return add_time_ids add_time_ids = torch.cat( [compute_time_ids(s, c) for s, c in zip(batch["original_sizes"], batch["crop_top_lefts"])] ) # Predict the noise residual unet_added_conditions = {"time_ids": add_time_ids} prompt_embeds, pooled_prompt_embeds = encode_prompt( text_encoders=[text_encoder_one, text_encoder_two], tokenizers=None, prompt=None, text_input_ids_list=[batch["input_ids_one"], batch["input_ids_two"]], ) unet_added_conditions.update({"text_embeds": pooled_prompt_embeds}) model_pred = unet( noisy_model_input, timesteps, prompt_embeds, added_cond_kwargs=unet_added_conditions, return_dict=False, )[0] # Get the target for loss depending on the prediction type if args.prediction_type is not None: # set prediction_type of scheduler if defined noise_scheduler.register_to_config(prediction_type=args.prediction_type) if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(model_input, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") if args.snr_gamma is None: loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") else: # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556. # Since we predict the noise instead of x_0, the original formulation is slightly changed. # This is discussed in Section 4.2 of the same paper. snr = compute_snr(noise_scheduler, timesteps) if noise_scheduler.config.prediction_type == "v_prediction": # Velocity objective requires that we add one to SNR values before we divide by them. snr = snr + 1 mse_loss_weights = ( torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr ) loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights loss = loss.mean() # Gather the losses across all processes for logging (if we use distributed training). avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() train_loss += avg_loss.item() / args.gradient_accumulation_steps # Backpropagate accelerator.backward(loss) if accelerator.sync_gradients: accelerator.clip_grad_norm_(params_to_optimize, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 accelerator.log({"train_loss": train_loss}, step=global_step) train_loss = 0.0 if accelerator.is_main_process: if global_step % args.checkpointing_steps == 0: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: checkpoints = os.listdir(args.output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= args.checkpoints_total_limit: num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) if global_step >= args.max_train_steps: break if accelerator.is_main_process: if args.validation_prompt is not None and epoch % args.validation_epochs == 0: logger.info( f"Running validation... \n Generating {args.num_validation_images} images with prompt:" f" {args.validation_prompt}." ) # create pipeline pipeline = StableDiffusionXLPipeline.from_pretrained( args.pretrained_model_name_or_path, vae=vae, text_encoder=unwrap_model(text_encoder_one), text_encoder_2=unwrap_model(text_encoder_two), unet=unwrap_model(unet), revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) # run inference generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None pipeline_args = {"prompt": args.validation_prompt} with torch.cuda.amp.autocast(): images = [ pipeline(**pipeline_args, generator=generator).images[0] for _ in range(args.num_validation_images) ] for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "validation": [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) del pipeline torch.cuda.empty_cache() # Save the lora layers accelerator.wait_for_everyone() if accelerator.is_main_process: unet = unwrap_model(unet) unet_lora_state_dict = convert_state_dict_to_diffusers(get_peft_model_state_dict(unet)) if args.train_text_encoder: text_encoder_one = unwrap_model(text_encoder_one) text_encoder_two = unwrap_model(text_encoder_two) text_encoder_lora_layers = convert_state_dict_to_diffusers(get_peft_model_state_dict(text_encoder_one)) text_encoder_2_lora_layers = convert_state_dict_to_diffusers(get_peft_model_state_dict(text_encoder_two)) else: text_encoder_lora_layers = None text_encoder_2_lora_layers = None StableDiffusionXLPipeline.save_lora_weights( save_directory=args.output_dir, unet_lora_layers=unet_lora_state_dict, text_encoder_lora_layers=text_encoder_lora_layers, text_encoder_2_lora_layers=text_encoder_2_lora_layers, ) del unet del text_encoder_one del text_encoder_two del text_encoder_lora_layers del text_encoder_2_lora_layers torch.cuda.empty_cache() # Final inference # Make sure vae.dtype is consistent with the unet.dtype if args.mixed_precision == "fp16": vae.to(weight_dtype) # Load previous pipeline pipeline = StableDiffusionXLPipeline.from_pretrained( args.pretrained_model_name_or_path, vae=vae, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) pipeline = pipeline.to(accelerator.device) # load attention processors pipeline.load_lora_weights(args.output_dir) # run inference images = [] if args.validation_prompt and args.num_validation_images > 0: generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None images = [ pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0] for _ in range(args.num_validation_images) ] for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "test": [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) if args.push_to_hub: save_model_card( repo_id, images=images, base_model=args.pretrained_model_name_or_path, dataset_name=args.dataset_name, train_text_encoder=args.train_text_encoder, repo_folder=args.output_dir, vae_path=args.pretrained_vae_model_name_or_path, ) upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": args = parse_args() main(args)
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/text_to_image/test_text_to_image.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import shutil import sys import tempfile from diffusers import DiffusionPipeline, UNet2DConditionModel # noqa: E402 sys.path.append("..") from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class TextToImage(ExamplesTestsAccelerate): def test_text_to_image(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/text_to_image/train_text_to_image.py --pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --center_crop --random_flip --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) # save_pretrained smoke test self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors"))) self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) def test_text_to_image_checkpointing(self): pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" prompt = "a prompt" with tempfile.TemporaryDirectory() as tmpdir: # Run training script with checkpointing # max_train_steps == 4, checkpointing_steps == 2 # Should create checkpoints at steps 2, 4 initial_run_args = f""" examples/text_to_image/train_text_to_image.py --pretrained_model_name_or_path {pretrained_model_name_or_path} --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --center_crop --random_flip --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 4 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --checkpointing_steps=2 --seed=0 """.split() run_command(self._launch_args + initial_run_args) pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) pipe(prompt, num_inference_steps=1) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"}, ) # check can run an intermediate checkpoint unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet") pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None) pipe(prompt, num_inference_steps=1) # Remove checkpoint 2 so that we can check only later checkpoints exist after resuming shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) # Run training script for 2 total steps resuming from checkpoint 4 resume_run_args = f""" examples/text_to_image/train_text_to_image.py --pretrained_model_name_or_path {pretrained_model_name_or_path} --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --center_crop --random_flip --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --checkpointing_steps=1 --resume_from_checkpoint=checkpoint-4 --seed=0 """.split() run_command(self._launch_args + resume_run_args) # check can run new fully trained pipeline pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) pipe(prompt, num_inference_steps=1) # no checkpoint-2 -> check old checkpoints do not exist # check new checkpoints exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-5"}, ) def test_text_to_image_checkpointing_use_ema(self): pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" prompt = "a prompt" with tempfile.TemporaryDirectory() as tmpdir: # Run training script with checkpointing # max_train_steps == 4, checkpointing_steps == 2 # Should create checkpoints at steps 2, 4 initial_run_args = f""" examples/text_to_image/train_text_to_image.py --pretrained_model_name_or_path {pretrained_model_name_or_path} --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --center_crop --random_flip --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 4 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --checkpointing_steps=2 --use_ema --seed=0 """.split() run_command(self._launch_args + initial_run_args) pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) pipe(prompt, num_inference_steps=2) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"}, ) # check can run an intermediate checkpoint unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet") pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None) pipe(prompt, num_inference_steps=1) # Remove checkpoint 2 so that we can check only later checkpoints exist after resuming shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) # Run training script for 2 total steps resuming from checkpoint 4 resume_run_args = f""" examples/text_to_image/train_text_to_image.py --pretrained_model_name_or_path {pretrained_model_name_or_path} --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --center_crop --random_flip --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --checkpointing_steps=1 --resume_from_checkpoint=checkpoint-4 --use_ema --seed=0 """.split() run_command(self._launch_args + resume_run_args) # check can run new fully trained pipeline pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) pipe(prompt, num_inference_steps=1) # no checkpoint-2 -> check old checkpoints do not exist # check new checkpoints exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-5"}, ) def test_text_to_image_checkpointing_checkpoints_total_limit(self): pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" prompt = "a prompt" with tempfile.TemporaryDirectory() as tmpdir: # Run training script with checkpointing # max_train_steps == 6, checkpointing_steps == 2, checkpoints_total_limit == 2 # Should create checkpoints at steps 2, 4, 6 # with checkpoint at step 2 deleted initial_run_args = f""" examples/text_to_image/train_text_to_image.py --pretrained_model_name_or_path {pretrained_model_name_or_path} --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --center_crop --random_flip --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 6 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --checkpointing_steps=2 --checkpoints_total_limit=2 --seed=0 """.split() run_command(self._launch_args + initial_run_args) pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) pipe(prompt, num_inference_steps=1) # check checkpoint directories exist # checkpoint-2 should have been deleted self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"}) def test_text_to_image_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" prompt = "a prompt" with tempfile.TemporaryDirectory() as tmpdir: # Run training script with checkpointing # max_train_steps == 4, checkpointing_steps == 2 # Should create checkpoints at steps 2, 4 initial_run_args = f""" examples/text_to_image/train_text_to_image.py --pretrained_model_name_or_path {pretrained_model_name_or_path} --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --center_crop --random_flip --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 4 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --checkpointing_steps=2 --seed=0 """.split() run_command(self._launch_args + initial_run_args) pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) pipe(prompt, num_inference_steps=1) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"}, ) # resume and we should try to checkpoint at 6, where we'll have to remove # checkpoint-2 and checkpoint-4 instead of just a single previous checkpoint resume_run_args = f""" examples/text_to_image/train_text_to_image.py --pretrained_model_name_or_path {pretrained_model_name_or_path} --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --center_crop --random_flip --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 8 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --checkpointing_steps=2 --resume_from_checkpoint=checkpoint-4 --checkpoints_total_limit=2 --seed=0 """.split() run_command(self._launch_args + resume_run_args) pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) pipe(prompt, num_inference_steps=1) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"}, ) class TextToImageSDXL(ExamplesTestsAccelerate): def test_text_to_image_sdxl(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/text_to_image/train_text_to_image_sdxl.py --pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-xl-pipe --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --center_crop --random_flip --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) # save_pretrained smoke test self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors"))) self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json")))
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/text_to_image/README.md
# Stable Diffusion text-to-image fine-tuning The `train_text_to_image.py` script shows how to fine-tune stable diffusion model on your own dataset. ___Note___: ___This script is experimental. The script fine-tunes the whole model and often times the model overfits and runs into issues like catastrophic forgetting. It's recommended to try different hyperparamters to get the best result on your dataset.___ ## Running locally with PyTorch ### Installing the dependencies Before running the scripts, make sure to install the library's training dependencies: **Important** To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install . ``` Then cd in the example folder and run ```bash pip install -r requirements.txt ``` And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: ```bash accelerate config ``` Note also that we use PEFT library as backend for LoRA training, make sure to have `peft>=0.6.0` installed in your environment. ### Pokemon example You need to accept the model license before downloading or using the weights. In this example we'll use model version `v1-4`, so you'll need to visit [its card](https://huggingface.co/CompVis/stable-diffusion-v1-4), read the license and tick the checkbox if you agree. You have to be a registered user in 🤗 Hugging Face Hub, and you'll also need to use an access token for the code to work. For more information on access tokens, please refer to [this section of the documentation](https://huggingface.co/docs/hub/security-tokens). Run the following command to authenticate your token ```bash huggingface-cli login ``` If you have already cloned the repo, then you won't need to go through these steps. <br> #### Hardware With `gradient_checkpointing` and `mixed_precision` it should be possible to fine tune the model on a single 24GB GPU. For higher `batch_size` and faster training it's better to use GPUs with >30GB memory. **___Note: Change the `resolution` to 768 if you are using the [stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) 768x768 model.___** <!-- accelerate_snippet_start --> ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export DATASET_NAME="lambdalabs/pokemon-blip-captions" accelerate launch --mixed_precision="fp16" train_text_to_image.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --dataset_name=$DATASET_NAME \ --use_ema \ --resolution=512 --center_crop --random_flip \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --gradient_checkpointing \ --max_train_steps=15000 \ --learning_rate=1e-05 \ --max_grad_norm=1 \ --lr_scheduler="constant" --lr_warmup_steps=0 \ --output_dir="sd-pokemon-model" ``` <!-- accelerate_snippet_end --> To run on your own training files prepare the dataset according to the format required by `datasets`, you can find the instructions for how to do that in this [document](https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder-with-metadata). If you wish to use custom loading logic, you should modify the script, we have left pointers for that in the training script. ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export TRAIN_DIR="path_to_your_dataset" accelerate launch --mixed_precision="fp16" train_text_to_image.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --train_data_dir=$TRAIN_DIR \ --use_ema \ --resolution=512 --center_crop --random_flip \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --gradient_checkpointing \ --max_train_steps=15000 \ --learning_rate=1e-05 \ --max_grad_norm=1 \ --lr_scheduler="constant" --lr_warmup_steps=0 \ --output_dir="sd-pokemon-model" ``` Once the training is finished the model will be saved in the `output_dir` specified in the command. In this example it's `sd-pokemon-model`. To load the fine-tuned model for inference just pass that path to `StableDiffusionPipeline` ```python import torch from diffusers import StableDiffusionPipeline model_path = "path_to_saved_model" pipe = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16) pipe.to("cuda") image = pipe(prompt="yoda").images[0] image.save("yoda-pokemon.png") ``` Checkpoints only save the unet, so to run inference from a checkpoint, just load the unet ```python import torch from diffusers import StableDiffusionPipeline, UNet2DConditionModel model_path = "path_to_saved_model" unet = UNet2DConditionModel.from_pretrained(model_path + "/checkpoint-<N>/unet", torch_dtype=torch.float16) pipe = StableDiffusionPipeline.from_pretrained("<initial model>", unet=unet, torch_dtype=torch.float16) pipe.to("cuda") image = pipe(prompt="yoda").images[0] image.save("yoda-pokemon.png") ``` #### Training with multiple GPUs `accelerate` allows for seamless multi-GPU training. Follow the instructions [here](https://huggingface.co/docs/accelerate/basic_tutorials/launch) for running distributed training with `accelerate`. Here is an example command: ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export DATASET_NAME="lambdalabs/pokemon-blip-captions" accelerate launch --mixed_precision="fp16" --multi_gpu train_text_to_image.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --dataset_name=$DATASET_NAME \ --use_ema \ --resolution=512 --center_crop --random_flip \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --gradient_checkpointing \ --max_train_steps=15000 \ --learning_rate=1e-05 \ --max_grad_norm=1 \ --lr_scheduler="constant" --lr_warmup_steps=0 \ --output_dir="sd-pokemon-model" ``` #### Training with Min-SNR weighting We support training with the Min-SNR weighting strategy proposed in [Efficient Diffusion Training via Min-SNR Weighting Strategy](https://arxiv.org/abs/2303.09556) which helps to achieve faster convergence by rebalancing the loss. In order to use it, one needs to set the `--snr_gamma` argument. The recommended value when using it is 5.0. You can find [this project on Weights and Biases](https://wandb.ai/sayakpaul/text2image-finetune-minsnr) that compares the loss surfaces of the following setups: * Training without the Min-SNR weighting strategy * Training with the Min-SNR weighting strategy (`snr_gamma` set to 5.0) * Training with the Min-SNR weighting strategy (`snr_gamma` set to 1.0) For our small Pokemons dataset, the effects of Min-SNR weighting strategy might not appear to be pronounced, but for larger datasets, we believe the effects will be more pronounced. Also, note that in this example, we either predict `epsilon` (i.e., the noise) or the `v_prediction`. For both of these cases, the formulation of the Min-SNR weighting strategy that we have used holds. ## Training with LoRA Low-Rank Adaption of Large Language Models was first introduced by Microsoft in [LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685) by *Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen*. In a nutshell, LoRA allows adapting pretrained models by adding pairs of rank-decomposition matrices to existing weights and **only** training those newly added weights. This has a couple of advantages: - Previous pretrained weights are kept frozen so that model is not prone to [catastrophic forgetting](https://www.pnas.org/doi/10.1073/pnas.1611835114). - Rank-decomposition matrices have significantly fewer parameters than original model, which means that trained LoRA weights are easily portable. - LoRA attention layers allow to control to which extent the model is adapted toward new training images via a `scale` parameter. [cloneofsimo](https://github.com/cloneofsimo) was the first to try out LoRA training for Stable Diffusion in the popular [lora](https://github.com/cloneofsimo/lora) GitHub repository. With LoRA, it's possible to fine-tune Stable Diffusion on a custom image-caption pair dataset on consumer GPUs like Tesla T4, Tesla V100. ### Training First, you need to set up your development environment as is explained in the [installation section](#installing-the-dependencies). Make sure to set the `MODEL_NAME` and `DATASET_NAME` environment variables. Here, we will use [Stable Diffusion v1-4](https://hf.co/CompVis/stable-diffusion-v1-4) and the [Pokemons dataset](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions). **___Note: Change the `resolution` to 768 if you are using the [stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) 768x768 model.___** **___Note: It is quite useful to monitor the training progress by regularly generating sample images during training. [Weights and Biases](https://docs.wandb.ai/quickstart) is a nice solution to easily see generating images during training. All you need to do is to run `pip install wandb` before training to automatically log images.___** ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export DATASET_NAME="lambdalabs/pokemon-blip-captions" ``` For this example we want to directly store the trained LoRA embeddings on the Hub, so we need to be logged in and add the `--push_to_hub` flag. ```bash huggingface-cli login ``` Now we can start training! ```bash accelerate launch --mixed_precision="fp16" train_text_to_image_lora.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --dataset_name=$DATASET_NAME --caption_column="text" \ --resolution=512 --random_flip \ --train_batch_size=1 \ --num_train_epochs=100 --checkpointing_steps=5000 \ --learning_rate=1e-04 --lr_scheduler="constant" --lr_warmup_steps=0 \ --seed=42 \ --output_dir="sd-pokemon-model-lora" \ --validation_prompt="cute dragon creature" --report_to="wandb" ``` The above command will also run inference as fine-tuning progresses and log the results to Weights and Biases. **___Note: When using LoRA we can use a much higher learning rate compared to non-LoRA fine-tuning. Here we use *1e-4* instead of the usual *1e-5*. Also, by using LoRA, it's possible to run `train_text_to_image_lora.py` in consumer GPUs like T4 or V100.___** The final LoRA embedding weights have been uploaded to [sayakpaul/sd-model-finetuned-lora-t4](https://huggingface.co/sayakpaul/sd-model-finetuned-lora-t4). **___Note: [The final weights](https://huggingface.co/sayakpaul/sd-model-finetuned-lora-t4/blob/main/pytorch_lora_weights.bin) are only 3 MB in size, which is orders of magnitudes smaller than the original model.___** You can check some inference samples that were logged during the course of the fine-tuning process [here](https://wandb.ai/sayakpaul/text2image-fine-tune/runs/q4lc0xsw). ### Inference Once you have trained a model using above command, the inference can be done simply using the `StableDiffusionPipeline` after loading the trained LoRA weights. You need to pass the `output_dir` for loading the LoRA weights which, in this case, is `sd-pokemon-model-lora`. ```python from diffusers import StableDiffusionPipeline import torch model_path = "sayakpaul/sd-model-finetuned-lora-t4" pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) pipe.unet.load_attn_procs(model_path) pipe.to("cuda") prompt = "A pokemon with green eyes and red legs." image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images[0] image.save("pokemon.png") ``` If you are loading the LoRA parameters from the Hub and if the Hub repository has a `base_model` tag (such as [this](https://huggingface.co/sayakpaul/sd-model-finetuned-lora-t4/blob/main/README.md?code=true#L4)), then you can do: ```py from huggingface_hub.repocard import RepoCard lora_model_id = "sayakpaul/sd-model-finetuned-lora-t4" card = RepoCard.load(lora_model_id) base_model_id = card.data.to_dict()["base_model"] pipe = StableDiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16) ... ``` ## Training with Flax/JAX For faster training on TPUs and GPUs you can leverage the flax training example. Follow the instructions above to get the model and dataset before running the script. **___Note: The flax example doesn't yet support features like gradient checkpoint, gradient accumulation etc, so to use flax for faster training we will need >30GB cards or TPU v3.___** Before running the scripts, make sure to install the library's training dependencies: ```bash pip install -U -r requirements_flax.txt ``` ```bash export MODEL_NAME="duongna/stable-diffusion-v1-4-flax" export DATASET_NAME="lambdalabs/pokemon-blip-captions" python train_text_to_image_flax.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --dataset_name=$DATASET_NAME \ --resolution=512 --center_crop --random_flip \ --train_batch_size=1 \ --mixed_precision="fp16" \ --max_train_steps=15000 \ --learning_rate=1e-05 \ --max_grad_norm=1 \ --output_dir="sd-pokemon-model" ``` To run on your own training files prepare the dataset according to the format required by `datasets`, you can find the instructions for how to do that in this [document](https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder-with-metadata). If you wish to use custom loading logic, you should modify the script, we have left pointers for that in the training script. ```bash export MODEL_NAME="duongna/stable-diffusion-v1-4-flax" export TRAIN_DIR="path_to_your_dataset" python train_text_to_image_flax.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --train_data_dir=$TRAIN_DIR \ --resolution=512 --center_crop --random_flip \ --train_batch_size=1 \ --mixed_precision="fp16" \ --max_train_steps=15000 \ --learning_rate=1e-05 \ --max_grad_norm=1 \ --output_dir="sd-pokemon-model" ``` ### Training with xFormers: You can enable memory efficient attention by [installing xFormers](https://huggingface.co/docs/diffusers/main/en/optimization/xformers) and passing the `--enable_xformers_memory_efficient_attention` argument to the script. xFormers training is not available for Flax/JAX. **Note**: According to [this issue](https://github.com/huggingface/diffusers/issues/2234#issuecomment-1416931212), xFormers `v0.0.16` cannot be used for training in some GPUs. If you observe that problem, please install a development version as indicated in that comment. ## Stable Diffusion XL * We support fine-tuning the UNet shipped in [Stable Diffusion XL](https://huggingface.co/papers/2307.01952) via the `train_text_to_image_sdxl.py` script. Please refer to the docs [here](./README_sdxl.md). * We also support fine-tuning of the UNet and Text Encoder shipped in [Stable Diffusion XL](https://huggingface.co/papers/2307.01952) with LoRA via the `train_text_to_image_lora_sdxl.py` script. Please refer to the docs [here](./README_sdxl.md).
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/text_to_image/train_text_to_image_sdxl.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fine-tuning script for Stable Diffusion XL for text2image.""" import argparse import functools import gc import logging import math import os import random import shutil from pathlib import Path import accelerate import datasets import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from datasets import load_dataset from huggingface_hub import create_repo, upload_folder from packaging import version from torchvision import transforms from torchvision.transforms.functional import crop from tqdm.auto import tqdm from transformers import AutoTokenizer, PretrainedConfig import diffusers from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel from diffusers.optimization import get_scheduler from diffusers.training_utils import EMAModel, compute_snr from diffusers.utils import check_min_version, is_wandb_available from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.torch_utils import is_compiled_module # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.26.0.dev0") logger = get_logger(__name__) DATASET_NAME_MAPPING = { "lambdalabs/pokemon-blip-captions": ("image", "text"), } def save_model_card( repo_id: str, images=None, validation_prompt=None, base_model=str, dataset_name=str, repo_folder=None, vae_path=None, ): img_str = "" for i, image in enumerate(images): image.save(os.path.join(repo_folder, f"image_{i}.png")) img_str += f"![img_{i}](./image_{i}.png)\n" yaml = f""" --- license: creativeml-openrail-m base_model: {base_model} dataset: {dataset_name} tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers inference: true --- """ model_card = f""" # Text-to-image finetuning - {repo_id} This pipeline was finetuned from **{base_model}** on the **{args.dataset_name}** dataset. Below are some example images generated with the finetuned pipeline using the following prompt: {validation_prompt}: \n {img_str} Special VAE used for training: {vae_path}. """ with open(os.path.join(repo_folder, "README.md"), "w") as f: f.write(yaml + model_card) def import_model_class_from_model_name_or_path( pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" ): text_encoder_config = PretrainedConfig.from_pretrained( pretrained_model_name_or_path, subfolder=subfolder, revision=revision ) model_class = text_encoder_config.architectures[0] if model_class == "CLIPTextModel": from transformers import CLIPTextModel return CLIPTextModel elif model_class == "CLIPTextModelWithProjection": from transformers import CLIPTextModelWithProjection return CLIPTextModelWithProjection else: raise ValueError(f"{model_class} is not supported.") def parse_args(input_args=None): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--pretrained_vae_model_name_or_path", type=str, default=None, help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--variant", type=str, default=None, help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", ) parser.add_argument( "--dataset_name", type=str, default=None, help=( "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that 🤗 Datasets can understand." ), ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The config of the Dataset, leave as None if there's only one config.", ) parser.add_argument( "--train_data_dir", type=str, default=None, help=( "A folder containing the training data. Folder contents must follow the structure described in" " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." ), ) parser.add_argument( "--image_column", type=str, default="image", help="The column of the dataset containing an image." ) parser.add_argument( "--caption_column", type=str, default="text", help="The column of the dataset containing a caption or a list of captions.", ) parser.add_argument( "--validation_prompt", type=str, default=None, help="A prompt that is used during validation to verify that the model is learning.", ) parser.add_argument( "--num_validation_images", type=int, default=4, help="Number of images that should be generated during validation with `validation_prompt`.", ) parser.add_argument( "--validation_epochs", type=int, default=1, help=( "Run fine-tuning validation every X epochs. The validation process consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`." ), ) parser.add_argument( "--max_train_samples", type=int, default=None, help=( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ), ) parser.add_argument( "--proportion_empty_prompts", type=float, default=0, help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).", ) parser.add_argument( "--output_dir", type=str, default="sdxl-model-finetuned", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=1024, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument( "--random_flip", action="store_true", help="whether to randomly flip images horizontally", ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=100) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=("Max number of checkpoints to store."), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--timestep_bias_strategy", type=str, default="none", choices=["earlier", "later", "range", "none"], help=( "The timestep bias strategy, which may help direct the model toward learning low or high frequency details." " Choices: ['earlier', 'later', 'range', 'none']." " The default is 'none', which means no bias is applied, and training proceeds normally." " The value of 'later' will increase the frequency of the model's final training timesteps." ), ) parser.add_argument( "--timestep_bias_multiplier", type=float, default=1.0, help=( "The multiplier for the bias. Defaults to 1.0, which means no bias is applied." " A value of 2.0 will double the weight of the bias, and a value of 0.5 will halve it." ), ) parser.add_argument( "--timestep_bias_begin", type=int, default=0, help=( "When using `--timestep_bias_strategy=range`, the beginning (inclusive) timestep to bias." " Defaults to zero, which equates to having no specific bias." ), ) parser.add_argument( "--timestep_bias_end", type=int, default=1000, help=( "When using `--timestep_bias_strategy=range`, the final timestep (inclusive) to bias." " Defaults to 1000, which is the number of timesteps that Stable Diffusion is trained on." ), ) parser.add_argument( "--timestep_bias_portion", type=float, default=0.25, help=( "The portion of timesteps to bias. Defaults to 0.25, which 25% of timesteps will be biased." " A value of 0.5 will bias one half of the timesteps. The value provided for `--timestep_bias_strategy` determines" " whether the biased portions are in the earlier or later timesteps." ), ) parser.add_argument( "--snr_gamma", type=float, default=None, help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " "More details here: https://arxiv.org/abs/2303.09556.", ) parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--prediction_type", type=str, default=None, help="The prediction_type that shall be used for training. Choose between 'epsilon' or 'v_prediction' or leave `None`. If left to `None` the default prediction type of the scheduler: `noise_scheduler.config.prediciton_type` is chosen.", ) parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.") if input_args is not None: args = parser.parse_args(input_args) else: args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank # Sanity checks if args.dataset_name is None and args.train_data_dir is None: raise ValueError("Need either a dataset name or a training folder.") if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1: raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].") return args # Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt def encode_prompt(batch, text_encoders, tokenizers, proportion_empty_prompts, caption_column, is_train=True): prompt_embeds_list = [] prompt_batch = batch[caption_column] captions = [] for caption in prompt_batch: if random.random() < proportion_empty_prompts: captions.append("") elif isinstance(caption, str): captions.append(caption) elif isinstance(caption, (list, np.ndarray)): # take a random caption if there are multiple captions.append(random.choice(caption) if is_train else caption[0]) with torch.no_grad(): for tokenizer, text_encoder in zip(tokenizers, text_encoders): text_inputs = tokenizer( captions, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids prompt_embeds = text_encoder( text_input_ids.to(text_encoder.device), output_hidden_states=True, return_dict=False, ) # We are only ALWAYS interested in the pooled output of the final text encoder pooled_prompt_embeds = prompt_embeds[0] prompt_embeds = prompt_embeds[-1][-2] bs_embed, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) prompt_embeds_list.append(prompt_embeds) prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1) return {"prompt_embeds": prompt_embeds.cpu(), "pooled_prompt_embeds": pooled_prompt_embeds.cpu()} def compute_vae_encodings(batch, vae): images = batch.pop("pixel_values") pixel_values = torch.stack(list(images)) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() pixel_values = pixel_values.to(vae.device, dtype=vae.dtype) with torch.no_grad(): model_input = vae.encode(pixel_values).latent_dist.sample() model_input = model_input * vae.config.scaling_factor return {"model_input": model_input.cpu()} def generate_timestep_weights(args, num_timesteps): weights = torch.ones(num_timesteps) # Determine the indices to bias num_to_bias = int(args.timestep_bias_portion * num_timesteps) if args.timestep_bias_strategy == "later": bias_indices = slice(-num_to_bias, None) elif args.timestep_bias_strategy == "earlier": bias_indices = slice(0, num_to_bias) elif args.timestep_bias_strategy == "range": # Out of the possible 1000 timesteps, we might want to focus on eg. 200-500. range_begin = args.timestep_bias_begin range_end = args.timestep_bias_end if range_begin < 0: raise ValueError( "When using the range strategy for timestep bias, you must provide a beginning timestep greater or equal to zero." ) if range_end > num_timesteps: raise ValueError( "When using the range strategy for timestep bias, you must provide an ending timestep smaller than the number of timesteps." ) bias_indices = slice(range_begin, range_end) else: # 'none' or any other string return weights if args.timestep_bias_multiplier <= 0: return ValueError( "The parameter --timestep_bias_multiplier is not intended to be used to disable the training of specific timesteps." " If it was intended to disable timestep bias, use `--timestep_bias_strategy none` instead." " A timestep bias multiplier less than or equal to 0 is not allowed." ) # Apply the bias weights[bias_indices] *= args.timestep_bias_multiplier # Normalize weights /= weights.sum() return weights def main(args): logging_dir = Path(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) if args.report_to == "wandb": if not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") import wandb # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load the tokenizers tokenizer_one = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, use_fast=False, ) tokenizer_two = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer_2", revision=args.revision, use_fast=False, ) # import correct text encoder classes text_encoder_cls_one = import_model_class_from_model_name_or_path( args.pretrained_model_name_or_path, args.revision ) text_encoder_cls_two = import_model_class_from_model_name_or_path( args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2" ) # Load scheduler and models noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") # Check for terminal SNR in combination with SNR Gamma text_encoder_one = text_encoder_cls_one.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant ) text_encoder_two = text_encoder_cls_two.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant ) vae_path = ( args.pretrained_model_name_or_path if args.pretrained_vae_model_name_or_path is None else args.pretrained_vae_model_name_or_path ) vae = AutoencoderKL.from_pretrained( vae_path, subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, revision=args.revision, variant=args.variant, ) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant ) # Freeze vae and text encoders. vae.requires_grad_(False) text_encoder_one.requires_grad_(False) text_encoder_two.requires_grad_(False) # Set unet as trainable. unet.train() # For mixed precision training we cast all non-trainable weigths to half-precision # as these weights are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move unet, vae and text_encoder to device and cast to weight_dtype # The VAE is in float32 to avoid NaN losses. vae.to(accelerator.device, dtype=torch.float32) text_encoder_one.to(accelerator.device, dtype=weight_dtype) text_encoder_two.to(accelerator.device, dtype=weight_dtype) # Create EMA for the unet. if args.use_ema: ema_unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant ) ema_unet = EMAModel(ema_unet.parameters(), model_cls=UNet2DConditionModel, model_config=ema_unet.config) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warn( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") # `accelerate` 0.16.0 will have better support for customized saving if version.parse(accelerate.__version__) >= version.parse("0.16.0"): # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: if args.use_ema: ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema")) for i, model in enumerate(models): model.save_pretrained(os.path.join(output_dir, "unet")) # make sure to pop weight so that corresponding model is not saved again weights.pop() def load_model_hook(models, input_dir): if args.use_ema: load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DConditionModel) ema_unet.load_state_dict(load_model.state_dict()) ema_unet.to(accelerator.device) del load_model for i in range(len(models)): # pop models so that they are not loaded again model = models.pop() # load diffusers style into model load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet") model.register_to_config(**load_model.config) model.load_state_dict(load_model.state_dict()) del load_model accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) if args.gradient_checkpointing: unet.enable_gradient_checkpointing() # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." ) optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW # Optimizer creation params_to_optimize = unet.parameters() optimizer = optimizer_class( params_to_optimize, lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # Get the datasets: you can either provide your own training and evaluation files (see below) # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, ) else: data_files = {} if args.train_data_dir is not None: data_files["train"] = os.path.join(args.train_data_dir, "**") dataset = load_dataset( "imagefolder", data_files=data_files, cache_dir=args.cache_dir, ) # See more about loading custom images at # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder # Preprocessing the datasets. # We need to tokenize inputs and targets. column_names = dataset["train"].column_names # 6. Get the column names for input/target. dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None) if args.image_column is None: image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] else: image_column = args.image_column if image_column not in column_names: raise ValueError( f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}" ) if args.caption_column is None: caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1] else: caption_column = args.caption_column if caption_column not in column_names: raise ValueError( f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}" ) # Preprocessing the datasets. train_resize = transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR) train_crop = transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution) train_flip = transforms.RandomHorizontalFlip(p=1.0) train_transforms = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]) def preprocess_train(examples): images = [image.convert("RGB") for image in examples[image_column]] # image aug original_sizes = [] all_images = [] crop_top_lefts = [] for image in images: original_sizes.append((image.height, image.width)) image = train_resize(image) if args.random_flip and random.random() < 0.5: # flip image = train_flip(image) if args.center_crop: y1 = max(0, int(round((image.height - args.resolution) / 2.0))) x1 = max(0, int(round((image.width - args.resolution) / 2.0))) image = train_crop(image) else: y1, x1, h, w = train_crop.get_params(image, (args.resolution, args.resolution)) image = crop(image, y1, x1, h, w) crop_top_left = (y1, x1) crop_top_lefts.append(crop_top_left) image = train_transforms(image) all_images.append(image) examples["original_sizes"] = original_sizes examples["crop_top_lefts"] = crop_top_lefts examples["pixel_values"] = all_images return examples with accelerator.main_process_first(): if args.max_train_samples is not None: dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) # Set the training transforms train_dataset = dataset["train"].with_transform(preprocess_train) # Let's first compute all the embeddings so that we can free up the text encoders # from memory. We will pre-compute the VAE encodings too. text_encoders = [text_encoder_one, text_encoder_two] tokenizers = [tokenizer_one, tokenizer_two] compute_embeddings_fn = functools.partial( encode_prompt, text_encoders=text_encoders, tokenizers=tokenizers, proportion_empty_prompts=args.proportion_empty_prompts, caption_column=args.caption_column, ) compute_vae_encodings_fn = functools.partial(compute_vae_encodings, vae=vae) with accelerator.main_process_first(): from datasets.fingerprint import Hasher # fingerprint used by the cache for the other processes to load the result # details: https://github.com/huggingface/diffusers/pull/4038#discussion_r1266078401 new_fingerprint = Hasher.hash(args) new_fingerprint_for_vae = Hasher.hash("vae") train_dataset = train_dataset.map(compute_embeddings_fn, batched=True, new_fingerprint=new_fingerprint) train_dataset = train_dataset.map( compute_vae_encodings_fn, batched=True, batch_size=args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps, new_fingerprint=new_fingerprint_for_vae, ) del text_encoders, tokenizers, vae gc.collect() torch.cuda.empty_cache() def collate_fn(examples): model_input = torch.stack([torch.tensor(example["model_input"]) for example in examples]) original_sizes = [example["original_sizes"] for example in examples] crop_top_lefts = [example["crop_top_lefts"] for example in examples] prompt_embeds = torch.stack([torch.tensor(example["prompt_embeds"]) for example in examples]) pooled_prompt_embeds = torch.stack([torch.tensor(example["pooled_prompt_embeds"]) for example in examples]) return { "model_input": model_input, "prompt_embeds": prompt_embeds, "pooled_prompt_embeds": pooled_prompt_embeds, "original_sizes": original_sizes, "crop_top_lefts": crop_top_lefts, } # DataLoaders creation: train_dataloader = torch.utils.data.DataLoader( train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=args.train_batch_size, num_workers=args.dataloader_num_workers, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, ) # Prepare everything with our `accelerator`. unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, optimizer, train_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("text2image-fine-tune-sdxl", config=vars(args)) # Function for unwraping if torch.compile() was used in accelerate. def unwrap_model(model): model = accelerator.unwrap_model(model) model = model._orig_mod if is_compiled_module(model) else model return model # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None initial_global_step = 0 else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) initial_global_step = global_step first_epoch = global_step // num_update_steps_per_epoch else: initial_global_step = 0 progress_bar = tqdm( range(0, args.max_train_steps), initial=initial_global_step, desc="Steps", # Only show the progress bar once on each machine. disable=not accelerator.is_local_main_process, ) for epoch in range(first_epoch, args.num_train_epochs): train_loss = 0.0 for step, batch in enumerate(train_dataloader): with accelerator.accumulate(unet): # Sample noise that we'll add to the latents model_input = batch["model_input"].to(accelerator.device) noise = torch.randn_like(model_input) if args.noise_offset: # https://www.crosslabs.org//blog/diffusion-with-offset-noise noise += args.noise_offset * torch.randn( (model_input.shape[0], model_input.shape[1], 1, 1), device=model_input.device ) bsz = model_input.shape[0] if args.timestep_bias_strategy == "none": # Sample a random timestep for each image without bias. timesteps = torch.randint( 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device ) else: # Sample a random timestep for each image, potentially biased by the timestep weights. # Biasing the timestep weights allows us to spend less time training irrelevant timesteps. weights = generate_timestep_weights(args, noise_scheduler.config.num_train_timesteps).to( model_input.device ) timesteps = torch.multinomial(weights, bsz, replacement=True).long() # Add noise to the model input according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps) # time ids def compute_time_ids(original_size, crops_coords_top_left): # Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids target_size = (args.resolution, args.resolution) add_time_ids = list(original_size + crops_coords_top_left + target_size) add_time_ids = torch.tensor([add_time_ids]) add_time_ids = add_time_ids.to(accelerator.device, dtype=weight_dtype) return add_time_ids add_time_ids = torch.cat( [compute_time_ids(s, c) for s, c in zip(batch["original_sizes"], batch["crop_top_lefts"])] ) # Predict the noise residual unet_added_conditions = {"time_ids": add_time_ids} prompt_embeds = batch["prompt_embeds"].to(accelerator.device) pooled_prompt_embeds = batch["pooled_prompt_embeds"].to(accelerator.device) unet_added_conditions.update({"text_embeds": pooled_prompt_embeds}) model_pred = unet( noisy_model_input, timesteps, prompt_embeds, added_cond_kwargs=unet_added_conditions, return_dict=False, )[0] # Get the target for loss depending on the prediction type if args.prediction_type is not None: # set prediction_type of scheduler if defined noise_scheduler.register_to_config(prediction_type=args.prediction_type) if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(model_input, noise, timesteps) elif noise_scheduler.config.prediction_type == "sample": # We set the target to latents here, but the model_pred will return the noise sample prediction. target = model_input # We will have to subtract the noise residual from the prediction to get the target sample. model_pred = model_pred - noise else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") if args.snr_gamma is None: loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") else: # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556. # Since we predict the noise instead of x_0, the original formulation is slightly changed. # This is discussed in Section 4.2 of the same paper. snr = compute_snr(noise_scheduler, timesteps) if noise_scheduler.config.prediction_type == "v_prediction": # Velocity objective requires that we add one to SNR values before we divide by them. snr = snr + 1 mse_loss_weights = ( torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr ) loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights loss = loss.mean() # Gather the losses across all processes for logging (if we use distributed training). avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() train_loss += avg_loss.item() / args.gradient_accumulation_steps # Backpropagate accelerator.backward(loss) if accelerator.sync_gradients: params_to_clip = unet.parameters() accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 accelerator.log({"train_loss": train_loss}, step=global_step) train_loss = 0.0 if accelerator.is_main_process: if global_step % args.checkpointing_steps == 0: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: checkpoints = os.listdir(args.output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= args.checkpoints_total_limit: num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) if global_step >= args.max_train_steps: break if accelerator.is_main_process: if args.validation_prompt is not None and epoch % args.validation_epochs == 0: logger.info( f"Running validation... \n Generating {args.num_validation_images} images with prompt:" f" {args.validation_prompt}." ) if args.use_ema: # Store the UNet parameters temporarily and load the EMA parameters to perform inference. ema_unet.store(unet.parameters()) ema_unet.copy_to(unet.parameters()) # create pipeline vae = AutoencoderKL.from_pretrained( vae_path, subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, revision=args.revision, variant=args.variant, ) pipeline = StableDiffusionXLPipeline.from_pretrained( args.pretrained_model_name_or_path, vae=vae, unet=accelerator.unwrap_model(unet), revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) if args.prediction_type is not None: scheduler_args = {"prediction_type": args.prediction_type} pipeline.scheduler = pipeline.scheduler.from_config(pipeline.scheduler.config, **scheduler_args) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) # run inference generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None pipeline_args = {"prompt": args.validation_prompt} with torch.cuda.amp.autocast(): images = [ pipeline(**pipeline_args, generator=generator, num_inference_steps=25).images[0] for _ in range(args.num_validation_images) ] for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "validation": [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) del pipeline torch.cuda.empty_cache() accelerator.wait_for_everyone() if accelerator.is_main_process: unet = unwrap_model(unet) if args.use_ema: ema_unet.copy_to(unet.parameters()) # Serialize pipeline. vae = AutoencoderKL.from_pretrained( vae_path, subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) pipeline = StableDiffusionXLPipeline.from_pretrained( args.pretrained_model_name_or_path, unet=unet, vae=vae, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) if args.prediction_type is not None: scheduler_args = {"prediction_type": args.prediction_type} pipeline.scheduler = pipeline.scheduler.from_config(pipeline.scheduler.config, **scheduler_args) pipeline.save_pretrained(args.output_dir) # run inference images = [] if args.validation_prompt and args.num_validation_images > 0: pipeline = pipeline.to(accelerator.device) generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None with torch.cuda.amp.autocast(): images = [ pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0] for _ in range(args.num_validation_images) ] for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "test": [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) if args.push_to_hub: save_model_card( repo_id=repo_id, images=images, validation_prompt=args.validation_prompt, base_model=args.pretrained_model_name_or_path, dataset_name=args.dataset_name, repo_folder=args.output_dir, vae_path=args.pretrained_vae_model_name_or_path, ) upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": args = parse_args() main(args)
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/text_to_image/requirements.txt
accelerate>=0.16.0 torchvision transformers>=4.25.1 datasets ftfy tensorboard Jinja2 peft==0.7.0
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/text_to_image/test_text_to_image_lora.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys import tempfile import safetensors from diffusers import DiffusionPipeline # noqa: E402 sys.path.append("..") from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class TextToImageLoRA(ExamplesTestsAccelerate): def test_text_to_image_lora_sdxl_checkpointing_checkpoints_total_limit(self): prompt = "a prompt" pipeline_path = "hf-internal-testing/tiny-stable-diffusion-xl-pipe" with tempfile.TemporaryDirectory() as tmpdir: # Run training script with checkpointing # max_train_steps == 6, checkpointing_steps == 2, checkpoints_total_limit == 2 # Should create checkpoints at steps 2, 4, 6 # with checkpoint at step 2 deleted initial_run_args = f""" examples/text_to_image/train_text_to_image_lora_sdxl.py --pretrained_model_name_or_path {pipeline_path} --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 6 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --checkpointing_steps=2 --checkpoints_total_limit=2 """.split() run_command(self._launch_args + initial_run_args) pipe = DiffusionPipeline.from_pretrained(pipeline_path) pipe.load_lora_weights(tmpdir) pipe(prompt, num_inference_steps=1) # check checkpoint directories exist # checkpoint-2 should have been deleted self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"}) def test_text_to_image_lora_checkpointing_checkpoints_total_limit(self): pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" prompt = "a prompt" with tempfile.TemporaryDirectory() as tmpdir: # Run training script with checkpointing # max_train_steps == 6, checkpointing_steps == 2, checkpoints_total_limit == 2 # Should create checkpoints at steps 2, 4, 6 # with checkpoint at step 2 deleted initial_run_args = f""" examples/text_to_image/train_text_to_image_lora.py --pretrained_model_name_or_path {pretrained_model_name_or_path} --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --center_crop --random_flip --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 6 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --checkpointing_steps=2 --checkpoints_total_limit=2 --seed=0 --num_validation_images=0 """.split() run_command(self._launch_args + initial_run_args) pipe = DiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None ) pipe.load_lora_weights(tmpdir) pipe(prompt, num_inference_steps=1) # check checkpoint directories exist # checkpoint-2 should have been deleted self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"}) def test_text_to_image_lora_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" prompt = "a prompt" with tempfile.TemporaryDirectory() as tmpdir: # Run training script with checkpointing # max_train_steps == 4, checkpointing_steps == 2 # Should create checkpoints at steps 2, 4 initial_run_args = f""" examples/text_to_image/train_text_to_image_lora.py --pretrained_model_name_or_path {pretrained_model_name_or_path} --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --center_crop --random_flip --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 4 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --checkpointing_steps=2 --seed=0 --num_validation_images=0 """.split() run_command(self._launch_args + initial_run_args) pipe = DiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None ) pipe.load_lora_weights(tmpdir) pipe(prompt, num_inference_steps=1) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"}, ) # resume and we should try to checkpoint at 6, where we'll have to remove # checkpoint-2 and checkpoint-4 instead of just a single previous checkpoint resume_run_args = f""" examples/text_to_image/train_text_to_image_lora.py --pretrained_model_name_or_path {pretrained_model_name_or_path} --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --center_crop --random_flip --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 8 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --checkpointing_steps=2 --resume_from_checkpoint=checkpoint-4 --checkpoints_total_limit=2 --seed=0 --num_validation_images=0 """.split() run_command(self._launch_args + resume_run_args) pipe = DiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None ) pipe.load_lora_weights(tmpdir) pipe(prompt, num_inference_steps=1) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"}, ) class TextToImageLoRASDXL(ExamplesTestsAccelerate): def test_text_to_image_lora_sdxl(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/text_to_image/train_text_to_image_lora_sdxl.py --pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-xl-pipe --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) # save_pretrained smoke test self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) # make sure the state_dict has the correct naming in the parameters. lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) is_lora = all("lora" in k for k in lora_state_dict.keys()) self.assertTrue(is_lora) def test_text_to_image_lora_sdxl_with_text_encoder(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/text_to_image/train_text_to_image_lora_sdxl.py --pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-xl-pipe --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --train_text_encoder """.split() run_command(self._launch_args + test_args) # save_pretrained smoke test self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) # make sure the state_dict has the correct naming in the parameters. lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) is_lora = all("lora" in k for k in lora_state_dict.keys()) self.assertTrue(is_lora) # when not training the text encoder, all the parameters in the state dict should start # with `"unet"` or `"text_encoder"` or `"text_encoder_2"` in their names. keys = lora_state_dict.keys() starts_with_unet = all( k.startswith("unet") or k.startswith("text_encoder") or k.startswith("text_encoder_2") for k in keys ) self.assertTrue(starts_with_unet) def test_text_to_image_lora_sdxl_text_encoder_checkpointing_checkpoints_total_limit(self): prompt = "a prompt" pipeline_path = "hf-internal-testing/tiny-stable-diffusion-xl-pipe" with tempfile.TemporaryDirectory() as tmpdir: # Run training script with checkpointing # max_train_steps == 6, checkpointing_steps == 2, checkpoints_total_limit == 2 # Should create checkpoints at steps 2, 4, 6 # with checkpoint at step 2 deleted initial_run_args = f""" examples/text_to_image/train_text_to_image_lora_sdxl.py --pretrained_model_name_or_path {pipeline_path} --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 6 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --train_text_encoder --lr_warmup_steps 0 --output_dir {tmpdir} --checkpointing_steps=2 --checkpoints_total_limit=2 """.split() run_command(self._launch_args + initial_run_args) pipe = DiffusionPipeline.from_pretrained(pipeline_path) pipe.load_lora_weights(tmpdir) pipe(prompt, num_inference_steps=1) # check checkpoint directories exist # checkpoint-2 should have been deleted self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"})
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/text_to_image/train_text_to_image_flax.py
import argparse import logging import math import os import random from pathlib import Path import jax import jax.numpy as jnp import numpy as np import optax import torch import torch.utils.checkpoint import transformers from datasets import load_dataset from flax import jax_utils from flax.training import train_state from flax.training.common_utils import shard from huggingface_hub import create_repo, upload_folder from torchvision import transforms from tqdm.auto import tqdm from transformers import CLIPImageProcessor, CLIPTokenizer, FlaxCLIPTextModel, set_seed from diffusers import ( FlaxAutoencoderKL, FlaxDDPMScheduler, FlaxPNDMScheduler, FlaxStableDiffusionPipeline, FlaxUNet2DConditionModel, ) from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionSafetyChecker from diffusers.utils import check_min_version # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.26.0.dev0") logger = logging.getLogger(__name__) def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--variant", type=str, default=None, help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", ) parser.add_argument( "--dataset_name", type=str, default=None, help=( "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that 🤗 Datasets can understand." ), ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The config of the Dataset, leave as None if there's only one config.", ) parser.add_argument( "--train_data_dir", type=str, default=None, help=( "A folder containing the training data. Folder contents must follow the structure described in" " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." ), ) parser.add_argument( "--image_column", type=str, default="image", help="The column of the dataset containing an image." ) parser.add_argument( "--caption_column", type=str, default="text", help="The column of the dataset containing a caption or a list of captions.", ) parser.add_argument( "--max_train_samples", type=int, default=None, help=( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ), ) parser.add_argument( "--output_dir", type=str, default="sd-model-finetuned", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument( "--random_flip", action="store_true", help="whether to randomly flip images horizontally", ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=100) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument( "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--from_pt", action="store_true", default=False, help="Flag to indicate whether to convert models from PyTorch.", ) args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank # Sanity checks if args.dataset_name is None and args.train_data_dir is None: raise ValueError("Need either a dataset name or a training folder.") return args dataset_name_mapping = { "lambdalabs/pokemon-blip-captions": ("image", "text"), } def get_params_to_save(params): return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params)) def main(): args = parse_args() logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) if jax.process_index() == 0: transformers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() if args.seed is not None: set_seed(args.seed) # Handle the repository creation if jax.process_index() == 0: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Get the datasets: you can either provide your own training and evaluation files (see below) # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, data_dir=args.train_data_dir ) else: data_files = {} if args.train_data_dir is not None: data_files["train"] = os.path.join(args.train_data_dir, "**") dataset = load_dataset( "imagefolder", data_files=data_files, cache_dir=args.cache_dir, ) # See more about loading custom images at # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder # Preprocessing the datasets. # We need to tokenize inputs and targets. column_names = dataset["train"].column_names # 6. Get the column names for input/target. dataset_columns = dataset_name_mapping.get(args.dataset_name, None) if args.image_column is None: image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] else: image_column = args.image_column if image_column not in column_names: raise ValueError( f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}" ) if args.caption_column is None: caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1] else: caption_column = args.caption_column if caption_column not in column_names: raise ValueError( f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}" ) # Preprocessing the datasets. # We need to tokenize input captions and transform the images. def tokenize_captions(examples, is_train=True): captions = [] for caption in examples[caption_column]: if isinstance(caption, str): captions.append(caption) elif isinstance(caption, (list, np.ndarray)): # take a random caption if there are multiple captions.append(random.choice(caption) if is_train else caption[0]) else: raise ValueError( f"Caption column `{caption_column}` should contain either strings or lists of strings." ) inputs = tokenizer(captions, max_length=tokenizer.model_max_length, padding="do_not_pad", truncation=True) input_ids = inputs.input_ids return input_ids train_transforms = transforms.Compose( [ transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution), transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def preprocess_train(examples): images = [image.convert("RGB") for image in examples[image_column]] examples["pixel_values"] = [train_transforms(image) for image in images] examples["input_ids"] = tokenize_captions(examples) return examples if args.max_train_samples is not None: dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) # Set the training transforms train_dataset = dataset["train"].with_transform(preprocess_train) def collate_fn(examples): pixel_values = torch.stack([example["pixel_values"] for example in examples]) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() input_ids = [example["input_ids"] for example in examples] padded_tokens = tokenizer.pad( {"input_ids": input_ids}, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt" ) batch = { "pixel_values": pixel_values, "input_ids": padded_tokens.input_ids, } batch = {k: v.numpy() for k, v in batch.items()} return batch total_train_batch_size = args.train_batch_size * jax.local_device_count() train_dataloader = torch.utils.data.DataLoader( train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=total_train_batch_size, drop_last=True ) weight_dtype = jnp.float32 if args.mixed_precision == "fp16": weight_dtype = jnp.float16 elif args.mixed_precision == "bf16": weight_dtype = jnp.bfloat16 # Load models and create wrapper for stable diffusion tokenizer = CLIPTokenizer.from_pretrained( args.pretrained_model_name_or_path, from_pt=args.from_pt, revision=args.revision, subfolder="tokenizer", ) text_encoder = FlaxCLIPTextModel.from_pretrained( args.pretrained_model_name_or_path, from_pt=args.from_pt, revision=args.revision, subfolder="text_encoder", dtype=weight_dtype, ) vae, vae_params = FlaxAutoencoderKL.from_pretrained( args.pretrained_model_name_or_path, from_pt=args.from_pt, revision=args.revision, subfolder="vae", dtype=weight_dtype, ) unet, unet_params = FlaxUNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, from_pt=args.from_pt, revision=args.revision, subfolder="unet", dtype=weight_dtype, ) # Optimization if args.scale_lr: args.learning_rate = args.learning_rate * total_train_batch_size constant_scheduler = optax.constant_schedule(args.learning_rate) adamw = optax.adamw( learning_rate=constant_scheduler, b1=args.adam_beta1, b2=args.adam_beta2, eps=args.adam_epsilon, weight_decay=args.adam_weight_decay, ) optimizer = optax.chain( optax.clip_by_global_norm(args.max_grad_norm), adamw, ) state = train_state.TrainState.create(apply_fn=unet.__call__, params=unet_params, tx=optimizer) noise_scheduler = FlaxDDPMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000 ) noise_scheduler_state = noise_scheduler.create_state() # Initialize our training rng = jax.random.PRNGKey(args.seed) train_rngs = jax.random.split(rng, jax.local_device_count()) def train_step(state, text_encoder_params, vae_params, batch, train_rng): dropout_rng, sample_rng, new_train_rng = jax.random.split(train_rng, 3) def compute_loss(params): # Convert images to latent space vae_outputs = vae.apply( {"params": vae_params}, batch["pixel_values"], deterministic=True, method=vae.encode ) latents = vae_outputs.latent_dist.sample(sample_rng) # (NHWC) -> (NCHW) latents = jnp.transpose(latents, (0, 3, 1, 2)) latents = latents * vae.config.scaling_factor # Sample noise that we'll add to the latents noise_rng, timestep_rng = jax.random.split(sample_rng) noise = jax.random.normal(noise_rng, latents.shape) # Sample a random timestep for each image bsz = latents.shape[0] timesteps = jax.random.randint( timestep_rng, (bsz,), 0, noise_scheduler.config.num_train_timesteps, ) # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(noise_scheduler_state, latents, noise, timesteps) # Get the text embedding for conditioning encoder_hidden_states = text_encoder( batch["input_ids"], params=text_encoder_params, train=False, )[0] # Predict the noise residual and compute loss model_pred = unet.apply( {"params": params}, noisy_latents, timesteps, encoder_hidden_states, train=True ).sample # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(noise_scheduler_state, latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") loss = (target - model_pred) ** 2 loss = loss.mean() return loss grad_fn = jax.value_and_grad(compute_loss) loss, grad = grad_fn(state.params) grad = jax.lax.pmean(grad, "batch") new_state = state.apply_gradients(grads=grad) metrics = {"loss": loss} metrics = jax.lax.pmean(metrics, axis_name="batch") return new_state, metrics, new_train_rng # Create parallel version of the train step p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) # Replicate the train state on each device state = jax_utils.replicate(state) text_encoder_params = jax_utils.replicate(text_encoder.params) vae_params = jax_utils.replicate(vae_params) # Train! num_update_steps_per_epoch = math.ceil(len(train_dataloader)) # Scheduler and math around the number of training steps. if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel & distributed) = {total_train_batch_size}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 epochs = tqdm(range(args.num_train_epochs), desc="Epoch ... ", position=0) for epoch in epochs: # ======================== Training ================================ train_metrics = [] steps_per_epoch = len(train_dataset) // total_train_batch_size train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False) # train for batch in train_dataloader: batch = shard(batch) state, train_metric, train_rngs = p_train_step(state, text_encoder_params, vae_params, batch, train_rngs) train_metrics.append(train_metric) train_step_progress_bar.update(1) global_step += 1 if global_step >= args.max_train_steps: break train_metric = jax_utils.unreplicate(train_metric) train_step_progress_bar.close() epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})") # Create the pipeline using using the trained modules and save it. if jax.process_index() == 0: scheduler = FlaxPNDMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True ) safety_checker = FlaxStableDiffusionSafetyChecker.from_pretrained( "CompVis/stable-diffusion-safety-checker", from_pt=True ) pipeline = FlaxStableDiffusionPipeline( text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32"), ) pipeline.save_pretrained( args.output_dir, params={ "text_encoder": get_params_to_save(text_encoder_params), "vae": get_params_to_save(vae_params), "unet": get_params_to_save(state.params), "safety_checker": safety_checker.params, }, ) if args.push_to_hub: upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) if __name__ == "__main__": main()
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/text_to_image/requirements_flax.txt
transformers>=4.25.1 datasets flax optax torch torchvision ftfy tensorboard Jinja2
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/text_to_image/train_text_to_image.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import argparse import logging import math import os import random import shutil from pathlib import Path import accelerate import datasets import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.state import AcceleratorState from accelerate.utils import ProjectConfiguration, set_seed from datasets import load_dataset from huggingface_hub import create_repo, upload_folder from packaging import version from torchvision import transforms from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer from transformers.utils import ContextManagers import diffusers from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel from diffusers.optimization import get_scheduler from diffusers.training_utils import EMAModel, compute_snr from diffusers.utils import check_min_version, deprecate, is_wandb_available, make_image_grid from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.torch_utils import is_compiled_module if is_wandb_available(): import wandb # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.26.0.dev0") logger = get_logger(__name__, log_level="INFO") DATASET_NAME_MAPPING = { "lambdalabs/pokemon-blip-captions": ("image", "text"), } def save_model_card( args, repo_id: str, images=None, repo_folder=None, ): img_str = "" if len(images) > 0: image_grid = make_image_grid(images, 1, len(args.validation_prompts)) image_grid.save(os.path.join(repo_folder, "val_imgs_grid.png")) img_str += "![val_imgs_grid](./val_imgs_grid.png)\n" yaml = f""" --- license: creativeml-openrail-m base_model: {args.pretrained_model_name_or_path} datasets: - {args.dataset_name} tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- """ model_card = f""" # Text-to-image finetuning - {repo_id} This pipeline was finetuned from **{args.pretrained_model_name_or_path}** on the **{args.dataset_name}** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: {args.validation_prompts}: \n {img_str} ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained("{repo_id}", torch_dtype=torch.float16) prompt = "{args.validation_prompts[0]}" image = pipeline(prompt).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: {args.num_train_epochs} * Learning rate: {args.learning_rate} * Batch size: {args.train_batch_size} * Gradient accumulation steps: {args.gradient_accumulation_steps} * Image resolution: {args.resolution} * Mixed-precision: {args.mixed_precision} """ wandb_info = "" if is_wandb_available(): wandb_run_url = None if wandb.run is not None: wandb_run_url = wandb.run.url if wandb_run_url is not None: wandb_info = f""" More information on all the CLI arguments and the environment are available on your [`wandb` run page]({wandb_run_url}). """ model_card += wandb_info with open(os.path.join(repo_folder, "README.md"), "w") as f: f.write(yaml + model_card) def log_validation(vae, text_encoder, tokenizer, unet, args, accelerator, weight_dtype, epoch): logger.info("Running validation... ") pipeline = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, vae=accelerator.unwrap_model(vae), text_encoder=accelerator.unwrap_model(text_encoder), tokenizer=tokenizer, unet=accelerator.unwrap_model(unet), safety_checker=None, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) if args.enable_xformers_memory_efficient_attention: pipeline.enable_xformers_memory_efficient_attention() if args.seed is None: generator = None else: generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) images = [] for i in range(len(args.validation_prompts)): with torch.autocast("cuda"): image = pipeline(args.validation_prompts[i], num_inference_steps=20, generator=generator).images[0] images.append(image) for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") elif tracker.name == "wandb": tracker.log( { "validation": [ wandb.Image(image, caption=f"{i}: {args.validation_prompts[i]}") for i, image in enumerate(images) ] } ) else: logger.warn(f"image logging not implemented for {tracker.name}") del pipeline torch.cuda.empty_cache() return images def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--input_perturbation", type=float, default=0, help="The scale of input perturbation. Recommended 0.1." ) parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--variant", type=str, default=None, help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", ) parser.add_argument( "--dataset_name", type=str, default=None, help=( "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that 🤗 Datasets can understand." ), ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The config of the Dataset, leave as None if there's only one config.", ) parser.add_argument( "--train_data_dir", type=str, default=None, help=( "A folder containing the training data. Folder contents must follow the structure described in" " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." ), ) parser.add_argument( "--image_column", type=str, default="image", help="The column of the dataset containing an image." ) parser.add_argument( "--caption_column", type=str, default="text", help="The column of the dataset containing a caption or a list of captions.", ) parser.add_argument( "--max_train_samples", type=int, default=None, help=( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ), ) parser.add_argument( "--validation_prompts", type=str, default=None, nargs="+", help=("A set of prompts evaluated every `--validation_epochs` and logged to `--report_to`."), ) parser.add_argument( "--output_dir", type=str, default="sd-model-finetuned", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument( "--random_flip", action="store_true", help="whether to randomly flip images horizontally", ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=100) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--snr_gamma", type=float, default=None, help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " "More details here: https://arxiv.org/abs/2303.09556.", ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") parser.add_argument( "--non_ema_revision", type=str, default=None, required=False, help=( "Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or" " remote repository specified with --pretrained_model_name_or_path." ), ) parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--prediction_type", type=str, default=None, help="The prediction_type that shall be used for training. Choose between 'epsilon' or 'v_prediction' or leave `None`. If left to `None` the default prediction type of the scheduler: `noise_scheduler.config.prediciton_type` is chosen.", ) parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=("Max number of checkpoints to store."), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.") parser.add_argument( "--validation_epochs", type=int, default=5, help="Run validation every X epochs.", ) parser.add_argument( "--tracker_project_name", type=str, default="text2image-fine-tune", help=( "The `project_name` argument passed to Accelerator.init_trackers for" " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" ), ) args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank # Sanity checks if args.dataset_name is None and args.train_data_dir is None: raise ValueError("Need either a dataset name or a training folder.") # default to using the same revision for the non-ema model if not specified if args.non_ema_revision is None: args.non_ema_revision = args.revision return args def main(): args = parse_args() if args.non_ema_revision is not None: deprecate( "non_ema_revision!=None", "0.15.0", message=( "Downloading 'non_ema' weights from revision branches of the Hub is deprecated. Please make sure to" " use `--variant=non_ema` instead." ), ) logging_dir = os.path.join(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load scheduler, tokenizer and models. noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") tokenizer = CLIPTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision ) def deepspeed_zero_init_disabled_context_manager(): """ returns either a context list that includes one that will disable zero.Init or an empty context list """ deepspeed_plugin = AcceleratorState().deepspeed_plugin if accelerate.state.is_initialized() else None if deepspeed_plugin is None: return [] return [deepspeed_plugin.zero3_init_context_manager(enable=False)] # Currently Accelerate doesn't know how to handle multiple models under Deepspeed ZeRO stage 3. # For this to work properly all models must be run through `accelerate.prepare`. But accelerate # will try to assign the same optimizer with the same weights to all models during # `deepspeed.initialize`, which of course doesn't work. # # For now the following workaround will partially support Deepspeed ZeRO-3, by excluding the 2 # frozen models from being partitioned during `zero.Init` which gets called during # `from_pretrained` So CLIPTextModel and AutoencoderKL will not enjoy the parameter sharding # across multiple gpus and only UNet2DConditionModel will get ZeRO sharded. with ContextManagers(deepspeed_zero_init_disabled_context_manager()): text_encoder = CLIPTextModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant ) vae = AutoencoderKL.from_pretrained( args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant ) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.non_ema_revision ) # Freeze vae and text_encoder and set unet to trainable vae.requires_grad_(False) text_encoder.requires_grad_(False) unet.train() # Create EMA for the unet. if args.use_ema: ema_unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant ) ema_unet = EMAModel(ema_unet.parameters(), model_cls=UNet2DConditionModel, model_config=ema_unet.config) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warn( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") # `accelerate` 0.16.0 will have better support for customized saving if version.parse(accelerate.__version__) >= version.parse("0.16.0"): # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: if args.use_ema: ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema")) for i, model in enumerate(models): model.save_pretrained(os.path.join(output_dir, "unet")) # make sure to pop weight so that corresponding model is not saved again weights.pop() def load_model_hook(models, input_dir): if args.use_ema: load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DConditionModel) ema_unet.load_state_dict(load_model.state_dict()) ema_unet.to(accelerator.device) del load_model for i in range(len(models)): # pop models so that they are not loaded again model = models.pop() # load diffusers style into model load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet") model.register_to_config(**load_model.config) model.load_state_dict(load_model.state_dict()) del load_model accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) if args.gradient_checkpointing: unet.enable_gradient_checkpointing() # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Initialize the optimizer if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" ) optimizer_cls = bnb.optim.AdamW8bit else: optimizer_cls = torch.optim.AdamW optimizer = optimizer_cls( unet.parameters(), lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # Get the datasets: you can either provide your own training and evaluation files (see below) # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, data_dir=args.train_data_dir, ) else: data_files = {} if args.train_data_dir is not None: data_files["train"] = os.path.join(args.train_data_dir, "**") dataset = load_dataset( "imagefolder", data_files=data_files, cache_dir=args.cache_dir, ) # See more about loading custom images at # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder # Preprocessing the datasets. # We need to tokenize inputs and targets. column_names = dataset["train"].column_names # 6. Get the column names for input/target. dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None) if args.image_column is None: image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] else: image_column = args.image_column if image_column not in column_names: raise ValueError( f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}" ) if args.caption_column is None: caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1] else: caption_column = args.caption_column if caption_column not in column_names: raise ValueError( f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}" ) # Preprocessing the datasets. # We need to tokenize input captions and transform the images. def tokenize_captions(examples, is_train=True): captions = [] for caption in examples[caption_column]: if isinstance(caption, str): captions.append(caption) elif isinstance(caption, (list, np.ndarray)): # take a random caption if there are multiple captions.append(random.choice(caption) if is_train else caption[0]) else: raise ValueError( f"Caption column `{caption_column}` should contain either strings or lists of strings." ) inputs = tokenizer( captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" ) return inputs.input_ids # Preprocessing the datasets. train_transforms = transforms.Compose( [ transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution), transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def preprocess_train(examples): images = [image.convert("RGB") for image in examples[image_column]] examples["pixel_values"] = [train_transforms(image) for image in images] examples["input_ids"] = tokenize_captions(examples) return examples with accelerator.main_process_first(): if args.max_train_samples is not None: dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) # Set the training transforms train_dataset = dataset["train"].with_transform(preprocess_train) def collate_fn(examples): pixel_values = torch.stack([example["pixel_values"] for example in examples]) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() input_ids = torch.stack([example["input_ids"] for example in examples]) return {"pixel_values": pixel_values, "input_ids": input_ids} # DataLoaders creation: train_dataloader = torch.utils.data.DataLoader( train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=args.train_batch_size, num_workers=args.dataloader_num_workers, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, ) # Prepare everything with our `accelerator`. unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, optimizer, train_dataloader, lr_scheduler ) if args.use_ema: ema_unet.to(accelerator.device) # For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision # as these weights are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 args.mixed_precision = accelerator.mixed_precision elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 args.mixed_precision = accelerator.mixed_precision # Move text_encode and vae to gpu and cast to weight_dtype text_encoder.to(accelerator.device, dtype=weight_dtype) vae.to(accelerator.device, dtype=weight_dtype) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: tracker_config = dict(vars(args)) tracker_config.pop("validation_prompts") accelerator.init_trackers(args.tracker_project_name, tracker_config) # Function for unwrapping if model was compiled with `torch.compile`. def unwrap_model(model): model = accelerator.unwrap_model(model) model = model._orig_mod if is_compiled_module(model) else model return model # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None initial_global_step = 0 else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) initial_global_step = global_step first_epoch = global_step // num_update_steps_per_epoch else: initial_global_step = 0 progress_bar = tqdm( range(0, args.max_train_steps), initial=initial_global_step, desc="Steps", # Only show the progress bar once on each machine. disable=not accelerator.is_local_main_process, ) for epoch in range(first_epoch, args.num_train_epochs): train_loss = 0.0 for step, batch in enumerate(train_dataloader): with accelerator.accumulate(unet): # Convert images to latent space latents = vae.encode(batch["pixel_values"].to(weight_dtype)).latent_dist.sample() latents = latents * vae.config.scaling_factor # Sample noise that we'll add to the latents noise = torch.randn_like(latents) if args.noise_offset: # https://www.crosslabs.org//blog/diffusion-with-offset-noise noise += args.noise_offset * torch.randn( (latents.shape[0], latents.shape[1], 1, 1), device=latents.device ) if args.input_perturbation: new_noise = noise + args.input_perturbation * torch.randn_like(noise) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) if args.input_perturbation: noisy_latents = noise_scheduler.add_noise(latents, new_noise, timesteps) else: noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # Get the text embedding for conditioning encoder_hidden_states = text_encoder(batch["input_ids"], return_dict=False)[0] # Get the target for loss depending on the prediction type if args.prediction_type is not None: # set prediction_type of scheduler if defined noise_scheduler.register_to_config(prediction_type=args.prediction_type) if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") # Predict the noise residual and compute loss model_pred = unet(noisy_latents, timesteps, encoder_hidden_states, return_dict=False)[0] if args.snr_gamma is None: loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") else: # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556. # Since we predict the noise instead of x_0, the original formulation is slightly changed. # This is discussed in Section 4.2 of the same paper. snr = compute_snr(noise_scheduler, timesteps) if noise_scheduler.config.prediction_type == "v_prediction": # Velocity objective requires that we add one to SNR values before we divide by them. snr = snr + 1 mse_loss_weights = ( torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr ) loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights loss = loss.mean() # Gather the losses across all processes for logging (if we use distributed training). avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() train_loss += avg_loss.item() / args.gradient_accumulation_steps # Backpropagate accelerator.backward(loss) if accelerator.sync_gradients: accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: if args.use_ema: ema_unet.step(unet.parameters()) progress_bar.update(1) global_step += 1 accelerator.log({"train_loss": train_loss}, step=global_step) train_loss = 0.0 if global_step % args.checkpointing_steps == 0: if accelerator.is_main_process: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: checkpoints = os.listdir(args.output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= args.checkpoints_total_limit: num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) if global_step >= args.max_train_steps: break if accelerator.is_main_process: if args.validation_prompts is not None and epoch % args.validation_epochs == 0: if args.use_ema: # Store the UNet parameters temporarily and load the EMA parameters to perform inference. ema_unet.store(unet.parameters()) ema_unet.copy_to(unet.parameters()) log_validation( vae, text_encoder, tokenizer, unet, args, accelerator, weight_dtype, global_step, ) if args.use_ema: # Switch back to the original UNet parameters. ema_unet.restore(unet.parameters()) # Create the pipeline using the trained modules and save it. accelerator.wait_for_everyone() if accelerator.is_main_process: unet = unwrap_model(unet) if args.use_ema: ema_unet.copy_to(unet.parameters()) pipeline = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, revision=args.revision, variant=args.variant, ) pipeline.save_pretrained(args.output_dir) # Run a final round of inference. images = [] if args.validation_prompts is not None: logger.info("Running inference for collecting generated images...") pipeline = pipeline.to(accelerator.device) pipeline.torch_dtype = weight_dtype pipeline.set_progress_bar_config(disable=True) if args.enable_xformers_memory_efficient_attention: pipeline.enable_xformers_memory_efficient_attention() if args.seed is None: generator = None else: generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) for i in range(len(args.validation_prompts)): with torch.autocast("cuda"): image = pipeline(args.validation_prompts[i], num_inference_steps=20, generator=generator).images[0] images.append(image) if args.push_to_hub: save_model_card(args, repo_id, images, repo_folder=args.output_dir) upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": main()
0
hf_public_repos/diffusers/examples
hf_public_repos/diffusers/examples/text_to_image/train_text_to_image_lora.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fine-tuning script for Stable Diffusion for text2image with support for LoRA.""" import argparse import logging import math import os import random import shutil from pathlib import Path import datasets import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from datasets import load_dataset from huggingface_hub import create_repo, upload_folder from packaging import version from peft import LoraConfig from peft.utils import get_peft_model_state_dict from torchvision import transforms from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer import diffusers from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, StableDiffusionPipeline, UNet2DConditionModel from diffusers.optimization import get_scheduler from diffusers.training_utils import cast_training_params, compute_snr from diffusers.utils import check_min_version, convert_state_dict_to_diffusers, is_wandb_available from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.torch_utils import is_compiled_module # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.26.0.dev0") logger = get_logger(__name__, log_level="INFO") def save_model_card(repo_id: str, images=None, base_model=str, dataset_name=str, repo_folder=None): img_str = "" for i, image in enumerate(images): image.save(os.path.join(repo_folder, f"image_{i}.png")) img_str += f"![img_{i}](./image_{i}.png)\n" yaml = f""" --- license: creativeml-openrail-m base_model: {base_model} tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- """ model_card = f""" # LoRA text2image fine-tuning - {repo_id} These are LoRA adaption weights for {base_model}. The weights were fine-tuned on the {dataset_name} dataset. You can find some example images in the following. \n {img_str} """ with open(os.path.join(repo_folder, "README.md"), "w") as f: f.write(yaml + model_card) def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--variant", type=str, default=None, help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", ) parser.add_argument( "--dataset_name", type=str, default=None, help=( "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that 🤗 Datasets can understand." ), ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The config of the Dataset, leave as None if there's only one config.", ) parser.add_argument( "--train_data_dir", type=str, default=None, help=( "A folder containing the training data. Folder contents must follow the structure described in" " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." ), ) parser.add_argument( "--image_column", type=str, default="image", help="The column of the dataset containing an image." ) parser.add_argument( "--caption_column", type=str, default="text", help="The column of the dataset containing a caption or a list of captions.", ) parser.add_argument( "--validation_prompt", type=str, default=None, help="A prompt that is sampled during training for inference." ) parser.add_argument( "--num_validation_images", type=int, default=4, help="Number of images that should be generated during validation with `validation_prompt`.", ) parser.add_argument( "--validation_epochs", type=int, default=1, help=( "Run fine-tuning validation every X epochs. The validation process consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`." ), ) parser.add_argument( "--max_train_samples", type=int, default=None, help=( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ), ) parser.add_argument( "--output_dir", type=str, default="sd-model-finetuned-lora", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument( "--random_flip", action="store_true", help="whether to randomly flip images horizontally", ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=100) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--snr_gamma", type=float, default=None, help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " "More details here: https://arxiv.org/abs/2303.09556.", ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--prediction_type", type=str, default=None, help="The prediction_type that shall be used for training. Choose between 'epsilon' or 'v_prediction' or leave `None`. If left to `None` the default prediction type of the scheduler: `noise_scheduler.config.prediciton_type` is chosen.", ) parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=("Max number of checkpoints to store."), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.") parser.add_argument( "--rank", type=int, default=4, help=("The dimension of the LoRA update matrices."), ) args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank # Sanity checks if args.dataset_name is None and args.train_data_dir is None: raise ValueError("Need either a dataset name or a training folder.") return args DATASET_NAME_MAPPING = { "lambdalabs/pokemon-blip-captions": ("image", "text"), } def main(): args = parse_args() logging_dir = Path(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) if args.report_to == "wandb": if not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") import wandb # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load scheduler, tokenizer and models. noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") tokenizer = CLIPTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision ) text_encoder = CLIPTextModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision ) vae = AutoencoderKL.from_pretrained( args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant ) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant ) # freeze parameters of models to save more memory unet.requires_grad_(False) vae.requires_grad_(False) text_encoder.requires_grad_(False) # For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision # as these weights are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Freeze the unet parameters before adding adapters for param in unet.parameters(): param.requires_grad_(False) unet_lora_config = LoraConfig( r=args.rank, lora_alpha=args.rank, init_lora_weights="gaussian", target_modules=["to_k", "to_q", "to_v", "to_out.0"], ) # Move unet, vae and text_encoder to device and cast to weight_dtype unet.to(accelerator.device, dtype=weight_dtype) vae.to(accelerator.device, dtype=weight_dtype) text_encoder.to(accelerator.device, dtype=weight_dtype) # Add adapter and make sure the trainable params are in float32. unet.add_adapter(unet_lora_config) if args.mixed_precision == "fp16": # only upcast trainable parameters (LoRA) into fp32 cast_training_params(unet, dtype=torch.float32) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warn( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") lora_layers = filter(lambda p: p.requires_grad, unet.parameters()) if args.gradient_checkpointing: unet.enable_gradient_checkpointing() # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Initialize the optimizer if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" ) optimizer_cls = bnb.optim.AdamW8bit else: optimizer_cls = torch.optim.AdamW optimizer = optimizer_cls( lora_layers, lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # Get the datasets: you can either provide your own training and evaluation files (see below) # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, data_dir=args.train_data_dir, ) else: data_files = {} if args.train_data_dir is not None: data_files["train"] = os.path.join(args.train_data_dir, "**") dataset = load_dataset( "imagefolder", data_files=data_files, cache_dir=args.cache_dir, ) # See more about loading custom images at # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder # Preprocessing the datasets. # We need to tokenize inputs and targets. column_names = dataset["train"].column_names # 6. Get the column names for input/target. dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None) if args.image_column is None: image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] else: image_column = args.image_column if image_column not in column_names: raise ValueError( f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}" ) if args.caption_column is None: caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1] else: caption_column = args.caption_column if caption_column not in column_names: raise ValueError( f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}" ) # Preprocessing the datasets. # We need to tokenize input captions and transform the images. def tokenize_captions(examples, is_train=True): captions = [] for caption in examples[caption_column]: if isinstance(caption, str): captions.append(caption) elif isinstance(caption, (list, np.ndarray)): # take a random caption if there are multiple captions.append(random.choice(caption) if is_train else caption[0]) else: raise ValueError( f"Caption column `{caption_column}` should contain either strings or lists of strings." ) inputs = tokenizer( captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" ) return inputs.input_ids # Preprocessing the datasets. train_transforms = transforms.Compose( [ transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution), transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def unwrap_model(model): model = accelerator.unwrap_model(model) model = model._orig_mod if is_compiled_module(model) else model return model def preprocess_train(examples): images = [image.convert("RGB") for image in examples[image_column]] examples["pixel_values"] = [train_transforms(image) for image in images] examples["input_ids"] = tokenize_captions(examples) return examples with accelerator.main_process_first(): if args.max_train_samples is not None: dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) # Set the training transforms train_dataset = dataset["train"].with_transform(preprocess_train) def collate_fn(examples): pixel_values = torch.stack([example["pixel_values"] for example in examples]) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() input_ids = torch.stack([example["input_ids"] for example in examples]) return {"pixel_values": pixel_values, "input_ids": input_ids} # DataLoaders creation: train_dataloader = torch.utils.data.DataLoader( train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=args.train_batch_size, num_workers=args.dataloader_num_workers, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, ) # Prepare everything with our `accelerator`. unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, optimizer, train_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("text2image-fine-tune", config=vars(args)) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None initial_global_step = 0 else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) initial_global_step = global_step first_epoch = global_step // num_update_steps_per_epoch else: initial_global_step = 0 progress_bar = tqdm( range(0, args.max_train_steps), initial=initial_global_step, desc="Steps", # Only show the progress bar once on each machine. disable=not accelerator.is_local_main_process, ) for epoch in range(first_epoch, args.num_train_epochs): unet.train() train_loss = 0.0 for step, batch in enumerate(train_dataloader): with accelerator.accumulate(unet): # Convert images to latent space latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() latents = latents * vae.config.scaling_factor # Sample noise that we'll add to the latents noise = torch.randn_like(latents) if args.noise_offset: # https://www.crosslabs.org//blog/diffusion-with-offset-noise noise += args.noise_offset * torch.randn( (latents.shape[0], latents.shape[1], 1, 1), device=latents.device ) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # Get the text embedding for conditioning encoder_hidden_states = text_encoder(batch["input_ids"], return_dict=False)[0] # Get the target for loss depending on the prediction type if args.prediction_type is not None: # set prediction_type of scheduler if defined noise_scheduler.register_to_config(prediction_type=args.prediction_type) if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") # Predict the noise residual and compute loss model_pred = unet(noisy_latents, timesteps, encoder_hidden_states, return_dict=False)[0] if args.snr_gamma is None: loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") else: # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556. # Since we predict the noise instead of x_0, the original formulation is slightly changed. # This is discussed in Section 4.2 of the same paper. snr = compute_snr(noise_scheduler, timesteps) if noise_scheduler.config.prediction_type == "v_prediction": # Velocity objective requires that we add one to SNR values before we divide by them. snr = snr + 1 mse_loss_weights = ( torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr ) loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights loss = loss.mean() # Gather the losses across all processes for logging (if we use distributed training). avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() train_loss += avg_loss.item() / args.gradient_accumulation_steps # Backpropagate accelerator.backward(loss) if accelerator.sync_gradients: params_to_clip = lora_layers accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 accelerator.log({"train_loss": train_loss}, step=global_step) train_loss = 0.0 if global_step % args.checkpointing_steps == 0: if accelerator.is_main_process: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: checkpoints = os.listdir(args.output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= args.checkpoints_total_limit: num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) unwrapped_unet = unwrap_model(unet) unet_lora_state_dict = convert_state_dict_to_diffusers( get_peft_model_state_dict(unwrapped_unet) ) StableDiffusionPipeline.save_lora_weights( save_directory=save_path, unet_lora_layers=unet_lora_state_dict, safe_serialization=True, ) logger.info(f"Saved state to {save_path}") logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) if global_step >= args.max_train_steps: break if accelerator.is_main_process: if args.validation_prompt is not None and epoch % args.validation_epochs == 0: logger.info( f"Running validation... \n Generating {args.num_validation_images} images with prompt:" f" {args.validation_prompt}." ) # create pipeline pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, unet=unwrap_model(unet), revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) # run inference generator = torch.Generator(device=accelerator.device) if args.seed is not None: generator = generator.manual_seed(args.seed) images = [] with torch.cuda.amp.autocast(): for _ in range(args.num_validation_images): images.append( pipeline(args.validation_prompt, num_inference_steps=30, generator=generator).images[0] ) for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "validation": [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) del pipeline torch.cuda.empty_cache() # Save the lora layers accelerator.wait_for_everyone() if accelerator.is_main_process: unet = unet.to(torch.float32) unwrapped_unet = unwrap_model(unet) unet_lora_state_dict = convert_state_dict_to_diffusers(get_peft_model_state_dict(unwrapped_unet)) StableDiffusionPipeline.save_lora_weights( save_directory=args.output_dir, unet_lora_layers=unet_lora_state_dict, safe_serialization=True, ) if args.push_to_hub: save_model_card( repo_id, images=images, base_model=args.pretrained_model_name_or_path, dataset_name=args.dataset_name, repo_folder=args.output_dir, ) upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) # Final inference # Load previous pipeline if args.validation_prompt is not None: pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) pipeline = pipeline.to(accelerator.device) # load attention processors pipeline.load_lora_weights(args.output_dir) # run inference generator = torch.Generator(device=accelerator.device) if args.seed is not None: generator = generator.manual_seed(args.seed) images = [] with torch.cuda.amp.autocast(): for _ in range(args.num_validation_images): images.append( pipeline(args.validation_prompt, num_inference_steps=30, generator=generator).images[0] ) for tracker in accelerator.trackers: if len(images) != 0: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "test": [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) accelerator.end_training() if __name__ == "__main__": main()
0
hf_public_repos/diffusers/examples/kandinsky2_2
hf_public_repos/diffusers/examples/kandinsky2_2/text_to_image/README.md
# Kandinsky2.2 text-to-image fine-tuning Kandinsky 2.2 includes a prior pipeline that generates image embeddings from text prompts, and a decoder pipeline that generates the output image based on the image embeddings. We provide `train_text_to_image_prior.py` and `train_text_to_image_decoder.py` scripts to show you how to fine-tune the Kandinsky prior and decoder models separately based on your own dataset. To achieve the best results, you should fine-tune **_both_** your prior and decoder models. ___Note___: ___This script is experimental. The script fine-tunes the whole model and often times the model overfits and runs into issues like catastrophic forgetting. It's recommended to try different hyperparameters to get the best result on your dataset.___ ## Running locally with PyTorch Before running the scripts, make sure to install the library's training dependencies: **Important** To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install . ``` Then cd in the example folder and run ```bash pip install -r requirements.txt ``` And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: ```bash accelerate config ``` For this example we want to directly store the trained LoRA embeddings on the Hub, so we need to be logged in and add the --push_to_hub flag. ___ ### Pokemon example For all our examples, we will directly store the trained weights on the Hub, so we need to be logged in and add the `--push_to_hub` flag. In order to do that, you have to be a registered user on the 🤗 Hugging Face Hub, and you'll also need to use an access token for the code to work. For more information on access tokens, please refer to the [User Access Tokens](https://huggingface.co/docs/hub/security-tokens) guide. Run the following command to authenticate your token ```bash huggingface-cli login ``` We also use [Weights and Biases](https://docs.wandb.ai/quickstart) logging by default, because it is really useful to monitor the training progress by regularly generating sample images during training. To install wandb, run ```bash pip install wandb ``` To disable wandb logging, remove the `--report_to=="wandb"` and `--validation_prompts="A robot pokemon, 4k photo"` flags from below examples #### Fine-tune decoder <br> <!-- accelerate_snippet_start --> ```bash export DATASET_NAME="lambdalabs/pokemon-blip-captions" accelerate launch --mixed_precision="fp16" train_text_to_image_decoder.py \ --dataset_name=$DATASET_NAME \ --resolution=768 \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --gradient_checkpointing \ --max_train_steps=15000 \ --learning_rate=1e-05 \ --max_grad_norm=1 \ --checkpoints_total_limit=3 \ --lr_scheduler="constant" --lr_warmup_steps=0 \ --validation_prompts="A robot pokemon, 4k photo" \ --report_to="wandb" \ --push_to_hub \ --output_dir="kandi2-decoder-pokemon-model" ``` <!-- accelerate_snippet_end --> To train on your own training files, prepare the dataset according to the format required by `datasets`. You can find the instructions for how to do that in the [ImageFolder with metadata](https://huggingface.co/docs/datasets/en/image_load#imagefolder-with-metadata) guide. If you wish to use custom loading logic, you should modify the script and we have left pointers for that in the training script. ```bash export TRAIN_DIR="path_to_your_dataset" accelerate launch --mixed_precision="fp16" train_text_to_image_decoder.py \ --train_data_dir=$TRAIN_DIR \ --resolution=768 \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --gradient_checkpointing \ --max_train_steps=15000 \ --learning_rate=1e-05 \ --max_grad_norm=1 \ --checkpoints_total_limit=3 \ --lr_scheduler="constant" --lr_warmup_steps=0 \ --validation_prompts="A robot pokemon, 4k photo" \ --report_to="wandb" \ --push_to_hub \ --output_dir="kandi22-decoder-pokemon-model" ``` Once the training is finished the model will be saved in the `output_dir` specified in the command. In this example it's `kandi22-decoder-pokemon-model`. To load the fine-tuned model for inference just pass that path to `AutoPipelineForText2Image` ```python from diffusers import AutoPipelineForText2Image import torch pipe = AutoPipelineForText2Image.from_pretrained(output_dir, torch_dtype=torch.float16) pipe.enable_model_cpu_offload() prompt='A robot pokemon, 4k photo' images = pipe(prompt=prompt).images images[0].save("robot-pokemon.png") ``` Checkpoints only save the unet, so to run inference from a checkpoint, just load the unet ```python from diffusers import AutoPipelineForText2Image, UNet2DConditionModel model_path = "path_to_saved_model" unet = UNet2DConditionModel.from_pretrained(model_path + "/checkpoint-<N>/unet") pipe = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", unet=unet, torch_dtype=torch.float16) pipe.enable_model_cpu_offload() image = pipe(prompt="A robot pokemon, 4k photo").images[0] image.save("robot-pokemon.png") ``` #### Fine-tune prior You can fine-tune the Kandinsky prior model with `train_text_to_image_prior.py` script. Note that we currently do not support `--gradient_checkpointing` for prior model fine-tuning. <br> <!-- accelerate_snippet_start --> ```bash export DATASET_NAME="lambdalabs/pokemon-blip-captions" accelerate launch --mixed_precision="fp16" train_text_to_image_prior.py \ --dataset_name=$DATASET_NAME \ --resolution=768 \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --max_train_steps=15000 \ --learning_rate=1e-05 \ --max_grad_norm=1 \ --checkpoints_total_limit=3 \ --lr_scheduler="constant" --lr_warmup_steps=0 \ --validation_prompts="A robot pokemon, 4k photo" \ --report_to="wandb" \ --push_to_hub \ --output_dir="kandi2-prior-pokemon-model" ``` <!-- accelerate_snippet_end --> To perform inference with the fine-tuned prior model, you will need to first create a prior pipeline by passing the `output_dir` to `DiffusionPipeline`. Then create a `KandinskyV22CombinedPipeline` from a pretrained or fine-tuned decoder checkpoint along with all the modules of the prior pipeline you just created. ```python from diffusers import AutoPipelineForText2Image, DiffusionPipeline import torch pipe_prior = DiffusionPipeline.from_pretrained(output_dir, torch_dtype=torch.float16) prior_components = {"prior_" + k: v for k,v in pipe_prior.components.items()} pipe = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", **prior_components, torch_dtype=torch.float16) pipe.enable_model_cpu_offload() prompt='A robot pokemon, 4k photo' images = pipe(prompt=prompt, negative_prompt=negative_prompt).images images[0] ``` If you want to use a fine-tuned decoder checkpoint along with your fine-tuned prior checkpoint, you can simply replace the "kandinsky-community/kandinsky-2-2-decoder" in above code with your custom model repo name. Note that in order to be able to create a `KandinskyV22CombinedPipeline`, your model repository need to have a prior tag. If you have created your model repo using our training script, the prior tag is automatically included. #### Training with multiple GPUs `accelerate` allows for seamless multi-GPU training. Follow the instructions [here](https://huggingface.co/docs/accelerate/basic_tutorials/launch) for running distributed training with `accelerate`. Here is an example command: ```bash export DATASET_NAME="lambdalabs/pokemon-blip-captions" accelerate launch --mixed_precision="fp16" --multi_gpu train_text_to_image_decoder.py \ --dataset_name=$DATASET_NAME \ --resolution=768 \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --gradient_checkpointing \ --max_train_steps=15000 \ --learning_rate=1e-05 \ --max_grad_norm=1 \ --checkpoints_total_limit=3 \ --lr_scheduler="constant" --lr_warmup_steps=0 \ --validation_prompts="A robot pokemon, 4k photo" \ --report_to="wandb" \ --push_to_hub \ --output_dir="kandi2-decoder-pokemon-model" ``` #### Training with Min-SNR weighting We support training with the Min-SNR weighting strategy proposed in [Efficient Diffusion Training via Min-SNR Weighting Strategy](https://arxiv.org/abs/2303.09556) which helps achieve faster convergence by rebalancing the loss. Enable the `--snr_gamma` argument and set it to the recommended value of 5.0. ## Training with LoRA Low-Rank Adaption of Large Language Models was first introduced by Microsoft in [LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685) by *Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen*. In a nutshell, LoRA allows adapting pretrained models by adding pairs of rank-decomposition matrices to existing weights and **only** training those newly added weights. This has a couple of advantages: - Previous pretrained weights are kept frozen so that model is not prone to [catastrophic forgetting](https://www.pnas.org/doi/10.1073/pnas.1611835114). - Rank-decomposition matrices have significantly fewer parameters than original model, which means that trained LoRA weights are easily portable. - LoRA attention layers allow to control to which extent the model is adapted toward new training images via a `scale` parameter. [cloneofsimo](https://github.com/cloneofsimo) was the first to try out LoRA training for Stable Diffusion in the popular [lora](https://github.com/cloneofsimo/lora) GitHub repository. With LoRA, it's possible to fine-tune Kandinsky 2.2 on a custom image-caption pair dataset on consumer GPUs like Tesla T4, Tesla V100. ### Training First, you need to set up your development environment as explained in the [installation](#installing-the-dependencies). Make sure to set the `MODEL_NAME` and `DATASET_NAME` environment variables. Here, we will use [Kandinsky 2.2](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder) and the [Pokemons dataset](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions). #### Train decoder ```bash export DATASET_NAME="lambdalabs/pokemon-blip-captions" accelerate launch --mixed_precision="fp16" train_text_to_image_decoder_lora.py \ --dataset_name=$DATASET_NAME --caption_column="text" \ --resolution=768 \ --train_batch_size=1 \ --num_train_epochs=100 --checkpointing_steps=5000 \ --learning_rate=1e-04 --lr_scheduler="constant" --lr_warmup_steps=0 \ --seed=42 \ --rank=4 \ --gradient_checkpointing \ --output_dir="kandi22-decoder-pokemon-lora" \ --validation_prompt="cute dragon creature" --report_to="wandb" \ --push_to_hub \ ``` #### Train prior ```bash export DATASET_NAME="lambdalabs/pokemon-blip-captions" accelerate launch --mixed_precision="fp16" train_text_to_image_prior_lora.py \ --dataset_name=$DATASET_NAME --caption_column="text" \ --resolution=768 \ --train_batch_size=1 \ --num_train_epochs=100 --checkpointing_steps=5000 \ --learning_rate=1e-04 --lr_scheduler="constant" --lr_warmup_steps=0 \ --seed=42 \ --rank=4 \ --output_dir="kandi22-prior-pokemon-lora" \ --validation_prompt="cute dragon creature" --report_to="wandb" \ --push_to_hub \ ``` **___Note: When using LoRA we can use a much higher learning rate compared to non-LoRA fine-tuning. Here we use *1e-4* instead of the usual *1e-5*. Also, by using LoRA, it's possible to run above scripts in consumer GPUs like T4 or V100.___** ### Inference #### Inference using fine-tuned LoRA checkpoint for decoder Once you have trained a Kandinsky decoder model using the above command, inference can be done with the `AutoPipelineForText2Image` after loading the trained LoRA weights. You need to pass the `output_dir` for loading the LoRA weights, which in this case is `kandi22-decoder-pokemon-lora`. ```python from diffusers import AutoPipelineForText2Image import torch pipe = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16) pipe.unet.load_attn_procs(output_dir) pipe.enable_model_cpu_offload() prompt='A robot pokemon, 4k photo' image = pipe(prompt=prompt).images[0] image.save("robot_pokemon.png") ``` #### Inference using fine-tuned LoRA checkpoint for prior ```python from diffusers import AutoPipelineForText2Image import torch pipe = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16) pipe.prior_prior.load_attn_procs(output_dir) pipe.enable_model_cpu_offload() prompt='A robot pokemon, 4k photo' image = pipe(prompt=prompt).images[0] image.save("robot_pokemon.png") image ``` ### Training with xFormers: You can enable memory efficient attention by [installing xFormers](https://huggingface.co/docs/diffusers/main/en/optimization/xformers) and passing the `--enable_xformers_memory_efficient_attention` argument to the script. xFormers training is not available for fine-tuning the prior model. **Note**: According to [this issue](https://github.com/huggingface/diffusers/issues/2234#issuecomment-1416931212), xFormers `v0.0.16` cannot be used for training in some GPUs. If you observe that problem, please install a development version as indicated in that comment.
0
hf_public_repos/diffusers/examples/kandinsky2_2
hf_public_repos/diffusers/examples/kandinsky2_2/text_to_image/requirements.txt
accelerate>=0.16.0 torchvision transformers>=4.25.1 datasets ftfy tensorboard Jinja2
0
hf_public_repos/diffusers/examples/kandinsky2_2
hf_public_repos/diffusers/examples/kandinsky2_2/text_to_image/train_text_to_image_prior.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import argparse import logging import math import os import random import shutil from pathlib import Path import accelerate import datasets import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.state import AcceleratorState from accelerate.utils import ProjectConfiguration, set_seed from datasets import load_dataset from huggingface_hub import create_repo, upload_folder from packaging import version from tqdm import tqdm from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection from transformers.utils import ContextManagers import diffusers from diffusers import AutoPipelineForText2Image, DDPMScheduler, PriorTransformer from diffusers.optimization import get_scheduler from diffusers.training_utils import EMAModel, compute_snr from diffusers.utils import check_min_version, is_wandb_available, make_image_grid if is_wandb_available(): import wandb # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.26.0.dev0") logger = get_logger(__name__, log_level="INFO") DATASET_NAME_MAPPING = { "lambdalabs/pokemon-blip-captions": ("image", "text"), } def save_model_card( args, repo_id: str, images=None, repo_folder=None, ): img_str = "" if len(images) > 0: image_grid = make_image_grid(images, 1, len(args.validation_prompts)) image_grid.save(os.path.join(repo_folder, "val_imgs_grid.png")) img_str += "![val_imgs_grid](./val_imgs_grid.png)\n" yaml = f""" --- license: creativeml-openrail-m base_model: {args.pretrained_prior_model_name_or_path} datasets: - {args.dataset_name} tags: - kandinsky - text-to-image - diffusers inference: true --- """ model_card = f""" # Finetuning - {repo_id} This pipeline was finetuned from **{args.pretrained_prior_model_name_or_path}** on the **{args.dataset_name}** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: {args.validation_prompts}: \n {img_str} ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipe_prior = DiffusionPipeline.from_pretrained("{repo_id}", torch_dtype=torch.float16) pipe_t2i = DiffusionPipeline.from_pretrained("{args.pretrained_decoder_model_name_or_path}", torch_dtype=torch.float16) prompt = "{args.validation_prompts[0]}" image_embeds, negative_image_embeds = pipe_prior(prompt, guidance_scale=1.0).to_tuple() image = pipe_t2i(image_embeds=image_embeds, negative_image_embeds=negative_image_embeds).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: {args.num_train_epochs} * Learning rate: {args.learning_rate} * Batch size: {args.train_batch_size} * Gradient accumulation steps: {args.gradient_accumulation_steps} * Image resolution: {args.resolution} * Mixed-precision: {args.mixed_precision} """ wandb_info = "" if is_wandb_available(): wandb_run_url = None if wandb.run is not None: wandb_run_url = wandb.run.url if wandb_run_url is not None: wandb_info = f""" More information on all the CLI arguments and the environment are available on your [`wandb` run page]({wandb_run_url}). """ model_card += wandb_info with open(os.path.join(repo_folder, "README.md"), "w") as f: f.write(yaml + model_card) def log_validation( image_encoder, image_processor, text_encoder, tokenizer, prior, args, accelerator, weight_dtype, epoch ): logger.info("Running validation... ") pipeline = AutoPipelineForText2Image.from_pretrained( args.pretrained_decoder_model_name_or_path, prior_image_encoder=accelerator.unwrap_model(image_encoder), prior_image_processor=image_processor, prior_text_encoder=accelerator.unwrap_model(text_encoder), prior_tokenizer=tokenizer, prior_prior=accelerator.unwrap_model(prior), torch_dtype=weight_dtype, ) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) if args.seed is None: generator = None else: generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) images = [] for i in range(len(args.validation_prompts)): with torch.autocast("cuda"): image = pipeline(args.validation_prompts[i], num_inference_steps=20, generator=generator).images[0] images.append(image) for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") elif tracker.name == "wandb": tracker.log( { "validation": [ wandb.Image(image, caption=f"{i}: {args.validation_prompts[i]}") for i, image in enumerate(images) ] } ) else: logger.warn(f"image logging not implemented for {tracker.name}") del pipeline torch.cuda.empty_cache() return images def parse_args(): parser = argparse.ArgumentParser(description="Simple example of finetuning Kandinsky 2.2.") parser.add_argument( "--pretrained_decoder_model_name_or_path", type=str, default="kandinsky-community/kandinsky-2-2-decoder", required=False, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--pretrained_prior_model_name_or_path", type=str, default="kandinsky-community/kandinsky-2-2-prior", required=False, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--dataset_name", type=str, default=None, help=( "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that 🤗 Datasets can understand." ), ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The config of the Dataset, leave as None if there's only one config.", ) parser.add_argument( "--train_data_dir", type=str, default=None, help=( "A folder containing the training data. Folder contents must follow the structure described in" " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." ), ) parser.add_argument( "--image_column", type=str, default="image", help="The column of the dataset containing an image." ) parser.add_argument( "--caption_column", type=str, default="text", help="The column of the dataset containing a caption or a list of captions.", ) parser.add_argument( "--max_train_samples", type=int, default=None, help=( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ), ) parser.add_argument( "--validation_prompts", type=str, default=None, nargs="+", help=("A set of prompts evaluated every `--validation_epochs` and logged to `--report_to`."), ) parser.add_argument( "--output_dir", type=str, default="kandi_2_2-model-finetuned", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--train_batch_size", type=int, default=1, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=100) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="learning rate", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--snr_gamma", type=float, default=None, help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " "More details here: https://arxiv.org/abs/2303.09556.", ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument( "--adam_weight_decay", type=float, default=0.0, required=False, help="weight decay_to_use", ) parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=("Max number of checkpoints to store."), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--validation_epochs", type=int, default=5, help="Run validation every X epochs.", ) parser.add_argument( "--tracker_project_name", type=str, default="text2image-fine-tune", help=( "The `project_name` argument passed to Accelerator.init_trackers for" " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" ), ) args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank # Sanity checks if args.dataset_name is None and args.train_data_dir is None: raise ValueError("Need either a dataset name or a training folder.") return args def main(): args = parse_args() logging_dir = os.path.join(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration( total_limit=args.checkpoints_total_limit, project_dir=args.output_dir, logging_dir=logging_dir ) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load scheduler, image_processor, tokenizer and models. noise_scheduler = DDPMScheduler(beta_schedule="squaredcos_cap_v2", prediction_type="sample") image_processor = CLIPImageProcessor.from_pretrained( args.pretrained_prior_model_name_or_path, subfolder="image_processor" ) tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_prior_model_name_or_path, subfolder="tokenizer") def deepspeed_zero_init_disabled_context_manager(): """ returns either a context list that includes one that will disable zero.Init or an empty context list """ deepspeed_plugin = AcceleratorState().deepspeed_plugin if accelerate.state.is_initialized() else None if deepspeed_plugin is None: return [] return [deepspeed_plugin.zero3_init_context_manager(enable=False)] weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 with ContextManagers(deepspeed_zero_init_disabled_context_manager()): image_encoder = CLIPVisionModelWithProjection.from_pretrained( args.pretrained_prior_model_name_or_path, subfolder="image_encoder", torch_dtype=weight_dtype ).eval() text_encoder = CLIPTextModelWithProjection.from_pretrained( args.pretrained_prior_model_name_or_path, subfolder="text_encoder", torch_dtype=weight_dtype ).eval() prior = PriorTransformer.from_pretrained(args.pretrained_prior_model_name_or_path, subfolder="prior") # Freeze text_encoder and image_encoder text_encoder.requires_grad_(False) image_encoder.requires_grad_(False) # Set prior to trainable. prior.train() # Create EMA for the prior. if args.use_ema: ema_prior = PriorTransformer.from_pretrained(args.pretrained_prior_model_name_or_path, subfolder="prior") ema_prior = EMAModel(ema_prior.parameters(), model_cls=PriorTransformer, model_config=ema_prior.config) ema_prior.to(accelerator.device) # `accelerate` 0.16.0 will have better support for customized saving if version.parse(accelerate.__version__) >= version.parse("0.16.0"): # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if args.use_ema: ema_prior.save_pretrained(os.path.join(output_dir, "prior_ema")) for i, model in enumerate(models): model.save_pretrained(os.path.join(output_dir, "prior")) # make sure to pop weight so that corresponding model is not saved again weights.pop() def load_model_hook(models, input_dir): if args.use_ema: load_model = EMAModel.from_pretrained(os.path.join(input_dir, "prior_ema"), PriorTransformer) ema_prior.load_state_dict(load_model.state_dict()) ema_prior.to(accelerator.device) del load_model for i in range(len(models)): # pop models so that they are not loaded again model = models.pop() # load diffusers style into model load_model = PriorTransformer.from_pretrained(input_dir, subfolder="prior") model.register_to_config(**load_model.config) model.load_state_dict(load_model.state_dict()) del load_model accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" ) optimizer_cls = bnb.optim.AdamW8bit else: optimizer_cls = torch.optim.AdamW optimizer = optimizer_cls( prior.parameters(), lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # Get the datasets: you can either provide your own training and evaluation files (see below) # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, ) else: data_files = {} if args.train_data_dir is not None: data_files["train"] = os.path.join(args.train_data_dir, "**") dataset = load_dataset( "imagefolder", data_files=data_files, cache_dir=args.cache_dir, ) # See more about loading custom images at # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder # Preprocessing the datasets. # We need to tokenize inputs and targets. column_names = dataset["train"].column_names # 6. Get the column names for input/target. dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None) if args.image_column is None: image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] else: image_column = args.image_column if image_column not in column_names: raise ValueError( f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}" ) if args.caption_column is None: caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1] else: caption_column = args.caption_column if caption_column not in column_names: raise ValueError( f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}" ) # Preprocessing the datasets. # We need to tokenize input captions and transform the images. def tokenize_captions(examples, is_train=True): captions = [] for caption in examples[caption_column]: if isinstance(caption, str): captions.append(caption) elif isinstance(caption, (list, np.ndarray)): # take a random caption if there are multiple captions.append(random.choice(caption) if is_train else caption[0]) else: raise ValueError( f"Caption column `{caption_column}` should contain either strings or lists of strings." ) inputs = tokenizer( captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" ) text_input_ids = inputs.input_ids text_mask = inputs.attention_mask.bool() return text_input_ids, text_mask def preprocess_train(examples): images = [image.convert("RGB") for image in examples[image_column]] examples["clip_pixel_values"] = image_processor(images, return_tensors="pt").pixel_values examples["text_input_ids"], examples["text_mask"] = tokenize_captions(examples) return examples with accelerator.main_process_first(): if args.max_train_samples is not None: dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) # Set the training transforms train_dataset = dataset["train"].with_transform(preprocess_train) def collate_fn(examples): clip_pixel_values = torch.stack([example["clip_pixel_values"] for example in examples]) clip_pixel_values = clip_pixel_values.to(memory_format=torch.contiguous_format).float() text_input_ids = torch.stack([example["text_input_ids"] for example in examples]) text_mask = torch.stack([example["text_mask"] for example in examples]) return {"clip_pixel_values": clip_pixel_values, "text_input_ids": text_input_ids, "text_mask": text_mask} # DataLoaders creation: train_dataloader = torch.utils.data.DataLoader( train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=args.train_batch_size, num_workers=args.dataloader_num_workers, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, ) clip_mean = prior.clip_mean.clone() clip_std = prior.clip_std.clone() prior, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( prior, optimizer, train_dataloader, lr_scheduler ) image_encoder.to(accelerator.device, dtype=weight_dtype) text_encoder.to(accelerator.device, dtype=weight_dtype) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: tracker_config = dict(vars(args)) tracker_config.pop("validation_prompts") accelerator.init_trackers(args.tracker_project_name, tracker_config) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None initial_global_step = 0 else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) initial_global_step = global_step first_epoch = global_step // num_update_steps_per_epoch else: initial_global_step = 0 progress_bar = tqdm( range(0, args.max_train_steps), initial=initial_global_step, desc="Steps", # Only show the progress bar once on each machine. disable=not accelerator.is_local_main_process, ) clip_mean = clip_mean.to(weight_dtype).to(accelerator.device) clip_std = clip_std.to(weight_dtype).to(accelerator.device) for epoch in range(first_epoch, args.num_train_epochs): train_loss = 0.0 for step, batch in enumerate(train_dataloader): with accelerator.accumulate(prior): # Convert images to latent space text_input_ids, text_mask, clip_images = ( batch["text_input_ids"], batch["text_mask"], batch["clip_pixel_values"].to(weight_dtype), ) with torch.no_grad(): text_encoder_output = text_encoder(text_input_ids) prompt_embeds = text_encoder_output.text_embeds text_encoder_hidden_states = text_encoder_output.last_hidden_state image_embeds = image_encoder(clip_images).image_embeds # Sample noise that we'll add to the image_embeds noise = torch.randn_like(image_embeds) bsz = image_embeds.shape[0] # Sample a random timestep for each image timesteps = torch.randint( 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=image_embeds.device ) timesteps = timesteps.long() image_embeds = (image_embeds - clip_mean) / clip_std noisy_latents = noise_scheduler.add_noise(image_embeds, noise, timesteps) target = image_embeds # Predict the noise residual and compute loss model_pred = prior( noisy_latents, timestep=timesteps, proj_embedding=prompt_embeds, encoder_hidden_states=text_encoder_hidden_states, attention_mask=text_mask, ).predicted_image_embedding if args.snr_gamma is None: loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") else: # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556. # Since we predict the noise instead of x_0, the original formulation is slightly changed. # This is discussed in Section 4.2 of the same paper. snr = compute_snr(noise_scheduler, timesteps) if noise_scheduler.config.prediction_type == "v_prediction": # Velocity objective requires that we add one to SNR values before we divide by them. snr = snr + 1 mse_loss_weights = ( torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr ) loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights loss = loss.mean() # Gather the losses across all processes for logging (if we use distributed training). avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() train_loss += avg_loss.item() / args.gradient_accumulation_steps # Backpropagate accelerator.backward(loss) if accelerator.sync_gradients: accelerator.clip_grad_norm_(prior.parameters(), args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: if args.use_ema: ema_prior.step(prior.parameters()) progress_bar.update(1) global_step += 1 accelerator.log({"train_loss": train_loss}, step=global_step) train_loss = 0.0 if global_step % args.checkpointing_steps == 0: if accelerator.is_main_process: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: checkpoints = os.listdir(args.output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= args.checkpoints_total_limit: num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) if global_step >= args.max_train_steps: break if accelerator.is_main_process: if args.validation_prompts is not None and epoch % args.validation_epochs == 0: if args.use_ema: # Store the UNet parameters temporarily and load the EMA parameters to perform inference. ema_prior.store(prior.parameters()) ema_prior.copy_to(prior.parameters()) log_validation( image_encoder, image_processor, text_encoder, tokenizer, prior, args, accelerator, weight_dtype, global_step, ) if args.use_ema: # Switch back to the original UNet parameters. ema_prior.restore(prior.parameters()) # Create the pipeline using the trained modules and save it. accelerator.wait_for_everyone() if accelerator.is_main_process: prior = accelerator.unwrap_model(prior) if args.use_ema: ema_prior.copy_to(prior.parameters()) pipeline = AutoPipelineForText2Image.from_pretrained( args.pretrained_decoder_model_name_or_path, prior_image_encoder=image_encoder, prior_text_encoder=text_encoder, prior_prior=prior, ) pipeline.prior_pipe.save_pretrained(args.output_dir) # Run a final round of inference. images = [] if args.validation_prompts is not None: logger.info("Running inference for collecting generated images...") pipeline = pipeline.to(accelerator.device) pipeline.torch_dtype = weight_dtype pipeline.set_progress_bar_config(disable=True) if args.seed is None: generator = None else: generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) for i in range(len(args.validation_prompts)): with torch.autocast("cuda"): image = pipeline(args.validation_prompts[i], num_inference_steps=20, generator=generator).images[0] images.append(image) if args.push_to_hub: save_model_card(args, repo_id, images, repo_folder=args.output_dir) upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": main()
0