repo_id
stringlengths
15
89
file_path
stringlengths
27
180
content
stringlengths
1
2.23M
__index_level_0__
int64
0
0
hf_public_repos/text-generation-inference/router
hf_public_repos/text-generation-inference/router/src/server.rs
/// HTTP Server logic use crate::health::Health; use crate::infer::{InferError, InferResponse, InferStreamResponse}; use crate::validation::ValidationError; use crate::HubTokenizerConfig; use crate::{ BestOfSequence, ChatCompletion, ChatCompletionChunk, ChatRequest, CompatGenerateRequest, Details, ErrorResponse, FinishReason, GenerateParameters, GenerateRequest, GenerateResponse, HubModelInfo, Infer, Info, PrefillToken, StreamDetails, StreamResponse, Token, Validation, }; use axum::extract::Extension; use axum::http::{HeaderMap, Method, StatusCode}; use axum::response::sse::{Event, KeepAlive, Sse}; use axum::response::{IntoResponse, Response}; use axum::routing::{get, post}; use axum::{http, Json, Router}; use axum_tracing_opentelemetry::middleware::OtelAxumLayer; use futures::stream::StreamExt; use futures::Stream; use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle}; use std::convert::Infallible; use std::net::SocketAddr; use std::sync::atomic::AtomicBool; use std::sync::Arc; use text_generation_client::{ShardInfo, ShardedClient}; use tokenizers::Tokenizer; use tokio::signal; use tokio::time::Instant; use tower_http::cors::{AllowOrigin, CorsLayer}; use tracing::{info_span, instrument, Instrument}; use utoipa::OpenApi; use utoipa_swagger_ui::SwaggerUi; /// Generate tokens if `stream == false` or a stream of token if `stream == true` #[utoipa::path( post, tag = "Text Generation Inference", path = "/", request_body = CompatGenerateRequest, responses( (status = 200, description = "Generated Text", content( ("application/json" = GenerateResponse), ("text/event-stream" = StreamResponse), )), (status = 424, description = "Generation Error", body = ErrorResponse, example = json ! ({"error": "Request failed during generation"})), (status = 429, description = "Model is overloaded", body = ErrorResponse, example = json ! ({"error": "Model is overloaded"})), (status = 422, description = "Input validation error", body = ErrorResponse, example = json ! ({"error": "Input validation error"})), (status = 500, description = "Incomplete generation", body = ErrorResponse, example = json ! ({"error": "Incomplete generation"})), ) )] #[instrument(skip(infer, req))] async fn compat_generate( Extension(default_return_full_text): Extension<bool>, infer: Extension<Infer>, Json(mut req): Json<CompatGenerateRequest>, ) -> Result<Response, (StatusCode, Json<ErrorResponse>)> { // default return_full_text given the pipeline_tag if req.parameters.return_full_text.is_none() { req.parameters.return_full_text = Some(default_return_full_text) } // switch on stream if req.stream { Ok(generate_stream(infer, Json(req.into())) .await .into_response()) } else { let (headers, Json(generation)) = generate(infer, Json(req.into())).await?; // wrap generation inside a Vec to match api-inference Ok((headers, Json(vec![generation])).into_response()) } } /// Text Generation Inference endpoint info #[utoipa::path( get, tag = "Text Generation Inference", path = "/info", responses((status = 200, description = "Served model info", body = Info)) )] #[instrument] async fn get_model_info(info: Extension<Info>) -> Json<Info> { Json(info.0) } #[utoipa::path( get, tag = "Text Generation Inference", path = "/health", responses( (status = 200, description = "Everything is working fine"), (status = 503, description = "Text generation inference is down", body = ErrorResponse, example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})), ) )] #[instrument(skip(health))] /// Health check method async fn health(mut health: Extension<Health>) -> Result<(), (StatusCode, Json<ErrorResponse>)> { match health.check().await { true => Ok(()), false => Err(( StatusCode::SERVICE_UNAVAILABLE, Json(ErrorResponse { error: "unhealthy".to_string(), error_type: "healthcheck".to_string(), }), )), } } /// Generate tokens #[utoipa::path( post, tag = "Text Generation Inference", path = "/generate", request_body = GenerateRequest, responses( (status = 200, description = "Generated Text", body = GenerateResponse), (status = 424, description = "Generation Error", body = ErrorResponse, example = json ! ({"error": "Request failed during generation"})), (status = 429, description = "Model is overloaded", body = ErrorResponse, example = json ! ({"error": "Model is overloaded"})), (status = 422, description = "Input validation error", body = ErrorResponse, example = json ! ({"error": "Input validation error"})), (status = 500, description = "Incomplete generation", body = ErrorResponse, example = json ! ({"error": "Incomplete generation"})), ) )] #[instrument( skip_all, fields( parameters = ? req.parameters, total_time, validation_time, queue_time, inference_time, time_per_token, seed, ) )] async fn generate( infer: Extension<Infer>, Json(req): Json<GenerateRequest>, ) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> { let span = tracing::Span::current(); let start_time = Instant::now(); metrics::increment_counter!("tgi_request_count"); tracing::debug!("Input: {}", req.inputs); let compute_characters = req.inputs.chars().count(); let mut add_prompt = None; if req.parameters.return_full_text.unwrap_or(false) { add_prompt = Some(req.inputs.clone()); } let details: bool = req.parameters.details || req.parameters.decoder_input_details; // Inference let (response, best_of_responses) = match req.parameters.best_of { Some(best_of) if best_of > 1 => { let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?; (response, Some(best_of_responses)) } _ => (infer.generate(req).await?, None), }; // Token details let input_length = response._input_length; let details = match details { true => { // convert best_of_responses let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| { responses .into_iter() .map(|response: InferResponse| { // Add prompt if return_full_text let mut output_text = response.generated_text.text; if let Some(prompt) = &add_prompt { output_text = prompt.clone() + &output_text; } BestOfSequence { generated_text: output_text, finish_reason: FinishReason::from( response.generated_text.finish_reason, ), generated_tokens: response.generated_text.generated_tokens, prefill: response.prefill, tokens: response.tokens, top_tokens: response.top_tokens, seed: response.generated_text.seed, } }) .collect() }); Some(Details { finish_reason: FinishReason::from(response.generated_text.finish_reason), generated_tokens: response.generated_text.generated_tokens, prefill: response.prefill, tokens: response.tokens, seed: response.generated_text.seed, best_of_sequences, top_tokens: response.top_tokens, }) } false => None, }; // Timings let total_time = start_time.elapsed(); let validation_time = response.queued - start_time; let queue_time = response.start - response.queued; let inference_time = Instant::now() - response.start; let time_per_token = inference_time / response.generated_text.generated_tokens; // Tracing metadata span.record("total_time", format!("{total_time:?}")); span.record("validation_time", format!("{validation_time:?}")); span.record("queue_time", format!("{queue_time:?}")); span.record("inference_time", format!("{inference_time:?}")); span.record("time_per_token", format!("{time_per_token:?}")); span.record("seed", format!("{:?}", response.generated_text.seed)); // Headers let mut headers = HeaderMap::new(); headers.insert("x-compute-type", "gpu+optimized".parse().unwrap()); headers.insert( "x-compute-time", total_time.as_millis().to_string().parse().unwrap(), ); headers.insert( "x-compute-characters", compute_characters.to_string().parse().unwrap(), ); headers.insert( "x-total-time", total_time.as_millis().to_string().parse().unwrap(), ); headers.insert( "x-validation-time", validation_time.as_millis().to_string().parse().unwrap(), ); headers.insert( "x-queue-time", queue_time.as_millis().to_string().parse().unwrap(), ); headers.insert( "x-inference-time", inference_time.as_millis().to_string().parse().unwrap(), ); headers.insert( "x-time-per-token", time_per_token.as_millis().to_string().parse().unwrap(), ); headers.insert("x-prompt-tokens", input_length.into()); headers.insert( "x-generated-tokens", response.generated_text.generated_tokens.into(), ); // Metrics metrics::increment_counter!("tgi_request_success"); metrics::histogram!("tgi_request_duration", total_time.as_secs_f64()); metrics::histogram!( "tgi_request_validation_duration", validation_time.as_secs_f64() ); metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64()); metrics::histogram!( "tgi_request_inference_duration", inference_time.as_secs_f64() ); metrics::histogram!( "tgi_request_mean_time_per_token_duration", time_per_token.as_secs_f64() ); metrics::histogram!( "tgi_request_generated_tokens", response.generated_text.generated_tokens as f64 ); // Send response let mut output_text = response.generated_text.text; if let Some(prompt) = add_prompt { output_text = prompt + &output_text; } tracing::debug!("Output: {}", output_text); tracing::info!("Success"); let response = GenerateResponse { generated_text: output_text, details, }; Ok((headers, Json(response))) } /// Generate a stream of token using Server-Sent Events #[utoipa::path( post, tag = "Text Generation Inference", path = "/generate_stream", request_body = GenerateRequest, responses( (status = 200, description = "Generated Text", body = StreamResponse, content_type = "text/event-stream"), (status = 424, description = "Generation Error", body = ErrorResponse, example = json ! ({"error": "Request failed during generation"}), content_type = "text/event-stream"), (status = 429, description = "Model is overloaded", body = ErrorResponse, example = json ! ({"error": "Model is overloaded"}), content_type = "text/event-stream"), (status = 422, description = "Input validation error", body = ErrorResponse, example = json ! ({"error": "Input validation error"}), content_type = "text/event-stream"), (status = 500, description = "Incomplete generation", body = ErrorResponse, example = json ! ({"error": "Incomplete generation"}), content_type = "text/event-stream"), ) )] #[instrument( skip_all, fields( parameters = ? req.parameters, total_time, validation_time, queue_time, inference_time, time_per_token, seed, ) )] async fn generate_stream( Extension(infer): Extension<Infer>, Json(req): Json<GenerateRequest>, ) -> ( HeaderMap, Sse<impl Stream<Item = Result<Event, Infallible>>>, ) { let on_message_callback = |stream_token: StreamResponse| { let event = Event::default(); event.json_data(stream_token).unwrap() }; let (headers, response_stream) = generate_stream_internal(infer, Json(req), on_message_callback).await; let sse = Sse::new(response_stream).keep_alive(KeepAlive::default()); (headers, sse) } async fn generate_stream_internal( infer: Infer, Json(req): Json<GenerateRequest>, on_message_callback: impl Fn(StreamResponse) -> Event, ) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) { let span = tracing::Span::current(); let start_time = Instant::now(); metrics::increment_counter!("tgi_request_count"); tracing::debug!("Input: {}", req.inputs); let compute_characters = req.inputs.chars().count(); let mut headers = HeaderMap::new(); headers.insert("x-compute-type", "gpu+optimized".parse().unwrap()); headers.insert( "x-compute-characters", compute_characters.to_string().parse().unwrap(), ); headers.insert("X-Accel-Buffering", "no".parse().unwrap()); let stream = async_stream::stream! { // Inference let mut end_reached = false; let mut error = false; let mut add_prompt = None; if req.parameters.return_full_text.unwrap_or(false) { add_prompt = Some(req.inputs.clone()); } let details = req.parameters.details; let best_of = req.parameters.best_of.unwrap_or(1); if best_of != 1 { let err = InferError::from(ValidationError::BestOfStream); metrics::increment_counter!("tgi_request_failure", "err" => "validation"); tracing::error!("{err}"); yield Ok(Event::from(err)); } else if req.parameters.decoder_input_details { let err = InferError::from(ValidationError::PrefillDetailsStream); metrics::increment_counter!("tgi_request_failure", "err" => "validation"); tracing::error!("{err}"); yield Ok(Event::from(err)); } else { match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await { // Keep permit as long as generate_stream lives Ok((_permit, _input_length, mut response_stream)) => { let mut index = 0; // Server-Sent Event stream while let Some(response) = response_stream.next().await { index += 1; match response { Ok(response) => { match response { // Prefill is ignored InferStreamResponse::Prefill(_) => {} // Yield event for every new token InferStreamResponse::Intermediate{ token, top_tokens, } => { tracing::debug!(parent: &span, "Token: {:?}", token); // StreamResponse let stream_token = StreamResponse { index, token, top_tokens, generated_text: None, details: None, }; let event = on_message_callback(stream_token); yield Ok(event); } // Yield event for last token and compute timings InferStreamResponse::End { token, generated_text, start, queued, top_tokens, } => { // Token details let details = match details { true => Some(StreamDetails { finish_reason: FinishReason::from(generated_text.finish_reason), generated_tokens: generated_text.generated_tokens, seed: generated_text.seed, }), false => None, }; // Timings let total_time = start_time.elapsed(); let validation_time = queued - start_time; let queue_time = start - queued; let inference_time = Instant::now() - start; let time_per_token = inference_time / generated_text.generated_tokens; // Tracing metadata span.record("total_time", format!("{total_time:?}")); span.record("validation_time", format!("{validation_time:?}")); span.record("queue_time", format!("{queue_time:?}")); span.record("inference_time", format!("{inference_time:?}")); span.record("time_per_token", format!("{time_per_token:?}")); span.record("seed", format!("{:?}", generated_text.seed)); // Metrics metrics::increment_counter!("tgi_request_success"); metrics::histogram!("tgi_request_duration", total_time.as_secs_f64()); metrics::histogram!("tgi_request_validation_duration", validation_time.as_secs_f64()); metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64()); metrics::histogram!("tgi_request_inference_duration", inference_time.as_secs_f64()); metrics::histogram!("tgi_request_mean_time_per_token_duration", time_per_token.as_secs_f64()); metrics::histogram!("tgi_request_generated_tokens", generated_text.generated_tokens as f64); // StreamResponse end_reached = true; let mut output_text = generated_text.text; if let Some(prompt) = add_prompt { output_text = prompt + &output_text; } tracing::debug!(parent: &span, "Output: {}", output_text); tracing::info!(parent: &span, "Success"); let stream_token = StreamResponse { index, token, top_tokens, generated_text: Some(output_text), details }; let event = on_message_callback(stream_token); yield Ok(event); break; } } } // yield error Err(err) => { error = true; yield Ok(Event::from(err)); break; } } } }, // yield error Err(err) => { error = true; yield Ok(Event::from(err)); } } // Check if generation reached the end // Skip if we already sent an error if !end_reached && !error { let err = InferError::IncompleteGeneration; metrics::increment_counter!("tgi_request_failure", "err" => "incomplete"); tracing::error!("{err}"); yield Ok(Event::from(err)); } } }; (headers, stream) } /// Generate tokens #[utoipa::path( post, tag = "Text Generation Inference", path = "/v1/chat/completions", request_body = ChatRequest, responses( (status = 200, description = "Generated Text", body = GenerateResponse), (status = 424, description = "Generation Error", body = ErrorResponse, example = json ! ({"error": "Request failed during generation"})), (status = 429, description = "Model is overloaded", body = ErrorResponse, example = json ! ({"error": "Model is overloaded"})), (status = 422, description = "Input validation error", body = ErrorResponse, example = json ! ({"error": "Input validation error"})), (status = 500, description = "Incomplete generation", body = ErrorResponse, example = json ! ({"error": "Incomplete generation"})), ) )] #[instrument( skip_all, fields( // parameters = ? req.parameters, total_time, validation_time, queue_time, inference_time, time_per_token, seed, ) )] async fn chat_completions( Extension(infer): Extension<Infer>, Extension(info): Extension<Info>, Json(req): Json<ChatRequest>, ) -> Result<Response, (StatusCode, Json<ErrorResponse>)> { metrics::increment_counter!("tgi_request_count"); let stream = req.stream; let max_new_tokens = req.max_tokens.or(Some(100)); let repetition_penalty = req .frequency_penalty // rescale frequency_penalty from (-2.0, 2.0) to (0.0, 4.0) .map(|x| x + 2.0); let logprobs = req.logprobs.unwrap_or(false); let seed = req.seed; // apply chat template to flatten the request into a single input let inputs = match infer.apply_chat_template(req) { Ok(inputs) => inputs, Err(err) => { metrics::increment_counter!("tgi_request_failure", "err" => "validation"); tracing::error!("{err}"); return Err(( StatusCode::UNPROCESSABLE_ENTITY, Json(ErrorResponse { error: err.to_string(), error_type: err.error_type().to_string(), }), )); } }; // build the request passing some parameters let generate_request = GenerateRequest { inputs: inputs.to_string(), parameters: GenerateParameters { best_of: None, temperature: None, repetition_penalty, top_k: None, top_p: None, typical_p: None, do_sample: true, max_new_tokens, return_full_text: None, stop: Vec::new(), truncate: None, watermark: false, details: true, decoder_input_details: true, seed, top_n_tokens: None, }, }; // static values that will be returned in all cases let model_id = info.model_id.clone(); let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native")); // switch on stream if stream { // pass this callback to the stream generation and build the required event structure let on_message_callback = move |stream_token: StreamResponse| { let event = Event::default(); let current_time = std::time::SystemTime::now() .duration_since(std::time::UNIX_EPOCH) .unwrap_or_else(|_| std::time::Duration::from_secs(0)) .as_secs(); event .json_data(ChatCompletionChunk::new( model_id.clone(), system_fingerprint.clone(), stream_token.token.text, current_time, stream_token.index, logprobs.then_some(stream_token.token.logprob), stream_token.details.map(|d| d.finish_reason.to_string()), )) .map_or_else( |e| { println!("Failed to serialize ChatCompletionChunk: {:?}", e); Event::default() }, |data| data, ) }; let (headers, response_stream) = generate_stream_internal(infer, Json(generate_request), on_message_callback).await; let sse = Sse::new(response_stream).keep_alive(KeepAlive::default()); Ok((headers, sse).into_response()) } else { let (headers, Json(generation)) = generate(Extension(infer), Json(generate_request)).await?; let current_time = std::time::SystemTime::now() .duration_since(std::time::UNIX_EPOCH) .unwrap_or_else(|_| std::time::Duration::from_secs(0)) .as_secs(); // build the complete response object with the full text let response = ChatCompletion::new( generation.generated_text, model_id, system_fingerprint, current_time, generation.details.unwrap(), logprobs, ); // wrap generation inside a Vec to match api-inference Ok((headers, Json(response)).into_response()) } } /// Prometheus metrics scrape endpoint #[utoipa::path( get, tag = "Text Generation Inference", path = "/metrics", responses((status = 200, description = "Prometheus Metrics", body = String)) )] async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String { prom_handle.render() } /// Serving method #[allow(clippy::too_many_arguments)] pub async fn run( model_info: HubModelInfo, shard_info: ShardInfo, compat_return_full_text: bool, max_concurrent_requests: usize, max_best_of: usize, max_stop_sequences: usize, max_top_n_tokens: u32, max_input_length: usize, max_total_tokens: usize, waiting_served_ratio: f32, max_batch_prefill_tokens: u32, max_batch_total_tokens: u32, max_waiting_tokens: usize, client: ShardedClient, tokenizer: Option<Tokenizer>, validation_workers: usize, addr: SocketAddr, allow_origin: Option<AllowOrigin>, ngrok: bool, ngrok_authtoken: Option<String>, ngrok_edge: Option<String>, tokenizer_config: HubTokenizerConfig, ) -> Result<(), axum::BoxError> { // OpenAPI documentation #[derive(OpenApi)] #[openapi( paths( health, get_model_info, compat_generate, generate, generate_stream, metrics, ), components( schemas( Info, CompatGenerateRequest, GenerateRequest, GenerateParameters, PrefillToken, Token, GenerateResponse, BestOfSequence, Details, FinishReason, StreamResponse, StreamDetails, ErrorResponse, ) ), tags( (name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API") ), info( title = "Text Generation Inference", license( name = "Apache 2.0", url = "https://www.apache.org/licenses/LICENSE-2.0" ) ) )] struct ApiDoc; // Create state let validation = Validation::new( validation_workers, tokenizer, max_best_of, max_stop_sequences, max_top_n_tokens, max_input_length, max_total_tokens, ); let generation_health = Arc::new(AtomicBool::new(false)); let health_ext = Health::new(client.clone(), generation_health.clone()); let infer = Infer::new( client, validation, waiting_served_ratio, max_batch_prefill_tokens, max_batch_total_tokens, max_waiting_tokens, max_concurrent_requests, shard_info.requires_padding, shard_info.window_size, shard_info.speculate, generation_health, tokenizer_config, ); // Duration buckets let duration_matcher = Matcher::Suffix(String::from("duration")); let n_duration_buckets = 35; let mut duration_buckets = Vec::with_capacity(n_duration_buckets); // Minimum duration in seconds let mut value = 0.0001; for _ in 0..n_duration_buckets { // geometric sequence value *= 1.5; duration_buckets.push(value); } // Input Length buckets let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length")); let input_length_buckets: Vec<f64> = (0..100) .map(|x| (max_input_length as f64 / 100.0) * (x + 1) as f64) .collect(); // Generated tokens buckets let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens")); let generated_tokens_buckets: Vec<f64> = (0..100) .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64) .collect(); // Input Length buckets let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens")); let max_new_tokens_buckets: Vec<f64> = (0..100) .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64) .collect(); // Batch size buckets let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size")); let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect(); // Speculated tokens buckets let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens")); let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect(); // Prometheus handler let builder = PrometheusBuilder::new() .set_buckets_for_metric(duration_matcher, &duration_buckets) .unwrap() .set_buckets_for_metric(input_length_matcher, &input_length_buckets) .unwrap() .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets) .unwrap() .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets) .unwrap() .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets) .unwrap() .set_buckets_for_metric(skipped_matcher, &skipped_buckets) .unwrap(); let prom_handle = builder .install_recorder() .expect("failed to install metrics recorder"); // CORS layer let allow_origin = allow_origin.unwrap_or(AllowOrigin::any()); let cors_layer = CorsLayer::new() .allow_methods([Method::GET, Method::POST]) .allow_headers([http::header::CONTENT_TYPE]) .allow_origin(allow_origin); // Endpoint info let info = Info { model_id: model_info.model_id, model_sha: model_info.sha, model_dtype: shard_info.dtype, model_device_type: shard_info.device_type, model_pipeline_tag: model_info.pipeline_tag, max_concurrent_requests, max_best_of, max_stop_sequences, max_input_length, max_total_tokens, waiting_served_ratio, max_batch_total_tokens, max_waiting_tokens, validation_workers, version: env!("CARGO_PKG_VERSION"), sha: option_env!("VERGEN_GIT_SHA"), docker_label: option_env!("DOCKER_LABEL"), }; // Create router let app = Router::new() .merge(SwaggerUi::new("/docs").url("/api-doc/openapi.json", ApiDoc::openapi())) // Base routes .route("/", post(compat_generate)) .route("/info", get(get_model_info)) .route("/generate", post(generate)) .route("/generate_stream", post(generate_stream)) .route("/v1/chat/completions", post(chat_completions)) // AWS Sagemaker route .route("/invocations", post(compat_generate)) // Base Health route .route("/health", get(health)) // Inference API health route .route("/", get(health)) // AWS Sagemaker health route .route("/ping", get(health)) // Prometheus metrics route .route("/metrics", get(metrics)) .layer(Extension(info)) .layer(Extension(health_ext.clone())) .layer(Extension(compat_return_full_text)) .layer(Extension(infer)) .layer(Extension(prom_handle.clone())) .layer(OtelAxumLayer::default()) .layer(cors_layer); if ngrok { #[cfg(feature = "ngrok")] { use ngrok::config::TunnelBuilder; let _ = addr; let authtoken = ngrok_authtoken.expect("`ngrok-authtoken` must be set when using ngrok tunneling"); let edge = ngrok_edge.expect("`ngrok-edge` must be set when using ngrok tunneling"); let tunnel = ngrok::Session::builder() .authtoken(authtoken) .connect() .await .unwrap() .labeled_tunnel() .label("edge", edge); let listener = tunnel.listen().await.unwrap(); // Run prom metrics and health locally too tokio::spawn( axum::Server::bind(&addr) .serve( Router::new() .route("/health", get(health)) .route("/metrics", get(metrics)) .layer(Extension(health_ext)) .layer(Extension(prom_handle)) .into_make_service(), ) //Wait until all requests are finished to shut down .with_graceful_shutdown(shutdown_signal()), ); // Run server axum::Server::builder(listener) .serve(app.into_make_service()) //Wait until all requests are finished to shut down .with_graceful_shutdown(shutdown_signal()) .await?; } #[cfg(not(feature = "ngrok"))] { let _ngrok_authtoken = ngrok_authtoken; let _ngrok_domain = ngrok_domain; let _ngrok_username = ngrok_username; let _ngrok_password = ngrok_password; panic!("`text-generation-router` was compiled without the `ngrok` feature"); } } else { // Run server axum::Server::bind(&addr) .serve(app.into_make_service()) // Wait until all requests are finished to shut down .with_graceful_shutdown(shutdown_signal()) .await?; } Ok(()) } /// Shutdown signal handler async fn shutdown_signal() { let ctrl_c = async { signal::ctrl_c() .await .expect("failed to install Ctrl+C handler"); }; #[cfg(unix)] let terminate = async { signal::unix::signal(signal::unix::SignalKind::terminate()) .expect("failed to install signal handler") .recv() .await; }; #[cfg(not(unix))] let terminate = std::future::pending::<()>(); tokio::select! { _ = ctrl_c => {}, _ = terminate => {}, } tracing::info!("signal received, starting graceful shutdown"); opentelemetry::global::shutdown_tracer_provider(); } impl From<i32> for FinishReason { fn from(finish_reason: i32) -> Self { let finish_reason = text_generation_client::FinishReason::try_from(finish_reason).unwrap(); match finish_reason { text_generation_client::FinishReason::Length => FinishReason::Length, text_generation_client::FinishReason::EosToken => FinishReason::EndOfSequenceToken, text_generation_client::FinishReason::StopSequence => FinishReason::StopSequence, } } } /// Convert to Axum supported formats impl From<InferError> for (StatusCode, Json<ErrorResponse>) { fn from(err: InferError) -> Self { let status_code = match err { InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY, InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS, InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY, InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR, InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY, }; ( status_code, Json(ErrorResponse { error: err.to_string(), error_type: err.error_type().to_string(), }), ) } } impl From<InferError> for Event { fn from(err: InferError) -> Self { Event::default() .json_data(ErrorResponse { error: err.to_string(), error_type: err.error_type().to_string(), }) .unwrap() } }
0
hf_public_repos/text-generation-inference/router
hf_public_repos/text-generation-inference/router/src/infer.rs
/// Batching and inference logic use crate::validation::{Validation, ValidationError}; use crate::HubTokenizerConfig; use crate::{ChatRequest, GenerateRequest, GenerateStreamResponse, PrefillToken}; use crate::{Entry, Queue, Token}; use futures::future::try_join_all; use minijinja::{Environment, ErrorKind, Template}; use nohash_hasher::IntMap; use std::sync::{ atomic::{AtomicBool, Ordering}, Arc, }; use text_generation_client::{ Batch, CachedBatch, ClientError, GeneratedText, Generation, ShardedClient, Tokens, }; use thiserror::Error; use tokio::sync::mpsc::error::SendError; use tokio::sync::{mpsc, Notify, Semaphore, TryAcquireError}; use tokio::time::Instant; use tokio_stream::wrappers::UnboundedReceiverStream; use tokio_stream::StreamExt; use tracing::{info_span, instrument, Instrument, Span}; /// Inference struct #[derive(Clone)] pub struct Infer { /// Validation validation: Validation, /// Request queue queue: Queue, /// Shared state shared: Arc<Shared>, /// Inference limit limit_concurrent_requests: Arc<Semaphore>, /// Chat template template: Option<Template<'static, 'static>>, } /// Infer shared state struct Shared { /// Batching background Tokio task notifier batching_task: Notify, } impl Infer { #[allow(clippy::too_many_arguments)] pub(crate) fn new( client: ShardedClient, validation: Validation, waiting_served_ratio: f32, max_batch_prefill_tokens: u32, max_batch_total_tokens: u32, max_waiting_tokens: usize, max_concurrent_requests: usize, requires_padding: bool, window_size: Option<u32>, speculate: u32, generation_health: Arc<AtomicBool>, tokenizer_config: HubTokenizerConfig, ) -> Self { // Infer shared state let queue = Queue::new(requires_padding, 16, window_size, speculate); let shared = Arc::new(Shared { batching_task: Notify::new(), }); // Spawn batching background task that contains all the inference logic tokio::spawn(batching_task( client, waiting_served_ratio, max_batch_prefill_tokens, max_batch_total_tokens, max_waiting_tokens, queue.clone(), shared.clone(), generation_health, )); // Inference limit with a semaphore let semaphore = Arc::new(Semaphore::new(max_concurrent_requests)); let template = tokenizer_config.chat_template.map(|t| { let env = Box::new(Environment::new()); let template_str = t.into_boxed_str(); // leaking env and template_str as read-only, static resources for performance. Box::leak(env) .template_from_str(Box::leak(template_str)) .unwrap() }); Self { validation, queue, shared, limit_concurrent_requests: semaphore, template, } } /// Add a new request to the queue and return a stream of InferStreamResponse #[instrument(skip_all)] pub(crate) async fn generate_stream( &self, request: GenerateRequest, ) -> Result<GenerateStreamResponse, InferError> { // Limit concurrent requests by acquiring a permit from the semaphore let permit = self .clone() .limit_concurrent_requests .try_acquire_owned() .map_err(|err| { metrics::increment_counter!("tgi_request_failure", "err" => "overloaded"); tracing::error!("{err}"); err })?; // Validate request let valid_request = self.validation.validate(request).await.map_err(|err| { metrics::increment_counter!("tgi_request_failure", "err" => "validation"); tracing::error!("{err}"); err })?; // MPSC channel to communicate with the background batching task let (response_tx, response_rx) = mpsc::unbounded_channel(); let input_length = valid_request.input_length; // Append the request to the queue self.queue.append(Entry { request: valid_request, response_tx, span: Span::current(), temp_span: None, queue_time: Instant::now(), batch_time: None, }); // Notify the background task that we have a new entry in the queue that needs // to be batched self.shared.batching_task.notify_one(); // Return stream Ok(( permit, input_length, UnboundedReceiverStream::new(response_rx), )) } /// Apply the chat template to the chat request #[instrument(skip_all)] pub(crate) fn apply_chat_template(&self, chat: ChatRequest) -> Result<String, InferError> { self.template .as_ref() .ok_or_else(|| InferError::TemplateError(ErrorKind::TemplateNotFound.into()))? .render(chat) .map_err(|e| { metrics::increment_counter!("tgi_request_failure", "err" => "template"); tracing::error!("{e}"); InferError::TemplateError(e) }) } /// Add a new request to the queue and return a InferResponse #[instrument(skip_all)] pub(crate) async fn generate( &self, request: GenerateRequest, ) -> Result<InferResponse, InferError> { let use_top_tokens = request.parameters.top_n_tokens.is_some_and(|x| x > 0); // Create stream and keep semaphore permit as long as generate lives let (_permit, _input_length, mut stream) = self.generate_stream(request).await?; // Return values let mut result_prefill = Vec::new(); let mut result_tokens = Vec::new(); let mut result_top_tokens = Vec::new(); let mut result_generated_text = None; let mut result_start = None; let mut result_queued = None; // Iterate on stream while let Some(response) = stream.next().await { match response? { // Add prefill tokens InferStreamResponse::Prefill(tokens) => { // Create Token objects // We do that here instead of in the Python code as Rust for loops are faster result_prefill = tokens .ids .into_iter() .zip(tokens.logprobs.into_iter()) .zip(tokens.texts.into_iter()) .map(|((id, logprob), text)| PrefillToken { id, text, logprob }) .collect(); } // Push last token InferStreamResponse::Intermediate { token, top_tokens } => { result_tokens.push(token); result_top_tokens.push(top_tokens); } // Final message // Set return values InferStreamResponse::End { token, generated_text, start, queued, top_tokens, } => { result_tokens.push(token); result_top_tokens.push(top_tokens); result_generated_text = Some(generated_text); result_start = Some(start); result_queued = Some(queued) } } } // Check that we received a `InferStreamResponse::End` message if let (Some(generated_text), Some(queued), Some(start)) = (result_generated_text, result_queued, result_start) { Ok(InferResponse { prefill: result_prefill, _input_length, tokens: result_tokens, generated_text, queued, start, top_tokens: if use_top_tokens { result_top_tokens } else { Vec::new() }, }) } else { let err = InferError::IncompleteGeneration; metrics::increment_counter!("tgi_request_failure", "err" => "incomplete"); tracing::error!("{err}"); Err(err) } } /// Add best_of new requests to the queue and return a InferResponse of the sequence with /// the highest log probability per token #[instrument(skip(self, request))] pub(crate) async fn generate_best_of( &self, request: GenerateRequest, best_of: usize, ) -> Result<(InferResponse, Vec<InferResponse>), InferError> { // validate best_of parameter separately let best_of = self.validation.validate_best_of(best_of)?; // create multiple generate requests let mut infer_responses: Vec<InferResponse> = try_join_all((0..best_of).map(|_| self.generate(request.clone()))).await?; // get the sequence with the highest log probability per token let mut max_index = 0; let mut max_logprob: f32 = f32::MIN; for (i, response) in infer_responses.iter().enumerate() { // mean logprobs of the generated tokens let sequence_logprob = response .tokens .iter() .map(|token| token.logprob) .sum::<f32>() / response.tokens.len() as f32; // set best sequence if sequence_logprob > max_logprob { max_index = i; max_logprob = sequence_logprob; } } let best_response = infer_responses.remove(max_index); Ok((best_response, infer_responses)) } } /// Batching logic /// Will be launched in a background Tokio task /// /// Batches requests and sends them to the inference server #[allow(clippy::too_many_arguments)] async fn batching_task( mut client: ShardedClient, waiting_served_ratio: f32, max_batch_prefill_tokens: u32, max_batch_total_tokens: u32, max_waiting_tokens: usize, queue: Queue, shared: Arc<Shared>, generation_health: Arc<AtomicBool>, ) { // Infinite loop loop { // Wait for a notification from the Infer struct shared.batching_task.notified().await; // Get the next batch from the queue // This batch might be smaller than the maximum batch size if there are not enough requests // waiting in the queue while let Some((mut entries, batch, span)) = queue .next_batch(None, max_batch_prefill_tokens, max_batch_total_tokens) .await { let mut cached_batch = prefill(&mut client, batch, &mut entries, &generation_health) .instrument(span) .await; let mut waiting_tokens = 1; // We loop until we do not receive any cached batch from the inference server (== until // all requests have met their stopping criteria) while let Some(batch) = cached_batch { // Get current batch info let batch_size = batch.size; let batch_max_tokens = batch.max_tokens; let mut batches = vec![batch]; metrics::gauge!("tgi_batch_current_size", batch_size as f64); metrics::gauge!("tgi_batch_current_max_tokens", batch_max_tokens as f64); let min_size = if waiting_tokens >= max_waiting_tokens { // If we didn't onboard any new requests since >= max_waiting_tokens, we try // to add a new batch even though its size might be small None } else { // Minimum batch size Some((batch_size as f32 * waiting_served_ratio).floor() as usize) }; let token_budget = max_batch_total_tokens.saturating_sub(batch_max_tokens); // Try to get a new batch if let Some((mut new_entries, new_batch, span)) = queue .next_batch(min_size, max_batch_prefill_tokens, token_budget) .await { // Tracking metrics if min_size.is_some() { metrics::increment_counter!("tgi_batch_concat", "reason" => "backpressure"); } else { metrics::increment_counter!("tgi_batch_concat", "reason" => "wait_exceeded"); } entries.iter_mut().for_each(|(_, entry)| { // Create a new span to add the info that this entry is waiting // because a new batch is being computed let entry_waiting_span = info_span!(parent: &entry.span, "waiting"); // Add relationships span.follows_from(&entry_waiting_span); entry_waiting_span.follows_from(&span); // Update entry entry.temp_span = Some(entry_waiting_span); }); // Generate one token for this new batch to have the attention past in cache let new_cached_batch = prefill(&mut client, new_batch, &mut new_entries, &generation_health) .instrument(span) .await; // Reset waiting counter waiting_tokens = 1; // Extend current batch with the new batch if let Some(new_cached_batch) = new_cached_batch { entries.extend(new_entries); batches.push(new_cached_batch); } } // Create span for this batch to add context to inference calls let next_batch_size = entries.len(); let next_batch_span = info_span!(parent: None, "batch", batch_size = next_batch_size); entries.iter_mut().for_each(|(_, entry)| { // Create a new span to link the batch back to this entry let entry_batch_span = info_span!(parent: &entry.span, "infer"); // Add relationships next_batch_span.follows_from(&entry_batch_span); entry_batch_span.follows_from(&next_batch_span); // Update entry entry.temp_span = Some(entry_batch_span); }); cached_batch = decode(&mut client, batches, &mut entries, &generation_health) .instrument(next_batch_span) .await; waiting_tokens += 1; } metrics::gauge!("tgi_batch_current_size", 0.0); metrics::gauge!("tgi_batch_current_max_tokens", 0.0); } } } #[instrument(skip_all)] async fn prefill( client: &mut ShardedClient, batch: Batch, entries: &mut IntMap<u64, Entry>, generation_health: &Arc<AtomicBool>, ) -> Option<CachedBatch> { let start_time = Instant::now(); let batch_id = batch.id; metrics::increment_counter!("tgi_batch_inference_count", "method" => "prefill"); match client.prefill(batch).await { Ok((generations, next_batch, timings)) => { // Update health generation_health.store(true, Ordering::SeqCst); let start_filtering_time = Instant::now(); // Send generated tokens and filter stopped entries filter_send_generations(generations, entries); // Filter next batch and remove requests that were stopped let next_batch = filter_batch(client, next_batch, entries).await; metrics::histogram!("tgi_batch_forward_duration", timings.forward.as_secs_f64(), "method" => "prefill"); metrics::histogram!("tgi_batch_decode_duration", timings.decode.as_secs_f64(), "method" => "prefill"); metrics::histogram!("tgi_batch_filter_duration", start_filtering_time.elapsed().as_secs_f64(), "method" => "prefill"); metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "prefill"); metrics::increment_counter!("tgi_batch_inference_success", "method" => "prefill"); next_batch } // If we have an error, we discard the whole batch Err(err) => { // Update health generation_health.store(false, Ordering::SeqCst); let _ = client.clear_cache(Some(batch_id)).await; send_errors(err, entries); metrics::increment_counter!("tgi_batch_inference_failure", "method" => "prefill"); None } } } #[instrument(skip_all)] async fn decode( client: &mut ShardedClient, batches: Vec<CachedBatch>, entries: &mut IntMap<u64, Entry>, generation_health: &Arc<AtomicBool>, ) -> Option<CachedBatch> { let start_time = Instant::now(); let batch_ids: Vec<u64> = batches.iter().map(|b| b.id).collect(); metrics::increment_counter!("tgi_batch_inference_count", "method" => "decode"); match client.decode(batches).await { Ok((generations, next_batch, timings)) => { // Update health generation_health.store(true, Ordering::SeqCst); let start_filtering_time = Instant::now(); // Send generated tokens and filter stopped entries filter_send_generations(generations, entries); // Filter next batch and remove requests that were stopped let next_batch = filter_batch(client, next_batch, entries).await; if let Some(concat_duration) = timings.concat { metrics::histogram!("tgi_batch_concat_duration", concat_duration.as_secs_f64(), "method" => "decode"); } metrics::histogram!("tgi_batch_forward_duration", timings.forward.as_secs_f64(), "method" => "decode"); metrics::histogram!("tgi_batch_decode_duration", timings.decode.as_secs_f64(), "method" => "decode"); metrics::histogram!("tgi_batch_filter_duration", start_filtering_time.elapsed().as_secs_f64(), "method" => "decode"); metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "decode"); metrics::increment_counter!("tgi_batch_inference_success", "method" => "decode"); next_batch } // If we have an error, we discard the whole batch Err(err) => { generation_health.store(false, Ordering::SeqCst); for id in batch_ids { let _ = client.clear_cache(Some(id)).await; } send_errors(err, entries); metrics::increment_counter!("tgi_batch_inference_failure", "method" => "decode"); None } } } /// Filter a `batch` and remove all requests not present in `entries` #[instrument(skip_all)] async fn filter_batch( client: &mut ShardedClient, next_batch: Option<CachedBatch>, entries: &IntMap<u64, Entry>, ) -> Option<CachedBatch> { let mut batch = next_batch?; // No need to filter if batch.size as usize == entries.len() { return Some(batch); } let id = batch.id; // Retain only requests that are still in entries batch.request_ids.retain(|id| entries.contains_key(id)); if batch.request_ids.is_empty() { // All requests have been filtered out // Next batch is now empty // Clear it from the Python shards cache // We unwrap here as we need to panic since we cannot recover if this method fails client.clear_cache(Some(id)).await.unwrap(); None } else { // Filter Python shard cache // We unwrap here as we need to panic since we cannot recover if this method fails client.filter_batch(id, batch.request_ids).await.unwrap() } } /// Send one or multiple `InferStreamResponse` to Infer for all `entries` /// and filter entries #[instrument(skip_all)] fn filter_send_generations(generations: Vec<Generation>, entries: &mut IntMap<u64, Entry>) { generations.into_iter().for_each(|generation| { let id = generation.request_id; // Get entry // We can `expect` here as the request id should always be in the entries let entry = entries .get(&id) .expect("ID not found in entries. This is a bug."); // Create and enter a span to link this function back to the entry let _span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_generation", generation = ?generation).entered(); // Send generation responses back to the infer task // If the receive an error from the Flume channel, it means that the client dropped the // request and we need to stop generating hence why we unwrap_or(true) let stopped = send_responses(generation, entry).map_err(|err| { tracing::error!("Entry response channel error."); metrics::increment_counter!("tgi_request_failure", "err" => "dropped"); err }).unwrap_or(true); if stopped { entries.remove(&id).expect("ID not found in entries. This is a bug."); } }); } /// Send responses through the `entry` response channel fn send_responses( generation: Generation, entry: &Entry, ) -> Result<bool, Box<SendError<Result<InferStreamResponse, InferError>>>> { // Return directly if the channel is disconnected if entry.response_tx.is_closed() { metrics::increment_counter!("tgi_request_failure", "err" => "dropped"); return Ok(true); } let mut stopped = false; if let Some(prefill_tokens) = generation.prefill_tokens { // Send message entry .response_tx .send(Ok(InferStreamResponse::Prefill(prefill_tokens)))?; } // Create last Token let tokens_ = generation.tokens.expect("Non empty tokens in generation"); let n = tokens_.ids.len(); metrics::histogram!("tgi_request_skipped_tokens", (n - 1) as f64); let mut iterator = tokens_ .ids .into_iter() .zip(tokens_.logprobs) .zip(tokens_.texts) .zip(tokens_.is_special) .enumerate() .peekable(); while let Some((i, (((id, logprob), text), special))) = iterator.next() { let token = Token { id, text, logprob, special, }; let top_tokens = if let Some(top_tokens_) = generation.top_tokens.get(i) { top_tokens_ .ids .iter() .zip(top_tokens_.logprobs.iter()) .zip(top_tokens_.texts.iter()) .zip(top_tokens_.is_special.iter()) .map(|(((&id, &logprob), text), &special)| Token { id, text: text.to_string(), logprob, special, }) .collect() } else { vec![] }; match (&generation.generated_text, iterator.peek()) { (Some(generated_text), None) => { // Generation has ended stopped = true; // Send message entry.response_tx.send(Ok(InferStreamResponse::End { token, top_tokens, generated_text: generated_text.clone(), queued: entry.queue_time, start: entry.batch_time.unwrap(), }))?; } _ => { // Send message entry .response_tx .send(Ok(InferStreamResponse::Intermediate { token, top_tokens }))?; } } } Ok(stopped) } /// Send errors to Infer for all `entries` #[instrument(skip_all)] fn send_errors(error: ClientError, entries: &mut IntMap<u64, Entry>) { entries.drain().for_each(|(_, entry)| { // Create and enter a span to link this function back to the entry let _send_error_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_error").entered(); let err = InferError::GenerationError(error.to_string()); metrics::increment_counter!("tgi_request_failure", "err" => "generation"); tracing::error!("{err}"); // unwrap_or is valid here as we don't care if the receiver is gone. entry .response_tx .send(Err(err)) .unwrap_or(()); }); } #[derive(Debug)] pub(crate) enum InferStreamResponse { // Optional first message Prefill(Tokens), // Intermediate messages Intermediate { token: Token, top_tokens: Vec<Token>, }, // Last message End { token: Token, top_tokens: Vec<Token>, generated_text: GeneratedText, start: Instant, queued: Instant, }, } #[derive(Debug)] pub(crate) struct InferResponse { /// input_length is the input as perceived by the rust tokenizer in the /// validation pathway. It is redundant with prefill.len() but prefill /// has data only if the user asked for it. This will always be filled. pub(crate) _input_length: u32, pub(crate) prefill: Vec<PrefillToken>, pub(crate) tokens: Vec<Token>, pub(crate) generated_text: GeneratedText, pub(crate) queued: Instant, pub(crate) start: Instant, pub(crate) top_tokens: Vec<Vec<Token>>, } #[derive(Debug, Error)] pub enum InferError { #[error("Request failed during generation: {0}")] GenerationError(String), #[error("Model is overloaded")] Overloaded(#[from] TryAcquireError), #[error("Input validation error: {0}")] ValidationError(#[from] ValidationError), #[error("Incomplete generation")] IncompleteGeneration, #[error("Template error: {0}")] TemplateError(#[from] minijinja::Error), } impl InferError { pub(crate) fn error_type(&self) -> &str { match self { InferError::GenerationError(_) => "generation", InferError::Overloaded(_) => "overloaded", InferError::ValidationError(_) => "validation", InferError::IncompleteGeneration => "incomplete_generation", InferError::TemplateError(_) => "template_error", } } }
0
hf_public_repos/text-generation-inference
hf_public_repos/text-generation-inference/server/Makefile-vllm
vllm-cuda: # Clone vllm pip install -U ninja packaging --no-cache-dir git clone https://github.com/vllm-project/vllm.git vllm build-vllm-cuda: vllm-cuda cd vllm && git fetch && git checkout f8a1e39fae05ca610be8d5a78be9d40f5274e5fc cd vllm && python setup.py build install-vllm-cuda: build-vllm-cuda pip uninstall vllm -y || true cd vllm && python setup.py install vllm-rocm: # Clone vllm pip install -U ninja packaging --no-cache-dir git clone https://github.com/fxmarty/vllm-public.git vllm build-vllm-rocm: vllm-rocm cd vllm && git fetch && git checkout ad9b7c4095ef54419a0533d254f2ad84bd2dfcae cd vllm && python setup.py build install-vllm-rocm: build-vllm-rocm pip uninstall vllm -y || true cd vllm && python setup.py install
0
hf_public_repos/text-generation-inference
hf_public_repos/text-generation-inference/server/Makefile-flash-att-v2
flash_att_v2_commit_cuda := 02ac572f3ffc4f402e4183aaa6824b45859d3ed3 flash_att_v2_commit_rocm := 8736558c287ff2ef28b24878e42828c595ac3e69 flash-attention-v2-cuda: # Clone flash attention pip install -U packaging ninja --no-cache-dir git clone https://github.com/HazyResearch/flash-attention.git flash-attention-v2 build-flash-attention-v2-cuda: flash-attention-v2-cuda cd flash-attention-v2 && git fetch && git checkout $(flash_att_v2_commit_cuda) cd flash-attention-v2 && git submodule update --init --recursive cd flash-attention-v2 && python setup.py build install-flash-attention-v2-cuda: build-flash-attention-v2-cuda cd flash-attention-v2 && git submodule update --init --recursive && python setup.py install flash-attention-v2-rocm: # Clone flash attention pip install -U packaging ninja --no-cache-dir git clone https://github.com/fxmarty/flash-attention-rocm flash-attention-v2 build-flash-attention-v2-rocm: flash-attention-v2-rocm cd flash-attention-v2 && git fetch && git checkout $(flash_att_v2_commit_rocm) cd flash-attention-v2 && git submodule update --init --recursive cd flash-attention-v2 && PYTORCH_ROCM_ARCH=gfx90a python setup.py build install-flash-attention-v2-rocm: build-flash-attention-v2-rocm cd flash-attention-v2 && git submodule update --init --recursive && python setup.py install
0
hf_public_repos/text-generation-inference
hf_public_repos/text-generation-inference/server/Makefile-awq
awq_commit := f084f40bd996f3cf3a0633c1ad7d9d476c318aaa awq: rm -rf llm-awq git clone https://github.com/mit-han-lab/llm-awq build-awq: awq cd llm-awq/ && git fetch && git checkout $(awq_commit) cd llm-awq/awq/kernels && python setup.py build install-awq: build-awq pip uninstall awq_inference_engine -y || true cd llm-awq/awq/kernels && python setup.py install
0
hf_public_repos/text-generation-inference
hf_public_repos/text-generation-inference/server/requirements_rocm.txt
backoff==2.2.1 ; python_version >= "3.9" and python_version < "3.13" certifi==2023.11.17 ; python_version >= "3.9" and python_version < "3.13" charset-normalizer==3.3.2 ; python_version >= "3.9" and python_version < "3.13" click==8.1.7 ; python_version >= "3.9" and python_version < "3.13" colorama==0.4.6 ; python_version >= "3.9" and python_version < "3.13" and (sys_platform == "win32" or platform_system == "Windows") deprecated==1.2.14 ; python_version >= "3.9" and python_version < "3.13" einops==0.6.1 ; python_version >= "3.9" and python_version < "3.13" filelock==3.13.1 ; python_version >= "3.9" and python_version < "3.13" fsspec==2023.10.0 ; python_version >= "3.9" and python_version < "3.13" googleapis-common-protos==1.62.0 ; python_version >= "3.9" and python_version < "3.13" grpc-interceptor==0.15.4 ; python_version >= "3.9" and python_version < "3.13" grpcio-reflection==1.60.0 ; python_version >= "3.9" and python_version < "3.13" grpcio-status==1.60.0 ; python_version >= "3.9" and python_version < "3.13" grpcio==1.60.0 ; python_version >= "3.9" and python_version < "3.13" hf-transfer==0.1.4 ; python_version >= "3.9" and python_version < "3.13" huggingface-hub==0.19.4 ; python_version >= "3.9" and python_version < "3.13" idna==3.6 ; python_version >= "3.9" and python_version < "3.13" loguru==0.6.0 ; python_version >= "3.9" and python_version < "3.13" numpy==1.26.2 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-api==1.15.0 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-exporter-otlp-proto-grpc==1.15.0 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-exporter-otlp-proto-http==1.15.0 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-exporter-otlp==1.15.0 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-instrumentation-grpc==0.36b0 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-instrumentation==0.36b0 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-proto==1.15.0 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-sdk==1.15.0 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-semantic-conventions==0.36b0 ; python_version >= "3.9" and python_version < "3.13" packaging==23.2 ; python_version >= "3.9" and python_version < "3.13" pillow==10.1.0 ; python_version >= "3.9" and python_version < "3.13" protobuf==4.25.1 ; python_version >= "3.9" and python_version < "3.13" pyyaml==6.0.1 ; python_version >= "3.9" and python_version < "3.13" regex==2023.10.3 ; python_version >= "3.9" and python_version < "3.13" requests==2.31.0 ; python_version >= "3.9" and python_version < "3.13" safetensors==0.3.3 ; python_version >= "3.9" and python_version < "3.13" scipy==1.11.4 ; python_version >= "3.9" and python_version < "3.13" sentencepiece==0.1.99 ; python_version >= "3.9" and python_version < "3.13" setuptools==69.0.2 ; python_version >= "3.9" and python_version < "3.13" tokenizers==0.15.0 ; python_version >= "3.9" and python_version < "3.13" tqdm==4.66.1 ; python_version >= "3.9" and python_version < "3.13" transformers==4.36.1 ; python_version >= "3.9" and python_version < "3.13" typer==0.6.1 ; python_version >= "3.9" and python_version < "3.13" typing-extensions==4.9.0 ; python_version >= "3.9" and python_version < "3.13" urllib3==2.1.0 ; python_version >= "3.9" and python_version < "3.13" win32-setctime==1.1.0 ; python_version >= "3.9" and python_version < "3.13" and sys_platform == "win32" wrapt==1.16.0 ; python_version >= "3.9" and python_version < "3.13"
0
hf_public_repos/text-generation-inference
hf_public_repos/text-generation-inference/server/README.md
# Text Generation Inference Python gRPC Server A Python gRPC server for Text Generation Inference ## Install ```shell make install ``` ## Run ```shell make run-dev ```
0
hf_public_repos/text-generation-inference
hf_public_repos/text-generation-inference/server/pyproject.toml
[tool.poetry] name = "text-generation-server" version = "1.3.4" description = "Text Generation Inference Python gRPC Server" authors = ["Olivier Dehaene <[email protected]>"] [tool.poetry.scripts] text-generation-server = 'text_generation_server.cli:app' [tool.poetry.dependencies] python = ">=3.9,<3.13" protobuf = "^4.21.7" grpcio = "^1.51.1" grpcio-status = "^1.51.1" grpcio-reflection = "^1.51.1" grpc-interceptor = "^0.15.0" typer = "^0.6.1" accelerate = { version = "^0.25.0", optional = true } bitsandbytes = { version = "^0.41.1", optional = true } safetensors = "^0.3.2" loguru = "^0.6.0" opentelemetry-api = "^1.15.0" opentelemetry-exporter-otlp = "^1.15.0" opentelemetry-instrumentation-grpc = "^0.36b0" hf-transfer = "^0.1.2" sentencepiece = "^0.1.97" tokenizers = "^0.15.0" huggingface-hub = "^0.19.3" transformers = "^4.36.1" einops = "^0.6.1" texttable = { version = "^1.6.7", optional = true } datasets = { version = "^2.14.0", optional = true } peft = { version = "^0.4.0", optional = true } torch = { version = "^2.1.1", optional = true } scipy = "^1.11.1" pillow = "^10.0.0" [tool.poetry.extras] torch = ["torch"] accelerate = ["accelerate"] bnb = ["bitsandbytes"] peft = ["peft"] quantize = ["texttable", "datasets", "accelerate"] [tool.poetry.group.dev.dependencies] grpcio-tools = "^1.51.1" pytest = "^7.3.0" [[tool.poetry.source]] name = "pytorch-gpu-src" url = "https://download.pytorch.org/whl/cu121" priority = "explicit" [tool.pytest.ini_options] markers = ["private: marks tests as requiring an admin hf token (deselect with '-m \"not private\"')"] [build-system] requires = [ "poetry-core>=1.0.0", ] build-backend = "poetry.core.masonry.api"
0
hf_public_repos/text-generation-inference
hf_public_repos/text-generation-inference/server/poetry.lock
# This file is automatically @generated by Poetry 1.6.1 and should not be changed by hand. [[package]] name = "accelerate" version = "0.25.0" description = "Accelerate" optional = true python-versions = ">=3.8.0" files = [ {file = "accelerate-0.25.0-py3-none-any.whl", hash = "sha256:c7bb817eb974bba0ff3ea1ba0f24d55afb86d50e3d4fe98d6922dc69cf2ccff1"}, {file = "accelerate-0.25.0.tar.gz", hash = "sha256:ecf55b0ab278a1dac8539dde0d276977aff04683f07ede73eaf02478538576a1"}, ] [package.dependencies] huggingface-hub = "*" numpy = ">=1.17" packaging = ">=20.0" psutil = "*" pyyaml = "*" safetensors = ">=0.3.1" torch = ">=1.10.0" [package.extras] dev = ["bitsandbytes", "black (>=23.1,<24.0)", "datasets", "deepspeed", "evaluate", "hf-doc-builder (>=0.3.0)", "parameterized", "pytest", "pytest-subtests", "pytest-xdist", "rich", "ruff (>=0.0.241)", "scikit-learn", "scipy", "timm", "tqdm", "transformers", "urllib3 (<2.0.0)"] quality = ["black (>=23.1,<24.0)", "hf-doc-builder (>=0.3.0)", "ruff (>=0.0.241)", "urllib3 (<2.0.0)"] rich = ["rich"] sagemaker = ["sagemaker"] test-dev = ["bitsandbytes", "datasets", "deepspeed", "evaluate", "scikit-learn", "scipy", "timm", "tqdm", "transformers"] test-prod = ["parameterized", "pytest", "pytest-subtests", "pytest-xdist"] test-trackers = ["comet-ml", "dvclive", "tensorboard", "wandb"] testing = ["bitsandbytes", "datasets", "deepspeed", "evaluate", "parameterized", "pytest", "pytest-subtests", "pytest-xdist", "scikit-learn", "scipy", "timm", "tqdm", "transformers"] [[package]] name = "aiohttp" version = "3.9.1" description = "Async http client/server framework (asyncio)" optional = true python-versions = ">=3.8" files = [ {file = "aiohttp-3.9.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:e1f80197f8b0b846a8d5cf7b7ec6084493950d0882cc5537fb7b96a69e3c8590"}, {file = "aiohttp-3.9.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c72444d17777865734aa1a4d167794c34b63e5883abb90356a0364a28904e6c0"}, {file = "aiohttp-3.9.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9b05d5cbe9dafcdc733262c3a99ccf63d2f7ce02543620d2bd8db4d4f7a22f83"}, {file = "aiohttp-3.9.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5c4fa235d534b3547184831c624c0b7c1e262cd1de847d95085ec94c16fddcd5"}, {file = "aiohttp-3.9.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:289ba9ae8e88d0ba16062ecf02dd730b34186ea3b1e7489046fc338bdc3361c4"}, {file = "aiohttp-3.9.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bff7e2811814fa2271be95ab6e84c9436d027a0e59665de60edf44e529a42c1f"}, {file = "aiohttp-3.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:81b77f868814346662c96ab36b875d7814ebf82340d3284a31681085c051320f"}, {file = "aiohttp-3.9.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3b9c7426923bb7bd66d409da46c41e3fb40f5caf679da624439b9eba92043fa6"}, {file = "aiohttp-3.9.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:8d44e7bf06b0c0a70a20f9100af9fcfd7f6d9d3913e37754c12d424179b4e48f"}, {file = "aiohttp-3.9.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:22698f01ff5653fe66d16ffb7658f582a0ac084d7da1323e39fd9eab326a1f26"}, {file = "aiohttp-3.9.1-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:ca7ca5abfbfe8d39e653870fbe8d7710be7a857f8a8386fc9de1aae2e02ce7e4"}, {file = "aiohttp-3.9.1-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:8d7f98fde213f74561be1d6d3fa353656197f75d4edfbb3d94c9eb9b0fc47f5d"}, {file = "aiohttp-3.9.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:5216b6082c624b55cfe79af5d538e499cd5f5b976820eac31951fb4325974501"}, {file = "aiohttp-3.9.1-cp310-cp310-win32.whl", hash = "sha256:0e7ba7ff228c0d9a2cd66194e90f2bca6e0abca810b786901a569c0de082f489"}, {file = "aiohttp-3.9.1-cp310-cp310-win_amd64.whl", hash = "sha256:c7e939f1ae428a86e4abbb9a7c4732bf4706048818dfd979e5e2839ce0159f23"}, {file = "aiohttp-3.9.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:df9cf74b9bc03d586fc53ba470828d7b77ce51b0582d1d0b5b2fb673c0baa32d"}, {file = "aiohttp-3.9.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ecca113f19d5e74048c001934045a2b9368d77b0b17691d905af18bd1c21275e"}, {file = "aiohttp-3.9.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8cef8710fb849d97c533f259103f09bac167a008d7131d7b2b0e3a33269185c0"}, {file = "aiohttp-3.9.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bea94403a21eb94c93386d559bce297381609153e418a3ffc7d6bf772f59cc35"}, {file = "aiohttp-3.9.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:91c742ca59045dce7ba76cab6e223e41d2c70d79e82c284a96411f8645e2afff"}, {file = "aiohttp-3.9.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6c93b7c2e52061f0925c3382d5cb8980e40f91c989563d3d32ca280069fd6a87"}, {file = "aiohttp-3.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ee2527134f95e106cc1653e9ac78846f3a2ec1004cf20ef4e02038035a74544d"}, {file = "aiohttp-3.9.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:11ff168d752cb41e8492817e10fb4f85828f6a0142b9726a30c27c35a1835f01"}, {file = "aiohttp-3.9.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:b8c3a67eb87394386847d188996920f33b01b32155f0a94f36ca0e0c635bf3e3"}, {file = "aiohttp-3.9.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c7b5d5d64e2a14e35a9240b33b89389e0035e6de8dbb7ffa50d10d8b65c57449"}, {file = "aiohttp-3.9.1-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:69985d50a2b6f709412d944ffb2e97d0be154ea90600b7a921f95a87d6f108a2"}, {file = "aiohttp-3.9.1-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:c9110c06eaaac7e1f5562caf481f18ccf8f6fdf4c3323feab28a93d34cc646bd"}, {file = "aiohttp-3.9.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d737e69d193dac7296365a6dcb73bbbf53bb760ab25a3727716bbd42022e8d7a"}, {file = "aiohttp-3.9.1-cp311-cp311-win32.whl", hash = "sha256:4ee8caa925aebc1e64e98432d78ea8de67b2272252b0a931d2ac3bd876ad5544"}, {file = "aiohttp-3.9.1-cp311-cp311-win_amd64.whl", hash = "sha256:a34086c5cc285be878622e0a6ab897a986a6e8bf5b67ecb377015f06ed316587"}, {file = "aiohttp-3.9.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:f800164276eec54e0af5c99feb9494c295118fc10a11b997bbb1348ba1a52065"}, {file = "aiohttp-3.9.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:500f1c59906cd142d452074f3811614be04819a38ae2b3239a48b82649c08821"}, {file = "aiohttp-3.9.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:0b0a6a36ed7e164c6df1e18ee47afbd1990ce47cb428739d6c99aaabfaf1b3af"}, {file = "aiohttp-3.9.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69da0f3ed3496808e8cbc5123a866c41c12c15baaaead96d256477edf168eb57"}, {file = "aiohttp-3.9.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:176df045597e674fa950bf5ae536be85699e04cea68fa3a616cf75e413737eb5"}, {file = "aiohttp-3.9.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b796b44111f0cab6bbf66214186e44734b5baab949cb5fb56154142a92989aeb"}, {file = "aiohttp-3.9.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f27fdaadce22f2ef950fc10dcdf8048407c3b42b73779e48a4e76b3c35bca26c"}, {file = "aiohttp-3.9.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bcb6532b9814ea7c5a6a3299747c49de30e84472fa72821b07f5a9818bce0f66"}, {file = "aiohttp-3.9.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:54631fb69a6e44b2ba522f7c22a6fb2667a02fd97d636048478db2fd8c4e98fe"}, {file = "aiohttp-3.9.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:4b4c452d0190c5a820d3f5c0f3cd8a28ace48c54053e24da9d6041bf81113183"}, {file = "aiohttp-3.9.1-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:cae4c0c2ca800c793cae07ef3d40794625471040a87e1ba392039639ad61ab5b"}, {file = "aiohttp-3.9.1-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:565760d6812b8d78d416c3c7cfdf5362fbe0d0d25b82fed75d0d29e18d7fc30f"}, {file = "aiohttp-3.9.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:54311eb54f3a0c45efb9ed0d0a8f43d1bc6060d773f6973efd90037a51cd0a3f"}, {file = "aiohttp-3.9.1-cp312-cp312-win32.whl", hash = "sha256:85c3e3c9cb1d480e0b9a64c658cd66b3cfb8e721636ab8b0e746e2d79a7a9eed"}, {file = "aiohttp-3.9.1-cp312-cp312-win_amd64.whl", hash = "sha256:11cb254e397a82efb1805d12561e80124928e04e9c4483587ce7390b3866d213"}, {file = "aiohttp-3.9.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:8a22a34bc594d9d24621091d1b91511001a7eea91d6652ea495ce06e27381f70"}, {file = "aiohttp-3.9.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:598db66eaf2e04aa0c8900a63b0101fdc5e6b8a7ddd805c56d86efb54eb66672"}, {file = "aiohttp-3.9.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2c9376e2b09895c8ca8b95362283365eb5c03bdc8428ade80a864160605715f1"}, {file = "aiohttp-3.9.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41473de252e1797c2d2293804e389a6d6986ef37cbb4a25208de537ae32141dd"}, {file = "aiohttp-3.9.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9c5857612c9813796960c00767645cb5da815af16dafb32d70c72a8390bbf690"}, {file = "aiohttp-3.9.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ffcd828e37dc219a72c9012ec44ad2e7e3066bec6ff3aaa19e7d435dbf4032ca"}, {file = "aiohttp-3.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:219a16763dc0294842188ac8a12262b5671817042b35d45e44fd0a697d8c8361"}, {file = "aiohttp-3.9.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f694dc8a6a3112059258a725a4ebe9acac5fe62f11c77ac4dcf896edfa78ca28"}, {file = "aiohttp-3.9.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:bcc0ea8d5b74a41b621ad4a13d96c36079c81628ccc0b30cfb1603e3dfa3a014"}, {file = "aiohttp-3.9.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:90ec72d231169b4b8d6085be13023ece8fa9b1bb495e4398d847e25218e0f431"}, {file = "aiohttp-3.9.1-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:cf2a0ac0615842b849f40c4d7f304986a242f1e68286dbf3bd7a835e4f83acfd"}, {file = "aiohttp-3.9.1-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:0e49b08eafa4f5707ecfb321ab9592717a319e37938e301d462f79b4e860c32a"}, {file = "aiohttp-3.9.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2c59e0076ea31c08553e868cec02d22191c086f00b44610f8ab7363a11a5d9d8"}, {file = "aiohttp-3.9.1-cp38-cp38-win32.whl", hash = "sha256:4831df72b053b1eed31eb00a2e1aff6896fb4485301d4ccb208cac264b648db4"}, {file = "aiohttp-3.9.1-cp38-cp38-win_amd64.whl", hash = "sha256:3135713c5562731ee18f58d3ad1bf41e1d8883eb68b363f2ffde5b2ea4b84cc7"}, {file = "aiohttp-3.9.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:cfeadf42840c1e870dc2042a232a8748e75a36b52d78968cda6736de55582766"}, {file = "aiohttp-3.9.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:70907533db712f7aa791effb38efa96f044ce3d4e850e2d7691abd759f4f0ae0"}, {file = "aiohttp-3.9.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:cdefe289681507187e375a5064c7599f52c40343a8701761c802c1853a504558"}, {file = "aiohttp-3.9.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7481f581251bb5558ba9f635db70908819caa221fc79ee52a7f58392778c636"}, {file = "aiohttp-3.9.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:49f0c1b3c2842556e5de35f122fc0f0b721334ceb6e78c3719693364d4af8499"}, {file = "aiohttp-3.9.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0d406b01a9f5a7e232d1b0d161b40c05275ffbcbd772dc18c1d5a570961a1ca4"}, {file = "aiohttp-3.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d8e4450e7fe24d86e86b23cc209e0023177b6d59502e33807b732d2deb6975f"}, {file = "aiohttp-3.9.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3c0266cd6f005e99f3f51e583012de2778e65af6b73860038b968a0a8888487a"}, {file = "aiohttp-3.9.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ab221850108a4a063c5b8a70f00dd7a1975e5a1713f87f4ab26a46e5feac5a0e"}, {file = "aiohttp-3.9.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:c88a15f272a0ad3d7773cf3a37cc7b7d077cbfc8e331675cf1346e849d97a4e5"}, {file = "aiohttp-3.9.1-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:237533179d9747080bcaad4d02083ce295c0d2eab3e9e8ce103411a4312991a0"}, {file = "aiohttp-3.9.1-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:02ab6006ec3c3463b528374c4cdce86434e7b89ad355e7bf29e2f16b46c7dd6f"}, {file = "aiohttp-3.9.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04fa38875e53eb7e354ece1607b1d2fdee2d175ea4e4d745f6ec9f751fe20c7c"}, {file = "aiohttp-3.9.1-cp39-cp39-win32.whl", hash = "sha256:82eefaf1a996060602f3cc1112d93ba8b201dbf5d8fd9611227de2003dddb3b7"}, {file = "aiohttp-3.9.1-cp39-cp39-win_amd64.whl", hash = "sha256:9b05d33ff8e6b269e30a7957bd3244ffbce2a7a35a81b81c382629b80af1a8bf"}, {file = "aiohttp-3.9.1.tar.gz", hash = "sha256:8fc49a87ac269d4529da45871e2ffb6874e87779c3d0e2ccd813c0899221239d"}, ] [package.dependencies] aiosignal = ">=1.1.2" async-timeout = {version = ">=4.0,<5.0", markers = "python_version < \"3.11\""} attrs = ">=17.3.0" frozenlist = ">=1.1.1" multidict = ">=4.5,<7.0" yarl = ">=1.0,<2.0" [package.extras] speedups = ["Brotli", "aiodns", "brotlicffi"] [[package]] name = "aiosignal" version = "1.3.1" description = "aiosignal: a list of registered asynchronous callbacks" optional = true python-versions = ">=3.7" files = [ {file = "aiosignal-1.3.1-py3-none-any.whl", hash = "sha256:f8376fb07dd1e86a584e4fcdec80b36b7f81aac666ebc724e2c090300dd83b17"}, {file = "aiosignal-1.3.1.tar.gz", hash = "sha256:54cd96e15e1649b75d6c87526a6ff0b6c1b0dd3459f43d9ca11d48c339b68cfc"}, ] [package.dependencies] frozenlist = ">=1.1.0" [[package]] name = "async-timeout" version = "4.0.3" description = "Timeout context manager for asyncio programs" optional = true python-versions = ">=3.7" files = [ {file = "async-timeout-4.0.3.tar.gz", hash = "sha256:4640d96be84d82d02ed59ea2b7105a0f7b33abe8703703cd0ab0bf87c427522f"}, {file = "async_timeout-4.0.3-py3-none-any.whl", hash = "sha256:7405140ff1230c310e51dc27b3145b9092d659ce68ff733fb0cefe3ee42be028"}, ] [[package]] name = "attrs" version = "23.1.0" description = "Classes Without Boilerplate" optional = true python-versions = ">=3.7" files = [ {file = "attrs-23.1.0-py3-none-any.whl", hash = "sha256:1f28b4522cdc2fb4256ac1a020c78acf9cba2c6b461ccd2c126f3aa8e8335d04"}, {file = "attrs-23.1.0.tar.gz", hash = "sha256:6279836d581513a26f1bf235f9acd333bc9115683f14f7e8fae46c98fc50e015"}, ] [package.extras] cov = ["attrs[tests]", "coverage[toml] (>=5.3)"] dev = ["attrs[docs,tests]", "pre-commit"] docs = ["furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier", "zope-interface"] tests = ["attrs[tests-no-zope]", "zope-interface"] tests-no-zope = ["cloudpickle", "hypothesis", "mypy (>=1.1.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] [[package]] name = "backoff" version = "2.2.1" description = "Function decoration for backoff and retry" optional = false python-versions = ">=3.7,<4.0" files = [ {file = "backoff-2.2.1-py3-none-any.whl", hash = "sha256:63579f9a0628e06278f7e47b7d7d5b6ce20dc65c5e96a6f3ca99a6adca0396e8"}, {file = "backoff-2.2.1.tar.gz", hash = "sha256:03f829f5bb1923180821643f8753b0502c3b682293992485b0eef2807afa5cba"}, ] [[package]] name = "bitsandbytes" version = "0.41.3.post2" description = "k-bit optimizers and matrix multiplication routines." optional = true python-versions = "*" files = [ {file = "bitsandbytes-0.41.3.post2-py3-none-any.whl", hash = "sha256:ceb301a3d4e6bf52bdad8d09f3064ac194bdfdeae535994c0315bd2ef7639cca"}, {file = "bitsandbytes-0.41.3.post2.tar.gz", hash = "sha256:7d25a51fb3b74b58e569473f8b70a5239124c0593dc053479c41cf2cd6730502"}, ] [[package]] name = "certifi" version = "2023.11.17" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ {file = "certifi-2023.11.17-py3-none-any.whl", hash = "sha256:e036ab49d5b79556f99cfc2d9320b34cfbe5be05c5871b51de9329f0603b0474"}, {file = "certifi-2023.11.17.tar.gz", hash = "sha256:9b469f3a900bf28dc19b8cfbf8019bf47f7fdd1a65a1d4ffb98fc14166beb4d1"}, ] [[package]] name = "charset-normalizer" version = "3.3.2" description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." optional = false python-versions = ">=3.7.0" files = [ {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, ] [[package]] name = "click" version = "8.1.7" description = "Composable command line interface toolkit" optional = false python-versions = ">=3.7" files = [ {file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"}, {file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"}, ] [package.dependencies] colorama = {version = "*", markers = "platform_system == \"Windows\""} [[package]] name = "colorama" version = "0.4.6" description = "Cross-platform colored terminal text." optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" files = [ {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, ] [[package]] name = "datasets" version = "2.15.0" description = "HuggingFace community-driven open-source library of datasets" optional = true python-versions = ">=3.8.0" files = [ {file = "datasets-2.15.0-py3-none-any.whl", hash = "sha256:6d658d23811393dfc982d026082e1650bdaaae28f6a86e651966cb072229a228"}, {file = "datasets-2.15.0.tar.gz", hash = "sha256:a26d059370bd7503bd60e9337977199a13117a83f72fb61eda7e66f0c4d50b2b"}, ] [package.dependencies] aiohttp = "*" dill = ">=0.3.0,<0.3.8" fsspec = {version = ">=2023.1.0,<=2023.10.0", extras = ["http"]} huggingface-hub = ">=0.18.0" multiprocess = "*" numpy = ">=1.17" packaging = "*" pandas = "*" pyarrow = ">=8.0.0" pyarrow-hotfix = "*" pyyaml = ">=5.1" requests = ">=2.19.0" tqdm = ">=4.62.1" xxhash = "*" [package.extras] apache-beam = ["apache-beam (>=2.26.0,<2.44.0)"] audio = ["librosa", "soundfile (>=0.12.1)"] benchmarks = ["tensorflow (==2.12.0)", "torch (==2.0.1)", "transformers (==4.30.1)"] dev = ["Pillow (>=6.2.1)", "absl-py", "apache-beam (>=2.26.0,<2.44.0)", "black (>=23.1,<24.0)", "elasticsearch (<8.0.0)", "faiss-cpu (>=1.6.4)", "jax (>=0.3.14)", "jaxlib (>=0.3.14)", "joblib (<1.3.0)", "joblibspark", "librosa", "lz4", "py7zr", "pyspark (>=3.4)", "pytest", "pytest-datadir", "pytest-xdist", "pyyaml (>=5.3.1)", "rarfile (>=4.0)", "ruff (>=0.0.241)", "s3fs", "s3fs (>=2021.11.1)", "soundfile (>=0.12.1)", "sqlalchemy (<2.0.0)", "tensorflow (>=2.2.0,!=2.6.0,!=2.6.1)", "tensorflow (>=2.3,!=2.6.0,!=2.6.1)", "tensorflow-macos", "tiktoken", "torch", "transformers", "typing-extensions (>=4.6.1)", "zstandard"] docs = ["s3fs", "tensorflow (>=2.2.0,!=2.6.0,!=2.6.1)", "tensorflow-macos", "torch", "transformers"] jax = ["jax (>=0.3.14)", "jaxlib (>=0.3.14)"] metrics-tests = ["Werkzeug (>=1.0.1)", "accelerate", "bert-score (>=0.3.6)", "jiwer", "langdetect", "mauve-text", "nltk", "requests-file (>=1.5.1)", "rouge-score", "sacrebleu", "sacremoses", "scikit-learn", "scipy", "sentencepiece", "seqeval", "six (>=1.15.0,<1.16.0)", "spacy (>=3.0.0)", "texttable (>=1.6.3)", "tldextract", "tldextract (>=3.1.0)", "toml (>=0.10.1)", "typer (<0.5.0)"] quality = ["black (>=23.1,<24.0)", "pyyaml (>=5.3.1)", "ruff (>=0.0.241)"] s3 = ["s3fs"] tensorflow = ["tensorflow (>=2.2.0,!=2.6.0,!=2.6.1)", "tensorflow-macos"] tensorflow-gpu = ["tensorflow-gpu (>=2.2.0,!=2.6.0,!=2.6.1)"] tests = ["Pillow (>=6.2.1)", "absl-py", "apache-beam (>=2.26.0,<2.44.0)", "elasticsearch (<8.0.0)", "faiss-cpu (>=1.6.4)", "jax (>=0.3.14)", "jaxlib (>=0.3.14)", "joblib (<1.3.0)", "joblibspark", "librosa", "lz4", "py7zr", "pyspark (>=3.4)", "pytest", "pytest-datadir", "pytest-xdist", "rarfile (>=4.0)", "s3fs (>=2021.11.1)", "soundfile (>=0.12.1)", "sqlalchemy (<2.0.0)", "tensorflow (>=2.3,!=2.6.0,!=2.6.1)", "tensorflow-macos", "tiktoken", "torch", "transformers", "typing-extensions (>=4.6.1)", "zstandard"] torch = ["torch"] vision = ["Pillow (>=6.2.1)"] [[package]] name = "deprecated" version = "1.2.14" description = "Python @deprecated decorator to deprecate old python classes, functions or methods." optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "Deprecated-1.2.14-py2.py3-none-any.whl", hash = "sha256:6fac8b097794a90302bdbb17b9b815e732d3c4720583ff1b198499d78470466c"}, {file = "Deprecated-1.2.14.tar.gz", hash = "sha256:e5323eb936458dccc2582dc6f9c322c852a775a27065ff2b0c4970b9d53d01b3"}, ] [package.dependencies] wrapt = ">=1.10,<2" [package.extras] dev = ["PyTest", "PyTest-Cov", "bump2version (<1)", "sphinx (<2)", "tox"] [[package]] name = "dill" version = "0.3.7" description = "serialize all of Python" optional = true python-versions = ">=3.7" files = [ {file = "dill-0.3.7-py3-none-any.whl", hash = "sha256:76b122c08ef4ce2eedcd4d1abd8e641114bfc6c2867f49f3c41facf65bf19f5e"}, {file = "dill-0.3.7.tar.gz", hash = "sha256:cc1c8b182eb3013e24bd475ff2e9295af86c1a38eb1aff128dac8962a9ce3c03"}, ] [package.extras] graph = ["objgraph (>=1.7.2)"] [[package]] name = "einops" version = "0.6.1" description = "A new flavour of deep learning operations" optional = false python-versions = ">=3.7" files = [ {file = "einops-0.6.1-py3-none-any.whl", hash = "sha256:99149e46cc808956b174932fe563d920db4d6e5dadb8c6ecdaa7483b7ef7cfc3"}, {file = "einops-0.6.1.tar.gz", hash = "sha256:f95f8d00f4ded90dbc4b19b6f98b177332614b0357dde66997f3ae5d474dc8c8"}, ] [[package]] name = "exceptiongroup" version = "1.2.0" description = "Backport of PEP 654 (exception groups)" optional = false python-versions = ">=3.7" files = [ {file = "exceptiongroup-1.2.0-py3-none-any.whl", hash = "sha256:4bfd3996ac73b41e9b9628b04e079f193850720ea5945fc96a08633c66912f14"}, {file = "exceptiongroup-1.2.0.tar.gz", hash = "sha256:91f5c769735f051a4290d52edd0858999b57e5876e9f85937691bd4c9fa3ed68"}, ] [package.extras] test = ["pytest (>=6)"] [[package]] name = "filelock" version = "3.13.1" description = "A platform independent file lock." optional = false python-versions = ">=3.8" files = [ {file = "filelock-3.13.1-py3-none-any.whl", hash = "sha256:57dbda9b35157b05fb3e58ee91448612eb674172fab98ee235ccb0b5bee19a1c"}, {file = "filelock-3.13.1.tar.gz", hash = "sha256:521f5f56c50f8426f5e03ad3b281b490a87ef15bc6c526f168290f0c7148d44e"}, ] [package.extras] docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.24)"] testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)"] typing = ["typing-extensions (>=4.8)"] [[package]] name = "frozenlist" version = "1.4.1" description = "A list-like structure which implements collections.abc.MutableSequence" optional = true python-versions = ">=3.8" files = [ {file = "frozenlist-1.4.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:f9aa1878d1083b276b0196f2dfbe00c9b7e752475ed3b682025ff20c1c1f51ac"}, {file = "frozenlist-1.4.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:29acab3f66f0f24674b7dc4736477bcd4bc3ad4b896f5f45379a67bce8b96868"}, {file = "frozenlist-1.4.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:74fb4bee6880b529a0c6560885fce4dc95936920f9f20f53d99a213f7bf66776"}, {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:590344787a90ae57d62511dd7c736ed56b428f04cd8c161fcc5e7232c130c69a"}, {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:068b63f23b17df8569b7fdca5517edef76171cf3897eb68beb01341131fbd2ad"}, {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c849d495bf5154cd8da18a9eb15db127d4dba2968d88831aff6f0331ea9bd4c"}, {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9750cc7fe1ae3b1611bb8cfc3f9ec11d532244235d75901fb6b8e42ce9229dfe"}, {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a9b2de4cf0cdd5bd2dee4c4f63a653c61d2408055ab77b151c1957f221cabf2a"}, {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:0633c8d5337cb5c77acbccc6357ac49a1770b8c487e5b3505c57b949b4b82e98"}, {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:27657df69e8801be6c3638054e202a135c7f299267f1a55ed3a598934f6c0d75"}, {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:f9a3ea26252bd92f570600098783d1371354d89d5f6b7dfd87359d669f2109b5"}, {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:4f57dab5fe3407b6c0c1cc907ac98e8a189f9e418f3b6e54d65a718aaafe3950"}, {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e02a0e11cf6597299b9f3bbd3f93d79217cb90cfd1411aec33848b13f5c656cc"}, {file = "frozenlist-1.4.1-cp310-cp310-win32.whl", hash = "sha256:a828c57f00f729620a442881cc60e57cfcec6842ba38e1b19fd3e47ac0ff8dc1"}, {file = "frozenlist-1.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:f56e2333dda1fe0f909e7cc59f021eba0d2307bc6f012a1ccf2beca6ba362439"}, {file = "frozenlist-1.4.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a0cb6f11204443f27a1628b0e460f37fb30f624be6051d490fa7d7e26d4af3d0"}, {file = "frozenlist-1.4.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b46c8ae3a8f1f41a0d2ef350c0b6e65822d80772fe46b653ab6b6274f61d4a49"}, {file = "frozenlist-1.4.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fde5bd59ab5357e3853313127f4d3565fc7dad314a74d7b5d43c22c6a5ed2ced"}, {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:722e1124aec435320ae01ee3ac7bec11a5d47f25d0ed6328f2273d287bc3abb0"}, {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2471c201b70d58a0f0c1f91261542a03d9a5e088ed3dc6c160d614c01649c106"}, {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c757a9dd70d72b076d6f68efdbb9bc943665ae954dad2801b874c8c69e185068"}, {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f146e0911cb2f1da549fc58fc7bcd2b836a44b79ef871980d605ec392ff6b0d2"}, {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f9c515e7914626b2a2e1e311794b4c35720a0be87af52b79ff8e1429fc25f19"}, {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:c302220494f5c1ebeb0912ea782bcd5e2f8308037b3c7553fad0e48ebad6ad82"}, {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:442acde1e068288a4ba7acfe05f5f343e19fac87bfc96d89eb886b0363e977ec"}, {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:1b280e6507ea8a4fa0c0a7150b4e526a8d113989e28eaaef946cc77ffd7efc0a"}, {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:fe1a06da377e3a1062ae5fe0926e12b84eceb8a50b350ddca72dc85015873f74"}, {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:db9e724bebd621d9beca794f2a4ff1d26eed5965b004a97f1f1685a173b869c2"}, {file = "frozenlist-1.4.1-cp311-cp311-win32.whl", hash = "sha256:e774d53b1a477a67838a904131c4b0eef6b3d8a651f8b138b04f748fccfefe17"}, {file = "frozenlist-1.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:fb3c2db03683b5767dedb5769b8a40ebb47d6f7f45b1b3e3b4b51ec8ad9d9825"}, {file = "frozenlist-1.4.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1979bc0aeb89b33b588c51c54ab0161791149f2461ea7c7c946d95d5f93b56ae"}, {file = "frozenlist-1.4.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:cc7b01b3754ea68a62bd77ce6020afaffb44a590c2289089289363472d13aedb"}, {file = "frozenlist-1.4.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c9c92be9fd329ac801cc420e08452b70e7aeab94ea4233a4804f0915c14eba9b"}, {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5c3894db91f5a489fc8fa6a9991820f368f0b3cbdb9cd8849547ccfab3392d86"}, {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ba60bb19387e13597fb059f32cd4d59445d7b18b69a745b8f8e5db0346f33480"}, {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8aefbba5f69d42246543407ed2461db31006b0f76c4e32dfd6f42215a2c41d09"}, {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:780d3a35680ced9ce682fbcf4cb9c2bad3136eeff760ab33707b71db84664e3a"}, {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9acbb16f06fe7f52f441bb6f413ebae6c37baa6ef9edd49cdd567216da8600cd"}, {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:23b701e65c7b36e4bf15546a89279bd4d8675faabc287d06bbcfac7d3c33e1e6"}, {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:3e0153a805a98f5ada7e09826255ba99fb4f7524bb81bf6b47fb702666484ae1"}, {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:dd9b1baec094d91bf36ec729445f7769d0d0cf6b64d04d86e45baf89e2b9059b"}, {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:1a4471094e146b6790f61b98616ab8e44f72661879cc63fa1049d13ef711e71e"}, {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:5667ed53d68d91920defdf4035d1cdaa3c3121dc0b113255124bcfada1cfa1b8"}, {file = "frozenlist-1.4.1-cp312-cp312-win32.whl", hash = "sha256:beee944ae828747fd7cb216a70f120767fc9f4f00bacae8543c14a6831673f89"}, {file = "frozenlist-1.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:64536573d0a2cb6e625cf309984e2d873979709f2cf22839bf2d61790b448ad5"}, {file = "frozenlist-1.4.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:20b51fa3f588ff2fe658663db52a41a4f7aa6c04f6201449c6c7c476bd255c0d"}, {file = "frozenlist-1.4.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:410478a0c562d1a5bcc2f7ea448359fcb050ed48b3c6f6f4f18c313a9bdb1826"}, {file = "frozenlist-1.4.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:c6321c9efe29975232da3bd0af0ad216800a47e93d763ce64f291917a381b8eb"}, {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:48f6a4533887e189dae092f1cf981f2e3885175f7a0f33c91fb5b7b682b6bab6"}, {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6eb73fa5426ea69ee0e012fb59cdc76a15b1283d6e32e4f8dc4482ec67d1194d"}, {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fbeb989b5cc29e8daf7f976b421c220f1b8c731cbf22b9130d8815418ea45887"}, {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:32453c1de775c889eb4e22f1197fe3bdfe457d16476ea407472b9442e6295f7a"}, {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693945278a31f2086d9bf3df0fe8254bbeaef1fe71e1351c3bd730aa7d31c41b"}, {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:1d0ce09d36d53bbbe566fe296965b23b961764c0bcf3ce2fa45f463745c04701"}, {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3a670dc61eb0d0eb7080890c13de3066790f9049b47b0de04007090807c776b0"}, {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:dca69045298ce5c11fd539682cff879cc1e664c245d1c64da929813e54241d11"}, {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:a06339f38e9ed3a64e4c4e43aec7f59084033647f908e4259d279a52d3757d09"}, {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b7f2f9f912dca3934c1baec2e4585a674ef16fe00218d833856408c48d5beee7"}, {file = "frozenlist-1.4.1-cp38-cp38-win32.whl", hash = "sha256:e7004be74cbb7d9f34553a5ce5fb08be14fb33bc86f332fb71cbe5216362a497"}, {file = "frozenlist-1.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:5a7d70357e7cee13f470c7883a063aae5fe209a493c57d86eb7f5a6f910fae09"}, {file = "frozenlist-1.4.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:bfa4a17e17ce9abf47a74ae02f32d014c5e9404b6d9ac7f729e01562bbee601e"}, {file = "frozenlist-1.4.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b7e3ed87d4138356775346e6845cccbe66cd9e207f3cd11d2f0b9fd13681359d"}, {file = "frozenlist-1.4.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c99169d4ff810155ca50b4da3b075cbde79752443117d89429595c2e8e37fed8"}, {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edb678da49d9f72c9f6c609fbe41a5dfb9a9282f9e6a2253d5a91e0fc382d7c0"}, {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6db4667b187a6742b33afbbaf05a7bc551ffcf1ced0000a571aedbb4aa42fc7b"}, {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55fdc093b5a3cb41d420884cdaf37a1e74c3c37a31f46e66286d9145d2063bd0"}, {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:82e8211d69a4f4bc360ea22cd6555f8e61a1bd211d1d5d39d3d228b48c83a897"}, {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89aa2c2eeb20957be2d950b85974b30a01a762f3308cd02bb15e1ad632e22dc7"}, {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9d3e0c25a2350080e9319724dede4f31f43a6c9779be48021a7f4ebde8b2d742"}, {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7268252af60904bf52c26173cbadc3a071cece75f873705419c8681f24d3edea"}, {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:0c250a29735d4f15321007fb02865f0e6b6a41a6b88f1f523ca1596ab5f50bd5"}, {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:96ec70beabbd3b10e8bfe52616a13561e58fe84c0101dd031dc78f250d5128b9"}, {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:23b2d7679b73fe0e5a4560b672a39f98dfc6f60df63823b0a9970525325b95f6"}, {file = "frozenlist-1.4.1-cp39-cp39-win32.whl", hash = "sha256:a7496bfe1da7fb1a4e1cc23bb67c58fab69311cc7d32b5a99c2007b4b2a0e932"}, {file = "frozenlist-1.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:e6a20a581f9ce92d389a8c7d7c3dd47c81fd5d6e655c8dddf341e14aa48659d0"}, {file = "frozenlist-1.4.1-py3-none-any.whl", hash = "sha256:04ced3e6a46b4cfffe20f9ae482818e34eba9b5fb0ce4056e4cc9b6e212d09b7"}, {file = "frozenlist-1.4.1.tar.gz", hash = "sha256:c037a86e8513059a2613aaba4d817bb90b9d9b6b69aace3ce9c877e8c8ed402b"}, ] [[package]] name = "fsspec" version = "2023.10.0" description = "File-system specification" optional = false python-versions = ">=3.8" files = [ {file = "fsspec-2023.10.0-py3-none-any.whl", hash = "sha256:346a8f024efeb749d2a5fca7ba8854474b1ff9af7c3faaf636a4548781136529"}, {file = "fsspec-2023.10.0.tar.gz", hash = "sha256:330c66757591df346ad3091a53bd907e15348c2ba17d63fd54f5c39c4457d2a5"}, ] [package.dependencies] aiohttp = {version = "<4.0.0a0 || >4.0.0a0,<4.0.0a1 || >4.0.0a1", optional = true, markers = "extra == \"http\""} requests = {version = "*", optional = true, markers = "extra == \"http\""} [package.extras] abfs = ["adlfs"] adl = ["adlfs"] arrow = ["pyarrow (>=1)"] dask = ["dask", "distributed"] devel = ["pytest", "pytest-cov"] dropbox = ["dropbox", "dropboxdrivefs", "requests"] full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"] fuse = ["fusepy"] gcs = ["gcsfs"] git = ["pygit2"] github = ["requests"] gs = ["gcsfs"] gui = ["panel"] hdfs = ["pyarrow (>=1)"] http = ["aiohttp (!=4.0.0a0,!=4.0.0a1)", "requests"] libarchive = ["libarchive-c"] oci = ["ocifs"] s3 = ["s3fs"] sftp = ["paramiko"] smb = ["smbprotocol"] ssh = ["paramiko"] tqdm = ["tqdm"] [[package]] name = "googleapis-common-protos" version = "1.62.0" description = "Common protobufs used in Google APIs" optional = false python-versions = ">=3.7" files = [ {file = "googleapis-common-protos-1.62.0.tar.gz", hash = "sha256:83f0ece9f94e5672cced82f592d2a5edf527a96ed1794f0bab36d5735c996277"}, {file = "googleapis_common_protos-1.62.0-py2.py3-none-any.whl", hash = "sha256:4750113612205514f9f6aa4cb00d523a94f3e8c06c5ad2fee466387dc4875f07"}, ] [package.dependencies] protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<5.0.0.dev0" [package.extras] grpc = ["grpcio (>=1.44.0,<2.0.0.dev0)"] [[package]] name = "grpc-interceptor" version = "0.15.4" description = "Simplifies gRPC interceptors" optional = false python-versions = ">=3.7,<4.0" files = [ {file = "grpc-interceptor-0.15.4.tar.gz", hash = "sha256:1f45c0bcb58b6f332f37c637632247c9b02bc6af0fdceb7ba7ce8d2ebbfb0926"}, {file = "grpc_interceptor-0.15.4-py3-none-any.whl", hash = "sha256:0035f33228693ed3767ee49d937bac424318db173fef4d2d0170b3215f254d9d"}, ] [package.dependencies] grpcio = ">=1.49.1,<2.0.0" [package.extras] testing = ["protobuf (>=4.21.9)"] [[package]] name = "grpcio" version = "1.60.0" description = "HTTP/2-based RPC framework" optional = false python-versions = ">=3.7" files = [ {file = "grpcio-1.60.0-cp310-cp310-linux_armv7l.whl", hash = "sha256:d020cfa595d1f8f5c6b343530cd3ca16ae5aefdd1e832b777f9f0eb105f5b139"}, {file = "grpcio-1.60.0-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:b98f43fcdb16172dec5f4b49f2fece4b16a99fd284d81c6bbac1b3b69fcbe0ff"}, {file = "grpcio-1.60.0-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:20e7a4f7ded59097c84059d28230907cd97130fa74f4a8bfd1d8e5ba18c81491"}, {file = "grpcio-1.60.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:452ca5b4afed30e7274445dd9b441a35ece656ec1600b77fff8c216fdf07df43"}, {file = "grpcio-1.60.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:43e636dc2ce9ece583b3e2ca41df5c983f4302eabc6d5f9cd04f0562ee8ec1ae"}, {file = "grpcio-1.60.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6e306b97966369b889985a562ede9d99180def39ad42c8014628dd3cc343f508"}, {file = "grpcio-1.60.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f897c3b127532e6befdcf961c415c97f320d45614daf84deba0a54e64ea2457b"}, {file = "grpcio-1.60.0-cp310-cp310-win32.whl", hash = "sha256:b87efe4a380887425bb15f220079aa8336276398dc33fce38c64d278164f963d"}, {file = "grpcio-1.60.0-cp310-cp310-win_amd64.whl", hash = "sha256:a9c7b71211f066908e518a2ef7a5e211670761651039f0d6a80d8d40054047df"}, {file = "grpcio-1.60.0-cp311-cp311-linux_armv7l.whl", hash = "sha256:fb464479934778d7cc5baf463d959d361954d6533ad34c3a4f1d267e86ee25fd"}, {file = "grpcio-1.60.0-cp311-cp311-macosx_10_10_universal2.whl", hash = "sha256:4b44d7e39964e808b071714666a812049765b26b3ea48c4434a3b317bac82f14"}, {file = "grpcio-1.60.0-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:90bdd76b3f04bdb21de5398b8a7c629676c81dfac290f5f19883857e9371d28c"}, {file = "grpcio-1.60.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:91229d7203f1ef0ab420c9b53fe2ca5c1fbeb34f69b3bc1b5089466237a4a134"}, {file = "grpcio-1.60.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b36a2c6d4920ba88fa98075fdd58ff94ebeb8acc1215ae07d01a418af4c0253"}, {file = "grpcio-1.60.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:297eef542156d6b15174a1231c2493ea9ea54af8d016b8ca7d5d9cc65cfcc444"}, {file = "grpcio-1.60.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:87c9224acba0ad8bacddf427a1c2772e17ce50b3042a789547af27099c5f751d"}, {file = "grpcio-1.60.0-cp311-cp311-win32.whl", hash = "sha256:95ae3e8e2c1b9bf671817f86f155c5da7d49a2289c5cf27a319458c3e025c320"}, {file = "grpcio-1.60.0-cp311-cp311-win_amd64.whl", hash = "sha256:467a7d31554892eed2aa6c2d47ded1079fc40ea0b9601d9f79204afa8902274b"}, {file = "grpcio-1.60.0-cp312-cp312-linux_armv7l.whl", hash = "sha256:a7152fa6e597c20cb97923407cf0934e14224af42c2b8d915f48bc3ad2d9ac18"}, {file = "grpcio-1.60.0-cp312-cp312-macosx_10_10_universal2.whl", hash = "sha256:7db16dd4ea1b05ada504f08d0dca1cd9b926bed3770f50e715d087c6f00ad748"}, {file = "grpcio-1.60.0-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:b0571a5aef36ba9177e262dc88a9240c866d903a62799e44fd4aae3f9a2ec17e"}, {file = "grpcio-1.60.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6fd9584bf1bccdfff1512719316efa77be235469e1e3295dce64538c4773840b"}, {file = "grpcio-1.60.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d6a478581b1a1a8fdf3318ecb5f4d0cda41cacdffe2b527c23707c9c1b8fdb55"}, {file = "grpcio-1.60.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:77c8a317f0fd5a0a2be8ed5cbe5341537d5c00bb79b3bb27ba7c5378ba77dbca"}, {file = "grpcio-1.60.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:1c30bb23a41df95109db130a6cc1b974844300ae2e5d68dd4947aacba5985aa5"}, {file = "grpcio-1.60.0-cp312-cp312-win32.whl", hash = "sha256:2aef56e85901c2397bd557c5ba514f84de1f0ae5dd132f5d5fed042858115951"}, {file = "grpcio-1.60.0-cp312-cp312-win_amd64.whl", hash = "sha256:e381fe0c2aa6c03b056ad8f52f8efca7be29fb4d9ae2f8873520843b6039612a"}, {file = "grpcio-1.60.0-cp37-cp37m-linux_armv7l.whl", hash = "sha256:92f88ca1b956eb8427a11bb8b4a0c0b2b03377235fc5102cb05e533b8693a415"}, {file = "grpcio-1.60.0-cp37-cp37m-macosx_10_10_universal2.whl", hash = "sha256:e278eafb406f7e1b1b637c2cf51d3ad45883bb5bd1ca56bc05e4fc135dfdaa65"}, {file = "grpcio-1.60.0-cp37-cp37m-manylinux_2_17_aarch64.whl", hash = "sha256:a48edde788b99214613e440fce495bbe2b1e142a7f214cce9e0832146c41e324"}, {file = "grpcio-1.60.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:de2ad69c9a094bf37c1102b5744c9aec6cf74d2b635558b779085d0263166454"}, {file = "grpcio-1.60.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:073f959c6f570797272f4ee9464a9997eaf1e98c27cb680225b82b53390d61e6"}, {file = "grpcio-1.60.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:c826f93050c73e7769806f92e601e0efdb83ec8d7c76ddf45d514fee54e8e619"}, {file = "grpcio-1.60.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9e30be89a75ee66aec7f9e60086fadb37ff8c0ba49a022887c28c134341f7179"}, {file = "grpcio-1.60.0-cp37-cp37m-win_amd64.whl", hash = "sha256:b0fb2d4801546598ac5cd18e3ec79c1a9af8b8f2a86283c55a5337c5aeca4b1b"}, {file = "grpcio-1.60.0-cp38-cp38-linux_armv7l.whl", hash = "sha256:9073513ec380434eb8d21970e1ab3161041de121f4018bbed3146839451a6d8e"}, {file = "grpcio-1.60.0-cp38-cp38-macosx_10_10_universal2.whl", hash = "sha256:74d7d9fa97809c5b892449b28a65ec2bfa458a4735ddad46074f9f7d9550ad13"}, {file = "grpcio-1.60.0-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:1434ca77d6fed4ea312901122dc8da6c4389738bf5788f43efb19a838ac03ead"}, {file = "grpcio-1.60.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e61e76020e0c332a98290323ecfec721c9544f5b739fab925b6e8cbe1944cf19"}, {file = "grpcio-1.60.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:675997222f2e2f22928fbba640824aebd43791116034f62006e19730715166c0"}, {file = "grpcio-1.60.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:5208a57eae445ae84a219dfd8b56e04313445d146873117b5fa75f3245bc1390"}, {file = "grpcio-1.60.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:428d699c8553c27e98f4d29fdc0f0edc50e9a8a7590bfd294d2edb0da7be3629"}, {file = "grpcio-1.60.0-cp38-cp38-win32.whl", hash = "sha256:83f2292ae292ed5a47cdcb9821039ca8e88902923198f2193f13959360c01860"}, {file = "grpcio-1.60.0-cp38-cp38-win_amd64.whl", hash = "sha256:705a68a973c4c76db5d369ed573fec3367d7d196673fa86614b33d8c8e9ebb08"}, {file = "grpcio-1.60.0-cp39-cp39-linux_armv7l.whl", hash = "sha256:c193109ca4070cdcaa6eff00fdb5a56233dc7610216d58fb81638f89f02e4968"}, {file = "grpcio-1.60.0-cp39-cp39-macosx_10_10_universal2.whl", hash = "sha256:676e4a44e740deaba0f4d95ba1d8c5c89a2fcc43d02c39f69450b1fa19d39590"}, {file = "grpcio-1.60.0-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:5ff21e000ff2f658430bde5288cb1ac440ff15c0d7d18b5fb222f941b46cb0d2"}, {file = "grpcio-1.60.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c86343cf9ff7b2514dd229bdd88ebba760bd8973dac192ae687ff75e39ebfab"}, {file = "grpcio-1.60.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0fd3b3968ffe7643144580f260f04d39d869fcc2cddb745deef078b09fd2b328"}, {file = "grpcio-1.60.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:30943b9530fe3620e3b195c03130396cd0ee3a0d10a66c1bee715d1819001eaf"}, {file = "grpcio-1.60.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:b10241250cb77657ab315270b064a6c7f1add58af94befa20687e7c8d8603ae6"}, {file = "grpcio-1.60.0-cp39-cp39-win32.whl", hash = "sha256:79a050889eb8d57a93ed21d9585bb63fca881666fc709f5d9f7f9372f5e7fd03"}, {file = "grpcio-1.60.0-cp39-cp39-win_amd64.whl", hash = "sha256:8a97a681e82bc11a42d4372fe57898d270a2707f36c45c6676e49ce0d5c41353"}, {file = "grpcio-1.60.0.tar.gz", hash = "sha256:2199165a1affb666aa24adf0c97436686d0a61bc5fc113c037701fb7c7fceb96"}, ] [package.extras] protobuf = ["grpcio-tools (>=1.60.0)"] [[package]] name = "grpcio-reflection" version = "1.60.0" description = "Standard Protobuf Reflection Service for gRPC" optional = false python-versions = ">=3.6" files = [ {file = "grpcio-reflection-1.60.0.tar.gz", hash = "sha256:3f6c0c73ba8f20d1420c5e72fc4dd0389fac346ed8fb32a28e6e1967b44fff35"}, {file = "grpcio_reflection-1.60.0-py3-none-any.whl", hash = "sha256:f7a347ebd6cecf347fc836fd520fd1f0b3411912981649c7fb34d62a3a15aa4e"}, ] [package.dependencies] grpcio = ">=1.60.0" protobuf = ">=4.21.6" [[package]] name = "grpcio-status" version = "1.60.0" description = "Status proto mapping for gRPC" optional = false python-versions = ">=3.6" files = [ {file = "grpcio-status-1.60.0.tar.gz", hash = "sha256:f10e0b6db3adc0fdc244b71962814ee982996ef06186446b5695b9fa635aa1ab"}, {file = "grpcio_status-1.60.0-py3-none-any.whl", hash = "sha256:7d383fa36e59c1e61d380d91350badd4d12ac56e4de2c2b831b050362c3c572e"}, ] [package.dependencies] googleapis-common-protos = ">=1.5.5" grpcio = ">=1.60.0" protobuf = ">=4.21.6" [[package]] name = "grpcio-tools" version = "1.60.0" description = "Protobuf code generator for gRPC" optional = false python-versions = ">=3.7" files = [ {file = "grpcio-tools-1.60.0.tar.gz", hash = "sha256:ed30499340228d733ff69fcf4a66590ed7921f94eb5a2bf692258b1280b9dac7"}, {file = "grpcio_tools-1.60.0-cp310-cp310-linux_armv7l.whl", hash = "sha256:6807b7a3f3e6e594566100bd7fe04a2c42ce6d5792652677f1aaf5aa5adaef3d"}, {file = "grpcio_tools-1.60.0-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:857c5351e9dc33a019700e171163f94fcc7e3ae0f6d2b026b10fda1e3c008ef1"}, {file = "grpcio_tools-1.60.0-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:ec0e401e9a43d927d216d5169b03c61163fb52b665c5af2fed851357b15aef88"}, {file = "grpcio_tools-1.60.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e68dc4474f30cad11a965f0eb5d37720a032b4720afa0ec19dbcea2de73b5aae"}, {file = "grpcio_tools-1.60.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bbf0ed772d2ae7e8e5d7281fcc00123923ab130b94f7a843eee9af405918f924"}, {file = "grpcio_tools-1.60.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:c771b19dce2bfe06899247168c077d7ab4e273f6655d8174834f9a6034415096"}, {file = "grpcio_tools-1.60.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e5614cf0960456d21d8a0f4902e3e5e3bcacc4e400bf22f196e5dd8aabb978b7"}, {file = "grpcio_tools-1.60.0-cp310-cp310-win32.whl", hash = "sha256:87cf439178f3eb45c1a889b2e4a17cbb4c450230d92c18d9c57e11271e239c55"}, {file = "grpcio_tools-1.60.0-cp310-cp310-win_amd64.whl", hash = "sha256:687f576d7ff6ce483bc9a196d1ceac45144e8733b953620a026daed8e450bc38"}, {file = "grpcio_tools-1.60.0-cp311-cp311-linux_armv7l.whl", hash = "sha256:2a8a758701f3ac07ed85f5a4284c6a9ddefcab7913a8e552497f919349e72438"}, {file = "grpcio_tools-1.60.0-cp311-cp311-macosx_10_10_universal2.whl", hash = "sha256:7c1cde49631732356cb916ee1710507967f19913565ed5f9991e6c9cb37e3887"}, {file = "grpcio_tools-1.60.0-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:d941749bd8dc3f8be58fe37183143412a27bec3df8482d5abd6b4ec3f1ac2924"}, {file = "grpcio_tools-1.60.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9ee35234f1da8fba7ddbc544856ff588243f1128ea778d7a1da3039be829a134"}, {file = "grpcio_tools-1.60.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8f7a5094adb49e85db13ea3df5d99a976c2bdfd83b0ba26af20ebb742ac6786"}, {file = "grpcio_tools-1.60.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:24c4ead4a03037beaeb8ef2c90d13d70101e35c9fae057337ed1a9144ef10b53"}, {file = "grpcio_tools-1.60.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:811abb9c4fb6679e0058dfa123fb065d97b158b71959c0e048e7972bbb82ba0f"}, {file = "grpcio_tools-1.60.0-cp311-cp311-win32.whl", hash = "sha256:bd2a17b0193fbe4793c215d63ce1e01ae00a8183d81d7c04e77e1dfafc4b2b8a"}, {file = "grpcio_tools-1.60.0-cp311-cp311-win_amd64.whl", hash = "sha256:b22b1299b666eebd5752ba7719da536075eae3053abcf2898b65f763c314d9da"}, {file = "grpcio_tools-1.60.0-cp312-cp312-linux_armv7l.whl", hash = "sha256:74025fdd6d1cb7ba4b5d087995339e9a09f0c16cf15dfe56368b23e41ffeaf7a"}, {file = "grpcio_tools-1.60.0-cp312-cp312-macosx_10_10_universal2.whl", hash = "sha256:5a907a4f1ffba86501b2cdb8682346249ea032b922fc69a92f082ba045cca548"}, {file = "grpcio_tools-1.60.0-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:1fbb9554466d560472f07d906bfc8dcaf52f365c2a407015185993e30372a886"}, {file = "grpcio_tools-1.60.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f10ef47460ce3c6fd400f05fe757b90df63486c9b84d1ecad42dcc5f80c8ac14"}, {file = "grpcio_tools-1.60.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:321b18f42a70813545e416ddcb8bf20defa407a8114906711c9710a69596ceda"}, {file = "grpcio_tools-1.60.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:081336d8258f1a56542aa8a7a5dec99a2b38d902e19fbdd744594783301b0210"}, {file = "grpcio_tools-1.60.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:addc9b23d6ff729d9f83d4a2846292d4c84f5eb2ec38f08489a6a0d66ac2b91e"}, {file = "grpcio_tools-1.60.0-cp312-cp312-win32.whl", hash = "sha256:e87cabac7969bdde309575edc2456357667a1b28262b2c1f12580ef48315b19d"}, {file = "grpcio_tools-1.60.0-cp312-cp312-win_amd64.whl", hash = "sha256:e70d867c120d9849093b0ac24d861e378bc88af2552e743d83b9f642d2caa7c2"}, {file = "grpcio_tools-1.60.0-cp37-cp37m-linux_armv7l.whl", hash = "sha256:559ce714fe212aaf4abbe1493c5bb8920def00cc77ce0d45266f4fd9d8b3166f"}, {file = "grpcio_tools-1.60.0-cp37-cp37m-macosx_10_10_universal2.whl", hash = "sha256:7a5263a0f2ddb7b1cfb2349e392cfc4f318722e0f48f886393e06946875d40f3"}, {file = "grpcio_tools-1.60.0-cp37-cp37m-manylinux_2_17_aarch64.whl", hash = "sha256:18976684a931ca4bcba65c78afa778683aefaae310f353e198b1823bf09775a0"}, {file = "grpcio_tools-1.60.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5c519a0d4ba1ab44a004fa144089738c59278233e2010b2cf4527dc667ff297"}, {file = "grpcio_tools-1.60.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6170873b1e5b6580ebb99e87fb6e4ea4c48785b910bd7af838cc6e44b2bccb04"}, {file = "grpcio_tools-1.60.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:fb4df80868b3e397d5fbccc004c789d2668b622b51a9d2387b4c89c80d31e2c5"}, {file = "grpcio_tools-1.60.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:dba6e32c87b4af29b5f475fb2f470f7ee3140bfc128644f17c6c59ddeb670680"}, {file = "grpcio_tools-1.60.0-cp37-cp37m-win_amd64.whl", hash = "sha256:f610384dee4b1ca705e8da66c5b5fe89a2de3d165c5282c3d1ddf40cb18924e4"}, {file = "grpcio_tools-1.60.0-cp38-cp38-linux_armv7l.whl", hash = "sha256:4041538f55aad5b3ae7e25ab314d7995d689e968bfc8aa169d939a3160b1e4c6"}, {file = "grpcio_tools-1.60.0-cp38-cp38-macosx_10_10_universal2.whl", hash = "sha256:2fb4cf74bfe1e707cf10bc9dd38a1ebaa145179453d150febb121c7e9cd749bf"}, {file = "grpcio_tools-1.60.0-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:2fd1671c52f96e79a2302c8b1c1f78b8a561664b8b3d6946f20d8f1cc6b4225a"}, {file = "grpcio_tools-1.60.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dd1e68c232fe01dd5312a8dbe52c50ecd2b5991d517d7f7446af4ba6334ba872"}, {file = "grpcio_tools-1.60.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17a32b3da4fc0798cdcec0a9c974ac2a1e98298f151517bf9148294a3b1a5742"}, {file = "grpcio_tools-1.60.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:9970d384fb0c084b00945ef57d98d57a8d32be106d8f0bd31387f7cbfe411b5b"}, {file = "grpcio_tools-1.60.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5ce6bbd4936977ec1114f2903eb4342781960d521b0d82f73afedb9335251f6f"}, {file = "grpcio_tools-1.60.0-cp38-cp38-win32.whl", hash = "sha256:2e00de389729ca8d8d1a63c2038703078a887ff738dc31be640b7da9c26d0d4f"}, {file = "grpcio_tools-1.60.0-cp38-cp38-win_amd64.whl", hash = "sha256:6192184b1f99372ff1d9594bd4b12264e3ff26440daba7eb043726785200ff77"}, {file = "grpcio_tools-1.60.0-cp39-cp39-linux_armv7l.whl", hash = "sha256:eae27f9b16238e2aaee84c77b5923c6924d6dccb0bdd18435bf42acc8473ae1a"}, {file = "grpcio_tools-1.60.0-cp39-cp39-macosx_10_10_universal2.whl", hash = "sha256:b96981f3a31b85074b73d97c8234a5ed9053d65a36b18f4a9c45a2120a5b7a0a"}, {file = "grpcio_tools-1.60.0-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:1748893efd05cf4a59a175d7fa1e4fbb652f4d84ccaa2109f7869a2be48ed25e"}, {file = "grpcio_tools-1.60.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7a6fe752205caae534f29fba907e2f59ff79aa42c6205ce9a467e9406cbac68c"}, {file = "grpcio_tools-1.60.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3456df087ea61a0972a5bc165aed132ed6ddcc63f5749e572f9fff84540bdbad"}, {file = "grpcio_tools-1.60.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f3d916606dcf5610d4367918245b3d9d8cd0d2ec0b7043d1bbb8c50fe9815c3a"}, {file = "grpcio_tools-1.60.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:fc01bc1079279ec342f0f1b6a107b3f5dc3169c33369cf96ada6e2e171f74e86"}, {file = "grpcio_tools-1.60.0-cp39-cp39-win32.whl", hash = "sha256:2dd01257e4feff986d256fa0bac9f56de59dc735eceeeb83de1c126e2e91f653"}, {file = "grpcio_tools-1.60.0-cp39-cp39-win_amd64.whl", hash = "sha256:1b93ae8ffd18e9af9a965ebca5fa521e89066267de7abdde20721edc04e42721"}, ] [package.dependencies] grpcio = ">=1.60.0" protobuf = ">=4.21.6,<5.0dev" setuptools = "*" [[package]] name = "hf-transfer" version = "0.1.4" description = "" optional = false python-versions = ">=3.7" files = [ {file = "hf_transfer-0.1.4-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:6ff5fbde30a5bed35ef8f0d4ba78bde9f6d60a233dbff78a0e4035d6e6f71e4c"}, {file = "hf_transfer-0.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d1c5c20f76e7f3451cff476b85c55dcb8566ebc94a596cb9eb39c0bb75db8675"}, {file = "hf_transfer-0.1.4-cp310-none-win_amd64.whl", hash = "sha256:84c3ce20c68863a7d998711b98726ba9ae8f2e3fc0d685bc2c9ac9833c0f4048"}, {file = "hf_transfer-0.1.4-cp311-cp311-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:dab1cf4e2e6fcb963fe0e48e6b5e3a95cf65ee376c7b6618a05dbb2ef0dde183"}, {file = "hf_transfer-0.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:63c9c7aef90facf45391c86131ed00e74333637735cfec52da4f5170004d0b3f"}, {file = "hf_transfer-0.1.4-cp311-none-win_amd64.whl", hash = "sha256:eca1fe6ae145e88455d0a174248080498cea52ad45cee50702070b47dffa421f"}, {file = "hf_transfer-0.1.4-cp312-cp312-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:d07c0d26b5c01ad50d22ddcff7d30c4e8cbb823565b7f61e0ddb35f7faeae415"}, {file = "hf_transfer-0.1.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a9b9cf169c3c64883b07f7ded5e3f14ae1d437eb77448738b88c923fc5597c47"}, {file = "hf_transfer-0.1.4-cp312-none-win_amd64.whl", hash = "sha256:6b8518b9ebb85b0238745be81f7b88383c7ea216dd8407d46444bcc7806dc0ef"}, {file = "hf_transfer-0.1.4-cp37-cp37m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:ea32e9f91de3f2dad3567577c293f2e81a9309e680def4712ec0c4ea49be6833"}, {file = "hf_transfer-0.1.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e81a10dbf2ac534083da06c200456b5d10ba7a1e8c4c5c48f7ea1ca4cf6af474"}, {file = "hf_transfer-0.1.4-cp37-none-win_amd64.whl", hash = "sha256:97555bbff69a0459712e5d25d659c0dc74cb8f9726562ca66241f1e1b081f6a9"}, {file = "hf_transfer-0.1.4-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:38bce7a511952e1b804168e956cd3a3b1ff7e38828259c3cdae27614060b90c5"}, {file = "hf_transfer-0.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d1977e94e8c8fc8a0e9ce74a651d4694629e526da246a492855fcfb710aa489"}, {file = "hf_transfer-0.1.4-cp38-none-win_amd64.whl", hash = "sha256:6ca2d2c40e5e94c5de7e502037ad23ac1d803a2a12760b15b3e3f88c616202bd"}, {file = "hf_transfer-0.1.4-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:c04a93acb58e50b8da1e2258185e54f6bf48ba24bf95e470310178b7047c1017"}, {file = "hf_transfer-0.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3028a807363e0b2c64985c44732ba4ab187a569f013367d2115a6e09ae95031"}, {file = "hf_transfer-0.1.4-cp39-none-win_amd64.whl", hash = "sha256:dc9c7c1d0d79fc06baf86d41620623bb6bb2736755329ea6b1ec5faf71e3e36b"}, {file = "hf_transfer-0.1.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a466ae2b11d72df9e0005eb8ff7f537d5460c98b64fb6e49f3076ee14040dcf"}, {file = "hf_transfer-0.1.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fb34a023276936d4716112e17daea4ff98afc35b6113dd0f0383710dc208c058"}, {file = "hf_transfer-0.1.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba0647b84d7ff0eee1de6479179a5d43d0695001733f17eecc00153f0f8ab1ac"}, {file = "hf_transfer-0.1.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:27d0bc1f8b79a6d65751efbce7eb02d2c1bd7e4de1a46aac18995461590ce4dd"}, {file = "hf_transfer-0.1.4.tar.gz", hash = "sha256:687e090639cd52a48dedbfaa9e455a2c99c5169ece3d911f95983b1d4d4c84ed"}, ] [[package]] name = "huggingface-hub" version = "0.19.4" description = "Client library to download and publish models, datasets and other repos on the huggingface.co hub" optional = false python-versions = ">=3.8.0" files = [ {file = "huggingface_hub-0.19.4-py3-none-any.whl", hash = "sha256:dba013f779da16f14b606492828f3760600a1e1801432d09fe1c33e50b825bb5"}, {file = "huggingface_hub-0.19.4.tar.gz", hash = "sha256:176a4fc355a851c17550e7619488f383189727eab209534d7cef2114dae77b22"}, ] [package.dependencies] filelock = "*" fsspec = ">=2023.5.0" packaging = ">=20.9" pyyaml = ">=5.1" requests = "*" tqdm = ">=4.42.1" typing-extensions = ">=3.7.4.3" [package.extras] all = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "gradio", "jedi", "mypy (==1.5.1)", "numpy", "pydantic (>1.1,<2.0)", "pydantic (>1.1,<3.0)", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-vcr", "pytest-xdist", "ruff (>=0.1.3)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"] cli = ["InquirerPy (==0.3.4)"] dev = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "gradio", "jedi", "mypy (==1.5.1)", "numpy", "pydantic (>1.1,<2.0)", "pydantic (>1.1,<3.0)", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-vcr", "pytest-xdist", "ruff (>=0.1.3)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"] docs = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "gradio", "hf-doc-builder", "jedi", "mypy (==1.5.1)", "numpy", "pydantic (>1.1,<2.0)", "pydantic (>1.1,<3.0)", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-vcr", "pytest-xdist", "ruff (>=0.1.3)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)", "watchdog"] fastai = ["fastai (>=2.4)", "fastcore (>=1.3.27)", "toml"] inference = ["aiohttp", "pydantic (>1.1,<2.0)", "pydantic (>1.1,<3.0)"] quality = ["mypy (==1.5.1)", "ruff (>=0.1.3)"] tensorflow = ["graphviz", "pydot", "tensorflow"] testing = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "gradio", "jedi", "numpy", "pydantic (>1.1,<2.0)", "pydantic (>1.1,<3.0)", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-vcr", "pytest-xdist", "soundfile", "urllib3 (<2.0)"] torch = ["torch"] typing = ["types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)"] [[package]] name = "idna" version = "3.6" description = "Internationalized Domain Names in Applications (IDNA)" optional = false python-versions = ">=3.5" files = [ {file = "idna-3.6-py3-none-any.whl", hash = "sha256:c05567e9c24a6b9faaa835c4821bad0590fbb9d5779e7caa6e1cc4978e7eb24f"}, {file = "idna-3.6.tar.gz", hash = "sha256:9ecdbbd083b06798ae1e86adcbfe8ab1479cf864e4ee30fe4e46a003d12491ca"}, ] [[package]] name = "iniconfig" version = "2.0.0" description = "brain-dead simple config-ini parsing" optional = false python-versions = ">=3.7" files = [ {file = "iniconfig-2.0.0-py3-none-any.whl", hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374"}, {file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"}, ] [[package]] name = "jinja2" version = "3.1.2" description = "A very fast and expressive template engine." optional = true python-versions = ">=3.7" files = [ {file = "Jinja2-3.1.2-py3-none-any.whl", hash = "sha256:6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61"}, {file = "Jinja2-3.1.2.tar.gz", hash = "sha256:31351a702a408a9e7595a8fc6150fc3f43bb6bf7e319770cbc0db9df9437e852"}, ] [package.dependencies] MarkupSafe = ">=2.0" [package.extras] i18n = ["Babel (>=2.7)"] [[package]] name = "loguru" version = "0.6.0" description = "Python logging made (stupidly) simple" optional = false python-versions = ">=3.5" files = [ {file = "loguru-0.6.0-py3-none-any.whl", hash = "sha256:4e2414d534a2ab57573365b3e6d0234dfb1d84b68b7f3b948e6fb743860a77c3"}, {file = "loguru-0.6.0.tar.gz", hash = "sha256:066bd06758d0a513e9836fd9c6b5a75bfb3fd36841f4b996bc60b547a309d41c"}, ] [package.dependencies] colorama = {version = ">=0.3.4", markers = "sys_platform == \"win32\""} win32-setctime = {version = ">=1.0.0", markers = "sys_platform == \"win32\""} [package.extras] dev = ["Sphinx (>=4.1.1)", "black (>=19.10b0)", "colorama (>=0.3.4)", "docutils (==0.16)", "flake8 (>=3.7.7)", "isort (>=5.1.1)", "pytest (>=4.6.2)", "pytest-cov (>=2.7.1)", "sphinx-autobuild (>=0.7.1)", "sphinx-rtd-theme (>=0.4.3)", "tox (>=3.9.0)"] [[package]] name = "markupsafe" version = "2.1.3" description = "Safely add untrusted strings to HTML/XML markup." optional = true python-versions = ">=3.7" files = [ {file = "MarkupSafe-2.1.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:cd0f502fe016460680cd20aaa5a76d241d6f35a1c3350c474bac1273803893fa"}, {file = "MarkupSafe-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e09031c87a1e51556fdcb46e5bd4f59dfb743061cf93c4d6831bf894f125eb57"}, {file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:68e78619a61ecf91e76aa3e6e8e33fc4894a2bebe93410754bd28fce0a8a4f9f"}, {file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65c1a9bcdadc6c28eecee2c119465aebff8f7a584dd719facdd9e825ec61ab52"}, {file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:525808b8019e36eb524b8c68acdd63a37e75714eac50e988180b169d64480a00"}, {file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:962f82a3086483f5e5f64dbad880d31038b698494799b097bc59c2edf392fce6"}, {file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:aa7bd130efab1c280bed0f45501b7c8795f9fdbeb02e965371bbef3523627779"}, {file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c9c804664ebe8f83a211cace637506669e7890fec1b4195b505c214e50dd4eb7"}, {file = "MarkupSafe-2.1.3-cp310-cp310-win32.whl", hash = "sha256:10bbfe99883db80bdbaff2dcf681dfc6533a614f700da1287707e8a5d78a8431"}, {file = "MarkupSafe-2.1.3-cp310-cp310-win_amd64.whl", hash = "sha256:1577735524cdad32f9f694208aa75e422adba74f1baee7551620e43a3141f559"}, {file = "MarkupSafe-2.1.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:ad9e82fb8f09ade1c3e1b996a6337afac2b8b9e365f926f5a61aacc71adc5b3c"}, {file = "MarkupSafe-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3c0fae6c3be832a0a0473ac912810b2877c8cb9d76ca48de1ed31e1c68386575"}, {file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b076b6226fb84157e3f7c971a47ff3a679d837cf338547532ab866c57930dbee"}, {file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bfce63a9e7834b12b87c64d6b155fdd9b3b96191b6bd334bf37db7ff1fe457f2"}, {file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:338ae27d6b8745585f87218a3f23f1512dbf52c26c28e322dbe54bcede54ccb9"}, {file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e4dd52d80b8c83fdce44e12478ad2e85c64ea965e75d66dbeafb0a3e77308fcc"}, {file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:df0be2b576a7abbf737b1575f048c23fb1d769f267ec4358296f31c2479db8f9"}, {file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5bbe06f8eeafd38e5d0a4894ffec89378b6c6a625ff57e3028921f8ff59318ac"}, {file = "MarkupSafe-2.1.3-cp311-cp311-win32.whl", hash = "sha256:dd15ff04ffd7e05ffcb7fe79f1b98041b8ea30ae9234aed2a9168b5797c3effb"}, {file = "MarkupSafe-2.1.3-cp311-cp311-win_amd64.whl", hash = "sha256:134da1eca9ec0ae528110ccc9e48041e0828d79f24121a1a146161103c76e686"}, {file = "MarkupSafe-2.1.3-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:f698de3fd0c4e6972b92290a45bd9b1536bffe8c6759c62471efaa8acb4c37bc"}, {file = "MarkupSafe-2.1.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aa57bd9cf8ae831a362185ee444e15a93ecb2e344c8e52e4d721ea3ab6ef1823"}, {file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffcc3f7c66b5f5b7931a5aa68fc9cecc51e685ef90282f4a82f0f5e9b704ad11"}, {file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:47d4f1c5f80fc62fdd7777d0d40a2e9dda0a05883ab11374334f6c4de38adffd"}, {file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1f67c7038d560d92149c060157d623c542173016c4babc0c1913cca0564b9939"}, {file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:9aad3c1755095ce347e26488214ef77e0485a3c34a50c5a5e2471dff60b9dd9c"}, {file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:14ff806850827afd6b07a5f32bd917fb7f45b046ba40c57abdb636674a8b559c"}, {file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8f9293864fe09b8149f0cc42ce56e3f0e54de883a9de90cd427f191c346eb2e1"}, {file = "MarkupSafe-2.1.3-cp312-cp312-win32.whl", hash = "sha256:715d3562f79d540f251b99ebd6d8baa547118974341db04f5ad06d5ea3eb8007"}, {file = "MarkupSafe-2.1.3-cp312-cp312-win_amd64.whl", hash = "sha256:1b8dd8c3fd14349433c79fa8abeb573a55fc0fdd769133baac1f5e07abf54aeb"}, {file = "MarkupSafe-2.1.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8e254ae696c88d98da6555f5ace2279cf7cd5b3f52be2b5cf97feafe883b58d2"}, {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb0932dc158471523c9637e807d9bfb93e06a95cbf010f1a38b98623b929ef2b"}, {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9402b03f1a1b4dc4c19845e5c749e3ab82d5078d16a2a4c2cd2df62d57bb0707"}, {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca379055a47383d02a5400cb0d110cef0a776fc644cda797db0c5696cfd7e18e"}, {file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:b7ff0f54cb4ff66dd38bebd335a38e2c22c41a8ee45aa608efc890ac3e3931bc"}, {file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:c011a4149cfbcf9f03994ec2edffcb8b1dc2d2aede7ca243746df97a5d41ce48"}, {file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:56d9f2ecac662ca1611d183feb03a3fa4406469dafe241673d521dd5ae92a155"}, {file = "MarkupSafe-2.1.3-cp37-cp37m-win32.whl", hash = "sha256:8758846a7e80910096950b67071243da3e5a20ed2546e6392603c096778d48e0"}, {file = "MarkupSafe-2.1.3-cp37-cp37m-win_amd64.whl", hash = "sha256:787003c0ddb00500e49a10f2844fac87aa6ce977b90b0feaaf9de23c22508b24"}, {file = "MarkupSafe-2.1.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:2ef12179d3a291be237280175b542c07a36e7f60718296278d8593d21ca937d4"}, {file = "MarkupSafe-2.1.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2c1b19b3aaacc6e57b7e25710ff571c24d6c3613a45e905b1fde04d691b98ee0"}, {file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8afafd99945ead6e075b973fefa56379c5b5c53fd8937dad92c662da5d8fd5ee"}, {file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8c41976a29d078bb235fea9b2ecd3da465df42a562910f9022f1a03107bd02be"}, {file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d080e0a5eb2529460b30190fcfcc4199bd7f827663f858a226a81bc27beaa97e"}, {file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:69c0f17e9f5a7afdf2cc9fb2d1ce6aabdb3bafb7f38017c0b77862bcec2bbad8"}, {file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:504b320cd4b7eff6f968eddf81127112db685e81f7e36e75f9f84f0df46041c3"}, {file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:42de32b22b6b804f42c5d98be4f7e5e977ecdd9ee9b660fda1a3edf03b11792d"}, {file = "MarkupSafe-2.1.3-cp38-cp38-win32.whl", hash = "sha256:ceb01949af7121f9fc39f7d27f91be8546f3fb112c608bc4029aef0bab86a2a5"}, {file = "MarkupSafe-2.1.3-cp38-cp38-win_amd64.whl", hash = "sha256:1b40069d487e7edb2676d3fbdb2b0829ffa2cd63a2ec26c4938b2d34391b4ecc"}, {file = "MarkupSafe-2.1.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:8023faf4e01efadfa183e863fefde0046de576c6f14659e8782065bcece22198"}, {file = "MarkupSafe-2.1.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6b2b56950d93e41f33b4223ead100ea0fe11f8e6ee5f641eb753ce4b77a7042b"}, {file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9dcdfd0eaf283af041973bff14a2e143b8bd64e069f4c383416ecd79a81aab58"}, {file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05fb21170423db021895e1ea1e1f3ab3adb85d1c2333cbc2310f2a26bc77272e"}, {file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:282c2cb35b5b673bbcadb33a585408104df04f14b2d9b01d4c345a3b92861c2c"}, {file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ab4a0df41e7c16a1392727727e7998a467472d0ad65f3ad5e6e765015df08636"}, {file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7ef3cb2ebbf91e330e3bb937efada0edd9003683db6b57bb108c4001f37a02ea"}, {file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:0a4e4a1aff6c7ac4cd55792abf96c915634c2b97e3cc1c7129578aa68ebd754e"}, {file = "MarkupSafe-2.1.3-cp39-cp39-win32.whl", hash = "sha256:fec21693218efe39aa7f8599346e90c705afa52c5b31ae019b2e57e8f6542bb2"}, {file = "MarkupSafe-2.1.3-cp39-cp39-win_amd64.whl", hash = "sha256:3fd4abcb888d15a94f32b75d8fd18ee162ca0c064f35b11134be77050296d6ba"}, {file = "MarkupSafe-2.1.3.tar.gz", hash = "sha256:af598ed32d6ae86f1b747b82783958b1a4ab8f617b06fe68795c7f026abbdcad"}, ] [[package]] name = "mpmath" version = "1.3.0" description = "Python library for arbitrary-precision floating-point arithmetic" optional = true python-versions = "*" files = [ {file = "mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c"}, {file = "mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f"}, ] [package.extras] develop = ["codecov", "pycodestyle", "pytest (>=4.6)", "pytest-cov", "wheel"] docs = ["sphinx"] gmpy = ["gmpy2 (>=2.1.0a4)"] tests = ["pytest (>=4.6)"] [[package]] name = "multidict" version = "6.0.4" description = "multidict implementation" optional = true python-versions = ">=3.7" files = [ {file = "multidict-6.0.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0b1a97283e0c85772d613878028fec909f003993e1007eafa715b24b377cb9b8"}, {file = "multidict-6.0.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:eeb6dcc05e911516ae3d1f207d4b0520d07f54484c49dfc294d6e7d63b734171"}, {file = "multidict-6.0.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d6d635d5209b82a3492508cf5b365f3446afb65ae7ebd755e70e18f287b0adf7"}, {file = "multidict-6.0.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c048099e4c9e9d615545e2001d3d8a4380bd403e1a0578734e0d31703d1b0c0b"}, {file = "multidict-6.0.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ea20853c6dbbb53ed34cb4d080382169b6f4554d394015f1bef35e881bf83547"}, {file = "multidict-6.0.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:16d232d4e5396c2efbbf4f6d4df89bfa905eb0d4dc5b3549d872ab898451f569"}, {file = "multidict-6.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:36c63aaa167f6c6b04ef2c85704e93af16c11d20de1d133e39de6a0e84582a93"}, {file = "multidict-6.0.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:64bdf1086b6043bf519869678f5f2757f473dee970d7abf6da91ec00acb9cb98"}, {file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:43644e38f42e3af682690876cff722d301ac585c5b9e1eacc013b7a3f7b696a0"}, {file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:7582a1d1030e15422262de9f58711774e02fa80df0d1578995c76214f6954988"}, {file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:ddff9c4e225a63a5afab9dd15590432c22e8057e1a9a13d28ed128ecf047bbdc"}, {file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:ee2a1ece51b9b9e7752e742cfb661d2a29e7bcdba2d27e66e28a99f1890e4fa0"}, {file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a2e4369eb3d47d2034032a26c7a80fcb21a2cb22e1173d761a162f11e562caa5"}, {file = "multidict-6.0.4-cp310-cp310-win32.whl", hash = "sha256:574b7eae1ab267e5f8285f0fe881f17efe4b98c39a40858247720935b893bba8"}, {file = "multidict-6.0.4-cp310-cp310-win_amd64.whl", hash = "sha256:4dcbb0906e38440fa3e325df2359ac6cb043df8e58c965bb45f4e406ecb162cc"}, {file = "multidict-6.0.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:0dfad7a5a1e39c53ed00d2dd0c2e36aed4650936dc18fd9a1826a5ae1cad6f03"}, {file = "multidict-6.0.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:64da238a09d6039e3bd39bb3aee9c21a5e34f28bfa5aa22518581f910ff94af3"}, {file = "multidict-6.0.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ff959bee35038c4624250473988b24f846cbeb2c6639de3602c073f10410ceba"}, {file = "multidict-6.0.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:01a3a55bd90018c9c080fbb0b9f4891db37d148a0a18722b42f94694f8b6d4c9"}, {file = "multidict-6.0.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c5cb09abb18c1ea940fb99360ea0396f34d46566f157122c92dfa069d3e0e982"}, {file = "multidict-6.0.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:666daae833559deb2d609afa4490b85830ab0dfca811a98b70a205621a6109fe"}, {file = "multidict-6.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11bdf3f5e1518b24530b8241529d2050014c884cf18b6fc69c0c2b30ca248710"}, {file = "multidict-6.0.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7d18748f2d30f94f498e852c67d61261c643b349b9d2a581131725595c45ec6c"}, {file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:458f37be2d9e4c95e2d8866a851663cbc76e865b78395090786f6cd9b3bbf4f4"}, {file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:b1a2eeedcead3a41694130495593a559a668f382eee0727352b9a41e1c45759a"}, {file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:7d6ae9d593ef8641544d6263c7fa6408cc90370c8cb2bbb65f8d43e5b0351d9c"}, {file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:5979b5632c3e3534e42ca6ff856bb24b2e3071b37861c2c727ce220d80eee9ed"}, {file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:dcfe792765fab89c365123c81046ad4103fcabbc4f56d1c1997e6715e8015461"}, {file = "multidict-6.0.4-cp311-cp311-win32.whl", hash = "sha256:3601a3cece3819534b11d4efc1eb76047488fddd0c85a3948099d5da4d504636"}, {file = "multidict-6.0.4-cp311-cp311-win_amd64.whl", hash = "sha256:81a4f0b34bd92df3da93315c6a59034df95866014ac08535fc819f043bfd51f0"}, {file = "multidict-6.0.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:67040058f37a2a51ed8ea8f6b0e6ee5bd78ca67f169ce6122f3e2ec80dfe9b78"}, {file = "multidict-6.0.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:853888594621e6604c978ce2a0444a1e6e70c8d253ab65ba11657659dcc9100f"}, {file = "multidict-6.0.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:39ff62e7d0f26c248b15e364517a72932a611a9b75f35b45be078d81bdb86603"}, {file = "multidict-6.0.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:af048912e045a2dc732847d33821a9d84ba553f5c5f028adbd364dd4765092ac"}, {file = "multidict-6.0.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1e8b901e607795ec06c9e42530788c45ac21ef3aaa11dbd0c69de543bfb79a9"}, {file = "multidict-6.0.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:62501642008a8b9871ddfccbf83e4222cf8ac0d5aeedf73da36153ef2ec222d2"}, {file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:99b76c052e9f1bc0721f7541e5e8c05db3941eb9ebe7b8553c625ef88d6eefde"}, {file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:509eac6cf09c794aa27bcacfd4d62c885cce62bef7b2c3e8b2e49d365b5003fe"}, {file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:21a12c4eb6ddc9952c415f24eef97e3e55ba3af61f67c7bc388dcdec1404a067"}, {file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:5cad9430ab3e2e4fa4a2ef4450f548768400a2ac635841bc2a56a2052cdbeb87"}, {file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ab55edc2e84460694295f401215f4a58597f8f7c9466faec545093045476327d"}, {file = "multidict-6.0.4-cp37-cp37m-win32.whl", hash = "sha256:5a4dcf02b908c3b8b17a45fb0f15b695bf117a67b76b7ad18b73cf8e92608775"}, {file = "multidict-6.0.4-cp37-cp37m-win_amd64.whl", hash = "sha256:6ed5f161328b7df384d71b07317f4d8656434e34591f20552c7bcef27b0ab88e"}, {file = "multidict-6.0.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5fc1b16f586f049820c5c5b17bb4ee7583092fa0d1c4e28b5239181ff9532e0c"}, {file = "multidict-6.0.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1502e24330eb681bdaa3eb70d6358e818e8e8f908a22a1851dfd4e15bc2f8161"}, {file = "multidict-6.0.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b692f419760c0e65d060959df05f2a531945af31fda0c8a3b3195d4efd06de11"}, {file = "multidict-6.0.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45e1ecb0379bfaab5eef059f50115b54571acfbe422a14f668fc8c27ba410e7e"}, {file = "multidict-6.0.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ddd3915998d93fbcd2566ddf9cf62cdb35c9e093075f862935573d265cf8f65d"}, {file = "multidict-6.0.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:59d43b61c59d82f2effb39a93c48b845efe23a3852d201ed2d24ba830d0b4cf2"}, {file = "multidict-6.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc8e1d0c705233c5dd0c5e6460fbad7827d5d36f310a0fadfd45cc3029762258"}, {file = "multidict-6.0.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d6aa0418fcc838522256761b3415822626f866758ee0bc6632c9486b179d0b52"}, {file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6748717bb10339c4760c1e63da040f5f29f5ed6e59d76daee30305894069a660"}, {file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:4d1a3d7ef5e96b1c9e92f973e43aa5e5b96c659c9bc3124acbbd81b0b9c8a951"}, {file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4372381634485bec7e46718edc71528024fcdc6f835baefe517b34a33c731d60"}, {file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:fc35cb4676846ef752816d5be2193a1e8367b4c1397b74a565a9d0389c433a1d"}, {file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:4b9d9e4e2b37daddb5c23ea33a3417901fa7c7b3dee2d855f63ee67a0b21e5b1"}, {file = "multidict-6.0.4-cp38-cp38-win32.whl", hash = "sha256:e41b7e2b59679edfa309e8db64fdf22399eec4b0b24694e1b2104fb789207779"}, {file = "multidict-6.0.4-cp38-cp38-win_amd64.whl", hash = "sha256:d6c254ba6e45d8e72739281ebc46ea5eb5f101234f3ce171f0e9f5cc86991480"}, {file = "multidict-6.0.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:16ab77bbeb596e14212e7bab8429f24c1579234a3a462105cda4a66904998664"}, {file = "multidict-6.0.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bc779e9e6f7fda81b3f9aa58e3a6091d49ad528b11ed19f6621408806204ad35"}, {file = "multidict-6.0.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4ceef517eca3e03c1cceb22030a3e39cb399ac86bff4e426d4fc6ae49052cc60"}, {file = "multidict-6.0.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:281af09f488903fde97923c7744bb001a9b23b039a909460d0f14edc7bf59706"}, {file = "multidict-6.0.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:52f2dffc8acaba9a2f27174c41c9e57f60b907bb9f096b36b1a1f3be71c6284d"}, {file = "multidict-6.0.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b41156839806aecb3641f3208c0dafd3ac7775b9c4c422d82ee2a45c34ba81ca"}, {file = "multidict-6.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d5e3fc56f88cc98ef8139255cf8cd63eb2c586531e43310ff859d6bb3a6b51f1"}, {file = "multidict-6.0.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8316a77808c501004802f9beebde51c9f857054a0c871bd6da8280e718444449"}, {file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:f70b98cd94886b49d91170ef23ec5c0e8ebb6f242d734ed7ed677b24d50c82cf"}, {file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bf6774e60d67a9efe02b3616fee22441d86fab4c6d335f9d2051d19d90a40063"}, {file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:e69924bfcdda39b722ef4d9aa762b2dd38e4632b3641b1d9a57ca9cd18f2f83a"}, {file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:6b181d8c23da913d4ff585afd1155a0e1194c0b50c54fcfe286f70cdaf2b7176"}, {file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:52509b5be062d9eafc8170e53026fbc54cf3b32759a23d07fd935fb04fc22d95"}, {file = "multidict-6.0.4-cp39-cp39-win32.whl", hash = "sha256:27c523fbfbdfd19c6867af7346332b62b586eed663887392cff78d614f9ec313"}, {file = "multidict-6.0.4-cp39-cp39-win_amd64.whl", hash = "sha256:33029f5734336aa0d4c0384525da0387ef89148dc7191aae00ca5fb23d7aafc2"}, {file = "multidict-6.0.4.tar.gz", hash = "sha256:3666906492efb76453c0e7b97f2cf459b0682e7402c0489a95484965dbc1da49"}, ] [[package]] name = "multiprocess" version = "0.70.15" description = "better multiprocessing and multithreading in Python" optional = true python-versions = ">=3.7" files = [ {file = "multiprocess-0.70.15-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:aa36c7ed16f508091438687fe9baa393a7a8e206731d321e443745e743a0d4e5"}, {file = "multiprocess-0.70.15-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:20e024018c46d0d1602024c613007ac948f9754659e3853b0aa705e83f6931d8"}, {file = "multiprocess-0.70.15-pp37-pypy37_pp73-manylinux_2_24_i686.whl", hash = "sha256:e576062981c91f0fe8a463c3d52506e598dfc51320a8dd8d78b987dfca91c5db"}, {file = "multiprocess-0.70.15-pp37-pypy37_pp73-manylinux_2_24_x86_64.whl", hash = "sha256:e73f497e6696a0f5433ada2b3d599ae733b87a6e8b008e387c62ac9127add177"}, {file = "multiprocess-0.70.15-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:73db2e7b32dcc7f9b0f075c2ffa45c90b6729d3f1805f27e88534c8d321a1be5"}, {file = "multiprocess-0.70.15-pp38-pypy38_pp73-manylinux_2_24_i686.whl", hash = "sha256:4271647bd8a49c28ecd6eb56a7fdbd3c212c45529ad5303b40b3c65fc6928e5f"}, {file = "multiprocess-0.70.15-pp38-pypy38_pp73-manylinux_2_24_x86_64.whl", hash = "sha256:cf981fb998d6ec3208cb14f0cf2e9e80216e834f5d51fd09ebc937c32b960902"}, {file = "multiprocess-0.70.15-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:18f9f2c7063346d1617bd1684fdcae8d33380ae96b99427260f562e1a1228b67"}, {file = "multiprocess-0.70.15-pp39-pypy39_pp73-manylinux_2_24_i686.whl", hash = "sha256:0eac53214d664c49a34695e5824872db4006b1a465edd7459a251809c3773370"}, {file = "multiprocess-0.70.15-pp39-pypy39_pp73-manylinux_2_24_x86_64.whl", hash = "sha256:1a51dd34096db47fb21fa2b839e615b051d51b97af9a67afbcdaa67186b44883"}, {file = "multiprocess-0.70.15-py310-none-any.whl", hash = "sha256:7dd58e33235e83cf09d625e55cffd7b0f0eede7ee9223cdd666a87624f60c21a"}, {file = "multiprocess-0.70.15-py311-none-any.whl", hash = "sha256:134f89053d82c9ed3b73edd3a2531eb791e602d4f4156fc92a79259590bd9670"}, {file = "multiprocess-0.70.15-py37-none-any.whl", hash = "sha256:f7d4a1629bccb433114c3b4885f69eccc200994323c80f6feee73b0edc9199c5"}, {file = "multiprocess-0.70.15-py38-none-any.whl", hash = "sha256:bee9afba476c91f9ebee7beeee0601face9eff67d822e893f9a893725fbd6316"}, {file = "multiprocess-0.70.15-py39-none-any.whl", hash = "sha256:3e0953f5d52b4c76f1c973eaf8214554d146f2be5decb48e928e55c7a2d19338"}, {file = "multiprocess-0.70.15.tar.gz", hash = "sha256:f20eed3036c0ef477b07a4177cf7c1ba520d9a2677870a4f47fe026f0cd6787e"}, ] [package.dependencies] dill = ">=0.3.7" [[package]] name = "networkx" version = "3.2.1" description = "Python package for creating and manipulating graphs and networks" optional = true python-versions = ">=3.9" files = [ {file = "networkx-3.2.1-py3-none-any.whl", hash = "sha256:f18c69adc97877c42332c170849c96cefa91881c99a7cb3e95b7c659ebdc1ec2"}, {file = "networkx-3.2.1.tar.gz", hash = "sha256:9f1bb5cf3409bf324e0a722c20bdb4c20ee39bf1c30ce8ae499c8502b0b5e0c6"}, ] [package.extras] default = ["matplotlib (>=3.5)", "numpy (>=1.22)", "pandas (>=1.4)", "scipy (>=1.9,!=1.11.0,!=1.11.1)"] developer = ["changelist (==0.4)", "mypy (>=1.1)", "pre-commit (>=3.2)", "rtoml"] doc = ["nb2plots (>=0.7)", "nbconvert (<7.9)", "numpydoc (>=1.6)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.14)", "sphinx (>=7)", "sphinx-gallery (>=0.14)", "texext (>=0.6.7)"] extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.11)", "sympy (>=1.10)"] test = ["pytest (>=7.2)", "pytest-cov (>=4.0)"] [[package]] name = "numpy" version = "1.26.2" description = "Fundamental package for array computing in Python" optional = false python-versions = ">=3.9" files = [ {file = "numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3703fc9258a4a122d17043e57b35e5ef1c5a5837c3db8be396c82e04c1cf9b0f"}, {file = "numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:cc392fdcbd21d4be6ae1bb4475a03ce3b025cd49a9be5345d76d7585aea69440"}, {file = "numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:36340109af8da8805d8851ef1d74761b3b88e81a9bd80b290bbfed61bd2b4f75"}, {file = "numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bcc008217145b3d77abd3e4d5ef586e3bdfba8fe17940769f8aa09b99e856c00"}, {file = "numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:3ced40d4e9e18242f70dd02d739e44698df3dcb010d31f495ff00a31ef6014fe"}, {file = "numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b272d4cecc32c9e19911891446b72e986157e6a1809b7b56518b4f3755267523"}, {file = "numpy-1.26.2-cp310-cp310-win32.whl", hash = "sha256:22f8fc02fdbc829e7a8c578dd8d2e15a9074b630d4da29cda483337e300e3ee9"}, {file = "numpy-1.26.2-cp310-cp310-win_amd64.whl", hash = "sha256:26c9d33f8e8b846d5a65dd068c14e04018d05533b348d9eaeef6c1bd787f9919"}, {file = "numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b96e7b9c624ef3ae2ae0e04fa9b460f6b9f17ad8b4bec6d7756510f1f6c0c841"}, {file = "numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:aa18428111fb9a591d7a9cc1b48150097ba6a7e8299fb56bdf574df650e7d1f1"}, {file = "numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:06fa1ed84aa60ea6ef9f91ba57b5ed963c3729534e6e54055fc151fad0423f0a"}, {file = "numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:96ca5482c3dbdd051bcd1fce8034603d6ebfc125a7bd59f55b40d8f5d246832b"}, {file = "numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:854ab91a2906ef29dc3925a064fcd365c7b4da743f84b123002f6139bcb3f8a7"}, {file = "numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f43740ab089277d403aa07567be138fc2a89d4d9892d113b76153e0e412409f8"}, {file = "numpy-1.26.2-cp311-cp311-win32.whl", hash = "sha256:a2bbc29fcb1771cd7b7425f98b05307776a6baf43035d3b80c4b0f29e9545186"}, {file = "numpy-1.26.2-cp311-cp311-win_amd64.whl", hash = "sha256:2b3fca8a5b00184828d12b073af4d0fc5fdd94b1632c2477526f6bd7842d700d"}, {file = "numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a4cd6ed4a339c21f1d1b0fdf13426cb3b284555c27ac2f156dfdaaa7e16bfab0"}, {file = "numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5d5244aabd6ed7f312268b9247be47343a654ebea52a60f002dc70c769048e75"}, {file = "numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a3cdb4d9c70e6b8c0814239ead47da00934666f668426fc6e94cce869e13fd7"}, {file = "numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa317b2325f7aa0a9471663e6093c210cb2ae9c0ad824732b307d2c51983d5b6"}, {file = "numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:174a8880739c16c925799c018f3f55b8130c1f7c8e75ab0a6fa9d41cab092fd6"}, {file = "numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:f79b231bf5c16b1f39c7f4875e1ded36abee1591e98742b05d8a0fb55d8a3eec"}, {file = "numpy-1.26.2-cp312-cp312-win32.whl", hash = "sha256:4a06263321dfd3598cacb252f51e521a8cb4b6df471bb12a7ee5cbab20ea9167"}, {file = "numpy-1.26.2-cp312-cp312-win_amd64.whl", hash = "sha256:b04f5dc6b3efdaab541f7857351aac359e6ae3c126e2edb376929bd3b7f92d7e"}, {file = "numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4eb8df4bf8d3d90d091e0146f6c28492b0be84da3e409ebef54349f71ed271ef"}, {file = "numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1a13860fdcd95de7cf58bd6f8bc5a5ef81c0b0625eb2c9a783948847abbef2c2"}, {file = "numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:64308ebc366a8ed63fd0bf426b6a9468060962f1a4339ab1074c228fa6ade8e3"}, {file = "numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baf8aab04a2c0e859da118f0b38617e5ee65d75b83795055fb66c0d5e9e9b818"}, {file = "numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d73a3abcac238250091b11caef9ad12413dab01669511779bc9b29261dd50210"}, {file = "numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:b361d369fc7e5e1714cf827b731ca32bff8d411212fccd29ad98ad622449cc36"}, {file = "numpy-1.26.2-cp39-cp39-win32.whl", hash = "sha256:bd3f0091e845164a20bd5a326860c840fe2af79fa12e0469a12768a3ec578d80"}, {file = "numpy-1.26.2-cp39-cp39-win_amd64.whl", hash = "sha256:2beef57fb031dcc0dc8fa4fe297a742027b954949cabb52a2a376c144e5e6060"}, {file = "numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:1cc3d5029a30fb5f06704ad6b23b35e11309491c999838c31f124fee32107c79"}, {file = "numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94cc3c222bb9fb5a12e334d0479b97bb2df446fbe622b470928f5284ffca3f8d"}, {file = "numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:fe6b44fb8fcdf7eda4ef4461b97b3f63c466b27ab151bec2366db8b197387841"}, {file = "numpy-1.26.2.tar.gz", hash = "sha256:f65738447676ab5777f11e6bbbdb8ce11b785e105f690bc45966574816b6d3ea"}, ] [[package]] name = "nvidia-cublas-cu12" version = "12.1.3.1" description = "CUBLAS native runtime libraries" optional = true python-versions = ">=3" files = [ {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:ee53ccca76a6fc08fb9701aa95b6ceb242cdaab118c3bb152af4e579af792728"}, {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-win_amd64.whl", hash = "sha256:2b964d60e8cf11b5e1073d179d85fa340c120e99b3067558f3cf98dd69d02906"}, ] [[package]] name = "nvidia-cuda-cupti-cu12" version = "12.1.105" description = "CUDA profiling tools runtime libs." optional = true python-versions = ">=3" files = [ {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:e54fde3983165c624cb79254ae9818a456eb6e87a7fd4d56a2352c24ee542d7e"}, {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:bea8236d13a0ac7190bd2919c3e8e6ce1e402104276e6f9694479e48bb0eb2a4"}, ] [[package]] name = "nvidia-cuda-nvrtc-cu12" version = "12.1.105" description = "NVRTC native runtime libraries" optional = true python-versions = ">=3" files = [ {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:339b385f50c309763ca65456ec75e17bbefcbbf2893f462cb8b90584cd27a1c2"}, {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:0a98a522d9ff138b96c010a65e145dc1b4850e9ecb75a0172371793752fd46ed"}, ] [[package]] name = "nvidia-cuda-runtime-cu12" version = "12.1.105" description = "CUDA Runtime native Libraries" optional = true python-versions = ">=3" files = [ {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:6e258468ddf5796e25f1dc591a31029fa317d97a0a94ed93468fc86301d61e40"}, {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:dfb46ef84d73fababab44cf03e3b83f80700d27ca300e537f85f636fac474344"}, ] [[package]] name = "nvidia-cudnn-cu12" version = "8.9.2.26" description = "cuDNN runtime libraries" optional = true python-versions = ">=3" files = [ {file = "nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl", hash = "sha256:5ccb288774fdfb07a7e7025ffec286971c06d8d7b4fb162525334616d7629ff9"}, ] [package.dependencies] nvidia-cublas-cu12 = "*" [[package]] name = "nvidia-cufft-cu12" version = "11.0.2.54" description = "CUFFT native runtime libraries" optional = true python-versions = ">=3" files = [ {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl", hash = "sha256:794e3948a1aa71fd817c3775866943936774d1c14e7628c74f6f7417224cdf56"}, {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-win_amd64.whl", hash = "sha256:d9ac353f78ff89951da4af698f80870b1534ed69993f10a4cf1d96f21357e253"}, ] [[package]] name = "nvidia-curand-cu12" version = "10.3.2.106" description = "CURAND native runtime libraries" optional = true python-versions = ">=3" files = [ {file = "nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:9d264c5036dde4e64f1de8c50ae753237c12e0b1348738169cd0f8a536c0e1e0"}, {file = "nvidia_curand_cu12-10.3.2.106-py3-none-win_amd64.whl", hash = "sha256:75b6b0c574c0037839121317e17fd01f8a69fd2ef8e25853d826fec30bdba74a"}, ] [[package]] name = "nvidia-cusolver-cu12" version = "11.4.5.107" description = "CUDA solver native runtime libraries" optional = true python-versions = ">=3" files = [ {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl", hash = "sha256:8a7ec542f0412294b15072fa7dab71d31334014a69f953004ea7a118206fe0dd"}, {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-win_amd64.whl", hash = "sha256:74e0c3a24c78612192a74fcd90dd117f1cf21dea4822e66d89e8ea80e3cd2da5"}, ] [package.dependencies] nvidia-cublas-cu12 = "*" nvidia-cusparse-cu12 = "*" nvidia-nvjitlink-cu12 = "*" [[package]] name = "nvidia-cusparse-cu12" version = "12.1.0.106" description = "CUSPARSE native runtime libraries" optional = true python-versions = ">=3" files = [ {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:f3b50f42cf363f86ab21f720998517a659a48131e8d538dc02f8768237bd884c"}, {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-win_amd64.whl", hash = "sha256:b798237e81b9719373e8fae8d4f091b70a0cf09d9d85c95a557e11df2d8e9a5a"}, ] [package.dependencies] nvidia-nvjitlink-cu12 = "*" [[package]] name = "nvidia-nccl-cu12" version = "2.18.1" description = "NVIDIA Collective Communication Library (NCCL) Runtime" optional = true python-versions = ">=3" files = [ {file = "nvidia_nccl_cu12-2.18.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:1a6c4acefcbebfa6de320f412bf7866de856e786e0462326ba1bac40de0b5e71"}, ] [[package]] name = "nvidia-nvjitlink-cu12" version = "12.3.101" description = "Nvidia JIT LTO Library" optional = true python-versions = ">=3" files = [ {file = "nvidia_nvjitlink_cu12-12.3.101-py3-none-manylinux1_x86_64.whl", hash = "sha256:64335a8088e2b9d196ae8665430bc6a2b7e6ef2eb877a9c735c804bd4ff6467c"}, {file = "nvidia_nvjitlink_cu12-12.3.101-py3-none-win_amd64.whl", hash = "sha256:1b2e317e437433753530792f13eece58f0aec21a2b05903be7bffe58a606cbd1"}, ] [[package]] name = "nvidia-nvtx-cu12" version = "12.1.105" description = "NVIDIA Tools Extension" optional = true python-versions = ">=3" files = [ {file = "nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:dc21cf308ca5691e7c04d962e213f8a4aa9bbfa23d95412f452254c2caeb09e5"}, {file = "nvidia_nvtx_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:65f4d98982b31b60026e0e6de73fbdfc09d08a96f4656dd3665ca616a11e1e82"}, ] [[package]] name = "opentelemetry-api" version = "1.15.0" description = "OpenTelemetry Python API" optional = false python-versions = ">=3.7" files = [ {file = "opentelemetry_api-1.15.0-py3-none-any.whl", hash = "sha256:e6c2d2e42140fd396e96edf75a7ceb11073f4efb4db87565a431cc9d0f93f2e0"}, {file = "opentelemetry_api-1.15.0.tar.gz", hash = "sha256:79ab791b4aaad27acc3dc3ba01596db5b5aac2ef75c70622c6038051d6c2cded"}, ] [package.dependencies] deprecated = ">=1.2.6" setuptools = ">=16.0" [[package]] name = "opentelemetry-exporter-otlp" version = "1.15.0" description = "OpenTelemetry Collector Exporters" optional = false python-versions = ">=3.7" files = [ {file = "opentelemetry_exporter_otlp-1.15.0-py3-none-any.whl", hash = "sha256:79f22748b6a54808a0448093dfa189c8490e729f67c134d4c992533d9393b33e"}, {file = "opentelemetry_exporter_otlp-1.15.0.tar.gz", hash = "sha256:4f7c49751d9720e2e726e13b0bb958ccade4e29122c305d92c033da432c8d2c5"}, ] [package.dependencies] opentelemetry-exporter-otlp-proto-grpc = "1.15.0" opentelemetry-exporter-otlp-proto-http = "1.15.0" [[package]] name = "opentelemetry-exporter-otlp-proto-grpc" version = "1.15.0" description = "OpenTelemetry Collector Protobuf over gRPC Exporter" optional = false python-versions = ">=3.7" files = [ {file = "opentelemetry_exporter_otlp_proto_grpc-1.15.0-py3-none-any.whl", hash = "sha256:c2a5492ba7d140109968135d641d06ce3c5bd73c50665f787526065d57d7fd1d"}, {file = "opentelemetry_exporter_otlp_proto_grpc-1.15.0.tar.gz", hash = "sha256:844f2a4bb9bcda34e4eb6fe36765e5031aacb36dc60ed88c90fc246942ea26e7"}, ] [package.dependencies] backoff = {version = ">=1.10.0,<3.0.0", markers = "python_version >= \"3.7\""} googleapis-common-protos = ">=1.52,<2.0" grpcio = ">=1.0.0,<2.0.0" opentelemetry-api = ">=1.12,<2.0" opentelemetry-proto = "1.15.0" opentelemetry-sdk = ">=1.12,<2.0" [package.extras] test = ["pytest-grpc"] [[package]] name = "opentelemetry-exporter-otlp-proto-http" version = "1.15.0" description = "OpenTelemetry Collector Protobuf over HTTP Exporter" optional = false python-versions = ">=3.7" files = [ {file = "opentelemetry_exporter_otlp_proto_http-1.15.0-py3-none-any.whl", hash = "sha256:3ec2a02196c8a54bf5cbf7fe623a5238625638e83b6047a983bdf96e2bbb74c0"}, {file = "opentelemetry_exporter_otlp_proto_http-1.15.0.tar.gz", hash = "sha256:11b2c814249a49b22f6cca7a06b05701f561d577b747f3660dfd67b6eb9daf9c"}, ] [package.dependencies] backoff = {version = ">=1.10.0,<3.0.0", markers = "python_version >= \"3.7\""} googleapis-common-protos = ">=1.52,<2.0" opentelemetry-api = ">=1.12,<2.0" opentelemetry-proto = "1.15.0" opentelemetry-sdk = ">=1.12,<2.0" requests = ">=2.7,<3.0" [package.extras] test = ["responses (==0.22.0)"] [[package]] name = "opentelemetry-instrumentation" version = "0.36b0" description = "Instrumentation Tools & Auto Instrumentation for OpenTelemetry Python" optional = false python-versions = ">=3.7" files = [ {file = "opentelemetry_instrumentation-0.36b0-py3-none-any.whl", hash = "sha256:83ba4ae7d5292b5b33e0f851cc5c76d8f91196b9b3527800fc13855c33383ac2"}, {file = "opentelemetry_instrumentation-0.36b0.tar.gz", hash = "sha256:e3ddac9b3b93408ef26c8ecbf38f717042977e16381bb4cd329a5b4cf16998cf"}, ] [package.dependencies] opentelemetry-api = ">=1.4,<2.0" setuptools = ">=16.0" wrapt = ">=1.0.0,<2.0.0" [[package]] name = "opentelemetry-instrumentation-grpc" version = "0.36b0" description = "OpenTelemetry gRPC instrumentation" optional = false python-versions = ">=3.7" files = [ {file = "opentelemetry_instrumentation_grpc-0.36b0-py3-none-any.whl", hash = "sha256:eaa246ed2083c97b13bab2555cb9d170e8433230a31476c4cab8a17fa03380a4"}, {file = "opentelemetry_instrumentation_grpc-0.36b0.tar.gz", hash = "sha256:dc89447c9eb6ea868970f6c13b4ffdac182cdd5a41dd215a0f5393ca6375be55"}, ] [package.dependencies] opentelemetry-api = ">=1.12,<2.0" opentelemetry-instrumentation = "0.36b0" opentelemetry-sdk = ">=1.12,<2.0" opentelemetry-semantic-conventions = "0.36b0" wrapt = ">=1.0.0,<2.0.0" [package.extras] instruments = ["grpcio (>=1.27,<2.0)"] test = ["opentelemetry-instrumentation-grpc[instruments]", "opentelemetry-sdk (>=1.12,<2.0)", "opentelemetry-test-utils (==0.36b0)", "protobuf (>=3.13,<4.0)"] [[package]] name = "opentelemetry-proto" version = "1.15.0" description = "OpenTelemetry Python Proto" optional = false python-versions = ">=3.7" files = [ {file = "opentelemetry_proto-1.15.0-py3-none-any.whl", hash = "sha256:044b6d044b4d10530f250856f933442b8753a17f94ae37c207607f733fb9a844"}, {file = "opentelemetry_proto-1.15.0.tar.gz", hash = "sha256:9c4008e40ac8cab359daac283fbe7002c5c29c77ea2674ad5626a249e64e0101"}, ] [package.dependencies] protobuf = ">=3.19,<5.0" [[package]] name = "opentelemetry-sdk" version = "1.15.0" description = "OpenTelemetry Python SDK" optional = false python-versions = ">=3.7" files = [ {file = "opentelemetry_sdk-1.15.0-py3-none-any.whl", hash = "sha256:555c533e9837766119bbccc7a80458c9971d853a6f1da683a2246cd5e53b4645"}, {file = "opentelemetry_sdk-1.15.0.tar.gz", hash = "sha256:98dbffcfeebcbff12c0c974292d6ea603180a145904cf838b1fe4d5c99078425"}, ] [package.dependencies] opentelemetry-api = "1.15.0" opentelemetry-semantic-conventions = "0.36b0" setuptools = ">=16.0" typing-extensions = ">=3.7.4" [[package]] name = "opentelemetry-semantic-conventions" version = "0.36b0" description = "OpenTelemetry Semantic Conventions" optional = false python-versions = ">=3.7" files = [ {file = "opentelemetry_semantic_conventions-0.36b0-py3-none-any.whl", hash = "sha256:adc05635e87b9d3e007c9f530eed487fc3ef2177d02f82f674f28ebf9aff8243"}, {file = "opentelemetry_semantic_conventions-0.36b0.tar.gz", hash = "sha256:829dc221795467d98b773c04096e29be038d77526dc8d6ac76f546fb6279bf01"}, ] [[package]] name = "packaging" version = "23.2" description = "Core utilities for Python packages" optional = false python-versions = ">=3.7" files = [ {file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"}, {file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"}, ] [[package]] name = "pandas" version = "2.1.4" description = "Powerful data structures for data analysis, time series, and statistics" optional = true python-versions = ">=3.9" files = [ {file = "pandas-2.1.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bdec823dc6ec53f7a6339a0e34c68b144a7a1fd28d80c260534c39c62c5bf8c9"}, {file = "pandas-2.1.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:294d96cfaf28d688f30c918a765ea2ae2e0e71d3536754f4b6de0ea4a496d034"}, {file = "pandas-2.1.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b728fb8deba8905b319f96447a27033969f3ea1fea09d07d296c9030ab2ed1d"}, {file = "pandas-2.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:00028e6737c594feac3c2df15636d73ace46b8314d236100b57ed7e4b9ebe8d9"}, {file = "pandas-2.1.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:426dc0f1b187523c4db06f96fb5c8d1a845e259c99bda74f7de97bd8a3bb3139"}, {file = "pandas-2.1.4-cp310-cp310-win_amd64.whl", hash = "sha256:f237e6ca6421265643608813ce9793610ad09b40154a3344a088159590469e46"}, {file = "pandas-2.1.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b7d852d16c270e4331f6f59b3e9aa23f935f5c4b0ed2d0bc77637a8890a5d092"}, {file = "pandas-2.1.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bd7d5f2f54f78164b3d7a40f33bf79a74cdee72c31affec86bfcabe7e0789821"}, {file = "pandas-2.1.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0aa6e92e639da0d6e2017d9ccff563222f4eb31e4b2c3cf32a2a392fc3103c0d"}, {file = "pandas-2.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d797591b6846b9db79e65dc2d0d48e61f7db8d10b2a9480b4e3faaddc421a171"}, {file = "pandas-2.1.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d2d3e7b00f703aea3945995ee63375c61b2e6aa5aa7871c5d622870e5e137623"}, {file = "pandas-2.1.4-cp311-cp311-win_amd64.whl", hash = "sha256:dc9bf7ade01143cddc0074aa6995edd05323974e6e40d9dbde081021ded8510e"}, {file = "pandas-2.1.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:482d5076e1791777e1571f2e2d789e940dedd927325cc3cb6d0800c6304082f6"}, {file = "pandas-2.1.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8a706cfe7955c4ca59af8c7a0517370eafbd98593155b48f10f9811da440248b"}, {file = "pandas-2.1.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b0513a132a15977b4a5b89aabd304647919bc2169eac4c8536afb29c07c23540"}, {file = "pandas-2.1.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9f17f2b6fc076b2a0078862547595d66244db0f41bf79fc5f64a5c4d635bead"}, {file = "pandas-2.1.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:45d63d2a9b1b37fa6c84a68ba2422dc9ed018bdaa668c7f47566a01188ceeec1"}, {file = "pandas-2.1.4-cp312-cp312-win_amd64.whl", hash = "sha256:f69b0c9bb174a2342818d3e2778584e18c740d56857fc5cdb944ec8bbe4082cf"}, {file = "pandas-2.1.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3f06bda01a143020bad20f7a85dd5f4a1600112145f126bc9e3e42077c24ef34"}, {file = "pandas-2.1.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab5796839eb1fd62a39eec2916d3e979ec3130509930fea17fe6f81e18108f6a"}, {file = "pandas-2.1.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edbaf9e8d3a63a9276d707b4d25930a262341bca9874fcb22eff5e3da5394732"}, {file = "pandas-2.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ebfd771110b50055712b3b711b51bee5d50135429364d0498e1213a7adc2be8"}, {file = "pandas-2.1.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8ea107e0be2aba1da619cc6ba3f999b2bfc9669a83554b1904ce3dd9507f0860"}, {file = "pandas-2.1.4-cp39-cp39-win_amd64.whl", hash = "sha256:d65148b14788b3758daf57bf42725caa536575da2b64df9964c563b015230984"}, {file = "pandas-2.1.4.tar.gz", hash = "sha256:fcb68203c833cc735321512e13861358079a96c174a61f5116a1de89c58c0ef7"}, ] [package.dependencies] numpy = [ {version = ">=1.22.4,<2", markers = "python_version < \"3.11\""}, {version = ">=1.23.2,<2", markers = "python_version == \"3.11\""}, {version = ">=1.26.0,<2", markers = "python_version >= \"3.12\""}, ] python-dateutil = ">=2.8.2" pytz = ">=2020.1" tzdata = ">=2022.1" [package.extras] all = ["PyQt5 (>=5.15.6)", "SQLAlchemy (>=1.4.36)", "beautifulsoup4 (>=4.11.1)", "bottleneck (>=1.3.4)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=0.8.1)", "fsspec (>=2022.05.0)", "gcsfs (>=2022.05.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.8.0)", "matplotlib (>=3.6.1)", "numba (>=0.55.2)", "numexpr (>=2.8.0)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.10)", "pandas-gbq (>=0.17.5)", "psycopg2 (>=2.9.3)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.5)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)", "pyxlsb (>=1.0.9)", "qtpy (>=2.2.0)", "s3fs (>=2022.05.0)", "scipy (>=1.8.1)", "tables (>=3.7.0)", "tabulate (>=0.8.10)", "xarray (>=2022.03.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.3)", "zstandard (>=0.17.0)"] aws = ["s3fs (>=2022.05.0)"] clipboard = ["PyQt5 (>=5.15.6)", "qtpy (>=2.2.0)"] compression = ["zstandard (>=0.17.0)"] computation = ["scipy (>=1.8.1)", "xarray (>=2022.03.0)"] consortium-standard = ["dataframe-api-compat (>=0.1.7)"] excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.10)", "pyxlsb (>=1.0.9)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.3)"] feather = ["pyarrow (>=7.0.0)"] fss = ["fsspec (>=2022.05.0)"] gcp = ["gcsfs (>=2022.05.0)", "pandas-gbq (>=0.17.5)"] hdf5 = ["tables (>=3.7.0)"] html = ["beautifulsoup4 (>=4.11.1)", "html5lib (>=1.1)", "lxml (>=4.8.0)"] mysql = ["SQLAlchemy (>=1.4.36)", "pymysql (>=1.0.2)"] output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.8.10)"] parquet = ["pyarrow (>=7.0.0)"] performance = ["bottleneck (>=1.3.4)", "numba (>=0.55.2)", "numexpr (>=2.8.0)"] plot = ["matplotlib (>=3.6.1)"] postgresql = ["SQLAlchemy (>=1.4.36)", "psycopg2 (>=2.9.3)"] spss = ["pyreadstat (>=1.1.5)"] sql-other = ["SQLAlchemy (>=1.4.36)"] test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"] xml = ["lxml (>=4.8.0)"] [[package]] name = "peft" version = "0.4.0" description = "Parameter-Efficient Fine-Tuning (PEFT)" optional = true python-versions = ">=3.8.0" files = [ {file = "peft-0.4.0-py3-none-any.whl", hash = "sha256:2cf992772a6d703814477e0bdcdadd68cb8ea388111ce2d793dd2ff0e438f357"}, {file = "peft-0.4.0.tar.gz", hash = "sha256:e768fa22d6e9f32aa7e891f0d06f355960278ca4dc0cdd96bff71f6f06269207"}, ] [package.dependencies] accelerate = "*" numpy = ">=1.17" packaging = ">=20.0" psutil = "*" pyyaml = "*" safetensors = "*" torch = ">=1.13.0" transformers = "*" [package.extras] dev = ["black (>=22.0,<23.0)", "hf-doc-builder", "ruff (>=0.0.241)", "urllib3 (<=2.0.0)"] docs-specific = ["hf-doc-builder"] quality = ["black (>=22.0,<23.0)", "ruff (>=0.0.241)", "urllib3 (<=2.0.0)"] test = ["black (>=22.0,<23.0)", "datasets", "diffusers", "hf-doc-builder", "parameterized", "pytest", "pytest-cov", "pytest-xdist", "ruff (>=0.0.241)", "urllib3 (<=2.0.0)"] [[package]] name = "pillow" version = "10.1.0" description = "Python Imaging Library (Fork)" optional = false python-versions = ">=3.8" files = [ {file = "Pillow-10.1.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:1ab05f3db77e98f93964697c8efc49c7954b08dd61cff526b7f2531a22410106"}, {file = "Pillow-10.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6932a7652464746fcb484f7fc3618e6503d2066d853f68a4bd97193a3996e273"}, {file = "Pillow-10.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5f63b5a68daedc54c7c3464508d8c12075e56dcfbd42f8c1bf40169061ae666"}, {file = "Pillow-10.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0949b55eb607898e28eaccb525ab104b2d86542a85c74baf3a6dc24002edec2"}, {file = "Pillow-10.1.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:ae88931f93214777c7a3aa0a8f92a683f83ecde27f65a45f95f22d289a69e593"}, {file = "Pillow-10.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:b0eb01ca85b2361b09480784a7931fc648ed8b7836f01fb9241141b968feb1db"}, {file = "Pillow-10.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d27b5997bdd2eb9fb199982bb7eb6164db0426904020dc38c10203187ae2ff2f"}, {file = "Pillow-10.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7df5608bc38bd37ef585ae9c38c9cd46d7c81498f086915b0f97255ea60c2818"}, {file = "Pillow-10.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:41f67248d92a5e0a2076d3517d8d4b1e41a97e2df10eb8f93106c89107f38b57"}, {file = "Pillow-10.1.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:1fb29c07478e6c06a46b867e43b0bcdb241b44cc52be9bc25ce5944eed4648e7"}, {file = "Pillow-10.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2cdc65a46e74514ce742c2013cd4a2d12e8553e3a2563c64879f7c7e4d28bce7"}, {file = "Pillow-10.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50d08cd0a2ecd2a8657bd3d82c71efd5a58edb04d9308185d66c3a5a5bed9610"}, {file = "Pillow-10.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:062a1610e3bc258bff2328ec43f34244fcec972ee0717200cb1425214fe5b839"}, {file = "Pillow-10.1.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:61f1a9d247317fa08a308daaa8ee7b3f760ab1809ca2da14ecc88ae4257d6172"}, {file = "Pillow-10.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:a646e48de237d860c36e0db37ecaecaa3619e6f3e9d5319e527ccbc8151df061"}, {file = "Pillow-10.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:47e5bf85b80abc03be7455c95b6d6e4896a62f6541c1f2ce77a7d2bb832af262"}, {file = "Pillow-10.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a92386125e9ee90381c3369f57a2a50fa9e6aa8b1cf1d9c4b200d41a7dd8e992"}, {file = "Pillow-10.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:0f7c276c05a9767e877a0b4c5050c8bee6a6d960d7f0c11ebda6b99746068c2a"}, {file = "Pillow-10.1.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:a89b8312d51715b510a4fe9fc13686283f376cfd5abca8cd1c65e4c76e21081b"}, {file = "Pillow-10.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:00f438bb841382b15d7deb9a05cc946ee0f2c352653c7aa659e75e592f6fa17d"}, {file = "Pillow-10.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d929a19f5469b3f4df33a3df2983db070ebb2088a1e145e18facbc28cae5b27"}, {file = "Pillow-10.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a92109192b360634a4489c0c756364c0c3a2992906752165ecb50544c251312"}, {file = "Pillow-10.1.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:0248f86b3ea061e67817c47ecbe82c23f9dd5d5226200eb9090b3873d3ca32de"}, {file = "Pillow-10.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:9882a7451c680c12f232a422730f986a1fcd808da0fd428f08b671237237d651"}, {file = "Pillow-10.1.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1c3ac5423c8c1da5928aa12c6e258921956757d976405e9467c5f39d1d577a4b"}, {file = "Pillow-10.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:806abdd8249ba3953c33742506fe414880bad78ac25cc9a9b1c6ae97bedd573f"}, {file = "Pillow-10.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:eaed6977fa73408b7b8a24e8b14e59e1668cfc0f4c40193ea7ced8e210adf996"}, {file = "Pillow-10.1.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:fe1e26e1ffc38be097f0ba1d0d07fcade2bcfd1d023cda5b29935ae8052bd793"}, {file = "Pillow-10.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7a7e3daa202beb61821c06d2517428e8e7c1aab08943e92ec9e5755c2fc9ba5e"}, {file = "Pillow-10.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:24fadc71218ad2b8ffe437b54876c9382b4a29e030a05a9879f615091f42ffc2"}, {file = "Pillow-10.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa1d323703cfdac2036af05191b969b910d8f115cf53093125e4058f62012c9a"}, {file = "Pillow-10.1.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:912e3812a1dbbc834da2b32299b124b5ddcb664ed354916fd1ed6f193f0e2d01"}, {file = "Pillow-10.1.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:7dbaa3c7de82ef37e7708521be41db5565004258ca76945ad74a8e998c30af8d"}, {file = "Pillow-10.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:9d7bc666bd8c5a4225e7ac71f2f9d12466ec555e89092728ea0f5c0c2422ea80"}, {file = "Pillow-10.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:baada14941c83079bf84c037e2d8b7506ce201e92e3d2fa0d1303507a8538212"}, {file = "Pillow-10.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:2ef6721c97894a7aa77723740a09547197533146fba8355e86d6d9a4a1056b14"}, {file = "Pillow-10.1.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0a026c188be3b443916179f5d04548092e253beb0c3e2ee0a4e2cdad72f66099"}, {file = "Pillow-10.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:04f6f6149f266a100374ca3cc368b67fb27c4af9f1cc8cb6306d849dcdf12616"}, {file = "Pillow-10.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb40c011447712d2e19cc261c82655f75f32cb724788df315ed992a4d65696bb"}, {file = "Pillow-10.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a8413794b4ad9719346cd9306118450b7b00d9a15846451549314a58ac42219"}, {file = "Pillow-10.1.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c9aeea7b63edb7884b031a35305629a7593272b54f429a9869a4f63a1bf04c34"}, {file = "Pillow-10.1.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b4005fee46ed9be0b8fb42be0c20e79411533d1fd58edabebc0dd24626882cfd"}, {file = "Pillow-10.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:4d0152565c6aa6ebbfb1e5d8624140a440f2b99bf7afaafbdbf6430426497f28"}, {file = "Pillow-10.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d921bc90b1defa55c9917ca6b6b71430e4286fc9e44c55ead78ca1a9f9eba5f2"}, {file = "Pillow-10.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:cfe96560c6ce2f4c07d6647af2d0f3c54cc33289894ebd88cfbb3bcd5391e256"}, {file = "Pillow-10.1.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:937bdc5a7f5343d1c97dc98149a0be7eb9704e937fe3dc7140e229ae4fc572a7"}, {file = "Pillow-10.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1c25762197144e211efb5f4e8ad656f36c8d214d390585d1d21281f46d556ba"}, {file = "Pillow-10.1.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:afc8eef765d948543a4775f00b7b8c079b3321d6b675dde0d02afa2ee23000b4"}, {file = "Pillow-10.1.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:883f216eac8712b83a63f41b76ddfb7b2afab1b74abbb413c5df6680f071a6b9"}, {file = "Pillow-10.1.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:b920e4d028f6442bea9a75b7491c063f0b9a3972520731ed26c83e254302eb1e"}, {file = "Pillow-10.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1c41d960babf951e01a49c9746f92c5a7e0d939d1652d7ba30f6b3090f27e412"}, {file = "Pillow-10.1.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:1fafabe50a6977ac70dfe829b2d5735fd54e190ab55259ec8aea4aaea412fa0b"}, {file = "Pillow-10.1.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3b834f4b16173e5b92ab6566f0473bfb09f939ba14b23b8da1f54fa63e4b623f"}, {file = "Pillow-10.1.0.tar.gz", hash = "sha256:e6bf8de6c36ed96c86ea3b6e1d5273c53f46ef518a062464cd7ef5dd2cf92e38"}, ] [package.extras] docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-removed-in", "sphinxext-opengraph"] tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] [[package]] name = "pluggy" version = "1.3.0" description = "plugin and hook calling mechanisms for python" optional = false python-versions = ">=3.8" files = [ {file = "pluggy-1.3.0-py3-none-any.whl", hash = "sha256:d89c696a773f8bd377d18e5ecda92b7a3793cbe66c87060a6fb58c7b6e1061f7"}, {file = "pluggy-1.3.0.tar.gz", hash = "sha256:cf61ae8f126ac6f7c451172cf30e3e43d3ca77615509771b3a984a0730651e12"}, ] [package.extras] dev = ["pre-commit", "tox"] testing = ["pytest", "pytest-benchmark"] [[package]] name = "protobuf" version = "4.25.1" description = "" optional = false python-versions = ">=3.8" files = [ {file = "protobuf-4.25.1-cp310-abi3-win32.whl", hash = "sha256:193f50a6ab78a970c9b4f148e7c750cfde64f59815e86f686c22e26b4fe01ce7"}, {file = "protobuf-4.25.1-cp310-abi3-win_amd64.whl", hash = "sha256:3497c1af9f2526962f09329fd61a36566305e6c72da2590ae0d7d1322818843b"}, {file = "protobuf-4.25.1-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:0bf384e75b92c42830c0a679b0cd4d6e2b36ae0cf3dbb1e1dfdda48a244f4bcd"}, {file = "protobuf-4.25.1-cp37-abi3-manylinux2014_aarch64.whl", hash = "sha256:0f881b589ff449bf0b931a711926e9ddaad3b35089cc039ce1af50b21a4ae8cb"}, {file = "protobuf-4.25.1-cp37-abi3-manylinux2014_x86_64.whl", hash = "sha256:ca37bf6a6d0046272c152eea90d2e4ef34593aaa32e8873fc14c16440f22d4b7"}, {file = "protobuf-4.25.1-cp38-cp38-win32.whl", hash = "sha256:abc0525ae2689a8000837729eef7883b9391cd6aa7950249dcf5a4ede230d5dd"}, {file = "protobuf-4.25.1-cp38-cp38-win_amd64.whl", hash = "sha256:1484f9e692091450e7edf418c939e15bfc8fc68856e36ce399aed6889dae8bb0"}, {file = "protobuf-4.25.1-cp39-cp39-win32.whl", hash = "sha256:8bdbeaddaac52d15c6dce38c71b03038ef7772b977847eb6d374fc86636fa510"}, {file = "protobuf-4.25.1-cp39-cp39-win_amd64.whl", hash = "sha256:becc576b7e6b553d22cbdf418686ee4daa443d7217999125c045ad56322dda10"}, {file = "protobuf-4.25.1-py3-none-any.whl", hash = "sha256:a19731d5e83ae4737bb2a089605e636077ac001d18781b3cf489b9546c7c80d6"}, {file = "protobuf-4.25.1.tar.gz", hash = "sha256:57d65074b4f5baa4ab5da1605c02be90ac20c8b40fb137d6a8df9f416b0d0ce2"}, ] [[package]] name = "psutil" version = "5.9.6" description = "Cross-platform lib for process and system monitoring in Python." optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" files = [ {file = "psutil-5.9.6-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:fb8a697f11b0f5994550555fcfe3e69799e5b060c8ecf9e2f75c69302cc35c0d"}, {file = "psutil-5.9.6-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:91ecd2d9c00db9817a4b4192107cf6954addb5d9d67a969a4f436dbc9200f88c"}, {file = "psutil-5.9.6-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:10e8c17b4f898d64b121149afb136c53ea8b68c7531155147867b7b1ac9e7e28"}, {file = "psutil-5.9.6-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:18cd22c5db486f33998f37e2bb054cc62fd06646995285e02a51b1e08da97017"}, {file = "psutil-5.9.6-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:ca2780f5e038379e520281e4c032dddd086906ddff9ef0d1b9dcf00710e5071c"}, {file = "psutil-5.9.6-cp27-none-win32.whl", hash = "sha256:70cb3beb98bc3fd5ac9ac617a327af7e7f826373ee64c80efd4eb2856e5051e9"}, {file = "psutil-5.9.6-cp27-none-win_amd64.whl", hash = "sha256:51dc3d54607c73148f63732c727856f5febec1c7c336f8f41fcbd6315cce76ac"}, {file = "psutil-5.9.6-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:c69596f9fc2f8acd574a12d5f8b7b1ba3765a641ea5d60fb4736bf3c08a8214a"}, {file = "psutil-5.9.6-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:92e0cc43c524834af53e9d3369245e6cc3b130e78e26100d1f63cdb0abeb3d3c"}, {file = "psutil-5.9.6-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:748c9dd2583ed86347ed65d0035f45fa8c851e8d90354c122ab72319b5f366f4"}, {file = "psutil-5.9.6-cp36-cp36m-win32.whl", hash = "sha256:3ebf2158c16cc69db777e3c7decb3c0f43a7af94a60d72e87b2823aebac3d602"}, {file = "psutil-5.9.6-cp36-cp36m-win_amd64.whl", hash = "sha256:ff18b8d1a784b810df0b0fff3bcb50ab941c3b8e2c8de5726f9c71c601c611aa"}, {file = "psutil-5.9.6-cp37-abi3-win32.whl", hash = "sha256:a6f01f03bf1843280f4ad16f4bde26b817847b4c1a0db59bf6419807bc5ce05c"}, {file = "psutil-5.9.6-cp37-abi3-win_amd64.whl", hash = "sha256:6e5fb8dc711a514da83098bc5234264e551ad980cec5f85dabf4d38ed6f15e9a"}, {file = "psutil-5.9.6-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:daecbcbd29b289aac14ece28eca6a3e60aa361754cf6da3dfb20d4d32b6c7f57"}, {file = "psutil-5.9.6.tar.gz", hash = "sha256:e4b92ddcd7dd4cdd3f900180ea1e104932c7bce234fb88976e2a3b296441225a"}, ] [package.extras] test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] [[package]] name = "pyarrow" version = "14.0.1" description = "Python library for Apache Arrow" optional = true python-versions = ">=3.8" files = [ {file = "pyarrow-14.0.1-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:96d64e5ba7dceb519a955e5eeb5c9adcfd63f73a56aea4722e2cc81364fc567a"}, {file = "pyarrow-14.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1a8ae88c0038d1bc362a682320112ee6774f006134cd5afc291591ee4bc06505"}, {file = "pyarrow-14.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0f6f053cb66dc24091f5511e5920e45c83107f954a21032feadc7b9e3a8e7851"}, {file = "pyarrow-14.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:906b0dc25f2be12e95975722f1e60e162437023f490dbd80d0deb7375baf3171"}, {file = "pyarrow-14.0.1-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:78d4a77a46a7de9388b653af1c4ce539350726cd9af62e0831e4f2bd0c95a2f4"}, {file = "pyarrow-14.0.1-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:06ca79080ef89d6529bb8e5074d4b4f6086143b2520494fcb7cf8a99079cde93"}, {file = "pyarrow-14.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:32542164d905002c42dff896efdac79b3bdd7291b1b74aa292fac8450d0e4dcd"}, {file = "pyarrow-14.0.1-cp311-cp311-macosx_10_14_x86_64.whl", hash = "sha256:c7331b4ed3401b7ee56f22c980608cf273f0380f77d0f73dd3c185f78f5a6220"}, {file = "pyarrow-14.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:922e8b49b88da8633d6cac0e1b5a690311b6758d6f5d7c2be71acb0f1e14cd61"}, {file = "pyarrow-14.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58c889851ca33f992ea916b48b8540735055201b177cb0dcf0596a495a667b00"}, {file = "pyarrow-14.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:30d8494870d9916bb53b2a4384948491444741cb9a38253c590e21f836b01222"}, {file = "pyarrow-14.0.1-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:be28e1a07f20391bb0b15ea03dcac3aade29fc773c5eb4bee2838e9b2cdde0cb"}, {file = "pyarrow-14.0.1-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:981670b4ce0110d8dcb3246410a4aabf5714db5d8ea63b15686bce1c914b1f83"}, {file = "pyarrow-14.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:4756a2b373a28f6166c42711240643fb8bd6322467e9aacabd26b488fa41ec23"}, {file = "pyarrow-14.0.1-cp312-cp312-macosx_10_14_x86_64.whl", hash = "sha256:cf87e2cec65dd5cf1aa4aba918d523ef56ef95597b545bbaad01e6433851aa10"}, {file = "pyarrow-14.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:470ae0194fbfdfbf4a6b65b4f9e0f6e1fa0ea5b90c1ee6b65b38aecee53508c8"}, {file = "pyarrow-14.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6263cffd0c3721c1e348062997babdf0151301f7353010c9c9a8ed47448f82ab"}, {file = "pyarrow-14.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a8089d7e77d1455d529dbd7cff08898bbb2666ee48bc4085203af1d826a33cc"}, {file = "pyarrow-14.0.1-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:fada8396bc739d958d0b81d291cfd201126ed5e7913cb73de6bc606befc30226"}, {file = "pyarrow-14.0.1-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:2a145dab9ed7849fc1101bf03bcdc69913547f10513fdf70fc3ab6c0a50c7eee"}, {file = "pyarrow-14.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:05fe7994745b634c5fb16ce5717e39a1ac1fac3e2b0795232841660aa76647cd"}, {file = "pyarrow-14.0.1-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:a8eeef015ae69d104c4c3117a6011e7e3ecd1abec79dc87fd2fac6e442f666ee"}, {file = "pyarrow-14.0.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3c76807540989fe8fcd02285dd15e4f2a3da0b09d27781abec3adc265ddbeba1"}, {file = "pyarrow-14.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:450e4605e3c20e558485f9161a79280a61c55efe585d51513c014de9ae8d393f"}, {file = "pyarrow-14.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:323cbe60210173ffd7db78bfd50b80bdd792c4c9daca8843ef3cd70b186649db"}, {file = "pyarrow-14.0.1-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:0140c7e2b740e08c5a459439d87acd26b747fc408bde0a8806096ee0baaa0c15"}, {file = "pyarrow-14.0.1-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:e592e482edd9f1ab32f18cd6a716c45b2c0f2403dc2af782f4e9674952e6dd27"}, {file = "pyarrow-14.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:d264ad13605b61959f2ae7c1d25b1a5b8505b112715c961418c8396433f213ad"}, {file = "pyarrow-14.0.1-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:01e44de9749cddc486169cb632f3c99962318e9dacac7778315a110f4bf8a450"}, {file = "pyarrow-14.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d0351fecf0e26e152542bc164c22ea2a8e8c682726fce160ce4d459ea802d69c"}, {file = "pyarrow-14.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:33c1f6110c386464fd2e5e4ea3624466055bbe681ff185fd6c9daa98f30a3f9a"}, {file = "pyarrow-14.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11e045dfa09855b6d3e7705a37c42e2dc2c71d608fab34d3c23df2e02df9aec3"}, {file = "pyarrow-14.0.1-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:097828b55321897db0e1dbfc606e3ff8101ae5725673498cbfa7754ee0da80e4"}, {file = "pyarrow-14.0.1-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:1daab52050a1c48506c029e6fa0944a7b2436334d7e44221c16f6f1b2cc9c510"}, {file = "pyarrow-14.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:3f6d5faf4f1b0d5a7f97be987cf9e9f8cd39902611e818fe134588ee99bf0283"}, {file = "pyarrow-14.0.1.tar.gz", hash = "sha256:b8b3f4fe8d4ec15e1ef9b599b94683c5216adaed78d5cb4c606180546d1e2ee1"}, ] [package.dependencies] numpy = ">=1.16.6" [[package]] name = "pyarrow-hotfix" version = "0.6" description = "" optional = true python-versions = ">=3.5" files = [ {file = "pyarrow_hotfix-0.6-py3-none-any.whl", hash = "sha256:dcc9ae2d220dff0083be6a9aa8e0cdee5182ad358d4931fce825c545e5c89178"}, {file = "pyarrow_hotfix-0.6.tar.gz", hash = "sha256:79d3e030f7ff890d408a100ac16d6f00b14d44a502d7897cd9fc3e3a534e9945"}, ] [[package]] name = "pytest" version = "7.4.3" description = "pytest: simple powerful testing with Python" optional = false python-versions = ">=3.7" files = [ {file = "pytest-7.4.3-py3-none-any.whl", hash = "sha256:0d009c083ea859a71b76adf7c1d502e4bc170b80a8ef002da5806527b9591fac"}, {file = "pytest-7.4.3.tar.gz", hash = "sha256:d989d136982de4e3b29dabcc838ad581c64e8ed52c11fbe86ddebd9da0818cd5"}, ] [package.dependencies] colorama = {version = "*", markers = "sys_platform == \"win32\""} exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""} iniconfig = "*" packaging = "*" pluggy = ">=0.12,<2.0" tomli = {version = ">=1.0.0", markers = "python_version < \"3.11\""} [package.extras] testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "nose", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"] [[package]] name = "python-dateutil" version = "2.8.2" description = "Extensions to the standard Python datetime module" optional = true python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" files = [ {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"}, {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"}, ] [package.dependencies] six = ">=1.5" [[package]] name = "pytz" version = "2023.3.post1" description = "World timezone definitions, modern and historical" optional = true python-versions = "*" files = [ {file = "pytz-2023.3.post1-py2.py3-none-any.whl", hash = "sha256:ce42d816b81b68506614c11e8937d3aa9e41007ceb50bfdcb0749b921bf646c7"}, {file = "pytz-2023.3.post1.tar.gz", hash = "sha256:7b4fddbeb94a1eba4b557da24f19fdf9db575192544270a9101d8509f9f43d7b"}, ] [[package]] name = "pyyaml" version = "6.0.1" description = "YAML parser and emitter for Python" optional = false python-versions = ">=3.6" files = [ {file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"}, {file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"}, {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"}, {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"}, {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"}, {file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"}, {file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"}, {file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"}, {file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"}, {file = "PyYAML-6.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f003ed9ad21d6a4713f0a9b5a7a0a79e08dd0f221aff4525a2be4c346ee60aab"}, {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"}, {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"}, {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"}, {file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b"}, {file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"}, {file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"}, {file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"}, {file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"}, {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"}, {file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"}, {file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"}, {file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"}, {file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"}, {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"}, {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"}, {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afd7e57eddb1a54f0f1a974bc4391af8bcce0b444685d936840f125cf046d5bd"}, {file = "PyYAML-6.0.1-cp36-cp36m-win32.whl", hash = "sha256:fca0e3a251908a499833aa292323f32437106001d436eca0e6e7833256674585"}, {file = "PyYAML-6.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:f22ac1c3cac4dbc50079e965eba2c1058622631e526bd9afd45fedd49ba781fa"}, {file = "PyYAML-6.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b1275ad35a5d18c62a7220633c913e1b42d44b46ee12554e5fd39c70a243d6a3"}, {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18aeb1bf9a78867dc38b259769503436b7c72f7a1f1f4c93ff9a17de54319b27"}, {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:596106435fa6ad000c2991a98fa58eeb8656ef2325d7e158344fb33864ed87e3"}, {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baa90d3f661d43131ca170712d903e6295d1f7a0f595074f151c0aed377c9b9c"}, {file = "PyYAML-6.0.1-cp37-cp37m-win32.whl", hash = "sha256:9046c58c4395dff28dd494285c82ba00b546adfc7ef001486fbf0324bc174fba"}, {file = "PyYAML-6.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:4fb147e7a67ef577a588a0e2c17b6db51dda102c71de36f8549b6816a96e1867"}, {file = "PyYAML-6.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d4c7e777c441b20e32f52bd377e0c409713e8bb1386e1099c2415f26e479595"}, {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"}, {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"}, {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"}, {file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6"}, {file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"}, {file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"}, {file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"}, {file = "PyYAML-6.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c8098ddcc2a85b61647b2590f825f3db38891662cfc2fc776415143f599bb859"}, {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"}, {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"}, {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"}, {file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5"}, {file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"}, {file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"}, {file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"}, ] [[package]] name = "regex" version = "2023.10.3" description = "Alternative regular expression module, to replace re." optional = false python-versions = ">=3.7" files = [ {file = "regex-2023.10.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4c34d4f73ea738223a094d8e0ffd6d2c1a1b4c175da34d6b0de3d8d69bee6bcc"}, {file = "regex-2023.10.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a8f4e49fc3ce020f65411432183e6775f24e02dff617281094ba6ab079ef0915"}, {file = "regex-2023.10.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4cd1bccf99d3ef1ab6ba835308ad85be040e6a11b0977ef7ea8c8005f01a3c29"}, {file = "regex-2023.10.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:81dce2ddc9f6e8f543d94b05d56e70d03a0774d32f6cca53e978dc01e4fc75b8"}, {file = "regex-2023.10.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9c6b4d23c04831e3ab61717a707a5d763b300213db49ca680edf8bf13ab5d91b"}, {file = "regex-2023.10.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c15ad0aee158a15e17e0495e1e18741573d04eb6da06d8b84af726cfc1ed02ee"}, {file = "regex-2023.10.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6239d4e2e0b52c8bd38c51b760cd870069f0bdf99700a62cd509d7a031749a55"}, {file = "regex-2023.10.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4a8bf76e3182797c6b1afa5b822d1d5802ff30284abe4599e1247be4fd6b03be"}, {file = "regex-2023.10.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d9c727bbcf0065cbb20f39d2b4f932f8fa1631c3e01fcedc979bd4f51fe051c5"}, {file = "regex-2023.10.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:3ccf2716add72f80714b9a63899b67fa711b654be3fcdd34fa391d2d274ce767"}, {file = "regex-2023.10.3-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:107ac60d1bfdc3edb53be75e2a52aff7481b92817cfdddd9b4519ccf0e54a6ff"}, {file = "regex-2023.10.3-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:00ba3c9818e33f1fa974693fb55d24cdc8ebafcb2e4207680669d8f8d7cca79a"}, {file = "regex-2023.10.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f0a47efb1dbef13af9c9a54a94a0b814902e547b7f21acb29434504d18f36e3a"}, {file = "regex-2023.10.3-cp310-cp310-win32.whl", hash = "sha256:36362386b813fa6c9146da6149a001b7bd063dabc4d49522a1f7aa65b725c7ec"}, {file = "regex-2023.10.3-cp310-cp310-win_amd64.whl", hash = "sha256:c65a3b5330b54103e7d21cac3f6bf3900d46f6d50138d73343d9e5b2900b2353"}, {file = "regex-2023.10.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:90a79bce019c442604662d17bf69df99090e24cdc6ad95b18b6725c2988a490e"}, {file = "regex-2023.10.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c7964c2183c3e6cce3f497e3a9f49d182e969f2dc3aeeadfa18945ff7bdd7051"}, {file = "regex-2023.10.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ef80829117a8061f974b2fda8ec799717242353bff55f8a29411794d635d964"}, {file = "regex-2023.10.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5addc9d0209a9afca5fc070f93b726bf7003bd63a427f65ef797a931782e7edc"}, {file = "regex-2023.10.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c148bec483cc4b421562b4bcedb8e28a3b84fcc8f0aa4418e10898f3c2c0eb9b"}, {file = "regex-2023.10.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d1f21af4c1539051049796a0f50aa342f9a27cde57318f2fc41ed50b0dbc4ac"}, {file = "regex-2023.10.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0b9ac09853b2a3e0d0082104036579809679e7715671cfbf89d83c1cb2a30f58"}, {file = "regex-2023.10.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ebedc192abbc7fd13c5ee800e83a6df252bec691eb2c4bedc9f8b2e2903f5e2a"}, {file = "regex-2023.10.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:d8a993c0a0ffd5f2d3bda23d0cd75e7086736f8f8268de8a82fbc4bd0ac6791e"}, {file = "regex-2023.10.3-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:be6b7b8d42d3090b6c80793524fa66c57ad7ee3fe9722b258aec6d0672543fd0"}, {file = "regex-2023.10.3-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4023e2efc35a30e66e938de5aef42b520c20e7eda7bb5fb12c35e5d09a4c43f6"}, {file = "regex-2023.10.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:0d47840dc05e0ba04fe2e26f15126de7c755496d5a8aae4a08bda4dd8d646c54"}, {file = "regex-2023.10.3-cp311-cp311-win32.whl", hash = "sha256:9145f092b5d1977ec8c0ab46e7b3381b2fd069957b9862a43bd383e5c01d18c2"}, {file = "regex-2023.10.3-cp311-cp311-win_amd64.whl", hash = "sha256:b6104f9a46bd8743e4f738afef69b153c4b8b592d35ae46db07fc28ae3d5fb7c"}, {file = "regex-2023.10.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:bff507ae210371d4b1fe316d03433ac099f184d570a1a611e541923f78f05037"}, {file = "regex-2023.10.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:be5e22bbb67924dea15039c3282fa4cc6cdfbe0cbbd1c0515f9223186fc2ec5f"}, {file = "regex-2023.10.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a992f702c9be9c72fa46f01ca6e18d131906a7180950958f766c2aa294d4b41"}, {file = "regex-2023.10.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7434a61b158be563c1362d9071358f8ab91b8d928728cd2882af060481244c9e"}, {file = "regex-2023.10.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c2169b2dcabf4e608416f7f9468737583ce5f0a6e8677c4efbf795ce81109d7c"}, {file = "regex-2023.10.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a9e908ef5889cda4de038892b9accc36d33d72fb3e12c747e2799a0e806ec841"}, {file = "regex-2023.10.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:12bd4bc2c632742c7ce20db48e0d99afdc05e03f0b4c1af90542e05b809a03d9"}, {file = "regex-2023.10.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bc72c231f5449d86d6c7d9cc7cd819b6eb30134bb770b8cfdc0765e48ef9c420"}, {file = "regex-2023.10.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bce8814b076f0ce5766dc87d5a056b0e9437b8e0cd351b9a6c4e1134a7dfbda9"}, {file = "regex-2023.10.3-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:ba7cd6dc4d585ea544c1412019921570ebd8a597fabf475acc4528210d7c4a6f"}, {file = "regex-2023.10.3-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b0c7d2f698e83f15228ba41c135501cfe7d5740181d5903e250e47f617eb4292"}, {file = "regex-2023.10.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:5a8f91c64f390ecee09ff793319f30a0f32492e99f5dc1c72bc361f23ccd0a9a"}, {file = "regex-2023.10.3-cp312-cp312-win32.whl", hash = "sha256:ad08a69728ff3c79866d729b095872afe1e0557251da4abb2c5faff15a91d19a"}, {file = "regex-2023.10.3-cp312-cp312-win_amd64.whl", hash = "sha256:39cdf8d141d6d44e8d5a12a8569d5a227f645c87df4f92179bd06e2e2705e76b"}, {file = "regex-2023.10.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:4a3ee019a9befe84fa3e917a2dd378807e423d013377a884c1970a3c2792d293"}, {file = "regex-2023.10.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76066d7ff61ba6bf3cb5efe2428fc82aac91802844c022d849a1f0f53820502d"}, {file = "regex-2023.10.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bfe50b61bab1b1ec260fa7cd91106fa9fece57e6beba05630afe27c71259c59b"}, {file = "regex-2023.10.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9fd88f373cb71e6b59b7fa597e47e518282455c2734fd4306a05ca219a1991b0"}, {file = "regex-2023.10.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b3ab05a182c7937fb374f7e946f04fb23a0c0699c0450e9fb02ef567412d2fa3"}, {file = "regex-2023.10.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dac37cf08fcf2094159922edc7a2784cfcc5c70f8354469f79ed085f0328ebdf"}, {file = "regex-2023.10.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:e54ddd0bb8fb626aa1f9ba7b36629564544954fff9669b15da3610c22b9a0991"}, {file = "regex-2023.10.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:3367007ad1951fde612bf65b0dffc8fd681a4ab98ac86957d16491400d661302"}, {file = "regex-2023.10.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:16f8740eb6dbacc7113e3097b0a36065a02e37b47c936b551805d40340fb9971"}, {file = "regex-2023.10.3-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:f4f2ca6df64cbdd27f27b34f35adb640b5d2d77264228554e68deda54456eb11"}, {file = "regex-2023.10.3-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:39807cbcbe406efca2a233884e169d056c35aa7e9f343d4e78665246a332f597"}, {file = "regex-2023.10.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:7eece6fbd3eae4a92d7c748ae825cbc1ee41a89bb1c3db05b5578ed3cfcfd7cb"}, {file = "regex-2023.10.3-cp37-cp37m-win32.whl", hash = "sha256:ce615c92d90df8373d9e13acddd154152645c0dc060871abf6bd43809673d20a"}, {file = "regex-2023.10.3-cp37-cp37m-win_amd64.whl", hash = "sha256:0f649fa32fe734c4abdfd4edbb8381c74abf5f34bc0b3271ce687b23729299ed"}, {file = "regex-2023.10.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9b98b7681a9437262947f41c7fac567c7e1f6eddd94b0483596d320092004533"}, {file = "regex-2023.10.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:91dc1d531f80c862441d7b66c4505cd6ea9d312f01fb2f4654f40c6fdf5cc37a"}, {file = "regex-2023.10.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82fcc1f1cc3ff1ab8a57ba619b149b907072e750815c5ba63e7aa2e1163384a4"}, {file = "regex-2023.10.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7979b834ec7a33aafae34a90aad9f914c41fd6eaa8474e66953f3f6f7cbd4368"}, {file = "regex-2023.10.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ef71561f82a89af6cfcbee47f0fabfdb6e63788a9258e913955d89fdd96902ab"}, {file = "regex-2023.10.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd829712de97753367153ed84f2de752b86cd1f7a88b55a3a775eb52eafe8a94"}, {file = "regex-2023.10.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:00e871d83a45eee2f8688d7e6849609c2ca2a04a6d48fba3dff4deef35d14f07"}, {file = "regex-2023.10.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:706e7b739fdd17cb89e1fbf712d9dc21311fc2333f6d435eac2d4ee81985098c"}, {file = "regex-2023.10.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:cc3f1c053b73f20c7ad88b0d1d23be7e7b3901229ce89f5000a8399746a6e039"}, {file = "regex-2023.10.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:6f85739e80d13644b981a88f529d79c5bdf646b460ba190bffcaf6d57b2a9863"}, {file = "regex-2023.10.3-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:741ba2f511cc9626b7561a440f87d658aabb3d6b744a86a3c025f866b4d19e7f"}, {file = "regex-2023.10.3-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:e77c90ab5997e85901da85131fd36acd0ed2221368199b65f0d11bca44549711"}, {file = "regex-2023.10.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:979c24cbefaf2420c4e377ecd1f165ea08cc3d1fbb44bdc51bccbbf7c66a2cb4"}, {file = "regex-2023.10.3-cp38-cp38-win32.whl", hash = "sha256:58837f9d221744d4c92d2cf7201c6acd19623b50c643b56992cbd2b745485d3d"}, {file = "regex-2023.10.3-cp38-cp38-win_amd64.whl", hash = "sha256:c55853684fe08d4897c37dfc5faeff70607a5f1806c8be148f1695be4a63414b"}, {file = "regex-2023.10.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2c54e23836650bdf2c18222c87f6f840d4943944146ca479858404fedeb9f9af"}, {file = "regex-2023.10.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:69c0771ca5653c7d4b65203cbfc5e66db9375f1078689459fe196fe08b7b4930"}, {file = "regex-2023.10.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ac965a998e1388e6ff2e9781f499ad1eaa41e962a40d11c7823c9952c77123e"}, {file = "regex-2023.10.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1c0e8fae5b27caa34177bdfa5a960c46ff2f78ee2d45c6db15ae3f64ecadde14"}, {file = "regex-2023.10.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6c56c3d47da04f921b73ff9415fbaa939f684d47293f071aa9cbb13c94afc17d"}, {file = "regex-2023.10.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ef1e014eed78ab650bef9a6a9cbe50b052c0aebe553fb2881e0453717573f52"}, {file = "regex-2023.10.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d29338556a59423d9ff7b6eb0cb89ead2b0875e08fe522f3e068b955c3e7b59b"}, {file = "regex-2023.10.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9c6d0ced3c06d0f183b73d3c5920727268d2201aa0fe6d55c60d68c792ff3588"}, {file = "regex-2023.10.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:994645a46c6a740ee8ce8df7911d4aee458d9b1bc5639bc968226763d07f00fa"}, {file = "regex-2023.10.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:66e2fe786ef28da2b28e222c89502b2af984858091675044d93cb50e6f46d7af"}, {file = "regex-2023.10.3-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:11175910f62b2b8c055f2b089e0fedd694fe2be3941b3e2633653bc51064c528"}, {file = "regex-2023.10.3-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:06e9abc0e4c9ab4779c74ad99c3fc10d3967d03114449acc2c2762ad4472b8ca"}, {file = "regex-2023.10.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:fb02e4257376ae25c6dd95a5aec377f9b18c09be6ebdefa7ad209b9137b73d48"}, {file = "regex-2023.10.3-cp39-cp39-win32.whl", hash = "sha256:3b2c3502603fab52d7619b882c25a6850b766ebd1b18de3df23b2f939360e1bd"}, {file = "regex-2023.10.3-cp39-cp39-win_amd64.whl", hash = "sha256:adbccd17dcaff65704c856bd29951c58a1bd4b2b0f8ad6b826dbd543fe740988"}, {file = "regex-2023.10.3.tar.gz", hash = "sha256:3fef4f844d2290ee0ba57addcec17eec9e3df73f10a2748485dfd6a3a188cc0f"}, ] [[package]] name = "requests" version = "2.31.0" description = "Python HTTP for Humans." optional = false python-versions = ">=3.7" files = [ {file = "requests-2.31.0-py3-none-any.whl", hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f"}, {file = "requests-2.31.0.tar.gz", hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1"}, ] [package.dependencies] certifi = ">=2017.4.17" charset-normalizer = ">=2,<4" idna = ">=2.5,<4" urllib3 = ">=1.21.1,<3" [package.extras] socks = ["PySocks (>=1.5.6,!=1.5.7)"] use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] [[package]] name = "safetensors" version = "0.3.3" description = "Fast and Safe Tensor serialization" optional = false python-versions = "*" files = [ {file = "safetensors-0.3.3-cp310-cp310-macosx_10_11_x86_64.whl", hash = "sha256:92e4d0c8b2836120fddd134474c5bda8963f322333941f8b9f643e5b24f041eb"}, {file = "safetensors-0.3.3-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:3dcadb6153c42addc9c625a622ebde9293fabe1973f9ef31ba10fb42c16e8536"}, {file = "safetensors-0.3.3-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:08f26b61e1b0a14dc959aa9d568776bd038805f611caef1de04a80c468d4a7a4"}, {file = "safetensors-0.3.3-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:17f41344d9a075f2f21b289a49a62e98baff54b5754240ba896063bce31626bf"}, {file = "safetensors-0.3.3-cp310-cp310-macosx_13_0_arm64.whl", hash = "sha256:f1045f798e1a16a6ced98d6a42ec72936d367a2eec81dc5fade6ed54638cd7d2"}, {file = "safetensors-0.3.3-cp310-cp310-macosx_13_0_x86_64.whl", hash = "sha256:eaf0e4bc91da13f21ac846a39429eb3f3b7ed06295a32321fa3eb1a59b5c70f3"}, {file = "safetensors-0.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25149180d4dc8ca48bac2ac3852a9424b466e36336a39659b35b21b2116f96fc"}, {file = "safetensors-0.3.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c9e943bf78c39de8865398a71818315e7d5d1af93c7b30d4da3fc852e62ad9bc"}, {file = "safetensors-0.3.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cccfcac04a010354e87c7a2fe16a1ff004fc4f6e7ef8efc966ed30122ce00bc7"}, {file = "safetensors-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a07121f427e646a50d18c1be0fa1a2cbf6398624c31149cd7e6b35486d72189e"}, {file = "safetensors-0.3.3-cp310-cp310-win32.whl", hash = "sha256:a85e29cbfddfea86453cc0f4889b4bcc6b9c155be9a60e27be479a34e199e7ef"}, {file = "safetensors-0.3.3-cp310-cp310-win_amd64.whl", hash = "sha256:e13adad4a3e591378f71068d14e92343e626cf698ff805f61cdb946e684a218e"}, {file = "safetensors-0.3.3-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:cbc3312f134baf07334dd517341a4b470b2931f090bd9284888acb7dfaf4606f"}, {file = "safetensors-0.3.3-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:d15030af39d5d30c22bcbc6d180c65405b7ea4c05b7bab14a570eac7d7d43722"}, {file = "safetensors-0.3.3-cp311-cp311-macosx_12_0_universal2.whl", hash = "sha256:f84a74cbe9859b28e3d6d7715ac1dd3097bebf8d772694098f6d42435245860c"}, {file = "safetensors-0.3.3-cp311-cp311-macosx_13_0_arm64.whl", hash = "sha256:10d637423d98ab2e6a4ad96abf4534eb26fcaf8ca3115623e64c00759374e90d"}, {file = "safetensors-0.3.3-cp311-cp311-macosx_13_0_universal2.whl", hash = "sha256:3b46f5de8b44084aff2e480874c550c399c730c84b2e8ad1bddb062c94aa14e9"}, {file = "safetensors-0.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e76da691a82dfaf752854fa6d17c8eba0c8466370c5ad8cf1bfdf832d3c7ee17"}, {file = "safetensors-0.3.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c4e342fd54e66aa9512dd13e410f791e47aa4feeb5f4c9a20882c72f3d272f29"}, {file = "safetensors-0.3.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:178fd30b5dc73bce14a39187d948cedd0e5698e2f055b7ea16b5a96c9b17438e"}, {file = "safetensors-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3e8fdf7407dba44587ed5e79d5de3533d242648e1f2041760b21474bd5ea5c8c"}, {file = "safetensors-0.3.3-cp311-cp311-win32.whl", hash = "sha256:7d3b744cee8d7a46ffa68db1a2ff1a1a432488e3f7a5a97856fe69e22139d50c"}, {file = "safetensors-0.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:f579877d30feec9b6ba409d05fa174633a4fc095675a4a82971d831a8bb60b97"}, {file = "safetensors-0.3.3-cp37-cp37m-macosx_10_11_x86_64.whl", hash = "sha256:2fff5b19a1b462c17322998b2f4b8bce43c16fe208968174d2f3a1446284ceed"}, {file = "safetensors-0.3.3-cp37-cp37m-macosx_11_0_x86_64.whl", hash = "sha256:41adb1d39e8aad04b16879e3e0cbcb849315999fad73bc992091a01e379cb058"}, {file = "safetensors-0.3.3-cp37-cp37m-macosx_12_0_x86_64.whl", hash = "sha256:0f2b404250b3b877b11d34afcc30d80e7035714a1116a3df56acaca6b6c00096"}, {file = "safetensors-0.3.3-cp37-cp37m-macosx_13_0_x86_64.whl", hash = "sha256:b43956ef20e9f4f2e648818a9e7b3499edd6b753a0f5526d4f6a6826fbee8446"}, {file = "safetensors-0.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d61a99b34169981f088ccfbb2c91170843efc869a0a0532f422db7211bf4f474"}, {file = "safetensors-0.3.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c0008aab36cd20e9a051a68563c6f80d40f238c2611811d7faa5a18bf3fd3984"}, {file = "safetensors-0.3.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:93d54166072b143084fdcd214a080a088050c1bb1651016b55942701b31334e4"}, {file = "safetensors-0.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1c32ee08f61cea56a5d62bbf94af95df6040c8ab574afffaeb7b44ae5da1e9e3"}, {file = "safetensors-0.3.3-cp37-cp37m-win32.whl", hash = "sha256:351600f367badd59f7bfe86d317bb768dd8c59c1561c6fac43cafbd9c1af7827"}, {file = "safetensors-0.3.3-cp37-cp37m-win_amd64.whl", hash = "sha256:034717e297849dae1af0a7027a14b8647bd2e272c24106dced64d83e10d468d1"}, {file = "safetensors-0.3.3-cp38-cp38-macosx_10_11_x86_64.whl", hash = "sha256:8530399666748634bc0b301a6a5523756931b0c2680d188e743d16304afe917a"}, {file = "safetensors-0.3.3-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:9d741c1f1621e489ba10aa3d135b54202684f6e205df52e219d5eecd673a80c9"}, {file = "safetensors-0.3.3-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:0c345fd85b4d2093a5109596ff4cd9dfc2e84992e881b4857fbc4a93a3b89ddb"}, {file = "safetensors-0.3.3-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:69ccee8d05f55cdf76f7e6c87d2bdfb648c16778ef8acfd2ecc495e273e9233e"}, {file = "safetensors-0.3.3-cp38-cp38-macosx_13_0_arm64.whl", hash = "sha256:c08a9a4b7a4ca389232fa8d097aebc20bbd4f61e477abc7065b5c18b8202dede"}, {file = "safetensors-0.3.3-cp38-cp38-macosx_13_0_x86_64.whl", hash = "sha256:a002868d2e3f49bbe81bee2655a411c24fa1f8e68b703dec6629cb989d6ae42e"}, {file = "safetensors-0.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3bd2704cb41faa44d3ec23e8b97330346da0395aec87f8eaf9c9e2c086cdbf13"}, {file = "safetensors-0.3.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4b2951bf3f0ad63df5e6a95263652bd6c194a6eb36fd4f2d29421cd63424c883"}, {file = "safetensors-0.3.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:07114cec116253ca2e7230fdea30acf76828f21614afd596d7b5438a2f719bd8"}, {file = "safetensors-0.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6ab43aeeb9eadbb6b460df3568a662e6f1911ecc39387f8752afcb6a7d96c087"}, {file = "safetensors-0.3.3-cp38-cp38-win32.whl", hash = "sha256:f2f59fce31dd3429daca7269a6b06f65e6547a0c248f5116976c3f1e9b73f251"}, {file = "safetensors-0.3.3-cp38-cp38-win_amd64.whl", hash = "sha256:c31ca0d8610f57799925bf08616856b39518ab772c65093ef1516762e796fde4"}, {file = "safetensors-0.3.3-cp39-cp39-macosx_10_11_x86_64.whl", hash = "sha256:59a596b3225c96d59af412385981f17dd95314e3fffdf359c7e3f5bb97730a19"}, {file = "safetensors-0.3.3-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:82a16e92210a6221edd75ab17acdd468dd958ef5023d9c6c1289606cc30d1479"}, {file = "safetensors-0.3.3-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:98a929e763a581f516373ef31983ed1257d2d0da912a8e05d5cd12e9e441c93a"}, {file = "safetensors-0.3.3-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:12b83f1986cd16ea0454c636c37b11e819d60dd952c26978310a0835133480b7"}, {file = "safetensors-0.3.3-cp39-cp39-macosx_13_0_arm64.whl", hash = "sha256:f439175c827c2f1bbd54df42789c5204a10983a30bc4242bc7deaf854a24f3f0"}, {file = "safetensors-0.3.3-cp39-cp39-macosx_13_0_x86_64.whl", hash = "sha256:0085be33b8cbcb13079b3a8e131656e05b0bc5e6970530d4c24150f7afd76d70"}, {file = "safetensors-0.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e3ec70c87b1e910769034206ad5efc051069b105aac1687f6edcd02526767f4"}, {file = "safetensors-0.3.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f490132383e5e490e710608f4acffcb98ed37f91b885c7217d3f9f10aaff9048"}, {file = "safetensors-0.3.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:79d1b6c7ed5596baf79c80fbce5198c3cdcc521ae6a157699f427aba1a90082d"}, {file = "safetensors-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad3cc8006e7a86ee7c88bd2813ec59cd7cc75b03e6fa4af89b9c7b235b438d68"}, {file = "safetensors-0.3.3-cp39-cp39-win32.whl", hash = "sha256:ab29f54c6b8c301ca05fa014728996bd83aac6e21528f893aaf8945c71f42b6d"}, {file = "safetensors-0.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:0fa82004eae1a71e2aa29843ef99de9350e459a0fc2f65fc6ee0da9690933d2d"}, {file = "safetensors-0.3.3.tar.gz", hash = "sha256:edb7072d788c4f929d0f5735d3a2fb51e5a27f833587828583b7f5747af1a2b8"}, ] [package.extras] all = ["black (==22.3)", "click (==8.0.4)", "flake8 (>=3.8.3)", "flax (>=0.6.3)", "h5py (>=3.7.0)", "huggingface-hub (>=0.12.1)", "isort (>=5.5.4)", "jax (>=0.3.25)", "jaxlib (>=0.3.25)", "numpy (>=1.21.6)", "paddlepaddle (>=2.4.1)", "pytest (>=7.2.0)", "pytest-benchmark (>=4.0.0)", "setuptools-rust (>=1.5.2)", "tensorflow (==2.11.0)", "torch (>=1.10)"] dev = ["black (==22.3)", "click (==8.0.4)", "flake8 (>=3.8.3)", "flax (>=0.6.3)", "h5py (>=3.7.0)", "huggingface-hub (>=0.12.1)", "isort (>=5.5.4)", "jax (>=0.3.25)", "jaxlib (>=0.3.25)", "numpy (>=1.21.6)", "paddlepaddle (>=2.4.1)", "pytest (>=7.2.0)", "pytest-benchmark (>=4.0.0)", "setuptools-rust (>=1.5.2)", "tensorflow (==2.11.0)", "torch (>=1.10)"] jax = ["flax (>=0.6.3)", "jax (>=0.3.25)", "jaxlib (>=0.3.25)", "numpy (>=1.21.6)"] numpy = ["numpy (>=1.21.6)"] paddlepaddle = ["numpy (>=1.21.6)", "paddlepaddle (>=2.4.1)"] pinned-tf = ["tensorflow (==2.11.0)"] quality = ["black (==22.3)", "click (==8.0.4)", "flake8 (>=3.8.3)", "isort (>=5.5.4)"] tensorflow = ["numpy (>=1.21.6)", "tensorflow (>=2.11.0)"] testing = ["h5py (>=3.7.0)", "huggingface-hub (>=0.12.1)", "numpy (>=1.21.6)", "pytest (>=7.2.0)", "pytest-benchmark (>=4.0.0)", "setuptools-rust (>=1.5.2)"] torch = ["numpy (>=1.21.6)", "torch (>=1.10)"] [[package]] name = "scipy" version = "1.11.4" description = "Fundamental algorithms for scientific computing in Python" optional = false python-versions = ">=3.9" files = [ {file = "scipy-1.11.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bc9a714581f561af0848e6b69947fda0614915f072dfd14142ed1bfe1b806710"}, {file = "scipy-1.11.4-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:cf00bd2b1b0211888d4dc75656c0412213a8b25e80d73898083f402b50f47e41"}, {file = "scipy-1.11.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9999c008ccf00e8fbcce1236f85ade5c569d13144f77a1946bef8863e8f6eb4"}, {file = "scipy-1.11.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:933baf588daa8dc9a92c20a0be32f56d43faf3d1a60ab11b3f08c356430f6e56"}, {file = "scipy-1.11.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8fce70f39076a5aa62e92e69a7f62349f9574d8405c0a5de6ed3ef72de07f446"}, {file = "scipy-1.11.4-cp310-cp310-win_amd64.whl", hash = "sha256:6550466fbeec7453d7465e74d4f4b19f905642c89a7525571ee91dd7adabb5a3"}, {file = "scipy-1.11.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f313b39a7e94f296025e3cffc2c567618174c0b1dde173960cf23808f9fae4be"}, {file = "scipy-1.11.4-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:1b7c3dca977f30a739e0409fb001056484661cb2541a01aba0bb0029f7b68db8"}, {file = "scipy-1.11.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:00150c5eae7b610c32589dda259eacc7c4f1665aedf25d921907f4d08a951b1c"}, {file = "scipy-1.11.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:530f9ad26440e85766509dbf78edcfe13ffd0ab7fec2560ee5c36ff74d6269ff"}, {file = "scipy-1.11.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5e347b14fe01003d3b78e196e84bd3f48ffe4c8a7b8a1afbcb8f5505cb710993"}, {file = "scipy-1.11.4-cp311-cp311-win_amd64.whl", hash = "sha256:acf8ed278cc03f5aff035e69cb511741e0418681d25fbbb86ca65429c4f4d9cd"}, {file = "scipy-1.11.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:028eccd22e654b3ea01ee63705681ee79933652b2d8f873e7949898dda6d11b6"}, {file = "scipy-1.11.4-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:2c6ff6ef9cc27f9b3db93a6f8b38f97387e6e0591600369a297a50a8e96e835d"}, {file = "scipy-1.11.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b030c6674b9230d37c5c60ab456e2cf12f6784596d15ce8da9365e70896effc4"}, {file = "scipy-1.11.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad669df80528aeca5f557712102538f4f37e503f0c5b9541655016dd0932ca79"}, {file = "scipy-1.11.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ce7fff2e23ab2cc81ff452a9444c215c28e6305f396b2ba88343a567feec9660"}, {file = "scipy-1.11.4-cp312-cp312-win_amd64.whl", hash = "sha256:36750b7733d960d7994888f0d148d31ea3017ac15eef664194b4ef68d36a4a97"}, {file = "scipy-1.11.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6e619aba2df228a9b34718efb023966da781e89dd3d21637b27f2e54db0410d7"}, {file = "scipy-1.11.4-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:f3cd9e7b3c2c1ec26364856f9fbe78695fe631150f94cd1c22228456404cf1ec"}, {file = "scipy-1.11.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d10e45a6c50211fe256da61a11c34927c68f277e03138777bdebedd933712fea"}, {file = "scipy-1.11.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:91af76a68eeae0064887a48e25c4e616fa519fa0d38602eda7e0f97d65d57937"}, {file = "scipy-1.11.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6df1468153a31cf55ed5ed39647279beb9cfb5d3f84369453b49e4b8502394fd"}, {file = "scipy-1.11.4-cp39-cp39-win_amd64.whl", hash = "sha256:ee410e6de8f88fd5cf6eadd73c135020bfbbbdfcd0f6162c36a7638a1ea8cc65"}, {file = "scipy-1.11.4.tar.gz", hash = "sha256:90a2b78e7f5733b9de748f589f09225013685f9b218275257f8a8168ededaeaa"}, ] [package.dependencies] numpy = ">=1.21.6,<1.28.0" [package.extras] dev = ["click", "cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy", "pycodestyle", "pydevtool", "rich-click", "ruff", "types-psutil", "typing_extensions"] doc = ["jupytext", "matplotlib (>2)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"] test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] [[package]] name = "sentencepiece" version = "0.1.99" description = "SentencePiece python wrapper" optional = false python-versions = "*" files = [ {file = "sentencepiece-0.1.99-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0eb528e70571b7c02723e5804322469b82fe7ea418c96051d0286c0fa028db73"}, {file = "sentencepiece-0.1.99-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:77d7fafb2c4e4659cbdf303929503f37a26eabc4ff31d3a79bf1c5a1b338caa7"}, {file = "sentencepiece-0.1.99-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:be9cf5b9e404c245aeb3d3723c737ba7a8f5d4ba262ef233a431fa6c45f732a0"}, {file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:baed1a26464998f9710d20e52607c29ffd4293e7c71c6a1f83f51ad0911ec12c"}, {file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9832f08bb372d4c8b567612f8eab9e36e268dff645f1c28f9f8e851be705f6d1"}, {file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:019e7535108e309dae2b253a75834fc3128240aa87c00eb80732078cdc182588"}, {file = "sentencepiece-0.1.99-cp310-cp310-win32.whl", hash = "sha256:fa16a830416bb823fa2a52cbdd474d1f7f3bba527fd2304fb4b140dad31bb9bc"}, {file = "sentencepiece-0.1.99-cp310-cp310-win_amd64.whl", hash = "sha256:14b0eccb7b641d4591c3e12ae44cab537d68352e4d3b6424944f0c447d2348d5"}, {file = "sentencepiece-0.1.99-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6d3c56f24183a1e8bd61043ff2c58dfecdc68a5dd8955dc13bab83afd5f76b81"}, {file = "sentencepiece-0.1.99-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ed6ea1819fd612c989999e44a51bf556d0ef6abfb553080b9be3d347e18bcfb7"}, {file = "sentencepiece-0.1.99-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a2a0260cd1fb7bd8b4d4f39dc2444a8d5fd4e0a0c4d5c899810ef1abf99b2d45"}, {file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8a1abff4d1ff81c77cac3cc6fefa34fa4b8b371e5ee51cb7e8d1ebc996d05983"}, {file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:004e6a621d4bc88978eecb6ea7959264239a17b70f2cbc348033d8195c9808ec"}, {file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db361e03342c41680afae5807590bc88aa0e17cfd1a42696a160e4005fcda03b"}, {file = "sentencepiece-0.1.99-cp311-cp311-win32.whl", hash = "sha256:2d95e19168875b70df62916eb55428a0cbcb834ac51d5a7e664eda74def9e1e0"}, {file = "sentencepiece-0.1.99-cp311-cp311-win_amd64.whl", hash = "sha256:f90d73a6f81248a909f55d8e6ef56fec32d559e1e9af045f0b0322637cb8e5c7"}, {file = "sentencepiece-0.1.99-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:62e24c81e74bd87a6e0d63c51beb6527e4c0add67e1a17bac18bcd2076afcfeb"}, {file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:57efcc2d51caff20d9573567d9fd3f854d9efe613ed58a439c78c9f93101384a"}, {file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6a904c46197993bd1e95b93a6e373dca2f170379d64441041e2e628ad4afb16f"}, {file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d89adf59854741c0d465f0e1525b388c0d174f611cc04af54153c5c4f36088c4"}, {file = "sentencepiece-0.1.99-cp36-cp36m-win32.whl", hash = "sha256:47c378146928690d1bc106fdf0da768cebd03b65dd8405aa3dd88f9c81e35dba"}, {file = "sentencepiece-0.1.99-cp36-cp36m-win_amd64.whl", hash = "sha256:9ba142e7a90dd6d823c44f9870abdad45e6c63958eb60fe44cca6828d3b69da2"}, {file = "sentencepiece-0.1.99-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b7b1a9ae4d7c6f1f867e63370cca25cc17b6f4886729595b885ee07a58d3cec3"}, {file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d0f644c9d4d35c096a538507b2163e6191512460035bf51358794a78515b74f7"}, {file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c8843d23a0f686d85e569bd6dcd0dd0e0cbc03731e63497ca6d5bacd18df8b85"}, {file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33e6f690a1caebb4867a2e367afa1918ad35be257ecdb3455d2bbd787936f155"}, {file = "sentencepiece-0.1.99-cp37-cp37m-win32.whl", hash = "sha256:8a321866c2f85da7beac74a824b4ad6ddc2a4c9bccd9382529506d48f744a12c"}, {file = "sentencepiece-0.1.99-cp37-cp37m-win_amd64.whl", hash = "sha256:c42f753bcfb7661c122a15b20be7f684b61fc8592c89c870adf52382ea72262d"}, {file = "sentencepiece-0.1.99-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:85b476406da69c70586f0bb682fcca4c9b40e5059814f2db92303ea4585c650c"}, {file = "sentencepiece-0.1.99-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cfbcfe13c69d3f87b7fcd5da168df7290a6d006329be71f90ba4f56bc77f8561"}, {file = "sentencepiece-0.1.99-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:445b0ec381af1cd4eef95243e7180c63d9c384443c16c4c47a28196bd1cda937"}, {file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6890ea0f2b4703f62d0bf27932e35808b1f679bdb05c7eeb3812b935ba02001"}, {file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fb71af492b0eefbf9f2501bec97bcd043b6812ab000d119eaf4bd33f9e283d03"}, {file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:27b866b5bd3ddd54166bbcbf5c8d7dd2e0b397fac8537991c7f544220b1f67bc"}, {file = "sentencepiece-0.1.99-cp38-cp38-win32.whl", hash = "sha256:b133e8a499eac49c581c3c76e9bdd08c338cc1939e441fee6f92c0ccb5f1f8be"}, {file = "sentencepiece-0.1.99-cp38-cp38-win_amd64.whl", hash = "sha256:0eaf3591dd0690a87f44f4df129cf8d05d8a4029b5b6709b489b8e27f9a9bcff"}, {file = "sentencepiece-0.1.99-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:38efeda9bbfb55052d482a009c6a37e52f42ebffcea9d3a98a61de7aee356a28"}, {file = "sentencepiece-0.1.99-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6c030b081dc1e1bcc9fadc314b19b740715d3d566ad73a482da20d7d46fd444c"}, {file = "sentencepiece-0.1.99-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:84dbe53e02e4f8a2e45d2ac3e430d5c83182142658e25edd76539b7648928727"}, {file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0b0f55d0a0ee1719b4b04221fe0c9f0c3461dc3dabd77a035fa2f4788eb3ef9a"}, {file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18e800f206cd235dc27dc749299e05853a4e4332e8d3dfd81bf13d0e5b9007d9"}, {file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae1c40cda8f9d5b0423cfa98542735c0235e7597d79caf318855cdf971b2280"}, {file = "sentencepiece-0.1.99-cp39-cp39-win32.whl", hash = "sha256:c84ce33af12ca222d14a1cdd37bd76a69401e32bc68fe61c67ef6b59402f4ab8"}, {file = "sentencepiece-0.1.99-cp39-cp39-win_amd64.whl", hash = "sha256:350e5c74d739973f1c9643edb80f7cc904dc948578bcb1d43c6f2b173e5d18dd"}, {file = "sentencepiece-0.1.99.tar.gz", hash = "sha256:189c48f5cb2949288f97ccdb97f0473098d9c3dcf5a3d99d4eabe719ec27297f"}, ] [[package]] name = "setuptools" version = "69.0.2" description = "Easily download, build, install, upgrade, and uninstall Python packages" optional = false python-versions = ">=3.8" files = [ {file = "setuptools-69.0.2-py3-none-any.whl", hash = "sha256:1e8fdff6797d3865f37397be788a4e3cba233608e9b509382a2777d25ebde7f2"}, {file = "setuptools-69.0.2.tar.gz", hash = "sha256:735896e78a4742605974de002ac60562d286fa8051a7e2299445e8e8fbb01aa6"}, ] [package.extras] docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"] testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pip (>=19.1)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-ruff", "pytest-timeout", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] testing-integration = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "packaging (>=23.1)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"] [[package]] name = "six" version = "1.16.0" description = "Python 2 and 3 compatibility utilities" optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" files = [ {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, ] [[package]] name = "sympy" version = "1.12" description = "Computer algebra system (CAS) in Python" optional = true python-versions = ">=3.8" files = [ {file = "sympy-1.12-py3-none-any.whl", hash = "sha256:c3588cd4295d0c0f603d0f2ae780587e64e2efeedb3521e46b9bb1d08d184fa5"}, {file = "sympy-1.12.tar.gz", hash = "sha256:ebf595c8dac3e0fdc4152c51878b498396ec7f30e7a914d6071e674d49420fb8"}, ] [package.dependencies] mpmath = ">=0.19" [[package]] name = "texttable" version = "1.7.0" description = "module to create simple ASCII tables" optional = true python-versions = "*" files = [ {file = "texttable-1.7.0-py2.py3-none-any.whl", hash = "sha256:72227d592c82b3d7f672731ae73e4d1f88cd8e2ef5b075a7a7f01a23a3743917"}, {file = "texttable-1.7.0.tar.gz", hash = "sha256:2d2068fb55115807d3ac77a4ca68fa48803e84ebb0ee2340f858107a36522638"}, ] [[package]] name = "tokenizers" version = "0.15.0" description = "" optional = false python-versions = ">=3.7" files = [ {file = "tokenizers-0.15.0-cp310-cp310-macosx_10_7_x86_64.whl", hash = "sha256:cd3cd0299aaa312cd2988957598f80becd04d5a07338741eca076057a2b37d6e"}, {file = "tokenizers-0.15.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8a922c492c721744ee175f15b91704be2d305569d25f0547c77cd6c9f210f9dc"}, {file = "tokenizers-0.15.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:331dd786d02fc38698f835fff61c99480f98b73ce75a4c65bd110c9af5e4609a"}, {file = "tokenizers-0.15.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88dd0961c437d413ab027f8b115350c121d49902cfbadf08bb8f634b15fa1814"}, {file = "tokenizers-0.15.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6fdcc55339df7761cd52e1fbe8185d3b3963bc9e3f3545faa6c84f9e8818259a"}, {file = "tokenizers-0.15.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1480b0051d8ab5408e8e4db2dc832f7082ea24aa0722c427bde2418c6f3bd07"}, {file = "tokenizers-0.15.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9855e6c258918f9cf62792d4f6ddfa6c56dccd8c8118640f867f6393ecaf8bd7"}, {file = "tokenizers-0.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de9529fe75efcd54ba8d516aa725e1851df9199f0669b665c55e90df08f5af86"}, {file = "tokenizers-0.15.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:8edcc90a36eab0705fe9121d6c77c6e42eeef25c7399864fd57dfb27173060bf"}, {file = "tokenizers-0.15.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:ae17884aafb3e94f34fb7cfedc29054f5f54e142475ebf8a265a4e388fee3f8b"}, {file = "tokenizers-0.15.0-cp310-none-win32.whl", hash = "sha256:9a3241acdc9b44cff6e95c4a55b9be943ef3658f8edb3686034d353734adba05"}, {file = "tokenizers-0.15.0-cp310-none-win_amd64.whl", hash = "sha256:4b31807cb393d6ea31926b307911c89a1209d5e27629aa79553d1599c8ffdefe"}, {file = "tokenizers-0.15.0-cp311-cp311-macosx_10_7_x86_64.whl", hash = "sha256:af7e9be8c05d30bb137b9fd20f9d99354816599e5fd3d58a4b1e28ba3b36171f"}, {file = "tokenizers-0.15.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c3d7343fa562ea29661783344a2d83662db0d3d17a6fa6a403cac8e512d2d9fd"}, {file = "tokenizers-0.15.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:32371008788aeeb0309a9244809a23e4c0259625e6b74a103700f6421373f395"}, {file = "tokenizers-0.15.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca9db64c7c9954fbae698884c5bb089764edc549731e5f9b7fa1dd4e4d78d77f"}, {file = "tokenizers-0.15.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:dbed5944c31195514669cf6381a0d8d47f164943000d10f93d6d02f0d45c25e0"}, {file = "tokenizers-0.15.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aab16c4a26d351d63e965b0c792f5da7227a37b69a6dc6d922ff70aa595b1b0c"}, {file = "tokenizers-0.15.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3c2b60b12fdd310bf85ce5d7d3f823456b9b65eed30f5438dd7761879c495983"}, {file = "tokenizers-0.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0344d6602740e44054a9e5bbe9775a5e149c4dddaff15959bb07dcce95a5a859"}, {file = "tokenizers-0.15.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:4525f6997d81d9b6d9140088f4f5131f6627e4c960c2c87d0695ae7304233fc3"}, {file = "tokenizers-0.15.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:65975094fef8cc68919644936764efd2ce98cf1bacbe8db2687155d2b0625bee"}, {file = "tokenizers-0.15.0-cp311-none-win32.whl", hash = "sha256:ff5d2159c5d93015f5a4542aac6c315506df31853123aa39042672031768c301"}, {file = "tokenizers-0.15.0-cp311-none-win_amd64.whl", hash = "sha256:2dd681b53cf615e60a31a115a3fda3980e543d25ca183797f797a6c3600788a3"}, {file = "tokenizers-0.15.0-cp312-cp312-macosx_10_7_x86_64.whl", hash = "sha256:c9cce6ee149a3d703f86877bc2a6d997e34874b2d5a2d7839e36b2273f31d3d9"}, {file = "tokenizers-0.15.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4a0a94bc3370e6f1cc8a07a8ae867ce13b7c1b4291432a773931a61f256d44ea"}, {file = "tokenizers-0.15.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:309cfcccfc7e502cb1f1de2c9c1c94680082a65bfd3a912d5a5b2c90c677eb60"}, {file = "tokenizers-0.15.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8413e994dd7d875ab13009127fc85633916c71213917daf64962bafd488f15dc"}, {file = "tokenizers-0.15.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d0ebf9430f901dbdc3dcb06b493ff24a3644c9f88c08e6a1d6d0ae2228b9b818"}, {file = "tokenizers-0.15.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:10361e9c7864b22dd791ec5126327f6c9292fb1d23481d4895780688d5e298ac"}, {file = "tokenizers-0.15.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:babe42635b8a604c594bdc56d205755f73414fce17ba8479d142a963a6c25cbc"}, {file = "tokenizers-0.15.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3768829861e964c7a4556f5f23307fce6a23872c2ebf030eb9822dbbbf7e9b2a"}, {file = "tokenizers-0.15.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:9c91588a630adc88065e1c03ac6831e3e2112558869b9ebcb2b8afd8a14c944d"}, {file = "tokenizers-0.15.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:77606994e793ca54ecf3a3619adc8a906a28ca223d9354b38df41cb8766a0ed6"}, {file = "tokenizers-0.15.0-cp37-cp37m-macosx_10_7_x86_64.whl", hash = "sha256:6fe143939f3b596681922b2df12a591a5b010e7dcfbee2202482cd0c1c2f2459"}, {file = "tokenizers-0.15.0-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:b7bee0f1795e3e3561e9a557061b1539e5255b8221e3f928f58100282407e090"}, {file = "tokenizers-0.15.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5d37e7f4439b4c46192ab4f2ff38ab815e4420f153caa13dec9272ef14403d34"}, {file = "tokenizers-0.15.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:caadf255cf7f951b38d10097836d1f3bcff4aeaaffadfdf748bab780bf5bff95"}, {file = "tokenizers-0.15.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:05accb9162bf711a941b1460b743d62fec61c160daf25e53c5eea52c74d77814"}, {file = "tokenizers-0.15.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:26a2ef890740127cb115ee5260878f4a677e36a12831795fd7e85887c53b430b"}, {file = "tokenizers-0.15.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e54c5f26df14913620046b33e822cb3bcd091a332a55230c0e63cc77135e2169"}, {file = "tokenizers-0.15.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:669b8ed653a578bcff919566631156f5da3aab84c66f3c0b11a6281e8b4731c7"}, {file = "tokenizers-0.15.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:0ea480d943297df26f06f508dab6e012b07f42bf3dffdd36e70799368a5f5229"}, {file = "tokenizers-0.15.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:bc80a0a565ebfc7cd89de7dd581da8c2b3238addfca6280572d27d763f135f2f"}, {file = "tokenizers-0.15.0-cp37-none-win32.whl", hash = "sha256:cdd945e678bbdf4517d5d8de66578a5030aeefecdb46f5320b034de9cad8d4dd"}, {file = "tokenizers-0.15.0-cp37-none-win_amd64.whl", hash = "sha256:1ab96ab7dc706e002c32b2ea211a94c1c04b4f4de48354728c3a6e22401af322"}, {file = "tokenizers-0.15.0-cp38-cp38-macosx_10_7_x86_64.whl", hash = "sha256:f21c9eb71c9a671e2a42f18b456a3d118e50c7f0fc4dd9fa8f4eb727fea529bf"}, {file = "tokenizers-0.15.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2a5f4543a35889679fc3052086e69e81880b2a5a28ff2a52c5a604be94b77a3f"}, {file = "tokenizers-0.15.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f8aa81afec893e952bd39692b2d9ef60575ed8c86fce1fd876a06d2e73e82dca"}, {file = "tokenizers-0.15.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1574a5a4af22c3def93fe8fe4adcc90a39bf5797ed01686a4c46d1c3bc677d2f"}, {file = "tokenizers-0.15.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7c7982fd0ec9e9122d03b209dac48cebfea3de0479335100ef379a9a959b9a5a"}, {file = "tokenizers-0.15.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f8d16b647032df2ce2c1f9097236e046ea9fedd969b25637b9d5d734d78aa53b"}, {file = "tokenizers-0.15.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b3cdf29e6f9653da330515dc8fa414be5a93aae79e57f8acc50d4028dd843edf"}, {file = "tokenizers-0.15.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7286f3df10de840867372e3e64b99ef58c677210e3ceb653cd0e740a5c53fe78"}, {file = "tokenizers-0.15.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:aabc83028baa5a36ce7a94e7659250f0309c47fa4a639e5c2c38e6d5ea0de564"}, {file = "tokenizers-0.15.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:72f78b0e0e276b1fc14a672fa73f3acca034ba8db4e782124a2996734a9ba9cf"}, {file = "tokenizers-0.15.0-cp38-none-win32.whl", hash = "sha256:9680b0ecc26e7e42f16680c1aa62e924d58d1c2dd992707081cc10a374896ea2"}, {file = "tokenizers-0.15.0-cp38-none-win_amd64.whl", hash = "sha256:f17cbd88dab695911cbdd385a5a7e3709cc61dff982351f5d1b5939f074a2466"}, {file = "tokenizers-0.15.0-cp39-cp39-macosx_10_7_x86_64.whl", hash = "sha256:3661862df7382c5eb23ac4fbf7c75e69b02dc4f5784e4c5a734db406b5b24596"}, {file = "tokenizers-0.15.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c3045d191dad49647f5a5039738ecf1c77087945c7a295f7bcf051c37067e883"}, {file = "tokenizers-0.15.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:a9fcaad9ab0801f14457d7c820d9f246b5ab590c407fc6b073819b1573097aa7"}, {file = "tokenizers-0.15.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a79f17027f24fe9485701c8dbb269b9c713954ec3bdc1e7075a66086c0c0cd3c"}, {file = "tokenizers-0.15.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:01a3aa332abc4bee7640563949fcfedca4de8f52691b3b70f2fc6ca71bfc0f4e"}, {file = "tokenizers-0.15.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:05b83896a893cdfedad8785250daa3ba9f0504848323471524d4783d7291661e"}, {file = "tokenizers-0.15.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cbbf2489fcf25d809731ba2744ff278dd07d9eb3f8b7482726bd6cae607073a4"}, {file = "tokenizers-0.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab806ad521a5e9de38078b7add97589c313915f6f5fec6b2f9f289d14d607bd6"}, {file = "tokenizers-0.15.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:4a522612d5c88a41563e3463226af64e2fa00629f65cdcc501d1995dd25d23f5"}, {file = "tokenizers-0.15.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:e58a38c4e6075810bdfb861d9c005236a72a152ebc7005941cc90d1bbf16aca9"}, {file = "tokenizers-0.15.0-cp39-none-win32.whl", hash = "sha256:b8034f1041fd2bd2b84ff9f4dc4ae2e1c3b71606820a9cd5c562ebd291a396d1"}, {file = "tokenizers-0.15.0-cp39-none-win_amd64.whl", hash = "sha256:edde9aa964145d528d0e0dbf14f244b8a85ebf276fb76869bc02e2530fa37a96"}, {file = "tokenizers-0.15.0-pp310-pypy310_pp73-macosx_10_7_x86_64.whl", hash = "sha256:309445d10d442b7521b98083dc9f0b5df14eca69dbbfebeb98d781ee2cef5d30"}, {file = "tokenizers-0.15.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d3125a6499226d4d48efc54f7498886b94c418e93a205b673bc59364eecf0804"}, {file = "tokenizers-0.15.0-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:ed56ddf0d54877bb9c6d885177db79b41576e61b5ef6defeb579dcb803c04ad5"}, {file = "tokenizers-0.15.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3b22cd714706cc5b18992a232b023f736e539495f5cc61d2d28d176e55046f6c"}, {file = "tokenizers-0.15.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fac2719b1e9bc8e8e7f6599b99d0a8e24f33d023eb8ef644c0366a596f0aa926"}, {file = "tokenizers-0.15.0-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:85ddae17570ec7e5bfaf51ffa78d044f444a8693e1316e1087ee6150596897ee"}, {file = "tokenizers-0.15.0-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:76f1bed992e396bf6f83e3df97b64ff47885e45e8365f8983afed8556a0bc51f"}, {file = "tokenizers-0.15.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl", hash = "sha256:3bb0f4df6dce41a1c7482087b60d18c372ef4463cb99aa8195100fcd41e0fd64"}, {file = "tokenizers-0.15.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:22c27672c27a059a5f39ff4e49feed8c7f2e1525577c8a7e3978bd428eb5869d"}, {file = "tokenizers-0.15.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:78104f5d035c9991f92831fc0efe9e64a05d4032194f2a69f67aaa05a4d75bbb"}, {file = "tokenizers-0.15.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a40b73dc19d82c3e3ffb40abdaacca8fbc95eeb26c66b7f9f860aebc07a73998"}, {file = "tokenizers-0.15.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:d801d1368188c74552cd779b1286e67cb9fd96f4c57a9f9a2a09b6def9e1ab37"}, {file = "tokenizers-0.15.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:82641ffb13a4da1293fcc9f437d457647e60ed0385a9216cd135953778b3f0a1"}, {file = "tokenizers-0.15.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl", hash = "sha256:160f9d1810f2c18fffa94aa98bf17632f6bd2dabc67fcb01a698ca80c37d52ee"}, {file = "tokenizers-0.15.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:8d7d6eea831ed435fdeeb9bcd26476226401d7309d115a710c65da4088841948"}, {file = "tokenizers-0.15.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f6456bec6c557d63d8ec0023758c32f589e1889ed03c055702e84ce275488bed"}, {file = "tokenizers-0.15.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1eef39a502fad3bf104b9e1906b4fb0cee20e44e755e51df9a98f8922c3bf6d4"}, {file = "tokenizers-0.15.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c1e4664c5b797e093c19b794bbecc19d2367e782b4a577d8b7c1821db5dc150d"}, {file = "tokenizers-0.15.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:ca003fb5f3995ff5cf676db6681b8ea5d54d3b30bea36af1120e78ee1a4a4cdf"}, {file = "tokenizers-0.15.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:7f17363141eb0c53752c89e10650b85ef059a52765d0802ba9613dbd2d21d425"}, {file = "tokenizers-0.15.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl", hash = "sha256:8a765db05581c7d7e1280170f2888cda351760d196cc059c37ea96f121125799"}, {file = "tokenizers-0.15.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:2a0dd641a72604486cd7302dd8f87a12c8a9b45e1755e47d2682733f097c1af5"}, {file = "tokenizers-0.15.0-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:0a1a3c973e4dc97797fc19e9f11546c95278ffc55c4492acb742f69e035490bc"}, {file = "tokenizers-0.15.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4fab75642aae4e604e729d6f78e0addb9d7e7d49e28c8f4d16b24da278e5263"}, {file = "tokenizers-0.15.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65f80be77f6327a86d8fd35a4467adcfe6174c159b4ab52a1a8dd4c6f2d7d9e1"}, {file = "tokenizers-0.15.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:a8da7533dbe66b88afd430c56a2f2ce1fd82e2681868f857da38eeb3191d7498"}, {file = "tokenizers-0.15.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:fa8eb4584fc6cbe6a84d7a7864be3ed28e23e9fd2146aa8ef1814d579df91958"}, {file = "tokenizers-0.15.0.tar.gz", hash = "sha256:10c7e6e7b4cabd757da59e93f5f8d1126291d16f8b54f28510825ef56a3e5d0e"}, ] [package.dependencies] huggingface_hub = ">=0.16.4,<1.0" [package.extras] dev = ["tokenizers[testing]"] docs = ["setuptools_rust", "sphinx", "sphinx_rtd_theme"] testing = ["black (==22.3)", "datasets", "numpy", "pytest", "requests"] [[package]] name = "tomli" version = "2.0.1" description = "A lil' TOML parser" optional = false python-versions = ">=3.7" files = [ {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, ] [[package]] name = "torch" version = "2.1.2" description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" optional = true python-versions = ">=3.8.0" files = [ {file = "torch-2.1.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:3a871edd6c02dae77ad810335c0833391c1a4ce49af21ea8cf0f6a5d2096eea8"}, {file = "torch-2.1.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:bef6996c27d8f6e92ea4e13a772d89611da0e103b48790de78131e308cf73076"}, {file = "torch-2.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:0e13034fd5fb323cbbc29e56d0637a3791e50dd589616f40c79adfa36a5a35a1"}, {file = "torch-2.1.2-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:d9b535cad0df3d13997dbe8bd68ac33e0e3ae5377639c9881948e40794a61403"}, {file = "torch-2.1.2-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:f9a55d55af02826ebfbadf4e9b682f0f27766bc33df8236b48d28d705587868f"}, {file = "torch-2.1.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:a6ebbe517097ef289cc7952783588c72de071d4b15ce0f8b285093f0916b1162"}, {file = "torch-2.1.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:8f32ce591616a30304f37a7d5ea80b69ca9e1b94bba7f308184bf616fdaea155"}, {file = "torch-2.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:e0ee6cf90c8970e05760f898d58f9ac65821c37ffe8b04269ec787aa70962b69"}, {file = "torch-2.1.2-cp311-none-macosx_10_9_x86_64.whl", hash = "sha256:76d37967c31c99548ad2c4d3f2cf191db48476f2e69b35a0937137116da356a1"}, {file = "torch-2.1.2-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:e2d83f07b4aac983453ea5bf8f9aa9dacf2278a8d31247f5d9037f37befc60e4"}, {file = "torch-2.1.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:f41fe0c7ecbf903a568c73486139a75cfab287a0f6c17ed0698fdea7a1e8641d"}, {file = "torch-2.1.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:e3225f47d50bb66f756fe9196a768055d1c26b02154eb1f770ce47a2578d3aa7"}, {file = "torch-2.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:33d59cd03cb60106857f6c26b36457793637512998666ee3ce17311f217afe2b"}, {file = "torch-2.1.2-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:8e221deccd0def6c2badff6be403e0c53491805ed9915e2c029adbcdb87ab6b5"}, {file = "torch-2.1.2-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:05b18594f60a911a0c4f023f38a8bda77131fba5fd741bda626e97dcf5a3dd0a"}, {file = "torch-2.1.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:9ca96253b761e9aaf8e06fb30a66ee301aecbf15bb5a303097de1969077620b6"}, {file = "torch-2.1.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:d93ba70f67b08c2ae5598ee711cbc546a1bc8102cef938904b8c85c2089a51a0"}, {file = "torch-2.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:255b50bc0608db177e6a3cc118961d77de7e5105f07816585fa6f191f33a9ff3"}, {file = "torch-2.1.2-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:6984cd5057c0c977b3c9757254e989d3f1124f4ce9d07caa6cb637783c71d42a"}, {file = "torch-2.1.2-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:bc195d7927feabc0eb7c110e457c955ed2ab616f3c7c28439dd4188cf589699f"}, ] [package.dependencies] filelock = "*" fsspec = "*" jinja2 = "*" networkx = "*" nvidia-cublas-cu12 = {version = "12.1.3.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-cuda-cupti-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-cuda-nvrtc-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-cuda-runtime-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-cudnn-cu12 = {version = "8.9.2.26", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-cufft-cu12 = {version = "11.0.2.54", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-curand-cu12 = {version = "10.3.2.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-cusolver-cu12 = {version = "11.4.5.107", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-nccl-cu12 = {version = "2.18.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} sympy = "*" triton = {version = "2.1.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} typing-extensions = "*" [package.extras] dynamo = ["jinja2"] opt-einsum = ["opt-einsum (>=3.3)"] [[package]] name = "tqdm" version = "4.66.1" description = "Fast, Extensible Progress Meter" optional = false python-versions = ">=3.7" files = [ {file = "tqdm-4.66.1-py3-none-any.whl", hash = "sha256:d302b3c5b53d47bce91fea46679d9c3c6508cf6332229aa1e7d8653723793386"}, {file = "tqdm-4.66.1.tar.gz", hash = "sha256:d88e651f9db8d8551a62556d3cff9e3034274ca5d66e93197cf2490e2dcb69c7"}, ] [package.dependencies] colorama = {version = "*", markers = "platform_system == \"Windows\""} [package.extras] dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"] notebook = ["ipywidgets (>=6)"] slack = ["slack-sdk"] telegram = ["requests"] [[package]] name = "transformers" version = "4.36.1" description = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow" optional = false python-versions = ">=3.8.0" files = [ {file = "transformers-4.36.1-py3-none-any.whl", hash = "sha256:0e309d03634885f02d46801ec4f2c3fc1d614a5b9ebde608181f3e842bac53b8"}, {file = "transformers-4.36.1.tar.gz", hash = "sha256:28e55952d9bed68f06cf45a3d29cc480679b528afe944e68f8cf6c799e428759"}, ] [package.dependencies] filelock = "*" huggingface-hub = ">=0.19.3,<1.0" numpy = ">=1.17" packaging = ">=20.0" pyyaml = ">=5.1" regex = "!=2019.12.17" requests = "*" safetensors = ">=0.3.1" tokenizers = ">=0.14,<0.19" tqdm = ">=4.27" [package.extras] accelerate = ["accelerate (>=0.21.0)"] agents = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "datasets (!=2.5.0)", "diffusers", "opencv-python", "sentencepiece (>=0.1.91,!=0.1.92)", "torch (>=1.10,!=1.12.0)"] all = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune] (>=2.7.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timm", "tokenizers (>=0.14,<0.19)", "torch (>=1.10,!=1.12.0)", "torchaudio", "torchvision"] audio = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] codecarbon = ["codecarbon (==1.2.0)"] deepspeed = ["accelerate (>=0.21.0)", "deepspeed (>=0.9.3)"] deepspeed-testing = ["GitPython (<3.1.19)", "accelerate (>=0.21.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "deepspeed (>=0.9.3)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "optuna", "parameterized", "protobuf", "psutil", "pydantic (<2)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] dev = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "decord (==0.6.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.7.0)", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic (<2)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "timm", "tokenizers (>=0.14,<0.19)", "torch (>=1.10,!=1.12.0)", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] dev-tensorflow = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic (<2)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "tokenizers (>=0.14,<0.19)", "urllib3 (<2.0.0)"] dev-torch = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "librosa", "nltk", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic (<2)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "timeout-decorator", "timm", "tokenizers (>=0.14,<0.19)", "torch (>=1.10,!=1.12.0)", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] docs = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "hf-doc-builder", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune] (>=2.7.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timm", "tokenizers (>=0.14,<0.19)", "torch (>=1.10,!=1.12.0)", "torchaudio", "torchvision"] docs-specific = ["hf-doc-builder"] flax = ["flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "optax (>=0.0.8,<=0.1.4)"] flax-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] ftfy = ["ftfy"] integrations = ["optuna", "ray[tune] (>=2.7.0)", "sigopt"] ja = ["fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "rhoknp (>=1.1.0,<1.3.1)", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)"] modelcreation = ["cookiecutter (==1.7.3)"] natten = ["natten (>=0.14.6)"] onnx = ["onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "tf2onnx"] onnxruntime = ["onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)"] optuna = ["optuna"] quality = ["GitPython (<3.1.19)", "datasets (!=2.5.0)", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "ruff (==0.1.5)", "urllib3 (<2.0.0)"] ray = ["ray[tune] (>=2.7.0)"] retrieval = ["datasets (!=2.5.0)", "faiss-cpu"] sagemaker = ["sagemaker (>=2.31.0)"] sentencepiece = ["protobuf", "sentencepiece (>=0.1.91,!=0.1.92)"] serving = ["fastapi", "pydantic (<2)", "starlette", "uvicorn"] sigopt = ["sigopt"] sklearn = ["scikit-learn"] speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] testing = ["GitPython (<3.1.19)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "parameterized", "protobuf", "psutil", "pydantic (<2)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "tensorboard", "timeout-decorator"] tf = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx"] tf-cpu = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow-cpu (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx"] tf-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] timm = ["timm"] tokenizers = ["tokenizers (>=0.14,<0.19)"] torch = ["accelerate (>=0.21.0)", "torch (>=1.10,!=1.12.0)"] torch-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] torch-vision = ["Pillow (>=10.0.1,<=15.0)", "torchvision"] torchhub = ["filelock", "huggingface-hub (>=0.19.3,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.14,<0.19)", "torch (>=1.10,!=1.12.0)", "tqdm (>=4.27)"] video = ["av (==9.2.0)", "decord (==0.6.0)"] vision = ["Pillow (>=10.0.1,<=15.0)"] [[package]] name = "triton" version = "2.1.0" description = "A language and compiler for custom Deep Learning operations" optional = true python-versions = "*" files = [ {file = "triton-2.1.0-0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:66439923a30d5d48399b08a9eae10370f6c261a5ec864a64983bae63152d39d7"}, {file = "triton-2.1.0-0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:919b06453f0033ea52c13eaf7833de0e57db3178d23d4e04f9fc71c4f2c32bf8"}, {file = "triton-2.1.0-0-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:ae4bb8a91de790e1866405211c4d618379781188f40d5c4c399766914e84cd94"}, {file = "triton-2.1.0-0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:39f6fb6bdccb3e98f3152e3fbea724f1aeae7d749412bbb1fa9c441d474eba26"}, {file = "triton-2.1.0-0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:21544e522c02005a626c8ad63d39bdff2f31d41069592919ef281e964ed26446"}, {file = "triton-2.1.0-0-pp37-pypy37_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:143582ca31dd89cd982bd3bf53666bab1c7527d41e185f9e3d8a3051ce1b663b"}, {file = "triton-2.1.0-0-pp38-pypy38_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:82fc5aeeedf6e36be4e4530cbdcba81a09d65c18e02f52dc298696d45721f3bd"}, {file = "triton-2.1.0-0-pp39-pypy39_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:81a96d110a738ff63339fc892ded095b31bd0d205e3aace262af8400d40b6fa8"}, ] [package.dependencies] filelock = "*" [package.extras] build = ["cmake (>=3.18)", "lit"] tests = ["autopep8", "flake8", "isort", "numpy", "pytest", "scipy (>=1.7.1)"] tutorials = ["matplotlib", "pandas", "tabulate"] [[package]] name = "typer" version = "0.6.1" description = "Typer, build great CLIs. Easy to code. Based on Python type hints." optional = false python-versions = ">=3.6" files = [ {file = "typer-0.6.1-py3-none-any.whl", hash = "sha256:54b19e5df18654070a82f8c2aa1da456a4ac16a2a83e6dcd9f170e291c56338e"}, {file = "typer-0.6.1.tar.gz", hash = "sha256:2d5720a5e63f73eaf31edaa15f6ab87f35f0690f8ca233017d7d23d743a91d73"}, ] [package.dependencies] click = ">=7.1.1,<9.0.0" [package.extras] all = ["colorama (>=0.4.3,<0.5.0)", "rich (>=10.11.0,<13.0.0)", "shellingham (>=1.3.0,<2.0.0)"] dev = ["autoflake (>=1.3.1,<2.0.0)", "flake8 (>=3.8.3,<4.0.0)", "pre-commit (>=2.17.0,<3.0.0)"] doc = ["mdx-include (>=1.4.1,<2.0.0)", "mkdocs (>=1.1.2,<2.0.0)", "mkdocs-material (>=8.1.4,<9.0.0)"] test = ["black (>=22.3.0,<23.0.0)", "coverage (>=5.2,<6.0)", "isort (>=5.0.6,<6.0.0)", "mypy (==0.910)", "pytest (>=4.4.0,<5.4.0)", "pytest-cov (>=2.10.0,<3.0.0)", "pytest-sugar (>=0.9.4,<0.10.0)", "pytest-xdist (>=1.32.0,<2.0.0)", "rich (>=10.11.0,<13.0.0)", "shellingham (>=1.3.0,<2.0.0)"] [[package]] name = "typing-extensions" version = "4.9.0" description = "Backported and Experimental Type Hints for Python 3.8+" optional = false python-versions = ">=3.8" files = [ {file = "typing_extensions-4.9.0-py3-none-any.whl", hash = "sha256:af72aea155e91adfc61c3ae9e0e342dbc0cba726d6cba4b6c72c1f34e47291cd"}, {file = "typing_extensions-4.9.0.tar.gz", hash = "sha256:23478f88c37f27d76ac8aee6c905017a143b0b1b886c3c9f66bc2fd94f9f5783"}, ] [[package]] name = "tzdata" version = "2023.3" description = "Provider of IANA time zone data" optional = true python-versions = ">=2" files = [ {file = "tzdata-2023.3-py2.py3-none-any.whl", hash = "sha256:7e65763eef3120314099b6939b5546db7adce1e7d6f2e179e3df563c70511eda"}, {file = "tzdata-2023.3.tar.gz", hash = "sha256:11ef1e08e54acb0d4f95bdb1be05da659673de4acbd21bf9c69e94cc5e907a3a"}, ] [[package]] name = "urllib3" version = "2.1.0" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ {file = "urllib3-2.1.0-py3-none-any.whl", hash = "sha256:55901e917a5896a349ff771be919f8bd99aff50b79fe58fec595eb37bbc56bb3"}, {file = "urllib3-2.1.0.tar.gz", hash = "sha256:df7aa8afb0148fa78488e7899b2c59b5f4ffcfa82e6c54ccb9dd37c1d7b52d54"}, ] [package.extras] brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] zstd = ["zstandard (>=0.18.0)"] [[package]] name = "win32-setctime" version = "1.1.0" description = "A small Python utility to set file creation time on Windows" optional = false python-versions = ">=3.5" files = [ {file = "win32_setctime-1.1.0-py3-none-any.whl", hash = "sha256:231db239e959c2fe7eb1d7dc129f11172354f98361c4fa2d6d2d7e278baa8aad"}, {file = "win32_setctime-1.1.0.tar.gz", hash = "sha256:15cf5750465118d6929ae4de4eb46e8edae9a5634350c01ba582df868e932cb2"}, ] [package.extras] dev = ["black (>=19.3b0)", "pytest (>=4.6.2)"] [[package]] name = "wrapt" version = "1.16.0" description = "Module for decorators, wrappers and monkey patching." optional = false python-versions = ">=3.6" files = [ {file = "wrapt-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ffa565331890b90056c01db69c0fe634a776f8019c143a5ae265f9c6bc4bd6d4"}, {file = "wrapt-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e4fdb9275308292e880dcbeb12546df7f3e0f96c6b41197e0cf37d2826359020"}, {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb2dee3874a500de01c93d5c71415fcaef1d858370d405824783e7a8ef5db440"}, {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2a88e6010048489cda82b1326889ec075a8c856c2e6a256072b28eaee3ccf487"}, {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ac83a914ebaf589b69f7d0a1277602ff494e21f4c2f743313414378f8f50a4cf"}, {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:73aa7d98215d39b8455f103de64391cb79dfcad601701a3aa0dddacf74911d72"}, {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:807cc8543a477ab7422f1120a217054f958a66ef7314f76dd9e77d3f02cdccd0"}, {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bf5703fdeb350e36885f2875d853ce13172ae281c56e509f4e6eca049bdfb136"}, {file = "wrapt-1.16.0-cp310-cp310-win32.whl", hash = "sha256:f6b2d0c6703c988d334f297aa5df18c45e97b0af3679bb75059e0e0bd8b1069d"}, {file = "wrapt-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:decbfa2f618fa8ed81c95ee18a387ff973143c656ef800c9f24fb7e9c16054e2"}, {file = "wrapt-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1a5db485fe2de4403f13fafdc231b0dbae5eca4359232d2efc79025527375b09"}, {file = "wrapt-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75ea7d0ee2a15733684badb16de6794894ed9c55aa5e9903260922f0482e687d"}, {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a452f9ca3e3267cd4d0fcf2edd0d035b1934ac2bd7e0e57ac91ad6b95c0c6389"}, {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:43aa59eadec7890d9958748db829df269f0368521ba6dc68cc172d5d03ed8060"}, {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:72554a23c78a8e7aa02abbd699d129eead8b147a23c56e08d08dfc29cfdddca1"}, {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d2efee35b4b0a347e0d99d28e884dfd82797852d62fcd7ebdeee26f3ceb72cf3"}, {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:6dcfcffe73710be01d90cae08c3e548d90932d37b39ef83969ae135d36ef3956"}, {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:eb6e651000a19c96f452c85132811d25e9264d836951022d6e81df2fff38337d"}, {file = "wrapt-1.16.0-cp311-cp311-win32.whl", hash = "sha256:66027d667efe95cc4fa945af59f92c5a02c6f5bb6012bff9e60542c74c75c362"}, {file = "wrapt-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:aefbc4cb0a54f91af643660a0a150ce2c090d3652cf4052a5397fb2de549cd89"}, {file = "wrapt-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5eb404d89131ec9b4f748fa5cfb5346802e5ee8836f57d516576e61f304f3b7b"}, {file = "wrapt-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9090c9e676d5236a6948330e83cb89969f433b1943a558968f659ead07cb3b36"}, {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:94265b00870aa407bd0cbcfd536f17ecde43b94fb8d228560a1e9d3041462d73"}, {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2058f813d4f2b5e3a9eb2eb3faf8f1d99b81c3e51aeda4b168406443e8ba809"}, {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:98b5e1f498a8ca1858a1cdbffb023bfd954da4e3fa2c0cb5853d40014557248b"}, {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:14d7dc606219cdd7405133c713f2c218d4252f2a469003f8c46bb92d5d095d81"}, {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:49aac49dc4782cb04f58986e81ea0b4768e4ff197b57324dcbd7699c5dfb40b9"}, {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:418abb18146475c310d7a6dc71143d6f7adec5b004ac9ce08dc7a34e2babdc5c"}, {file = "wrapt-1.16.0-cp312-cp312-win32.whl", hash = "sha256:685f568fa5e627e93f3b52fda002c7ed2fa1800b50ce51f6ed1d572d8ab3e7fc"}, {file = "wrapt-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:dcdba5c86e368442528f7060039eda390cc4091bfd1dca41e8046af7c910dda8"}, {file = "wrapt-1.16.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:d462f28826f4657968ae51d2181a074dfe03c200d6131690b7d65d55b0f360f8"}, {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a33a747400b94b6d6b8a165e4480264a64a78c8a4c734b62136062e9a248dd39"}, {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b3646eefa23daeba62643a58aac816945cadc0afaf21800a1421eeba5f6cfb9c"}, {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ebf019be5c09d400cf7b024aa52b1f3aeebeff51550d007e92c3c1c4afc2a40"}, {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:0d2691979e93d06a95a26257adb7bfd0c93818e89b1406f5a28f36e0d8c1e1fc"}, {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:1acd723ee2a8826f3d53910255643e33673e1d11db84ce5880675954183ec47e"}, {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:bc57efac2da352a51cc4658878a68d2b1b67dbe9d33c36cb826ca449d80a8465"}, {file = "wrapt-1.16.0-cp36-cp36m-win32.whl", hash = "sha256:da4813f751142436b075ed7aa012a8778aa43a99f7b36afe9b742d3ed8bdc95e"}, {file = "wrapt-1.16.0-cp36-cp36m-win_amd64.whl", hash = "sha256:6f6eac2360f2d543cc875a0e5efd413b6cbd483cb3ad7ebf888884a6e0d2e966"}, {file = "wrapt-1.16.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a0ea261ce52b5952bf669684a251a66df239ec6d441ccb59ec7afa882265d593"}, {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7bd2d7ff69a2cac767fbf7a2b206add2e9a210e57947dd7ce03e25d03d2de292"}, {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9159485323798c8dc530a224bd3ffcf76659319ccc7bbd52e01e73bd0241a0c5"}, {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a86373cf37cd7764f2201b76496aba58a52e76dedfaa698ef9e9688bfd9e41cf"}, {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:73870c364c11f03ed072dda68ff7aea6d2a3a5c3fe250d917a429c7432e15228"}, {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b935ae30c6e7400022b50f8d359c03ed233d45b725cfdd299462f41ee5ffba6f"}, {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:db98ad84a55eb09b3c32a96c576476777e87c520a34e2519d3e59c44710c002c"}, {file = "wrapt-1.16.0-cp37-cp37m-win32.whl", hash = "sha256:9153ed35fc5e4fa3b2fe97bddaa7cbec0ed22412b85bcdaf54aeba92ea37428c"}, {file = "wrapt-1.16.0-cp37-cp37m-win_amd64.whl", hash = "sha256:66dfbaa7cfa3eb707bbfcd46dab2bc6207b005cbc9caa2199bcbc81d95071a00"}, {file = "wrapt-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1dd50a2696ff89f57bd8847647a1c363b687d3d796dc30d4dd4a9d1689a706f0"}, {file = "wrapt-1.16.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:44a2754372e32ab315734c6c73b24351d06e77ffff6ae27d2ecf14cf3d229202"}, {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e9723528b9f787dc59168369e42ae1c3b0d3fadb2f1a71de14531d321ee05b0"}, {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbed418ba5c3dce92619656802cc5355cb679e58d0d89b50f116e4a9d5a9603e"}, {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:941988b89b4fd6b41c3f0bfb20e92bd23746579736b7343283297c4c8cbae68f"}, {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6a42cd0cfa8ffc1915aef79cb4284f6383d8a3e9dcca70c445dcfdd639d51267"}, {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1ca9b6085e4f866bd584fb135a041bfc32cab916e69f714a7d1d397f8c4891ca"}, {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d5e49454f19ef621089e204f862388d29e6e8d8b162efce05208913dde5b9ad6"}, {file = "wrapt-1.16.0-cp38-cp38-win32.whl", hash = "sha256:c31f72b1b6624c9d863fc095da460802f43a7c6868c5dda140f51da24fd47d7b"}, {file = "wrapt-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:490b0ee15c1a55be9c1bd8609b8cecd60e325f0575fc98f50058eae366e01f41"}, {file = "wrapt-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9b201ae332c3637a42f02d1045e1d0cccfdc41f1f2f801dafbaa7e9b4797bfc2"}, {file = "wrapt-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2076fad65c6736184e77d7d4729b63a6d1ae0b70da4868adeec40989858eb3fb"}, {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5cd603b575ebceca7da5a3a251e69561bec509e0b46e4993e1cac402b7247b8"}, {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b47cfad9e9bbbed2339081f4e346c93ecd7ab504299403320bf85f7f85c7d46c"}, {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8212564d49c50eb4565e502814f694e240c55551a5f1bc841d4fcaabb0a9b8a"}, {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:5f15814a33e42b04e3de432e573aa557f9f0f56458745c2074952f564c50e664"}, {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:db2e408d983b0e61e238cf579c09ef7020560441906ca990fe8412153e3b291f"}, {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:edfad1d29c73f9b863ebe7082ae9321374ccb10879eeabc84ba3b69f2579d537"}, {file = "wrapt-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed867c42c268f876097248e05b6117a65bcd1e63b779e916fe2e33cd6fd0d3c3"}, {file = "wrapt-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:eb1b046be06b0fce7249f1d025cd359b4b80fc1c3e24ad9eca33e0dcdb2e4a35"}, {file = "wrapt-1.16.0-py3-none-any.whl", hash = "sha256:6906c4100a8fcbf2fa735f6059214bb13b97f75b1a61777fcf6432121ef12ef1"}, {file = "wrapt-1.16.0.tar.gz", hash = "sha256:5f370f952971e7d17c7d1ead40e49f32345a7f7a5373571ef44d800d06b1899d"}, ] [[package]] name = "xxhash" version = "3.4.1" description = "Python binding for xxHash" optional = true python-versions = ">=3.7" files = [ {file = "xxhash-3.4.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:91dbfa55346ad3e18e738742236554531a621042e419b70ad8f3c1d9c7a16e7f"}, {file = "xxhash-3.4.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:665a65c2a48a72068fcc4d21721510df5f51f1142541c890491afc80451636d2"}, {file = "xxhash-3.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb11628470a6004dc71a09fe90c2f459ff03d611376c1debeec2d648f44cb693"}, {file = "xxhash-3.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5bef2a7dc7b4f4beb45a1edbba9b9194c60a43a89598a87f1a0226d183764189"}, {file = "xxhash-3.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9c0f7b2d547d72c7eda7aa817acf8791f0146b12b9eba1d4432c531fb0352228"}, {file = "xxhash-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:00f2fdef6b41c9db3d2fc0e7f94cb3db86693e5c45d6de09625caad9a469635b"}, {file = "xxhash-3.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:23cfd9ca09acaf07a43e5a695143d9a21bf00f5b49b15c07d5388cadf1f9ce11"}, {file = "xxhash-3.4.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6a9ff50a3cf88355ca4731682c168049af1ca222d1d2925ef7119c1a78e95b3b"}, {file = "xxhash-3.4.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:f1d7c69a1e9ca5faa75546fdd267f214f63f52f12692f9b3a2f6467c9e67d5e7"}, {file = "xxhash-3.4.1-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:672b273040d5d5a6864a36287f3514efcd1d4b1b6a7480f294c4b1d1ee1b8de0"}, {file = "xxhash-3.4.1-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:4178f78d70e88f1c4a89ff1ffe9f43147185930bb962ee3979dba15f2b1cc799"}, {file = "xxhash-3.4.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:9804b9eb254d4b8cc83ab5a2002128f7d631dd427aa873c8727dba7f1f0d1c2b"}, {file = "xxhash-3.4.1-cp310-cp310-win32.whl", hash = "sha256:c09c49473212d9c87261d22c74370457cfff5db2ddfc7fd1e35c80c31a8c14ce"}, {file = "xxhash-3.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:ebbb1616435b4a194ce3466d7247df23499475c7ed4eb2681a1fa42ff766aff6"}, {file = "xxhash-3.4.1-cp310-cp310-win_arm64.whl", hash = "sha256:25dc66be3db54f8a2d136f695b00cfe88018e59ccff0f3b8f545869f376a8a46"}, {file = "xxhash-3.4.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:58c49083801885273e262c0f5bbeac23e520564b8357fbb18fb94ff09d3d3ea5"}, {file = "xxhash-3.4.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b526015a973bfbe81e804a586b703f163861da36d186627e27524f5427b0d520"}, {file = "xxhash-3.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:36ad4457644c91a966f6fe137d7467636bdc51a6ce10a1d04f365c70d6a16d7e"}, {file = "xxhash-3.4.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:248d3e83d119770f96003271fe41e049dd4ae52da2feb8f832b7a20e791d2920"}, {file = "xxhash-3.4.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2070b6d5bbef5ee031666cf21d4953c16e92c2f8a24a94b5c240f8995ba3b1d0"}, {file = "xxhash-3.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b2746035f518f0410915e247877f7df43ef3372bf36cfa52cc4bc33e85242641"}, {file = "xxhash-3.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2a8ba6181514681c2591840d5632fcf7356ab287d4aff1c8dea20f3c78097088"}, {file = "xxhash-3.4.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0aac5010869240e95f740de43cd6a05eae180c59edd182ad93bf12ee289484fa"}, {file = "xxhash-3.4.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4cb11d8debab1626181633d184b2372aaa09825bde709bf927704ed72765bed1"}, {file = "xxhash-3.4.1-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b29728cff2c12f3d9f1d940528ee83918d803c0567866e062683f300d1d2eff3"}, {file = "xxhash-3.4.1-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:a15cbf3a9c40672523bdb6ea97ff74b443406ba0ab9bca10ceccd9546414bd84"}, {file = "xxhash-3.4.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:6e66df260fed01ed8ea790c2913271641c58481e807790d9fca8bfd5a3c13844"}, {file = "xxhash-3.4.1-cp311-cp311-win32.whl", hash = "sha256:e867f68a8f381ea12858e6d67378c05359d3a53a888913b5f7d35fbf68939d5f"}, {file = "xxhash-3.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:200a5a3ad9c7c0c02ed1484a1d838b63edcf92ff538770ea07456a3732c577f4"}, {file = "xxhash-3.4.1-cp311-cp311-win_arm64.whl", hash = "sha256:1d03f1c0d16d24ea032e99f61c552cb2b77d502e545187338bea461fde253583"}, {file = "xxhash-3.4.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c4bbba9b182697a52bc0c9f8ec0ba1acb914b4937cd4a877ad78a3b3eeabefb3"}, {file = "xxhash-3.4.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9fd28a9da300e64e434cfc96567a8387d9a96e824a9be1452a1e7248b7763b78"}, {file = "xxhash-3.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6066d88c9329ab230e18998daec53d819daeee99d003955c8db6fc4971b45ca3"}, {file = "xxhash-3.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:93805bc3233ad89abf51772f2ed3355097a5dc74e6080de19706fc447da99cd3"}, {file = "xxhash-3.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:64da57d5ed586ebb2ecdde1e997fa37c27fe32fe61a656b77fabbc58e6fbff6e"}, {file = "xxhash-3.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a97322e9a7440bf3c9805cbaac090358b43f650516486746f7fa482672593df"}, {file = "xxhash-3.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bbe750d512982ee7d831838a5dee9e9848f3fb440e4734cca3f298228cc957a6"}, {file = "xxhash-3.4.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:fd79d4087727daf4d5b8afe594b37d611ab95dc8e29fe1a7517320794837eb7d"}, {file = "xxhash-3.4.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:743612da4071ff9aa4d055f3f111ae5247342931dedb955268954ef7201a71ff"}, {file = "xxhash-3.4.1-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:b41edaf05734092f24f48c0958b3c6cbaaa5b7e024880692078c6b1f8247e2fc"}, {file = "xxhash-3.4.1-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:a90356ead70d715fe64c30cd0969072de1860e56b78adf7c69d954b43e29d9fa"}, {file = "xxhash-3.4.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ac56eebb364e44c85e1d9e9cc5f6031d78a34f0092fea7fc80478139369a8b4a"}, {file = "xxhash-3.4.1-cp312-cp312-win32.whl", hash = "sha256:911035345932a153c427107397c1518f8ce456f93c618dd1c5b54ebb22e73747"}, {file = "xxhash-3.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:f31ce76489f8601cc7b8713201ce94b4bd7b7ce90ba3353dccce7e9e1fee71fa"}, {file = "xxhash-3.4.1-cp312-cp312-win_arm64.whl", hash = "sha256:b5beb1c6a72fdc7584102f42c4d9df232ee018ddf806e8c90906547dfb43b2da"}, {file = "xxhash-3.4.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:6d42b24d1496deb05dee5a24ed510b16de1d6c866c626c2beb11aebf3be278b9"}, {file = "xxhash-3.4.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3b685fab18876b14a8f94813fa2ca80cfb5ab6a85d31d5539b7cd749ce9e3624"}, {file = "xxhash-3.4.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:419ffe34c17ae2df019a4685e8d3934d46b2e0bbe46221ab40b7e04ed9f11137"}, {file = "xxhash-3.4.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0e041ce5714f95251a88670c114b748bca3bf80cc72400e9f23e6d0d59cf2681"}, {file = "xxhash-3.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc860d887c5cb2f524899fb8338e1bb3d5789f75fac179101920d9afddef284b"}, {file = "xxhash-3.4.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:312eba88ffe0a05e332e3a6f9788b73883752be63f8588a6dc1261a3eaaaf2b2"}, {file = "xxhash-3.4.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:e01226b6b6a1ffe4e6bd6d08cfcb3ca708b16f02eb06dd44f3c6e53285f03e4f"}, {file = "xxhash-3.4.1-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:9f3025a0d5d8cf406a9313cd0d5789c77433ba2004b1c75439b67678e5136537"}, {file = "xxhash-3.4.1-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:6d3472fd4afef2a567d5f14411d94060099901cd8ce9788b22b8c6f13c606a93"}, {file = "xxhash-3.4.1-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:43984c0a92f06cac434ad181f329a1445017c33807b7ae4f033878d860a4b0f2"}, {file = "xxhash-3.4.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:a55e0506fdb09640a82ec4f44171273eeabf6f371a4ec605633adb2837b5d9d5"}, {file = "xxhash-3.4.1-cp37-cp37m-win32.whl", hash = "sha256:faec30437919555b039a8bdbaba49c013043e8f76c999670aef146d33e05b3a0"}, {file = "xxhash-3.4.1-cp37-cp37m-win_amd64.whl", hash = "sha256:c9e1b646af61f1fc7083bb7b40536be944f1ac67ef5e360bca2d73430186971a"}, {file = "xxhash-3.4.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:961d948b7b1c1b6c08484bbce3d489cdf153e4122c3dfb07c2039621243d8795"}, {file = "xxhash-3.4.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:719a378930504ab159f7b8e20fa2aa1896cde050011af838af7e7e3518dd82de"}, {file = "xxhash-3.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:74fb5cb9406ccd7c4dd917f16630d2e5e8cbbb02fc2fca4e559b2a47a64f4940"}, {file = "xxhash-3.4.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5dab508ac39e0ab988039bc7f962c6ad021acd81fd29145962b068df4148c476"}, {file = "xxhash-3.4.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8c59f3e46e7daf4c589e8e853d700ef6607afa037bfad32c390175da28127e8c"}, {file = "xxhash-3.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8cc07256eff0795e0f642df74ad096f8c5d23fe66bc138b83970b50fc7f7f6c5"}, {file = "xxhash-3.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e9f749999ed80f3955a4af0eb18bb43993f04939350b07b8dd2f44edc98ffee9"}, {file = "xxhash-3.4.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:7688d7c02149a90a3d46d55b341ab7ad1b4a3f767be2357e211b4e893efbaaf6"}, {file = "xxhash-3.4.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a8b4977963926f60b0d4f830941c864bed16aa151206c01ad5c531636da5708e"}, {file = "xxhash-3.4.1-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:8106d88da330f6535a58a8195aa463ef5281a9aa23b04af1848ff715c4398fb4"}, {file = "xxhash-3.4.1-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:4c76a77dbd169450b61c06fd2d5d436189fc8ab7c1571d39265d4822da16df22"}, {file = "xxhash-3.4.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:11f11357c86d83e53719c592021fd524efa9cf024dc7cb1dfb57bbbd0d8713f2"}, {file = "xxhash-3.4.1-cp38-cp38-win32.whl", hash = "sha256:0c786a6cd74e8765c6809892a0d45886e7c3dc54de4985b4a5eb8b630f3b8e3b"}, {file = "xxhash-3.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:aabf37fb8fa27430d50507deeab2ee7b1bcce89910dd10657c38e71fee835594"}, {file = "xxhash-3.4.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6127813abc1477f3a83529b6bbcfeddc23162cece76fa69aee8f6a8a97720562"}, {file = "xxhash-3.4.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ef2e194262f5db16075caea7b3f7f49392242c688412f386d3c7b07c7733a70a"}, {file = "xxhash-3.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:71be94265b6c6590f0018bbf73759d21a41c6bda20409782d8117e76cd0dfa8b"}, {file = "xxhash-3.4.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:10e0a619cdd1c0980e25eb04e30fe96cf8f4324758fa497080af9c21a6de573f"}, {file = "xxhash-3.4.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fa122124d2e3bd36581dd78c0efa5f429f5220313479fb1072858188bc2d5ff1"}, {file = "xxhash-3.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e17032f5a4fea0a074717fe33477cb5ee723a5f428de7563e75af64bfc1b1e10"}, {file = "xxhash-3.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca7783b20e3e4f3f52f093538895863f21d18598f9a48211ad757680c3bd006f"}, {file = "xxhash-3.4.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d77d09a1113899fad5f354a1eb4f0a9afcf58cefff51082c8ad643ff890e30cf"}, {file = "xxhash-3.4.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:21287bcdd299fdc3328cc0fbbdeaa46838a1c05391264e51ddb38a3f5b09611f"}, {file = "xxhash-3.4.1-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:dfd7a6cc483e20b4ad90224aeb589e64ec0f31e5610ab9957ff4314270b2bf31"}, {file = "xxhash-3.4.1-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:543c7fcbc02bbb4840ea9915134e14dc3dc15cbd5a30873a7a5bf66039db97ec"}, {file = "xxhash-3.4.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:fe0a98d990e433013f41827b62be9ab43e3cf18e08b1483fcc343bda0d691182"}, {file = "xxhash-3.4.1-cp39-cp39-win32.whl", hash = "sha256:b9097af00ebf429cc7c0e7d2fdf28384e4e2e91008130ccda8d5ae653db71e54"}, {file = "xxhash-3.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:d699b921af0dcde50ab18be76c0d832f803034d80470703700cb7df0fbec2832"}, {file = "xxhash-3.4.1-cp39-cp39-win_arm64.whl", hash = "sha256:2be491723405e15cc099ade1280133ccfbf6322d2ef568494fb7d07d280e7eee"}, {file = "xxhash-3.4.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:431625fad7ab5649368c4849d2b49a83dc711b1f20e1f7f04955aab86cd307bc"}, {file = "xxhash-3.4.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fc6dbd5fc3c9886a9e041848508b7fb65fd82f94cc793253990f81617b61fe49"}, {file = "xxhash-3.4.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3ff8dbd0ec97aec842476cb8ccc3e17dd288cd6ce3c8ef38bff83d6eb927817"}, {file = "xxhash-3.4.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef73a53fe90558a4096e3256752268a8bdc0322f4692ed928b6cd7ce06ad4fe3"}, {file = "xxhash-3.4.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:450401f42bbd274b519d3d8dcf3c57166913381a3d2664d6609004685039f9d3"}, {file = "xxhash-3.4.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a162840cf4de8a7cd8720ff3b4417fbc10001eefdd2d21541a8226bb5556e3bb"}, {file = "xxhash-3.4.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b736a2a2728ba45017cb67785e03125a79d246462dfa892d023b827007412c52"}, {file = "xxhash-3.4.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1d0ae4c2e7698adef58710d6e7a32ff518b66b98854b1c68e70eee504ad061d8"}, {file = "xxhash-3.4.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d6322c4291c3ff174dcd104fae41500e75dad12be6f3085d119c2c8a80956c51"}, {file = "xxhash-3.4.1-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:dd59ed668801c3fae282f8f4edadf6dc7784db6d18139b584b6d9677ddde1b6b"}, {file = "xxhash-3.4.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:92693c487e39523a80474b0394645b393f0ae781d8db3474ccdcead0559ccf45"}, {file = "xxhash-3.4.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4603a0f642a1e8d7f3ba5c4c25509aca6a9c1cc16f85091004a7028607ead663"}, {file = "xxhash-3.4.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fa45e8cbfbadb40a920fe9ca40c34b393e0b067082d94006f7f64e70c7490a6"}, {file = "xxhash-3.4.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:595b252943b3552de491ff51e5bb79660f84f033977f88f6ca1605846637b7c6"}, {file = "xxhash-3.4.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:562d8b8f783c6af969806aaacf95b6c7b776929ae26c0cd941d54644ea7ef51e"}, {file = "xxhash-3.4.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:41ddeae47cf2828335d8d991f2d2b03b0bdc89289dc64349d712ff8ce59d0647"}, {file = "xxhash-3.4.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c44d584afdf3c4dbb3277e32321d1a7b01d6071c1992524b6543025fb8f4206f"}, {file = "xxhash-3.4.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd7bddb3a5b86213cc3f2c61500c16945a1b80ecd572f3078ddbbe68f9dabdfb"}, {file = "xxhash-3.4.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9ecb6c987b62437c2f99c01e97caf8d25660bf541fe79a481d05732e5236719c"}, {file = "xxhash-3.4.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:696b4e18b7023527d5c50ed0626ac0520edac45a50ec7cf3fc265cd08b1f4c03"}, {file = "xxhash-3.4.1.tar.gz", hash = "sha256:0379d6cf1ff987cd421609a264ce025e74f346e3e145dd106c0cc2e3ec3f99a9"}, ] [[package]] name = "yarl" version = "1.9.4" description = "Yet another URL library" optional = true python-versions = ">=3.7" files = [ {file = "yarl-1.9.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a8c1df72eb746f4136fe9a2e72b0c9dc1da1cbd23b5372f94b5820ff8ae30e0e"}, {file = "yarl-1.9.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a3a6ed1d525bfb91b3fc9b690c5a21bb52de28c018530ad85093cc488bee2dd2"}, {file = "yarl-1.9.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c38c9ddb6103ceae4e4498f9c08fac9b590c5c71b0370f98714768e22ac6fa66"}, {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9e09c9d74f4566e905a0b8fa668c58109f7624db96a2171f21747abc7524234"}, {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8477c1ee4bd47c57d49621a062121c3023609f7a13b8a46953eb6c9716ca392"}, {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d5ff2c858f5f6a42c2a8e751100f237c5e869cbde669a724f2062d4c4ef93551"}, {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:357495293086c5b6d34ca9616a43d329317feab7917518bc97a08f9e55648455"}, {file = "yarl-1.9.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:54525ae423d7b7a8ee81ba189f131054defdb122cde31ff17477951464c1691c"}, {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:801e9264d19643548651b9db361ce3287176671fb0117f96b5ac0ee1c3530d53"}, {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e516dc8baf7b380e6c1c26792610230f37147bb754d6426462ab115a02944385"}, {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:7d5aaac37d19b2904bb9dfe12cdb08c8443e7ba7d2852894ad448d4b8f442863"}, {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:54beabb809ffcacbd9d28ac57b0db46e42a6e341a030293fb3185c409e626b8b"}, {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bac8d525a8dbc2a1507ec731d2867025d11ceadcb4dd421423a5d42c56818541"}, {file = "yarl-1.9.4-cp310-cp310-win32.whl", hash = "sha256:7855426dfbddac81896b6e533ebefc0af2f132d4a47340cee6d22cac7190022d"}, {file = "yarl-1.9.4-cp310-cp310-win_amd64.whl", hash = "sha256:848cd2a1df56ddbffeb375535fb62c9d1645dde33ca4d51341378b3f5954429b"}, {file = "yarl-1.9.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:35a2b9396879ce32754bd457d31a51ff0a9d426fd9e0e3c33394bf4b9036b099"}, {file = "yarl-1.9.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4c7d56b293cc071e82532f70adcbd8b61909eec973ae9d2d1f9b233f3d943f2c"}, {file = "yarl-1.9.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d8a1c6c0be645c745a081c192e747c5de06e944a0d21245f4cf7c05e457c36e0"}, {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4b3c1ffe10069f655ea2d731808e76e0f452fc6c749bea04781daf18e6039525"}, {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:549d19c84c55d11687ddbd47eeb348a89df9cb30e1993f1b128f4685cd0ebbf8"}, {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a7409f968456111140c1c95301cadf071bd30a81cbd7ab829169fb9e3d72eae9"}, {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e23a6d84d9d1738dbc6e38167776107e63307dfc8ad108e580548d1f2c587f42"}, {file = "yarl-1.9.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d8b889777de69897406c9fb0b76cdf2fd0f31267861ae7501d93003d55f54fbe"}, {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:03caa9507d3d3c83bca08650678e25364e1843b484f19986a527630ca376ecce"}, {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4e9035df8d0880b2f1c7f5031f33f69e071dfe72ee9310cfc76f7b605958ceb9"}, {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:c0ec0ed476f77db9fb29bca17f0a8fcc7bc97ad4c6c1d8959c507decb22e8572"}, {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:ee04010f26d5102399bd17f8df8bc38dc7ccd7701dc77f4a68c5b8d733406958"}, {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:49a180c2e0743d5d6e0b4d1a9e5f633c62eca3f8a86ba5dd3c471060e352ca98"}, {file = "yarl-1.9.4-cp311-cp311-win32.whl", hash = "sha256:81eb57278deb6098a5b62e88ad8281b2ba09f2f1147c4767522353eaa6260b31"}, {file = "yarl-1.9.4-cp311-cp311-win_amd64.whl", hash = "sha256:d1d2532b340b692880261c15aee4dc94dd22ca5d61b9db9a8a361953d36410b1"}, {file = "yarl-1.9.4-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0d2454f0aef65ea81037759be5ca9947539667eecebca092733b2eb43c965a81"}, {file = "yarl-1.9.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:44d8ffbb9c06e5a7f529f38f53eda23e50d1ed33c6c869e01481d3fafa6b8142"}, {file = "yarl-1.9.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:aaaea1e536f98754a6e5c56091baa1b6ce2f2700cc4a00b0d49eca8dea471074"}, {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3777ce5536d17989c91696db1d459574e9a9bd37660ea7ee4d3344579bb6f129"}, {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9fc5fc1eeb029757349ad26bbc5880557389a03fa6ada41703db5e068881e5f2"}, {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ea65804b5dc88dacd4a40279af0cdadcfe74b3e5b4c897aa0d81cf86927fee78"}, {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa102d6d280a5455ad6a0f9e6d769989638718e938a6a0a2ff3f4a7ff8c62cc4"}, {file = "yarl-1.9.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:09efe4615ada057ba2d30df871d2f668af661e971dfeedf0c159927d48bbeff0"}, {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:008d3e808d03ef28542372d01057fd09168419cdc8f848efe2804f894ae03e51"}, {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6f5cb257bc2ec58f437da2b37a8cd48f666db96d47b8a3115c29f316313654ff"}, {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:992f18e0ea248ee03b5a6e8b3b4738850ae7dbb172cc41c966462801cbf62cf7"}, {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0e9d124c191d5b881060a9e5060627694c3bdd1fe24c5eecc8d5d7d0eb6faabc"}, {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3986b6f41ad22988e53d5778f91855dc0399b043fc8946d4f2e68af22ee9ff10"}, {file = "yarl-1.9.4-cp312-cp312-win32.whl", hash = "sha256:4b21516d181cd77ebd06ce160ef8cc2a5e9ad35fb1c5930882baff5ac865eee7"}, {file = "yarl-1.9.4-cp312-cp312-win_amd64.whl", hash = "sha256:a9bd00dc3bc395a662900f33f74feb3e757429e545d831eef5bb280252631984"}, {file = "yarl-1.9.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:63b20738b5aac74e239622d2fe30df4fca4942a86e31bf47a81a0e94c14df94f"}, {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7d7f7de27b8944f1fee2c26a88b4dabc2409d2fea7a9ed3df79b67277644e17"}, {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c74018551e31269d56fab81a728f683667e7c28c04e807ba08f8c9e3bba32f14"}, {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ca06675212f94e7a610e85ca36948bb8fc023e458dd6c63ef71abfd482481aa5"}, {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5aef935237d60a51a62b86249839b51345f47564208c6ee615ed2a40878dccdd"}, {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2b134fd795e2322b7684155b7855cc99409d10b2e408056db2b93b51a52accc7"}, {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d25039a474c4c72a5ad4b52495056f843a7ff07b632c1b92ea9043a3d9950f6e"}, {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:f7d6b36dd2e029b6bcb8a13cf19664c7b8e19ab3a58e0fefbb5b8461447ed5ec"}, {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:957b4774373cf6f709359e5c8c4a0af9f6d7875db657adb0feaf8d6cb3c3964c"}, {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:d7eeb6d22331e2fd42fce928a81c697c9ee2d51400bd1a28803965883e13cead"}, {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:6a962e04b8f91f8c4e5917e518d17958e3bdee71fd1d8b88cdce74dd0ebbf434"}, {file = "yarl-1.9.4-cp37-cp37m-win32.whl", hash = "sha256:f3bc6af6e2b8f92eced34ef6a96ffb248e863af20ef4fde9448cc8c9b858b749"}, {file = "yarl-1.9.4-cp37-cp37m-win_amd64.whl", hash = "sha256:ad4d7a90a92e528aadf4965d685c17dacff3df282db1121136c382dc0b6014d2"}, {file = "yarl-1.9.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:ec61d826d80fc293ed46c9dd26995921e3a82146feacd952ef0757236fc137be"}, {file = "yarl-1.9.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8be9e837ea9113676e5754b43b940b50cce76d9ed7d2461df1af39a8ee674d9f"}, {file = "yarl-1.9.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:bef596fdaa8f26e3d66af846bbe77057237cb6e8efff8cd7cc8dff9a62278bbf"}, {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2d47552b6e52c3319fede1b60b3de120fe83bde9b7bddad11a69fb0af7db32f1"}, {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:84fc30f71689d7fc9168b92788abc977dc8cefa806909565fc2951d02f6b7d57"}, {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4aa9741085f635934f3a2583e16fcf62ba835719a8b2b28fb2917bb0537c1dfa"}, {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:206a55215e6d05dbc6c98ce598a59e6fbd0c493e2de4ea6cc2f4934d5a18d130"}, {file = "yarl-1.9.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:07574b007ee20e5c375a8fe4a0789fad26db905f9813be0f9fef5a68080de559"}, {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5a2e2433eb9344a163aced6a5f6c9222c0786e5a9e9cac2c89f0b28433f56e23"}, {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:6ad6d10ed9b67a382b45f29ea028f92d25bc0bc1daf6c5b801b90b5aa70fb9ec"}, {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:6fe79f998a4052d79e1c30eeb7d6c1c1056ad33300f682465e1b4e9b5a188b78"}, {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:a825ec844298c791fd28ed14ed1bffc56a98d15b8c58a20e0e08c1f5f2bea1be"}, {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8619d6915b3b0b34420cf9b2bb6d81ef59d984cb0fde7544e9ece32b4b3043c3"}, {file = "yarl-1.9.4-cp38-cp38-win32.whl", hash = "sha256:686a0c2f85f83463272ddffd4deb5e591c98aac1897d65e92319f729c320eece"}, {file = "yarl-1.9.4-cp38-cp38-win_amd64.whl", hash = "sha256:a00862fb23195b6b8322f7d781b0dc1d82cb3bcac346d1e38689370cc1cc398b"}, {file = "yarl-1.9.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:604f31d97fa493083ea21bd9b92c419012531c4e17ea6da0f65cacdcf5d0bd27"}, {file = "yarl-1.9.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8a854227cf581330ffa2c4824d96e52ee621dd571078a252c25e3a3b3d94a1b1"}, {file = "yarl-1.9.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ba6f52cbc7809cd8d74604cce9c14868306ae4aa0282016b641c661f981a6e91"}, {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a6327976c7c2f4ee6816eff196e25385ccc02cb81427952414a64811037bbc8b"}, {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8397a3817d7dcdd14bb266283cd1d6fc7264a48c186b986f32e86d86d35fbac5"}, {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e0381b4ce23ff92f8170080c97678040fc5b08da85e9e292292aba67fdac6c34"}, {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:23d32a2594cb5d565d358a92e151315d1b2268bc10f4610d098f96b147370136"}, {file = "yarl-1.9.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ddb2a5c08a4eaaba605340fdee8fc08e406c56617566d9643ad8bf6852778fc7"}, {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:26a1dc6285e03f3cc9e839a2da83bcbf31dcb0d004c72d0730e755b33466c30e"}, {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:18580f672e44ce1238b82f7fb87d727c4a131f3a9d33a5e0e82b793362bf18b4"}, {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:29e0f83f37610f173eb7e7b5562dd71467993495e568e708d99e9d1944f561ec"}, {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:1f23e4fe1e8794f74b6027d7cf19dc25f8b63af1483d91d595d4a07eca1fb26c"}, {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:db8e58b9d79200c76956cefd14d5c90af54416ff5353c5bfd7cbe58818e26ef0"}, {file = "yarl-1.9.4-cp39-cp39-win32.whl", hash = "sha256:c7224cab95645c7ab53791022ae77a4509472613e839dab722a72abe5a684575"}, {file = "yarl-1.9.4-cp39-cp39-win_amd64.whl", hash = "sha256:824d6c50492add5da9374875ce72db7a0733b29c2394890aef23d533106e2b15"}, {file = "yarl-1.9.4-py3-none-any.whl", hash = "sha256:928cecb0ef9d5a7946eb6ff58417ad2fe9375762382f1bf5c55e61645f2c43ad"}, {file = "yarl-1.9.4.tar.gz", hash = "sha256:566db86717cf8080b99b58b083b773a908ae40f06681e87e589a976faf8246bf"}, ] [package.dependencies] idna = ">=2.0" multidict = ">=4.0" [extras] accelerate = ["accelerate"] bnb = ["bitsandbytes"] peft = ["peft"] quantize = ["accelerate", "datasets", "texttable"] torch = ["torch"] [metadata] lock-version = "2.0" python-versions = ">=3.9,<3.13" content-hash = "d314f7dc9ea4d4e7581552f340d9171f24f709bf98de8b8c01c449c23026e7a3"
0
hf_public_repos/text-generation-inference
hf_public_repos/text-generation-inference/server/Makefile-eetq
eetq_commit := 323827dd471458a84e9c840f614e4592b157a4b1 eetq: # Clone eetq pip install packaging git clone https://github.com/NetEase-FuXi/EETQ.git eetq build-eetq: eetq cd eetq && git fetch && git checkout $(eetq_commit) cd eetq && python setup.py build install-eetq: build-eetq cd eetq && python setup.py install
0
hf_public_repos/text-generation-inference
hf_public_repos/text-generation-inference/server/Makefile-flash-att
flash_att_commit := 3a9bfd076f98746c73362328958dbc68d145fbec flash-attention: # Clone flash attention pip install -U packaging ninja --no-cache-dir git clone https://github.com/HazyResearch/flash-attention.git build-flash-attention: flash-attention cd flash-attention && git fetch && git checkout $(flash_att_commit) cd flash-attention && python setup.py build cd flash-attention/csrc/rotary && python setup.py build cd flash-attention/csrc/layer_norm && python setup.py build install-flash-attention: build-flash-attention pip uninstall flash_attn rotary_emb dropout_layer_norm -y || true cd flash-attention && python setup.py install && cd csrc/layer_norm && python setup.py install && cd ../rotary && python setup.py install
0
hf_public_repos/text-generation-inference
hf_public_repos/text-generation-inference/server/requirements_common.txt
backoff==2.2.1 ; python_version >= "3.9" and python_version < "3.13" certifi==2023.11.17 ; python_version >= "3.9" and python_version < "3.13" charset-normalizer==3.3.2 ; python_version >= "3.9" and python_version < "3.13" click==8.1.7 ; python_version >= "3.9" and python_version < "3.13" colorama==0.4.6 ; python_version >= "3.9" and python_version < "3.13" and (sys_platform == "win32" or platform_system == "Windows") deprecated==1.2.14 ; python_version >= "3.9" and python_version < "3.13" einops==0.6.1 ; python_version >= "3.9" and python_version < "3.13" filelock==3.13.1 ; python_version >= "3.9" and python_version < "3.13" fsspec==2023.10.0 ; python_version >= "3.9" and python_version < "3.13" googleapis-common-protos==1.61.0 ; python_version >= "3.9" and python_version < "3.13" grpc-interceptor==0.15.4 ; python_version >= "3.9" and python_version < "3.13" grpcio-reflection==1.59.3 ; python_version >= "3.9" and python_version < "3.13" grpcio-status==1.59.3 ; python_version >= "3.9" and python_version < "3.13" grpcio==1.59.3 ; python_version >= "3.9" and python_version < "3.13" hf-transfer==0.1.4 ; python_version >= "3.9" and python_version < "3.13" huggingface-hub==0.16.4 ; python_version >= "3.9" and python_version < "3.13" idna==3.4 ; python_version >= "3.9" and python_version < "3.13" loguru==0.6.0 ; python_version >= "3.9" and python_version < "3.13" numpy==1.26.2 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-api==1.15.0 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-exporter-otlp-proto-grpc==1.15.0 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-exporter-otlp-proto-http==1.15.0 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-exporter-otlp==1.15.0 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-instrumentation-grpc==0.36b0 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-instrumentation==0.36b0 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-proto==1.15.0 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-sdk==1.15.0 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-semantic-conventions==0.36b0 ; python_version >= "3.9" and python_version < "3.13" packaging==23.2 ; python_version >= "3.9" and python_version < "3.13" pillow==10.1.0 ; python_version >= "3.9" and python_version < "3.13" protobuf==4.25.1 ; python_version >= "3.9" and python_version < "3.13" pyyaml==6.0.1 ; python_version >= "3.9" and python_version < "3.13" regex==2023.10.3 ; python_version >= "3.9" and python_version < "3.13" requests==2.31.0 ; python_version >= "3.9" and python_version < "3.13" safetensors==0.3.3 ; python_version >= "3.9" and python_version < "3.13" scipy==1.11.4 ; python_version >= "3.9" and python_version < "3.13" sentencepiece==0.1.99 ; python_version >= "3.9" and python_version < "3.13" setuptools==69.0.2 ; python_version >= "3.9" and python_version < "3.13" tokenizers==0.13.3 ; python_version >= "3.9" and python_version < "3.13" tqdm==4.66.1 ; python_version >= "3.9" and python_version < "3.13" transformers==4.33.3 ; python_version >= "3.9" and python_version < "3.13" typer==0.6.1 ; python_version >= "3.9" and python_version < "3.13" typing-extensions==4.8.0 ; python_version >= "3.9" and python_version < "3.13" urllib3==2.1.0 ; python_version >= "3.9" and python_version < "3.13" win32-setctime==1.1.0 ; python_version >= "3.9" and python_version < "3.13" and sys_platform == "win32" wrapt==1.16.0 ; python_version >= "3.9" and python_version < "3.13"
0
hf_public_repos/text-generation-inference
hf_public_repos/text-generation-inference/server/requirements_cuda.txt
backoff==2.2.1 ; python_version >= "3.9" and python_version < "3.13" bitsandbytes==0.41.3.post2 ; python_version >= "3.9" and python_version < "3.13" certifi==2023.11.17 ; python_version >= "3.9" and python_version < "3.13" charset-normalizer==3.3.2 ; python_version >= "3.9" and python_version < "3.13" click==8.1.7 ; python_version >= "3.9" and python_version < "3.13" colorama==0.4.6 ; python_version >= "3.9" and python_version < "3.13" and (sys_platform == "win32" or platform_system == "Windows") deprecated==1.2.14 ; python_version >= "3.9" and python_version < "3.13" einops==0.6.1 ; python_version >= "3.9" and python_version < "3.13" filelock==3.13.1 ; python_version >= "3.9" and python_version < "3.13" fsspec==2023.10.0 ; python_version >= "3.9" and python_version < "3.13" googleapis-common-protos==1.62.0 ; python_version >= "3.9" and python_version < "3.13" grpc-interceptor==0.15.4 ; python_version >= "3.9" and python_version < "3.13" grpcio-reflection==1.60.0 ; python_version >= "3.9" and python_version < "3.13" grpcio-status==1.60.0 ; python_version >= "3.9" and python_version < "3.13" grpcio==1.60.0 ; python_version >= "3.9" and python_version < "3.13" hf-transfer==0.1.4 ; python_version >= "3.9" and python_version < "3.13" huggingface-hub==0.19.4 ; python_version >= "3.9" and python_version < "3.13" idna==3.6 ; python_version >= "3.9" and python_version < "3.13" loguru==0.6.0 ; python_version >= "3.9" and python_version < "3.13" numpy==1.26.2 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-api==1.15.0 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-exporter-otlp-proto-grpc==1.15.0 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-exporter-otlp-proto-http==1.15.0 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-exporter-otlp==1.15.0 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-instrumentation-grpc==0.36b0 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-instrumentation==0.36b0 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-proto==1.15.0 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-sdk==1.15.0 ; python_version >= "3.9" and python_version < "3.13" opentelemetry-semantic-conventions==0.36b0 ; python_version >= "3.9" and python_version < "3.13" packaging==23.2 ; python_version >= "3.9" and python_version < "3.13" pillow==10.1.0 ; python_version >= "3.9" and python_version < "3.13" protobuf==4.25.1 ; python_version >= "3.9" and python_version < "3.13" pyyaml==6.0.1 ; python_version >= "3.9" and python_version < "3.13" regex==2023.10.3 ; python_version >= "3.9" and python_version < "3.13" requests==2.31.0 ; python_version >= "3.9" and python_version < "3.13" safetensors==0.3.3 ; python_version >= "3.9" and python_version < "3.13" scipy==1.11.4 ; python_version >= "3.9" and python_version < "3.13" sentencepiece==0.1.99 ; python_version >= "3.9" and python_version < "3.13" setuptools==69.0.2 ; python_version >= "3.9" and python_version < "3.13" tokenizers==0.15.0 ; python_version >= "3.9" and python_version < "3.13" tqdm==4.66.1 ; python_version >= "3.9" and python_version < "3.13" transformers==4.36.1 ; python_version >= "3.9" and python_version < "3.13" typer==0.6.1 ; python_version >= "3.9" and python_version < "3.13" typing-extensions==4.9.0 ; python_version >= "3.9" and python_version < "3.13" urllib3==2.1.0 ; python_version >= "3.9" and python_version < "3.13" win32-setctime==1.1.0 ; python_version >= "3.9" and python_version < "3.13" and sys_platform == "win32" wrapt==1.16.0 ; python_version >= "3.9" and python_version < "3.13"
0
hf_public_repos/text-generation-inference
hf_public_repos/text-generation-inference/server/Makefile
include Makefile-flash-att include Makefile-flash-att-v2 include Makefile-vllm include Makefile-awq include Makefile-eetq unit-tests: pytest -s -vv -m "not private" tests gen-server: # Compile protos pip install grpcio-tools==1.51.1 mypy-protobuf==3.4.0 'types-protobuf>=3.20.4' --no-cache-dir mkdir text_generation_server/pb || true python -m grpc_tools.protoc -I../proto --python_out=text_generation_server/pb \ --grpc_python_out=text_generation_server/pb --mypy_out=text_generation_server/pb ../proto/generate.proto find text_generation_server/pb/ -type f -name "*.py" -print0 -exec sed -i -e 's/^\(import.*pb2\)/from . \1/g' {} \; touch text_generation_server/pb/__init__.py install-megablocks: pip install git+https://github.com/OlivierDehaene/megablocks@181709df192de9a941fdf3a641cdc65a0462996e install: gen-server pip install pip --upgrade pip install -r requirements_cuda.txt pip install -e ".[bnb, accelerate, quantize, peft]" run-dev: SAFETENSORS_FAST_GPU=1 python -m torch.distributed.run --nproc_per_node=2 text_generation_server/cli.py serve bigscience/bloom-560m --sharded export-requirements: poetry export -o requirements_cuda.txt --extras bnb --without-hashes poetry export -o requirements_rocm.txt --without-hashes
0
hf_public_repos/text-generation-inference/server
hf_public_repos/text-generation-inference/server/text_generation_server/server.py
import asyncio import os import torch import time from grpc import aio from loguru import logger from grpc_reflection.v1alpha import reflection from pathlib import Path from typing import List, Optional from text_generation_server.cache import Cache from text_generation_server.interceptor import ExceptionInterceptor from text_generation_server.models import Model, get_model from text_generation_server.pb import generate_pb2_grpc, generate_pb2 from text_generation_server.tracing import UDSOpenTelemetryAioServerInterceptor from text_generation_server.models.idefics_causal_lm import IdeficsCausalLMBatch class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer): def __init__( self, model: Model, cache: Cache, quantize: Optional[str], server_urls: List[str], ): self.cache = cache self.model = model self.quantize = quantize self.server_urls = server_urls # For some reason, inference_mode does not work well with GLOO which we use on CPU if model.device.type == "cuda": # Force inference mode for the lifetime of TextGenerationService self._inference_mode_raii_guard = torch._C._InferenceMode(True) async def Info(self, request, context): return self.model.info async def Health(self, request, context): if self.model.device.type == "cuda": torch.zeros((2, 2)).cuda() return generate_pb2.HealthResponse() async def ServiceDiscovery(self, request, context): return generate_pb2.ServiceDiscoveryResponse(urls=self.server_urls) async def ClearCache(self, request, context): if request.HasField("id"): self.cache.delete(request.id) else: self.cache.clear() return generate_pb2.ClearCacheResponse() async def FilterBatch(self, request, context): batch = self.cache.pop(request.batch_id) if batch is None: raise ValueError(f"Batch ID {request.batch_id} not found in cache.") filtered_batch = batch.filter(request.request_ids) self.cache.set(filtered_batch) return generate_pb2.FilterBatchResponse(batch=filtered_batch.to_pb()) async def Warmup(self, request, context): if self.quantize == "gptq": try: # When using GPTQ, Exllama kernels need some global kernels # For which we have the finale shapes only after the model has loaded # This will allocate those buffers. from text_generation_server.utils.layers import ( create_exllama_buffers, set_device, ) set_device(self.model.device) create_exllama_buffers(request.max_prefill_tokens) except ImportError: pass if ( self.model.batch_type == IdeficsCausalLMBatch ): # Hack, i would rather use kwargs in the `from_pb` call batch = self.model.batch_type.from_pb( request.batch, self.model.tokenizer, self.model.processor, self.model.dtype, self.model.device, ) else: batch = self.model.batch_type.from_pb( request.batch, self.model.tokenizer, self.model.dtype, self.model.device ) max_supported_total_tokens = self.model.warmup(batch) return generate_pb2.WarmupResponse( max_supported_total_tokens=max_supported_total_tokens ) async def Prefill(self, request, context): start = time.time_ns() if ( self.model.batch_type == IdeficsCausalLMBatch ): # Hack, i would rather use kwargs in the `from_pb` call batch = self.model.batch_type.from_pb( request.batch, self.model.tokenizer, self.model.processor, self.model.dtype, self.model.device, ) else: batch = self.model.batch_type.from_pb( request.batch, self.model.tokenizer, self.model.dtype, self.model.device ) generations, next_batch, timings = self.model.generate_token(batch) self.cache.set(next_batch) return generate_pb2.PrefillResponse( generations=[generation.to_pb() for generation in generations], batch=next_batch.to_pb() if next_batch else None, forward_ns=timings[0], decode_ns=timings[1], total_ns=time.time_ns() - start, ) async def Decode(self, request, context): start = time.time_ns() if len(request.batches) == 0: raise ValueError("Must provide at least one batch") batches = [] for batch_pb in request.batches: batch = self.cache.pop(batch_pb.id) if batch is None: raise ValueError(f"Batch ID {batch_pb.id} not found in cache.") batches.append(batch) if len(batches) == 0: raise ValueError("All batches are empty") if len(batches) > 1: start_concat = time.time_ns() batch = self.model.batch_type.concatenate(batches) concat_ns = time.time_ns() - start_concat else: batch = batches[0] concat_ns = None generations, next_batch, timings = self.model.generate_token(batch) self.cache.set(next_batch) return generate_pb2.DecodeResponse( generations=[generation.to_pb() for generation in generations], batch=next_batch.to_pb() if next_batch else None, concat_ns=concat_ns, forward_ns=timings[0], decode_ns=timings[1], total_ns=time.time_ns() - start, ) def serve( model_id: str, revision: Optional[str], sharded: bool, quantize: Optional[str], speculate: Optional[int], dtype: Optional[str], trust_remote_code: bool, uds_path: Path, ): async def serve_inner( model_id: str, revision: Optional[str], sharded: bool = False, quantize: Optional[str] = None, speculate: Optional[int] = None, dtype: Optional[str] = None, trust_remote_code: bool = False, ): unix_socket_template = "unix://{}-{}" if sharded: server_urls = [ unix_socket_template.format(uds_path, rank) for rank in range(int(os.environ["WORLD_SIZE"])) ] local_url = server_urls[int(os.environ["RANK"])] else: local_url = unix_socket_template.format(uds_path, 0) server_urls = [local_url] try: model = get_model( model_id, revision, sharded, quantize, speculate, dtype, trust_remote_code, ) except Exception: logger.exception("Error when initializing model") raise server = aio.server( interceptors=[ ExceptionInterceptor(), UDSOpenTelemetryAioServerInterceptor(), ] ) generate_pb2_grpc.add_TextGenerationServiceServicer_to_server( TextGenerationService(model, Cache(), quantize, server_urls), server ) SERVICE_NAMES = ( generate_pb2.DESCRIPTOR.services_by_name["TextGenerationService"].full_name, reflection.SERVICE_NAME, ) reflection.enable_server_reflection(SERVICE_NAMES, server) server.add_insecure_port(local_url) await server.start() logger.info("Server started at {}".format(local_url)) try: await server.wait_for_termination() except KeyboardInterrupt: logger.info("Signal received. Shutting down") await server.stop(0) asyncio.run( serve_inner( model_id, revision, sharded, quantize, speculate, dtype, trust_remote_code ) )
0
hf_public_repos/text-generation-inference/server
hf_public_repos/text-generation-inference/server/text_generation_server/interceptor.py
import torch import grpc from google.rpc import status_pb2, code_pb2 from grpc_status import rpc_status from grpc_interceptor.server import AsyncServerInterceptor from loguru import logger from typing import Callable, Any class ExceptionInterceptor(AsyncServerInterceptor): async def intercept( self, method: Callable, request_or_iterator: Any, context: grpc.ServicerContext, method_name: str, ) -> Any: try: response = method(request_or_iterator, context) return await response except Exception as err: method_name = method_name.split("/")[-1] logger.exception(f"Method {method_name} encountered an error.") if torch.cuda.is_available(): torch.cuda.empty_cache() await context.abort_with_status( rpc_status.to_status( status_pb2.Status(code=code_pb2.INTERNAL, message=str(err)) ) )
0
hf_public_repos/text-generation-inference/server
hf_public_repos/text-generation-inference/server/text_generation_server/cli.py
import os import sys import typer from pathlib import Path from loguru import logger from typing import Optional from enum import Enum from huggingface_hub import hf_hub_download app = typer.Typer() class Quantization(str, Enum): bitsandbytes = "bitsandbytes" bitsandbytes_nf4 = "bitsandbytes-nf4" bitsandbytes_fp4 = "bitsandbytes-fp4" gptq = "gptq" awq = "awq" eetq = "eetq" class Dtype(str, Enum): float16 = "float16" bloat16 = "bfloat16" @app.command() def serve( model_id: str, revision: Optional[str] = None, sharded: bool = False, quantize: Optional[Quantization] = None, speculate: Optional[int] = None, dtype: Optional[Dtype] = None, trust_remote_code: bool = False, uds_path: Path = "/tmp/text-generation-server", logger_level: str = "INFO", json_output: bool = False, otlp_endpoint: Optional[str] = None, ): if sharded: assert ( os.getenv("RANK", None) is not None ), "RANK must be set when sharded is True" assert ( os.getenv("WORLD_SIZE", None) is not None ), "WORLD_SIZE must be set when sharded is True" assert ( os.getenv("MASTER_ADDR", None) is not None ), "MASTER_ADDR must be set when sharded is True" assert ( os.getenv("MASTER_PORT", None) is not None ), "MASTER_PORT must be set when sharded is True" # Remove default handler logger.remove() logger.add( sys.stdout, format="{message}", filter="text_generation_server", level=logger_level, serialize=json_output, backtrace=True, diagnose=False, ) # Import here after the logger is added to log potential import exceptions from text_generation_server import server from text_generation_server.tracing import setup_tracing # Setup OpenTelemetry distributed tracing if otlp_endpoint is not None: setup_tracing(shard=os.getenv("RANK", 0), otlp_endpoint=otlp_endpoint) # Downgrade enum into str for easier management later on quantize = None if quantize is None else quantize.value dtype = None if dtype is None else dtype.value if dtype is not None and quantize not in { None, "bitsandbytes", "bitsandbytes-nf4", "bitsandbytes-fp4", }: raise RuntimeError( "Only 1 can be set between `dtype` and `quantize`, as they both decide how goes the final model." ) server.serve( model_id, revision, sharded, quantize, speculate, dtype, trust_remote_code, uds_path, ) @app.command() def download_weights( model_id: str, revision: Optional[str] = None, extension: str = ".safetensors", auto_convert: bool = True, logger_level: str = "INFO", json_output: bool = False, trust_remote_code: bool = False, ): # Remove default handler logger.remove() logger.add( sys.stdout, format="{message}", filter="text_generation_server", level=logger_level, serialize=json_output, backtrace=True, diagnose=False, ) # Import here after the logger is added to log potential import exceptions from text_generation_server import utils # Test if files were already download try: utils.weight_files(model_id, revision, extension) logger.info("Files are already present on the host. " "Skipping download.") return # Local files not found except (utils.LocalEntryNotFoundError, FileNotFoundError, utils.EntryNotFoundError): pass is_local_model = (Path(model_id).exists() and Path(model_id).is_dir()) or os.getenv( "WEIGHTS_CACHE_OVERRIDE", None ) is not None if not is_local_model: try: adapter_config_filename = hf_hub_download( model_id, revision=revision, filename="adapter_config.json" ) utils.download_and_unload_peft( model_id, revision, trust_remote_code=trust_remote_code ) is_local_model = True utils.weight_files(model_id, revision, extension) return except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError): pass try: import json medusa_head = hf_hub_download( model_id, revision=revision, filename="medusa_lm_head.pt" ) if auto_convert: medusa_sf = Path(medusa_head[: -len(".pt")] + ".safetensors") if not medusa_sf.exists(): utils.convert_files([Path(medusa_head)], [medusa_sf], []) medusa_config = hf_hub_download( model_id, revision=revision, filename="config.json" ) with open(medusa_config, "r") as f: config = json.load(f) model_id = config["base_model_name_or_path"] revision = "main" try: utils.weight_files(model_id, revision, extension) logger.info( f"Files for parent {model_id} are already present on the host. " "Skipping download." ) return # Local files not found except ( utils.LocalEntryNotFoundError, FileNotFoundError, utils.EntryNotFoundError, ): pass except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError): pass # Try to download weights from the hub try: filenames = utils.weight_hub_files(model_id, revision, extension) utils.download_weights(filenames, model_id, revision) # Successfully downloaded weights return # No weights found on the hub with this extension except utils.EntryNotFoundError as e: # Check if we want to automatically convert to safetensors or if we can use .bin weights instead if not extension == ".safetensors" or not auto_convert: raise e elif (Path(model_id) / "medusa_lm_head.pt").exists(): # Try to load as a local Medusa model try: import json medusa_head = Path(model_id) / "medusa_lm_head.pt" if auto_convert: medusa_sf = Path(model_id) / "medusa_lm_head.safetensors" if not medusa_sf.exists(): utils.convert_files([Path(medusa_head)], [medusa_sf], []) medusa_config = Path(model_id) / "config.json" with open(medusa_config, "r") as f: config = json.load(f) model_id = config["base_model_name_or_path"] revision = "main" try: utils.weight_files(model_id, revision, extension) logger.info( f"Files for parent {model_id} are already present on the host. " "Skipping download." ) return # Local files not found except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError): pass except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError): pass elif (Path(model_id) / "adapter_config.json").exists(): # Try to load as a local PEFT model try: utils.download_and_unload_peft( model_id, revision, trust_remote_code=trust_remote_code ) utils.weight_files(model_id, revision, extension) return except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError): pass # Try to see if there are local pytorch weights try: # Get weights for a local model, a hub cached model and inside the WEIGHTS_CACHE_OVERRIDE local_pt_files = utils.weight_files(model_id, revision, ".bin") # No local pytorch weights except utils.LocalEntryNotFoundError: if extension == ".safetensors": logger.warning( f"No safetensors weights found for model {model_id} at revision {revision}. " f"Downloading PyTorch weights." ) # Try to see if there are pytorch weights on the hub pt_filenames = utils.weight_hub_files(model_id, revision, ".bin") # Download pytorch weights local_pt_files = utils.download_weights(pt_filenames, model_id, revision) if auto_convert: logger.warning( f"No safetensors weights found for model {model_id} at revision {revision}. " f"Converting PyTorch weights to safetensors." ) # Safetensors final filenames local_st_files = [ p.parent / f"{p.stem.lstrip('pytorch_')}.safetensors" for p in local_pt_files ] try: import transformers import json if is_local_model: config_filename = os.path.join(model_id, "config.json") else: config_filename = hf_hub_download( model_id, revision=revision, filename="config.json" ) with open(config_filename, "r") as f: config = json.load(f) architecture = config["architectures"][0] class_ = getattr(transformers, architecture) # Name for this varible depends on transformers version. discard_names = getattr(class_, "_tied_weights_keys", []) except Exception as e: discard_names = [] # Convert pytorch weights to safetensors utils.convert_files(local_pt_files, local_st_files, discard_names) @app.command() def quantize( model_id: str, output_dir: str, revision: Optional[str] = None, logger_level: str = "INFO", json_output: bool = False, trust_remote_code: bool = False, upload_to_model_id: Optional[str] = None, percdamp: float = 0.01, act_order: bool = False, ): if revision is None: revision = "main" download_weights( model_id=model_id, revision=revision, logger_level=logger_level, json_output=json_output, ) from text_generation_server.utils.gptq.quantize import quantize quantize( model_id=model_id, bits=4, groupsize=128, output_dir=output_dir, revision=revision, trust_remote_code=trust_remote_code, upload_to_model_id=upload_to_model_id, percdamp=percdamp, act_order=act_order, ) if __name__ == "__main__": app()
0
hf_public_repos/text-generation-inference/server
hf_public_repos/text-generation-inference/server/text_generation_server/tracing.py
import grpc from opentelemetry import trace from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter from opentelemetry.instrumentation.grpc._aio_server import ( OpenTelemetryAioServerInterceptor, ) from opentelemetry.semconv.trace import SpanAttributes from opentelemetry.sdk.resources import Resource from opentelemetry.sdk.trace import TracerProvider from opentelemetry.sdk.trace.export import ( BatchSpanProcessor, ) class UDSOpenTelemetryAioServerInterceptor(OpenTelemetryAioServerInterceptor): def __init__(self): super().__init__(trace.get_tracer(__name__)) def _start_span(self, handler_call_details, context, set_status_on_exception=False): """ Rewrite _start_span method to support Unix Domain Socket gRPC contexts """ # standard attributes attributes = { SpanAttributes.RPC_SYSTEM: "grpc", SpanAttributes.RPC_GRPC_STATUS_CODE: grpc.StatusCode.OK.value[0], } # if we have details about the call, split into service and method if handler_call_details.method: service, method = handler_call_details.method.lstrip("/").split("/", 1) attributes.update( { SpanAttributes.RPC_METHOD: method, SpanAttributes.RPC_SERVICE: service, } ) # add some attributes from the metadata metadata = dict(context.invocation_metadata()) if "user-agent" in metadata: attributes["rpc.user_agent"] = metadata["user-agent"] # We use gRPC over a UNIX socket attributes.update({SpanAttributes.NET_TRANSPORT: "unix"}) return self._tracer.start_as_current_span( name=handler_call_details.method, kind=trace.SpanKind.SERVER, attributes=attributes, set_status_on_exception=set_status_on_exception, ) def setup_tracing(shard: int, otlp_endpoint: str): resource = Resource.create( attributes={"service.name": f"text-generation-inference.server-{shard}"} ) span_exporter = OTLPSpanExporter(endpoint=otlp_endpoint, insecure=True) span_processor = BatchSpanProcessor(span_exporter) trace.set_tracer_provider(TracerProvider(resource=resource)) trace.get_tracer_provider().add_span_processor(span_processor)
0
hf_public_repos/text-generation-inference/server
hf_public_repos/text-generation-inference/server/text_generation_server/cache.py
import torch from typing import Dict, Optional, TypeVar from text_generation_server.models.types import Batch B = TypeVar("B", bound=Batch) class Cache: def __init__(self): self.cache: Dict[int, B] = {} def pop(self, batch_id: int) -> Optional[B]: return self.cache.pop(batch_id, None) def set(self, entry: B): if entry is not None: self.cache[entry.batch_id] = entry def delete(self, batch_id: int): batch = self.pop(batch_id) if batch is not None: del batch if torch.cuda.is_available(): torch.cuda.empty_cache() def clear(self): keys = list(self.cache.keys()) for k in keys: self.delete(k) def __len__(self): return len(self.cache.keys())
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/models/gpt_neox.py
import torch import torch.distributed from typing import Optional from transformers import ( AutoTokenizer, AutoConfig, ) from text_generation_server.models import CausalLM from text_generation_server.models.custom_modeling.neox_modeling import ( GPTNeoxForCausalLM, ) from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) class GPTNeoxSharded(CausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 if dtype is None else dtype else: device = torch.device("cpu") dtype = torch.float32 if dtype is None else dtype tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) tokenizer.pad_token = tokenizer.eos_token config = AutoConfig.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code, ) config.quantize = quantize torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights( filenames, device=device, dtype=dtype, process_group=self.process_group ) if config.quantize == "gptq": weights._set_gptq_params(model_id, revision) model = GPTNeoxForCausalLM(config, weights) torch.distributed.barrier(group=self.process_group) super(CausalLM, self).__init__( model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, rank=rank, world_size=world_size, ) def forward( self, input_ids, attention_mask, position_ids, past_key_values: Optional = None ): outputs = self.model.forward( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=True, ) logits = outputs.logits return logits, outputs.past_key_values
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/models/rw.py
import torch from transformers import AutoTokenizer, AutoModelForCausalLM from typing import List, Optional, Tuple from text_generation_server.models import CausalLM class RW(CausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): if torch.cuda.is_available(): device = torch.device("cuda") dtype = torch.float16 if dtype is None else dtype else: if quantize: raise ValueError("quantization is not available on CPU") device = torch.device("cpu") dtype = torch.float32 if dtype is None else dtype tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) model = AutoModelForCausalLM.from_pretrained( model_id, revision=revision, torch_dtype=dtype, device_map="auto" if torch.cuda.is_available() and torch.cuda.device_count() > 1 else None, load_in_8bit=quantize == "bitsandbytes", trust_remote_code=trust_remote_code, ) if torch.cuda.is_available() and torch.cuda.device_count() == 1: model = model.cuda() if tokenizer.pad_token_id is None: if model.config.pad_token_id is not None: tokenizer.pad_token_id = model.config.pad_token_id elif model.config.eos_token_id is not None: tokenizer.pad_token_id = model.config.eos_token_id elif tokenizer.eos_token_id is not None: tokenizer.pad_token_id = tokenizer.eos_token_id else: tokenizer.add_special_tokens({"pad_token": "[PAD]"}) super(CausalLM, self).__init__( model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, ) def forward( self, input_ids, attention_mask, position_ids, past_key_values: Optional = None ) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]: # Model Forward outputs = self.model.forward( input_ids=input_ids, attention_mask=attention_mask, past_key_values=past_key_values, ) return outputs.logits, outputs.past_key_values
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/models/bloom.py
import torch import torch.distributed from typing import Optional, Type from transformers import ( AutoTokenizer, AutoConfig, PreTrainedTokenizerBase, ) from text_generation_server.models.custom_modeling.bloom_modeling import ( BloomForCausalLM, ) from text_generation_server.models import CausalLM from text_generation_server.models.causal_lm import CausalLMBatch from text_generation_server.pb import generate_pb2 from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) class BloomCausalLMBatch(CausalLMBatch): @classmethod def from_pb( cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, dtype: torch.dtype, device: torch.device, ) -> "CausalLMBatch": batch = super().from_pb(pb=pb, tokenizer=tokenizer, dtype=dtype, device=device) batch.keys_head_dim_last = False return batch class BLOOMSharded(CausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 if dtype is None else dtype else: device = torch.device("cpu") dtype = torch.float32 if dtype is None else dtype tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) config = AutoConfig.from_pretrained( model_id, revision=revision, slow_but_exact=False, tp_parallel=True, trust_remote_code=trust_remote_code, ) config.pad_token_id = 3 config.quantize = quantize torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights( filenames, device=device, dtype=dtype, process_group=self.process_group, prefix="transformer", ) if config.quantize == "gptq": weights._set_gptq_params(model_id, revision) model = BloomForCausalLM(config, weights) torch.distributed.barrier(group=self.process_group) super(CausalLM, self).__init__( model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, rank=rank, world_size=world_size, ) @property def batch_type(self) -> Type[CausalLMBatch]: return BloomCausalLMBatch def forward( self, input_ids, attention_mask, position_ids, past_key_values: Optional = None ): outputs = self.model.forward( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=True, ) logits = outputs.logits return logits, outputs.past_key_values
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/models/flash_rw.py
import torch import torch.distributed from opentelemetry import trace from transformers import AutoTokenizer from typing import Optional from text_generation_server.models import FlashCausalLM from text_generation_server.models.custom_modeling.flash_rw_modeling import ( RWConfig, FlashRWForCausalLM, ) from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) tracer = trace.get_tracer(__name__) class FlashRWSharded(FlashCausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 if dtype is None else dtype else: raise NotImplementedError("FlashRW is only available on GPU") tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) config = RWConfig.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code ) torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights( filenames, device, dtype, process_group=self.process_group, aliases={ "lm_head.weight": ["transformer.word_embeddings.weight"], "transformer.word_embeddings.weight": ["lm_head.weight"], }, ) config.quantize = quantize if config.quantize == "gptq": weights._set_gptq_params(model_id, revision) model = FlashRWForCausalLM(config, weights) torch.distributed.barrier(group=self.process_group) super(FlashRWSharded, self).__init__( model=model.to(device), tokenizer=tokenizer, num_layers=len(model.transformer.h), num_kv_heads=model.transformer.cache_size, head_size=model.transformer.head_size, dtype=dtype, device=device, rank=rank, world_size=world_size, )
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/models/idefics.py
import torch import torch.distributed from typing import List, Optional, Tuple from transformers import ( AutoTokenizer, AutoConfig, AutoProcessor, ) from text_generation_server.models.custom_modeling.idefics_config import IdeficsConfig from text_generation_server.models.custom_modeling.idefics_processing import ( IdeficsProcessor, ) from transformers import LlamaTokenizerFast from text_generation_server.models.custom_modeling.idefics_modeling import ( IdeficsForVisionText2Text, ) from text_generation_server.models.idefics_causal_lm import IdeficsCausalLM from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) class IDEFICSSharded(IdeficsCausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") # 9b seems to work correctly enough in float16, but 80b seems # to be really saturating for f16. dtype = torch.bfloat16 if dtype is None else dtype else: device = torch.device("cpu") dtype = torch.float32 if dtype is None else dtype self.device, self.dtype = device, dtype config = IdeficsConfig.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code, ) config.quantize = quantize config.vision_config.quantize = quantize tokenizer = LlamaTokenizerFast.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) self.processor = IdeficsProcessor.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights( filenames, device=device, dtype=dtype, process_group=self.process_group, ) model = IdeficsForVisionText2Text(config, weights) torch.distributed.barrier(group=self.process_group) super(IdeficsCausalLM, self).__init__( model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, rank=rank, world_size=world_size, )
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/models/flash_mixtral.py
import torch from typing import Optional from text_generation_server.models.flash_mistral import BaseFlashMistral from text_generation_server.models.custom_modeling.flash_mixtral_modeling import ( MixtralConfig, FlashMixtralForCausalLM, ) class FlashMixtral(BaseFlashMistral): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): super(FlashMixtral, self).__init__( config_cls=MixtralConfig, model_cls=FlashMixtralForCausalLM, model_id=model_id, revision=revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, )
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/models/model.py
import inspect import torch from abc import ABC, abstractmethod from typing import List, Tuple, Optional, TypeVar, Type from transformers import PreTrainedTokenizerBase, PretrainedConfig from text_generation_server.models.types import Batch, Generation from text_generation_server.utils.speculate import get_speculate from text_generation_server.pb.generate_pb2 import InfoResponse B = TypeVar("B", bound=Batch) class Model(ABC): def __init__( self, model: torch.nn.Module, tokenizer: PreTrainedTokenizerBase, requires_padding: bool, dtype: torch.dtype, device: torch.device, rank: int = 0, world_size: int = 1, sliding_window: Optional[int] = None, speculate: Optional[int] = None, ): self.model = model.eval() self.tokenizer = tokenizer self.all_special_ids = set(tokenizer.all_special_ids) self.requires_padding = requires_padding self.dtype = dtype self.device = device self.rank = rank self.world_size = world_size self.sliding_window = sliding_window if sliding_window != -1 else None if speculate is None: speculate = get_speculate() self.speculate = speculate self.has_position_ids = ( inspect.signature(model.forward).parameters.get("position_ids", None) is not None ) self.check_initialized() @property def info(self) -> InfoResponse: if self.requires_padding and self.sliding_window is not None: raise NotImplementedError("sliding_window is not implemented with padding") return InfoResponse( requires_padding=self.requires_padding, dtype=str(self.dtype), device_type=self.device.type, window_size=self.sliding_window, speculate=self.speculate, ) @property @abstractmethod def batch_type(self) -> Type[B]: raise NotImplementedError @abstractmethod def generate_token( self, batch: B ) -> Tuple[List[Generation], Optional[B], Tuple[int, int]]: raise NotImplementedError def warmup(self, batch: B) -> Optional[int]: self.generate_token(batch) return None def decode_token( self, all_input_ids: List[int], prefix_offset: int = 0, read_offset: int = 0, skip_special_tokens: bool = False, ) -> Tuple[str, int, int]: """Hack to hopefully support generate_stream for the maximum number of tokenizers""" # The prefix text is necessary only to defeat cleanup algorithms in the decode # which decide to add a space or not depending on the surrounding ids. prefix_text = self.tokenizer.decode( all_input_ids[prefix_offset:read_offset], skip_special_tokens=skip_special_tokens, ) new_text = self.tokenizer.decode( all_input_ids[prefix_offset:], skip_special_tokens=skip_special_tokens ) if len(new_text) > len(prefix_text) and not new_text.endswith("�"): # utf-8 char at the end means it's a potential unfinished byte sequence # from byte fallback tokenization. # If it's in the middle, it's probably a real invalid id generated # by the model new_text = new_text[len(prefix_text) :] return new_text, read_offset, len(all_input_ids) else: return "", prefix_offset, read_offset def check_initialized(self): uninitialized_parameters = [] for n, p in self.model.named_parameters(): if p.data.device == torch.device("meta"): uninitialized_parameters.append(n) if uninitialized_parameters: raise RuntimeError( f"found uninitialized parameters in model {self.__class__.__name__}: {uninitialized_parameters}" )
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/models/mpt.py
import torch import torch.distributed from pathlib import Path from typing import Optional, Type from opentelemetry import trace from transformers import AutoTokenizer, PretrainedConfig, PreTrainedTokenizerBase from huggingface_hub import hf_hub_download import json from text_generation_server.models import CausalLM from text_generation_server.models.causal_lm import CausalLMBatch from text_generation_server.pb import generate_pb2 from text_generation_server.models.custom_modeling.mpt_modeling import ( MPTForCausalLM, ) from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) tracer = trace.get_tracer(__name__) class MPTCausalLMBatch(CausalLMBatch): @classmethod def from_pb( cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, dtype: torch.dtype, device: torch.device, ) -> "CausalLMBatch": batch = super().from_pb(pb=pb, tokenizer=tokenizer, dtype=dtype, device=device) batch.keys_head_dim_last = False return batch class MPTSharded(CausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 if dtype is None else dtype else: device = torch.device("cpu") dtype = torch.float32 if dtype is None else dtype tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) tokenizer.pad_token = tokenizer.eos_token # If model_id is a local path, load the file directly local_path = Path(model_id, "config.json") if local_path.exists(): filename = str(local_path.resolve()) else: filename = hf_hub_download( model_id, revision=revision, filename="config.json" ) with open(filename, "r") as f: config = json.load(f) config = PretrainedConfig(**config) config.quantize = quantize torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights(filenames, device, dtype, process_group=self.process_group) if config.quantize == "gptq": weights._set_gptq_params(model_id, revision) config.quantize = quantize model = MPTForCausalLM(config, weights) torch.distributed.barrier(group=self.process_group) super(CausalLM, self).__init__( model=model, tokenizer=tokenizer, requires_padding=False, dtype=dtype, device=device, rank=rank, world_size=world_size, ) @property def batch_type(self) -> Type[CausalLMBatch]: return MPTCausalLMBatch
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/models/flash_mistral.py
import math import torch import torch.distributed import numpy as np from dataclasses import dataclass from opentelemetry import trace from transformers import PreTrainedTokenizerBase from transformers.models.llama import LlamaTokenizerFast from typing import Optional, Tuple, Type, List from text_generation_server.pb import generate_pb2 from text_generation_server.models import FlashCausalLM from text_generation_server.models.flash_causal_lm import FlashCausalLMBatch, BLOCK_SIZE from text_generation_server.models.cache_manager import ( get_cache_manager, ) from text_generation_server.models.custom_modeling.flash_mistral_modeling import ( FlashMistralForCausalLM, MistralConfig, ) from text_generation_server.utils.speculate import get_speculate from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, HeterogeneousNextTokenChooser, StoppingCriteria, ) tracer = trace.get_tracer(__name__) # Will be set in init SLIDING_WINDOW: Optional[int] = None SLIDING_WINDOW_BLOCKS: Optional[int] = None # Adds windowing logic to FlashCausalLMBatch @dataclass class FlashMistralBatch(FlashCausalLMBatch): # Prefill cache indices is used to slice into the kv tensor before caching it into the paged attention buffers # as we only keep SLIDING_WINDOW values instead of the whole tensor prefill_cache_indices: Optional[torch.Tensor] = None @classmethod def from_pb( cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, dtype: torch.dtype, device: torch.device, ) -> "FlashCausalLMBatch": global SLIDING_WINDOW global SLIDING_WINDOW_BLOCKS batch_inputs = [] max_truncation = 0 for r in pb.requests: batch_inputs.append(r.inputs) max_truncation = max(max_truncation, r.truncate) batch_tokenized_inputs = tokenizer( batch_inputs, truncation=True, max_length=max_truncation )["input_ids"] position_ids = [] cu_seqlen_prefill = [0] needed_blocks_slots = [] start_slots = [] slot_indices = [] prefill_cache_indices = [] input_lengths = [] prefix_offsets = [] read_offsets = [] all_input_ids = [] requests_idx_mapping = {} all_prefill_logprobs = True no_prefill_logprobs = True prefill_head_indices = [] prefill_next_token_indices = [] prefill_cu_outlens = [0] next_token_chooser_parameters = [] stopping_criterias = [] top_n_tokens = [] # Cumulative length cumulative_length = 0 cumulative_max_length = 0 prefill_out_cumulative_length = 0 blocks = 0 max_seqlen = 0 max_length = 0 max_blocks = 0 # Parse batch for i, (r, tokenized_input) in enumerate( zip(pb.requests, batch_tokenized_inputs) ): # request id -> idx in list mapping requests_idx_mapping[r.id] = i tokenized_input = tokenized_input[-r.truncate :] input_length = len(tokenized_input) input_lengths.append(input_length) prefix_offsets.append(input_length - 5) read_offsets.append(input_length) all_input_ids.append(tokenized_input) # Position ids request_position_ids = torch.arange(0, input_length, dtype=torch.int32) position_ids.append(request_position_ids) # Add cumulative lengths of all previous inputs cu_seqlen_prefill.append(cumulative_length + input_length) next_token_chooser_parameters.append(r.parameters) stopping_criteria = StoppingCriteria.from_pb( r.stopping_parameters, tokenizer ) max_new_tokens = stopping_criteria.max_new_tokens stopping_criterias.append(stopping_criteria) top_n_tokens.append(r.top_n_tokens) # Paged attention # Remove one as the first token des not have a past speculative_length = get_speculate() total_tokens = input_length + max_new_tokens - 1 + speculative_length # Needed blocks can not go over SLIDING_WINDOW_BLOCKS needed_blocks = math.ceil(total_tokens / BLOCK_SIZE) if SLIDING_WINDOW_BLOCKS is not None: needed_blocks = min(needed_blocks, SLIDING_WINDOW_BLOCKS) blocks += needed_blocks needed_blocks_slots.append((needed_blocks, total_tokens)) start_slots.append(cumulative_max_length) request_slot_indices = torch.arange( cumulative_max_length, cumulative_max_length + input_length, dtype=torch.int64, ) slot_indices.append(request_slot_indices) # Create tensor to slice into the kv tensor in prefill if SLIDING_WINDOW is not None: request_prefill_cache_indices = torch.arange( cumulative_length + max(0, input_length - SLIDING_WINDOW), cumulative_length + input_length, dtype=torch.int64, ) prefill_cache_indices.append(request_prefill_cache_indices) all_prefill_logprobs = all_prefill_logprobs and r.prefill_logprobs no_prefill_logprobs = no_prefill_logprobs and not r.prefill_logprobs if r.prefill_logprobs: prefill_head_indices.append(request_position_ids + cumulative_length) prefill_next_token_indices.append( prefill_out_cumulative_length + input_length - 1 ) prefill_cu_outlens.append(prefill_out_cumulative_length + input_length) prefill_out_cumulative_length += input_length else: prefill_head_indices.append( torch.tensor( [cumulative_length + input_length - 1], dtype=torch.int32 ) ) prefill_next_token_indices.append(prefill_out_cumulative_length) prefill_cu_outlens.append(prefill_out_cumulative_length + 1) prefill_out_cumulative_length += 1 # Update cumulative_length += input_length cumulative_max_length += total_tokens max_seqlen = max(max_seqlen, input_length) max_blocks = max(max_blocks, needed_blocks) max_length = max( max_length, input_length + max_new_tokens + speculative_length ) next_token_chooser = HeterogeneousNextTokenChooser.from_pb( next_token_chooser_parameters, dtype, device ) start_slots = torch.tensor(start_slots, dtype=torch.int64) # Padded all_input_ids_tensor all_input_ids_tensor = np.zeros( (len(all_input_ids), max_length), dtype=np.int64 ) for i, input_ids in enumerate(all_input_ids): all_input_ids_tensor[i, : len(input_ids)] = input_ids # Create tensors on device all_input_ids_tensor = torch.tensor( all_input_ids_tensor, dtype=torch.int64, device=device ) if len(pb.requests) > 1: input_ids = np.concatenate(all_input_ids, dtype=np.int64) position_ids = torch.cat(position_ids) slot_indices = torch.cat(slot_indices) if SLIDING_WINDOW is not None: prefill_cache_indices = torch.cat(prefill_cache_indices) else: input_ids = all_input_ids[0] position_ids = position_ids[0] slot_indices = slot_indices[0] if SLIDING_WINDOW is not None: prefill_cache_indices = prefill_cache_indices[0] cu_seqlen_prefill = torch.tensor( cu_seqlen_prefill, device=device, dtype=torch.int32 ) position_ids = position_ids.to(device) slot_indices = slot_indices.to(device) prefill_cache_indices = ( prefill_cache_indices.to(device) if SLIDING_WINDOW is not None else None ) input_ids = torch.tensor(input_ids, dtype=torch.int64, device=device) input_lengths_tensor = torch.tensor( input_lengths, dtype=torch.int32, device=device ) if all_prefill_logprobs: prefill_head_indices = None prefill_next_token_indices = cu_seqlen_prefill[1:] - 1 elif no_prefill_logprobs: prefill_head_indices = cu_seqlen_prefill[1:] - 1 prefill_next_token_indices = None else: prefill_head_indices = torch.tensor( torch.cat(prefill_head_indices), dtype=torch.int64, device=device ) prefill_next_token_indices = torch.tensor( prefill_next_token_indices, dtype=torch.int64, device=device ) top_n_tokens_tensor = torch.tensor( top_n_tokens, device=device, dtype=torch.int64 ) return cls( batch_id=pb.id, requests=pb.requests, requests_idx_mapping=requests_idx_mapping, input_ids=input_ids, position_ids=position_ids, cu_seqlen_prefill=cu_seqlen_prefill, start_slots=start_slots, slot_indices=slot_indices, needed_blocks_slots=needed_blocks_slots, block_tables=None, block_tables_tensor=None, slots=None, max_seqlen=max_seqlen, prefill_head_indices=prefill_head_indices, prefill_next_token_indices=prefill_next_token_indices, prefill_cu_outlens=prefill_cu_outlens, input_lengths=input_lengths, input_lengths_tensor=input_lengths_tensor, prefix_offsets=prefix_offsets, read_offsets=read_offsets, all_input_ids=all_input_ids, all_input_ids_tensor=all_input_ids_tensor, next_token_chooser=next_token_chooser, stopping_criterias=stopping_criterias, top_n_tokens=top_n_tokens, top_n_tokens_tensor=top_n_tokens_tensor, blocks=blocks, max_blocks=max_blocks, prefill_cache_indices=prefill_cache_indices, speculative_ids=None, ) class BaseFlashMistral(FlashCausalLM): def __init__( self, config_cls, model_cls, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): global SLIDING_WINDOW global SLIDING_WINDOW_BLOCKS self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 if dtype is None else dtype else: raise NotImplementedError("FlashLlama is only available on GPU") tokenizer = LlamaTokenizerFast.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) config = config_cls.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code ) config.quantize = quantize # Set context windows if config.sliding_window is not None: SLIDING_WINDOW = config.sliding_window SLIDING_WINDOW_BLOCKS = math.ceil(config.sliding_window / BLOCK_SIZE) torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights(filenames, device, dtype, process_group=self.process_group) if config.quantize in ["gptq", "awq"]: weights._set_gptq_params(model_id, revision) model = model_cls(config, weights) torch.distributed.barrier(group=self.process_group) super(BaseFlashMistral, self).__init__( model=model, tokenizer=tokenizer, num_layers=len(model.model.layers), num_kv_heads=model.model.num_key_value_heads, head_size=model.model.head_size, dtype=dtype, device=device, rank=rank, world_size=world_size, sliding_window=config.sliding_window, ) @property def batch_type(self) -> Type[FlashMistralBatch]: return FlashMistralBatch def forward(self, batch: FlashMistralBatch) -> Tuple[torch.Tensor, torch.Tensor]: # Model Forward if batch.speculative_ids is not None: input_ids = batch.input_ids position_ids = batch.position_ids cu_seqlen_prefill = batch.cu_seqlen_prefill kv_cache = get_cache_manager().kv_cache block_tables = batch.block_tables_tensor slots = batch.slots[batch.slot_indices] input_lengths = batch.input_lengths_tensor max_s = batch.max_seqlen lm_head_indices = batch.prefill_head_indices speculative_ids = batch.speculative_ids B, speculative_length = speculative_ids.shape new_length = speculative_length + 1 new_input_ids = torch.cat( [input_ids.unsqueeze(-1), speculative_ids], dim=1 ).reshape(-1) arange = torch.arange(new_length, device=position_ids.device).unsqueeze(0) arange_int = arange.to(dtype=torch.int32) new_position_ids = ( position_ids.unsqueeze(-1).expand(B, new_length) + arange ).view(-1) slots = (slots.unsqueeze(-1).expand(B, new_length) + arange_int).view(-1) input_lengths = ( input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int ).view(-1) # Add Copy the block tables for all members block_tables = ( block_tables.unsqueeze(1) .expand(B, new_length, -1) .reshape(B * new_length, -1) .contiguous() ) max_s = max_s + speculative_length input_ids = new_input_ids position_ids = new_position_ids else: input_ids = batch.input_ids position_ids = batch.position_ids cu_seqlen_prefill = batch.cu_seqlen_prefill kv_cache = get_cache_manager().kv_cache block_tables = batch.block_tables_tensor slots = batch.slots[batch.slot_indices] input_lengths = batch.input_lengths_tensor max_s = batch.max_seqlen lm_head_indices = batch.prefill_head_indices logits = self.model.forward( input_ids=input_ids, position_ids=position_ids, cu_seqlen_prefill=cu_seqlen_prefill, kv_cache=kv_cache, block_tables=block_tables, slots=slots, input_lengths=input_lengths, max_s=max_s, prefill_cache_indices=batch.prefill_cache_indices, lm_head_indices=lm_head_indices, ) if batch.prefill_cache_indices is not None: batch.prefill_cache_indices = None return logits class FlashMistral(BaseFlashMistral): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): super(FlashMistral, self).__init__( config_cls=MistralConfig, model_cls=FlashMistralForCausalLM, model_id=model_id, revision=revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, )
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/models/__init__.py
import torch from loguru import logger from transformers.configuration_utils import PretrainedConfig from transformers.models.auto import modeling_auto from typing import Optional from text_generation_server.utils.speculate import get_speculate, set_speculate from text_generation_server.models.model import Model from text_generation_server.models.causal_lm import CausalLM from text_generation_server.models.flash_causal_lm import FlashCausalLM from text_generation_server.models.bloom import BLOOMSharded from text_generation_server.models.mpt import MPTSharded from text_generation_server.models.seq2seq_lm import Seq2SeqLM from text_generation_server.models.rw import RW from text_generation_server.models.opt import OPTSharded from text_generation_server.models.galactica import GalacticaSharded from text_generation_server.models.santacoder import SantaCoder from text_generation_server.models.t5 import T5Sharded from text_generation_server.models.gpt_neox import GPTNeoxSharded # The flag below controls whether to allow TF32 on matmul. This flag defaults to False # in PyTorch 1.12 and later. torch.backends.cuda.matmul.allow_tf32 = True # The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True. torch.backends.cudnn.allow_tf32 = True # Disable gradients torch.set_grad_enabled(False) __all__ = [ "Model", "BLOOMSharded", "CausalLM", "FlashCausalLM", "GalacticaSharded", "Seq2SeqLM", "SantaCoder", "OPTSharded", "T5Sharded", "get_model", ] FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention enabled models." FLASH_ATTENTION = True try: from text_generation_server.models.flash_rw import FlashRWSharded from text_generation_server.models.flash_neox import FlashNeoXSharded from text_generation_server.models.flash_llama import ( FlashLlama, ) from text_generation_server.models.flash_santacoder import ( FlashSantacoderSharded, ) from text_generation_server.models.idefics import IDEFICSSharded from text_generation_server.models.flash_mistral import FlashMistral from text_generation_server.models.flash_mixtral import FlashMixtral from text_generation_server.utils.flash_attn import HAS_FLASH_ATTN_V2_CUDA except ImportError as e: logger.warning(f"Could not import Flash Attention enabled models: {e}") FLASH_ATTENTION = False HAS_FLASH_ATTN_V2_CUDA = False if FLASH_ATTENTION: __all__.append(FlashNeoXSharded) __all__.append(FlashRWSharded) __all__.append(FlashSantacoderSharded) __all__.append(FlashLlama) __all__.append(IDEFICSSharded) __all__.append(FlashMistral) __all__.append(FlashMixtral) def get_model( model_id: str, revision: Optional[str], sharded: bool, quantize: Optional[str], speculate: Optional[int], dtype: Optional[str], trust_remote_code: bool, ) -> Model: if dtype is None: # Keep it as default for now and let # every model resolve their own default dtype. dtype = None elif dtype == "float16": dtype = torch.float16 elif dtype == "bfloat16": dtype = torch.bfloat16 else: raise RuntimeError(f"Unknown dtype {dtype}") if speculate is not None: set_speculate(speculate) else: set_speculate(0) if "facebook/galactica" in model_id: return GalacticaSharded( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) if model_id.startswith("bigcode/"): if FLASH_ATTENTION: return FlashSantacoderSharded( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) elif sharded: raise NotImplementedError( FLASH_ATT_ERROR_MESSAGE.format("Sharded Santacoder") ) else: return SantaCoder( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) config_dict, _ = PretrainedConfig.get_config_dict( model_id, revision=revision, trust_remote_code=trust_remote_code ) use_medusa = None if "medusa_num_heads" in config_dict: use_medusa = model_id model_id = config_dict["base_model_name_or_path"] revision = "main" speculate_medusa = config_dict["medusa_num_heads"] if speculate is not None: if speculate > speculate_medusa: raise RuntimeError( "Speculate is set to `{speculate}` but this medusa models only has `{speculate_medusa}` heads, please make them match" ) else: set_speculate(speculate) else: set_speculate(speculate_medusa) config_dict, _ = PretrainedConfig.get_config_dict( model_id, revision=revision, trust_remote_code=trust_remote_code ) method = "medusa" else: method = "n-gram" speculate = get_speculate() if speculate > 0: logger.info(f"Using speculation {method} with {speculate} input ids.") model_type = config_dict["model_type"] if model_type == "gpt_bigcode": if FLASH_ATTENTION: return FlashSantacoderSharded( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) elif sharded: raise NotImplementedError( FLASH_ATT_ERROR_MESSAGE.format("Sharded Santacoder") ) else: return SantaCoder( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) if model_type == "bloom": return BLOOMSharded( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) elif model_type == "mpt": return MPTSharded( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) elif model_type == "gpt_neox": if FLASH_ATTENTION: return FlashNeoXSharded( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) elif sharded: return GPTNeoxSharded( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) else: return CausalLM( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) elif model_type == "llama" or model_type == "baichuan": if FLASH_ATTENTION: return FlashLlama( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, use_medusa=use_medusa, ) elif sharded: raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Llama")) else: return CausalLM( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) if model_type in ["RefinedWeb", "RefinedWebModel", "falcon"]: if sharded: if FLASH_ATTENTION: if config_dict.get("alibi", False): raise NotImplementedError("sharded is not supported for this model") return FlashRWSharded( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format(f"Sharded Falcon")) else: if FLASH_ATTENTION and not config_dict.get("alibi", False): return FlashRWSharded( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) else: return RW( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) if model_type == "mistral": sliding_window = config_dict.get("sliding_window", -1) if ( (sliding_window is None or sliding_window == -1) and FLASH_ATTENTION ) or HAS_FLASH_ATTN_V2_CUDA: return FlashMistral( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) if model_type == "mixtral": sliding_window = config_dict.get("sliding_window", -1) if ( (sliding_window is None or sliding_window == -1) and FLASH_ATTENTION ) or HAS_FLASH_ATTN_V2_CUDA: return FlashMixtral( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) if model_type == "opt": return OPTSharded( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) if model_type == "t5": return T5Sharded( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) if model_type == "idefics": if FLASH_ATTENTION: return IDEFICSSharded( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) else: raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics")) if sharded: raise NotImplementedError("sharded is not supported for AutoModel") if quantize == "gptq": raise NotImplementedError( "gptq quantization is not supported for AutoModel, you can try to quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`" ) if quantize == "awq": raise NotImplementedError("awq quantization is not supported for AutoModel") elif (quantize == "bitsandbytes-fp4") or (quantize == "bitsandbytes-nf4"): raise NotImplementedError("4bit quantization is not supported for AutoModel") elif quantize == "eetq": raise NotImplementedError("Eetq quantization is not supported for AutoModel") if model_type in modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES: return CausalLM( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) if model_type in modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES: return Seq2SeqLM( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) auto_map = config_dict.get("auto_map", None) if trust_remote_code and auto_map is not None: if "AutoModelForCausalLM" in auto_map.keys(): return CausalLM( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) if "AutoModelForSeq2SeqLM" in auto_map.keys(): return Seq2SeqLM( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) raise ValueError(f"Unsupported model type {model_type}")
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/models/causal_lm.py
import torch import time from dataclasses import dataclass from opentelemetry import trace from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedTokenizerBase from typing import Optional, Tuple, List, Type, Dict from text_generation_server.models import Model from text_generation_server.utils.tokens import batch_top_tokens from text_generation_server.models.types import ( Batch, Tokens, Generation, GeneratedText, ) from text_generation_server.pb import generate_pb2 from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling tracer = trace.get_tracer(__name__) @dataclass class CausalLMBatch(Batch): batch_id: int requests: List[generate_pb2.Request] requests_idx_mapping: Dict[int, int] # Decoder values input_ids: torch.Tensor attention_mask: torch.Tensor position_ids: torch.Tensor past_key_values: Optional[List[Tuple]] # All tokens all_input_ids: List[torch.Tensor] # Lengths of all generations present in the batch input_lengths: List[int] prefix_offsets: List[int] read_offsets: List[int] # Generation helpers next_token_choosers: List[NextTokenChooser] stopping_criterias: List[StoppingCriteria] top_n_tokens: List[int] top_n_tokens_tensor: torch.Tensor # Metadata used for padding max_input_length: int padding_right_offset: int # Maximum number of tokens this batch will grow to max_tokens: int # Past metadata keys_head_dim_last: bool = True def to_pb(self) -> generate_pb2.CachedBatch: return generate_pb2.CachedBatch( id=self.batch_id, request_ids=[r.id for r in self.requests], size=len(self), max_tokens=self.max_tokens, ) @classmethod def from_pb( cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, dtype: torch.dtype, device: torch.device, ) -> "CausalLMBatch": inputs = [] next_token_choosers = [] stopping_criterias = [] top_n_tokens = [] prefix_offsets = [] read_offsets = [] requests_idx_mapping = {} # Parse batch max_truncation = 0 padding_right_offset = 0 max_decode_tokens = 0 for i, r in enumerate(pb.requests): requests_idx_mapping[r.id] = i inputs.append(r.inputs) next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device)) stopping_criteria = StoppingCriteria.from_pb( r.stopping_parameters, tokenizer ) stopping_criterias.append(stopping_criteria) top_n_tokens.append(r.top_n_tokens) max_truncation = max(max_truncation, r.truncate) max_decode_tokens += stopping_criteria.max_new_tokens padding_right_offset = max( padding_right_offset, stopping_criteria.max_new_tokens ) tokenized_inputs = tokenizer( inputs, return_tensors="pt", padding=True, return_token_type_ids=False, truncation=True, max_length=max_truncation, ).to(device) for _ in pb.requests: input_len = tokenized_inputs["input_ids"].shape[1] prefix_offsets.append(input_len - 5) read_offsets.append(input_len) input_lengths = tokenized_inputs["attention_mask"].sum(1) max_input_length = input_lengths.max() input_ids = tokenized_inputs["input_ids"] # Allocate maximum attention_mask attention_mask = input_ids.new_zeros( (pb.size, max_input_length + padding_right_offset) ) # Copy tokenizer attention_mask into fully allocated attention_mask attention_mask[:, :max_input_length] = tokenized_inputs["attention_mask"] position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1 position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1) all_input_ids = tokenized_inputs["input_ids"].T.split(1, dim=1) top_n_tokens_tensor = torch.tensor( top_n_tokens, device=device, dtype=torch.int64 ) max_tokens = len(inputs) * (max_input_length + max_decode_tokens) return cls( batch_id=pb.id, requests=pb.requests, requests_idx_mapping=requests_idx_mapping, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=None, all_input_ids=list(all_input_ids), input_lengths=input_lengths.tolist(), prefix_offsets=prefix_offsets, read_offsets=read_offsets, next_token_choosers=next_token_choosers, stopping_criterias=stopping_criterias, top_n_tokens=top_n_tokens, top_n_tokens_tensor=top_n_tokens_tensor, max_input_length=max_input_length.item(), padding_right_offset=padding_right_offset, max_tokens=max_tokens, ) @tracer.start_as_current_span("filter") def filter(self, request_ids: List[int]) -> Optional["CausalLMBatch"]: if len(request_ids) == 0: raise ValueError("Batch must have at least one request") if len(request_ids) == len(self): return self keep_indices = [] # New values after filtering requests_idx_mapping = {} requests = [] input_lengths = [] prefix_offsets = [] read_offsets = [] all_input_ids = [] max_input_length = 0 next_token_choosers = [] stopping_criterias = [] top_n_tokens = [] total_remaining_decode_tokens = 0 new_padding_right_offset = 0 for i, request_id in enumerate(request_ids): idx = self.requests_idx_mapping[request_id] requests_idx_mapping[request_id] = i keep_indices.append(idx) requests.append(self.requests[idx]) prefix_offsets.append(self.prefix_offsets[idx]) read_offsets.append(self.read_offsets[idx]) all_input_ids.append(self.all_input_ids[idx]) request_input_length = self.input_lengths[idx] input_lengths.append(request_input_length) max_input_length = max(max_input_length, request_input_length) next_token_choosers.append(self.next_token_choosers[idx]) stopping_criteria = self.stopping_criterias[idx] stopping_criterias.append(stopping_criteria) top_n_tokens.append(self.top_n_tokens[idx]) remaining_decode_tokens = ( stopping_criteria.max_new_tokens - stopping_criteria.current_tokens ) total_remaining_decode_tokens += remaining_decode_tokens new_padding_right_offset = max( new_padding_right_offset, remaining_decode_tokens ) # Apply indices to input_ids, attention mask, past key values and other items that need to be cached input_ids = self.input_ids[keep_indices] position_ids = self.position_ids[keep_indices] self.attention_mask = self.attention_mask[ keep_indices, -(self.padding_right_offset + max_input_length) : ( self.attention_mask.shape[1] - self.padding_right_offset ) + new_padding_right_offset, ] # Ensure that past_key_values tensors can be updated in-place if type(self.past_key_values[0]) == tuple: self.past_key_values = [list(layer) for layer in self.past_key_values] # Update tensors in-place to allow incremental garbage collection past_kv_length = max_input_length - 1 for layer in self.past_key_values: past_keys, past_values = layer if len(past_keys.shape) == 3: # Force past to be of dim [self_size, num_heads, ...] for easy indexing past_keys = past_keys.view(len(self), -1, *past_keys.shape[-2:]) past_values = past_values.view(len(self), -1, *past_values.shape[-2:]) if self.keys_head_dim_last: layer[0] = past_keys[keep_indices, :, -past_kv_length:, :] else: layer[0] = past_keys[keep_indices, :, :, -past_kv_length:] del past_keys layer[1] = past_values[keep_indices, :, -past_kv_length:, :] del past_values top_n_tokens_tensor = self.top_n_tokens_tensor[keep_indices] max_tokens = len(request_ids) * max_input_length + total_remaining_decode_tokens self.requests = requests self.requests_idx_mapping = requests_idx_mapping self.input_ids = input_ids self.position_ids = position_ids self.all_input_ids = all_input_ids self.input_lengths = input_lengths self.prefix_offsets = prefix_offsets self.read_offsets = read_offsets self.next_token_choosers = next_token_choosers self.stopping_criterias = stopping_criterias self.top_n_tokens = top_n_tokens self.top_n_tokens_tensor = top_n_tokens_tensor self.max_input_length = max_input_length self.padding_right_offset = new_padding_right_offset self.max_tokens = max_tokens return self @classmethod @tracer.start_as_current_span("concatenate") def concatenate(cls, batches: List["CausalLMBatch"]) -> "CausalLMBatch": # Used for padding total_batch_size = 0 max_input_length = 0 padding_right_offset = 0 for batch in batches: total_batch_size += len(batch) max_input_length = max(max_input_length, batch.max_input_length) padding_right_offset = max(padding_right_offset, batch.padding_right_offset) # Batch attributes requests = [] requests_idx_mapping = {} input_lengths = [] prefix_offsets = [] read_offsets = [] all_input_ids = [] next_token_choosers = [] stopping_criterias = [] top_n_tokens = [] max_tokens = 0 # Batch tensors input_ids = None attention_mask = None position_ids = None past_key_values = [] top_n_tokens_tensor = None # Used for slicing correctly inside the tensors # Equivalent to a cumsum on batch sizes start_index = 0 for i, batch in enumerate(batches): requests.extend(batch.requests) input_lengths.extend(batch.input_lengths) prefix_offsets.extend(batch.prefix_offsets) read_offsets.extend(batch.read_offsets) all_input_ids.extend(batch.all_input_ids) next_token_choosers.extend(batch.next_token_choosers) stopping_criterias.extend(batch.stopping_criterias) top_n_tokens.extend(batch.top_n_tokens) if i == 0: requests_idx_mapping = batch.requests_idx_mapping else: # We need to offset the mapping for each batch by the cumulative batch size for k, v in batch.requests_idx_mapping.items(): requests_idx_mapping[k] = v + start_index # Slicing end index for this batch end_index = start_index + len(batch) # We only concatenate batches that did at least one step if batch.past_key_values is None: raise ValueError("only concatenate prefilled batches") # Create empty tensor # input_ids is always of shape [batch_size, 1] # We do not need to pad it if input_ids is None: input_ids = batch.input_ids.new_empty((total_batch_size, 1)) # Copy to correct indices input_ids[start_index:end_index] = batch.input_ids # Create padded tensor if attention_mask is None: attention_mask = batch.attention_mask.new_zeros( (total_batch_size, max_input_length + padding_right_offset), ) if top_n_tokens_tensor is None: top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros( total_batch_size, ) top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor # We need to slice the attention mask to remove padding from previous steps # and to remove unused allocated space left_offset = max_input_length - batch.max_input_length batch_left_offset = ( batch.attention_mask.shape[1] - batch.max_input_length - batch.padding_right_offset ) attention_mask[ start_index:end_index, left_offset:-padding_right_offset, ] = batch.attention_mask[ :, batch_left_offset : -batch.padding_right_offset, ] # Create empty tensor # position_ids is always of shape [batch_size, 1] if position_ids is None: position_ids = batch.position_ids.new_empty((total_batch_size, 1)) position_ids[start_index:end_index] = batch.position_ids # Shenanigans to get dimensions because BLOOM outputs a past with a different shape # BLOOM Keys: [batch_size * num_heads, head_dim, seq_length] # BLOOM Values: [batch_size * num_heads, seq_length, head_dim] # And ensure that we can update tensors in-place if type(batch.past_key_values[0]) == tuple: batch.past_key_values = [ [t.view(len(batch), -1, *t.shape[-2:]) for t in layer] for layer in batch.past_key_values ] elif len(batch.past_key_values[0][0].shape) == 3: for layer in batch.past_key_values: for k, t in enumerate(layer): layer[k] = t.view(len(batch), -1, *t.shape[-2:]) # Add eventual padding tokens that were added while concatenating max_tokens += batch.max_tokens + ( max_input_length - batch.max_input_length ) * len(batch) start_index = end_index first_past_kvs = batches[0].past_key_values _, num_heads, padded_sequence_length, head_dim = first_past_kvs[0][1].shape padded_past_values_shape = ( total_batch_size, num_heads, max_input_length - 1, head_dim, ) if batches[0].keys_head_dim_last: padded_past_keys_shape = padded_past_values_shape else: # seq_length is last for BLOOM padded_past_keys_shape = ( total_batch_size, num_heads, head_dim, max_input_length - 1, ) # Iterate over attention layers # Concatenate past key values layer by layer to allow incremental garbage collection for j in range(len(first_past_kvs)): padded_past_keys = first_past_kvs[j][0].new_zeros(padded_past_keys_shape) start_index = 0 for batch in batches: past_keys = batch.past_key_values[j][0] # Clear reference to the original tensor batch.past_key_values[j][0] = None # Slicing end index for this batch end_index = start_index + len(batch) # We slice the keys to remove the padding from previous batches past_seq_len = batch.max_input_length - 1 if batch.keys_head_dim_last: padded_past_keys[ start_index:end_index, :, -past_seq_len:, : ] = past_keys[:, :, -past_seq_len:, :] else: # BLOOM case padded_past_keys[ start_index:end_index, :, :, -past_seq_len: ] = past_keys[:, :, :, -past_seq_len:] del past_keys start_index = end_index padded_past_values = first_past_kvs[j][1].new_zeros( padded_past_values_shape ) start_index = 0 for batch in batches: past_values = batch.past_key_values[j][1] # Clear reference to the original tensor batch.past_key_values[j][1] = None # Slicing end index for this batch end_index = start_index + len(batch) # We slice the past values to remove the padding from previous batches past_seq_len = batch.max_input_length - 1 padded_past_values[ start_index:end_index, :, -past_seq_len:, : ] = past_values[:, :, -past_seq_len:, :] del past_values # Update values start_index = end_index past_key_values.append([padded_past_keys, padded_past_values]) return cls( batch_id=batches[0].batch_id, requests=requests, requests_idx_mapping=requests_idx_mapping, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, all_input_ids=all_input_ids, input_lengths=input_lengths, prefix_offsets=prefix_offsets, read_offsets=read_offsets, next_token_choosers=next_token_choosers, stopping_criterias=stopping_criterias, top_n_tokens=top_n_tokens, top_n_tokens_tensor=top_n_tokens_tensor, max_input_length=max_input_length, padding_right_offset=padding_right_offset, keys_head_dim_last=batches[0].keys_head_dim_last, max_tokens=max_tokens, ) def __len__(self): return len(self.requests) class CausalLM(Model): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): if torch.cuda.is_available(): device = torch.device("cuda") dtype = torch.float16 if dtype is None else dtype else: if quantize: raise ValueError("quantization is not available on CPU") device = torch.device("cpu") dtype = torch.float32 if dtype is None else dtype tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) model = AutoModelForCausalLM.from_pretrained( model_id, revision=revision, torch_dtype=dtype, device_map="auto" if torch.cuda.is_available() and torch.cuda.device_count() > 1 else None, load_in_8bit=quantize == "bitsandbytes", trust_remote_code=trust_remote_code, ) if ( torch.cuda.is_available() and torch.cuda.device_count() == 1 and quantize != "bitsandbytes" ): model = model.cuda() if tokenizer.pad_token_id is None: if model.config.pad_token_id is not None: tokenizer.pad_token_id = model.config.pad_token_id elif model.config.eos_token_id is not None: tokenizer.pad_token_id = model.config.eos_token_id elif tokenizer.eos_token_id is not None: tokenizer.pad_token_id = tokenizer.eos_token_id else: tokenizer.add_special_tokens({"pad_token": "[PAD]"}) super(CausalLM, self).__init__( model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, ) @property def batch_type(self) -> Type[CausalLMBatch]: return CausalLMBatch def decode(self, generated_ids: List[int]) -> str: return self.tokenizer.decode( generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False ) def forward( self, input_ids, attention_mask, position_ids, past_key_values: Optional = None ) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]: # Model Forward kwargs = { "input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values, "use_cache": True, "return_dict": True, } if self.has_position_ids: kwargs["position_ids"] = position_ids outputs = self.model.forward(**kwargs) return outputs.logits, outputs.past_key_values @tracer.start_as_current_span("generate_token") def generate_token( self, batch: CausalLMBatch ) -> Tuple[List[Generation], Optional[CausalLMBatch], Tuple[int, int]]: start = time.time_ns() # slice the attention mask to the correct shape attention_mask = batch.attention_mask[:, : -batch.padding_right_offset] logits, past = self.forward( batch.input_ids, attention_mask, batch.position_ids, batch.past_key_values, ) # Results generations: List[Generation] = [] stopped = True batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens( batch.top_n_tokens, batch.top_n_tokens_tensor, torch.log_softmax(logits[:, -1], -1), ) start_decode = time.time_ns() # Zipped iterator iterator = zip( batch.requests, batch.input_lengths, batch.prefix_offsets, batch.read_offsets, logits, batch.next_token_choosers, batch.stopping_criterias, batch.all_input_ids, batch.top_n_tokens, batch_top_token_ids, batch_top_token_logprobs, ) # For each member of the batch for i, ( request, input_length, prefix_offset, read_offset, logits, next_token_chooser, stopping_criteria, all_input_ids, top_n_tokens, top_token_ids, top_token_logprobs, ) in enumerate(iterator): # Select next token next_token_id, logprobs = next_token_chooser( all_input_ids.view(1, -1), logits[-1:, :] ) # Append next token to all tokens all_input_ids = torch.cat([all_input_ids, next_token_id]) new_input_length = input_length + 1 # Generated token next_token_logprob = logprobs[-1, next_token_id] next_token_id_squeezed = next_token_id.squeeze() next_token_text, prefix_offset, read_offset = self.decode_token( all_input_ids[:, 0], prefix_offset, read_offset ) # Evaluate stopping criteria stop, reason = stopping_criteria( next_token_id_squeezed, next_token_text, ) if not stop: stopped = False # Shard generations # All generations will be appended in the rust sharded client if i % self.world_size == self.rank: if stop: # Decode generated tokens output_text, _, _ = self.decode_token( all_input_ids[:, 0], prefix_offset=len(all_input_ids) - stopping_criteria.current_tokens - 1, read_offset=len(all_input_ids) - stopping_criteria.current_tokens, skip_special_tokens=True, ) # Get seed if isinstance(next_token_chooser.choice, Sampling): seed = next_token_chooser.choice.seed else: seed = None generated_text = GeneratedText( output_text, stopping_criteria.current_tokens, reason, seed ) else: generated_text = None # Prefill if stopping_criteria.current_tokens == 1 and request.prefill_logprobs: # Remove generated token to only have prefill and add nan for first prompt token prefill_logprobs = [float("nan")] + torch.log_softmax( logits, -1 ).gather(1, all_input_ids[1:]).squeeze(1)[ -new_input_length:-1 ].tolist() prefill_token_ids = all_input_ids[-new_input_length:-1] prefill_texts = self.tokenizer.batch_decode( prefill_token_ids, clean_up_tokenization_spaces=False, skip_special_tokens=False, ) prefill_tokens = Tokens( prefill_token_ids, prefill_logprobs, prefill_texts, is_special=[], ) else: prefill_tokens = None if top_n_tokens > 0: toptoken_texts = self.tokenizer.batch_decode( top_token_ids, clean_up_tokenization_spaces=False, skip_special_tokens=False, ) special_toptokens = [ token_id in self.all_special_ids for token_id in top_token_ids ] top_tokens = Tokens( top_token_ids, top_token_logprobs, toptoken_texts, special_toptokens, ) else: top_tokens = None generation = Generation( request.id, prefill_tokens, Tokens( [next_token_id_squeezed], [next_token_logprob], [next_token_text], [next_token_id_squeezed.item() in self.all_special_ids], ), generated_text, top_tokens, ) generations.append(generation) # Update values batch.input_ids[i, 0] = next_token_id batch.all_input_ids[i] = all_input_ids batch.input_lengths[i] = new_input_length batch.prefix_offsets[i] = prefix_offset batch.read_offsets[i] = read_offset batch.max_input_length = max(batch.max_input_length, new_input_length) # We finished all generations in the batch; there is no next batch if stopped: forward_ns = start_decode - start decode_ns = time.time_ns() - start_decode return generations, None, (forward_ns, decode_ns) # Slice unused values from prefill batch.input_ids = batch.input_ids[:, :1] # Update attention_mask as we added a new token to input_ids batch.attention_mask[:, -batch.padding_right_offset] = 1 # Decrease right offset batch.padding_right_offset -= 1 # Update position_ids batch.position_ids = batch.position_ids[:, -1:] + 1 # Update past key values batch.past_key_values = past forward_ns = start_decode - start decode_ns = time.time_ns() - start_decode return generations, batch, (forward_ns, decode_ns)
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/models/flash_causal_lm.py
import math import time import itertools import torch import torch.distributed import numpy as np from dataclasses import dataclass from opentelemetry import trace from transformers import PreTrainedTokenizerBase from typing import Optional, Tuple, List, Type, Dict from text_generation_server.models import Model from text_generation_server.utils.tokens import batch_top_tokens from text_generation_server.utils.speculate import get_speculate from text_generation_server.models.types import ( Batch, Tokens, Generation, GeneratedText, ) from text_generation_server.models.cache_manager import ( get_cache_manager, set_cache_manager, BLOCK_SIZE, ) from text_generation_server.pb import generate_pb2 from text_generation_server.utils import StoppingCriteria, HeterogeneousNextTokenChooser from text_generation_server.utils.dist import MEMORY_FRACTION tracer = trace.get_tracer(__name__) @dataclass class FlashCausalLMBatch(Batch): batch_id: int requests: List[generate_pb2.Request] # request id -> idx in list mapping requests_idx_mapping: Dict[int, int] # Decoder values input_ids: torch.Tensor position_ids: torch.Tensor speculative_ids: torch.Tensor # Flash Attention values # tensor of length b containing the cumulative sequence lengths of the sequences in the batch, only used in prefill cu_seqlen_prefill: Optional[torch.Tensor] # Paged Attention values # Set when creating the batch # CPU tensor of length b indicating the start of each sequence in slots start_slots: torch.Tensor # tensor of indices of the currently used slots, length = \sum_{i=0}^{b} s_i in prefill, length = b in decode slot_indices: torch.Tensor # List of tuple of ints representing the number of blocks and slots needed by each sequence needed_blocks_slots: Optional[List[Tuple[int, int]]] # Set in prefill by the CacheManager # list of length b of list of length s_i // block_size block_tables: Optional[List[List[int]]] # tensor of size [b, max_seqlen // block_size] holding the paged attention block tables for all sequences block_tables_tensor: Optional[torch.Tensor] # tensor of length \sum_{i=0}^{b} max_s_i holding the paged attention slots for all sequences slots: Optional[torch.Tensor] max_seqlen: int # Prefill metadata tensors to efficiently compute logprobs prefill_head_indices: Optional[torch.Tensor] prefill_next_token_indices: Optional[torch.tensor] prefill_cu_outlens: Optional[List[int]] # All tokens all_input_ids: List[List[int]] all_input_ids_tensor: torch.Tensor # Lengths of all generations present in the batch input_lengths: List[int] input_lengths_tensor: torch.Tensor prefix_offsets: List[Optional[int]] read_offsets: List[Optional[int]] # Generation helpers next_token_chooser: HeterogeneousNextTokenChooser stopping_criterias: List[StoppingCriteria] top_n_tokens: List[int] top_n_tokens_tensor: torch.Tensor # Number of blocks in this batch blocks: int # Maximum number of blocks max_blocks: int def to_pb(self) -> generate_pb2.CachedBatch: return generate_pb2.CachedBatch( id=self.batch_id, request_ids=[r.id for r in self.requests], size=len(self), max_tokens=self.blocks * BLOCK_SIZE, ) @classmethod def from_pb( cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, dtype: torch.dtype, device: torch.device, ) -> "FlashCausalLMBatch": batch_inputs = [] max_truncation = 0 for r in pb.requests: batch_inputs.append(r.inputs) max_truncation = max(max_truncation, r.truncate) batch_tokenized_inputs = tokenizer( batch_inputs, truncation=True, max_length=max_truncation )["input_ids"] position_ids = [] speculative_ids = [] cu_seqlen_prefill = [0] needed_blocks_slots = [] start_slots = [] slot_indices = [] input_lengths = [] prefix_offsets = [] read_offsets = [] all_input_ids = [] requests_idx_mapping = {} all_prefill_logprobs = True no_prefill_logprobs = True prefill_head_indices = [] prefill_next_token_indices = [] prefill_cu_outlens = [0] next_token_chooser_parameters = [] stopping_criterias = [] top_n_tokens = [] # Cumulative length cumulative_length = 0 cumulative_max_length = 0 prefill_out_cumulative_length = 0 blocks = 0 max_seqlen = 0 max_length = 0 max_blocks = 0 # Parse batch for i, (r, tokenized_input) in enumerate( zip(pb.requests, batch_tokenized_inputs) ): # request id -> idx in list mapping requests_idx_mapping[r.id] = i tokenized_input = tokenized_input[-r.truncate :] input_length = len(tokenized_input) input_lengths.append(input_length) prefix_offsets.append(input_length - 5) read_offsets.append(input_length) all_input_ids.append(tokenized_input) # Position ids request_position_ids = torch.arange(0, input_length, dtype=torch.int32) position_ids.append(request_position_ids) # Add cumulative lengths of all previous inputs cu_seqlen_prefill.append(cumulative_length + input_length) next_token_chooser_parameters.append(r.parameters) stopping_criteria = StoppingCriteria.from_pb( r.stopping_parameters, tokenizer ) max_new_tokens = stopping_criteria.max_new_tokens stopping_criterias.append(stopping_criteria) top_n_tokens.append(r.top_n_tokens) # Paged attention # Remove one as the first token des not have a past speculative_length = get_speculate() total_tokens = input_length + max_new_tokens - 1 + speculative_length needed_blocks = math.ceil(total_tokens / BLOCK_SIZE) blocks += needed_blocks needed_blocks_slots.append((needed_blocks, total_tokens)) start_slots.append(cumulative_max_length) request_slot_indices = torch.arange( cumulative_max_length, cumulative_max_length + input_length, dtype=torch.int64, ) slot_indices.append(request_slot_indices) all_prefill_logprobs = all_prefill_logprobs and r.prefill_logprobs no_prefill_logprobs = no_prefill_logprobs and not r.prefill_logprobs if r.prefill_logprobs: prefill_head_indices.append(request_position_ids + cumulative_length) prefill_next_token_indices.append( prefill_out_cumulative_length + input_length - 1 ) prefill_cu_outlens.append(prefill_out_cumulative_length + input_length) prefill_out_cumulative_length += input_length else: prefill_head_indices.append( torch.tensor( [cumulative_length + input_length - 1], dtype=torch.int32 ) ) prefill_next_token_indices.append(prefill_out_cumulative_length) prefill_cu_outlens.append(prefill_out_cumulative_length + 1) prefill_out_cumulative_length += 1 # Update cumulative_length += input_length cumulative_max_length += total_tokens max_seqlen = max(max_seqlen, input_length) max_blocks = max(max_blocks, needed_blocks) max_length = max( max_length, input_length + max_new_tokens + speculative_length ) next_token_chooser = HeterogeneousNextTokenChooser.from_pb( next_token_chooser_parameters, dtype, device ) start_slots = torch.tensor(start_slots, dtype=torch.int64) # Padded all_input_ids_tensor all_input_ids_tensor = np.zeros( (len(all_input_ids), max_length), dtype=np.int64 ) for i, input_ids in enumerate(all_input_ids): all_input_ids_tensor[i, : len(input_ids)] = input_ids # Create tensors on device all_input_ids_tensor = torch.tensor( all_input_ids_tensor, dtype=torch.int64, device=device ) if len(pb.requests) > 1: input_ids = np.concatenate(all_input_ids, dtype=np.int64) position_ids = torch.cat(position_ids) slot_indices = torch.cat(slot_indices) else: input_ids = all_input_ids[0] position_ids = position_ids[0] slot_indices = slot_indices[0] cu_seqlen_prefill = torch.tensor( cu_seqlen_prefill, device=device, dtype=torch.int32 ) position_ids = position_ids.to(device) slot_indices = slot_indices.to(device) input_ids = torch.tensor(input_ids, dtype=torch.int64, device=device) input_lengths_tensor = torch.tensor( input_lengths, dtype=torch.int32, device=device ) if all_prefill_logprobs: prefill_head_indices = None prefill_next_token_indices = cu_seqlen_prefill[1:] - 1 elif no_prefill_logprobs: prefill_head_indices = cu_seqlen_prefill[1:] - 1 prefill_next_token_indices = None else: prefill_head_indices = torch.tensor( torch.cat(prefill_head_indices), dtype=torch.int64, device=device ) prefill_next_token_indices = torch.tensor( prefill_next_token_indices, dtype=torch.int64, device=device ) top_n_tokens_tensor = torch.tensor( top_n_tokens, device=device, dtype=torch.int64 ) return cls( batch_id=pb.id, requests=pb.requests, requests_idx_mapping=requests_idx_mapping, input_ids=input_ids, position_ids=position_ids, cu_seqlen_prefill=cu_seqlen_prefill, start_slots=start_slots, slot_indices=slot_indices, needed_blocks_slots=needed_blocks_slots, block_tables=None, block_tables_tensor=None, slots=None, max_seqlen=max_seqlen, prefill_head_indices=prefill_head_indices, prefill_next_token_indices=prefill_next_token_indices, prefill_cu_outlens=prefill_cu_outlens, input_lengths=input_lengths, input_lengths_tensor=input_lengths_tensor, prefix_offsets=prefix_offsets, read_offsets=read_offsets, all_input_ids=all_input_ids, all_input_ids_tensor=all_input_ids_tensor, next_token_chooser=next_token_chooser, stopping_criterias=stopping_criterias, top_n_tokens=top_n_tokens, top_n_tokens_tensor=top_n_tokens_tensor, blocks=blocks, max_blocks=max_blocks, speculative_ids=None, ) @tracer.start_as_current_span("filter") def filter(self, request_ids: List[int]) -> "FlashCausalLMBatch": if len(request_ids) == 0: raise ValueError("Batch must have at least one request") # We assume that if len(requests) == len(self) then the requests are the same if len(request_ids) == len(self): return self device = self.input_ids.device # New values after filtering requests_idx_mapping = {} # Used to index into tensors indices = [] # slots to keep after filtering slot_filtering_indices = torch.zeros( self.slots.shape[0], dtype=torch.bool, device=device ) # Create on CPU to only move to GPU once instead of at every copy slot_indices = torch.empty(len(request_ids), dtype=torch.int64) max_seqlen = 0 requests = [] start_slots = [] block_tables = [] all_input_ids = [] input_lengths = [] prefix_offsets = [] read_offsets = [] stopping_criterias = [] top_n_tokens = [] blocks = 0 max_blocks = 0 # Cumulative length cumulative_max_length = 0 for i, request_id in enumerate(request_ids): idx = self.requests_idx_mapping[request_id] indices.append(idx) requests_idx_mapping[request_id] = i requests.append(self.requests[idx]) # Get length request_input_length = self.input_lengths[idx] max_seqlen = max(max_seqlen, request_input_length) all_input_ids.append(self.all_input_ids[idx]) input_lengths.append(request_input_length) prefix_offsets.append(self.prefix_offsets[idx]) read_offsets.append(self.read_offsets[idx]) stopping_criteria = self.stopping_criterias[idx] stopping_criterias.append(stopping_criteria) top_n_tokens.append(self.top_n_tokens[idx]) remaining_tokens = ( stopping_criteria.max_new_tokens - stopping_criteria.current_tokens ) request_block_table = self.block_tables[idx] blocks += len(request_block_table) block_tables.append(request_block_table) start_slots.append(cumulative_max_length) # Copy to tensor (CPU) slot_indices[i] = cumulative_max_length + request_input_length - 1 # Set slice slot_filtering_indices[ self.start_slots[idx] : self.start_slots[idx] + request_input_length + remaining_tokens - 1 ] = True cumulative_max_length += request_input_length + remaining_tokens - 1 max_blocks = max(max_blocks, len(request_block_table)) block_indices_to_free = [] # Iterate on all requests for i, r in enumerate(self.requests): # Filter requests that are not part of the new batch if r.id not in requests_idx_mapping.keys(): block_indices_to_free.extend(self.block_tables[i]) # Free blocks get_cache_manager().free(block_indices_to_free) # Needed to avoid dropping blocks when the batches will go out of scope self.block_tables = None # Index into tensors input_ids = self.input_ids[indices] position_ids = self.position_ids[indices] all_input_ids_tensor = self.all_input_ids_tensor[indices] block_tables_tensor = self.block_tables_tensor[indices] input_lengths_tensor = self.input_lengths_tensor[indices] slots = self.slots[slot_filtering_indices] next_token_chooser = self.next_token_chooser.filter(indices) top_n_tokens_tensor = self.top_n_tokens_tensor[indices] speculative_ids = ( self.speculative_ids[indices] if self.speculative_ids is not None else None ) start_slots = torch.tensor(start_slots, dtype=torch.int64) # Move to GPU now that we have the whole tensor slot_indices = slot_indices.to(device) return type(self)( batch_id=self.batch_id, requests=requests, requests_idx_mapping=requests_idx_mapping, input_ids=input_ids, position_ids=position_ids, cu_seqlen_prefill=None, start_slots=start_slots, slot_indices=slot_indices, needed_blocks_slots=None, block_tables=block_tables, block_tables_tensor=block_tables_tensor, slots=slots, max_seqlen=max_seqlen, prefill_head_indices=None, prefill_next_token_indices=None, prefill_cu_outlens=None, input_lengths=input_lengths, input_lengths_tensor=input_lengths_tensor, prefix_offsets=prefix_offsets, read_offsets=read_offsets, all_input_ids=all_input_ids, all_input_ids_tensor=all_input_ids_tensor, next_token_chooser=next_token_chooser, stopping_criterias=stopping_criterias, top_n_tokens=top_n_tokens, top_n_tokens_tensor=top_n_tokens_tensor, blocks=blocks, max_blocks=max_blocks, speculative_ids=speculative_ids, ) @classmethod @tracer.start_as_current_span("concatenate") def concatenate(cls, batches: List["FlashCausalLMBatch"]) -> "FlashCausalLMBatch": # Batch attributes requests = [] requests_idx_mapping = {} blocks = 0 total_batch_size = 0 total_slots = 0 max_blocks = 0 max_length = 0 max_seqlen = 0 for b in batches: total_batch_size += len(b) total_slots += len(b.slots) blocks += b.blocks speculative_length = ( b.speculative_ids.shape[1] if b.speculative_ids is not None else 0 ) max_blocks = max(max_blocks, b.max_blocks) max_seqlen = max(max_seqlen, b.max_seqlen) max_length = max( max_length, max( input_length + stopping_criteria.max_new_tokens + speculative_length - stopping_criteria.current_tokens for input_length, stopping_criteria in zip( b.input_lengths, b.stopping_criterias ) ), ) input_ids = batches[0].input_ids.new_empty(total_batch_size) position_ids = batches[0].position_ids.new_empty(total_batch_size) slots = batches[0].slots.new_empty(total_slots) slot_indices = batches[0].slot_indices.new_empty(total_batch_size) input_lengths_tensor = batches[0].input_lengths_tensor.new_empty( total_batch_size ) block_tables_tensor = batches[0].block_tables_tensor.new_zeros( (total_batch_size, max_blocks) ) all_input_ids_tensor = batches[0].all_input_ids_tensor.new_zeros( (total_batch_size, max_length) ) top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros( total_batch_size, ) start_slots = [] block_tables = [] all_input_ids = [] input_lengths = [] prefix_offsets = [] read_offsets = [] next_token_chooser_parameters = [] stopping_criterias = [] top_n_tokens = [] # Cumulative length cumulative_batch_size = 0 cumulative_slots = 0 for i, batch in enumerate(batches): requests.extend(batch.requests) if i == 0: requests_idx_mapping = batch.requests_idx_mapping else: # We need to offset the mapping for each batch by the cumulative batch size for k, v in batch.requests_idx_mapping.items(): requests_idx_mapping[k] = v + cumulative_batch_size start_index = cumulative_batch_size end_index = cumulative_batch_size + len(batch) slots_start_index = cumulative_slots slots_end_index = cumulative_slots + len(batch.slots) # Copy tensors (GPU) input_ids[start_index:end_index] = batch.input_ids position_ids[start_index:end_index] = batch.position_ids slot_indices[start_index:end_index] = batch.slot_indices + cumulative_slots input_lengths_tensor[start_index:end_index] = batch.input_lengths_tensor top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor slots[slots_start_index:slots_end_index] = batch.slots all_input_ids_tensor[ start_index:end_index, : batch.all_input_ids_tensor.shape[1] ] = batch.all_input_ids_tensor[:, :max_length] block_tables_tensor[ start_index:end_index, : batch.block_tables_tensor.shape[1] ] = batch.block_tables_tensor[:, :max_blocks] start_slots.append(batch.start_slots + cumulative_slots) block_tables.extend(batch.block_tables) all_input_ids.extend(batch.all_input_ids) input_lengths.extend(batch.input_lengths) prefix_offsets.extend(batch.prefix_offsets) read_offsets.extend(batch.read_offsets) next_token_chooser_parameters.extend([r.parameters for r in batch.requests]) stopping_criterias.extend(batch.stopping_criterias) top_n_tokens.extend(batch.top_n_tokens) # Update cumulative_batch_size += len(batch) cumulative_slots += len(batch.slots) start_slots = torch.concat(start_slots) next_token_chooser = HeterogeneousNextTokenChooser.from_pb( next_token_chooser_parameters, dtype=batches[0].next_token_chooser.dtype, device=batches[0].next_token_chooser.device, ) speculative_ids = ( torch.cat([b.speculative_ids for b in batches], dim=0) if batches[0].speculative_ids is not None else None ) # Needed to avoid dropping blocks when the batches will go out of scope for b in batches: b.block_tables = None del b return cls( batch_id=batches[0].batch_id, requests=requests, requests_idx_mapping=requests_idx_mapping, input_ids=input_ids, position_ids=position_ids, cu_seqlen_prefill=None, start_slots=start_slots, slot_indices=slot_indices, needed_blocks_slots=None, block_tables=block_tables, block_tables_tensor=block_tables_tensor, slots=slots, max_seqlen=max_seqlen, prefill_head_indices=None, prefill_next_token_indices=None, prefill_cu_outlens=None, input_lengths=input_lengths, input_lengths_tensor=input_lengths_tensor, prefix_offsets=prefix_offsets, read_offsets=read_offsets, all_input_ids=all_input_ids, all_input_ids_tensor=all_input_ids_tensor, next_token_chooser=next_token_chooser, stopping_criterias=stopping_criterias, top_n_tokens=top_n_tokens, top_n_tokens_tensor=top_n_tokens_tensor, blocks=blocks, max_blocks=max_blocks, speculative_ids=speculative_ids, ) def __del__(self): if self.block_tables is not None and self.block_tables: # Free blocks get_cache_manager().free( list(itertools.chain.from_iterable(self.block_tables)) ) def __len__(self): return len(self.requests) class FlashCausalLM(Model): def __init__( self, model: torch.nn.Module, tokenizer: PreTrainedTokenizerBase, num_layers: int, num_kv_heads: int, head_size: int, dtype: torch.dtype, device: torch.device, rank: int = 0, world_size: int = 1, sliding_window: Optional[int] = None, ): self.num_layers = num_layers self.num_kv_heads = num_kv_heads self.head_size = head_size super(FlashCausalLM, self).__init__( model=model, tokenizer=tokenizer, requires_padding=False, dtype=dtype, device=device, rank=rank, world_size=world_size, sliding_window=sliding_window, ) @property def batch_type(self) -> Type[FlashCausalLMBatch]: return FlashCausalLMBatch def warmup(self, batch: FlashCausalLMBatch): torch.cuda.empty_cache() try: cache_manager = set_cache_manager( batch.blocks, self.num_layers, self.num_kv_heads, self.head_size, self.sliding_window is not None, self.dtype, self.device, ) _, batch, _ = self.generate_token(batch) except torch.cuda.OutOfMemoryError as e: raise RuntimeError( f"Not enough memory to handle {len(batch.input_ids)} prefill tokens. " f"You need to decrease `--max-batch-prefill-tokens`" ) from e torch.cuda.synchronize(self.device) # Inspired by the original implementation in [vllm](https://github.com/vllm-project/vllm) # Calculate the number of blocks that can be allocated with the free memory dtype_size = torch.tensor([], dtype=self.dtype).element_size() cache_block_size = BLOCK_SIZE * self.num_kv_heads * self.head_size total_cache_size = self.num_layers * cache_block_size * 2 * dtype_size total_free_memory, _ = torch.cuda.mem_get_info(self.device) total_gpu_memory = torch.cuda.get_device_properties(self.device).total_memory free_memory = max( 0, total_free_memory - (1 - MEMORY_FRACTION) * total_gpu_memory ) num_blocks = ( int(free_memory // total_cache_size) # Add batch.blocks as we allocated it above, so it is included in the peak memory. + cache_manager.num_blocks ) del batch del cache_manager set_cache_manager( num_blocks, self.num_layers, self.num_kv_heads, self.head_size, self.sliding_window is not None, self.dtype, self.device, ) return int(num_blocks * BLOCK_SIZE) def forward(self, batch: FlashCausalLMBatch) -> Tuple[torch.Tensor, torch.Tensor]: # Model Forward if batch.speculative_ids is not None: input_ids = batch.input_ids position_ids = batch.position_ids cu_seqlen_prefill = batch.cu_seqlen_prefill kv_cache = get_cache_manager().kv_cache block_tables = batch.block_tables_tensor slots = batch.slots[batch.slot_indices] input_lengths = batch.input_lengths_tensor max_s = batch.max_seqlen lm_head_indices = batch.prefill_head_indices speculative_ids = batch.speculative_ids B, speculative_length = speculative_ids.shape new_length = speculative_length + 1 new_input_ids = torch.cat( [input_ids.unsqueeze(-1), speculative_ids], dim=1 ).reshape(-1) arange = torch.arange(new_length, device=position_ids.device).unsqueeze(0) arange_int = arange.to(dtype=torch.int32) new_position_ids = ( position_ids.unsqueeze(-1).expand(B, new_length) + arange ).view(-1) slots = (slots.unsqueeze(-1).expand(B, new_length) + arange_int).view(-1) input_lengths = ( input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int ).view(-1) # Add Copy the block tables for all members block_tables = ( block_tables.unsqueeze(1) .expand(B, new_length, -1) .reshape(B * new_length, -1) .contiguous() ) max_s = max_s + speculative_length input_ids = new_input_ids position_ids = new_position_ids else: input_ids = batch.input_ids position_ids = batch.position_ids cu_seqlen_prefill = batch.cu_seqlen_prefill kv_cache = get_cache_manager().kv_cache block_tables = batch.block_tables_tensor slots = batch.slots[batch.slot_indices] input_lengths = batch.input_lengths_tensor max_s = batch.max_seqlen lm_head_indices = batch.prefill_head_indices return self.model.forward( input_ids=input_ids, position_ids=position_ids, cu_seqlen_prefill=cu_seqlen_prefill, kv_cache=kv_cache, block_tables=block_tables, slots=slots, input_lengths=input_lengths, max_s=max_s, lm_head_indices=lm_head_indices, ) @tracer.start_as_current_span("generate_token") def generate_token( self, batch: FlashCausalLMBatch ) -> Tuple[List[Generation], Optional[FlashCausalLMBatch], Tuple[int, int]]: start = time.time_ns() prefill = batch.cu_seqlen_prefill is not None prefill_logprobs = batch.prefill_next_token_indices is not None if batch.needed_blocks_slots: # Allocate blocks to this batch block_tables, block_tables_tensor, slots = get_cache_manager().allocate( batch.needed_blocks_slots, batch.blocks, batch.max_blocks, batch.input_ids.device, ) batch.needed_blocks_slots = None batch.block_tables = block_tables batch.block_tables_tensor = block_tables_tensor batch.slots = slots try: out = self.forward(batch) except Exception as e: del batch raise e if isinstance(out, tuple): out, speculative_logits = out else: speculative_logits = None if prefill: next_token_logits = ( out[batch.prefill_next_token_indices] if prefill_logprobs else out ) if speculative_logits is not None: speculative_logits = ( speculative_logits[batch.prefill_next_token_indices] if prefill_logprobs else speculative_logits ) else: next_token_logits = out ( next_input_ids, next_token_logprobs, logprobs, accepted_ids, speculative_ids, ) = batch.next_token_chooser( batch.all_input_ids_tensor[:, : batch.max_seqlen], next_token_logits, get_speculate(), batch.speculative_ids, speculative_logits, ) batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens( batch.top_n_tokens, batch.top_n_tokens_tensor, logprobs ) speculative_length = 0 if speculative_ids is None else speculative_ids.shape[1] if prefill: if len(batch) > 1 and prefill_logprobs: # We create the prefill_tokens_indices tensor that will be used to gather prefill logprobs # When batch == 1, we will just use the batch.input_ids values directly prefill_tokens_indices = batch.input_ids.new_zeros(len(out)) next_position_ids = batch.position_ids.new_empty(len(batch)) batch.slot_indices = batch.slot_indices[batch.cu_seqlen_prefill[1:] - 1] # We do not need cu_seqlen_prefill anymore batch.cu_seqlen_prefill = None else: prefill_logprobs = None next_position_ids = batch.position_ids # Cumulative length cumulative_length = 0 # Results generations: List[Generation] = [] stopped = True # Zipped iterator iterator = zip(batch.input_lengths, batch.all_input_ids, accepted_ids) # We do two for loops as the first one can run completely asynchronously from the GPU while for the second # one, we need to first do a GPU <-> CPU sync # It is faster if we delay this sync for the maximum amount of time # For each member of the batch index = 0 for i, (input_length, all_input_ids, n_accepted_ids) in enumerate(iterator): # Indexing metadata start_index = cumulative_length end_index = cumulative_length + input_length if prefill: # Indexing metadata out_start_index = batch.prefill_cu_outlens[i] out_end_index = batch.prefill_cu_outlens[i + 1] out_length = out_end_index - out_start_index # Initialize position_ids # In decode, we do not need this as we can just increment position ids next_position_ids[i] = batch.position_ids[end_index - 1] # Used to gather prefill logprobs # Copy batch.input_ids to prefill_token_indices if prefill_logprobs: if len(batch) > 1: prefill_tokens_indices[ out_start_index : out_end_index - 1 ] = batch.input_ids[start_index + 1 : start_index + out_length] else: # Set prefill_tokens_indices to the correct slice prefill_tokens_indices = batch.input_ids[ start_index + 1 : start_index + out_length ] for j in range(n_accepted_ids): batch.all_input_ids_tensor[i, input_length + j] = next_input_ids[index] index += 1 cumulative_length += input_length batch.input_ids = next_input_ids[accepted_ids.cumsum(dim=-1) - 1] batch.speculative_ids = speculative_ids batch.position_ids = next_position_ids + accepted_ids batch.input_lengths_tensor += accepted_ids batch.slot_indices += accepted_ids if prefill and prefill_logprobs: # Get prefill logprobs prefill_logprobs_tensor = torch.log_softmax(out, -1) prefill_logprobs = torch.gather( prefill_logprobs_tensor, 1, prefill_tokens_indices.view(-1, 1) ) # GPU <-> CPU sync prefill_logprobs = prefill_logprobs.view(-1).tolist() # GPU <-> CPU sync next_token_logprobs = next_token_logprobs.tolist() next_token_ids = next_input_ids.tolist() accepted_ids = accepted_ids.tolist() start_decode = time.time_ns() # Zipped iterator iterator = zip( batch.requests, batch.input_lengths, batch.prefix_offsets, batch.read_offsets, batch.stopping_criterias, batch.all_input_ids, batch.next_token_chooser.do_sample, batch.next_token_chooser.seeds, batch.top_n_tokens, accepted_ids, batch_top_token_ids, batch_top_token_logprobs, ) # For each member of the batch index = 0 for i, ( request, input_length, prefix_offset, read_offset, stopping_criteria, all_input_ids, do_sample, seed, top_n_tokens, n_accepted_ids, top_token_ids, top_token_logprobs, ) in enumerate(iterator): # Append next token to all tokens next_token_texts = [] left = 0 current_stopped = False for j in range(index, index + n_accepted_ids): # Generated token next_token_id = next_token_ids[j] all_input_ids.append(next_token_id) next_token_text, prefix_offset, read_offset = self.decode_token( all_input_ids, prefix_offset, read_offset, ) next_token_texts.append(next_token_text) stop, reason = stopping_criteria( next_token_id, next_token_text, ) if stop: left = index + n_accepted_ids - j - 1 current_stopped = True break else: current_stopped = False stopped = stopped and current_stopped _next_token_ids = next_token_ids[index : index + n_accepted_ids - left] _next_token_logprobs = next_token_logprobs[ index : index + n_accepted_ids - left ] index += n_accepted_ids # Shard generations # All generations will be appended in the rust sharded client if i % self.world_size == self.rank: if stop: # Decode generated tokens output_text, _, _ = self.decode_token( all_input_ids, prefix_offset=len(all_input_ids) - stopping_criteria.current_tokens - 1, read_offset=len(all_input_ids) - stopping_criteria.current_tokens, skip_special_tokens=True, ) generated_text = GeneratedText( output_text, stopping_criteria.current_tokens, reason, seed if do_sample else None, ) else: generated_text = None # Prefill if prefill and request.prefill_logprobs: out_start_index = batch.prefill_cu_outlens[i] out_end_index = batch.prefill_cu_outlens[i + 1] # Remove generated token to only have prefill and add nan for first prompt token request_prefill_logprobs = [float("nan")] + prefill_logprobs[ out_start_index : out_end_index - 1 ] prefill_token_ids = all_input_ids[:-1] prefill_texts = self.tokenizer.batch_decode( prefill_token_ids, clean_up_tokenization_spaces=False, skip_special_tokens=False, ) prefill_tokens = Tokens( prefill_token_ids, request_prefill_logprobs, prefill_texts, is_special=[], ) else: prefill_tokens = None if top_n_tokens > 0: toptoken_texts = self.tokenizer.batch_decode( top_token_ids, clean_up_tokenization_spaces=False, skip_special_tokens=False, ) special_toptokens = [ token_id in self.all_special_ids for token_id in top_token_ids ] top_tokens = Tokens( top_token_ids, top_token_logprobs, toptoken_texts, special_toptokens, ) else: top_tokens = None generation = Generation( request.id, prefill_tokens, Tokens( _next_token_ids, _next_token_logprobs, next_token_texts, [nid in self.all_special_ids for nid in _next_token_ids], ), generated_text, top_tokens, ) generations.append(generation) # Update values batch.input_lengths[i] = input_length + n_accepted_ids if batch.input_lengths[i] > batch.max_seqlen: batch.max_seqlen = batch.input_lengths[i] batch.prefix_offsets[i] = prefix_offset batch.read_offsets[i] = read_offset batch.all_input_ids[i] = all_input_ids if stopped: del batch # No need to return a batch if we know that all requests stopped forward_ns = start_decode - start decode_ns = time.time_ns() - start_decode return generations, None, (forward_ns, decode_ns) batch.prefill_cu_outlens = None batch.prefill_head_indices = None batch.prefill_next_token_indices = None forward_ns = start_decode - start decode_ns = time.time_ns() - start_decode return generations, batch, (forward_ns, decode_ns)
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/models/t5.py
import torch import torch.distributed from typing import List, Optional, Tuple from transformers import ( AutoTokenizer, AutoConfig, ) from text_generation_server.models import Seq2SeqLM from text_generation_server.models.custom_modeling.t5_modeling import ( T5ForConditionalGeneration, ) from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) class T5Sharded(Seq2SeqLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 if dtype is None else dtype else: device = torch.device("cpu") dtype = torch.float32 if dtype is None else dtype config = AutoConfig.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code, ) config.quantize = quantize tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) tokenizer.bos_token_id = config.decoder_start_token_id torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights( filenames, device=device, dtype=dtype, process_group=self.process_group, aliases={ "shared.weight": [ "encoder.embed_tokens.weight", "decoder.embed_tokens.weight", ] }, ) model = T5ForConditionalGeneration(config, weights) torch.distributed.barrier(group=self.process_group) super(Seq2SeqLM, self).__init__( model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, rank=rank, world_size=world_size, ) def forward( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask: Optional, encoder_last_hidden_state: Optional, past_key_values: Optional = None, ) -> Tuple[ torch.Tensor, torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]], ]: # Model Forward outputs = self.model.forward( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, encoder_outputs=encoder_last_hidden_state, past_key_values=past_key_values, use_cache=True, ) return ( outputs.logits, outputs.encoder_last_hidden_state, outputs.past_key_values, )
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/models/seq2seq_lm.py
import torch import time from dataclasses import dataclass from opentelemetry import trace from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, PreTrainedTokenizerBase from typing import Optional, Tuple, List, Type, Dict from text_generation_server.utils.tokens import batch_top_tokens from text_generation_server.models import Model from text_generation_server.models.types import ( GeneratedText, Batch, Generation, Tokens, ) from text_generation_server.pb import generate_pb2 from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling tracer = trace.get_tracer(__name__) @dataclass class Seq2SeqLMBatch(Batch): batch_id: int requests: List[generate_pb2.Request] requests_idx_mapping: Dict[int, int] # Encoder values input_ids: Optional[torch.Tensor] attention_mask: torch.Tensor # Decoder values decoder_input_ids: torch.Tensor decoder_attention_mask: Optional[torch.Tensor] encoder_last_hidden_state: Optional[torch.Tensor] # All tokens all_decoder_input_ids: List[torch.Tensor] # Seq2SeqLM keeps track of both encoder and decoder attention keys and values past_key_values: Optional[List[Tuple]] # Lengths of all generations present in the batch input_lengths: List[int] decoder_input_lengths: List[int] prefix_offsets: List[int] read_offsets: List[int] # Generation helpers next_token_choosers: List[NextTokenChooser] stopping_criterias: List[StoppingCriteria] top_n_tokens: List[int] top_n_tokens_tensor: torch.Tensor # Metadata used for padding max_input_length: int max_decoder_input_length: int padding_right_offset: int # Maximum number of tokens this batch will grow to max_tokens: int def to_pb(self) -> generate_pb2.CachedBatch: """Convert a Seq2SeqLMBatch to a text_generation_server.v1.CachedBatch protobuf""" return generate_pb2.CachedBatch( id=self.batch_id, request_ids=[r.id for r in self.requests], size=len(self), max_tokens=self.max_tokens, ) @classmethod def from_pb( cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, dtype: torch.dtype, device: torch.device, ) -> "Seq2SeqLMBatch": """Convert a text_generation_server.v1.Batch protobuf to a Seq2SeqLMBatch""" inputs = [] next_token_choosers = [] stopping_criterias = [] top_n_tokens = [] decoder_input_lengths = [] prefix_offsets = [] read_offsets = [] requests_idx_mapping = {} # Parse batch max_truncation = 0 padding_right_offset = 0 max_decode_tokens = 0 for i, r in enumerate(pb.requests): inputs.append(r.inputs) requests_idx_mapping[r.id] = i decoder_input_lengths.append(1) next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device)) stopping_criteria = StoppingCriteria.from_pb( r.stopping_parameters, tokenizer ) stopping_criterias.append(stopping_criteria) top_n_tokens.append(r.top_n_tokens) max_truncation = max(max_truncation, r.truncate) max_decode_tokens += stopping_criteria.max_new_tokens padding_right_offset = max( padding_right_offset, stopping_criteria.max_new_tokens ) # Tokenize batch tokenized_inputs = tokenizer( inputs, return_tensors="pt", padding=True, return_token_type_ids=False, truncation=True, max_length=max_truncation, ).to(device) input_lengths = tokenized_inputs["attention_mask"].sum(1) max_input_length = input_lengths.max() # Decoder sequence only contains the bos_token decoder_input_ids = ( torch.tensor(tokenizer.bos_token_id, device=device) .repeat(len(pb.requests)) .view(-1, 1) ) for _ in pb.requests: prefix_offsets.append(0) read_offsets.append(1) all_decoder_input_ids = decoder_input_ids.view(-1).split(1) top_n_tokens_tensor = torch.tensor( top_n_tokens, device=device, dtype=torch.int64 ) max_tokens = len(inputs) * (max_input_length + max_decode_tokens) return cls( batch_id=pb.id, requests=pb.requests, requests_idx_mapping=requests_idx_mapping, input_ids=tokenized_inputs["input_ids"], attention_mask=tokenized_inputs["attention_mask"], decoder_input_ids=decoder_input_ids, all_decoder_input_ids=list(all_decoder_input_ids), decoder_attention_mask=None, encoder_last_hidden_state=None, past_key_values=None, input_lengths=input_lengths.tolist(), decoder_input_lengths=decoder_input_lengths, prefix_offsets=prefix_offsets, read_offsets=read_offsets, next_token_choosers=next_token_choosers, stopping_criterias=stopping_criterias, top_n_tokens=top_n_tokens, top_n_tokens_tensor=top_n_tokens_tensor, max_input_length=max_input_length.item(), max_decoder_input_length=1, padding_right_offset=padding_right_offset, max_tokens=max_tokens, ) @tracer.start_as_current_span("filter") def filter(self, request_ids: List[int]) -> Optional["Seq2SeqLMBatch"]: if len(request_ids) == 0: raise ValueError("Batch must have at least one request") if len(request_ids) == len(self): return self keep_indices = [] # New values after filtering requests_idx_mapping = {} requests = [] input_lengths = [] decoder_input_lengths = [] prefix_offsets = [] read_offsets = [] all_decoder_input_ids = [] next_token_choosers = [] stopping_criterias = [] top_n_tokens = [] max_input_length = 0 max_decoder_input_length = 0 padding_right_offset = 0 total_remaining_decode_tokens = 0 for i, request_id in enumerate(request_ids): idx = self.requests_idx_mapping[request_id] requests_idx_mapping[request_id] = i keep_indices.append(idx) requests.append(self.requests[idx]) prefix_offsets.append(self.prefix_offsets[idx]) read_offsets.append(self.read_offsets[idx]) all_decoder_input_ids.append(self.all_decoder_input_ids[idx]) request_input_length = self.input_lengths[idx] input_lengths.append(request_input_length) max_input_length = max(max_input_length, request_input_length) request_decoder_input_length = self.decoder_input_lengths[idx] decoder_input_lengths.append(request_decoder_input_length) max_decoder_input_length = max( max_decoder_input_length, request_decoder_input_length ) next_token_choosers.append(self.next_token_choosers[idx]) stopping_criteria = self.stopping_criterias[idx] stopping_criterias.append(stopping_criteria) top_n_tokens.append(self.top_n_tokens[idx]) remaining_decode_tokens = ( stopping_criteria.max_new_tokens - stopping_criteria.current_tokens ) total_remaining_decode_tokens += remaining_decode_tokens padding_right_offset = max(padding_right_offset, remaining_decode_tokens) # Apply indices to input_ids, attention mask, past key values and other items that need to be cached self.decoder_input_ids = self.decoder_input_ids[keep_indices] self.attention_mask = self.attention_mask[keep_indices, -max_input_length:] if self.decoder_attention_mask is not None: self.decoder_attention_mask = self.decoder_attention_mask[ keep_indices, -(self.padding_right_offset + max_decoder_input_length) : ( self.decoder_attention_mask.shape[1] - self.padding_right_offset ) + padding_right_offset, ] self.encoder_last_hidden_state = self.encoder_last_hidden_state[ keep_indices, -max_input_length: ] # Ensure that past_key_values tensors can be updated in-place if type(self.past_key_values[0]) == tuple: self.past_key_values = [ [t for t in layer] for layer in self.past_key_values ] decoder_past_seq_len = max_decoder_input_length - 1 for layer in self.past_key_values: layer[0] = layer[0][keep_indices, :, -decoder_past_seq_len:] layer[1] = layer[1][keep_indices, :, -decoder_past_seq_len:] layer[2] = layer[2][keep_indices, :, -max_input_length:] layer[3] = layer[3][keep_indices, :, -max_input_length:] top_n_tokens_tensor = self.top_n_tokens_tensor[keep_indices] max_tokens = ( len(request_ids) * (max_input_length + max_decoder_input_length) + remaining_decode_tokens ) self.requests = requests self.requests_idx_mapping = requests_idx_mapping self.input_ids = None self.all_decoder_input_ids = all_decoder_input_ids self.input_lengths = input_lengths self.decoder_input_lengths = decoder_input_lengths self.prefix_offsets = prefix_offsets self.read_offsets = read_offsets self.next_token_choosers = next_token_choosers self.stopping_criterias = stopping_criterias self.top_n_tokens = top_n_tokens self.top_n_tokens_tensor = top_n_tokens_tensor self.max_input_length = max_input_length self.max_decoder_input_length = max_decoder_input_length self.padding_right_offset = padding_right_offset self.max_tokens = max_tokens return self @classmethod @tracer.start_as_current_span("concatenate") def concatenate(cls, batches: List["Seq2SeqLMBatch"]) -> "Seq2SeqLMBatch": """Concatenate multiple batches together by padding internal torch tensors""" # Used for padding total_batch_size = 0 max_input_length = 0 max_decoder_input_length = 0 padding_right_offset = 0 for batch in batches: total_batch_size += len(batch) max_input_length = max(max_input_length, batch.max_input_length) max_decoder_input_length = max( max_decoder_input_length, batch.max_decoder_input_length ) padding_right_offset = max(padding_right_offset, batch.padding_right_offset) # Batch attributes requests = [] requests_idx_mapping = {} all_decoder_input_ids = [] input_lengths = [] decoder_input_lengths = [] prefix_offsets = [] read_offsets = [] next_token_choosers = [] stopping_criterias = [] top_n_tokens = [] max_tokens = 0 # Batch tensors attention_mask = None decoder_input_ids = None decoder_attention_mask = None encoder_last_hidden_state = None top_n_tokens_tensor = None past_key_values = [] # Used for slicing correctly inside the tensors # Equivalent to a cumsum on batch sizes start_index = 0 for i, batch in enumerate(batches): # Extend all list attributes requests.extend(batch.requests) all_decoder_input_ids.extend(batch.all_decoder_input_ids) input_lengths.extend(batch.input_lengths) decoder_input_lengths.extend(batch.decoder_input_lengths) prefix_offsets.extend(batch.prefix_offsets) read_offsets.extend(batch.read_offsets) next_token_choosers.extend(batch.next_token_choosers) stopping_criterias.extend(batch.stopping_criterias) top_n_tokens.extend(batch.top_n_tokens) if i == 0: requests_idx_mapping = batch.requests_idx_mapping else: # We need to offset the mapping for each batch by the cumulative batch size for k, v in batch.requests_idx_mapping.items(): requests_idx_mapping[k] = v + start_index # Slicing end index for this batch end_index = start_index + len(batch) # We only concatenate batches that did at least one step if batch.encoder_last_hidden_state is None: raise ValueError("Batch encoder_last_hidden_state cannot be None") # Create padded tensor if attention_mask is None: attention_mask = batch.attention_mask.new_zeros( (total_batch_size, max_input_length), ) # Copy to correct indices attention_mask[ start_index:end_index, -batch.max_input_length : ] = batch.attention_mask[:, -batch.max_input_length :] # Create padded tensor if decoder_input_ids is None: decoder_input_ids = batch.decoder_input_ids.new_zeros( (total_batch_size, 1), ) # Copy to correct indices decoder_input_ids[start_index:end_index] = batch.decoder_input_ids # Create padded tensor if decoder_attention_mask is None: # As decoder_attention_mask might not exist, we use `batch.attention_mask` for device here decoder_attention_mask = batch.attention_mask.new_zeros( (total_batch_size, max_decoder_input_length + padding_right_offset), ) # If the decoder mask does not exist yet, all generations started at the same time and we never concatenated # this batch. All generations are of length `batch.max_decoder_input_length`. left_offset = max_decoder_input_length - batch.max_decoder_input_length if batch.decoder_attention_mask is None: decoder_attention_mask[ start_index:end_index, left_offset:-padding_right_offset, ] = 1 # If it exists, we need to index else: batch_left_offset = ( batch.decoder_attention_mask.shape[1] - batch.max_decoder_input_length - batch.padding_right_offset ) decoder_attention_mask[ start_index:end_index, left_offset:-padding_right_offset, ] = batch.decoder_attention_mask[ :, batch_left_offset : -batch.padding_right_offset, ] # Create padded tensor if encoder_last_hidden_state is None: encoder_last_hidden_state = batch.encoder_last_hidden_state.new_zeros( ( total_batch_size, max_input_length, batch.encoder_last_hidden_state.shape[-1], ), ) if top_n_tokens_tensor is None: top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros( total_batch_size, ) top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor # Copy to correct indices encoder_last_hidden_state[ start_index:end_index, -batch.max_input_length :, : ] = batch.encoder_last_hidden_state[:, -batch.max_input_length :, :] batch.encoder_last_hidden_state = None # Ensure that we can update tensors in-place if type(batch.past_key_values[0]) == tuple: batch.past_key_values = [ [t for t in layer] for layer in batch.past_key_values ] # Add eventual padding tokens that were added while concatenating max_tokens += batch.max_tokens + ( max_input_length - batch.max_input_length + max_decoder_input_length - batch.max_decoder_input_length ) * len(batch) start_index = end_index # Determine shapes for new past kv tensors first_past_kvs = batches[0].past_key_values _, num_heads, _, head_dim = first_past_kvs[0][0].shape padded_dec_t_shape = ( total_batch_size, num_heads, (max_decoder_input_length - 1), head_dim, ) padded_enc_t_shape = ( total_batch_size, num_heads, max_input_length, head_dim, ) # Iterate over attention layers for j in range(len(first_past_kvs)): past_key_values.append([]) # Decoder past for k in range(0, 2): # Initialize tensors padded_past_values = first_past_kvs[j][k].new_zeros(padded_dec_t_shape) past_key_values[j].append(padded_past_values) start_index = 0 for batch in batches: t = batch.past_key_values[j][k] # Clear reference to the original tensor batch.past_key_values[j][k] = None # Slicing end index for this batch end_index = start_index + len(batch) # We slice the past keys and values to remove the padding from previous batches past_seq_len = batch.max_decoder_input_length - 1 padded_past_values[start_index:end_index, :, -past_seq_len:, :] = t[ :, :, -past_seq_len:, : ] del t start_index = end_index # Encoder past for k in range(2, 4): # Initialize tensors padded_past_values = first_past_kvs[j][k].new_zeros(padded_enc_t_shape) past_key_values[j].append(padded_past_values) start_index = 0 for batch in batches: t = batch.past_key_values[j][k] # Clear reference to the original tensor batch.past_key_values[j][k] = None # Slicing end index for this batch end_index = start_index + len(batch) # We slice the past keys and values to remove the padding from previous batches padded_past_values[ start_index:end_index, :, -batch.max_input_length :, : ] = t[:, :, -batch.max_input_length :, :] del t start_index = end_index return cls( batch_id=batches[0].batch_id, requests=requests, requests_idx_mapping=requests_idx_mapping, input_ids=None, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, all_decoder_input_ids=all_decoder_input_ids, decoder_attention_mask=decoder_attention_mask, encoder_last_hidden_state=encoder_last_hidden_state, past_key_values=past_key_values, input_lengths=input_lengths, decoder_input_lengths=decoder_input_lengths, prefix_offsets=prefix_offsets, read_offsets=read_offsets, next_token_choosers=next_token_choosers, stopping_criterias=stopping_criterias, top_n_tokens=top_n_tokens, top_n_tokens_tensor=top_n_tokens_tensor, max_input_length=max_input_length, max_decoder_input_length=max_decoder_input_length, padding_right_offset=padding_right_offset, max_tokens=max_tokens, ) def __len__(self): return len(self.requests) class Seq2SeqLM(Model): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): if torch.cuda.is_available(): device = torch.device("cuda") dtype = torch.float16 if dtype is None else dtype else: if quantize: raise ValueError("quantization is not available on CPU") device = torch.device("cpu") dtype = torch.float32 if dtype is None else dtype model = AutoModelForSeq2SeqLM.from_pretrained( model_id, revision=revision, torch_dtype=dtype, device_map="auto" if torch.cuda.is_available() and torch.cuda.device_count() > 1 else None, load_in_8bit=quantize == "bitsandbytes", trust_remote_code=trust_remote_code, ) if torch.cuda.is_available() and torch.cuda.device_count() == 1: model = model.cuda() tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) tokenizer.bos_token_id = model.config.decoder_start_token_id super(Seq2SeqLM, self).__init__( model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, ) @property def batch_type(self) -> Type[Seq2SeqLMBatch]: return Seq2SeqLMBatch def decode(self, decoder_ids: List[int]) -> str: return self.tokenizer.decode( decoder_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False ) def forward( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask: Optional, encoder_last_hidden_state: Optional, past_key_values: Optional = None, ) -> Tuple[ torch.Tensor, torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]], ]: # Model Forward outputs = self.model.forward( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, encoder_outputs=encoder_last_hidden_state, past_key_values=past_key_values, use_cache=True, ) return ( outputs.logits, outputs.encoder_last_hidden_state, outputs.past_key_values, ) @tracer.start_as_current_span("generate_token") def generate_token( self, batch: Seq2SeqLMBatch ) -> Tuple[List[Generation], Optional[Seq2SeqLMBatch], Tuple[int, int]]: start = time.time_ns() if batch.decoder_attention_mask is not None: # slice to the correct shape decoder_attention_mask = batch.decoder_attention_mask[ :, : -batch.padding_right_offset ] else: decoder_attention_mask = None # Wrap `encoder_last_hidden_state` because for some reason, Transformers does a `encoder_last_hidden_state[0]` # internally... if batch.encoder_last_hidden_state is not None: encoder_last_hidden_state = [batch.encoder_last_hidden_state] else: encoder_last_hidden_state = None logits, encoder_last_hidden_state, past = self.forward( batch.input_ids, batch.attention_mask, batch.decoder_input_ids, decoder_attention_mask, encoder_last_hidden_state, batch.past_key_values, ) batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens( batch.top_n_tokens, batch.top_n_tokens_tensor, torch.log_softmax(logits[:, -1], -1), ) start_decode = time.time_ns() # Finished requests generations: List[Generation] = [] stopped = True # Zipped iterator iterator = zip( batch.requests, batch.input_lengths, batch.prefix_offsets, batch.read_offsets, batch.decoder_input_lengths, logits, batch.next_token_choosers, batch.stopping_criterias, batch.all_decoder_input_ids, batch.top_n_tokens, batch_top_token_ids, batch_top_token_logprobs, ) # For each member of the batch for i, ( request, input_length, prefix_offset, read_offset, decoder_input_length, logits, next_token_chooser, stopping_criteria, all_decoder_input_ids, top_n_tokens, top_token_ids, top_token_logprobs, ) in enumerate(iterator): # Select next token next_token_id, logprobs = next_token_chooser( all_decoder_input_ids.view(1, -1), logits[-1:, :] ) # Append next token to decoder tokens all_decoder_input_ids = torch.cat( [all_decoder_input_ids, next_token_id.squeeze(1)] ) new_decoder_input_length = decoder_input_length + 1 # Generated token next_token_logprob = logprobs[-1, next_token_id] next_token_id_squeezed = next_token_id.squeeze() next_token_text, prefix_offset, read_offset = self.decode_token( all_decoder_input_ids, prefix_offset, read_offset ) # Evaluate stopping criteria stop, reason = stopping_criteria(next_token_id, next_token_text) if not stop: stopped = False # Shard generations # All generations will be appended in the rust sharded client if i % self.world_size == self.rank: if stop: # Slice with decoder_input_length to remove padding # Decode all tokens output_text, _, _ = self.decode_token( all_decoder_input_ids, prefix_offset=len(all_decoder_input_ids) - decoder_input_length - 1, read_offset=len(all_decoder_input_ids) - decoder_input_length, skip_special_tokens=True, ) # Get seed if isinstance(next_token_chooser.choice, Sampling): seed = next_token_chooser.choice.seed else: seed = None generated_text = GeneratedText( output_text, stopping_criteria.current_tokens, reason, seed ) else: generated_text = None # Prefill if stopping_criteria.current_tokens == 1 and request.prefill_logprobs: prefill_tokens = Tokens( [self.tokenizer.bos_token_id], [float("nan")], [self.tokenizer.bos_token], [False], ) else: prefill_tokens = None if top_n_tokens > 0: toptoken_texts = self.tokenizer.batch_decode( top_token_ids, clean_up_tokenization_spaces=False, skip_special_tokens=False, ) special_toptokens = [ token_id in self.all_special_ids for token_id in top_token_ids ] top_tokens = Tokens( top_token_ids, top_token_logprobs, toptoken_texts, special_toptokens, ) else: top_tokens = None generation = Generation( request.id, prefill_tokens, Tokens( [next_token_id_squeezed], [next_token_logprob], [next_token_text], [next_token_id_squeezed.item() in self.all_special_ids], ), generated_text, top_tokens, ) generations.append(generation) # Update values batch.decoder_input_ids[i] = next_token_id batch.all_decoder_input_ids[i] = all_decoder_input_ids batch.input_lengths[i] = input_length batch.decoder_input_lengths[i] = new_decoder_input_length batch.prefix_offsets[i] = prefix_offset batch.read_offsets[i] = read_offset batch.max_input_length = max(batch.max_input_length, input_length) batch.max_decoder_input_length = max( batch.max_decoder_input_length, new_decoder_input_length ) # We finished all generations in the batch; there is no next batch if stopped: forward_ns = start_decode - start decode_ns = time.time_ns() - start_decode return generations, None, (forward_ns, decode_ns) # We don't need input_ids after the prefill forward batch.input_ids = None batch.encoder_last_hidden_state = encoder_last_hidden_state batch.past_key_values = past # Update decoder_attention_mask as we added a new token to input_ids if batch.decoder_attention_mask is not None: batch.decoder_attention_mask[:, -batch.padding_right_offset] = 1 batch.padding_right_offset -= 1 forward_ns = start_decode - start decode_ns = time.time_ns() - start_decode return generations, batch, (forward_ns, decode_ns)
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/models/santacoder.py
import torch import torch.distributed from typing import Optional, List from transformers import AutoTokenizer, AutoModelForCausalLM from text_generation_server.models import CausalLM FIM_PREFIX = "<fim-prefix>" FIM_MIDDLE = "<fim-middle>" FIM_SUFFIX = "<fim-suffix>" FIM_PAD = "<fim-pad>" EOD = "<|endoftext|>" class SantaCoder(CausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): if torch.cuda.is_available(): device = torch.device("cuda") dtype = torch.float16 if dtype is None else dtype else: if quantize: raise ValueError("quantization is not available on CPU") device = torch.device("cpu") dtype = torch.float32 if dtype is None else dtype tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) tokenizer.add_special_tokens( { "additional_special_tokens": [ EOD, FIM_PREFIX, FIM_MIDDLE, FIM_SUFFIX, FIM_PAD, ], "pad_token": EOD, } ) with device: model = AutoModelForCausalLM.from_pretrained( model_id, revision=revision, torch_dtype=dtype, load_in_8bit=quantize == "bitsandbytes", trust_remote_code=trust_remote_code, ) super(CausalLM, self).__init__( model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, ) def decode(self, generated_ids: List[int]) -> str: # Do not skip special tokens as they are used for custom parsing rules of the generated text return self.tokenizer.decode( generated_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False )
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/models/flash_santacoder.py
import torch import torch.distributed from opentelemetry import trace from transformers import AutoTokenizer, AutoConfig from typing import Optional, List import json import os from huggingface_hub import hf_hub_download from text_generation_server.models import FlashCausalLM from text_generation_server.models.custom_modeling.flash_santacoder_modeling import ( FlashSantacoderForCausalLM, ) from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) tracer = trace.get_tracer(__name__) class FlashSantacoderSharded(FlashCausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 if dtype is None else dtype else: raise NotImplementedError("FlashSantacoderSharded is only available on GPU") tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) config = AutoConfig.from_pretrained( model_id, revision=revision, trust_remote_code=True, ) config.quantize = quantize config.transpose = config.architectures[0].startswith("GPT2") torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights( filenames, device=device, dtype=dtype, process_group=self.process_group, aliases={"transformer.wte.weight": ["lm_head.weight"]}, ) if config.quantize == "gptq": weights._set_gptq_params(model_id, revision) model = FlashSantacoderForCausalLM(config, weights) torch.distributed.barrier(group=self.process_group) super(FlashSantacoderSharded, self).__init__( model=model.to(device), tokenizer=tokenizer, num_layers=len(model.transformer.h), num_kv_heads=1, head_size=model.transformer.head_size, dtype=dtype, device=device, rank=rank, world_size=world_size, ) def decode(self, generated_ids: List[int]) -> str: # Do not skip special tokens as they are used for custom parsing rules of the generated text return self.tokenizer.decode( generated_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False )
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/models/galactica.py
import re import torch import torch.distributed from typing import List, Optional, Type from transformers import ( AutoTokenizer, AutoConfig, PreTrainedTokenizerBase, ) from text_generation_server.models import CausalLM from text_generation_server.models.causal_lm import CausalLMBatch from text_generation_server.pb import generate_pb2 from text_generation_server.models.custom_modeling.opt_modeling import OPTForCausalLM from text_generation_server.utils import ( NextTokenChooser, StoppingCriteria, initialize_torch_distributed, weight_files, Weights, ) # CREDIT: Papers with code => https://github.com/paperswithcode/galai/blob/main/galai/utils.py # we split individual characters inside special tokens like [START_DNA] CUSTOM_SEQ_RE = re.compile(r"(\[START_(DNA|SMILES|I_SMILES|AMINO)])(.*?)(\[END_\2])") # token added to implement a custom sequence tokenization. This token is added at # corpus cleaning step and removed in pretokenization. The digits are added to increase the chance # that they do not occur in the corpus. The digits are escaped so that the token does not appear # literally in the source code in case we ever include it in the training data. SPLIT_MARKER = f"SPL{1}T-TH{1}S-Pl3A5E" def _insert_split_marker(m: re.Match): """ Applies split marker based on a regex match of special tokens such as [START_DNA]. Parameters ---------- n : str Input text to split Returns ---------- str - the text with the split token added """ start_token, _, sequence, end_token = m.groups() sequence = re.sub(r"(.)", rf"{SPLIT_MARKER}\1", sequence, flags=re.DOTALL) return f"{start_token}{sequence}{SPLIT_MARKER}{end_token}" def escape_custom_split_sequence(text): """ Applies custom splitting to the text for GALILEO's tokenization Parameters ---------- text : str Input text to split Returns ---------- str - the text with the split token added """ return CUSTOM_SEQ_RE.sub(_insert_split_marker, text) # END CREDIT class GalacticaCausalLMBatch(CausalLMBatch): @classmethod def from_pb( cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, dtype: torch.dtype, device: torch.device, ) -> "GalacticaCausalLMBatch": inputs = [] next_token_choosers = [] stopping_criterias = [] prefix_offsets = [] top_n_tokens = [] read_offsets = [] requests_idx_mapping = {} # Parse batch max_truncation = 0 padding_right_offset = 0 max_decode_tokens = 0 for i, r in enumerate(pb.requests): requests_idx_mapping[r.id] = i # Add escape_custom_split_sequence to the CausalLMBatch logic inputs.append(escape_custom_split_sequence(r.inputs)) next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device)) stopping_criteria = StoppingCriteria.from_pb( r.stopping_parameters, tokenizer ) stopping_criterias.append(stopping_criteria) top_n_tokens.append(r.top_n_tokens) max_truncation = max(max_truncation, r.truncate) max_decode_tokens += stopping_criteria.max_new_tokens padding_right_offset = max( padding_right_offset, stopping_criteria.max_new_tokens ) tokenized_inputs = tokenizer( inputs, return_tensors="pt", padding=True, return_token_type_ids=False, truncation=True, max_length=max_truncation, ).to(device) for _ in pb.requests: input_len = tokenized_inputs["input_ids"].shape[1] prefix_offsets.append(0) read_offsets.append(input_len) input_lengths = tokenized_inputs["attention_mask"].sum(1) max_input_length = input_lengths.max() input_ids = tokenized_inputs["input_ids"] # Allocate maximum attention_mask attention_mask = input_ids.new_zeros( (pb.size, max_input_length + padding_right_offset) ) # Copy tokenizer attention_mask into fully allocated attention_mask attention_mask[:, :max_input_length] = tokenized_inputs["attention_mask"] position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1 position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1) all_input_ids = tokenized_inputs["input_ids"].T.split(1, dim=1) top_n_tokens_tensor = torch.tensor( top_n_tokens, device=device, dtype=torch.int64 ) max_tokens = len(inputs) * max_input_length + max_decode_tokens return cls( batch_id=pb.id, requests=pb.requests, requests_idx_mapping=requests_idx_mapping, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=None, all_input_ids=list(all_input_ids), input_lengths=input_lengths.tolist(), prefix_offsets=prefix_offsets, read_offsets=read_offsets, next_token_choosers=next_token_choosers, stopping_criterias=stopping_criterias, top_n_tokens=top_n_tokens, top_n_tokens_tensor=top_n_tokens_tensor, max_input_length=max_input_length.item(), padding_right_offset=padding_right_offset, max_tokens=max_tokens, ) class GalacticaSharded(CausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 if dtype is None else dtype else: device = torch.device("cpu") dtype = torch.float32 if dtype is None else dtype tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) config = AutoConfig.from_pretrained( model_id, revision=revision, tp_parallel=True, trust_remote_code=trust_remote_code, ) config.quantize = quantize tokenizer.pad_token_id = config.pad_token_id torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights( filenames, device=device, dtype=dtype, process_group=self.process_group ) if config.quantize == "gptq": weights._set_gptq_params(model_id, revision) model = OPTForCausalLM(config, weights) torch.distributed.barrier(group=self.process_group) super(CausalLM, self).__init__( model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, rank=rank, world_size=world_size, ) @property def batch_type(self) -> Type[CausalLMBatch]: return GalacticaCausalLMBatch def decode(self, generated_ids: List[int]) -> str: # Do not skip special tokens as they are used for custom parsing rules of the generated text return self.tokenizer.decode( generated_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False ) def forward( self, input_ids, attention_mask, position_ids, past_key_values: Optional = None ): outputs = self.model.forward( input_ids=input_ids, attention_mask=attention_mask, past_key_values=past_key_values, use_cache=True, ) return outputs.logits, outputs.past_key_values
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/models/types.py
from functools import total_ordering import torch from abc import ABC, abstractmethod from dataclasses import dataclass from typing import List, Optional from transformers import PreTrainedTokenizerBase from text_generation_server.pb import generate_pb2 from text_generation_server.pb.generate_pb2 import FinishReason class Batch(ABC): @abstractmethod def to_pb(self) -> generate_pb2.CachedBatch: raise NotImplementedError @classmethod @abstractmethod def from_pb( cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, dtype: torch.dtype, device: torch.device, ) -> "Batch": raise NotImplementedError @abstractmethod def filter(self, request_ids: List[int]) -> "Batch": raise NotImplementedError @classmethod @abstractmethod def concatenate(cls, batches: List["Batch"]) -> "Batch": raise NotImplementedError @abstractmethod def __len__(self): raise NotImplementedError @dataclass class GeneratedText: text: str generated_tokens: int finish_reason: FinishReason seed: Optional[int] def to_pb(self) -> generate_pb2.GeneratedText: return generate_pb2.GeneratedText( text=self.text, generated_tokens=self.generated_tokens, finish_reason=self.finish_reason, seed=self.seed, ) @dataclass class Tokens: token_ids: List[int] logprobs: List[float] texts: List[str] is_special: List[bool] def to_pb(self) -> generate_pb2.Tokens: return generate_pb2.Tokens( ids=self.token_ids, logprobs=self.logprobs, texts=self.texts, is_special=self.is_special, ) def __len__(self): return len(self.token_ids) @dataclass class Generation: request_id: int prefill_tokens: Optional[Tokens] tokens: Tokens generated_text: Optional[GeneratedText] # Optional for now, since it's not yet supported for every model. top_tokens: Optional[List[Tokens]] def to_pb(self) -> generate_pb2.Generation: return generate_pb2.Generation( request_id=self.request_id, prefill_tokens=self.prefill_tokens.to_pb() if self.prefill_tokens is not None else None, tokens=self.tokens.to_pb(), generated_text=self.generated_text.to_pb() if self.generated_text is not None else None, top_tokens=self.top_tokens.to_pb() if self.top_tokens is not None else None, )
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/models/idefics_causal_lm.py
import torch import time from dataclasses import dataclass from opentelemetry import trace from transformers import ( AutoProcessor, AutoTokenizer, PreTrainedTokenizerBase, ProcessorMixin, ) from typing import Optional, Tuple, List, Type, Dict from text_generation_server.models import Model from text_generation_server.models.types import ( Batch, Tokens, Generation, GeneratedText, ) from text_generation_server.pb import generate_pb2 from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling import re IMAGES = re.compile(r"!\[[^\]]*\]\((.*?)\s*(\"(?:.*[^\"])\")?\s*\)") def split(string): parts = [] cursor = 0 for pattern in IMAGES.finditer(string): start = pattern.start() if start != cursor: parts.append(string[cursor:start]) parts.append(pattern.group(1)) cursor = pattern.end() if cursor != len(string): parts.append(string[cursor:]) return parts tracer = trace.get_tracer(__name__) @dataclass class IdeficsCausalLMBatch(Batch): batch_id: int requests: List[generate_pb2.Request] requests_idx_mapping: Dict[int, int] # Decoder values input_ids: torch.Tensor attention_mask: torch.Tensor position_ids: torch.Tensor pixel_values: Optional[torch.Tensor] image_hidden_states: Optional[torch.Tensor] image_attention_mask: Optional[torch.Tensor] past_key_values: Optional[List[Tuple]] # All tokens all_input_ids: List[torch.Tensor] # Lengths of all generations present in the batch input_lengths: List[int] prefix_offsets: List[int] read_offsets: List[int] # Generation helpers next_token_choosers: List[NextTokenChooser] stopping_criterias: List[StoppingCriteria] # Metadata used for padding max_input_length: int padding_right_offset: int # Maximum number of tokens this batch will grow to max_tokens: int # Past metadata keys_head_dim_last: bool = True def to_pb(self) -> generate_pb2.CachedBatch: return generate_pb2.CachedBatch( id=self.batch_id, request_ids=[r.id for r in self.requests], size=len(self), max_tokens=self.max_tokens, ) @classmethod def from_pb( cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, processor: ProcessorMixin, # Hack dtype: torch.dtype, device: torch.device, ) -> "IdeficsCausalLMBatch": inputs = [] next_token_choosers = [] stopping_criterias = [] prefix_offsets = [] read_offsets = [] requests_idx_mapping = {} # Parse batch max_truncation = 0 padding_right_offset = 0 max_decode_tokens = 0 for i, r in enumerate(pb.requests): requests_idx_mapping[r.id] = i inputs.append(r.inputs) next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device)) stopping_criteria = StoppingCriteria.from_pb( r.stopping_parameters, tokenizer ) stopping_criterias.append(stopping_criteria) max_truncation = max(max_truncation, r.truncate) max_decode_tokens += stopping_criteria.max_new_tokens padding_right_offset = max( padding_right_offset, stopping_criteria.max_new_tokens ) prompts = [] for inp in inputs: # Each input is encoded into a list, where each element of this input list is either a string or a URL prompts.append(split(inp)) # The processor replaces the call to tokenizer, and # a/ takes care of fetching images from the URL # b/ generate the correct input_ids, attention_mask, pixel_values, image_attention_mask to feed to the model tokenized_inputs = processor( prompts, return_tensors="pt", padding=True, truncation=True, max_length=max_truncation, add_end_of_utterance_token=False, # Already taken care of inside the prompts, so bypassing the processor's handling of this token ).to(device) for _ in pb.requests: input_len = tokenized_inputs["input_ids"].shape[1] prefix_offsets.append( input_len - 5 ) # To decode without potential fallbacks errors read_offsets.append( input_len ) # To decode without potential fallbacks errors input_lengths = tokenized_inputs["attention_mask"].sum(1) max_input_length = input_lengths.max() input_ids = tokenized_inputs["input_ids"] pixel_values = tokenized_inputs["pixel_values"] image_hidden_states = None # Allocate maximum attention_mask attention_mask = input_ids.new_zeros( (pb.size, max_input_length + padding_right_offset) ) # Copy tokenizer attention_mask into fully allocated attention_mask attention_mask[:, :max_input_length] = tokenized_inputs["attention_mask"] # Do the same for image_attention_mask image_attention_mask = input_ids.new_zeros( ( pb.size, max_input_length + padding_right_offset, tokenized_inputs["pixel_values"].size(1), ) ) image_attention_mask[:, :max_input_length, :] = tokenized_inputs[ "image_attention_mask" ] position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1 position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1) all_input_ids = tokenized_inputs["input_ids"].T.split( 1, dim=1 ) # It's input_ids but splitted into a tuple of tensors where each tensor is (seq_len, 1) size. It is then transformed into a list max_tokens = len(inputs) * (max_input_length + max_decode_tokens) return cls( batch_id=pb.id, requests=pb.requests, requests_idx_mapping=requests_idx_mapping, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, pixel_values=pixel_values, image_hidden_states=image_hidden_states, image_attention_mask=image_attention_mask, past_key_values=None, all_input_ids=list(all_input_ids), input_lengths=input_lengths.tolist(), prefix_offsets=prefix_offsets, read_offsets=read_offsets, next_token_choosers=next_token_choosers, stopping_criterias=stopping_criterias, max_input_length=max_input_length.item(), padding_right_offset=padding_right_offset, max_tokens=max_tokens, ) @tracer.start_as_current_span("filter") def filter(self, request_ids: List[int]) -> Optional["IdeficsCausalLMBatch"]: # It deletes requests from the batch. For instance when client lost connection if len(request_ids) == 0: raise ValueError("Batch must have at least one request") if len(request_ids) == len(self): return self keep_indices = [] # New values after filtering requests_idx_mapping = {} requests = [] input_lengths = [] prefix_offsets = [] read_offsets = [] all_input_ids = [] max_input_length = 0 next_token_choosers = [] stopping_criterias = [] total_remaining_decode_tokens = 0 new_padding_right_offset = 0 for i, request_id in enumerate(request_ids): idx = self.requests_idx_mapping[request_id] requests_idx_mapping[request_id] = i keep_indices.append(idx) requests.append(self.requests[idx]) prefix_offsets.append(self.prefix_offsets[idx]) read_offsets.append(self.read_offsets[idx]) all_input_ids.append(self.all_input_ids[idx]) request_input_length = self.input_lengths[idx] input_lengths.append(request_input_length) max_input_length = max(max_input_length, request_input_length) next_token_choosers.append(self.next_token_choosers[idx]) stopping_criteria = self.stopping_criterias[idx] stopping_criterias.append(stopping_criteria) remaining_decode_tokens = ( stopping_criteria.max_new_tokens - stopping_criteria.current_tokens ) total_remaining_decode_tokens += remaining_decode_tokens new_padding_right_offset = max( new_padding_right_offset, remaining_decode_tokens ) # Apply indices to input_ids, attention mask, past key values and other items that need to be cached input_ids = self.input_ids[keep_indices] position_ids = self.position_ids[keep_indices] self.attention_mask = self.attention_mask[ keep_indices, -(self.padding_right_offset + max_input_length) : ( self.attention_mask.shape[1] - self.padding_right_offset ) + new_padding_right_offset, ] # Do the same for pixel_values and image_attention_mask pixel_values = self.pixel_values[keep_indices] self.image_attention_mask = self.image_attention_mask[ keep_indices, -(self.padding_right_offset + max_input_length) : ( self.image_attention_mask.shape[1] - self.padding_right_offset ) + new_padding_right_offset, :, ] if self.image_hidden_states is None: image_hidden_states = None else: image_hidden_states = self.image_hidden_states[keep_indices] # Ensure that past_key_values tensors can be updated in-place if type(self.past_key_values[0]) == tuple: self.past_key_values = [list(layer) for layer in self.past_key_values] # Update tensors in-place to allow incremental garbage collection past_kv_length = max_input_length - 1 for layer in self.past_key_values: past_keys, past_values = layer if len(past_keys.shape) == 3: # Force past to be of dim [self_size, num_heads, ...] for easy indexing past_keys = past_keys.view(len(self), -1, *past_keys.shape[-2:]) past_values = past_values.view(len(self), -1, *past_values.shape[-2:]) if self.keys_head_dim_last: layer[0] = past_keys[keep_indices, :, -past_kv_length:, :] else: layer[0] = past_keys[keep_indices, :, :, -past_kv_length:] del past_keys layer[1] = past_values[keep_indices, :, -past_kv_length:, :] del past_values max_tokens = len(request_ids) * max_input_length + total_remaining_decode_tokens self.requests = requests self.requests_idx_mapping = requests_idx_mapping self.input_ids = input_ids self.pixel_values = pixel_values self.image_hidden_states = image_hidden_states self.position_ids = position_ids self.all_input_ids = all_input_ids self.input_lengths = input_lengths self.prefix_offsets = prefix_offsets self.read_offsets = read_offsets self.next_token_choosers = next_token_choosers self.stopping_criterias = stopping_criterias self.max_input_length = max_input_length self.padding_right_offset = new_padding_right_offset self.max_tokens = max_tokens return self @classmethod @tracer.start_as_current_span("concatenate") def concatenate( cls, batches: List["IdeficsCausalLMBatch"] ) -> "IdeficsCausalLMBatch": # It adds new requests to the batch # Used for padding total_batch_size = 0 max_input_length = 0 max_num_images = 0 padding_right_offset = 0 for batch in batches: total_batch_size += len(batch) max_input_length = max(max_input_length, batch.max_input_length) max_num_images = max(max_num_images, batch.pixel_values.size(1)) padding_right_offset = max(padding_right_offset, batch.padding_right_offset) # Batch attributes requests = [] requests_idx_mapping = {} input_lengths = [] prefix_offsets = [] read_offsets = [] all_input_ids = [] next_token_choosers = [] stopping_criterias = [] max_tokens = 0 # Batch tensors input_ids = None attention_mask = None position_ids = None pixel_values = None image_hidden_states = None image_attention_mask = None past_key_values = [] # Used for slicing correctly inside the tensors # Equivalent to a cumsum on batch sizes start_index = 0 for i, batch in enumerate(batches): requests.extend(batch.requests) input_lengths.extend(batch.input_lengths) prefix_offsets.extend(batch.prefix_offsets) read_offsets.extend(batch.read_offsets) all_input_ids.extend(batch.all_input_ids) next_token_choosers.extend(batch.next_token_choosers) stopping_criterias.extend(batch.stopping_criterias) if i == 0: requests_idx_mapping = batch.requests_idx_mapping else: # We need to offset the mapping for each batch by the cumulative batch size for k, v in batch.requests_idx_mapping.items(): requests_idx_mapping[k] = v + start_index # Slicing end index for this batch end_index = start_index + len(batch) # We only concatenate batches that did at least one step if batch.past_key_values is None: raise ValueError("only concatenate prefilled batches") # Create empty tensor # input_ids is always of shape [batch_size, 1] # We do not need to pad it if input_ids is None: input_ids = batch.input_ids.new_empty((total_batch_size, 1)) # Copy to correct indices input_ids[start_index:end_index] = batch.input_ids # Create padded tensor if attention_mask is None: attention_mask = batch.attention_mask.new_zeros( (total_batch_size, max_input_length + padding_right_offset), ) curr_batch_max_num_images = batch.pixel_values.size(1) if pixel_values is None: pixel_values = batch.pixel_values.new_zeros( (total_batch_size, max_num_images, 3, 224, 224) ) pixel_values[ start_index:end_index, :curr_batch_max_num_images ] = batch.pixel_values if image_attention_mask is None: image_attention_mask = batch.image_attention_mask.new_zeros( ( total_batch_size, max_input_length + padding_right_offset, max_num_images, ) ) # We need to slice the attention mask to remove padding from previous steps # and to remove unused allocated space left_offset = max_input_length - batch.max_input_length batch_left_offset = ( batch.attention_mask.shape[1] - batch.max_input_length - batch.padding_right_offset ) attention_mask[ start_index:end_index, left_offset:-padding_right_offset, ] = batch.attention_mask[ :, batch_left_offset : -batch.padding_right_offset, ] image_attention_mask[ start_index:end_index, left_offset:-padding_right_offset, :curr_batch_max_num_images, ] = batch.image_attention_mask[ :, batch_left_offset : -batch.padding_right_offset, : ] # Create empty tensor # position_ids is always of shape [batch_size, 1] if position_ids is None: position_ids = batch.position_ids.new_empty((total_batch_size, 1)) position_ids[start_index:end_index] = batch.position_ids # Shenanigans to get dimensions because BLOOM outputs a past with a different shape # BLOOM Keys: [batch_size * num_heads, head_dim, seq_length] # BLOOM Values: [batch_size * num_heads, seq_length, head_dim] # And ensure that we can update tensors in-place if type(batch.past_key_values[0]) == tuple: batch.past_key_values = [ [t.view(len(batch), -1, *t.shape[-2:]) for t in layer] for layer in batch.past_key_values ] elif len(batch.past_key_values[0][0].shape) == 3: for layer in batch.past_key_values: for k, t in enumerate(layer): layer[k] = t.view(len(batch), -1, *t.shape[-2:]) # Add eventual padding tokens that were added while concatenating max_tokens += batch.max_tokens + ( max_input_length - batch.max_input_length ) * len(batch) start_index = end_index first_past_kvs = batches[0].past_key_values _, num_heads, padded_sequence_length, head_dim = first_past_kvs[0][1].shape padded_past_values_shape = ( total_batch_size, num_heads, max_input_length - 1, head_dim, ) if batches[0].keys_head_dim_last: padded_past_keys_shape = padded_past_values_shape else: # seq_length is last for BLOOM padded_past_keys_shape = ( total_batch_size, num_heads, head_dim, max_input_length - 1, ) # Iterate over attention layers # Concatenate past key values layer by layer to allow incremental garbage collection for j in range(len(first_past_kvs)): padded_past_keys = first_past_kvs[j][0].new_zeros(padded_past_keys_shape) start_index = 0 for batch in batches: past_keys = batch.past_key_values[j][0] # Clear reference to the original tensor batch.past_key_values[j][0] = None # Slicing end index for this batch end_index = start_index + len(batch) # We slice the keys to remove the padding from previous batches past_seq_len = batch.max_input_length - 1 if batch.keys_head_dim_last: padded_past_keys[ start_index:end_index, :, -past_seq_len:, : ] = past_keys[:, :, -past_seq_len:, :] else: # BLOOM case padded_past_keys[ start_index:end_index, :, :, -past_seq_len: ] = past_keys[:, :, :, -past_seq_len:] del past_keys start_index = end_index padded_past_values = first_past_kvs[j][1].new_zeros( padded_past_values_shape ) start_index = 0 for batch in batches: past_values = batch.past_key_values[j][1] # Clear reference to the original tensor batch.past_key_values[j][1] = None # Slicing end index for this batch end_index = start_index + len(batch) # We slice the past values to remove the padding from previous batches past_seq_len = batch.max_input_length - 1 padded_past_values[ start_index:end_index, :, -past_seq_len:, : ] = past_values[:, :, -past_seq_len:, :] del past_values # Update values start_index = end_index past_key_values.append([padded_past_keys, padded_past_values]) return cls( batch_id=batches[0].batch_id, requests=requests, requests_idx_mapping=requests_idx_mapping, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, pixel_values=pixel_values, image_hidden_states=image_hidden_states, image_attention_mask=image_attention_mask, past_key_values=past_key_values, all_input_ids=all_input_ids, input_lengths=input_lengths, prefix_offsets=prefix_offsets, read_offsets=read_offsets, next_token_choosers=next_token_choosers, stopping_criterias=stopping_criterias, max_input_length=max_input_length, padding_right_offset=padding_right_offset, keys_head_dim_last=batches[0].keys_head_dim_last, max_tokens=max_tokens, ) def __len__(self): return len(self.requests) class IdeficsCausalLM(Model): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): from text_generation_server.models.custom_modeling.idefics_modeling import ( IdeficsForVisionText2Text, ) if torch.cuda.is_available(): device = torch.device("cuda") dtype = torch.bfloat16 if dtype is None else dtype else: if quantize: raise ValueError("quantization is not available on CPU") device = torch.device("cpu") dtype = torch.float32 if dtype is None else dtype tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) self.processor = AutoProcessor.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) model = IdeficsForVisionText2Text.from_pretrained( model_id, revision=revision, torch_dtype=dtype, device_map="auto" if torch.cuda.is_available() and torch.cuda.device_count() > 1 else None, load_in_8bit=quantize == "bitsandbytes", trust_remote_code=trust_remote_code, ) if torch.cuda.is_available() and torch.cuda.device_count() == 1: model = model.cuda() if tokenizer.pad_token_id is None: if model.config.pad_token_id is not None: tokenizer.pad_token_id = model.config.pad_token_id elif model.config.eos_token_id is not None: tokenizer.pad_token_id = model.config.eos_token_id elif tokenizer.eos_token_id is not None: tokenizer.pad_token_id = tokenizer.eos_token_id else: tokenizer.add_special_tokens({"pad_token": "<unk>"}) super(IdeficsCausalLM, self).__init__( model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, ) @property def batch_type(self) -> Type[IdeficsCausalLMBatch]: return IdeficsCausalLMBatch def forward( self, input_ids, attention_mask, position_ids, pixel_values, image_hidden_states, image_attention_mask, past_key_values: Optional = None, ) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]: # Model Forward kwargs = { "input_ids": input_ids, "attention_mask": attention_mask, "pixel_values": pixel_values, "image_hidden_states": image_hidden_states, "image_attention_mask": image_attention_mask, "past_key_values": past_key_values, "use_cache": True, "return_dict": True, } if self.has_position_ids: kwargs["position_ids"] = position_ids outputs = self.model.forward(**kwargs) return outputs.logits, outputs.past_key_values, outputs.image_hidden_states @tracer.start_as_current_span("generate_token") def generate_token( self, batch: IdeficsCausalLMBatch ) -> Tuple[List[Generation], Optional[IdeficsCausalLMBatch], Tuple[int, int]]: start = time.time_ns() # slice the attention mask to the correct shape attention_mask = batch.attention_mask[:, : -batch.padding_right_offset] if batch.input_ids.size(1) == 1: # THIS is a hack: when calling idefics.generate, the first time, we need the whole image_attention_mask (size bs x max_seq_len x max_num_images), # but the subsequent times, we only need the last attention mask along the `max_seq_len` dimension # this is due to the nature IDEFICS: it's an encoder decoder, and so when decoding, only the currently generated # token need to attend to the encoder hidden states (i.e. the vision encoder) # Also see seq2seq_lm.Seq2SeqLM.generate_token which has roughly the same logic image_attention_mask = batch.image_attention_mask[ :, -(batch.padding_right_offset + 1) ].unsqueeze(1) else: image_attention_mask = batch.image_attention_mask[ :, : -batch.padding_right_offset ] logits, past, image_hidden_states = self.forward( input_ids=batch.input_ids, attention_mask=attention_mask, position_ids=batch.position_ids, pixel_values=batch.pixel_values, image_hidden_states=batch.image_hidden_states, image_attention_mask=image_attention_mask, past_key_values=batch.past_key_values, ) # Hardcoded remove image tokens logits[:, 32000:32001] = torch.finfo(logits.dtype).min start_decode = time.time_ns() # Results generations: List[Generation] = [] stopped = True # Zipped iterator iterator = zip( batch.requests, batch.input_lengths, batch.prefix_offsets, batch.read_offsets, logits, batch.next_token_choosers, batch.stopping_criterias, batch.all_input_ids, ) # For each member of the batch for i, ( request, input_length, prefix_offset, read_offset, logits, next_token_chooser, stopping_criteria, all_input_ids, ) in enumerate(iterator): # Select next token next_token_id, logprobs = next_token_chooser( all_input_ids.view(1, -1), logits[-1:, :] ) # Append next token to all tokens all_input_ids = torch.cat([all_input_ids, next_token_id]) new_input_length = input_length + 1 # Generated token next_token_logprob = logprobs[-1, next_token_id] next_token_id_squeezed = next_token_id.squeeze() next_token_text, prefix_offset, read_offset = self.decode_token( all_input_ids[:, 0], prefix_offset, read_offset ) # Evaluate stopping criteria stop, reason = stopping_criteria( next_token_id_squeezed, next_token_text, ) if not stop: stopped = False # Shard generations # All generations will be appended in the rust sharded client if i % self.world_size == self.rank: if stop: # Decode generated tokens output_text, _, _ = self.decode_token( all_input_ids[:, 0], prefix_offset=len(all_input_ids) - stopping_criteria.current_tokens - 1, read_offset=len(all_input_ids) - stopping_criteria.current_tokens, skip_special_tokens=True, ) # Get seed if isinstance(next_token_chooser.choice, Sampling): seed = next_token_chooser.choice.seed else: seed = None generated_text = GeneratedText( output_text, stopping_criteria.current_tokens, reason, seed ) else: generated_text = None # Prefill if stopping_criteria.current_tokens == 1 and request.prefill_logprobs: # Remove generated token to only have prefill and add nan for first prompt token prefill_logprobs = [float("nan")] + torch.log_softmax( logits, -1 ).gather(1, all_input_ids[1:]).squeeze(1)[ -new_input_length:-1 ].tolist() prefill_token_ids = all_input_ids[-new_input_length:-1] prefill_texts = self.tokenizer.batch_decode( prefill_token_ids, clean_up_tokenization_spaces=False, skip_special_tokens=False, ) prefill_tokens = Tokens( prefill_token_ids, prefill_logprobs, prefill_texts, is_special=[], ) else: prefill_tokens = None top_tokens = None generation = Generation( request.id, prefill_tokens, Tokens( [next_token_id_squeezed], [next_token_logprob], [next_token_text], [next_token_id_squeezed.item() in self.all_special_ids], ), generated_text, top_tokens, ) generations.append(generation) # Update values batch.input_ids[i, 0] = next_token_id batch.all_input_ids[i] = all_input_ids batch.input_lengths[i] = new_input_length batch.prefix_offsets[i] = prefix_offset batch.read_offsets[i] = read_offset batch.max_input_length = max(batch.max_input_length, new_input_length) # We finished all generations in the batch; there is no next batch if stopped: forward_ns = start_decode - start decode_ns = time.time_ns() - start_decode return generations, None, (forward_ns, decode_ns) # Slice unused values from prefill batch.input_ids = batch.input_ids[:, :1] # Update attention_mask as we added a new token to input_ids batch.attention_mask[:, -batch.padding_right_offset] = 1 batch.image_attention_mask[ :, -batch.padding_right_offset, : ] = batch.image_attention_mask[:, -(batch.padding_right_offset + 1), :] # Decrease right offset batch.padding_right_offset -= 1 # Update position_ids batch.position_ids = batch.position_ids[:, -1:] + 1 # Update past key values batch.past_key_values = past batch.image_hidden_states = image_hidden_states forward_ns = start_decode - start decode_ns = time.time_ns() - start_decode return generations, batch, (forward_ns, decode_ns)
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/models/flash_neox.py
import torch import torch.distributed from opentelemetry import trace from transformers import AutoTokenizer, AutoConfig from typing import Optional from text_generation_server.models import FlashCausalLM from text_generation_server.models.custom_modeling.flash_neox_modeling import ( FlashGPTNeoXForCausalLM, ) from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) tracer = trace.get_tracer(__name__) class FlashNeoXSharded(FlashCausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 if dtype is None else dtype else: raise NotImplementedError("FlashNeoX is only available on GPU") tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) config = AutoConfig.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code ) config.quantize = quantize torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights( filenames, device=device, dtype=dtype, process_group=self.process_group ) if config.quantize == "gptq": weights._set_gptq_params(model_id, revision) model = FlashGPTNeoXForCausalLM(config, weights) torch.distributed.barrier(group=self.process_group) super(FlashNeoXSharded, self).__init__( model=model.to(device), tokenizer=tokenizer, num_layers=len(model.gpt_neox.layers), num_kv_heads=model.gpt_neox.num_heads, head_size=model.gpt_neox.head_size, dtype=dtype, device=device, rank=rank, world_size=world_size, )
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/models/cache_manager.py
import math import torch from typing import Optional, List, Tuple BLOCK_SIZE: int = 16 # Will be set in warmup CACHE_MANAGER: Optional["CacheManager"] = None class CacheManager: def __init__( self, num_blocks: int, num_layers: int, num_heads: int, head_size: int, repeat_slots: bool, dtype: torch.dtype, device: torch.device, ): self.block_size = BLOCK_SIZE self.num_blocks = num_blocks self.repeat_slots = repeat_slots element_size = torch.tensor([], dtype=dtype).element_size() x = self.block_size // element_size self.kv_cache = [ ( torch.empty( (num_blocks, num_heads, head_size // x, self.block_size, x), dtype=dtype, device=device, ), torch.empty( (num_blocks, num_heads, head_size, self.block_size), dtype=dtype, device=device, ), ) for _ in range(num_layers) ] self.free_block_mask = torch.ones(num_blocks, dtype=torch.int32, device="cpu") self.slots = torch.arange( 0, num_blocks * self.block_size, dtype=torch.int32 ).view(num_blocks, self.block_size) def allocate( self, needed_blocks_slots: List[Tuple[int, int]], blocks: int, max_blocks: int, device: torch.device, ): # Get free blocks indices by finding values in mask that are not set to 0 free_block_indices = self.free_block_mask.nonzero() assert ( len(free_block_indices) >= blocks ), f"Out of available cache blocks: asked {blocks}, only {len(free_block_indices)} free blocks" # Slice by the number of required blocks block_indices = free_block_indices[:blocks] block_indices = block_indices.flatten() # Padded block tables block_tables_tensor = torch.zeros( (len(needed_blocks_slots), max_blocks), dtype=torch.int32 ) # Allocate paged attention blocks cumulative_blocks = 0 slots = [] block_tables = [] for i, (needed_blocks, needed_slots) in enumerate(needed_blocks_slots): # Get allocated blocks for this sequence allocated_blocks = block_indices[ cumulative_blocks : cumulative_blocks + needed_blocks ] # Get slots for the allocated blocks all_slots = self.slots[allocated_blocks].flatten() # Repeat slots in the case of context sliding window if needed_slots > len(all_slots) and self.repeat_slots: repeats = math.ceil(needed_slots / len(all_slots)) all_slots = all_slots.repeat(repeats) allocated_slots = all_slots[:needed_slots] slots.append(allocated_slots) block_tables.append(allocated_blocks.tolist()) block_tables_tensor[i, :needed_blocks] = allocated_blocks cumulative_blocks += needed_blocks block_tables = block_tables block_tables_tensor = block_tables_tensor.to(device) slots = torch.concat(slots).to(device) # Allocate the required number of blocks by setting the mask to 0 self.free_block_mask[block_indices] = 0 return block_tables, block_tables_tensor, slots def free(self, block_indices: Optional[List[int]]): if block_indices is not None and block_indices: # Reset mask self.free_block_mask[block_indices] = 1 def set_cache_manager( num_blocks: int, num_layers: int, num_heads: int, head_size: int, repeat_slots: bool, dtype: torch.dtype, device: torch.device, ) -> CacheManager: global CACHE_MANAGER if CACHE_MANAGER is not None: del CACHE_MANAGER torch.cuda.empty_cache() CACHE_MANAGER = CacheManager( num_blocks, num_layers, num_heads, head_size, repeat_slots, dtype, device ) return CACHE_MANAGER def get_cache_manager() -> CacheManager: global CACHE_MANAGER if CACHE_MANAGER is None: raise RuntimeError("cache manager was not initialized") return CACHE_MANAGER
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/models/opt.py
import torch import torch.distributed from typing import Optional from transformers import ( AutoTokenizer, AutoConfig, ) from text_generation_server.models.custom_modeling.opt_modeling import OPTForCausalLM from text_generation_server.models import CausalLM from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) class OPTSharded(CausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 if dtype is None else dtype else: device = torch.device("cpu") dtype = torch.float32 if dtype is None else dtype tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) config = AutoConfig.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code, ) config.quantize = quantize tokenizer.pad_token_id = config.pad_token_id torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights( filenames, device=device, dtype=dtype, process_group=self.process_group ) if config.quantize == "gptq": weights._set_gptq_params(model_id, revision) model = OPTForCausalLM(config, weights) torch.distributed.barrier(group=self.process_group) super(CausalLM, self).__init__( model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, rank=rank, world_size=world_size, ) def forward( self, input_ids, attention_mask, position_ids, past_key_values: Optional = None ): outputs = self.model.forward( input_ids=input_ids, attention_mask=attention_mask, past_key_values=past_key_values, use_cache=True, ) return outputs.logits, outputs.past_key_values
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/models/flash_llama.py
import torch import torch.distributed from opentelemetry import trace from transformers import AutoConfig, AutoTokenizer from transformers.models.llama import LlamaTokenizer from typing import Optional from text_generation_server.models import FlashCausalLM from text_generation_server.models.custom_modeling.flash_llama_modeling import ( FlashLlamaForCausalLM, LlamaConfig, ) from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) tracer = trace.get_tracer(__name__) class FlashLlama(FlashCausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, use_medusa: Optional[str] = None, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 if dtype is None else dtype else: raise NotImplementedError("FlashLlama is only available on GPU") try: tokenizer = LlamaTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) except Exception: tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) config = LlamaConfig.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code ) config.quantize = quantize torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights(filenames, device, dtype, process_group=self.process_group) if config.quantize in ["gptq", "awq"]: weights._set_gptq_params(model_id, revision) model = FlashLlamaForCausalLM(config, weights) if use_medusa: from text_generation_server.utils.medusa import MedusaModel from huggingface_hub import hf_hub_download import json import os from pathlib import Path is_local_model = (Path(use_medusa).exists() and Path(use_medusa).is_dir()) or os.getenv( "WEIGHTS_CACHE_OVERRIDE", None ) is not None if not is_local_model: medusa_config = hf_hub_download( use_medusa, revision=revision, filename="config.json" ) medusa_head = hf_hub_download( use_medusa, revision=revision, filename="medusa_lm_head.pt" ) else: medusa_config = str(Path(use_medusa) / "config.json") medusa_head = str(Path(use_medusa) / "medusa_lm_head.pt") with open(medusa_config, "r") as f: config = json.load(f) medusa_sf = medusa_head[: -len(".pt")] + ".safetensors" weights = Weights( [medusa_sf], device, dtype, process_group=self.process_group ) lm_head = model.lm_head model.lm_head = MedusaModel(config, weights, lm_head) torch.distributed.barrier(group=self.process_group) super(FlashLlama, self).__init__( model=model, tokenizer=tokenizer, num_layers=len(model.model.layers), num_kv_heads=model.model.num_key_value_heads, head_size=model.model.head_size, dtype=dtype, device=device, rank=rank, world_size=world_size, )
0
hf_public_repos/text-generation-inference/server/text_generation_server/models
hf_public_repos/text-generation-inference/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py
# coding=utf-8 # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.distributed from torch import nn from transformers.activations import ACT2FN from transformers.configuration_utils import PretrainedConfig from typing import Optional, List, Tuple from text_generation_server.utils import paged_attention, flash_attn from text_generation_server.utils.layers import ( TensorParallelRowLinear, TensorParallelColumnLinear, TensorParallelEmbedding, PositionRotaryEmbedding, TensorParallelHead, get_linear, FastRMSNorm, ) class LlamaConfig(PretrainedConfig): def __init__( self, vocab_size=32000, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=None, hidden_act="silu", max_position_embeddings=2048, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=0, bos_token_id=1, eos_token_id=2, pretraining_tp=1, tie_word_embeddings=False, rope_scaling=None, rope_theta=10000.0, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.pretraining_tp = pretraining_tp self.use_cache = use_cache self.rope_scaling = rope_scaling self.rope_theta = rope_theta super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) def load_attention(config, prefix, weights): if config.num_attention_heads != config.num_key_value_heads: return _load_gqa(config, prefix, weights) else: if config.model_type == "baichuan": return TensorParallelColumnLinear.load_qkv( config, prefix=f"{prefix}.W_pack", weights=weights, bias=False, ) else: return TensorParallelColumnLinear.load_multi( config, prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"], dim=0, weights=weights, bias=False, ) def _load_gqa(config, prefix: str, weights): assert config.hidden_size % config.num_attention_heads == 0 assert config.num_attention_heads % weights.process_group.size() == 0 weight = weights.get_multi_weights_col( prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"], quantize=config.quantize, dim=0, ) if config.quantize not in ["gptq", "awq"]: weight = weight.to(dtype=weights.dtype).to(device=weights.device) head_size = config.hidden_size // config.num_attention_heads num_heads = config.num_attention_heads // weights.process_group.size() num_key_value_heads = config.num_key_value_heads // weights.process_group.size() assert list(weight.shape) == [ (num_heads + 2 * num_key_value_heads) * head_size, config.hidden_size, ], f"{list(weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}" return TensorParallelColumnLinear( get_linear(weight, bias=None, quantize=config.quantize) ) class FlashLlamaAttention(torch.nn.Module): def __init__( self, prefix: str, config, weights, ): super().__init__() self.num_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.head_size = self.hidden_size // self.num_heads self.rotary_emb = PositionRotaryEmbedding.static( config=config, dim=self.head_size, base=config.rope_theta, device=weights.device, ) self.softmax_scale = self.head_size**-0.5 if self.num_heads % weights.process_group.size() != 0: raise ValueError( f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.num_heads = self.num_heads // weights.process_group.size() self.num_key_value_heads = ( config.num_key_value_heads // weights.process_group.size() ) self.query_key_value = load_attention(config, prefix, weights) self.o_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.o_proj", weights=weights, bias=False, ) self.num_groups = self.num_heads // self.num_key_value_heads self.kv_head_mapping = torch.arange( 0, self.num_key_value_heads, dtype=torch.int32, device=weights.device ).repeat_interleave(self.num_groups) def forward( self, hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ): qkv = self.query_key_value(hidden_states) query, kv = qkv.split( [ self.head_size * self.num_heads, 2 * self.head_size * self.num_key_value_heads, ], dim=1, ) query = query.view(-1, self.num_heads, self.head_size) kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size) self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin) paged_attention.reshape_and_cache( kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots ) # output tensor attn_output = torch.empty_like(query) # Prefill if cu_seqlen_prefill is not None: # flash attention flash_attn.attention( query, torch.select(kv, dim=1, index=0), torch.select(kv, dim=1, index=1), attn_output, cu_seqlen_prefill, max_s, self.softmax_scale, ) # Decode else: paged_attention.attention( attn_output, query, kv_cache[0], kv_cache[1], self.kv_head_mapping, self.softmax_scale, block_tables, input_lengths, max_s, ) return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size)) class LlamaMLP(nn.Module): def __init__(self, prefix, config, weights): super().__init__() act = config.hidden_act self.act = ( ACT2FN[act] if "gelu" not in act else lambda x: torch.nn.functional.gelu( x, approximate="tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none", ) ) # Fuse gate and up proj self.gate_up_proj = TensorParallelColumnLinear.load_multi( config, prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"], weights=weights, dim=0, bias=False, ) self.down_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.down_proj", weights=weights, bias=False, ) self.intermediate_size = ( config.intermediate_size // weights.process_group.size() ) def forward(self, hidden_states): gate_up_states = self.gate_up_proj(hidden_states) gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size) return self.down_proj(self.act(gate_up_states[:, 0]) * gate_up_states[:, 1]) class FlashLlamaLayer(nn.Module): def __init__(self, layer_id, config, weights): super().__init__() prefix = f"model.layers.{layer_id}" self.self_attn = FlashLlamaAttention( prefix=f"{prefix}.self_attn", config=config, weights=weights ) self.mlp = LlamaMLP(prefix=f"{prefix}.mlp", config=config, weights=weights) self.input_layernorm = FastRMSNorm.load( prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps ) self.post_attention_layernorm = FastRMSNorm.load( prefix=f"{prefix}.post_attention_layernorm", weights=weights, eps=config.rms_norm_eps, ) def forward( self, hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ): normed_hidden_states, res = self.input_layernorm(hidden_states, residual) # Self Attention attn_output = self.self_attn( normed_hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ) # faster post attention rms norm normed_attn_res_output, attn_res = self.post_attention_layernorm( attn_output, res ) mlp_output = self.mlp(normed_attn_res_output) return mlp_output, attn_res class FlashLlamaModel(torch.nn.Module): def __init__(self, config, weights): super().__init__() process_group = weights.process_group self.tp_rank = process_group.rank() self.tp_world_size = process_group.size() self.embed_tokens = TensorParallelEmbedding( prefix="model.embed_tokens", weights=weights ) self.layers = nn.ModuleList( [ FlashLlamaLayer( layer_id, config, weights, ) for layer_id in range(config.num_hidden_layers) ] ) self.norm = FastRMSNorm.load( prefix="model.norm", weights=weights, eps=config.rms_norm_eps ) self.gradient_checkpointing = False self.head_size = self.layers[0].self_attn.head_size self.num_heads = self.layers[0].self_attn.num_heads self.num_key_value_heads = self.layers[0].self_attn.num_key_value_heads def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, input_lengths: torch.Tensor, max_s: int, ) -> torch.Tensor: hidden_states = self.embed_tokens(input_ids) # Get rotary cos and sin for this forward # Avoid to index in each layer cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin( position_ids, max_s, hidden_states.dtype ) residual = None for i, layer in enumerate(self.layers): hidden_states, residual = layer( hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache[i], block_tables, slots, input_lengths, max_s, ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states class FlashLlamaForCausalLM(torch.nn.Module): def __init__(self, config, weights): super().__init__() self.model = FlashLlamaModel(config, weights) self.lm_head = TensorParallelHead.load( config, prefix="lm_head", weights=weights, ) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, input_lengths: torch.Tensor, max_s: int, lm_head_indices: Optional[torch.Tensor] = None, ) -> torch.Tensor: hidden_states = self.model( input_ids, position_ids, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ) if lm_head_indices is not None: hidden_states = hidden_states[lm_head_indices] logits = self.lm_head(hidden_states) return logits
0
hf_public_repos/text-generation-inference/server/text_generation_server/models
hf_public_repos/text-generation-inference/server/text_generation_server/models/custom_modeling/idefics_modeling.py
# coding=utf-8 # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Idefics model.""" from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from transformers import PreTrainedModel from transformers.activations import ACT2FN from transformers.modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, dataclass, ) from transformers.modeling_utils import PretrainedConfig from transformers.utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from text_generation_server.models.custom_modeling.idefics_config import IdeficsConfig from text_generation_server.models.custom_modeling.idefics_vision import ( IdeficsVisionTransformer, ) from text_generation_server.models.custom_modeling.idefics_perceiver import ( IdeficsPerceiverResampler, ) from text_generation_server.utils.layers import ( TensorParallelColumnLinear, TensorParallelEmbedding, TensorParallelRowLinear, TensorParallelHead, PositionRotaryEmbedding, FastLinear, ) from text_generation_server.utils.import_utils import IS_CUDA_SYSTEM, IS_ROCM_SYSTEM if IS_CUDA_SYSTEM: import dropout_layer_norm elif IS_ROCM_SYSTEM: from vllm import layernorm_ops @dataclass class BaseModelOutputWithPastImage(BaseModelOutputWithPast): image_hidden_states: Optional[torch.FloatTensor] = None @dataclass class CausalLMOutputWithPastImage(CausalLMOutputWithPast): image_hidden_states: Optional[torch.FloatTensor] = None # logger = logging.get_logger(__name__) # _CONFIG_FOR_DOC = "IdeficsConfig" # IDEFICS_PRETRAINED_MODEL_ARCHIVE_LIST = [ # "HuggingFaceM4/idefics-9b", # "HuggingFaceM4/idefics-80b", # # See all Idefics models at https://huggingface.co/models?filter=idefics # ] def expand_inputs_for_generation( input_ids, expand_size=1, is_encoder_decoder=False, attention_mask=None, encoder_outputs=None, **model_kwargs, ): expanded_return_idx = ( torch.arange(input_ids.shape[0]) .view(-1, 1) .repeat(1, expand_size) .view(-1) .to(input_ids.device) ) input_ids = input_ids.index_select(0, expanded_return_idx) if "token_type_ids" in model_kwargs: token_type_ids = model_kwargs["token_type_ids"] model_kwargs["token_type_ids"] = token_type_ids.index_select( 0, expanded_return_idx ) if attention_mask is not None: model_kwargs["attention_mask"] = attention_mask.index_select( 0, expanded_return_idx ) model_kwargs["image_attention_mask"] = model_kwargs[ "image_attention_mask" ].index_select(0, expanded_return_idx) model_kwargs["pixel_values"] = model_kwargs["pixel_values"].index_select( 0, expanded_return_idx ) if is_encoder_decoder: if encoder_outputs is None: raise ValueError( "If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined." ) encoder_outputs[ "last_hidden_state" ] = encoder_outputs.last_hidden_state.index_select( 0, expanded_return_idx.to(encoder_outputs.last_hidden_state.device) ) model_kwargs["encoder_outputs"] = encoder_outputs return input_ids, model_kwargs def update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder=False): # must have this key set to at least None model_kwargs["past_key_values"] = model_kwargs.get("past_key_values", None) # update past if "past_key_values" in outputs: model_kwargs["past"] = outputs.past_key_values elif "mems" in outputs: model_kwargs["past"] = outputs.mems elif "past_buckets_states" in outputs: model_kwargs["past"] = outputs.past_buckets_states else: model_kwargs["past"] = None # update token_type_ids with last value if "token_type_ids" in model_kwargs: token_type_ids = model_kwargs["token_type_ids"] model_kwargs["token_type_ids"] = torch.cat( [token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1 ) # update attention masks if not is_encoder_decoder: if "attention_mask" in model_kwargs: attention_mask = model_kwargs["attention_mask"] model_kwargs["attention_mask"] = torch.cat( [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1, ) if "image_attention_mask" in model_kwargs: image_attention_mask = model_kwargs["image_attention_mask"] last_mask = image_attention_mask[:, -1, :].unsqueeze(1) model_kwargs["image_attention_mask"] = last_mask return model_kwargs def prepare_inputs_for_generation(input_ids, past=None, **kwargs): token_type_ids = kwargs.get("token_type_ids", None) # only last token for inputs_ids if past is defined in kwargs if past: input_ids = input_ids[:, -1].unsqueeze(-1) if token_type_ids is not None: token_type_ids = token_type_ids[:, -1].unsqueeze(-1) attention_mask = kwargs.get("attention_mask", None) position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past: position_ids = position_ids[:, -1].unsqueeze(-1) pixel_values = kwargs.get("pixel_values", None) image_attention_mask = kwargs.get("image_attention_mask", None) # if pixel_values is None or image_attention_mask is None: # raise ValueError("pixel values and image attention mask cannot be None") return { "input_ids": input_ids, "past_key_values": past, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, "pixel_values": pixel_values, "image_attention_mask": image_attention_mask, } def freeze_model(model, module_exceptions=[]): mapping = { "LayerNorm": nn.LayerNorm, "Linear": nn.Linear, "Embedding": nn.Embedding, } module_exceptions_mapped = [mapping[m] for m in module_exceptions] for module in model.modules(): if module_exceptions and any( [isinstance(module, t) for t in module_exceptions_mapped] ): module.requires_grad_( True ) # Explicitely setting it to true to avoid any mistakes else: module.requires_grad_(False) return model class IdeficsDecoupledPartialTPEmbedding(nn.Module): def __init__( self, config, weights, ): super().__init__() self.num_embeddings = config.vocab_size self.weight = TensorParallelEmbedding( prefix="model.embed_tokens", weights=weights ) self.additional_weight = nn.Parameter( weights.get_tensor(f"model.embed_tokens.additional_embedding.weight") ) def forward(self, input_ids): # Clone so that we don't modify the original input_ids later on input_ids = input_ids.clone() additional_vocab_indices = torch.where(input_ids >= self.num_embeddings) input_ids_additional_vocab = input_ids[additional_vocab_indices] additional_embeddings = torch.nn.functional.embedding( input_ids_additional_vocab - self.num_embeddings, self.additional_weight ) # for successful lookup replace input_ids with 0, the results of these will be discarded anyway input_ids[additional_vocab_indices] = 0 full_vector = self.weight(input_ids) # overwrite the records with high indices full_vector[additional_vocab_indices] = additional_embeddings return full_vector class IdeficsDecoupledTensorParallelLinear(nn.Module): # Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear """ Implements a decoupling of parameters to allow freezing (or not) a subset of the parameters. In practise, the regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `out_additional_features` > 0, then it will create `out_additional_features * in_features` additional parameters that are always trained. If `out_additional_features=0`, then the module defaults back to the regular behavior of `nn.Linear`. """ def __init__( self, config, weights, ) -> None: super().__init__() self.fc = TensorParallelHead.load( config=config, prefix="lm_head", weights=weights ) self.additional_fc = FastLinear.load( config=config, prefix="lm_head.additional_fc", weights=weights, bias=False, ) def forward(self, input: torch.Tensor) -> torch.Tensor: output = self.fc(input) additional_features = self.additional_fc(input) output = torch.cat((output, additional_features), -1) return output def extra_repr(self) -> str: """Overwriting `nn.Linear.extra_repr` to include new parameters.""" return "in_features={}, out_features={}, out_additional_features={}, bias={}, partially_freeze={}".format( self.in_features, self.out_features, self.out_additional_features, self.bias is not None, self.partially_freeze, ) # Copied from transformers.models.bart.modeling_bart._make_causal_mask def _make_causal_mask( input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0, ): """ Make causal mask used for bi-directional self-attention. """ bsz, tgt_len = input_ids_shape mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) mask_cond = torch.arange(mask.size(-1), device=device) mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) mask = mask.to(dtype) if past_key_values_length > 0: mask = torch.cat( [ torch.zeros( tgt_len, past_key_values_length, dtype=dtype, device=device ), mask, ], dim=-1, ) return mask[None, None, :, :].expand( bsz, 1, tgt_len, tgt_len + past_key_values_length ) def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ bsz, src_len = mask.size() tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill( inverted_mask.to(torch.bool), torch.finfo(dtype).min ) class IdeficsRMSNorm(nn.Module): def __init__(self, prefix, weights, eps=1e-6): """ LlamaRMSNorm is equivalent to T5LayerNorm """ super().__init__() weight = weights.get_tensor(f"{prefix}.weight") self.weight = nn.Parameter(weight) self.variance_epsilon = eps def forward(self, hidden_states, residual=None): if hidden_states.shape[-1] > 8192: if residual is not None: hidden_states += residual residual = hidden_states hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt( variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.float16, torch.bfloat16]: hidden_states = hidden_states.to(self.weight.dtype) return self.weight * hidden_states elif IS_CUDA_SYSTEM: # faster post attention rms norm unwrap = False if len(hidden_states.shape) > 2: unwrap = True shape = hidden_states.shape hidden_states = hidden_states.reshape(-1, shape[-1]) normed_hidden_states, res, *rest = dropout_layer_norm.dropout_add_ln_fwd( hidden_states, residual, self.weight, None, None, None, None, None, 0.0, self.variance_epsilon, 1.0, 0, None, False, True, # Activate RMSNorm ) if res is None: res = hidden_states if unwrap: normed_hidden_states = normed_hidden_states.view(*shape) return normed_hidden_states elif IS_ROCM_SYSTEM: # We use VLLM RMSNorm kernel that can be compiled for RoCm, instead of Flash Attention ones that can not. if residual is not None: hidden_states += residual residual = hidden_states unwrap = False if len(hidden_states.shape) > 2: unwrap = True shape = hidden_states.shape hidden_states = hidden_states.reshape(-1, shape[-1]) out = torch.empty_like(hidden_states) layernorm_ops.rms_norm( out, hidden_states, self.weight.data, self.variance_epsilon, ) if unwrap: out = out.view(*shape) return out else: raise ValueError( "Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction." ) # this was adapted from LlamaMLP class IdeficsMLP(nn.Module): def __init__( self, config, prefix, weights, ): super().__init__() self.gate_up_proj = TensorParallelColumnLinear.load_multi( config, prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"], weights=weights, dim=0, bias=False, ) self.down_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.down_proj", weights=weights, bias=False, ) self.act_fn = ACT2FN[config.hidden_act] def forward(self, hidden_states): gate_up_states = self.gate_up_proj(hidden_states) shape = gate_up_states.shape gate_up_states = gate_up_states.view(*shape[:-1], 2, shape[-1] // 2) return self.down_proj( self.act_fn(gate_up_states[:, :, 0]) * gate_up_states[:, :, 1] ) # this was adapted from LlamaAttention class IdeficsAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, config, prefix, weights, qk_layer_norms: bool = False, is_cross_attention: bool = False, ): super().__init__() self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.dropout = config.dropout if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.is_cross_attention = is_cross_attention # if not hasattr(nn.functional, "scaled_dot_product_attention"): # raise ValueError("this model requires pytorch 2.0 or higher") process_group = weights.process_group if self.num_heads % weights.process_group.size() != 0: raise ValueError( f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.num_heads //= weights.process_group.size() if self.is_cross_attention: # kv_input_dim = ( # self.hidden_size if not hasattr(config.vision_config, "embed_dim") else config.vision_config.embed_dim # ) self.q_proj = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.q_proj", weights=weights, bias=False ) self.k_proj = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.k_proj", weights=weights, bias=False ) self.v_proj = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.v_proj", weights=weights, bias=False ) else: self.qkv = TensorParallelColumnLinear.load_multi( config, prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"], dim=0, weights=weights, bias=False, ) self.o_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.o_proj", weights=weights, bias=False ) self.rotary_emb = PositionRotaryEmbedding.static( config=config, dim=self.head_dim, base=10000.0, device=weights.device ) self.qk_layer_norms = qk_layer_norms if self.qk_layer_norms: self.q_layer_norm = IdeficsRMSNorm( prefix=f"{prefix}.q_layer_norm", weights=weights, eps=config.rms_norm_eps, ) self.k_layer_norm = IdeficsRMSNorm( prefix=f"{prefix}.q_layer_norm", weights=weights, eps=config.rms_norm_eps, ) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return ( tensor.view(bsz, seq_len, self.num_heads, self.head_dim) .transpose(1, 2) .contiguous() ) def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # if key_value_states are provided this layer is used as a cross-attention layer is_cross_attention = self.is_cross_attention or key_value_states is not None bsz, q_len, _ = hidden_states.size() if is_cross_attention: query_states = self.q_proj(hidden_states).view( bsz, q_len, self.num_heads, self.head_dim ) # .transpose(1, 2) query_states = query_states.transpose(1, 2) ( _, kv_len, _, ) = ( key_value_states.size() ) # Note that, in this case, `kv_len` == `kv_seq_len` key_states = ( self.k_proj(key_value_states) .view(bsz, kv_len, self.num_heads, self.head_dim) .transpose(1, 2) ) value_states = ( self.v_proj(key_value_states) .view(bsz, kv_len, self.num_heads, self.head_dim) .transpose(1, 2) ) else: qkv = self.qkv(hidden_states) query_states, key_states, value_states = qkv.split( self.num_heads * self.head_dim, dim=2 ) query_states = query_states.view( bsz, q_len, self.num_heads, self.head_dim ) # .transpose(1, 2) key_states = key_states.view( bsz, q_len, self.num_heads, self.head_dim ) # . transpose(1, 2) value_states = value_states.view( bsz, q_len, self.num_heads, self.head_dim ) # .transpose(1, 2) kv_seq_len = q_len if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] max_s = max(kv_seq_len, q_len) cos, sin = self.rotary_emb.get_cos_sin( position_ids.view(-1), max_s, hidden_states.dtype ) query_shape = query_states.shape key_shape = key_states.shape self.rotary_emb( query_states.view(-1, *query_shape[2:]), key_states.reshape(-1, *key_shape[2:]), cos, sin, ) query_states = query_states.view(query_shape) key_states = key_states.view(key_shape) query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] # [bsz, nh, t, hd] if past_key_value is not None: # reuse k, v, self_attention key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) past_key_value = (key_states, value_states) if use_cache else None if self.qk_layer_norms: query_states = self.q_layer_norm(query_states) key_states = self.k_layer_norm(key_states) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) attn_output = nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=self.dropout, ) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, q_len, -1) attn_output = self.o_proj(attn_output) attn_weights = None if output_attentions: logger.warning_once( "attn_weights are not extracted in scaled_dot_product_attention. The model returns None instead" ) return attn_output, attn_weights, past_key_value # this was adapted from LlamaDecoderLayer class IdeficsDecoderLayer(nn.Module): def __init__(self, layer_id: int, config: IdeficsConfig, weights): super().__init__() self.process_group = weights.process_group self.hidden_size = config.hidden_size prefix = f"model.layers.{layer_id}" self.self_attn = IdeficsAttention( config=config, prefix=f"{prefix}.self_attn", weights=weights, qk_layer_norms=False, is_cross_attention=False, ) self.mlp = IdeficsMLP( config=config, prefix=f"{prefix}.mlp", weights=weights, ) self.input_layernorm = IdeficsRMSNorm( prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps ) self.post_attention_layernorm = IdeficsRMSNorm( prefix=f"{prefix}.post_attention_layernorm", weights=weights, eps=config.rms_norm_eps, ) self.dropout = config.dropout def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, ) -> Tuple[ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] ]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) # hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) # hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs class IdeficsGatedCrossAttentionLayer(nn.Module): def __init__(self, layer_id, config: IdeficsConfig, weights): super().__init__() self.process_group = weights.process_group self.hidden_size = config.hidden_size prefix = f"model.gated_cross_attn_layers.{layer_id}" self.cross_attn = IdeficsAttention( config=config, prefix=f"{prefix}.cross_attn", weights=weights, qk_layer_norms=True, is_cross_attention=True, ) self.mlp = IdeficsMLP( config=config, prefix=f"{prefix}.mlp", weights=weights, ) self.input_layernorm = IdeficsRMSNorm( prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps ) self.post_attention_layernorm = IdeficsRMSNorm( prefix=f"{prefix}.post_attention_layernorm", weights=weights, eps=config.rms_norm_eps, ) self.config = config.dropout self.act_cross_attn = nn.Tanh() self.act_dense = nn.Tanh() self.alpha_cross_attn = nn.Parameter( weights.get_tensor(f"{prefix}.alpha_cross_attn") ) self.alpha_dense = nn.Parameter(weights.get_tensor(f"{prefix}.alpha_dense")) if not (hasattr(self, "alpha_cross_attn") and hasattr(self, "alpha_dense")): raise ValueError("Alpha parameters not initialized correctly!") def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_hidden_states: Optional[torch.Tensor] = None, image_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, past_key_value: Optional[Tuple[torch.Tensor]] = None, no_images: Optional[bool] = False, ) -> Tuple[ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] ]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states no_images (`bool`, *optional*, defaults to `False`): If `True` the vision part is ignored """ if image_hidden_states is None: raise ValueError( "`image_hidden_states` is required for Idefics cross attention module which are visual features to be" " conditioned on." ) if past_key_value is not None: raise NotImplementedError( "Past key value states are not implemented for Idefics cross attention module." ) residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.cross_attn( hidden_states=hidden_states, key_value_states=image_hidden_states, attention_mask=image_attention_mask, output_attentions=output_attentions, ) # hidden_states = nn.functional.dropout(hidden_states, p=self.config, training=self.training) # when there are no images the model is used in pure language mode gate = 0 if no_images else 1 hidden_states = ( residual + gate * self.act_cross_attn(self.alpha_cross_attn) * hidden_states ) # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) # hidden_states = nn.functional.dropout(hidden_states, p=self.config, training=self.training) hidden_states = residual + self.act_dense(self.alpha_dense) * hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs LLAMA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`IdeficsConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ # @add_start_docstrings( # "The bare LLaMA Model outputting raw hidden-states without any specific head on top.", # LLAMA_START_DOCSTRING, # ) class IdeficsPreTrainedModel(PreTrainedModel): config_class = IdeficsConfig # base_model_prefix = "model" # supports_gradient_checkpointing = True # _no_split_modules = ["IdeficsDecoderLayer", "IdeficsGatedCrossAttentionLayer"] # def _init_weights(self, module): # # important: this ported version of Idefics isn't meant for training from scratch - only # # inference and fine-tuning - so the proper init weights code has been removed - the m4 code # # base should be used for training from scratch and it contains the correct code. # std = self.config.initializer_range # if isinstance(module, nn.Linear): # module.weight.data.normal_(mean=0.0, std=std) # if module.bias is not None: # module.bias.data.zero_() # elif isinstance(module, nn.Embedding): # module.weight.data.normal_(mean=0.0, std=std) # if module.padding_idx is not None: # module.weight.data[module.padding_idx].zero_() # def _set_gradient_checkpointing(self, module, value=False): # if isinstance(module, IdeficsModel): # module.gradient_checkpointing = value # LLAMA_INPUTS_DOCSTRING = r""" # Args: # input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): # Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide # it. # Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and # [`PreTrainedTokenizer.__call__`] for details. # [What are input IDs?](../glossary#input-ids) # attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): # Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: # - 1 for tokens that are **not masked**, # - 0 for tokens that are **masked**. # [What are attention masks?](../glossary#attention-mask) # Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and # [`PreTrainedTokenizer.__call__`] for details. # If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see # `past_key_values`). # If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] # and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more # information on the default strategy. # - 1 indicates the head is **not masked**, # - 0 indicates the head is **masked**. # position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): # Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, # config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) # past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): # Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape # `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape # `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. # Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention # blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. # If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that # don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all # `decoder_input_ids` of shape `(batch_size, sequence_length)`. # inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): # Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This # is useful if you want more control over how to convert `input_ids` indices into associated vectors than the # model's internal embedding lookup matrix. # use_cache (`bool`, *optional*): # If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see # `past_key_values`). # output_attentions (`bool`, *optional*): # Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned # tensors for more detail. # output_hidden_states (`bool`, *optional*): # Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for # more detail. # return_dict (`bool`, *optional*): # Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. # """ # @add_start_docstrings( # "The bare LLaMA Model outputting raw hidden-states without any specific head on top.", # LLAMA_START_DOCSTRING, # ) class IdeficsModel(IdeficsPreTrainedModel): # """ # Transformer decoder consisting of `config.num_hidden_layers` layers. Each layer is a [`IdeficsDecoderLayer`] # Args: # config: IdeficsConfig # """ def __init__(self, config: IdeficsConfig, weights): super().__init__(config) self.config = config self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = IdeficsDecoupledPartialTPEmbedding( config=config, weights=weights, ) self.image_size = config.vision_config.image_size self.vision_config = config.vision_config self.vision_model = IdeficsVisionTransformer( prefix="model.vision_model", config=config.vision_config, weights=weights, ) # Perceiver Resampler if config.use_resampler: perceiver_config = config.perceiver_config self.perceiver_resampler = IdeficsPerceiverResampler( prefix=f"model.perceiver_resampler", config=config, embed_dim=config.vision_config.embed_dim, depth=perceiver_config.resampler_depth, n_heads=perceiver_config.resampler_n_heads, head_dim=perceiver_config.resampler_head_dim, n_latents=perceiver_config.resampler_n_latents, weights=weights, ) self.layers = nn.ModuleList( [ IdeficsDecoderLayer(layer_id, config, weights) for layer_id in range(config.num_hidden_layers) ] ) self.cross_layer_interval = config.cross_layer_interval num_cross_layers = config.num_hidden_layers // self.cross_layer_interval self.gated_cross_attn_layers = nn.ModuleList( [ IdeficsGatedCrossAttentionLayer(layer_id, config, weights) for layer_id in range(num_cross_layers) ] ) # self.gradient_checkpointing = False self.norm = IdeficsRMSNorm( prefix=f"model.norm", weights=weights, eps=config.rms_norm_eps ) # self.gradient_checkpointing = False # Initialize weights and apply final processing # self.post_init() # self.freeze_relevant_params(config) # def freeze_relevant_params(self, config=None): # if config is None: # config = self.config # if config.freeze_text_layers: # self.freeze_text_layers(config.freeze_text_module_exceptions) # if config.freeze_vision_layers: # freeze_model(self.vision_model, module_exceptions=config.freeze_vision_module_exceptions) # def freeze_text_layers(self, module_exceptions=[]): # for module in [self.layers, self.norm]: # freeze_model(module, module_exceptions=module_exceptions) # def freeze_vision_layers(self, module_exceptions=[]): # freeze_model(self.vision_model, module_exceptions=module_exceptions) # def get_input_embeddings(self): # return self.embed_tokens # def set_input_embeddings(self, value): # self.embed_tokens = value # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask def _prepare_decoder_attention_mask( self, attention_mask, input_shape, inputs_embeds, past_key_values_length ): # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] combined_attention_mask = None if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask( input_shape, inputs_embeds.dtype, device=inputs_embeds.device, past_key_values_length=past_key_values_length, ) if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] expanded_attn_mask = _expand_mask( attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ).to(inputs_embeds.device) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask ) return combined_attention_mask # @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, image_hidden_states: Optional[torch.FloatTensor] = None, image_embeddings: Optional[torch.FloatTensor] = None, image_attention_mask: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastImage]: device = input_ids.device if input_ids is not None else inputs_embeds.device output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time" ) elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError( "You have to specify either decoder_input_ids or decoder_inputs_embeds" ) seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values is not None: past_key_values_length = past_key_values[0][0].shape[2] seq_length_with_past = seq_length_with_past + past_key_values_length if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) elif position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device, ) position_ids = position_ids.unsqueeze(0).view(-1, seq_length) else: position_ids = position_ids.view(-1, seq_length).long() no_images = False if image_hidden_states is None: if pixel_values is None and image_embeddings is None: raise ValueError( "Either pixel_values and image_embeddings have to be not-None." ) elif pixel_values is not None and image_embeddings is not None: raise ValueError( "You cannot specify both pixel_values and image_embeddings at the same time" ) elif pixel_values is not None: no_images = len(torch.nonzero(pixel_values)) == 0 pixel_values = pixel_values.to( dtype=self.dtype, device=device ) # fp16 compatibility batch_size, num_images = pixel_values.shape[:2] pixel_values = pixel_values.contiguous().view( batch_size * num_images, *pixel_values.shape[2:] ) # Get sequence from the vision encoder image_hidden_states = self.vision_model( pixel_values=pixel_values ).last_hidden_state elif image_embeddings is not None: ( batch_size, num_images, image_seq_len, image_hidden_size, ) = image_embeddings.size() image_hidden_states = image_embeddings.to( dtype=self.dtype, device=input_ids.device ) image_hidden_states = image_hidden_states.view( batch_size * num_images, image_seq_len, image_hidden_size ) if self.config.use_resampler: image_hidden_states = self.perceiver_resampler(image_hidden_states) image_seq_len, image_hidden_size = image_hidden_states.size( 1 ), image_hidden_states.size(2) image_hidden_states = image_hidden_states.view( batch_size, num_images * image_seq_len, image_hidden_size ) else: no_images = False num_images = pixel_values.shape[1] image_seq_len = image_hidden_states.shape[1] // num_images # # Hack to use the model in full language modeling mode # image_attention_mask = torch.zeros(batch_size, seq_length, 1, dtype=torch.long, device=image_hidden_states.device) # Make image_attention_mask compatible with hidden states text_seq_len = image_attention_mask.size(1) image_attention_mask = image_attention_mask.unsqueeze(-1) image_attention_mask = image_attention_mask.repeat(1, 1, 1, image_seq_len) image_attention_mask = image_attention_mask.view( batch_size, text_seq_len, num_images * image_seq_len ) image_batch_size, image_sequence_length, _ = image_hidden_states.size() image_hidden_shape = (image_batch_size, image_sequence_length) if image_attention_mask is None: image_attention_mask = torch.ones(image_hidden_shape, device=device) image_attention_mask = self.invert_attention_mask(image_attention_mask) # if list(image_attention_mask.shape) != [4, 1, 1024, 64]: # raise ValueError(f"Image hidden_states {image_hidden_states.shape} - mask {image_attention_mask.shape} {num_images} {image_seq_len} {text_seq_len}") # if image_hidden_states is not None: # else: # image_attention_mask = None if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) # embed positions if attention_mask is None: attention_mask = torch.ones( (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device, ) attention_mask = self._prepare_decoder_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, ) hidden_states = inputs_embeds # if self.gradient_checkpointing and self.training: # if use_cache: # logger.warning_once( # "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." # ) # use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = () if use_cache else None for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) past_key_value = ( past_key_values[idx] if past_key_values is not None else None ) def vblock( main_block, hidden_states, attention_mask, position_ids, past_key_value, image_hidden_states, image_attention_mask, output_attentions, use_cache, no_images, layer_idx, cross_layer_interval, gated_cross_attn_layers, ): # TODO(ls): Add cross attention values to respective lists if layer_idx % cross_layer_interval == 0: xblock = gated_cross_attn_layers[layer_idx // cross_layer_interval] outputs = xblock( hidden_states, attention_mask=attention_mask, image_hidden_states=image_hidden_states, image_attention_mask=image_attention_mask, output_attentions=output_attentions, use_cache=use_cache, past_key_value=None, # not implemented no_images=no_images, ) hidden_states = outputs[0] layer_outputs = main_block( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) return layer_outputs # if self.gradient_checkpointing and self.training: # past_key_value = None # if use_cache: # logger.warning_once( # "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." # ) # use_cache = False # layer_outputs = torch.utils.checkpoint.checkpoint( # vblock, # decoder_layer, # hidden_states, # attention_mask, # position_ids, # past_key_value, # image_hidden_states, # image_attention_mask, # output_attentions, # use_cache, # no_images, # idx, # self.cross_layer_interval, # self.gated_cross_attn_layers, # ) # else: layer_outputs = vblock( decoder_layer, hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, image_hidden_states=image_hidden_states, image_attention_mask=image_attention_mask, output_attentions=output_attentions, use_cache=use_cache, no_images=no_images, layer_idx=idx, cross_layer_interval=self.cross_layer_interval, gated_cross_attn_layers=self.gated_cross_attn_layers, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None ) return BaseModelOutputWithPastImage( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, image_hidden_states=image_hidden_states, ) class IdeficsForVisionText2Text(IdeficsPreTrainedModel): def __init__( self, config, weights, ): super().__init__(config) self.model = IdeficsModel( config=config, weights=weights, ) self.lm_head = IdeficsDecoupledTensorParallelLinear( config=config, weights=weights, ) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, image_embeddings: Optional[torch.FloatTensor] = None, image_hidden_states: Optional[torch.FloatTensor] = None, image_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPastImage]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, LlamaForCausalLM >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) >>> prompt = "Hey, are you consciours? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." ```""" output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, pixel_values=pixel_values, image_embeddings=image_embeddings, image_hidden_states=image_hidden_states, image_attention_mask=image_attention_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) loss = None return CausalLMOutputWithPastImage( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=outputs.image_hidden_states, ) def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): inputs = prepare_inputs_for_generation(input_ids, past=past, **kwargs) unwanted_kwargs = ["token_type_ids"] for kwarg in unwanted_kwargs: inputs.pop(kwarg, None) return inputs @staticmethod def _expand_inputs_for_generation( *args, **model_kwargs, ): return expand_inputs_for_generation(*args, **model_kwargs) @staticmethod def _update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=False ): return update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=is_encoder_decoder ) @staticmethod def _reorder_cache(past, beam_idx): reordered_past = () for layer_past in past: reordered_past += ( tuple( past_state.index_select(0, beam_idx) for past_state in layer_past ), ) return reordered_past
0
hf_public_repos/text-generation-inference/server/text_generation_server/models
hf_public_repos/text-generation-inference/server/text_generation_server/models/custom_modeling/idefics_processing.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for IDEFICS. """ from typing import Callable, List, Optional, Union from urllib.parse import urlparse from transformers.feature_extraction_utils import BatchFeature from transformers.processing_utils import ProcessorMixin from transformers.tokenization_utils_base import ( BatchEncoding, PaddingStrategy, TextInput, TruncationStrategy, ) from transformers.utils import TensorType, is_torch_available from text_generation_server.models.custom_modeling.idefics_image_processing import ( IdeficsImageProcessor, ) if is_torch_available(): import torch IMAGE_TOKEN = "<image>" # copied from m4.training.packing def incremental_to_binary_attention_mask(incremental_mask, num_classes=-1): # This function converts: [-1, 0, 1] => [[0, 0], [1, 0], [0, 1]] # If any of images index are more than num_classes, set them to -1. # Words after the max number of images allowed have been seen don't attend on anything if num_classes != -1: incremental_mask[incremental_mask >= num_classes] = -1 negatives = incremental_mask == -1 incremental_mask[negatives] = 0 attn_mask = torch.nn.functional.one_hot(incremental_mask, num_classes=num_classes) attn_mask[negatives, :] = 0 return attn_mask # copied from m4.training.packing def image_attention_mask_for_packed_input_ids(input_ids, tokenizer): image_attention_mask = torch.full_like(input_ids, fill_value=-1) next_image_attention_mask = torch.full_like(input_ids, fill_value=-1) image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN) eod_token_id = tokenizer.eos_token_id for batch_idx in range(input_ids.size(0)): count = -1 seen_eod = False for idx, token_id in enumerate(input_ids[batch_idx]): if token_id == image_token_id: count += 1 image_attention_mask[batch_idx][idx] = count seen_eod = False else: image_attention_mask[batch_idx][idx] = count if seen_eod: image_attention_mask[batch_idx][idx] = -1 if token_id == eod_token_id: seen_eod = True for batch_idx in range(input_ids.size(0)): count = -1 seen_eod = False for idx in range(input_ids[batch_idx].size(0) - 1, -1, -1): token_id = input_ids[batch_idx][idx] if token_id == image_token_id: count += 1 next_image_attention_mask[batch_idx][idx] = count seen_eod = False else: next_image_attention_mask[batch_idx][idx] = count if token_id == eod_token_id: seen_eod = True if seen_eod: next_image_attention_mask[batch_idx][idx] = -1 non_negative_indices = next_image_attention_mask[batch_idx] != -1 next_image_attention_mask[batch_idx][non_negative_indices] -= count next_image_attention_mask[batch_idx][non_negative_indices] *= -1 return image_attention_mask, next_image_attention_mask def is_url(string): """Checks if the passed string contains a valid url and nothing else. e.g. if space is included it's immediately invalidated the url""" if " " in string: return False result = urlparse(string) return all([result.scheme, result.netloc]) def is_image(string): """Checks if the passed string contains a valid url and nothing else. e.g. if space is included it's immediately invalidated the url""" return is_url(string) or string.startswith("data:") class IdeficsProcessor(ProcessorMixin): r""" Constructs a IDEFICS processor which wraps a LLama tokenizer and IDEFICS image processor into a single processor. [`IdeficsProcessor`] offers all the functionalities of [`IdeficsImageProcessor`] and [`LlamaTokenizerFast`]. See the docstring of [`~IdeficsProcessor.__call__`] and [`~IdeficsProcessor.decode`] for more information. Args: image_processor (`IdeficsImageProcessor`): An instance of [`IdeficsImageProcessor`]. The image processor is a required input. tokenizer (`LlamaTokenizerFast`): An instance of [`LlamaTokenizerFast`]. The tokenizer is a required input. image_size (`int`, *optional*, defaults to 224): Image size (assuming a square image) """ attributes = ["image_processor", "tokenizer"] image_processor_class = "IdeficsImageProcessor" tokenizer_class = "LlamaTokenizerFast" def __init__( self, image_processor, tokenizer=None, image_size=224, add_end_of_utterance_token=None, **kwargs, ): if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(image_processor, tokenizer) self.current_processor = self.image_processor self.image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN) self.default_image_dims = ( self.image_processor.image_num_channels, self.image_processor.image_size, self.image_processor.image_size, ) self.tokenizer_was_trained_with_end_of_utterance_token = ( True if "<end_of_utterance>" in self.tokenizer.special_tokens_map.get("additional_special_tokens", []) else False ) def __call__( self, prompts: Union[List[TextInput], List[List[TextInput]]], padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, transform: Callable = None, add_eos_token=False, add_end_of_utterance_token=None, debug=False, return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, ) -> BatchEncoding: """This method takes batched or non-batched prompts made of text and images and converts them into prompts that the model was trained on and prepares the image pixel values for the model to process. Args: prompts (`Union[List[TextInput], [List[List[TextInput]]]]`): either a single prompt or a batched list of prompts - see the detailed description immediately after the end of the arguments doc section. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`, *optional*): Activates truncation to cut input sequences longer than `max_length` to `max_length`. transform (`Callable`, *optional*): A custom transform function that accepts a single image can be passed for training. For example, `torchvision.Compose` can be used to compose multiple functions. If `None` a preset inference-specific set of transforms will be applied to the images add_eos_token (`bool`, *optional*, defaults to `False`): Adds `eos_token` at the end of the final prompt if True` add_end_of_utterance_token (`bool`, *optional*) Whether to automatically add `<end_of_utterance>` after each prompt's text input (unless followed by an image). If `None` the tokenizer will be checked instead and if this token is found in `additional_special_tokens` then the value will be `True`. debug (`bool`, *optional*, defaults to `False`): `True` value will help debug prompt generation by dumping useful information return_tensors (`str` or `TensorType`, *optional*, defaults to `TensorType.PYTORCH`): The type of tensors to return. Can be one of: - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. Returns: a dict with entries: `input_ids`, `attention_mask`, `pixel_values`, `image_attention_mask` which can be directly passed to `model.generate` Detailed explanation: Each entry in `prompts` is either a text to be passed as is or an image that will be processed. An image can be either an image object (`PIL.Image`) or a url from which the image can be retrieved. When the processor encounters an image it'll inject `<fake_token_around_image><image><fake_token_around_image>` entry into the prompt. Example: ```python checkpoint = "HuggingFaceM4/idefics-9b" processor = AutoProcessor.from_pretrained(checkpoint) url = "https://hips.hearstapps.com/hmg-prod/images/cute-photos-of-cats-in-grass-1593184777.jpg" img = processor.image_processor.fetch_images([url])[0] prompts = [ "User:", img, "Describe this image.\nAssistant: An image of two kittens in grass.\n", "User:", "https://hips.hearstapps.com/hmg-prod/images/dog-puns-1581708208.jpg", "Describe this image.\nAssistant:", ] inputs = processor(prompts, return_tensors="pt") generated_ids = model.generate(**inputs, max_length=100) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` In this example the `prompts` will be converted into: ``` <s>User:<fake_token_around_image><image><fake_token_around_image>Describe this image. Assistant: An image of two kittens in grass. User:<fake_token_around_image><image><fake_token_around_image>Describe this image. Assistant:' ``` and the two images will be massaged using [`IdeficsImageProcessor.__call__`] method and placed inside the `pixel_values` dict entry of the return value. This example also examplifies that images can be passed as objects or as text urls. It can be seen that the first image is passed as object and the second one as a url. To do training do: ```python image_transform = transforms.Compose( [ transforms.RandomResizedCrop( (w, h), scale=(0.9, 1.0), interpolation=transforms.InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize(mean=self.image_mean, std=self.image_std), ] ) inputs = processor(prompts, transform=image_transform, return_tensors="pt") ``` In order to help debug prompt generation enable `debug=True` which will show you what's happening. """ # if the value isn't overriden by the user, check if the tokenizer was trained with this token and then use it if add_end_of_utterance_token is None: add_end_of_utterance_token = ( self.tokenizer_was_trained_with_end_of_utterance_token ) # turn non-batched prompts into batched if not any(isinstance(i, list) for i in prompts): prompts = [prompts] fake_token = "<fake_token_around_image>" image_token = "<image>" end_of_utterance_token = "<end_of_utterance>" def image_tokens(last_was_image): if last_was_image: return image_token + fake_token else: return fake_token + image_token + fake_token all_texts = [] all_images = [] for sample in prompts: # the model was trained on samples starting with <s> full_text = f"{self.tokenizer.bos_token}" # an image can either be an image object in the item or the url, everything else is a verbatim prompt text image_objects = [] last_was_image = False last_was_text = False for i, item in enumerate(sample): if i > 0: last_was_text = True if not last_was_image else False if isinstance(item, str): item = item.strip(" ") if is_image(item): image = self.image_processor.fetch_images(item) full_text += image_tokens(last_was_image) image_objects.append(image) last_was_image = True else: # we add end_of_utterance_token between each subsequent text prompts (but not at the last one!) if add_end_of_utterance_token and last_was_text: full_text += end_of_utterance_token full_text += item last_was_image = False else: # must be an image obj full_text += image_tokens(last_was_image) image_objects.append(item) last_was_image = True if add_eos_token: full_text += self.tokenizer.eos_token if debug is True: print(f"{full_text=}") image_objects = self.image_processor(image_objects, transform=transform) text_encoding = self.tokenizer( text=full_text, add_special_tokens=False, padding=padding, truncation=truncation, max_length=max_length, ) all_texts.append(text_encoding["input_ids"]) all_images.append(image_objects) max_seq_len = max(len(x) for x in all_texts) # max_num_images has to be at least 1 even when there are no images max_num_images = max(len(x) for x in all_images) max_num_images = max(1, max_num_images) at_least_one_image = sum(len(x) for x in all_images) > 0 output_input_ids = [] output_images = [] output_attention_masks = [] for text, images in zip(all_texts, all_images): padded_input_ids = [self.tokenizer.pad_token_id] * max_seq_len unpadded_seq_len = len(text) start = max_seq_len - unpadded_seq_len padded_input_ids[start:] = text[:max_seq_len] attention_mask = torch.zeros((max_seq_len,), dtype=torch.long) attention_mask[start:] = 1 image_count = padded_input_ids.count(self.image_token_id) local_max_num_images = min(image_count, max_num_images) current_images = images[:local_max_num_images] if len(current_images) > 0: padded_image_tensor = torch.zeros( max_num_images, *current_images.size()[1:] ) padded_image_tensor[: current_images.size(0)] = current_images else: padded_image_tensor = torch.zeros( max_num_images, *self.default_image_dims ) output_images.append(padded_image_tensor) output_input_ids.append(torch.tensor(padded_input_ids)) output_attention_masks.append(attention_mask) output_input_ids = torch.stack(output_input_ids) output_images = torch.stack(output_images) output_attention_masks = torch.stack(output_attention_masks) if at_least_one_image: image_attention_mask, _ = image_attention_mask_for_packed_input_ids( output_input_ids, self.tokenizer ) image_attention_mask = incremental_to_binary_attention_mask( image_attention_mask, num_classes=max_num_images ) else: # in full language mode we set the image mask to all-0s image_attention_mask = torch.zeros( output_input_ids.shape[0], output_input_ids.shape[1], 1, dtype=torch.bool, ) return BatchFeature( data={ "input_ids": output_input_ids, "attention_mask": output_attention_masks, "pixel_values": output_images, "image_attention_mask": image_attention_mask, } ) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
0
hf_public_repos/text-generation-inference/server/text_generation_server/models
hf_public_repos/text-generation-inference/server/text_generation_server/models/custom_modeling/bloom_modeling.py
# coding=utf-8 # Copyright 2022 HuggingFace Inc. team and BigScience workshop. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BLOOM model.""" import math import os import warnings from typing import Optional, Tuple, Union import torch import torch.distributed import torch.utils.checkpoint from torch import nn from torch.nn import LayerNorm from torch.nn import functional as F from transformers.modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, ) from transformers import BloomConfig, PreTrainedModel from text_generation_server.utils.layers import ( TensorParallelColumnLinear, TensorParallelEmbedding, TensorParallelRowLinear, TensorParallelHead, ) CUSTOM_KERNELS_ENABLED = False if ( torch.cuda.is_available() and not os.environ.get("DISABLE_CUSTOM_KERNELS", "False") == "True" ): try: from custom_kernels import fused_bloom_attention_cuda CUSTOM_KERNELS_ENABLED = True except ImportError: pass _CHECKPOINT_FOR_DOC = "bigscience/bloom-560m" _CONFIG_FOR_DOC = "BloomConfig" BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST = [ "bigscience/bigscience-small-testing", "bigscience/bloom-560m", "bigscience/bloom-1b1", "bigscience/bloom-1b7", "bigscience/bloom-3b", "bigscience/bloom-7b1", "bigscience/bloom", ] def _make_causal_mask( input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int ) -> torch.BoolTensor: """ Make causal mask used for self-attention. """ batch_size, target_length = input_ids_shape mask = torch.ones( (target_length, target_length + past_key_values_length), dtype=torch.bool, device=device, ) mask = mask.triu(1 + past_key_values_length) expanded_mask = mask.unsqueeze(0).expand( batch_size, target_length, target_length + past_key_values_length ) return expanded_mask def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor: """ Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`. """ batch_size, src_length = mask.shape tgt_length = tgt_length if tgt_length is not None else src_length expanded_mask = ~(mask[:, None, :].to(torch.bool)) return expanded_mask.expand(batch_size, tgt_length, src_length) def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int) -> torch.Tensor: """ Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value `softmax(l+a) = softmax(l)`. Based on https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742 TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly. Args: Returns tensor shaped (batch_size * num_heads, 1, max_seq_len) attention_mask (`torch.Tensor`): Token-wise attention mask, this should be of shape (batch_size, max_seq_len). num_heads (`int`, *required*): number of heads dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`): dtype of the output tensor """ batch_size, seq_length = attention_mask.shape closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) base = torch.tensor( 2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32, ) powers = torch.arange( 1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32 ) slopes = torch.pow(base, powers) if closest_power_of_2 != num_heads: extra_base = torch.tensor( 2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32, ) num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) extra_powers = torch.arange( 1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32, ) slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) # Note: alibi will added to the attention bias that will be applied to the query, key product of attention # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length) # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length) # => the query_length dimension will then be broadcasted correctly # This is more or less identical to T5's relative position bias: # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527 arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :] alibi = slopes[..., None] * arange_tensor return alibi # @torch.jit.script def dropout_add( x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool ) -> torch.Tensor: """ Dropout add function Args: x (`torch.tensor`, *required*): input tensor residual (`torch.tensor`, *required*): esidual tensor prob (`float`, *required*): dropout probability training (`bool`, *required*): training mode """ out = F.dropout(x, p=prob, training=training) out = residual + out return out # @torch.jit.script # this is shit for unknow reasons. def _split_heads( fused_qkv: torch.Tensor, num_heads: int, head_dim: int ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Split the last dimension into (num_heads, head_dim) without making any copies, results share same memory storage as `fused_qkv` Args: fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim] Returns: query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim] value: [batch_size, seq_length, num_heads, head_dim] """ batch_size, seq_length, three_times_hidden_size = fused_qkv.shape fused_qkv = fused_qkv.view(batch_size, seq_length, num_heads, 3 * head_dim) query_layer, key_layer, value_layer = fused_qkv.split(head_dim, dim=-1) query_layer = query_layer.transpose(1, 2).reshape( batch_size * num_heads, seq_length, head_dim ) key_layer = key_layer.permute(0, 2, 3, 1).reshape( batch_size * num_heads, head_dim, seq_length ) value_layer = value_layer.transpose(1, 2).reshape( batch_size * num_heads, seq_length, head_dim ) return query_layer, key_layer, value_layer # @torch.jit.script def _merge_heads(x: torch.Tensor, num_heads: int, head_dim: int) -> torch.Tensor: """ Merge heads together over the last dimenstion Args: x: (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim] Returns: torch.tensor: [batch_size, seq_length, num_heads * head_dim] """ # What we want to achieve is: # batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim batch_size_and_num_heads, seq_length, _ = x.shape batch_size = batch_size_and_num_heads // num_heads # First view to decompose the batch size # batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim x = x.view(batch_size, num_heads, seq_length, head_dim) # batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim x = x.permute(0, 2, 1, 3) # batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim return x.reshape(batch_size, seq_length, num_heads * head_dim) class BloomAttention(nn.Module): def __init__(self, prefix, config: BloomConfig, weights): super().__init__() self.pretraining_tp = config.pretraining_tp self.slow_but_exact = config.slow_but_exact self.process_group = weights.process_group self.hidden_size = config.hidden_size self.num_heads = config.n_head self.head_dim = self.hidden_size // self.num_heads self.split_size = self.hidden_size self.hidden_dropout = config.hidden_dropout if self.head_dim * self.num_heads != self.hidden_size: raise ValueError( f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" f" {self.num_heads})." ) # Layer-wise attention scaling self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim) self.beta = 1.0 process_group = weights.process_group if self.num_heads % process_group.size() != 0: raise ValueError( f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} " f"and `num_shards`: {process_group.size()}" ) self.num_heads = self.num_heads // process_group.size() self.query_key_value = TensorParallelColumnLinear.load( config=config, prefix=f"{prefix}.query_key_value", weights=weights, bias=True, ) self.dense = TensorParallelRowLinear.load( config=config, prefix=f"{prefix}.dense", weights=weights, bias=True ) self.attention_dropout = nn.Dropout(config.attention_dropout) @staticmethod def compute_attention( fused_qkv: torch.Tensor, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]], alibi: torch.Tensor, attention_mask: torch.Tensor, head_mask: Optional[torch.Tensor], beta: float, inv_norm_factor: float, num_heads: int, use_cache: bool, ): batch_size, q_length, three_times_hidden_size = fused_qkv.shape head_dim = three_times_hidden_size // (3 * num_heads) batch_size * num_heads ### TODO @thomasw21: this takes quite a bit of time, how do I accelerate that? # 3 x [batch_size, seq_length, num_heads, head_dim] (query_layer, key_layer, value_layer) = _split_heads( fused_qkv, num_heads=num_heads, head_dim=head_dim ) if layer_past is not None: past_key, past_value = layer_past # concatenate along seq_length dimension: # - key: [batch_size * self.num_heads, head_dim, kv_length] # - value: [batch_size * self.num_heads, kv_length, head_dim] past_key = past_key.view(-1, *past_key.shape[-2:]) key_layer = torch.cat((past_key, key_layer), dim=2) past_value = past_value.view(-1, *past_value.shape[-2:]) value_layer = torch.cat((past_value, value_layer), dim=1) _, _, kv_length = key_layer.shape if use_cache is True: present = (key_layer, value_layer) else: present = None ### # [batch_size * num_heads, q_length, kv_length] # we use `torch.Tensor.baddbmm` instead of `torch.baddbmm` as the latter isn't supported by TorchScript v1.11 attention_scores = alibi.baddbmm( batch1=query_layer, batch2=key_layer, beta=beta, alpha=inv_norm_factor, ) # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length] input_dtype = attention_scores.dtype # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38` if input_dtype == torch.float16: attention_scores = attention_scores.to(torch.float) # torch.finfo not supported by torch.jit, we temporarily remplace with `-1e34` attn_weights = attention_scores.masked_fill_( attention_mask, torch.finfo(attention_scores.dtype).min ) attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to( input_dtype ) # # [batch_size, num_heads, q_length, kv_length] # attention_probs = self.attention_dropout(attention_probs) if head_mask is not None: attention_probs = attention_probs * head_mask # matmul: [batch_size * num_heads, q_length, head_dim] context_layer = torch.bmm(attention_probs, value_layer, out=query_layer) # change view [batch_size, num_heads, q_length, head_dim] context_layer = _merge_heads( context_layer, num_heads=num_heads, head_dim=head_dim ) return context_layer, present, attention_probs def forward( self, hidden_states: torch.Tensor, residual: torch.Tensor, alibi: torch.Tensor, attention_mask: torch.Tensor, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, use_cache: bool = False, output_attentions: bool = False, ): fused_qkv = self.query_key_value( hidden_states ) # [batch_size, seq_length, 3 x hidden_size] batch_size, q_length, _ = fused_qkv.shape if layer_past is not None: past_key, past_value = layer_past layer_past = ( past_key.view(-1, *past_key.shape[-2:]), past_value.view(-1, *past_value.shape[-2:]), ) if CUSTOM_KERNELS_ENABLED: assert self.training is False, "Only foward pass was implemented" assert ( attention_mask.shape[-1] < 4096 ), "Custom kernel support only up to 4096 tokens" ( context_layer, present, attention_probs, ) = fused_bloom_attention_cuda.forward( fused_qkv, layer_past, alibi, attention_mask, head_mask, self.beta, self.inv_norm_factor, self.num_heads, use_cache, ) else: context_layer, present, attention_probs = self.compute_attention( fused_qkv=fused_qkv, layer_past=layer_past, alibi=alibi, attention_mask=attention_mask, head_mask=head_mask, beta=self.beta, inv_norm_factor=self.inv_norm_factor, num_heads=self.num_heads, use_cache=use_cache, ) # aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232 if self.pretraining_tp > 1 and self.slow_but_exact: slices = self.hidden_size / self.pretraining_tp output_tensor = torch.zeros_like(context_layer) for i in range(self.pretraining_tp): output_tensor = output_tensor + F.linear( context_layer[:, :, int(i * slices) : int((i + 1) * slices)], self.dense.weight[:, int(i * slices) : int((i + 1) * slices)], ) else: output_tensor = self.dense(context_layer) # output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training) output_tensor += residual outputs = (output_tensor, present) if output_attentions: outputs += (attention_probs,) return outputs class BloomMLP(nn.Module): def __init__(self, prefix, config: BloomConfig, weights): super().__init__() self.pretraining_tp = config.pretraining_tp self.slow_but_exact = config.slow_but_exact self.dense_h_to_4h = TensorParallelColumnLinear.load( config=config, prefix=f"{prefix}.dense_h_to_4h", weights=weights, bias=True ) self.dense_4h_to_h = TensorParallelRowLinear.load( config=config, prefix=f"{prefix}.dense_4h_to_h", weights=weights, bias=True ) self.gelu_impl = torch.nn.GELU(approximate="tanh") self.hidden_dropout = config.hidden_dropout def forward( self, hidden_states: torch.Tensor, residual: torch.Tensor ) -> torch.Tensor: hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states)) if self.pretraining_tp > 1 and self.slow_but_exact: intermediate_output = torch.zeros_like(residual) slices = self.dense_4h_to_h.weight.shape[-1] / self.pretraining_tp for i in range(self.pretraining_tp): intermediate_output = intermediate_output + F.linear( hidden_states[:, :, int(i * slices) : int((i + 1) * slices)], self.dense_4h_to_h.weight[ :, int(i * slices) : int((i + 1) * slices) ], ) else: intermediate_output = self.dense_4h_to_h(hidden_states) # output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training) intermediate_output += residual return intermediate_output class BloomBlock(nn.Module): def __init__(self, layer_id: int, config: BloomConfig, weights): super().__init__() prefix = f"h.{layer_id}" self.input_layernorm = LayerNorm.load( prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.layer_norm_epsilon, ) self.num_heads = config.n_head self.self_attention = BloomAttention( prefix=f"{prefix}.self_attention", config=config, weights=weights ) self.post_attention_layernorm = LayerNorm.load( prefix=f"{prefix}.post_attention_layernorm", weights=weights, eps=config.layer_norm_epsilon, ) self.mlp = BloomMLP(prefix=f"{prefix}.mlp", config=config, weights=weights) self.apply_residual_connection_post_layernorm = ( config.apply_residual_connection_post_layernorm ) self.hidden_dropout = config.hidden_dropout def forward( self, hidden_states: torch.Tensor, alibi: torch.Tensor, attention_mask: torch.Tensor, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, use_cache: bool = False, output_attentions: bool = False, ): # hidden_states: [batch_size, seq_length, hidden_size] # Layer norm at the beginning of the transformer layer. layernorm_output = self.input_layernorm(hidden_states) # Layer norm post the self attention. if self.apply_residual_connection_post_layernorm: residual = layernorm_output else: residual = hidden_states # Self attention. attn_outputs = self.self_attention( layernorm_output, residual, layer_past=layer_past, attention_mask=attention_mask, alibi=alibi, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attention_output = attn_outputs[0] outputs = attn_outputs[1:] layernorm_output = self.post_attention_layernorm(attention_output) # Get residual if self.apply_residual_connection_post_layernorm: residual = layernorm_output else: residual = attention_output # MLP. output = self.mlp(layernorm_output, residual) if use_cache: outputs = (output,) + outputs else: outputs = (output,) + outputs[1:] return outputs # hidden_states, present, attentions class BloomPreTrainedModel(PreTrainedModel): config_class = BloomConfig base_model_prefix = "transformer" _no_split_modules = ["BloomBlock"] @staticmethod def _convert_to_standard_cache( past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: """ Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size, num_heads, ...])) """ batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape num_heads = batch_size_times_num_heads // batch_size # key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length] # value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim] return tuple( ( layer_past[0].view(batch_size, num_heads, head_dim, seq_length), layer_past[1].view(batch_size, num_heads, seq_length, head_dim), ) for layer_past in past_key_value ) @staticmethod def _convert_to_bloom_cache( past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]] ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: """ Converts the cache to the format expected by Bloom, i.e. to tuple(tuple([batch_size * num_heads, ...])) """ batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape batch_size_times_num_heads = batch_size * num_heads # key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length] # value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim] return tuple( ( layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length), layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim), ) for layer_past in past_key_value ) class BloomModel(BloomPreTrainedModel): def __init__(self, config: BloomConfig, weights): super().__init__(config) self.embed_dim = config.hidden_size self.num_heads = config.n_head process_group = weights.process_group self.tp_rank = process_group.rank() self.tp_world_size = process_group.size() self.word_embeddings = TensorParallelEmbedding( prefix="word_embeddings", weights=weights ) self.word_embeddings_layernorm = LayerNorm.load( prefix="word_embeddings_layernorm", weights=weights, eps=config.layer_norm_epsilon, ) # Transformer blocks self.h = nn.ModuleList( [ BloomBlock(layer_id=layer_id, config=config, weights=weights) for layer_id in range(config.num_hidden_layers) ] ) # Final Layer Norm self.ln_f = LayerNorm.load( prefix="ln_f", weights=weights, eps=config.layer_norm_epsilon ) def _prepare_attn_mask( self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int, ) -> torch.BoolTensor: # create causal mask # [batch_size, seq_length] -> [batch_size, tgt_length, src_length] combined_attention_mask = None device = attention_mask.device _, src_length = input_shape if src_length > 1: combined_attention_mask = _make_causal_mask( input_shape, device=device, past_key_values_length=past_key_values_length, ) # [batch_size, seq_length] -> [batch_size, tgt_length, src_length] expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask ) return combined_attention_mask def set_input_embeddings(self, new_embeddings: torch.Tensor): self.word_embeddings = new_embeddings def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **deprecated_arguments, ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: if deprecated_arguments.pop("position_ids", False) is not False: # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` warnings.warn( "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" " passing `position_ids`.", FutureWarning, ) if len(deprecated_arguments) > 0: raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) if input_ids is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either input_ids or inputs_embeds") if past_key_values is None: past_key_values = tuple([None] * len(self.h)) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape batch_size x num_heads x N x N # head_mask has shape n_layer x batch x num_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.n_layer) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) hidden_states = self.word_embeddings_layernorm(inputs_embeds) presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None # Compute alibi tensor: check build_alibi_tensor documentation seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values[0] is not None: past_key_values_length = past_key_values[0][0].shape[-1] seq_length_with_past = seq_length_with_past + past_key_values_length if attention_mask is None: attention_mask = torch.ones( (batch_size, seq_length_with_past), device=hidden_states.device ) else: attention_mask = attention_mask.to(hidden_states.device) alibi = build_alibi_tensor(attention_mask, self.num_heads) causal_mask = self._prepare_attn_mask( attention_mask, input_shape=(batch_size, seq_length), past_key_values_length=past_key_values_length, ) if hasattr(self, "tp_rank"): assert self.num_heads % self.tp_world_size == 0 block_size = self.num_heads // self.tp_world_size alibi = alibi[ :, self.tp_rank * block_size : (self.tp_rank + 1) * block_size ] alibi = alibi.reshape(batch_size * block_size, 1, seq_length_with_past) causal_mask = torch.repeat_interleave(causal_mask, block_size, dim=0) else: alibi = alibi.reshape(batch_size * self.num_heads, 1, seq_length_with_past) causal_mask = torch.repeat_interleave(causal_mask, self.num_heads, dim=0) alibi = alibi.to(hidden_states.dtype) for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = block( hidden_states, layer_past=layer_past, attention_mask=causal_mask, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, alibi=alibi, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + ( outputs[2 if use_cache else 1], ) # Add last hidden state hidden_states = self.ln_f(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, presents, all_hidden_states, all_self_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class BloomForCausalLM(BloomPreTrainedModel): def __init__(self, config, weights): super().__init__(config) self.transformer = BloomModel(config, weights) self.lm_head = TensorParallelHead.load( config, prefix="word_embeddings", weights=weights, ) def prepare_inputs_for_generation( self, input_ids: torch.LongTensor, past_key_values: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, **kwargs, ) -> dict: # only last token for input_ids if past is not None if past_key_values: input_ids = input_ids[:, -1].unsqueeze(-1) # the cache may be in the stardard format (e.g. in contrastive search), convert to bloom's format if needed if past_key_values[0][0].shape[0] == input_ids.shape[0]: past_key_values = self._convert_to_bloom_cache(past_key_values) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **deprecated_arguments, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ if deprecated_arguments.pop("position_ids", False) is not False: # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` warnings.warn( "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" " passing `position_ids`.", FutureWarning, ) if len(deprecated_arguments) > 0: raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) loss = None if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
0
hf_public_repos/text-generation-inference/server/text_generation_server/models
hf_public_repos/text-generation-inference/server/text_generation_server/models/custom_modeling/flash_mistral_modeling.py
# coding=utf-8 # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.distributed from torch import nn from transformers.activations import ACT2FN from transformers.configuration_utils import PretrainedConfig from typing import Optional, List, Tuple from text_generation_server.utils import paged_attention, flash_attn from text_generation_server.utils.layers import ( TensorParallelRowLinear, TensorParallelColumnLinear, TensorParallelEmbedding, PositionRotaryEmbedding, TensorParallelHead, get_linear, FastRMSNorm, ) class MistralConfig(PretrainedConfig): model_type = "mistral" def __init__( self, vocab_size=32000, hidden_size=4096, intermediate_size=14336, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=8, hidden_act="silu", max_position_embeddings=4096 * 32, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, pretraining_tp=1, tie_word_embeddings=False, rope_theta=10000.0, sliding_window=None, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.sliding_window = sliding_window # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.pretraining_tp = pretraining_tp self.use_cache = use_cache self.rope_theta = rope_theta super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) def load_attention(config, prefix, weights): if config.num_attention_heads != config.num_key_value_heads: return _load_gqa(config, prefix, weights) else: return TensorParallelColumnLinear.load_multi( config, prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"], dim=0, weights=weights, bias=False, ) def _load_gqa(config, prefix: str, weights): assert config.hidden_size % config.num_attention_heads == 0 assert config.num_attention_heads % weights.process_group.size() == 0 weight = weights.get_multi_weights_col( prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"], quantize=config.quantize, dim=0, ) if config.quantize not in ["gptq", "awq"]: weight = weight.to(dtype=weights.dtype).to(device=weights.device) head_size = config.hidden_size // config.num_attention_heads num_heads = config.num_attention_heads // weights.process_group.size() num_key_value_heads = config.num_key_value_heads // weights.process_group.size() assert list(weight.shape) == [ (num_heads + 2 * num_key_value_heads) * head_size, config.hidden_size, ], f"{list(weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}" return TensorParallelColumnLinear( get_linear(weight, bias=None, quantize=config.quantize) ) class MistralAttention(torch.nn.Module): def __init__( self, prefix: str, config, weights, ): super().__init__() self.max_past = ( config.sliding_window if config.sliding_window is not None else -1 ) self.num_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.head_size = self.hidden_size // self.num_heads self.rotary_emb = PositionRotaryEmbedding.static( config=config, dim=self.head_size, base=config.rope_theta, device=weights.device, ) self.softmax_scale = self.head_size**-0.5 if self.num_heads % weights.process_group.size() != 0: raise ValueError( f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.num_heads = self.num_heads // weights.process_group.size() self.num_key_value_heads = ( config.num_key_value_heads // weights.process_group.size() ) self.query_key_value = load_attention(config, prefix, weights) self.o_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.o_proj", weights=weights, bias=False, ) self.num_groups = self.num_heads // self.num_key_value_heads self.kv_head_mapping = torch.arange( 0, self.num_key_value_heads, dtype=torch.int32, device=weights.device ).repeat_interleave(self.num_groups) def forward( self, hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, prefill_cache_indices, ): qkv = self.query_key_value(hidden_states) query, kv = qkv.split( [ self.head_size * self.num_heads, 2 * self.head_size * self.num_key_value_heads, ], dim=1, ) query = query.view(-1, self.num_heads, self.head_size) kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size) self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin) if prefill_cache_indices is not None: kv_to_cache = kv[prefill_cache_indices] else: kv_to_cache = kv paged_attention.reshape_and_cache( kv_to_cache[:, 0], kv_to_cache[:, 1], kv_cache[0], kv_cache[1], slots ) # output tensor attn_output = torch.empty_like(query) # Prefill if cu_seqlen_prefill is not None: # flash attention flash_attn.attention( query, torch.select(kv, dim=1, index=0), torch.select(kv, dim=1, index=1), attn_output, cu_seqlen_prefill, max_s, self.softmax_scale, window_size_left=self.max_past, ) # Decode else: paged_attention.attention( attn_output, query, kv_cache[0], kv_cache[1], self.kv_head_mapping, self.softmax_scale, block_tables, input_lengths, max_s, ) return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size)) class MistralMLP(nn.Module): def __init__(self, prefix, config, weights): super().__init__() act = config.hidden_act self.act = ( ACT2FN[act] if "gelu" not in act else lambda x: torch.nn.functional.gelu( x, approximate="tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none", ) ) # Fuse gate and up proj self.gate_up_proj = TensorParallelColumnLinear.load_multi( config, prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"], weights=weights, dim=0, bias=False, ) self.down_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.down_proj", weights=weights, bias=False, ) self.intermediate_size = ( config.intermediate_size // weights.process_group.size() ) def forward(self, hidden_states): gate_up_states = self.gate_up_proj(hidden_states) gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size) return self.down_proj(self.act(gate_up_states[:, 0]) * gate_up_states[:, 1]) class MistralLayer(nn.Module): def __init__(self, layer_id, config, weights): super().__init__() prefix = f"model.layers.{layer_id}" self.self_attn = MistralAttention( prefix=f"{prefix}.self_attn", config=config, weights=weights ) self.mlp = MistralMLP(prefix=f"{prefix}.mlp", config=config, weights=weights) self.input_layernorm = FastRMSNorm.load( prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps ) self.post_attention_layernorm = FastRMSNorm.load( prefix=f"{prefix}.post_attention_layernorm", weights=weights, eps=config.rms_norm_eps, ) def forward( self, hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, prefill_cache_indices, ): normed_hidden_states, res = self.input_layernorm(hidden_states, residual) # Self Attention attn_output = self.self_attn( normed_hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, prefill_cache_indices, ) # faster post attention rms norm normed_attn_res_output, attn_res = self.post_attention_layernorm( attn_output, res ) mlp_output = self.mlp(normed_attn_res_output) return mlp_output, attn_res class MistralModel(torch.nn.Module): def __init__(self, config, weights): super().__init__() process_group = weights.process_group self.tp_rank = process_group.rank() self.tp_world_size = process_group.size() self.embed_tokens = TensorParallelEmbedding( prefix="model.embed_tokens", weights=weights ) self.layers = nn.ModuleList( [ MistralLayer( layer_id, config, weights, ) for layer_id in range(config.num_hidden_layers) ] ) self.norm = FastRMSNorm.load( prefix="model.norm", weights=weights, eps=config.rms_norm_eps ) self.gradient_checkpointing = False self.head_size = self.layers[0].self_attn.head_size self.num_heads = self.layers[0].self_attn.num_heads self.num_key_value_heads = self.layers[0].self_attn.num_key_value_heads def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, input_lengths: torch.Tensor, max_s: int, true_max_s: int, prefill_cache_indices: Optional[torch.Tensor], ) -> torch.Tensor: hidden_states = self.embed_tokens(input_ids) # Get rotary cos and sin for this forward # Avoid to index in each layer cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin( position_ids, true_max_s, hidden_states.dtype ) residual = None for i, layer in enumerate(self.layers): hidden_states, residual = layer( hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache[i], block_tables, slots, input_lengths, max_s, prefill_cache_indices, ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states class FlashMistralForCausalLM(torch.nn.Module): def __init__(self, config, weights): super().__init__() self.model = MistralModel(config, weights) self.lm_head = TensorParallelHead.load( config, prefix="lm_head", weights=weights, ) self.max_past = config.sliding_window def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, input_lengths: torch.Tensor, max_s: int, prefill_cache_indices: Optional[torch.Tensor], lm_head_indices: Optional[torch.Tensor] = None, ) -> torch.Tensor: true_max_s = max_s if prefill_cache_indices is not None: # Slots also need to be sliced as it has the same size as the whole kv tensor slots = slots[prefill_cache_indices] elif self.max_past is not None: # Clamp in decode mode as paged attention requires clamped values whereas the flash attention # kernel requires the true values max_s = min(self.max_past, max_s) input_lengths = torch.clamp(input_lengths, max=self.max_past) hidden_states = self.model( input_ids, position_ids, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, true_max_s, prefill_cache_indices, ) if lm_head_indices is not None: hidden_states = hidden_states[lm_head_indices] logits = self.lm_head(hidden_states) return logits
0
hf_public_repos/text-generation-inference/server/text_generation_server/models
hf_public_repos/text-generation-inference/server/text_generation_server/models/custom_modeling/flash_mixtral_modeling.py
# coding=utf-8 # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.distributed import numpy as np from torch import nn from transformers.activations import ACT2FN from transformers.configuration_utils import PretrainedConfig from typing import Optional, List, Tuple from loguru import logger from text_generation_server.utils import paged_attention, flash_attn from text_generation_server.utils.layers import ( FastLinear, FastRMSNorm, TensorParallelRowLinear, TensorParallelColumnLinear, TensorParallelEmbedding, PositionRotaryEmbedding, TensorParallelHead, get_linear, ) HAS_MEGABLOCKS = True try: import stk import megablocks.ops as ops except ImportError: logger.warning("Mixtral: megablocks is not installed") HAS_MEGABLOCKS = False class MixtralConfig(PretrainedConfig): model_type = "mixtral" def __init__( self, vocab_size=32000, hidden_size=4096, intermediate_size=14336, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=8, hidden_act="silu", max_position_embeddings=4096 * 32, initializer_range=0.02, rms_norm_eps=1e-05, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, pretraining_tp=1, tie_word_embeddings=False, rope_theta=10000.0, sliding_window=None, num_experts_per_tok=2, num_local_experts=8, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.sliding_window = sliding_window # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.pretraining_tp = pretraining_tp self.use_cache = use_cache self.rope_theta = rope_theta self.num_experts_per_tok = num_experts_per_tok self.num_local_experts = num_local_experts super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) def promote_scalar(x: torch.Tensor) -> torch.Tensor: return x.view(1) if len(x.size()) == 0 else x def load_attention(config, prefix, weights): if config.num_attention_heads != config.num_key_value_heads: return _load_gqa(config, prefix, weights) else: return TensorParallelColumnLinear.load_multi( config, prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"], dim=0, weights=weights, bias=False, ) def _load_gqa(config, prefix: str, weights): assert config.hidden_size % config.num_attention_heads == 0 assert config.num_attention_heads % weights.process_group.size() == 0 weight = weights.get_multi_weights_col( prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"], quantize=config.quantize, dim=0, ) if config.quantize not in ["gptq", "awq"]: weight = weight.to(dtype=weights.dtype).to(device=weights.device) head_size = config.hidden_size // config.num_attention_heads num_heads = config.num_attention_heads // weights.process_group.size() num_key_value_heads = config.num_key_value_heads // weights.process_group.size() assert list(weight.shape) == [ (num_heads + 2 * num_key_value_heads) * head_size, config.hidden_size, ], f"{list(weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}" return TensorParallelColumnLinear( get_linear(weight, bias=None, quantize=config.quantize) ) def _load_experts(config, prefix, mat, weights): if config.quantize is not None: raise NotImplementedError("Mixtral does not support weight quantization yet.") assert mat in ["w1", "w2", "w3"] world_size = weights.process_group.size() rank = weights.process_group.rank() assert ( config.intermediate_size % world_size == 0 ), f"The chosen size {config.intermediate_size} is not compatible with sharding on {world_size} shards" block_size = config.intermediate_size // world_size start = rank * block_size stop = (rank + 1) * block_size tensor = torch.empty( (config.num_local_experts * block_size, config.hidden_size), dtype=weights.dtype, device=weights.device, ) for i in range(config.num_local_experts): slice_ = weights._get_slice(f"{prefix}.{i}.{mat}.weight") if mat == "w2": expert_slice = slice_[:, start:stop].t().contiguous() else: expert_slice = slice_[start:stop] tensor[i * block_size : (i + 1) * block_size] = expert_slice.to( dtype=weights.dtype ).to(device=weights.device) return tensor class MixtralAttention(torch.nn.Module): def __init__( self, prefix: str, config, weights, ): super().__init__() self.max_past = ( config.sliding_window if config.sliding_window is not None else -1 ) self.num_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.head_size = self.hidden_size // self.num_heads self.rotary_emb = PositionRotaryEmbedding.static( config=config, dim=self.head_size, base=config.rope_theta, device=weights.device, ) self.softmax_scale = self.head_size**-0.5 if self.num_heads % weights.process_group.size() != 0: raise ValueError( f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.num_heads = self.num_heads // weights.process_group.size() self.num_key_value_heads = ( config.num_key_value_heads // weights.process_group.size() ) self.query_key_value = load_attention(config, prefix, weights) self.o_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.o_proj", weights=weights, bias=False, ) self.num_groups = self.num_heads // self.num_key_value_heads self.kv_head_mapping = torch.arange( 0, self.num_key_value_heads, dtype=torch.int32, device=weights.device ).repeat_interleave(self.num_groups) def forward( self, hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, prefill_cache_indices, ): qkv = self.query_key_value(hidden_states) query, kv = qkv.split( [ self.head_size * self.num_heads, 2 * self.head_size * self.num_key_value_heads, ], dim=1, ) query = query.view(-1, self.num_heads, self.head_size) kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size) self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin) if prefill_cache_indices is not None: kv_to_cache = kv[prefill_cache_indices] else: kv_to_cache = kv paged_attention.reshape_and_cache( kv_to_cache[:, 0], kv_to_cache[:, 1], kv_cache[0], kv_cache[1], slots ) # output tensor attn_output = torch.empty_like(query) # Prefill if cu_seqlen_prefill is not None: # flash attention flash_attn.attention( query, torch.select(kv, dim=1, index=0), torch.select(kv, dim=1, index=1), attn_output, cu_seqlen_prefill, max_s, self.softmax_scale, window_size_left=self.max_past, ) # Decode else: paged_attention.attention( attn_output, query, kv_cache[0], kv_cache[1], self.kv_head_mapping, self.softmax_scale, block_tables, input_lengths, max_s, ) return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size)) @torch.jit.script def select_experts(gate_logits: torch.Tensor, top_k: int): # all_probs: (sequence_length, n_experts) and upcast for softmax all_probs = torch.nn.functional.softmax(gate_logits, dim=1, dtype=torch.float) # weights, selected_experts: (sequence_length, top-k) weights, selected_experts = torch.topk(all_probs, top_k, dim=-1) weights /= weights.sum(dim=-1, keepdim=True) weights = weights.view(-1) selected_experts = selected_experts.view(-1) return selected_experts, weights @torch.jit.script def round_up(x: torch.Tensor, value: int): return torch.div(x + (value - 1), value, rounding_mode="trunc") * value class BlockSparseMoE(nn.Module): """ Built on the paper and library Megablocks as described in https://arxiv.org/abs/2211.15841. This implementation is strictly equivalent to standard MoE with full capacity (no dropped tokens). It's faster since it formulates MoE operations in terms of block-sparse operations to accomodate imbalanced assignments of tokens to experts, whereas standard MoE either (1) drop tokens at the cost of reduced performance or (2) set capacity factor to number of experts and thus waste computation and memory on padding. """ def __init__(self, prefix, config: MixtralConfig, weights): super().__init__() self.hidden_dim = config.hidden_size self.ffn_dim = config.intermediate_size // weights.process_group.size() self.num_experts = config.num_local_experts self.top_k = config.num_experts_per_tok act = config.hidden_act if "gelu" in act: self.act = lambda x: torch.nn.functional.gelu( x, approximate="tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none", ) elif "silu" in act: self.act = torch.nn.functional.silu else: self.act = ACT2FN[act] # gating self.gate = FastLinear.load(config, f"{prefix}.gate", weights, bias=False) # merged expert weights, all of size (n_experts * ffn_dim, hidden_dim) self.w1 = _load_experts(config, f"{prefix}.experts", "w1", weights) self.w2 = _load_experts(config, f"{prefix}.experts", "w2", weights) self.w3 = _load_experts(config, f"{prefix}.experts", "w3", weights) self.offsets = None self.offsets_block_rows = 0 self.process_group = weights.process_group # Calculate the number of bits needed to represent the expert indices # so that we can pass it to radix sort. self.sort_end_bit = max(int(np.ceil(np.log2(self.num_experts))), 1) self.blocking = 128 self.quantize_scatter_num_bits = -1 def topology(self, x: torch.Tensor, padded_bins: torch.Tensor): padded_tokens, _ = x.size() assert padded_tokens % self.blocking == 0 assert self.ffn_dim % self.blocking == 0 # Offsets for the sparse matrix. All rows have the # same number of nonzero blocks dictated by the # dimensionality of a single expert. block_rows = padded_tokens // self.blocking blocks_per_row = self.ffn_dim // self.blocking if self.offsets is None or block_rows > self.offsets_block_rows: self.offsets = torch.arange( 0, block_rows * blocks_per_row + 1, blocks_per_row, dtype=torch.int32, device=x.device, ) self.offsets_block_rows = block_rows offsets = self.offsets else: offsets = self.offsets[: block_rows + 1] # Indices for the sparse matrix. The indices for # the intermediate matrix are dynamic depending # on the mapping of tokens to experts. column_indices = ops.topology( padded_bins, self.blocking, block_rows, blocks_per_row ) # For now, use meta init to save the device memory. data = torch.empty( column_indices.numel(), self.blocking, self.blocking, dtype=x.dtype, device="meta", ) shape = (padded_tokens, self.ffn_dim * self.num_experts) row_indices = stk.ops.row_indices(shape, data, offsets, column_indices) return stk.Matrix( shape, data, row_indices, column_indices, offsets, False, False, False, ) def indices_and_padded_bins(self, selected_experts: torch.Tensor): # Sort the expert ids to produce the scatter/gather # indices for the permutation. # selected_experts = selected_experts.int() # returns bin_ids == num of experts for this sequence ? == unique selected experts? # and indices == how to sort tokens? bin_ids, indices = ops.sort(selected_experts, self.sort_end_bit) # bin_ids => [0, 0, 0, 2, 2, ...] => [num_tokens * top_k] # indices => [14, 32, 33, ...] => [num_tokens * top_k] # Histogram the expert ids to identify the number of # tokens routed to each expert. tokens_per_expert = ops.histogram(selected_experts, self.num_experts) # tokens_per_expert => [3, 0, 2, ...] => [num_experts] # Round the token counts up to the block size used in # the matrix muliplications. Caculate the starting # position of each bin. # List of size num_experts padded_tokens_per_expert = round_up(tokens_per_expert, self.blocking) # padded_tokens_per_expert => [128, O, 128, ...] # Cumulative selected experts per token padded_bins = ops.inclusive_cumsum(padded_tokens_per_expert, 0) padded_bins = promote_scalar(padded_bins) # padded_bins => [128, 128, 256, ...] # Calculate the bin bounds for the sorted tokens. bins = ops.inclusive_cumsum(tokens_per_expert, 0) bins = promote_scalar(bins) # bins => [3, 3, 5, ...] return indices, bin_ids, bins, padded_bins, tokens_per_expert def sparse_forward(self, x: torch.Tensor) -> torch.Tensor: """ x: (sequence_length, model_dim) gate_logits: (sequence_length, n_experts) """ # optional reshape input_shape = x.shape x = x.view(-1, input_shape[-1]) # gate_logits: (sequence_length, n_experts) gate_logits = self.gate(x) selected_experts, weights = select_experts(gate_logits, self.top_k) ( indices, bin_ids, bins, padded_bins, _, ) = self.indices_and_padded_bins(selected_experts) # Permute tokens and pad to prepare expert computation # (top_k * sequence_length + padding, model_dim) x = ops.padded_gather(x, indices, bin_ids, bins, padded_bins, self.top_k) # Create the sparse matrix topology with torch.no_grad(): topo = self.topology(x, padded_bins) # Perform the expert computation # First Dense x Dense -> Sparse for w1 and w3, # (top_k * sequence_length + padding, ffn_dim * n_experts) x = stk.Matrix( topo.size(), self.act(stk.ops.sdd(x, self.w1.t(), topo).data) * stk.ops.sdd(x, self.w3.t(), topo).data, topo.row_indices, topo.column_indices, topo.offsets, topo.column_indices_t, topo.offsets_t, topo.block_offsets_t, ) # Then Sparse x Dense -> Dense for w2 # (top_k * sequence_length + padding, model_dim) x = stk.ops.dsd(x, self.w2) # Permute back and remove padding # (sequence_length, model_dim) x = ops.padded_scatter( x, indices, bin_ids, weights, bins, padded_bins, self.top_k, self.quantize_scatter_num_bits, ).view(*input_shape) if self.process_group.size() > 1: torch.distributed.all_reduce(x, group=self.process_group) return x.view(*input_shape) def dense_forward(self, x: torch.Tensor) -> torch.Tensor: """ x: (sequence_length, model_dim) gate_logits: (sequence_length, n_experts) """ # optional reshape input_shape = x.shape x = x.view(-1, input_shape[-1]) # gate_logits: (sequence_length, n_experts) gate_logits = self.gate(x) # all_probs: (sequence_length, n_experts) and upcast for softmax all_probs = torch.nn.functional.softmax(gate_logits, dim=1, dtype=torch.float) if self.top_k < self.num_experts: _, not_selected_experts = torch.topk( all_probs, self.num_experts - self.top_k, largest=False, sorted=False, dim=1, ) # Mask not selected experts all_probs.scatter_(1, not_selected_experts, 0) # Re-normalize weights = all_probs / all_probs.sum(dim=1, keepdim=True) # Expand to [num_experts, sequence_length, model_dim] x = x.view(1, -1, input_shape[-1]).expand(self.num_experts, -1, input_shape[-1]) # Permute to [num_experts, model_dim, ffn_dim] w1 = self.w1.view(self.num_experts, self.ffn_dim, self.hidden_dim).permute( 0, 2, 1 ) w3 = self.w3.view(self.num_experts, self.ffn_dim, self.hidden_dim).permute( 0, 2, 1 ) inter = self.act(torch.bmm(x, w1)) * torch.bmm(x, w3) out = torch.bmm( inter, self.w2.view(self.num_experts, self.ffn_dim, self.hidden_dim) ) # Mask not selected experts out *= weights.t().view(self.num_experts, -1, 1) # Sum experts out = out.sum(0) # Reduce sum if self.process_group.size() > 1: torch.distributed.all_reduce(out, group=self.process_group) return out def forward(self, x: torch.Tensor) -> torch.Tensor: if len(x) > 256 and HAS_MEGABLOCKS: return self.sparse_forward(x) # This is faster when there is not a lot of tokens return self.dense_forward(x) class DenseMoE(nn.Module): def __init__(self, prefix, config: MixtralConfig, weights): super().__init__() self.hidden_dim = config.hidden_size self.ffn_dim = config.intermediate_size // weights.process_group.size() self.num_experts = config.num_local_experts self.top_k = config.num_experts_per_tok act = config.hidden_act if "gelu" in act: self.act = lambda x: torch.nn.functional.gelu( x, approximate="tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none", ) elif "silu" in act: self.act = torch.nn.functional.silu else: self.act = ACT2FN[act] # gating self.gate = FastLinear.load(config, f"{prefix}.gate", weights, bias=False) self.w1 = [ TensorParallelColumnLinear.load( config, prefix=f"{prefix}.experts.{i}.w1", weights=weights, bias=False ) for i in range(self.num_experts) ] self.w3 = [ TensorParallelColumnLinear.load( config, prefix=f"{prefix}.experts.{i}.w3", weights=weights, bias=False ) for i in range(self.num_experts) ] self.w2 = [ TensorParallelRowLinear.load( config, prefix=f"{prefix}.experts.{i}.w2", weights=weights, bias=False ) for i in range(self.num_experts) ] self.process_group = weights.process_group def forward(self, x: torch.Tensor) -> torch.Tensor: """ x: (sequence_length, model_dim) gate_logits: (sequence_length, n_experts) """ # optional reshape input_shape = x.shape x = x.view(-1, input_shape[-1]) # gate_logits: (sequence_length, n_experts) gate_logits = self.gate(x) # all_probs: (sequence_length, n_experts) and upcast for softmax all_probs = torch.nn.functional.softmax(gate_logits, dim=1, dtype=torch.float) if self.top_k < self.num_experts: _, not_selected_experts = torch.topk( all_probs, self.num_experts - self.top_k, largest=False, sorted=False, dim=1, ) # Mask not selected experts all_probs.scatter_(1, not_selected_experts, 0) # Re-normalize weights = all_probs / all_probs.sum(dim=1, keepdim=True) # Final output tensor out = x.new_zeros(x.shape[0], self.hidden_dim) for i in range(self.num_experts): h = self.act(self.w1[i](x)) * self.w3[i](x) h = self.w2[i](h, reduce=False) # Add expert output to out with masking out += h * weights[:, i].view(-1, 1) # Reduce sum if self.process_group.size() > 1: torch.distributed.all_reduce(out, group=self.process_group) return out class MixtralLayer(nn.Module): def __init__(self, layer_id, config, weights): super().__init__() prefix = f"model.layers.{layer_id}" self.self_attn = MixtralAttention( prefix=f"{prefix}.self_attn", config=config, weights=weights ) moe_cls = BlockSparseMoE if config.quantize is None else DenseMoE self.moe = moe_cls(f"{prefix}.block_sparse_moe", config, weights) self.input_layernorm = FastRMSNorm.load( prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps ) self.post_attention_layernorm = FastRMSNorm.load( prefix=f"{prefix}.post_attention_layernorm", weights=weights, eps=config.rms_norm_eps, ) def forward( self, hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, prefill_cache_indices, ): normed_hidden_states, res = self.input_layernorm(hidden_states, residual) # Self Attention attn_output = self.self_attn( normed_hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, prefill_cache_indices, ) # faster post attention rms norm normed_attn_res_output, attn_res = self.post_attention_layernorm( attn_output, res ) moe_output = self.moe(normed_attn_res_output) return moe_output, attn_res class MixtralModel(torch.nn.Module): def __init__(self, config, weights): super().__init__() self.embed_tokens = TensorParallelEmbedding( prefix="model.embed_tokens", weights=weights ) self.layers = nn.ModuleList( [ MixtralLayer( layer_id, config, weights, ) for layer_id in range(config.num_hidden_layers) ] ) self.norm = FastRMSNorm.load( prefix="model.norm", weights=weights, eps=config.rms_norm_eps ) self.head_size = self.layers[0].self_attn.head_size self.num_heads = self.layers[0].self_attn.num_heads self.num_key_value_heads = self.layers[0].self_attn.num_key_value_heads def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, input_lengths: torch.Tensor, max_s: int, true_max_s: int, prefill_cache_indices: Optional[torch.Tensor], ) -> torch.Tensor: hidden_states = self.embed_tokens(input_ids) # Get rotary cos and sin for this forward # Avoid to index in each layer cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin( position_ids, true_max_s, hidden_states.dtype ) residual = None for i, layer in enumerate(self.layers): hidden_states, residual = layer( hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache[i], block_tables, slots, input_lengths, max_s, prefill_cache_indices, ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states class FlashMixtralForCausalLM(torch.nn.Module): def __init__(self, config, weights): super().__init__() self.model = MixtralModel(config, weights) self.lm_head = TensorParallelHead.load( config, prefix="lm_head", weights=weights, ) self.max_past = config.sliding_window def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, input_lengths: torch.Tensor, max_s: int, prefill_cache_indices: Optional[torch.Tensor], lm_head_indices: Optional[torch.Tensor] = None, ) -> torch.Tensor: true_max_s = max_s if prefill_cache_indices is not None: # Slots also need to be sliced as it has the same size as the whole kv tensor slots = slots[prefill_cache_indices] elif self.max_past is not None: # Clamp in decode mode as paged attention requires clamped values whereas the flash attention # kernel requires the true values max_s = min(self.max_past, max_s) input_lengths = torch.clamp(input_lengths, max=self.max_past) hidden_states = self.model( input_ids, position_ids, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, true_max_s, prefill_cache_indices, ) if lm_head_indices is not None: hidden_states = hidden_states[lm_head_indices] logits = self.lm_head(hidden_states) return logits
0
hf_public_repos/text-generation-inference/server/text_generation_server/models
hf_public_repos/text-generation-inference/server/text_generation_server/models/custom_modeling/idefics_perceiver.py
# This code was adapted from https://github.com/lucidrains/flamingo-pytorch licensed under the MIT License. # # MIT License # # Copyright (c) 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and github/lonePatient # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ Generic interface to various configurations of the Perceiver Resampler, that simply takes in a series of (potentially time-indexed) contextual embeddings, and "resamples" (compresses) them down to a pre-specified number of latents! Note that the Perceiver in general resamples based solely off the *long-range* context; there's a nice opportunity here to prime the Perceiver Resampler with say a single layer's worth of language embeddings (the target domain), and use that to softly "retrieve & compress" what we need --> this would be a novel contribution we should explore. References: - DeepMind's Flamingo: https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model - Code borrowed w/ love from: https://github.com/lucidrains/flamingo-pytorch """ from typing import Optional, Tuple import torch import torch.nn as nn from text_generation_server.utils.layers import ( TensorParallelColumnLinear, TensorParallelRowLinear, ) EPS = 1e-5 class IdeficsPerceiverResampler(nn.Module): def __init__( self, prefix, config, embed_dim: int, depth: int, n_heads: int, head_dim: int, n_latents: int, weights, ) -> None: """ Instantiates a Perceiver Resampler that operates over a sequence of embeddings (say from a ResNet or ViT or MAE) of a given dimension, performs `depth` blocks of cross-attention with a fixed `n_latents` inputs, then returns a Tensor of shape [bsz, n_latents, embed_dim]. :param embed_dim: Dimensionality of embeddings being fed to the Perceiver Resampler (also dimensionality of latent embeddings *returned* by the Perceiver Resampler. Could be e.g., VIT embed_dim, ResNet pool dim, and so on. Args: config (`IdeficsConfig`): config object embed_dim (`int`): The size of each embedding vector depth (`int`): Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3). n_heads (`int`): Number of heads in each Transformer block (for multi-headed self-attention). head_dim (`int`): Dimensionality of each head projection in the Transformer block. n_latents (`int`): Number of latent embeddings to resample ("compress") the input sequence to (usually < 128). """ super().__init__() self.embed_dim, self.n_heads, self.head_dim, self.n_latents = ( embed_dim, n_heads, head_dim, n_latents, ) self.qk_layer_norms = config.perceiver_config.qk_layer_norms_perceiver # Create Latents for Perceiver self.latents = nn.Parameter(weights.get_tensor(f"{prefix}.latents")) self.intermediate_dim = ( self.embed_dim * 4 if not hasattr(config.vision_config, "embed_dim") else config.vision_config.embed_dim * 4 ) # Create Transformer Blocks self.blocks = nn.ModuleList( [ nn.ModuleList( [ IdeficsPerceiverAttention( prefix=f"{prefix}.blocks.{layer_id}.0", config=config, embed_dim=self.embed_dim, n_heads=self.n_heads, head_dim=self.head_dim, qk_layer_norms=self.qk_layer_norms, weights=weights, ), IdeficsMLP( prefix=f"{prefix}.blocks.{layer_id}.1", intermediate_size=self.intermediate_dim, config=config, weights=weights, ), ] ) for layer_id in range(depth) ] ) self.layer_norm = nn.LayerNorm.load( prefix=f"{prefix}.layer_norm", weights=weights, eps=EPS ) def forward(self, context: torch.Tensor) -> torch.Tensor: """Resample arbitrary length context & *compress* down to self.n_latents latent embeddings""" # einsum.repeat(self.latents, "seq embed -> bsz seq embed", bsz=context.shape[0]) latents = self.latents.repeat(context.shape[0], 1, 1) # Feed through Perceiver Attention blocks... for attn, ff in self.blocks: latents = attn(context, latents) + latents latents = ff(latents) + latents return self.layer_norm(latents) class IdeficsPerceiverAttention(nn.Module): def __init__( self, prefix, config, embed_dim: int, n_heads: int, head_dim: int, qk_layer_norms: bool, weights, ) -> None: """Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`""" super().__init__() self.embed_dim, self.n_heads, self.head_dim = embed_dim, n_heads, head_dim self.qk_layer_norms = qk_layer_norms # Normalization & Scaling self.context_layer_norm = nn.LayerNorm.load( prefix=f"{prefix}.context_layer_norm", weights=weights, eps=EPS ) self.latents_layer_norm = nn.LayerNorm.load( prefix=f"{prefix}.latents_layer_norm", weights=weights, eps=EPS ) if self.qk_layer_norms: self.q_layer_norm = nn.LayerNorm.load( prefix=f"{prefix}.q_layer_norm", weights=weights, eps=EPS ) self.k_layer_norm = nn.LayerNorm.load( prefix=f"{prefix}.k_layer_norm", weights=weights, eps=EPS ) self.qk_scale = self.head_dim**-0.5 process_group = weights.process_group if n_heads % weights.process_group.size() != 0: raise ValueError( f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {n_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.n_heads //= weights.process_group.size() # Q, K, V Projection (no bias -- detail from Perceiver/Flamingo Papers). self.q_proj = TensorParallelColumnLinear.load( config=config, prefix=f"{prefix}.q_proj", weights=weights, bias=False ) self.k_proj = TensorParallelColumnLinear.load( config=config, prefix=f"{prefix}.k_proj", weights=weights, bias=False ) self.v_proj = TensorParallelColumnLinear.load( config=config, prefix=f"{prefix}.v_proj", weights=weights, bias=False ) self.output_proj = TensorParallelRowLinear.load( config=config, prefix=f"{prefix}.output_proj", weights=weights, bias=False ) def forward(self, context: torch.Tensor, latents: torch.Tensor) -> torch.Tensor: """ Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension! Args: context (`torch.Tensor`): Tensor of shape `[bsz, seq, embed_dim]` representing long-form context to resample. latents (`torch.Tensor`): Tensor of shape `[bsz, n_latents, embed_dim]` representing fixed length latents to compress to. Returns: `torch.Tensor`: Tensor of shape `[bsz, n_latents, embed_dim]` representing attention over latents w/ cross from context. """ context = self.context_layer_norm(context) latents = self.latents_layer_norm(latents) batch_size, seq_length, embed_dim = context.shape[:3] # Query, Key, Value Projections --> Note that in Flamingo, latents are *concatenated* with context prior to attn! # Note: This results in queries w/ `seq = n_latents`, and keys, values with `seq = len(context) + n_latents` q = self.q_proj(latents) k = self.k_proj(torch.cat([context, latents], dim=-2)) v = self.v_proj(torch.cat([context, latents], dim=-2)) # Multiheaded Self-Attention w/ stable softmax (subtract per-row max -- `amax` -- before softmax call) # =>> `attn` should be a 2D matrix of shape [n_latents x (context + n_latents)] # einsum.rearrange(x, "bsz seq (heads embed) -> bsz heads seq embed", heads=self.n_heads) q, k, v = [ x.reshape(batch_size, x.shape[1], self.n_heads, self.head_dim).transpose( 1, 2 ) for x in (q, k, v) ] if self.qk_layer_norms: q = self.q_layer_norm(q) k = self.k_layer_norm(k) scores = torch.einsum("... i d, ... j d -> ... i j", q * self.qk_scale, k) stabilized_scores = scores - (scores.amax(dim=-1, keepdim=True).detach()) attn = stabilized_scores.softmax(dim=-1) # Attend & project back to output... resampled = torch.einsum("... i j, ... j d -> ... i d", attn, v) # einsum.rearrange(resampled, "bsz heads seq embed -> bsz seq (heads embed)", heads=self.n_heads) return self.output_proj(resampled.transpose(1, 2).flatten(-2)) class IdeficsMLP(nn.Module): def __init__( self, prefix, intermediate_size, config, weights, ): """Simple MLP block with intermediate_size and embedding size""" super().__init__() self.embed_dim = config.vision_config.embed_dim self.ln = nn.LayerNorm.load(prefix=f"{prefix}.ln", weights=weights, eps=EPS) self.fc = TensorParallelColumnLinear.load( config=config, prefix=f"{prefix}.fc", weights=weights, bias=False, ) self.act = nn.ReLU() self.c_proj = TensorParallelRowLinear.load( config=config, prefix=f"{prefix}.c_proj", weights=weights, bias=False, ) def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]] ) -> torch.FloatTensor: hidden_states = self.ln(hidden_states) hidden_states = self.fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) return hidden_states
0
hf_public_repos/text-generation-inference/server/text_generation_server/models
hf_public_repos/text-generation-inference/server/text_generation_server/models/custom_modeling/flash_santacoder_modeling.py
import torch import torch.distributed from torch import nn from transformers.activations import ACT2FN from typing import Optional, List, Tuple from text_generation_server.utils import paged_attention, flash_attn from text_generation_server.utils.layers import ( TensorParallelRowLinear, TensorParallelColumnLinear, TensorParallelHead, TensorParallelEmbedding, FastLayerNorm, get_linear, ) def load_multi_mqa( config, prefix: str, weights, bias: bool, head_size, num_heads, hidden_size ): if config.quantize == "gptq": return _load_multi_mqa_gptq( config, prefix, weights, bias, head_size, num_heads, hidden_size ) else: return _load_multi_mqa( config, prefix, weights, bias, head_size, num_heads, hidden_size ) def _load_multi_mqa_gptq( config, prefix: str, weights, bias: bool, head_size, num_heads, hidden_size ): if any("c_attn" in k for k in weights.routing.keys()) and not config.transpose: world_size = weights.process_group.size() rank = weights.process_group.rank() slice_ = weights._get_slice(f"{prefix}.c_attn.qweight") shape = slice_.get_shape() block_size = (shape[1] - 2 * head_size) // world_size start = rank * block_size stop = (rank + 1) * block_size assert (shape[1] - 2 * head_size) % world_size == 0 q_tensor = slice_[:, start:stop] kv_tensor = slice_[:, -2 * head_size :] qweight = torch.cat([q_tensor, kv_tensor], dim=1) qweight = qweight.to(device=weights.device) slice_ = weights._get_slice(f"{prefix}.c_attn.scales") shape = slice_.get_shape() block_size = (shape[1] - 2 * head_size) // world_size start = rank * block_size stop = (rank + 1) * block_size assert (shape[1] - 2 * head_size) % world_size == 0 q_tensor = slice_[:, start:stop] kv_tensor = slice_[:, -2 * head_size :] scales = torch.cat([q_tensor, kv_tensor], dim=1) scales = scales.to(device=weights.device) slice_ = weights._get_slice(f"{prefix}.c_attn.qzeros") shape = slice_.get_shape() block_size = (shape[1] - (2 * head_size) * 4 // 32) // world_size start = rank * block_size stop = (rank + 1) * block_size assert 2 * head_size % (32 // 4) == 0 q_tensor = slice_[:, start:stop] kv_tensor = slice_[:, -2 * head_size * 4 // 32 :] qzeros = torch.cat([q_tensor, kv_tensor], dim=1) qzeros = qzeros.to(device=weights.device) g_idx = weights.get_tensor(f"{prefix}.c_attn.g_idx") g_idx = g_idx.to(device=weights.device) bits, groupsize, _ = weights._get_gptq_params() from text_generation_server.utils.layers import HAS_EXLLAMA use_exllama = HAS_EXLLAMA weight = (qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama) if bias: slice_ = weights._get_slice(f"{prefix}.c_attn.bias") shape = slice_.get_shape() block_size = (shape[0] - 2 * head_size) // world_size assert (shape[0] - 2 * head_size) % world_size == 0 q_tensor = slice_[start:stop] start = rank * block_size stop = (rank + 1) * block_size q_tensor = slice_[start:stop] kv_tensor = slice_[-2 * head_size :] bias = torch.cat([q_tensor, kv_tensor], dim=0) bias = bias.to(device=weights.device) return TensorParallelColumnLinear(get_linear(weight, bias, config.quantize)) else: raise NotImplementedError("Gptq loading with santacoder is not implemented") def _load_multi_mqa( config, prefix: str, weights, bias: bool, head_size, num_heads, hidden_size ): if any("c_attn" in k for k in weights.routing.keys()): slice_ = weights._get_slice(f"{prefix}.c_attn.weight") shape = slice_.get_shape() world_size = weights.process_group.size() rank = weights.process_group.rank() if config.transpose: block_size = (shape[1] - 2 * head_size) // world_size start = rank * block_size stop = (rank + 1) * block_size assert (shape[1] - 2 * head_size) % world_size == 0 q_tensor = slice_[:, start:stop] kv_tensor = slice_[:, -2 * head_size :] weight = torch.cat([q_tensor, kv_tensor], dim=1).T else: block_size = (shape[0] - 2 * head_size) // world_size start = rank * block_size stop = (rank + 1) * block_size assert (shape[0] - 2 * head_size) % world_size == 0 q_tensor = slice_[start:stop] kv_tensor = slice_[-2 * head_size :] weight = torch.cat([q_tensor, kv_tensor], dim=0) if bias: slice_ = weights._get_slice(f"{prefix}.c_attn.bias") shape = slice_.get_shape() block_size = (shape[0] - 2 * head_size) // world_size assert (shape[0] - 2 * head_size) % world_size == 0 start = rank * block_size stop = (rank + 1) * block_size q_tensor = slice_[start:stop] kv_tensor = slice_[-2 * head_size :] bias = torch.cat([q_tensor, kv_tensor], dim=0) else: if config.transpose: w = [ weights.get_sharded(f"{prefix}.q_attn.weight", dim=1).T, weights.get_tensor(f"{prefix}.kv_attn.weight").T, ] weight = torch.cat(w, dim=0) else: w = [ weights.get_sharded(f"{prefix}.q_attn.weight", dim=0), weights.get_tensor(f"{prefix}.kv_attn.weight"), ] weight = torch.cat(w, dim=1) if bias: b = [ weights.get_sharded(f"{prefix}.q_attn.bias", dim=0), weights.get_tensor(f"{prefix}.kv_attn.bias"), ] bias = torch.cat(b, dim=0) else: bias = None weight = weight.to(dtype=weights.dtype).to(device=weights.device) assert list(weight.shape) == [ (num_heads + 2) * head_size, hidden_size, ], f"{weight.shape} != {[(num_heads + 2) * head_size, hidden_size]}" if bias is not None: bias = bias.to(dtype=weights.dtype).to(device=weights.device) assert list(bias.shape) == [ (num_heads + 2) * head_size ], f"{weight.shape} != {[(num_heads + 2) * head_size]}" return TensorParallelColumnLinear(get_linear(weight, bias, config.quantize)) def load_col(config, prefix: str, weights, bias: bool): if config.transpose: weight = weights.get_sharded(f"{prefix}.weight", dim=1).T else: weight = weights.get_multi_weights_col( [prefix], quantize=config.quantize, dim=0 ) if bias: bias = weights.get_sharded(f"{prefix}.bias", dim=0) else: bias = None return TensorParallelColumnLinear(get_linear(weight, bias, config.quantize)) def load_row(config, prefix: str, weights, bias: bool): if config.transpose: weight = weights.get_sharded(f"{prefix}.weight", dim=0).T else: weight = weights.get_multi_weights_row(prefix, quantize=config.quantize) if bias and weights.process_group.rank() == 0: # Rank is only on the first rank process bias = weights.get_tensor(f"{prefix}.bias") else: bias = None return TensorParallelRowLinear( get_linear(weight, bias, config.quantize), process_group=weights.process_group ) class FlashMQAttention(torch.nn.Module): def __init__(self, prefix, config, weights): super().__init__() num_heads = config.num_attention_heads hidden_size = config.hidden_size self.num_heads = num_heads self.hidden_size = hidden_size self.head_size = hidden_size // num_heads if self.num_heads % weights.process_group.size() != 0: raise ValueError( f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.num_heads = self.num_heads // weights.process_group.size() self.softmax_scale = self.head_size ** (-0.5) self.c_attn = load_multi_mqa( config, prefix=prefix, weights=weights, bias=True, head_size=self.head_size, hidden_size=hidden_size, num_heads=self.num_heads, ) self.c_proj = load_row( config, prefix=f"{prefix}.c_proj", weights=weights, bias=True ) self.kv_head_mapping = torch.zeros( self.num_heads, dtype=torch.int32, device=weights.device ) def forward( self, hidden_states, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ): qkv = self.c_attn(hidden_states) # Split query from key_value query, key_value = qkv.split( [self.head_size * self.num_heads, 2 * self.head_size], dim=1 ) # Prepare query and key_value for indexing query = query.view(-1, self.num_heads, self.head_size) key_value = key_value.view(-1, 2, 1, self.head_size) paged_attention.reshape_and_cache( key_value[:, 0], key_value[:, 1], kv_cache[0], kv_cache[1], slots ) # output attn_output = torch.empty_like(query) # Prefill if cu_seqlen_prefill is not None: # flash attention flash_attn.attention( query, torch.select(key_value, dim=1, index=0), torch.select(key_value, dim=1, index=1), attn_output, cu_seqlen_prefill, max_s, self.softmax_scale, ) # Decode else: paged_attention.attention( attn_output, query, kv_cache[0], kv_cache[1], self.kv_head_mapping, self.softmax_scale, block_tables, input_lengths, max_s, ) return self.c_proj(attn_output.view(-1, self.num_heads * self.head_size)) class MLP(nn.Module): def __init__(self, prefix, config, weights): super().__init__() act = config.activation_function self.act = ( ACT2FN[act] if "gelu" not in act else lambda x: torch.nn.functional.gelu( x, approximate="tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none", ) ) self.c_fc = load_col( config, prefix=f"{prefix}.c_fc", weights=weights, bias=True ) self.c_proj = load_row( config, prefix=f"{prefix}.c_proj", weights=weights, bias=True ) def forward(self, hidden_states): hidden_states = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) return hidden_states class Block(nn.Module): def __init__(self, layer_id, config, weights): super().__init__() prefix = f"transformer.h.{layer_id}" self.ln_1 = FastLayerNorm.load( prefix=f"{prefix}.ln_1", weights=weights, eps=config.layer_norm_epsilon ) self.ln_2 = FastLayerNorm.load( prefix=f"{prefix}.ln_2", weights=weights, eps=config.layer_norm_epsilon ) self.attn = FlashMQAttention( prefix=f"{prefix}.attn", config=config, weights=weights, ) self.mlp = MLP( prefix=f"{prefix}.mlp", config=config, weights=weights, ) def forward( self, hidden_states, residual, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ): hidden_states, residual = self.ln_1(hidden_states, residual) hidden_states = self.attn( hidden_states, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ) hidden_states, residual = self.ln_2(hidden_states, residual) mlp_output = self.mlp(hidden_states) return mlp_output, residual class FlashSantacoderModel(nn.Module): def __init__(self, config, weights): super().__init__() self.config = config self.process_group = weights.process_group self.wte = TensorParallelEmbedding( prefix="transformer.wte", weights=weights, reduce=False, ) self.wpe = TensorParallelEmbedding( prefix="transformer.wpe", weights=weights, reduce=False, ) self.h = nn.ModuleList( [ Block( layer_id, config, weights, ) for layer_id in range(config.num_hidden_layers) ] ) self.ln_f = FastLayerNorm.load( prefix="transformer.ln_f", weights=weights, eps=config.layer_norm_epsilon ) self.head_size = self.h[0].attn.head_size self.num_heads = self.h[0].attn.num_heads def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, input_lengths: torch.Tensor, max_s: int, ) -> torch.Tensor: hidden_states = self.wte(input_ids) + self.wpe(position_ids) if self.process_group.size() > 1: torch.distributed.all_reduce(hidden_states, group=self.process_group) residual = None for i, layer in enumerate(self.h): hidden_states, residual = layer( hidden_states, residual, cu_seqlen_prefill, kv_cache[i], block_tables, slots, input_lengths, max_s, ) hidden_states, _ = self.ln_f(hidden_states, residual) return hidden_states class FlashSantacoderForCausalLM(nn.Module): def __init__(self, config, weights): super().__init__() self.transformer = FlashSantacoderModel(config, weights) self.lm_head = TensorParallelHead.load( config, prefix="transformer.wte", weights=weights ) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, input_lengths: torch.Tensor, max_s: int, lm_head_indices: Optional[torch.Tensor] = None, ) -> torch.Tensor: hidden_states = self.transformer( input_ids, position_ids, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ) if lm_head_indices is not None: hidden_states = hidden_states[lm_head_indices] logits = self.lm_head(hidden_states) return logits
0
hf_public_repos/text-generation-inference/server/text_generation_server/models
hf_public_repos/text-generation-inference/server/text_generation_server/models/custom_modeling/mpt_modeling.py
"""A simple, flexible implementation of a GPT model. Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py """ import math import os import warnings from typing import List, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast from transformers.modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, ) from einops import rearrange from packaging import version from text_generation_server.utils.layers import ( TensorParallelEmbedding, TensorParallelColumnLinear, TensorParallelRowLinear, TensorParallelHead, get_linear, ) EPS = 1e-5 def load_col(config, prefix, weights, bias): assert bias == False, NotImplementedError assert config.quantize != "gptq", NotImplementedError slice_ = weights._get_slice(f"{prefix}.weight") rank = weights.process_group.rank() size = weights.process_group.size() h3, h = slice_.get_shape() block_size = h // size q_part = slice_[rank * block_size : (rank + 1) * block_size] k_part = slice_[h + rank * block_size : h + (rank + 1) * block_size] v_part = slice_[2 * h + rank * block_size : 2 * h + (rank + 1) * block_size] weight = torch.cat([q_part, k_part, v_part], dim=0) if weight.dtype != torch.int32: weight = weight.to(dtype=weights.dtype) weight = weight.to(device=weights.device) bias = None linear = get_linear(weight, bias, config.quantize) return TensorParallelColumnLinear(linear) def _reset_is_causal( num_query_tokens: int, num_key_tokens: int, original_is_causal: bool ): if original_is_causal and num_query_tokens != num_key_tokens: if num_query_tokens != 1: raise NotImplementedError( "MPT does not support query and key with different number of tokens, unless number of query tokens is 1." ) else: return False return original_is_causal def scaled_multihead_dot_product_attention( query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False, ): q = rearrange(query, "b s (h d) -> b h s d", h=n_heads) kv_n_heads = 1 if multiquery else n_heads k = rearrange(key, "b s (h d) -> b h d s", h=kv_n_heads) v = rearrange(value, "b s (h d) -> b h s d", h=kv_n_heads) if past_key_value is not None: if len(past_key_value) != 0: k = torch.cat([past_key_value[0], k], dim=3) v = torch.cat([past_key_value[1], v], dim=2) past_key_value = (k, v) (b, _, s_q, d) = q.shape s_k = k.size(-1) attn_weight = q.matmul(k) * softmax_scale if attn_bias is not None: _s_q = max(0, attn_bias.size(2) - s_q) _s_k = max(0, attn_bias.size(3) - s_k) attn_bias = attn_bias[:, :, _s_q:, _s_k:] if ( attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q) ): raise RuntimeError( f"attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}." ) attn_weight = attn_weight + attn_bias min_val = torch.finfo(q.dtype).min if key_padding_mask is not None: if attn_bias is not None: warnings.warn( "Propogating key_padding_mask to the attention module " + "and applying it within the attention module can cause " + "unneccessary computation/memory usage. Consider integrating " + "into attn_bias once and passing that to each attention " + "module instead." ) attn_weight = attn_weight.masked_fill( ~key_padding_mask.view((b, 1, 1, s_k)), min_val ) if is_causal and (not q.size(2) == 1): s = max(s_q, s_k) causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16) causal_mask = causal_mask.tril() causal_mask = causal_mask.to(torch.bool) causal_mask = ~causal_mask causal_mask = causal_mask[-s_q:, -s_k:] attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val) attn_weight = torch.softmax(attn_weight, dim=-1) if dropout_p: attn_weight = torch.nn.functional.dropout( attn_weight, p=dropout_p, training=training, inplace=True ) out = attn_weight.to(v.dtype).matmul(v) out = rearrange(out, "b h s d -> b s (h d)") if needs_weights: return (out, attn_weight, past_key_value) return (out, None, past_key_value) def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]): for tensor in tensors: if tensor.dtype not in valid_dtypes: raise TypeError( f"tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}." ) if not tensor.is_cuda: raise TypeError( f"Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r})." ) def flash_attn_fn( query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False, ): try: from flash_attn import bert_padding, flash_attn_interface except: raise RuntimeError("Please install flash-attn==1.0.3.post0") check_valid_inputs(query, key, value) if past_key_value is not None: if len(past_key_value) != 0: key = torch.cat([past_key_value[0], key], dim=1) value = torch.cat([past_key_value[1], value], dim=1) past_key_value = (key, value) if attn_bias is not None: _s_q = max(0, attn_bias.size(2) - query.size(1)) _s_k = max(0, attn_bias.size(3) - key.size(1)) attn_bias = attn_bias[:, :, _s_q:, _s_k:] if attn_bias is not None: raise NotImplementedError(f"attn_bias not implemented for flash attn.") (batch_size, seqlen) = query.shape[:2] if key_padding_mask is None: key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool) query_padding_mask = key_padding_mask[:, -query.size(1) :] (query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input( query, query_padding_mask ) query_unpad = rearrange(query_unpad, "nnz (h d) -> nnz h d", h=n_heads) (key_unpad, _, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input( key, key_padding_mask ) key_unpad = rearrange( key_unpad, "nnz (h d) -> nnz h d", h=1 if multiquery else n_heads ) (value_unpad, _, _, _) = bert_padding.unpad_input(value, key_padding_mask) value_unpad = rearrange( value_unpad, "nnz (h d) -> nnz h d", h=1 if multiquery else n_heads ) if multiquery: key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1)) value_unpad = value_unpad.expand( value_unpad.size(0), n_heads, value_unpad.size(-1) ) dropout_p = dropout_p if training else 0.0 reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal) output_unpad = flash_attn_interface.flash_attn_unpadded_func( query_unpad, key_unpad, value_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights, ) output = bert_padding.pad_input( rearrange(output_unpad, "nnz h d -> nnz (h d)"), indices_q, batch_size, seqlen ) return (output, None, past_key_value) def triton_flash_attn_fn( query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False, ): try: from .flash_attn_triton import flash_attn_func except: _installed = False if version.parse(torch.__version__) < version.parse("2.0.0"): _installed = True try: from flash_attn.flash_attn_triton import flash_attn_func except: _installed = False if not _installed: raise RuntimeError( "Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU and `pip install .[gpu]` if installing from llm-foundry source or `pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). Note: (1) requires you have CMake and PyTorch already installed." ) check_valid_inputs(query, key, value) if past_key_value is not None: if len(past_key_value) != 0: key = torch.cat([past_key_value[0], key], dim=1) value = torch.cat([past_key_value[1], value], dim=1) past_key_value = (key, value) if attn_bias is not None: _s_q = max(0, attn_bias.size(2) - query.size(1)) _s_k = max(0, attn_bias.size(3) - key.size(1)) attn_bias = attn_bias[:, :, _s_q:, _s_k:] if dropout_p: raise NotImplementedError(f"Dropout not implemented for attn_impl: triton.") if needs_weights: raise NotImplementedError(f"attn_impl: triton cannot return attn weights.") if key_padding_mask is not None: warnings.warn( "Propagating key_padding_mask to the attention module " + "and applying it within the attention module can cause " + "unnecessary computation/memory usage. Consider integrating " + "into attn_bias once and passing that to each attention " + "module instead." ) (b_size, s_k) = key_padding_mask.shape[:2] if attn_bias is None: attn_bias = query.new_zeros(b_size, 1, 1, s_k) attn_bias = attn_bias.masked_fill( ~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min ) query = rearrange(query, "b s (h d) -> b s h d", h=n_heads) key = rearrange(key, "b s (h d) -> b s h d", h=1 if multiquery else n_heads) value = rearrange(value, "b s (h d) -> b s h d", h=1 if multiquery else n_heads) if multiquery: key = key.expand(*key.shape[:2], n_heads, key.size(-1)) value = value.expand(*value.shape[:2], n_heads, value.size(-1)) reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal) attn_output = flash_attn_func( query, key, value, attn_bias, reset_is_causal, softmax_scale ) output = attn_output.view(*attn_output.shape[:2], -1) return (output, None, past_key_value) class MultiheadAttention(nn.Module): """Multi-head self attention. Using torch or triton attention implementation enables user to also use additive bias. """ def __init__( self, config, prefix, weights, ): super().__init__() attn_impl = config.attn_config["attn_impl"] self.attn_impl = config.attn_config["attn_impl"] self.clip_qkv = config.attn_config["clip_qkv"] self.qk_ln = config.attn_config["qk_ln"] self.d_model = config.d_model d_model = config.d_model self.n_heads = config.n_heads self.softmax_scale = config.attn_config["softmax_scale"] if self.softmax_scale is None: self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads) self.attn_dropout_p = config.attn_config["attn_pdrop"] if self.n_heads % weights.process_group.size() != 0: raise ValueError( f"`n_heads` must be divisible by `num_shards` (got `n_heads`: {self.n_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.n_heads = self.n_heads // weights.process_group.size() self.Wqkv = load_col( config, prefix=f"{prefix}.Wqkv", weights=weights, bias=not config.no_bias ) if self.qk_ln: raise NotImplementedError("qk_ln is not supported") if self.attn_impl == "flash": self.attn_fn = flash_attn_fn elif self.attn_impl == "triton": self.attn_fn = triton_flash_attn_fn elif self.attn_impl == "torch": self.attn_fn = scaled_multihead_dot_product_attention else: raise ValueError(f"attn_impl={attn_impl!r} is an invalid setting.") self.out_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.out_proj", weights=weights, bias=not config.no_bias, ) def forward( self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False, ): qkv = self.Wqkv(x) if self.clip_qkv: qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv) (query, key, value) = qkv.chunk(3, dim=2) key_padding_mask = attention_mask if self.qk_ln: dtype = query.dtype query = self.q_ln(query).to(dtype) key = self.k_ln(key).to(dtype) (context, attn_weights, past_key_value) = self.attn_fn( query, key, value, self.n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, ) out = self.out_proj(context) return (out, attn_weights, past_key_value) class MultiQueryAttention(nn.Module): """Multi-Query self attention. Using torch or triton attention implementation enables user to also use additive bias. """ def __init__(self, config, prefix, weights): super().__init__() attn_impl = config.attn_config["attn_impl"] self.attn_impl = config.attn_config["attn_impl"] self.clip_qkv = config.attn_config["clip_qkv"] self.qk_ln = config.attn_config["qk_ln"] self.d_model = config.d_model d_model = config.d_model self.n_heads = config.n_heads self.softmax_scale = config.attn_config["softmax_scale"] if self.softmax_scale is None: self.softmax_scale = 1 / math.sqrt(self.head_dim) self.attn_dropout_p = config.attn_config["attn_pdrop"] # self.Wqkv = nn.Linear(d_model, d_model + 2 * self.head_dim, device=device) self.Wqkv = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.Wqkv", weights=weights, bias=not config.no_bias ) fuse_splits = (d_model, d_model + self.head_dim) if self.qk_ln: raise NotImplementedError("qk_ln not supported") if self.attn_impl == "flash": self.attn_fn = flash_attn_fn elif self.attn_impl == "triton": self.attn_fn = triton_flash_attn_fn if verbose: warnings.warn( "While `attn_impl: triton` can be faster than `attn_impl: flash` " + "it uses more memory. When training larger models this can trigger " + "alloc retries which hurts performance. If encountered, we recommend " + "using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`." ) elif self.attn_impl == "torch": self.attn_fn = scaled_multihead_dot_product_attention if torch.cuda.is_available() and verbose: warnings.warn( "Using `attn_impl: torch`. If your model does not use `alibi` or " + "`prefix_lm` we recommend using `attn_impl: flash` otherwise " + "we recommend using `attn_impl: triton`." ) else: raise ValueError(f"attn_impl={attn_impl!r} is an invalid setting.") self.out_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.out_proj", weights=weights, bias=not config.no_bias, ) # self.out_proj._is_residual = True def forward( self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False, ): qkv = self.Wqkv(x) if self.clip_qkv: qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv) (query, key, value) = qkv.split( [self.d_model, self.head_dim, self.head_dim], dim=2 ) key_padding_mask = attention_mask if self.qk_ln: dtype = query.dtype query = self.q_ln(query).to(dtype) key = self.k_ln(key).to(dtype) (context, attn_weights, past_key_value) = self.attn_fn( query, key, value, self.n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, multiquery=True, ) return (self.out_proj(context), attn_weights, past_key_value) def attn_bias_shape( attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id ): if attn_impl == "flash": return None elif attn_impl in ["torch", "triton"]: if alibi: if (prefix_lm or not causal) or use_sequence_id: return (1, n_heads, seq_len, seq_len) return (1, n_heads, 1, seq_len) elif prefix_lm or use_sequence_id: return (1, 1, seq_len, seq_len) return None else: raise ValueError(f"attn_impl={attn_impl!r} is an invalid setting.") def build_attn_bias( attn_impl, attn_bias, n_heads, seq_len, causal=False, alibi=False, alibi_bias_max=8 ): if attn_impl == "flash": return None elif attn_impl in ["torch", "triton"]: if alibi: (device, dtype) = (attn_bias.device, attn_bias.dtype) attn_bias = attn_bias.add( build_alibi_bias( n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype, ) ) return attn_bias else: raise ValueError(f"attn_impl={attn_impl!r} is an invalid setting.") def gen_slopes(n_heads, alibi_bias_max=8, device=None): _n_heads = 2 ** math.ceil(math.log2(n_heads)) m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device) m = m.mul(alibi_bias_max / _n_heads) slopes = 1.0 / torch.pow(2, m) if _n_heads != n_heads: slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads] return slopes.view(1, n_heads, 1, 1) def build_alibi_bias( n_heads, seq_len, full=False, alibi_bias_max=8, device=None, dtype=None ): alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view( 1, 1, 1, seq_len ) if full: alibi_bias = alibi_bias - torch.arange( 1 - seq_len, 1, dtype=torch.int32, device=device ).view(1, 1, seq_len, 1) alibi_bias = alibi_bias.abs().mul(-1) slopes = gen_slopes(n_heads, alibi_bias_max, device=device) alibi_bias = alibi_bias * slopes return alibi_bias.to(dtype=dtype) ATTN_CLASS_REGISTRY = { "multihead_attention": MultiheadAttention, "multiquery_attention": MultiQueryAttention, } """GPT Blocks used for the GPT Model.""" class MPTMLP(nn.Module): def __init__(self, config, prefix, weights): super().__init__() # self.up_proj = nn.Linear(d_model, expansion_ratio * d_model, device=device) self.up_proj = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.up_proj", weights=weights, bias=not config.no_bias ) self.act = nn.GELU(approximate="none") # self.down_proj = nn.Linear(expansion_ratio * d_model, d_model, device=device) self.down_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.down_proj", weights=weights, bias=not config.no_bias, ) # self.down_proj._is_residual = True def forward(self, x): return self.down_proj(self.act(self.up_proj(x))) class MPTBlock(nn.Module): def __init__(self, config, prefix, weights): super().__init__() self.prefix = prefix if config.attn_config["attn_type"] != "multihead_attention": raise NotImplementedError( f"""Not implemented attn {config.attn_config["attn_type"]}""" ) resid_pdrop = config.resid_pdrop self.norm_1 = nn.LayerNorm.load_no_bias( prefix=f"{prefix}.norm_1", weights=weights, eps=EPS ) self.norm_2 = nn.LayerNorm.load_no_bias( prefix=f"{prefix}.norm_2", weights=weights, eps=EPS ) self.attn = MultiheadAttention(config, prefix=f"{prefix}.attn", weights=weights) self.ffn = MPTMLP(config, prefix=f"{prefix}.ffn", weights=weights) self.resid_attn_dropout = nn.Dropout(resid_pdrop) self.resid_ffn_dropout = nn.Dropout(resid_pdrop) def forward( self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor]] = None, attn_bias: Optional[torch.Tensor] = None, attention_mask: Optional[torch.ByteTensor] = None, is_causal: bool = True, ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]]]: a = self.norm_1(x) (b, attn_weights, past_key_value) = self.attn( a, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=is_causal, ) x = x + self.resid_attn_dropout(b) m = self.norm_2(x) n = self.ffn(m) x = x + self.resid_ffn_dropout(n) return (x, attn_weights, past_key_value) def _cast_if_autocast_enabled(tensor): if torch.is_autocast_enabled(): if tensor.device.type == "cuda": dtype = torch.get_autocast_gpu_dtype() elif tensor.device.type == "cpu": dtype = torch.get_autocast_cpu_dtype() else: raise NotImplementedError() return tensor.to(dtype=dtype) return tensor class LPLayerNorm(torch.nn.LayerNorm): def __init__( self, normalized_shape, eps=1e-05, elementwise_affine=True, device=None, dtype=None, ): super().__init__( normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype, ) def forward(self, x): module_device = x.device downcast_x = _cast_if_autocast_enabled(x) downcast_weight = ( _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight ) downcast_bias = ( _cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias ) with torch.autocast(enabled=False, device_type=module_device.type): return torch.nn.functional.layer_norm( downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps, ) def rms_norm(x, weight=None, eps=1e-05): output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps) if weight is not None: return output * weight return output class RMSNorm(torch.nn.Module): def __init__( self, normalized_shape, eps=1e-05, weight=True, dtype=None, device=None ): super().__init__() self.eps = eps if weight: self.weight = torch.nn.Parameter( torch.ones(normalized_shape, dtype=dtype, device=device) ) else: self.register_parameter("weight", None) def forward(self, x): return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype) class LPRMSNorm(RMSNorm): def __init__( self, normalized_shape, eps=1e-05, weight=True, dtype=None, device=None ): super().__init__( normalized_shape=normalized_shape, eps=eps, weight=weight, dtype=dtype, device=device, ) def forward(self, x): downcast_x = _cast_if_autocast_enabled(x) downcast_weight = ( _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight ) with torch.autocast(enabled=False, device_type=x.device.type): return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype) NORM_CLASS_REGISTRY = { "layernorm": torch.nn.LayerNorm, "low_precision_layernorm": LPLayerNorm, "rmsnorm": RMSNorm, "low_precision_rmsnorm": LPRMSNorm, } Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast] class MPTPreTrainedModel(PreTrainedModel): base_model_prefix = "model" _no_split_modules = ["MPTBlock"] class MPTModel(MPTPreTrainedModel): def __init__(self, config, weights): # config._validate_config() super().__init__(config) self.world_size = weights.process_group.size() self.rank = weights.process_group.rank() self.n_heads = config.n_heads self.attn_impl = config.attn_config["attn_impl"] self.prefix_lm = config.attn_config["prefix_lm"] self.attn_uses_sequence_id = config.attn_config["attn_uses_sequence_id"] self.alibi = config.attn_config["alibi"] self.alibi_bias_max = config.attn_config["alibi_bias_max"] if config.init_device == "mixed": if dist.get_local_rank() == 0: config.init_device = "cpu" else: config.init_device = "meta" if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys(): norm_options = " | ".join(NORM_CLASS_REGISTRY.keys()) raise NotImplementedError( f"Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options})." ) if config.norm_type.lower() != "low_precision_layernorm": raise NotImplementedError( f"Requested norm type ({config.norm_type}) is not implemented within this repo." ) self.wte = TensorParallelEmbedding("transformer.wte", weights) if not self.alibi: # self.wpe = torch.nn.Embedding( # config.max_seq_len, config.d_model, device=config.init_device # ) raise RuntimeError("no alibi no supported") self.blocks = nn.ModuleList( [ MPTBlock(config, prefix=f"transformer.blocks.{i}", weights=weights) for i in range(config.n_layers) ] ) self.norm_f = nn.LayerNorm.load_no_bias( prefix="transformer.norm_f", weights=weights, eps=EPS ) self.is_causal = not self.prefix_lm self._attn_bias_initialized = False self.attn_bias = None self.attn_bias_shape = attn_bias_shape( self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id, ) if config.no_bias: for module in self.modules(): if hasattr(module, "bias") and isinstance(module.bias, nn.Parameter): if config.verbose: warnings.warn(f"Removing bias ({module.bias}) from {module}.") module.register_parameter("bias", None) if config.verbose and config.verbose > 2: print(self) if "verbose" not in self.config.init_config: self.config.init_config["verbose"] = self.config.verbose if self.config.init_config["verbose"] > 1: init_fn_name = self.config.init_config["name"] warnings.warn(f"Using {init_fn_name} initialization.") @torch.no_grad() def _attn_bias( self, device, dtype, attention_mask: Optional[torch.ByteTensor] = None, prefix_mask: Optional[torch.ByteTensor] = None, sequence_id: Optional[torch.LongTensor] = None, ): if not self._attn_bias_initialized: if self.attn_bias_shape: self.attn_bias = torch.zeros( self.attn_bias_shape, device=device, dtype=dtype ) self.attn_bias = build_attn_bias( self.attn_impl, self.attn_bias, self.config.n_heads, self.config.max_seq_len, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max, ) assert self.n_heads % self.world_size == 0 block_size = self.n_heads // self.world_size self.attn_bias = self.attn_bias[ :, self.rank * block_size : (self.rank + 1) * block_size ] self._attn_bias_initialized = True if self.attn_impl == "flash": return (self.attn_bias, attention_mask) if self.attn_bias is not None: self.attn_bias = self.attn_bias.to(dtype=dtype, device=device) attn_bias = self.attn_bias if self.prefix_lm: assert isinstance(attn_bias, torch.Tensor) assert isinstance(prefix_mask, torch.Tensor) attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask) if self.attn_uses_sequence_id and sequence_id is not None: assert isinstance(attn_bias, torch.Tensor) attn_bias = self._apply_sequence_id(attn_bias, sequence_id) if attention_mask is not None: s_k = attention_mask.shape[-1] if attn_bias is None: attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype) else: _s_k = max(0, attn_bias.size(-1) - s_k) attn_bias = attn_bias[:, :, :, _s_k:] if prefix_mask is not None and attention_mask.shape != prefix_mask.shape: raise ValueError( f"attention_mask shape={attention_mask.shape} " + f"and prefix_mask shape={prefix_mask.shape} are not equal." ) min_val = torch.finfo(attn_bias.dtype).min attn_bias = attn_bias.masked_fill( ~attention_mask.view(-1, 1, 1, s_k), min_val ) return (attn_bias, None) def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor): (s_k, s_q) = attn_bias.shape[-2:] if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len: raise ValueError( "attn_bias does not match the expected shape. " + f"The last two dimensions should both be {self.config.max_length} " + f"but are {s_k} and {s_q}." ) seq_len = prefix_mask.shape[-1] if seq_len > self.config.max_seq_len: raise ValueError( f"prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}" ) attn_bias = attn_bias[..., :seq_len, :seq_len] causal = torch.tril( torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device) ).view(1, 1, seq_len, seq_len) prefix = prefix_mask.view(-1, 1, 1, seq_len) cannot_attend = ~torch.logical_or(causal, prefix.bool()) min_val = torch.finfo(attn_bias.dtype).min attn_bias = attn_bias.masked_fill(cannot_attend, min_val) return attn_bias def _apply_sequence_id( self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor ): seq_len = sequence_id.shape[-1] if seq_len > self.config.max_seq_len: raise ValueError( f"sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}" ) attn_bias = attn_bias[..., :seq_len, :seq_len] cannot_attend = torch.logical_not( torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len)) ).unsqueeze(1) min_val = torch.finfo(attn_bias.dtype).min attn_bias = attn_bias.masked_fill(cannot_attend, min_val) return attn_bias def forward( self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None, attention_mask: Optional[torch.ByteTensor] = None, prefix_mask: Optional[torch.ByteTensor] = None, sequence_id: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, use_cache: Optional[bool] = None, ): return_dict = ( return_dict if return_dict is not None else self.config.return_dict ) use_cache = use_cache if use_cache is not None else self.config.use_cache if attention_mask is not None: attention_mask = attention_mask.bool() if prefix_mask is not None: prefix_mask = prefix_mask.bool() if not return_dict: raise NotImplementedError( "return_dict False is not implemented yet for MPT" ) if output_attentions: if self.attn_impl != "torch": raise NotImplementedError( "output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`." ) if ( attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0] and self.training ): raise NotImplementedError( "MPT does not support training with left padding." ) if self.prefix_lm and prefix_mask is None: raise ValueError( "prefix_mask is a required argument when MPT is configured with prefix_lm=True." ) if self.training: if self.attn_uses_sequence_id and sequence_id is None: raise ValueError( "sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True " + "and the model is in train mode." ) elif self.attn_uses_sequence_id is False and sequence_id is not None: warnings.warn( "MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. " + "This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True." ) S = input_ids.size(1) assert ( S <= self.config.max_seq_len ), f"Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}" tok_emb = self.wte(input_ids) if self.alibi: x = tok_emb else: past_position = 0 if past_key_values is not None: if len(past_key_values) != self.config.n_layers: raise ValueError( f"past_key_values must provide a past_key_value for each attention " + f"layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r})." ) past_position = past_key_values[0][0].size(1) if self.attn_impl == "torch": past_position = past_key_values[0][0].size(3) if S + past_position > self.config.max_seq_len: raise ValueError( f"Cannot forward input with past sequence length {past_position} and current sequence length {S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}." ) pos = torch.arange( past_position, S + past_position, dtype=torch.long, device=input_ids.device, ).unsqueeze(0) if attention_mask is not None: pos = torch.clamp( pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[ :, past_position: ], min=0, ) pos_emb = self.wpe(pos) x = tok_emb + pos_emb (attn_bias, attention_mask) = self._attn_bias( device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, ) if use_cache and past_key_values is None: past_key_values = [() for _ in range(self.config.n_layers)] all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for b_idx, block in enumerate(self.blocks): if output_hidden_states: assert all_hidden_states is not None all_hidden_states = all_hidden_states + (x,) past_key_value = ( past_key_values[b_idx] if past_key_values is not None else None ) (x, attn_weights, past_key_value) = block( x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal, ) if past_key_values is not None: past_key_values[b_idx] = past_key_value if output_attentions: assert all_self_attns is not None all_self_attns = all_self_attns + (attn_weights,) x = self.norm_f(x) if output_hidden_states: assert all_hidden_states is not None all_hidden_states = all_hidden_states + (x,) return BaseModelOutputWithPast( last_hidden_state=x, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, ) class MPTForCausalLM(MPTPreTrainedModel): def __init__(self, config, weights): super().__init__(config) if not config.tie_word_embeddings: raise ValueError("MPTForCausalLM only supports tied word embeddings") self.transformer = MPTModel(config, weights) self.lm_head = TensorParallelHead.load( config, prefix="transformer.wte", weights=weights ) self.logit_scale = None if config.logit_scale is not None: logit_scale = config.logit_scale if isinstance(logit_scale, str): if logit_scale == "inv_sqrt_d_model": logit_scale = 1 / math.sqrt(config.d_model) else: raise ValueError( f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'." ) self.logit_scale = logit_scale def forward( self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None, attention_mask: Optional[torch.ByteTensor] = None, prefix_mask: Optional[torch.ByteTensor] = None, sequence_id: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, use_cache: Optional[bool] = None, ): return_dict = ( return_dict if return_dict is not None else self.config.return_dict ) use_cache = use_cache if use_cache is not None else self.config.use_cache outputs = self.transformer( input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, ) logits = self.lm_head(outputs.last_hidden_state) if self.logit_scale is not None: if self.logit_scale == 0: warnings.warn( f"Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs." ) logits *= self.logit_scale loss = None if labels is not None: labels = torch.roll(labels, shifts=-1) labels[:, -1] = -100 loss = F.cross_entropy( logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1) ) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs ): if inputs_embeds is not None: raise NotImplementedError("inputs_embeds is not implemented for MPT yet") attention_mask = kwargs["attention_mask"].bool() if attention_mask[:, -1].sum() != attention_mask.shape[0]: raise NotImplementedError( "MPT does not support generation with right padding." ) if self.transformer.attn_uses_sequence_id and self.training: sequence_id = torch.zeros_like(input_ids[:1]) else: sequence_id = None if past_key_values is not None: input_ids = input_ids[:, -1].unsqueeze(-1) if self.transformer.prefix_lm: prefix_mask = torch.ones_like(attention_mask) if kwargs.get("use_cache") == False: raise NotImplementedError( "MPT with prefix_lm=True does not support use_cache=False." ) else: prefix_mask = None return { "input_ids": input_ids, "attention_mask": attention_mask, "prefix_mask": prefix_mask, "sequence_id": sequence_id, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache", True), } @staticmethod def _reorder_cache(past_key_values, beam_idx): """Used by HuggingFace generate when using beam search with kv-caching. See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133 for an example in transformers. """ reordered_past = [] for layer_past in past_key_values: reordered_past += [ tuple( (past_state.index_select(0, beam_idx) for past_state in layer_past) ) ] return reordered_past
0
hf_public_repos/text-generation-inference/server/text_generation_server/models
hf_public_repos/text-generation-inference/server/text_generation_server/models/custom_modeling/flash_rw_modeling.py
import torch import torch.distributed from torch import nn from transformers.modeling_utils import PreTrainedModel from transformers.configuration_utils import PretrainedConfig from typing import Optional, List, Tuple from text_generation_server.utils import paged_attention, flash_attn from text_generation_server.utils.flash_attn import attention from text_generation_server.utils.layers import ( TensorParallelRowLinear, TensorParallelColumnLinear, TensorParallelEmbedding, TensorParallelHead, FastLayerNorm, PositionRotaryEmbedding, get_linear, ) def load_row(config, prefix: str, weights, bias: bool): weight = weights.get_multi_weights_row(prefix, quantize=config.quantize) if bias and weights.process_group.rank() == 0: # Rank is only on the first rank process bias = weights.get_tensor(f"{prefix}.bias") else: bias = None linear = get_linear(weight, bias, config.quantize) if config.parallel_attn: return linear else: return TensorParallelRowLinear(linear, process_group=weights.process_group) class RWConfig(PretrainedConfig): attribute_map = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self, model_type="RefinedWeb", vocab_size=250880, hidden_size=64, num_hidden_layers=None, num_attention_heads=None, layer_norm_epsilon=1e-5, initializer_range=0.02, use_cache=True, bos_token_id=1, eos_token_id=2, hidden_dropout=0.0, attention_dropout=0.0, num_kv_heads=None, multi_query=False, alibi=False, new_decoder_architecture=None, bias=False, parallel_attn=False, **kwargs, ): if alibi: raise NotImplementedError( "alibi is not supported by this version of the model" ) self.model_type = model_type self.alibi = False self.rotary = True self.vocab_size = vocab_size # Backward compatibility with n_embed kwarg n_embed = kwargs.pop("n_embed", None) self.hidden_size = hidden_size if n_embed is None else n_embed self.n_layer = ( num_hidden_layers if num_hidden_layers is not None else kwargs.pop("n_layer", 2) ) self.n_head = ( num_attention_heads if num_attention_heads is not None else kwargs.pop("n_head", 8) ) self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.use_cache = use_cache self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.bias = bias self.parallel_attn = parallel_attn self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id if num_kv_heads is not None: self.n_head_kv = num_kv_heads else: old_n_head_kv = kwargs.pop("n_head_kv", None) if old_n_head_kv is not None: self.n_head_kv = old_n_head_kv else: self.n_head_kv = 1 if multi_query else self.n_head if new_decoder_architecture is not None: self.new_decoder_architecture = new_decoder_architecture elif model_type == "RefinedWeb": self.new_decoder_architecture = True else: self.new_decoder_architecture = False super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) class FlashRWAttention(torch.nn.Module): def __init__( self, config, prefix, weights, ): super().__init__() self.num_heads = config.n_head self.num_heads_kv = config.n_head_kv self.hidden_size = config.hidden_size self.head_size = self.hidden_size // self.num_heads self.rotary_emb = PositionRotaryEmbedding.static( config=config, dim=self.head_size, base=10000.0, device=weights.device ) self.softmax_scale = self.head_size ** (-0.5) if self.num_heads % weights.process_group.size() != 0: raise ValueError( f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.num_heads = self.num_heads // weights.process_group.size() self.query_key_value = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.query_key_value", weights=weights, bias=config.bias, ) self.dense = load_row( config, prefix=f"{prefix}.dense", weights=weights, bias=config.bias ) if self.num_heads_kv == 1: self.kv_head_mapping = torch.zeros( self.num_heads, dtype=torch.int32, device=weights.device ) else: self.kv_head_mapping = torch.arange( 0, self.num_heads, dtype=torch.int32, device=weights.device ) def forward( self, hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ): qkv = self.query_key_value(hidden_states) # Split query from key_value query, kv = qkv.split( [self.head_size * self.num_heads, 2 * self.head_size * self.num_heads_kv], dim=1, ) # Prepare query and key_value for indexing query = query.view(-1, self.num_heads, self.head_size) kv = kv.view(-1, 2, self.num_heads_kv, self.head_size) # Inplace rotary self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin) paged_attention.reshape_and_cache( kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots ) # output attn_output = torch.empty_like(query) # Prefill if cu_seqlen_prefill is not None: # flash attention flash_attn.attention( query, torch.select(kv, dim=1, index=0), torch.select(kv, dim=1, index=1), attn_output, cu_seqlen_prefill, max_s, self.softmax_scale, ) # Decode else: paged_attention.attention( attn_output, query, kv_cache[0], kv_cache[1], self.kv_head_mapping, self.softmax_scale, block_tables, input_lengths, max_s, ) return self.dense(attn_output.view(-1, self.num_heads * self.head_size)) class FlashRWLargeAttention(torch.nn.Module): def __init__( self, config, prefix, weights, ): super().__init__() hidden_size = config.hidden_size num_heads = config.n_head # num_heads_kv = config.n_head_kv num_groups = config.n_head_kv self.hidden_size = hidden_size self.head_size = hidden_size // num_heads self.num_groups = num_groups self.rotary_emb = PositionRotaryEmbedding.static( config=config, dim=self.head_size, base=10000.0, device=weights.device ) self.softmax_scale = self.head_size ** (-0.5) # self.num_groups = num_heads // (num_heads_kv * 2) self.num_heads = num_heads // self.num_groups # self.num_heads_kv = num_heads_kv // self.num_groups process_group = weights.process_group if process_group.size() > self.num_groups: raise NotImplementedError( f"Tensor Parallelism is not implemented for world_size > n groups" ) if self.num_groups % process_group.size() != 0: raise NotImplementedError( f"Tensor Parallelism is not implemented for {self.num_groups} not divisible by {process_group.size()}" ) self.num_groups = self.num_groups // process_group.size() self.query_key_value = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.query_key_value", weights=weights, bias=config.bias, ) self.dense = load_row( config, prefix=f"{prefix}.dense", weights=weights, bias=config.bias ) self.kv_head_mapping = torch.arange( 0, self.num_groups, dtype=torch.int32, device=weights.device ).repeat_interleave(self.num_heads) def forward( self, hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ): qkv = self.query_key_value(hidden_states) qkv = qkv.view(-1, self.num_groups, self.num_heads + 2, self.head_size) # Split on group dimension query, kv = qkv.split( [self.num_heads, 2], dim=2, ) # Merge groups and heads query = query.reshape(-1, self.num_groups * self.num_heads, self.head_size) # Inplace rotary self.rotary_emb(query, torch.select(kv, dim=2, index=0), cos, sin) paged_attention.reshape_and_cache( kv[:, :, 0].contiguous(), kv[:, :, 1].contiguous(), kv_cache[0], kv_cache[1], slots, ) # output attn_output = torch.empty_like(query) # Prefill if cu_seqlen_prefill is not None: # flash attention flash_attn.attention( query, torch.select(kv, dim=2, index=0), torch.select(kv, dim=2, index=1), attn_output, cu_seqlen_prefill, max_s, self.softmax_scale, ) # Decode else: paged_attention.attention( attn_output, query, kv_cache[0], kv_cache[1], self.kv_head_mapping, self.softmax_scale, block_tables, input_lengths, max_s, ) return self.dense( attn_output.view(-1, self.num_groups * self.num_heads * self.head_size) ) class FlashMLP(nn.Module): def __init__(self, config, prefix, weights): super().__init__() self.act = torch.nn.functional.gelu self.dense_h_to_4h = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.dense_h_to_4h", weights=weights, bias=config.bias ) self.dense_4h_to_h = load_row( config, prefix=f"{prefix}.dense_4h_to_h", weights=weights, bias=config.bias ) def forward(self, hidden_states): hidden_states = self.dense_h_to_4h(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dense_4h_to_h(hidden_states) return hidden_states class FlashRWLayer(nn.Module): def __init__( self, layer_id, config, weights, ): super().__init__() parallel_attn = config.parallel_attn self.parallel_attn = parallel_attn prefix = f"transformer.h.{layer_id}" self.input_layernorm = FastLayerNorm.load( prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.layer_norm_epsilon, ) self.self_attention = FlashRWAttention( config, prefix=f"{prefix}.self_attention", weights=weights, ) self.post_attention_layernorm = ( FastLayerNorm.load( prefix=f"{prefix}.post_attention_layernorm", weights=weights, eps=config.layer_norm_epsilon, ) if not parallel_attn else None ) self.mlp = FlashMLP( config, prefix=f"{prefix}.mlp", weights=weights, ) self.process_group = weights.process_group def forward( self, hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ): if self.parallel_attn: ln_hidden_states, residual = self.input_layernorm(hidden_states, residual) attn_output = self.self_attention( ln_hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ) mlp_output = self.mlp(ln_hidden_states) intermediate = mlp_output + attn_output if self.process_group.size() > 1: torch.distributed.all_reduce(intermediate, group=self.process_group) return intermediate, residual else: hidden_states, residual = self.input_layernorm(hidden_states, residual) hidden_states = self.self_attention( hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ) hidden_states, residual = self.post_attention_layernorm( hidden_states, residual ) mlp_output = self.mlp(hidden_states) return mlp_output, residual class FlashRWLargeLayer(nn.Module): def __init__(self, layer_id, config, weights): super().__init__() prefix = f"transformer.h.{layer_id}" self.ln_attn = FastLayerNorm.load( prefix=f"{prefix}.ln_attn", weights=weights, eps=config.layer_norm_epsilon, ) self.ln_mlp = FastLayerNorm.load( prefix=f"{prefix}.ln_mlp", weights=weights, eps=config.layer_norm_epsilon, ) self.self_attention = FlashRWLargeAttention( config, prefix=f"{prefix}.self_attention", weights=weights, ) assert config.parallel_attn, "This version doesn't support non parallel_attn" self.mlp = FlashMLP(config, prefix=f"{prefix}.mlp", weights=weights) self.process_group = weights.process_group def forward( self, hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ): ln_attn, residual = self.ln_attn(hidden_states, residual) ln_mlp, _ = self.ln_mlp(residual) # Self attention. attn_output = self.self_attention( ln_attn, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ) # MLP. mlp_output = self.mlp(ln_mlp) intermediate = attn_output + mlp_output if self.process_group.size() > 1: torch.distributed.all_reduce(intermediate, group=self.process_group) return intermediate, residual class FlashRWPreTrainedModel(PreTrainedModel): config_class = RWConfig class FlashRWModel(FlashRWPreTrainedModel): def __init__(self, config, weights): super().__init__(config) self.config = config self.word_embeddings = TensorParallelEmbedding( prefix="transformer.word_embeddings", weights=weights ) if config.new_decoder_architecture: self.h = nn.ModuleList( [ FlashRWLargeLayer(layer_id, config, weights) for layer_id in range(config.num_hidden_layers) ] ) self.cache_size = self.h[0].self_attention.num_groups else: self.h = nn.ModuleList( [ FlashRWLayer(layer_id, config, weights) for layer_id in range(config.num_hidden_layers) ] ) self.cache_size = self.h[0].self_attention.num_heads_kv self.ln_f = FastLayerNorm.load( prefix="transformer.ln_f", weights=weights, eps=config.layer_norm_epsilon, ) self.head_size = self.h[0].self_attention.head_size def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, input_lengths: torch.Tensor, max_s: int, ) -> torch.Tensor: hidden_states = self.word_embeddings(input_ids) # Get rotary cos and sin for this forward # Avoid to index in each layer cos, sin = self.h[0].self_attention.rotary_emb.get_cos_sin( position_ids, max_s, hidden_states.dtype ) residual = None for i, layer in enumerate(self.h): hidden_states, residual = layer( hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache[i], block_tables, slots, input_lengths, max_s, ) hidden_states, _ = self.ln_f(hidden_states, residual) return hidden_states class FlashRWForCausalLM(FlashRWPreTrainedModel): def __init__(self, config, weights): super().__init__(config) self.transformer = FlashRWModel(config, weights) self.lm_head = TensorParallelHead.load( config, prefix="lm_head", weights=weights ) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, input_lengths: torch.Tensor, max_s: int, lm_head_indices: Optional[torch.Tensor] = None, ) -> torch.Tensor: hidden_states = self.transformer( input_ids, position_ids, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ) if lm_head_indices is not None: hidden_states = hidden_states[lm_head_indices] logits = self.lm_head(hidden_states) return logits
0
hf_public_repos/text-generation-inference/server/text_generation_server/models
hf_public_repos/text-generation-inference/server/text_generation_server/models/custom_modeling/idefics_image_processing.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for Idefics.""" from typing import Callable, Dict, List, Optional, Union, Iterable import numpy as np from PIL import Image from transformers.image_processing_utils import BaseImageProcessor, BatchFeature from transformers.image_transforms import ( resize, to_channel_dimension_format, rescale, normalize, ) from transformers.image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from io import BytesIO import base64 import requests from transformers import TensorType, is_torch_available IDEFICS_STANDARD_MEAN = [0.48145466, 0.4578275, 0.40821073] IDEFICS_STANDARD_STD = [0.26862954, 0.26130258, 0.27577711] def convert_to_rgb(image): # `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background # for transparent images. The call to `alpha_composite` handles this case if image.mode == "RGB": return image image_rgba = image.convert("RGBA") background = Image.new("RGBA", image_rgba.size, (255, 255, 255)) alpha_composite = Image.alpha_composite(background, image_rgba) alpha_composite = alpha_composite.convert("RGB") return alpha_composite class IdeficsImageProcessor(BaseImageProcessor): r""" Constructs a Idefics image processor. Args: image_size (`int`, *optional*, defaults to `224`): Resize to image size image_num_channels (`int`, *optional*, defaults to `3`): Number of image channels. image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, image_size: int = 224, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, image_num_channels: Optional[int] = 3, **kwargs, ) -> None: super().__init__(**kwargs) self.image_size = image_size self.image_num_channels = image_num_channels self.image_mean = image_mean self.image_std = image_std def preprocess( self, images: ImageInput, image_num_channels: Optional[int] = 3, image_size: Optional[Dict[str, int]] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, transform: Callable = None, **kwargs, ) -> TensorType.PYTORCH: """ Preprocess a batch of images. Args: images (`ImageInput`): A list of images to preprocess. image_size (`int`, *optional*, defaults to `self.image_size`): Resize to image size image_num_channels (`int`, *optional*, defaults to `self.image_num_channels`): Number of image channels. image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. transform (`Callable`, *optional*, defaults to `None`): A custom transform function that accepts a single image can be passed for training. For example, `torchvision.Compose` can be used to compose multiple transforms. If `None` - an inference mode is assumed - and then a preset of inference-specific transforms will be applied to the images Returns: a PyTorch tensor of the processed images """ image_size = image_size if image_size is not None else self.image_size image_num_channels = ( image_num_channels if image_num_channels is not None else self.image_num_channels ) image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std size = (image_size, image_size) if len(images) == 0: return [] images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # For training a user needs to pass their own set of transforms as a Callable. # For reference this is what was used in the original IDEFICS training: # transform = transforms.Compose([ # convert_to_rgb, # transforms.RandomResizedCrop((size, size), scale=(0.9, 1.0), interpolation=transforms.InterpolationMode.BICUBIC), # transforms.ToTensor(), # transforms.Normalize(mean=image_mean, std=image_std), # ]) if transform is not None: if not is_torch_available(): raise ImportError("To pass in `transform` torch must be installed") import torch images = [transform(x) for x in images] return torch.stack(images) # for inference we do the exact transforms that were used to train IDEFICS images = [convert_to_rgb(x) for x in images] # further transforms expect numpy arrays images = [to_numpy_array(x) for x in images] images = [resize(x, size, resample=PILImageResampling.BICUBIC) for x in images] images = [self.rescale(image=image, scale=1 / 255) for image in images] images = [self.normalize(x, mean=image_mean, std=image_std) for x in images] images = [ to_channel_dimension_format(x, ChannelDimension.FIRST) for x in images ] # TODO: this converts to torch tensors - switch to convert_to_tensors once it becomes available images = BatchFeature( data={"pixel_values": images}, tensor_type=TensorType.PYTORCH )["pixel_values"] return images def fetch_images(self, image_url_or_urls: Union[str, List[str]]): """ Convert a single or a list of urls into the corresponding `PIL.Image` objects. If a single url is passed, the return value will be a single object. If a list is passed a list of objects is returned. """ headers = { "User-Agent": ( "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0" " Safari/537.36" ) } if isinstance(image_url_or_urls, list): return [self.fetch_images(x) for x in image_url_or_urls] elif isinstance(image_url_or_urls, str): image = image_url_or_urls if image.startswith("http://") or image.startswith("https://"): response = requests.get( image_url_or_urls, stream=True, headers=headers, timeout=(1, 5) ) response.raise_for_status() content = response.content elif image.startswith("data:"): # https://stackoverflow.com/questions/17090571/is-there-a-way-to-set-background-image-as-a-base64-encoded-image #  image = image.split(",")[-1] content = base64.b64decode(image) else: raise ValueError(f"Unrecognized image {image}") try: image = Image.open(BytesIO(content)) # image.verify() except Exception: raise ValueError(f"Could not load image from url {image_url_or_urls}") return image else: raise ValueError( f"only a single or a list of entries is supported but got type={type(image_url_or_urls)}" ) def rescale( self, image: np.ndarray, scale: float, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Rescale an image by a scale factor. image = image * scale. Args: image (`np.ndarray`): Image to rescale. scale (`float`): The scaling factor to rescale pixel values by. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. Returns: `np.ndarray`: The rescaled image. """ # return rescale(image, scale=scale, data_format=data_format, input_data_format=input_data_format, **kwargs) # requires 4.32 return rescale(image, scale=scale, data_format=data_format, **kwargs) def normalize( self, image: np.ndarray, mean: Union[float, Iterable[float]], std: Union[float, Iterable[float]], data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Normalize an image. image = (image - image_mean) / image_std. Args: image (`np.ndarray`): Image to normalize. mean (`float` or `Iterable[float]`): Image mean to use for normalization. std (`float` or `Iterable[float]`): Image standard deviation to use for normalization. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. Returns: `np.ndarray`: The normalized image. """ # TODO 4.32 return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs) import transformers transformers.IdeficsImageProcessor = IdeficsImageProcessor
0
hf_public_repos/text-generation-inference/server/text_generation_server/models
hf_public_repos/text-generation-inference/server/text_generation_server/models/custom_modeling/opt_modeling.py
# coding=utf-8 # Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch OPT model.""" import random from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from transformers.activations import ACT2FN from transformers.modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, ) from transformers.modeling_utils import PreTrainedModel from transformers import OPTConfig from text_generation_server.utils.layers import ( FastLinear, TensorParallelColumnLinear, TensorParallelEmbedding, TensorParallelRowLinear, TensorParallelHead, ) EPS = 1e-5 # Copied from transformers.models.bart.modeling_bart._make_causal_mask def _make_causal_mask( input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0, ): """ Make causal mask used for bi-directional self-attention. """ bsz, tgt_len = input_ids_shape mask = torch.full( (tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device, ) mask_cond = torch.arange(mask.size(-1), device=device) mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) mask = mask.to(dtype) if past_key_values_length > 0: mask = torch.cat( [ torch.zeros( tgt_len, past_key_values_length, dtype=dtype, device=device ), mask, ], dim=-1, ) return mask[None, None, :, :].expand( bsz, 1, tgt_len, tgt_len + past_key_values_length ) def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ bsz, src_len = mask.size() tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill( inverted_mask.to(torch.bool), torch.finfo(dtype).min ) class OPTLearnedPositionalEmbedding(nn.Module): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, weights): super().__init__() self.offset = 2 self.weight = nn.Parameter( weights.get_tensor("model.decoder.embed_positions.weight") ) def forward( self, attention_mask: torch.LongTensor, past_key_values_length: int = 0 ): """`input_ids_shape` is expected to be [bsz x seqlen].""" attention_mask = attention_mask.long() # create positions depending on attention_mask positions = ( torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask ).long() - 1 # cut positions if `past_key_values_length` is > 0 positions = positions[:, past_key_values_length:] return torch.nn.functional.embedding(positions + self.offset, self.weight) class OPTAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, config, prefix, weights, is_decoder: bool = False, bias: bool = True, process_group=None, ): super().__init__() hidden_size = config.hidden_size num_heads = config.num_attention_heads self.hidden_size = hidden_size self.num_heads = num_heads self.dropout = config.dropout self.head_dim = hidden_size // num_heads if (self.head_dim * num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder process_group = weights.process_group if self.num_heads % weights.process_group.size() != 0: raise ValueError( f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.num_heads = self.num_heads // process_group.size() self.hidden_size = self.hidden_size // process_group.size() self.q_proj = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.q_proj", weights=weights, bias=bias ) self.k_proj = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.k_proj", weights=weights, bias=bias ) self.v_proj = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.v_proj", weights=weights, bias=bias ) self.out_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.out_proj", weights=weights, bias=bias ) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return ( tensor.view(bsz, seq_len, self.num_heads, self.head_dim) .transpose(1, 2) .contiguous() ) def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = ( attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask ) attn_weights = torch.max( attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min) ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) # upcast to fp32 if the weights are in fp16. Please see https://github.com/huggingface/transformers/pull/17437 if attn_weights.dtype == torch.float16: attn_weights = nn.functional.softmax( attn_weights, dim=-1, dtype=torch.float32 ).to(torch.float16) else: attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view( bsz, self.num_heads, tgt_len, src_len ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view( bsz, self.num_heads, tgt_len, src_len ) attn_weights = attn_weights_reshaped.view( bsz * self.num_heads, tgt_len, src_len ) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout( attn_weights, p=self.dropout, training=self.training ) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `hidden_size` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned aross GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.hidden_size) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value class OPTDecoderLayer(nn.Module): def __init__(self, layer_id: int, config: OPTConfig, weights): super().__init__() self.process_group = weights.process_group self.hidden_size = config.hidden_size prefix = f"model.decoder.layers.{layer_id}" self.self_attn = OPTAttention( config, prefix=f"{prefix}.self_attn", weights=weights, is_decoder=True, bias=config.enable_bias, ) self.do_layer_norm_before = config.do_layer_norm_before self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.self_attn_layer_norm = nn.LayerNorm.load( prefix=f"{prefix}.self_attn_layer_norm", weights=weights, eps=EPS ) self.fc1 = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.fc1", weights=weights, bias=config.enable_bias ) self.fc2 = TensorParallelRowLinear.load( config, prefix=f"{prefix}.fc2", weights=weights, bias=config.enable_bias ) self.final_layer_norm = nn.LayerNorm.load( prefix=f"{prefix}.final_layer_norm", weights=weights, eps=EPS ) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, past_key_value: Optional[Tuple[torch.Tensor]] = None, ) -> Tuple[ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] ]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, hidden_size)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`, *optional*): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ residual = hidden_states # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention if self.do_layer_norm_before: hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout( hidden_states, p=self.dropout, training=self.training ) hidden_states = residual + hidden_states # 350m applies layer norm AFTER attention if not self.do_layer_norm_before: hidden_states = self.self_attn_layer_norm(hidden_states) # Fully Connected hidden_states_shape = hidden_states.shape hidden_states = hidden_states.reshape(-1, hidden_states.size(-1)) residual = hidden_states # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention if self.do_layer_norm_before: hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout( hidden_states, p=self.dropout, training=self.training ) hidden_states = (residual + hidden_states).view(hidden_states_shape) # 350m applies layer norm AFTER attention if not self.do_layer_norm_before: hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs class OPTPreTrainedModel(PreTrainedModel): config_class = OPTConfig class OPTDecoder(OPTPreTrainedModel): def __init__(self, config: OPTConfig, weights): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_position_embeddings self.vocab_size = config.vocab_size self.embed_tokens = TensorParallelEmbedding( prefix="model.decoder.embed_tokens", weights=weights ) self.embed_positions = OPTLearnedPositionalEmbedding(weights) if config.word_embed_proj_dim != config.hidden_size: self.project_out = FastLinear.load( config, prefix="model.decoder.project_out", weights=weights, bias=False ) else: self.project_out = None if config.word_embed_proj_dim != config.hidden_size: self.project_in = FastLinear.load( config, prefix="model.decoder.project_in", weights=weights, bias=False ) else: self.project_in = None # Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility # with checkpoints that have been fine-tuned before transformers v4.20.1 # see https://github.com/facebookresearch/metaseq/pull/164 if config.do_layer_norm_before and not config._remove_final_layer_norm: self.final_layer_norm = nn.LayerNorm.load( prefix="model.decoder.final_layer_norm", weights=weights, eps=EPS ) else: self.final_layer_norm = None self.layers = nn.ModuleList( [ OPTDecoderLayer(layer_id, config, weights) for layer_id in range(config.num_hidden_layers) ] ) # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask def _prepare_decoder_attention_mask( self, attention_mask, input_shape, inputs_embeds, past_key_values_length ): # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] combined_attention_mask = None if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask( input_shape, inputs_embeds.dtype, device=inputs_embeds.device, past_key_values_length=past_key_values_length, ) if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] expanded_attn_mask = _expand_mask( attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ).to(inputs_embeds.device) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask ) return combined_attention_mask def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time" ) elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError( "You have to specify either decoder_input_ids or decoder_inputs_embeds" ) if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) batch_size, seq_length = input_shape past_key_values_length = ( past_key_values[0][0].shape[2] if past_key_values is not None else 0 ) # required mask seq length can be calculated via length of past mask_seq_length = past_key_values_length + seq_length # embed positions if attention_mask is None: attention_mask = torch.ones( batch_size, mask_seq_length, device=inputs_embeds.device ) causal_attention_mask = self._prepare_decoder_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) pos_embeds = self.embed_positions(attention_mask, past_key_values_length) if self.project_in is not None: inputs_embeds = self.project_in(inputs_embeds) hidden_states = inputs_embeds + pos_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = () if use_cache else None # check if head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask], ["head_mask"]): if attn_mask is not None: if attn_mask.size()[0] != (len(self.layers)): raise ValueError( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if self.training and (dropout_probability < self.layerdrop): continue past_key_value = ( past_key_values[idx] if past_key_values is not None else None ) layer_outputs = decoder_layer( hidden_states, attention_mask=causal_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if self.final_layer_norm is not None: hidden_states = self.final_layer_norm(hidden_states) if self.project_out is not None: hidden_states = self.project_out(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None ) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class OPTModel(OPTPreTrainedModel): def __init__(self, config: OPTConfig, weights): super().__init__(config) self.decoder = OPTDecoder(config, weights) # Initialize weights and apply final processing def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs return BaseModelOutputWithPast( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, ) class OPTForCausalLM(OPTPreTrainedModel): def __init__(self, config, weights): super().__init__(config) self.model = OPTModel(config, weights) self.lm_head = TensorParallelHead.load( config, prefix="model.decoder.embed_tokens", weights=weights ) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model.decoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = self.lm_head(outputs[0]).contiguous() loss = None return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs, ): if past_key_values: input_ids = input_ids[:, -1:] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple( past_state.index_select(0, beam_idx) for past_state in layer_past ), ) return reordered_past
0
hf_public_repos/text-generation-inference/server/text_generation_server/models
hf_public_repos/text-generation-inference/server/text_generation_server/models/custom_modeling/neox_modeling.py
# coding=utf-8 # Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch GPTNeoX model.""" from typing import Optional, Tuple, Union import os import torch import torch.distributed import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.activations import ACT2FN from transformers.file_utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from transformers.modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, QuestionAnsweringModelOutput, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from transformers.modeling_utils import PreTrainedModel from transformers import GPTNeoXConfig from loguru import logger from text_generation_server.utils.layers import ( TensorParallelColumnLinear, TensorParallelEmbedding, TensorParallelRowLinear, TensorParallelHead, ) CUSTOM_KERNELS_ENABLED = False if ( torch.cuda.is_available() and not os.environ.get("DISABLE_CUSTOM_KERNELS", "False") == "True" ): try: from custom_kernels import fused_attention_cuda CUSTOM_KERNELS_ENABLED = True except ImportError: pass if not CUSTOM_KERNELS_ENABLED: logger.warning("We're not using custom kernels.") def make_causal_mask( input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int ) -> torch.BoolTensor: """ Make causal mask used for self-attention. """ batch_size, target_length = input_ids_shape mask = torch.ones( (target_length, target_length + past_key_values_length), dtype=torch.bool, device=device, ) mask = mask.triu(1 + past_key_values_length) expanded_mask = mask.unsqueeze(0).expand( batch_size, target_length, target_length + past_key_values_length ) return expanded_mask def expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor: """ Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`. """ batch_size, src_length = mask.shape tgt_length = tgt_length if tgt_length is not None else src_length expanded_mask = ~(mask[:, None, :].to(torch.bool)) return expanded_mask.expand(batch_size, tgt_length, src_length) def prepare_attn_mask( attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int, ) -> torch.BoolTensor: # create causal mask # [batch_size, seq_length] -> [batch_size, tgt_length, src_length] combined_attention_mask = None device = attention_mask.device _, src_length = input_shape if src_length > 1: combined_attention_mask = make_causal_mask( input_shape, device=device, past_key_values_length=past_key_values_length ) # [batch_size, seq_length] -> [batch_size, tgt_length, src_length] expanded_attn_mask = expand_mask(attention_mask, tgt_length=src_length) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask ) return combined_attention_mask class GPTNeoXPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ class GPTNeoXAttention(nn.Module): def __init__(self, config, prefix, weights): super().__init__() self.num_attention_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.head_size = self.hidden_size // self.num_attention_heads self.rotary_ndims = int(self.head_size * config.rotary_pct) max_positions = config.max_position_embeddings # ??? TODO # self.register_buffer( # "bias", # torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view( # 1, 1, max_positions, max_positions # ), # ) # self.register_buffer("masked_bias", torch.tensor(-1e9)) self.rotary_emb = RotaryEmbedding( self.rotary_ndims, config.max_position_embeddings, base=config.rotary_emb_base, ) self.rotary_emb.inv_freq = nn.Parameter( weights.get_tensor(f"{prefix}.rotary_emb.inv_freq") ) self.inv_norm_factor = 1.0 / torch.sqrt( torch.tensor(self.head_size, dtype=torch.float32) ).to(torch.get_default_dtype()) if self.num_attention_heads % weights.process_group.size() != 0: raise ValueError( f"`num_attention_heads` must be divisible by `num_shards` " f"(got `num_attention_heads`: {self.num_attention_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.num_attention_heads = ( self.num_attention_heads // weights.process_group.size() ) self.query_key_value = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.query_key_value", weights=weights, bias=True ) self.dense = TensorParallelRowLinear.load( config, prefix=f"{prefix}.dense", weights=weights, bias=True ) def forward( self, hidden_states, position_ids, attention_mask, head_mask=None, layer_past=None, use_cache=False, output_attentions=False, ): has_layer_past = layer_past is not None # Compute QKV # Attention heads [batch, seq_len, hidden_size] # --> [batch, seq_len, (np * 3 * head_size)] qkv = self.query_key_value(hidden_states) # [batch, seq_len, (num_heads * 3 * head_size)] # --> [batch, seq_len, num_heads, 3 * head_size] new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size) qkv = qkv.view(*new_qkv_shape).permute(0, 2, 1, 3) # [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size] query, key, value = qkv.split(self.head_size, -1) # Compute token offset for rotary embeddings (when decoding) seq_len = key.shape[-2] if has_layer_past: seq_len += layer_past[0].shape[-2] # Compute rotary embeddings on rotary_ndims query_rot = query[..., : self.rotary_ndims] key_rot = key[..., : self.rotary_ndims] query_rot, key_rot = self.rotary_emb(query_rot, key_rot, position_ids, seq_len) query[..., : self.rotary_ndims] = query_rot key[..., : self.rotary_ndims] = key_rot if CUSTOM_KERNELS_ENABLED: attn_output, present, attn_weights = fused_attention_cuda.forward( query, key, value, layer_past, attention_mask, head_mask, self.inv_norm_factor, self.num_attention_heads, use_cache, ) else: # Cache QKV values if has_layer_past: past_key = layer_past[0] past_value = layer_past[1] key = torch.cat((past_key, key), dim=-2) value = torch.cat((past_value, value), dim=-2) present = (key, value) if use_cache else None # Compute attention attn_output, attn_weights = self._attn( query, key, value, attention_mask, head_mask ) # Reshape outputs attn_output = self._merge_heads( attn_output, self.num_attention_heads, self.head_size ) attn_output = self.dense(attn_output) outputs = (attn_output, present) if output_attentions: outputs += (attn_weights,) return outputs @classmethod def _split_heads(cls, tensor, num_attention_heads, attn_head_size): """ Splits hidden dim into attn_head_size and num_attention_heads """ # tensor: [bs, seq_len, hidden_size] new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size) # -> [bs, seq_len, num_attention_heads, attn_head_size] tensor = tensor.view(new_shape) # -> [bs, num_attention_heads, seq_len, attn_head_size] tensor = tensor.permute(0, 2, 1, 3) return tensor @classmethod def _merge_heads(cls, tensor, num_attention_heads, attn_head_size): """ Merges attn_head_size dim and num_attn_heads dim into hidden dim """ # tensor [bs, num_attention_heads, seq_len, attn_head_size] tensor = tensor.permute(0, 2, 1, 3).contiguous() # -> [bs, seq_len, num_attention_heads, attn_head_size] tensor = tensor.view( tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size ) # -> [bs, seq_len, hidden_size] return tensor def _attn(self, query, key, value, attention_mask=None, head_mask=None): # q, k, v: [bs, num_attention_heads, seq_len, attn_head_size] # compute causal mask from causal mask buffer batch_size, num_attention_heads, query_length, attn_head_size = query.size() key_length = key.size(-2) query = query.reshape( batch_size * num_attention_heads, query_length, attn_head_size ) key = key.reshape(batch_size * num_attention_heads, key_length, attn_head_size) attn_scores = torch.zeros( 1, dtype=query.dtype, device=key.device, ).expand(batch_size * num_attention_heads, query_length, key_length) attn_scores = torch.baddbmm( attn_scores, query, key.transpose(1, 2), beta=1.0, alpha=self.inv_norm_factor, ) # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length] input_dtype = attn_scores.dtype if input_dtype in [torch.float16, torch.bfloat16]: attn_scores = attn_scores.to(torch.float) attn_scores = torch.where( attention_mask, torch.finfo(attn_scores.dtype).min, attn_scores ) attn_scores = attn_scores.view( batch_size, num_attention_heads, query_length, key_length ) attn_weights = nn.functional.softmax(attn_scores, dim=-1) attn_weights = attn_weights.to(value.dtype) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask attn_output = torch.matmul(attn_weights, value) return attn_output, attn_weights class RotaryEmbedding(torch.nn.Module): def __init__(self, dim, max_position_embeddings, base=10000, device=None): super().__init__() self.true_inv_freq = 1.0 / ( base ** (torch.arange(0, dim, 2).float().to(device) / dim) ) self.register_buffer("inv_freq", self.true_inv_freq) # Build here to make `torch.jit.trace` work. self.max_seq_len_cached = max_position_embeddings self.cos_cached = None self.sin_cached = None @staticmethod def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) @staticmethod def _create_cos_sin(inv_freq, max_position_embeddings, dtype, device): t = torch.arange( max_position_embeddings, device=inv_freq.device, dtype=inv_freq.dtype ) freqs = torch.einsum("i,j->ij", t, inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) return emb.cos().to(device).to(dtype), emb.sin().to(device).to(dtype) def forward(self, q, k, position_ids, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] if ( seq_len > self.max_seq_len_cached or self.cos_cached is None or self.sin_cached is None ): if seq_len > self.max_seq_len_cached: self.max_seq_len_cached = seq_len self.cos_cached, self.sin_cached = self._create_cos_sin( self.true_inv_freq, self.max_seq_len_cached, q.dtype, q.device ) return rotary_forward(q, k, self.cos_cached, self.sin_cached, position_ids) @torch.jit.script def rotary_forward(q, k, cos, sin, position_ids): cos = cos[position_ids].unsqueeze(1) sin = sin[position_ids].unsqueeze(1) chunk_size = q.shape[-1] // 2 q1, q2 = q.split(chunk_size, -1) q_rotated = torch.cat((-q2, q1), dim=-1) k1, k2 = k.split(chunk_size, -1) k_rotated = torch.cat((-k2, k1), dim=-1) q_embed = (q * cos) + (q_rotated * sin) k_embed = (k * cos) + (k_rotated * sin) return q_embed, k_embed class GPTNeoXMLP(nn.Module): def __init__(self, config, prefix, weights): super().__init__() self.act = ( ACT2FN[config.hidden_act] if "gelu_fast" not in config.hidden_act else lambda x: torch.nn.functional.gelu(x, approximate="tanh") ) self.dense_h_to_4h = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.dense_h_to_4h", weights=weights, bias=True ) self.dense_4h_to_h = TensorParallelRowLinear.load( config, prefix=f"{prefix}.dense_4h_to_h", weights=weights, bias=True ) def forward(self, hidden_states): hidden_states = self.dense_h_to_4h(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dense_4h_to_h(hidden_states) return hidden_states class GPTNeoXLayer(nn.Module): def __init__(self, layer_id, config, weights): super().__init__() self.use_parallel_residual = config.use_parallel_residual self.input_layernorm = nn.LayerNorm.load( prefix=f"gpt_neox.layers.{layer_id}.input_layernorm", weights=weights, eps=config.layer_norm_eps, ) self.post_attention_layernorm = nn.LayerNorm.load( prefix=f"gpt_neox.layers.{layer_id}.post_attention_layernorm", weights=weights, eps=config.layer_norm_eps, ) self.attention = GPTNeoXAttention( config, prefix=f"gpt_neox.layers.{layer_id}.attention", weights=weights ) self.mlp = GPTNeoXMLP( config, prefix=f"gpt_neox.layers.{layer_id}.mlp", weights=weights ) def forward( self, hidden_states, position_ids, attention_mask=None, head_mask=None, use_cache=False, layer_past=None, output_attentions=False, ): attention_layer_outputs = self.attention( self.input_layernorm(hidden_states), attention_mask=attention_mask, position_ids=position_ids, layer_past=layer_past, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attn_output = attention_layer_outputs[ 0 ] # output_attn: attn_output, present, (attn_weights) outputs = attention_layer_outputs[1:] if self.use_parallel_residual: # pseudocode: # x = x + attn(ln1(x)) + mlp(ln2(x)) mlp_output = self.mlp(self.post_attention_layernorm(hidden_states)) hidden_states = mlp_output + attn_output + hidden_states else: # pseudocode: # x = x + attn(ln1(x)) # x = x + mlp(ln2(x)) attn_output = attn_output + hidden_states mlp_output = self.mlp(self.post_attention_layernorm(attn_output)) hidden_states = mlp_output + attn_output if use_cache: outputs = ( hidden_states, ) + outputs # hidden_states, present, (attn_weights) else: outputs = (hidden_states,) + outputs[1:] # hidden_states, (attn_weights) return outputs class GPTNeoXModel(GPTNeoXPreTrainedModel): def __init__(self, config, weights): super().__init__(config) self.config = config self.num_attention_heads = config.num_attention_heads self.embed_in = TensorParallelEmbedding( prefix="gpt_neox.embed_in", weights=weights ) self.layers = nn.ModuleList( [ GPTNeoXLayer(layer_id, config, weights) for layer_id in range(config.num_hidden_layers) ] ) self.final_layer_norm = nn.LayerNorm.load( prefix="gpt_neox.final_layer_norm", weights=weights, eps=config.layer_norm_eps, ) self.tp_world_size = weights.process_group.size() def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids=None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: r""" past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) use_cache = use_cache if use_cache is not None else self.config.use_cache if input_ids is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape if past_key_values is None: past_length = 0 past_key_values = tuple([None] * self.config.num_hidden_layers) else: past_length = past_key_values[0][0].size(-2) if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_length, seq_length + past_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0).view(-1, seq_length) else: position_ids = position_ids.view(-1, seq_length).long() if inputs_embeds is None: inputs_embeds = self.embed_in(input_ids) hidden_states = inputs_embeds # Attention mask. seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values[0] is not None: past_key_values_length = past_key_values[0][0].shape[-1] seq_length_with_past = seq_length_with_past + past_key_values_length if attention_mask is None: attention_mask = torch.ones( (batch_size, seq_length_with_past), device=hidden_states.device ) else: attention_mask = attention_mask.to(hidden_states.device) causal_mask = prepare_attn_mask( attention_mask, input_shape=(batch_size, seq_length), past_key_values_length=past_key_values_length, ) assert self.num_attention_heads % self.tp_world_size == 0 block_size = self.num_attention_heads // self.tp_world_size causal_mask = torch.repeat_interleave(causal_mask, block_size, dim=0) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) presents = () if use_cache else None all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = layer( hidden_states, position_ids=position_ids, attention_mask=causal_mask, head_mask=head_mask[i], layer_past=layer_past, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_attentions = all_attentions + (outputs[2 if use_cache else 1],) hidden_states = self.final_layer_norm(hidden_states) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None ) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_attentions, ) class GPTNeoxForCausalLM(GPTNeoXPreTrainedModel): _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] def __init__(self, config, weights): super().__init__(config) self.gpt_neox = GPTNeoXModel(config, weights) self.embed_out = TensorParallelHead.load( config, prefix="embed_out", weights=weights ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are only required when the model is used as a decoder in a Sequence to Sequence model. Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import AutoTokenizer, GPTNeoXForCausalLM, GPTNeoXConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") >>> config = GPTNeoXConfig.from_pretrained("EleutherAI/gpt-neox-20b") >>> config.is_decoder = True >>> model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ```""" return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) outputs = self.gpt_neox( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] lm_logits = self.embed_out(hidden_states) lm_loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(lm_logits.device) # we are doing next-token prediction; shift prediction scores and input ids by one shift_logits = lm_logits[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct( shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1) ) if not return_dict: output = (lm_logits,) + outputs[1:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithPast( loss=lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs, ): input_shape = input_ids.shape # cut decoder_input_ids if past is used if past_key_values and past_key_values[0] is not None: input_ids = input_ids[:, -1:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -1].unsqueeze(-1) # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "attention_mask": attention_mask, "past_key_values": past_key_values, "position_ids": position_ids, } ) return model_inputs def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple( past_state.index_select(0, beam_idx) for past_state in layer_past[:2] ) + layer_past[2:], ) return reordered_past
0
hf_public_repos/text-generation-inference/server/text_generation_server/models
hf_public_repos/text-generation-inference/server/text_generation_server/models/custom_modeling/t5_modeling.py
# coding=utf-8 # Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch T5 model.""" import copy import math import warnings from typing import Optional, Tuple, Union from loguru import logger import torch import torch.distributed from torch import nn from torch.nn import CrossEntropyLoss from transformers.activations import ACT2FN from transformers.modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, ) from transformers.modeling_utils import PreTrainedModel from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS from transformers.utils import ( is_torch_fx_proxy, ) from transformers import T5Config from text_generation_server.utils.layers import ( TensorParallelColumnLinear, TensorParallelEmbedding, TensorParallelRowLinear, TensorParallelHead, ) class PartialTPEmbedding(nn.Module): def __init__(self, prefix: str, weights): super().__init__() weight = weights.get_sharded(f"{prefix}.weight", dim=1) self.weight = nn.Parameter(weight) def forward(self, input: torch.Tensor) -> torch.Tensor: return torch.nn.functional.embedding(input, self.weight) @torch.jit.script def layer_norm(hidden_states, weight, epsilon): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + epsilon) # convert into half-precision if necessary if weight.dtype in [torch.float16, torch.bfloat16]: hidden_states = hidden_states.to(weight.dtype) return weight * hidden_states class T5LayerNorm(nn.Module): def __init__(self, prefix, weights, eps=1e-6): """ Construct a layernorm module in the T5 style. No bias and no subtraction of mean. """ super().__init__() weight = weights.get_tensor(f"{prefix}.weight") self.weight = nn.Parameter(weight) self.variance_epsilon = torch.tensor(eps) def forward(self, hidden_states): return layer_norm(hidden_states, self.weight, self.variance_epsilon) try: from apex.normalization import FusedRMSNorm T5LayerNorm = FusedRMSNorm # noqa logger.info( "Discovered apex.normalization.FusedRMSNorm - will use it instead of T5LayerNorm" ) except ImportError: # using the normal T5LayerNorm pass except Exception: logger.warning("discovered apex but it failed to load, falling back to T5LayerNorm") pass ALL_LAYERNORM_LAYERS.append(T5LayerNorm) class T5DenseActDense(nn.Module): def __init__(self, config: T5Config, prefix, weights): super().__init__() self.wi = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.wi", weights=weights, bias=False ) ### XXX: T5 models do not handle well both f16 and quantization. ### Overidding specifically this layer for that reason. ### https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py#L316 ### https://github.com/huggingface/transformers/issues/20287 _q = config.quantize _dtype = weights.dtype weights.dtype = torch.float32 config.quantize = None self.wo_cast = (torch.float32, _dtype) self.wo = TensorParallelRowLinear.load( config, prefix=f"{prefix}.wo", weights=weights, bias=False ) weights.dtype = _dtype config.quantize = _q self.dropout = nn.Dropout(config.dropout_rate) self.act = ( ACT2FN[config.dense_act_fn] if "gelu" not in config.dense_act_fn else lambda x: torch.nn.functional.gelu(x, approximate="tanh") ) def forward(self, hidden_states): hidden_states = self.wi(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states.to(dtype=self.wo_cast[0]) hidden_states = self.wo(hidden_states) # XXX: Recasting is already done within the layer norm. # Casting back to float16 here modifies results # hidden_states = hidden_states.to(dtype=self.wo_cast[1]) return hidden_states class T5DenseGatedActDense(nn.Module): def __init__(self, config: T5Config, prefix, weights): super().__init__() self.wi_0 = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.wi_0", weights=weights, bias=False ) self.wi_1 = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.wi_1", weights=weights, bias=False ) ### XXX: T5 models do not handle well both f16 and quantization. ### Overidding specifically this layer for that reason. ### https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py#L316 ### https://github.com/huggingface/transformers/issues/20287 _q = config.quantize _dtype = weights.dtype weights.dtype = torch.float32 config.quantize = None self.wo_cast = (torch.float32, _dtype) self.wo = TensorParallelRowLinear.load( config, prefix=f"{prefix}.wo", weights=weights, bias=False ) weights.dtype = _dtype config.quantize = _q self.dropout = nn.Dropout(config.dropout_rate) self.act = ( ACT2FN[config.dense_act_fn] if "gelu" not in config.dense_act_fn else lambda x: torch.nn.functional.gelu(x, approximate="tanh") ) def forward(self, hidden_states): hidden_gelu = self.act(self.wi_0(hidden_states)) hidden_linear = self.wi_1(hidden_states) hidden_states = hidden_gelu * hidden_linear hidden_states = self.dropout(hidden_states) hidden_states = hidden_states.to(dtype=self.wo_cast[0]) hidden_states = self.wo(hidden_states) # XXX: Recasting is already done within the layer norm. # Casting back to float16 here modifies results # hidden_states = hidden_states.to(dtype=self.wo_cast[1]) return hidden_states class T5LayerFF(nn.Module): def __init__(self, config: T5Config, prefix, weights): super().__init__() if config.is_gated_act: self.DenseReluDense = T5DenseGatedActDense( config, prefix=f"{prefix}.DenseReluDense", weights=weights ) else: self.DenseReluDense = T5DenseActDense( config, prefix=f"{prefix}.DenseReluDense", weights=weights ) self.layer_norm = T5LayerNorm( prefix=f"{prefix}.layer_norm", weights=weights, eps=config.layer_norm_epsilon, ) self.dropout = nn.Dropout(config.dropout_rate) def forward(self, hidden_states): forwarded_states = self.layer_norm(hidden_states) forwarded_states = self.DenseReluDense(forwarded_states) hidden_states = hidden_states + self.dropout(forwarded_states) return hidden_states class T5Attention(nn.Module): def __init__( self, config: T5Config, prefix, weights, has_relative_attention_bias=False ): super().__init__() self.is_decoder = config.is_decoder self.has_relative_attention_bias = has_relative_attention_bias self.relative_attention_num_buckets = config.relative_attention_num_buckets self.relative_attention_max_distance = config.relative_attention_max_distance self.d_model = config.d_model self.key_value_proj_dim = config.d_kv self.n_heads = config.num_heads self.dropout = config.dropout_rate self.inner_dim = self.n_heads * self.key_value_proj_dim process_group = weights.process_group # Mesh TensorFlow initialization to avoid scaling before softmax assert self.n_heads % process_group.size() == 0 self.q = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.q", weights=weights, bias=False ) self.k = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.k", weights=weights, bias=False ) self.v = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.v", weights=weights, bias=False ) self.o = TensorParallelRowLinear.load( config, prefix=f"{prefix}.o", weights=weights, bias=False ) if self.n_heads % weights.process_group.size() != 0: raise ValueError( f"`n_heads` must be divisible by `num_shards` (got `n_heads`: {self.n_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.n_heads = self.n_heads // process_group.size() self.inner_dim = self.inner_dim // process_group.size() if self.has_relative_attention_bias: self.relative_attention_bias = PartialTPEmbedding( prefix=f"{prefix}.relative_attention_bias", weights=weights ) @staticmethod def _relative_position_bucket( relative_position, bidirectional=True, num_buckets=32, max_distance=128 ): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on Args: relative_position: an int32 Tensor bidirectional: a boolean - whether the attention is bidirectional num_buckets: an integer max_distance: an integer Returns: a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0).to(torch.long) * num_buckets relative_position = torch.abs(relative_position) else: relative_position = -torch.min( relative_position, torch.zeros_like(relative_position) ) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) relative_position_if_large = torch.min( relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1), ) relative_buckets += torch.where( is_small, relative_position, relative_position_if_large ) return relative_buckets def compute_bias(self, query_length, key_length, device=None): """Compute binned relative position bias""" if device is None: device = self.relative_attention_bias.weight.device context_position = torch.arange(query_length, dtype=torch.long, device=device)[ :, None ] memory_position = torch.arange(key_length, dtype=torch.long, device=device)[ None, : ] relative_position = ( memory_position - context_position ) # shape (query_length, key_length) relative_position_bucket = self._relative_position_bucket( relative_position, # shape (query_length, key_length) bidirectional=(not self.is_decoder), num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) values = self.relative_attention_bias( relative_position_bucket ) # shape (query_length, key_length, num_heads) values = values.permute([2, 0, 1]).unsqueeze( 0 ) # shape (1, num_heads, query_length, key_length) return values def forward( self, hidden_states, mask=None, key_value_states=None, position_bias=None, past_key_value=None, layer_head_mask=None, query_length=None, use_cache=False, output_attentions=False, ): """ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). """ # Input is (batch_size, seq_length, dim) # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) batch_size, seq_length = hidden_states.shape[:2] real_seq_length = seq_length if past_key_value is not None: assert ( len(past_key_value) == 2 ), f"past_key_value should have 2 past states: keys and values. Got {len(past_key_value)} past states" real_seq_length += ( past_key_value[0].shape[2] if query_length is None else query_length ) key_length = ( real_seq_length if key_value_states is None else key_value_states.shape[1] ) def shape(states): """projection""" return states.view( batch_size, -1, self.n_heads, self.key_value_proj_dim ).transpose(1, 2) def unshape(states): """reshape""" return ( states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) ) def project(hidden_states, proj_layer, key_value_states, past_key_value): """projects hidden states correctly to key/query states""" if key_value_states is None: # self-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(hidden_states)) elif past_key_value is None: # cross-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(key_value_states)) if past_key_value is not None: if key_value_states is None: # self-attn # (batch_size, n_heads, key_length, dim_per_head) hidden_states = torch.cat([past_key_value, hidden_states], dim=2) elif past_key_value.shape[2] != key_value_states.shape[1]: # checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning # cross-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(key_value_states)) else: # cross-attn hidden_states = past_key_value return hidden_states # get query states query_states = shape( self.q(hidden_states) ) # (batch_size, n_heads, seq_length, dim_per_head) # get key/value states key_states = project( hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None, ) value_states = project( hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None, ) # compute scores scores = torch.matmul( query_states, key_states.transpose(3, 2) ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 if position_bias is None: if not self.has_relative_attention_bias: position_bias = torch.zeros( (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype, ) else: position_bias = self.compute_bias( real_seq_length, key_length, device=scores.device ) # if key and values are already calculated # we want only the last query position bias if past_key_value is not None: position_bias = position_bias[:, :, -hidden_states.size(1) :, :] if mask is not None: position_bias = ( position_bias + mask ) # (batch_size, n_heads, seq_length, key_length) position_bias_masked = position_bias scores += position_bias_masked attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( scores ) # (batch_size, n_heads, seq_length, key_length) attn_weights = nn.functional.dropout( attn_weights, p=self.dropout, training=self.training ) # (batch_size, n_heads, seq_length, key_length) # Mask heads if we want to if layer_head_mask is not None: attn_weights = attn_weights * layer_head_mask attn_output = unshape( torch.matmul(attn_weights, value_states) ) # (batch_size, seq_length, dim) attn_output = self.o(attn_output) present_key_value_state = ( (key_states, value_states) if (self.is_decoder and use_cache) else None ) outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) if output_attentions: outputs = outputs + (attn_weights,) return outputs class T5LayerSelfAttention(nn.Module): def __init__(self, config, prefix, weights, has_relative_attention_bias=False): super().__init__() self.SelfAttention = T5Attention( config, prefix=f"{prefix}.SelfAttention", weights=weights, has_relative_attention_bias=has_relative_attention_bias, ) self.layer_norm = T5LayerNorm( prefix=f"{prefix}.layer_norm", weights=weights, eps=config.layer_norm_epsilon, ) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.SelfAttention( normed_hidden_states, mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = hidden_states + self.dropout(attention_output[0]) outputs = (hidden_states,) + attention_output[ 1: ] # add attentions if we output them return outputs class T5LayerCrossAttention(nn.Module): def __init__(self, config, prefix, weights): super().__init__() self.EncDecAttention = T5Attention( config, prefix=f"{prefix}.EncDecAttention", weights=weights, has_relative_attention_bias=False, ) self.layer_norm = T5LayerNorm( prefix=f"{prefix}.layer_norm", weights=weights, eps=config.layer_norm_epsilon, ) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, key_value_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, query_length=None, output_attentions=False, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.EncDecAttention( normed_hidden_states, mask=attention_mask, key_value_states=key_value_states, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, query_length=query_length, output_attentions=output_attentions, ) layer_output = hidden_states + self.dropout(attention_output[0]) outputs = (layer_output,) + attention_output[ 1: ] # add attentions if we output them return outputs class T5Block(nn.Module): def __init__(self, config, prefix, weights, has_relative_attention_bias: bool): super().__init__() self.is_decoder = config.is_decoder self.layer = nn.ModuleList() self.layer.append( T5LayerSelfAttention( config, prefix=f"{prefix}.layer.0", weights=weights, has_relative_attention_bias=has_relative_attention_bias, ) ) if self.is_decoder: i = 2 self.layer.append( T5LayerCrossAttention( config, prefix=f"{prefix}.layer.1", weights=weights ) ) else: i = 1 self.layer.append( T5LayerFF(config, prefix=f"{prefix}.layer.{i}", weights=weights) ) def forward( self, hidden_states, attention_mask=None, position_bias=None, encoder_hidden_states=None, encoder_attention_mask=None, encoder_decoder_position_bias=None, layer_head_mask=None, cross_attn_layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, return_dict=True, ): if past_key_value is not None: if not self.is_decoder: logger.warning( "`past_key_values` is passed to the encoder. Please make sure this is intended." ) expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 if len(past_key_value) != expected_num_past_key_values: raise ValueError( f"There should be {expected_num_past_key_values} past states. " f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}" f"Got {len(past_key_value)} past key / value states" ) self_attn_past_key_value = past_key_value[:2] cross_attn_past_key_value = past_key_value[2:] else: self_attn_past_key_value, cross_attn_past_key_value = None, None self_attention_outputs = self.layer[0]( hidden_states, attention_mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=self_attn_past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states, present_key_value_state = self_attention_outputs[:2] attention_outputs = self_attention_outputs[ 2: ] # Keep self-attention outputs and relative position weights # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16: clamp_value = torch.where( torch.isinf(hidden_states).any(), torch.finfo(hidden_states.dtype).max - 1000, torch.finfo(hidden_states.dtype).max, ) hidden_states = torch.clamp( hidden_states, min=-clamp_value, max=clamp_value ) do_cross_attention = self.is_decoder and encoder_hidden_states is not None if do_cross_attention: # the actual query length is unknown for cross attention # if using past key value states. Need to inject it here if present_key_value_state is not None: query_length = present_key_value_state[0].shape[2] else: query_length = None cross_attention_outputs = self.layer[1]( hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, position_bias=encoder_decoder_position_bias, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, query_length=query_length, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = cross_attention_outputs[0] # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16: clamp_value = torch.where( torch.isinf(hidden_states).any(), torch.finfo(hidden_states.dtype).max - 1000, torch.finfo(hidden_states.dtype).max, ) hidden_states = torch.clamp( hidden_states, min=-clamp_value, max=clamp_value ) # Combine self attn and cross attn key value states if present_key_value_state is not None: present_key_value_state = ( present_key_value_state + cross_attention_outputs[1] ) # Keep cross-attention outputs and relative position weights attention_outputs = attention_outputs + cross_attention_outputs[2:] # Apply Feed Forward layer hidden_states = self.layer[-1](hidden_states) # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16: clamp_value = torch.where( torch.isinf(hidden_states).any(), torch.finfo(hidden_states.dtype).max - 1000, torch.finfo(hidden_states.dtype).max, ) hidden_states = torch.clamp( hidden_states, min=-clamp_value, max=clamp_value ) outputs = (hidden_states,) if use_cache: outputs = outputs + (present_key_value_state,) + attention_outputs else: outputs = outputs + attention_outputs return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) class T5PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = T5Config def _shift_right(self, input_ids): decoder_start_token_id = self.config.decoder_start_token_id pad_token_id = self.config.pad_token_id assert decoder_start_token_id is not None, ( "self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id." " See T5 docs for more information" ) # shift inputs to the right if is_torch_fx_proxy(input_ids): # Item assignment is not supported natively for proxies. shifted_input_ids = torch.full( input_ids.shape[:-1] + (1,), decoder_start_token_id ) shifted_input_ids = torch.cat( [shifted_input_ids, input_ids[..., :-1]], dim=-1 ) else: shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() shifted_input_ids[..., 0] = decoder_start_token_id assert ( pad_token_id is not None ), "self.model.config.pad_token_id has to be defined." # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids class T5Stack(T5PreTrainedModel): def __init__(self, config, prefix, weights, embed_tokens): super().__init__(config) self.is_decoder = config.is_decoder self.embed_tokens = embed_tokens self.block = nn.ModuleList( [ T5Block( config, prefix=f"{prefix}.block.{layer_id}", weights=weights, has_relative_attention_bias=(layer_id == 0), ) for layer_id in range(config.num_layers) ] ) self.final_layer_norm = T5LayerNorm( prefix=f"{prefix}.final_layer_norm", weights=weights, eps=config.layer_norm_epsilon, ) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, inputs_embeds=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): # Model parallel use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) if input_ids is not None and inputs_embeds is not None: err_msg_prefix = "decoder_" if self.is_decoder else "" raise ValueError( f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" ) elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: err_msg_prefix = "decoder_" if self.is_decoder else "" raise ValueError( f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds" ) if inputs_embeds is None: assert ( self.embed_tokens is not None ), "You have to initialize the model with valid token embeddings" inputs_embeds = self.embed_tokens(input_ids) batch_size, seq_length = input_shape # required mask seq length can be calculated via length of past mask_seq_length = ( past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length ) if use_cache is True: assert ( self.is_decoder ), f"`use_cache` can only be set to `True` if {self} is used as a decoder" if attention_mask is None: attention_mask = torch.ones( batch_size, mask_seq_length, device=inputs_embeds.device ) if ( self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None ): encoder_seq_length = encoder_hidden_states.shape[1] encoder_attention_mask = torch.ones( batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long, ) # initialize past_key_values with `None` if past does not exist if past_key_values is None: past_key_values = [None] * len(self.block) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask = self.get_extended_attention_mask( attention_mask, input_shape ) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.is_decoder and encoder_hidden_states is not None: ( encoder_batch_size, encoder_sequence_length, _, ) = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones( encoder_hidden_shape, device=inputs_embeds.device ) encoder_extended_attention_mask = self.invert_attention_mask( encoder_attention_mask ) else: encoder_extended_attention_mask = None # Prepare head mask if needed head_mask = self.get_head_mask(head_mask, self.config.num_layers) cross_attn_head_mask = self.get_head_mask( cross_attn_head_mask, self.config.num_layers ) present_key_value_states = () if use_cache else None all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if (output_attentions and self.is_decoder) else None position_bias = None encoder_decoder_position_bias = None hidden_states = self.dropout(inputs_embeds) for i, (layer_module, past_key_value) in enumerate( zip(self.block, past_key_values) ): layer_head_mask = head_mask[i] cross_attn_layer_head_mask = cross_attn_head_mask[i] # Model parallel if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask=extended_attention_mask, position_bias=position_bias, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, encoder_decoder_position_bias=encoder_decoder_position_bias, layer_head_mask=layer_head_mask, cross_attn_layer_head_mask=cross_attn_layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) # layer_outputs is a tuple with: # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) if use_cache is False: layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] hidden_states, present_key_value_state = layer_outputs[:2] # We share the position biases between the layers - the first layer store them # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), # (cross-attention position bias), (cross-attention weights) position_bias = layer_outputs[2] if self.is_decoder and encoder_hidden_states is not None: encoder_decoder_position_bias = layer_outputs[ 4 if output_attentions else 3 ] # append next layer key value states if use_cache: present_key_value_states = present_key_value_states + ( present_key_value_state, ) if output_attentions: all_attentions = all_attentions + (layer_outputs[3],) if self.is_decoder: all_cross_attentions = all_cross_attentions + (layer_outputs[5],) hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, present_key_value_states, all_hidden_states, all_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_value_states, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) class T5ForConditionalGeneration(T5PreTrainedModel): def __init__(self, config: T5Config, weights): super().__init__(config) self.model_dim = config.d_model self.shared = TensorParallelEmbedding(prefix="shared", weights=weights) encoder_config = copy.deepcopy(config) encoder_config.is_decoder = False encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = T5Stack( config=encoder_config, prefix="encoder", weights=weights, embed_tokens=self.shared, ) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.is_encoder_decoder = False decoder_config.num_layers = config.num_decoder_layers self.decoder = T5Stack( config=decoder_config, prefix="decoder", weights=weights, embed_tokens=self.shared, ) try: self.lm_head = TensorParallelHead.load( config, prefix="lm_head", weights=weights ) except RuntimeError: # Some models like t5-small were saved with shared weights unlike flan # Since they are declared as the same arch we have no choice but hope # that this is OK instead of using a proper flag. self.lm_head = TensorParallelHead.load( config, prefix="shared", weights=weights ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask if head_mask is not None and decoder_head_mask is None: if self.config.num_layers == self.config.num_decoder_layers: warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) decoder_head_mask = head_mask # Encode if needed (training, first prediction pass) if encoder_outputs is None: # Convert encoder inputs in embeddings if needed encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) hidden_states = encoder_outputs[0] if ( labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None ): # get decoder inputs from shifting lm labels to the right decoder_input_ids = self._shift_right(labels) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, inputs_embeds=decoder_inputs_embeds, past_key_values=past_key_values, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = decoder_outputs[0] if self.config.tie_word_embeddings: # Rescale output before projecting on vocab # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 sequence_output = sequence_output * (self.model_dim**-0.5) lm_logits = self.lm_head(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss(ignore_index=-100) # move labels to correct device to enable PP labels = labels.to(lm_logits.device) loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) # TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666 if not return_dict: output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs return ((loss,) + output) if loss is not None else output return Seq2SeqLMOutput( loss=loss, logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_head_mask=None, decoder_attention_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past is used if past_key_values is not None: input_ids = input_ids[:, -1:] return { "decoder_input_ids": input_ids, "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "decoder_attention_mask": decoder_attention_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, } def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return self._shift_right(labels) def _reorder_cache(self, past_key_values, beam_idx): # if decoder past is not included in output # speedy decoding is disabled and no need to reorder if past_key_values is None: logger.warning( "You might want to consider setting `use_cache=True` to speed up decoding" ) return past_key_values reordered_decoder_past = () for layer_past_states in past_key_values: # get the correct batch idx from layer past batch dim # batch dim of `past` is at 2nd position reordered_layer_past_states = () for layer_past_state in layer_past_states: # need to set correct `past` for each of the four key / value states reordered_layer_past_states = reordered_layer_past_states + ( layer_past_state.index_select( 0, beam_idx.to(layer_past_state.device) ), ) assert reordered_layer_past_states[0].shape == layer_past_states[0].shape assert len(reordered_layer_past_states) == len(layer_past_states) reordered_decoder_past = reordered_decoder_past + ( reordered_layer_past_states, ) return reordered_decoder_past
0
hf_public_repos/text-generation-inference/server/text_generation_server/models
hf_public_repos/text-generation-inference/server/text_generation_server/models/custom_modeling/idefics_vision.py
# coding=utf-8 # Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch IdeficsVision model: a copy of CLIPVisionModel using a simpler config object""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from transformers.activations import ACT2FN from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from transformers.utils import ( ModelOutput, logging, ) from text_generation_server.utils.layers import ( TensorParallelColumnLinear, TensorParallelRowLinear, TensorParallelEmbedding, ) logger = logging.get_logger(__name__) @dataclass class IdeficsVisionModelOutput(ModelOutput): """ Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. Args: image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The image embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ image_embeds: Optional[torch.FloatTensor] = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None # Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->Idefics class IdeficsVisionEmbeddings(nn.Module): def __init__(self, prefix, config, weights): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter( weights.get_tensor(f"{prefix}.class_embedding") ) self.patch_embedding = nn.Conv2d.load_no_bias( prefix=f"{prefix}.patch_embedding", weights=weights, in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = TensorParallelEmbedding( prefix="model.vision_model.embeddings.position_embedding", weights=weights ) self.position_ids = ( torch.arange(self.num_positions).expand((1, -1)).to(device=weights.device) ) def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: batch_size = pixel_values.shape[0] target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding( pixel_values.to(dtype=target_dtype) ) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings # Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->IdeficsVision class IdeficsVisionAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, prefix, config, weights): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout process_group = weights.process_group if self.num_heads % weights.process_group.size() != 0: raise ValueError( f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.num_heads = self.num_heads // weights.process_group.size() self.embed_dim = self.embed_dim // weights.process_group.size() self.k_proj = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.k_proj", weights=weights, bias=True ) self.v_proj = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.v_proj", weights=weights, bias=True ) self.q_proj = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.q_proj", weights=weights, bias=True ) self.out_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.out_proj", weights=weights, bias=True ) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return ( tensor.view(bsz, seq_len, self.num_heads, self.head_dim) .transpose(1, 2) .contiguous() ) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scale key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) # apply the causal_attention_mask first if causal_attention_mask is not None: if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {causal_attention_mask.size()}" ) attn_weights = ( attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = ( attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit akward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view( bsz, self.num_heads, tgt_len, src_len ) attn_weights = attn_weights_reshaped.view( bsz * self.num_heads, tgt_len, src_len ) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout( attn_weights, p=self.dropout, training=self.training ) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->IdeficsVision class IdeficsVisionMLP(nn.Module): def __init__(self, prefix, config, weights): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.fc1", weights=weights, bias=True ) self.fc2 = TensorParallelRowLinear.load( config, prefix=f"{prefix}.fc2", weights=weights, bias=True ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->IdeficsVision class IdeficsVisionEncoderLayer(nn.Module): def __init__(self, prefix, config, weights): super().__init__() self.embed_dim = config.hidden_size self.self_attn = IdeficsVisionAttention( prefix=f"{prefix}.self_attn", config=config, weights=weights ) self.layer_norm1 = nn.LayerNorm.load( prefix=f"{prefix}.layer_norm1", weights=weights, eps=config.layer_norm_eps ) self.mlp = IdeficsVisionMLP( prefix=f"{prefix}.mlp", config=config, weights=weights ) self.layer_norm2 = nn.LayerNorm.load( prefix=f"{prefix}.layer_norm2", weights=weights, eps=config.layer_norm_eps ) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->IdeficsVision class IdeficsVisionEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`IdeficsVisionEncoderLayer`]. Args: config: IdeficsVisionConfig """ def __init__(self, prefix, config, weights): super().__init__() self.config = config self.layers = nn.ModuleList( [ IdeficsVisionEncoderLayer( prefix=f"{prefix}.encoder.layers.{layer_id}", config=config, weights=weights, ) for layer_id in range(config.num_hidden_layers) ] ) # self.gradient_checkpointing = False def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # if self.gradient_checkpointing and self.training: # def create_custom_forward(module): # def custom_forward(*inputs): # return module(*inputs, output_attentions) # return custom_forward # layer_outputs = torch.utils.checkpoint.checkpoint( # create_custom_forward(encoder_layer), # hidden_states, # attention_mask, # causal_attention_mask, # ) # else: layer_outputs = encoder_layer( hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, encoder_states, all_attentions] if v is not None ) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions, ) # Adapted from transformers.models.clip.modeling_clip.CLIPVisionTransformer class IdeficsVisionTransformer(nn.Module): def __init__(self, prefix, config, weights): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = IdeficsVisionEmbeddings( prefix=f"{prefix}.embeddings", config=config, weights=weights ) self.pre_layrnorm = nn.LayerNorm.load( prefix=f"{prefix}.pre_layrnorm", weights=weights, eps=config.layer_norm_eps ) self.encoder = IdeficsVisionEncoder( prefix=prefix, config=config, weights=weights ) self.post_layernorm = nn.LayerNorm.load( prefix=f"{prefix}.post_layernorm", weights=weights, eps=config.layer_norm_eps, ) # copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer.forward def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values) hidden_states = self.pre_layrnorm(hidden_states) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
0
hf_public_repos/text-generation-inference/server/text_generation_server/models
hf_public_repos/text-generation-inference/server/text_generation_server/models/custom_modeling/flash_neox_modeling.py
# coding=utf-8 # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.distributed from torch import nn from transformers.activations import ACT2FN from transformers.modeling_utils import PreTrainedModel from transformers.models.gpt_neox import GPTNeoXConfig from typing import Optional, List, Tuple from text_generation_server.utils import paged_attention, flash_attn from text_generation_server.utils.flash_attn import attention from text_generation_server.utils.layers import ( TensorParallelRowLinear, TensorParallelColumnLinear, TensorParallelEmbedding, TensorParallelHead, FastLayerNorm, PositionRotaryEmbedding, get_linear, ) def load_row(config, prefix: str, weights, bias: bool): weight = weights.get_multi_weights_row(prefix, quantize=config.quantize) if bias and weights.process_group.rank() == 0: # Rank is only on the first rank process bias = weights.get_tensor(f"{prefix}.bias") else: bias = None linear = get_linear(weight, bias, config.quantize) if config.use_parallel_residual: return linear else: return TensorParallelRowLinear(linear, process_group=weights.process_group) def load_qkv(config, prefix: str, weights, num_heads, head_size, hidden_size): weight = weights.get_multi_weights_col([prefix], quantize=config.quantize, dim=0) if isinstance(weight, torch.Tensor): # Only on non quantized versions weight = ( weight.view( num_heads, 3, head_size, hidden_size, ) .permute(1, 0, 2, 3) .reshape(-1, hidden_size) ) bias = weights.get_sharded(f"{prefix}.bias", dim=0) bias = bias.view(num_heads, 3, head_size).permute(1, 0, 2).reshape(-1) linear = get_linear(weight, bias, config.quantize) if config.use_parallel_residual: return linear else: return TensorParallelColumnLinear(linear) class FlashNeoxAttention(torch.nn.Module): def __init__(self, config, prefix, weights): super().__init__() num_heads = config.num_attention_heads hidden_size = config.hidden_size self.num_heads = num_heads self.hidden_size = hidden_size self.head_size = hidden_size // num_heads if self.num_heads % weights.process_group.size() != 0: raise ValueError( f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.num_heads = self.num_heads // weights.process_group.size() self.rotary_emb = PositionRotaryEmbedding.load( config=config, prefix=f"{prefix}.rotary_emb", weights=weights ) self.softmax_scale = self.head_size ** (-0.5) self.query_key_value = load_qkv( config, prefix=f"{prefix}.query_key_value", weights=weights, num_heads=self.num_heads, head_size=self.head_size, hidden_size=self.hidden_size, ) self.dense = load_row( config, prefix=f"{prefix}.dense", weights=weights, bias=True ) self.kv_head_mapping = torch.arange( 0, self.num_heads, dtype=torch.int32, device=weights.device ) def forward( self, hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ): qkv = self.query_key_value(hidden_states) qkv = qkv.view(-1, 3, self.num_heads, self.head_size) # Inplace rotary self.rotary_emb(qkv[:, 0], qkv[:, 1], cos, sin) paged_attention.reshape_and_cache( qkv[:, 1], qkv[:, 2], kv_cache[0], kv_cache[1], slots ) # output tensor attn_output = torch.empty_like(qkv[:, 0]) # Prefill if cu_seqlen_prefill is not None: # flash attention flash_attn.attention( qkv[:, 0], qkv[:, 1], qkv[:, 2], attn_output, cu_seqlen_prefill, max_s, self.softmax_scale, ) # Decode else: paged_attention.attention( attn_output, qkv[:, 0], kv_cache[0], kv_cache[1], self.kv_head_mapping, self.softmax_scale, block_tables, input_lengths, max_s, ) return self.dense(attn_output.view(-1, self.num_heads * self.head_size)) class FlashMLP(nn.Module): def __init__(self, config, prefix, weights): super().__init__() act = config.hidden_act self.act = ( ACT2FN[act] if "gelu" not in act else lambda x: torch.nn.functional.gelu( x, approximate="tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none", ) ) self.dense_h_to_4h = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.dense_h_to_4h", weights=weights, bias=True ) self.dense_4h_to_h = load_row( config, prefix=f"{prefix}.dense_4h_to_h", weights=weights, bias=True ) def forward(self, hidden_states): hidden_states = self.dense_h_to_4h(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dense_4h_to_h(hidden_states) return hidden_states class FlashNeoXLayer(nn.Module): def __init__(self, layer_id, config, weights): super().__init__() layer_norm_eps = config.layer_norm_eps prefix = f"gpt_neox.layers.{layer_id}" self.use_parallel_residual = config.use_parallel_residual self.input_layernorm = FastLayerNorm.load( prefix=f"{prefix}.input_layernorm", weights=weights, eps=layer_norm_eps ) self.post_attention_layernorm = FastLayerNorm.load( prefix=f"{prefix}.post_attention_layernorm", weights=weights, eps=layer_norm_eps, ) self.attention = FlashNeoxAttention( config, prefix=f"{prefix}.attention", weights=weights ) self.mlp = FlashMLP(config, prefix=f"{prefix}.mlp", weights=weights) self.process_group = weights.process_group def forward( self, hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ): if self.use_parallel_residual: ln1_hidden_states, _ = self.input_layernorm(hidden_states) attn_output = self.attention( ln1_hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ) ln2_hidden_states, _ = self.post_attention_layernorm(hidden_states) mlp_output = self.mlp(ln2_hidden_states) intermediate = mlp_output + attn_output if self.process_group.size() > 1: torch.distributed.all_reduce(intermediate, group=self.process_group) return intermediate + hidden_states, None else: hidden_states, residual = self.input_layernorm(hidden_states, residual) hidden_states = self.attention( hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ) hidden_states, residual = self.post_attention_layernorm( hidden_states, residual ) mlp_output = self.mlp(hidden_states) return mlp_output, residual class FlashGPTNeoXPreTrainedModel(PreTrainedModel): config_class = GPTNeoXConfig base_model_prefix = "gpt_neox" supports_gradient_checkpointing = False _no_split_modules = None class FlashGPTNeoXModel(FlashGPTNeoXPreTrainedModel): def __init__(self, config, weights): super().__init__(config) self.config = config self.embed_in = TensorParallelEmbedding( prefix="gpt_neox.embed_in", weights=weights ) self.layers = nn.ModuleList( [ FlashNeoXLayer(layer_id, config, weights) for layer_id in range(config.num_hidden_layers) ] ) self.final_layer_norm = FastLayerNorm.load( prefix="gpt_neox.final_layer_norm", weights=weights, eps=config.layer_norm_eps, ) self.gradient_checkpointing = False self.head_size = self.layers[0].attention.head_size self.num_heads = self.layers[0].attention.num_heads def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, input_lengths: torch.Tensor, max_s: int, ) -> torch.Tensor: hidden_states = self.embed_in(input_ids) # Get rotary cos and sin for this forward # Avoid to index in each layer cos, sin = self.layers[0].attention.rotary_emb.get_cos_sin( position_ids, max_s, hidden_states.dtype ) residual = None for i, layer in enumerate(self.layers): hidden_states, residual = layer( hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache[i], block_tables, slots, input_lengths, max_s, ) hidden_states, _ = self.final_layer_norm(hidden_states, residual) return hidden_states class FlashGPTNeoXForCausalLM(FlashGPTNeoXPreTrainedModel): def __init__(self, config, weights): super().__init__(config) self.gpt_neox = FlashGPTNeoXModel(config, weights) self.embed_out = TensorParallelHead.load( config, prefix="embed_out", weights=weights ) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, input_lengths: torch.Tensor, max_s: int, lm_head_indices: Optional[torch.Tensor] = None, ) -> torch.Tensor: hidden_states = self.gpt_neox( input_ids, position_ids, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ) if lm_head_indices is not None: hidden_states = hidden_states[lm_head_indices] logits = self.embed_out(hidden_states) return logits
0
hf_public_repos/text-generation-inference/server/text_generation_server/models
hf_public_repos/text-generation-inference/server/text_generation_server/models/custom_modeling/idefics_config.py
# coding=utf-8 # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Idefics model configuration""" import copy from transformers import PretrainedConfig IDEFICS_PRETRAINED_CONFIG_ARCHIVE_MAP = { "HuggingFaceM4/idefics-9b": "https://huggingface.co/HuggingFaceM4/idefics-9b/blob/main/config.json", "HuggingFaceM4/idefics-80b": "https://huggingface.co/HuggingFaceM4/idefics-80b/blob/main/config.json", } class IdeficsVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Idefics-9B. e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. (elsewhere referred to as `hidden_size`) image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. intermediate_size (`int`, *optional*, defaults to 5120): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. patch_size (`int`, *optional*, defaults to 14): The size (resolution) of each patch. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. image_num_channels (`int`, *optional*, defaults to `3`): Number of image channels. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float`, *optional*, defaults to 1.0): A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization testing). initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. """ model_type = "idefics" attribute_map = { "hidden_size": "embed_dim", } def __init__( self, embed_dim=768, image_size=224, intermediate_size=5120, patch_size=14, num_hidden_layers=32, num_attention_heads=16, num_channels=3, hidden_act="gelu", layer_norm_eps=1e-5, attention_dropout=0.0, initializer_range=0.02, initializer_factor=1.0, **kwargs, ): self.embed_dim = embed_dim self.image_size = image_size self.intermediate_size = intermediate_size self.patch_size = patch_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.layer_norm_eps = layer_norm_eps self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.initializer_factor = initializer_factor self.hidden_act = hidden_act super().__init__(**kwargs) class IdeficsPerceiverConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Idefics-9B. e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: use_resampler (`bool`, *optional*, defaults to `False`): Whether or not to use the resampler resampler_n_latents (`int`, *optional*, defaults to ): Number of latent embeddings to resample ("compress") the input sequence to (usually < 128). resampler_depth (`int`, *optional*, defaults to 6): Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3). resampler_n_heads (`int`, *optional*, defaults to 16): Number of heads in each Transformer block (for multi-headed self-attention). resampler_head_dim (`int`, *optional*, defaults to 96): Dimensionality of each head projection in the Transformer block. qk_layer_norms_perceiver (`bool`, *optional*, defaults to `False`): Whether or not to use qk layer norms in perceiver """ model_type = "idefics" def __init__( self, use_resampler=False, resampler_n_latents=64, resampler_depth=6, resampler_n_heads=16, resampler_head_dim=96, qk_layer_norms_perceiver=False, **kwargs, ): self.use_resampler = use_resampler self.resampler_n_latents = resampler_n_latents self.resampler_depth = resampler_depth self.resampler_n_heads = resampler_n_heads self.resampler_head_dim = resampler_head_dim self.qk_layer_norms_perceiver = qk_layer_norms_perceiver super().__init__(**kwargs) class IdeficsConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Idefics-9B. e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: additional_vocab_size (`int`, *optional`, defaults to 0): Additional vocabulary size of the model, typically for the special "<img>" token. Additional vocab tokens are always trainable whereas regular vocab tokens can be frozen or not. vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Idefics model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`~IdeficsModel`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 11008): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. dropout (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. alpha_initializer (`str`, *optional*, defaults to `"zeros"`): Initialization type for the alphas. alphas_initializer_range (`float`, *optional*, defaults to 0.0): The standard deviation of the truncated_normal_initializer for initializing the alphas in the Gated Cross Attention. alpha_type (`str`, *optional*, defaults to `"float"`): Whether the gating alphas should be vectors or single floats. rms_norm_eps (`float`, *optional*, defaults to 1e-6): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*, defaults to 0) Padding token id. bos_token_id (`int`, *optional*, defaults to 1) Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 2) End of stream token id. tie_word_embeddings(`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings cross_layer_interval (`int`, *optional*, default to 1) Interval for cross attention (from text to image) layers. qk_layer_norms (`bool`, *optional*, defaults to `False`): Whether to add layer norm after q and k freeze_text_layers (`bool`, *optional*, defaults to `True`): Whether to freeze text layers freeze_text_module_exceptions (`bool`, *optional*, defaults to `[]`): Exceptions to freezing text layers when `freeze_text_layers` is `True` freeze_lm_head (`bool`, *optional*, defaults to `False`): Whether to freeze lm head freeze_vision_layers (`bool`, *optional*, defaults to `True`): Whether to freeze vision layers freeze_vision_module_exceptions (`bool`, *optional*, defaults to `[]`): Exceptions to freezing vision layers when `freeze_vision_layers` is `True` use_resampler (`bool`, *optional*, defaults to `False`): Whether to use the Resampler vision_config (`IdeficsVisionConfig`, *optional*): Custom vision config or dict perceiver_config (`IdeficsPerceiverConfig`, *optional*): Custom perceiver config or dict Example: ```python >>> from transformers import IdeficsModel, IdeficsConfig >>> # Initializing a Idefics idefics-9b style configuration >>> configuration = IdeficsConfig() >>> # Initializing a model from the idefics-9b style configuration >>> model = IdeficsModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "idefics" is_composition = True def __init__( self, vocab_size=32000, additional_vocab_size=0, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, dropout=0.0, hidden_act="silu", initializer_range=0.02, alpha_initializer="zeros", alphas_initializer_range=0.0, alpha_type="float", rms_norm_eps=1e-6, use_cache=True, pad_token_id=0, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, cross_layer_interval=1, qk_layer_norms=False, freeze_text_layers=True, freeze_text_module_exceptions=[], freeze_lm_head=False, freeze_vision_layers=True, freeze_vision_module_exceptions=[], use_resampler=False, vision_config=None, perceiver_config=None, **kwargs, ): self.vocab_size = vocab_size self.additional_vocab_size = additional_vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.dropout = dropout self.hidden_act = hidden_act self.initializer_range = initializer_range self.alpha_initializer = alpha_initializer self.alphas_initializer_range = alphas_initializer_range self.alpha_type = alpha_type self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.cross_layer_interval = cross_layer_interval self.qk_layer_norms = qk_layer_norms self.freeze_vision_layers = freeze_vision_layers self.freeze_text_layers = freeze_text_layers self.freeze_text_module_exceptions = freeze_text_module_exceptions self.freeze_vision_module_exceptions = freeze_vision_module_exceptions self.freeze_lm_head = freeze_lm_head self.use_resampler = use_resampler if perceiver_config is None: self.perceiver_config = IdeficsPerceiverConfig() elif isinstance(perceiver_config, dict): self.perceiver_config = IdeficsPerceiverConfig(**perceiver_config) elif isinstance(perceiver_config, IdeficsPerceiverConfig): self.perceiver_config = perceiver_config if vision_config is None: self.vision_config = IdeficsVisionConfig() elif isinstance(vision_config, dict): self.vision_config = IdeficsVisionConfig(**vision_config) elif isinstance(vision_config, IdeficsVisionConfig): self.vision_config = vision_config super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) # IMPORTANT: Do not do any __init__ args-based checks in the constructor, since # PretrainedConfig.from_dict first instantiates the class with the config dict and only then # updates the config object with `kwargs` from from_pretrained, so during the instantiation # of this object many attributes have default values and haven't yet been overridden. # Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run. def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["vision_config"] = self.vision_config.to_dict() output["perceiver_config"] = self.perceiver_config.to_dict() output["model_type"] = self.__class__.model_type return output
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/utils/paged_attention.py
import torch # vllm imports from vllm import cache_ops from vllm import attention_ops _PARTITION_SIZE = 512 def reshape_and_cache( key: torch.Tensor, value: torch.Tensor, key_cache: torch.Tensor, value_cache: torch.Tensor, slots: torch.Tensor, ): cache_ops.reshape_and_cache(key, value, key_cache, value_cache, slots) def attention( out: torch.Tensor, query: torch.Tensor, key_cache: torch.Tensor, value_cache: torch.Tensor, kv_head_mapping: torch.Tensor, softmax_scale: float, block_tables: torch.Tensor, input_lengths: torch.Tensor, max_s: int, ): # Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py # Copyright 2023 The vLLM team. All rights # reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # value_cache => [num_blocks, num_heads, head_size, block_size] block_size = value_cache.shape[3] num_seqs, num_heads, head_size = query.shape max_num_partitions = (max_s + _PARTITION_SIZE - 1) // _PARTITION_SIZE # NOTE(woosuk): We use a simple heuristic to decide whether to use # PagedAttention V1 or V2. If the number of partitions is 1, we use # V1 to avoid the overhead of reduction. Also, if the number of # sequences or heads is large, we use V1 since there is enough work # to parallelize. use_v1 = max_num_partitions == 1 or num_seqs * num_heads > 512 if use_v1: attention_ops.paged_attention_v1( out, query, key_cache, value_cache, kv_head_mapping, softmax_scale, block_tables, input_lengths, block_size, max_s, None, ) else: # Run PagedAttention V2. assert _PARTITION_SIZE % block_size == 0 tmp_output = torch.empty( size=(num_seqs, num_heads, max_num_partitions, head_size), dtype=out.dtype, device=out.device, ) exp_sums = torch.empty( size=(num_seqs, num_heads, max_num_partitions), dtype=torch.float32, device=out.device, ) max_logits = torch.empty_like(exp_sums) attention_ops.paged_attention_v2( out, exp_sums, max_logits, tmp_output, query, key_cache, value_cache, kv_head_mapping, softmax_scale, block_tables, input_lengths, block_size, max_s, None, )
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/utils/logits_process.py
import math import torch from functools import lru_cache from typing import Optional, List, Dict, Union from transformers import ( LogitsWarper, LogitsProcessor, TemperatureLogitsWarper, TopKLogitsWarper, TopPLogitsWarper, TypicalLogitsWarper, ) mempool = torch.cuda.graph_pool_handle() if torch.cuda.is_available() else None class StaticWarper: def __init__( self, temperature=1.0, top_k=None, top_p=None, typical_p=None, ): self.warpers = [] if temperature is not None and temperature != 1.0: temperature = float(temperature) self.warpers.append(TemperatureLogitsWarper(temperature)) if top_k is not None and top_k != 0: self.warpers.append(TopKLogitsWarper(top_k=top_k)) if top_p is not None and top_p < 1.0: self.warpers.append(TopPLogitsWarper(top_p=top_p)) if typical_p is not None and typical_p < 1.0: self.warpers.append(TypicalLogitsWarper(mass=typical_p)) self.cuda_graph = None self.static_scores = None self.static_warped_scores = None self.static_next_logprob = None def __call__(self, scores): if torch.cuda.is_available(): if self.cuda_graph is None: self.static_scores = scores self.cuda_graph = torch.cuda.CUDAGraph() with torch.cuda.graph(self.cuda_graph, pool=mempool): local_scores = self.static_scores for warper in self.warpers: local_scores = warper(None, local_scores) self.static_warped_scores = local_scores # Compute logprobs self.static_next_logprob = torch.log_softmax( self.static_warped_scores, -1 ) self.static_scores.copy_(scores) self.cuda_graph.replay() return self.static_warped_scores, self.static_next_logprob # CPU branch for warper in self.warpers: scores = warper(None, scores) return scores, torch.log_softmax(scores, -1) @lru_cache(10) def static_warper( temperature: Optional[float], top_k: Optional[int], top_p: Optional[float], typical_p: Optional[float], ) -> StaticWarper: return StaticWarper( temperature=temperature, top_k=top_k, top_p=top_p, typical_p=typical_p ) class HeterogeneousRepetitionPenaltyLogitsProcessor(LogitsProcessor): r""" [`LogitsProcessor`] enforcing an exponential penalty on repeated sequences. This version allows for a separate value for each sample and runs inplace when possible. It doesn't validate inputs. Args: repetition_penalty (`List[float]`): The parameter for repetition penalty. 1.0 means no penalty. See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details. """ def __init__(self, penalty: List[float], dtype: torch.dtype, device: torch.device): self.penalty = penalty self.penalty_tensor = torch.tensor( penalty, dtype=dtype, device=device ).unsqueeze(1) def __call__(self, input_ids: torch.Tensor, scores: torch.Tensor) -> torch.Tensor: score = torch.gather(scores, 1, input_ids) # if score < 0 then repetition penalty has to be multiplied to reduce the previous token probability score = torch.where( score < 0, score * self.penalty_tensor, score / self.penalty_tensor ) scores.scatter_(1, input_ids, score) return scores def filter(self, indices): self.penalty = [self.penalty[i] for i in indices] if any([x != 1.0 for x in self.penalty]): self.penalty_tensor = self.penalty_tensor[indices] return self return None class HeterogeneousTemperatureLogitsWarper: r""" [`LogitsWarper`] for temperature (exponential scaling output probability distribution). This version allows for a separate value for each sample and runs inplace when possible. It doesn't validate inputs. Args: temperature (`float`): The value used to module the logits distribution. """ def __init__( self, temperature: List[float], dtype: torch.dtype, device: torch.device ): self.temperature = temperature self.temperature_tensor = torch.tensor( temperature, dtype=dtype, device=device ).unsqueeze(1) def __call__(self, input_ids: torch.Tensor, scores: torch.Tensor) -> torch.Tensor: scores.div_(self.temperature_tensor) return scores def filter(self, indices): self.temperature = [self.temperature[i] for i in indices] if any([x != 1.0 for x in self.temperature]): self.temperature_tensor = self.temperature_tensor[indices] return self return None class HeterogeneousTopPLogitsWarper(LogitsWarper): """ [`LogitsWarper`] that performs top-p, i.e. restricting to top tokens summing to prob_cut_off <= prob_cut_off. This version allows for a separate value for each sample and runs inplace when possible. It doesn't validate inputs. Args: top_p (`float`): If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or higher are kept for generation. filter_value (`float`, *optional*, defaults to `-float("Inf")`): All filtered values will be set to this float value. min_tokens_to_keep (`int`, *optional*, defaults to 1): Minimum number of tokens that cannot be filtered. """ def __init__( self, top_p: List[float], dtype: torch.dtype, device: torch.device, filter_value: float = -math.inf, min_tokens_to_keep: int = 1, ): self.top_p = top_p self.top_p_opposite = 1 - torch.tensor( top_p, dtype=dtype, device=device ).unsqueeze(1) self.filter_value = filter_value self.min_tokens_to_keep = min_tokens_to_keep def __call__(self, input_ids: torch.Tensor, scores: torch.Tensor) -> torch.Tensor: sorted_logits, sorted_indices = torch.sort(scores, descending=False) probs = sorted_logits.softmax(dim=-1) # This is way faster for some reason for i in range(probs.shape[0]): probs[i] = probs[i].cumsum(dim=-1) # Remove tokens with cumulative top_p above the threshold (token with 0 are kept) sorted_indices_to_remove = probs <= self.top_p_opposite # Keep at least min_tokens_to_keep sorted_indices_to_remove[..., -self.min_tokens_to_keep :] = 0 # scatter sorted tensors to original indexing indices_to_remove = sorted_indices_to_remove.scatter( 1, sorted_indices, sorted_indices_to_remove ) warped_scores = scores.masked_fill_(indices_to_remove, self.filter_value) return warped_scores def filter(self, indices): self.top_p = [self.top_p[i] for i in indices] if any([x < 1.0 for x in self.top_p]): self.top_p_opposite = self.top_p_opposite[indices] return self return None class HeterogeneousTopKLogitsWarper(LogitsWarper): r""" [`LogitsWarper`] that performs top-k, i.e. restricting to the k highest probability elements. This version allows for a separate value for each sample and runs inplace when possible. It doesn't validate inputs. Args: top_k (`int`): The number of highest probability vocabulary tokens to keep for top-k-filtering. filter_value (`float`, *optional*, defaults to `-float("Inf")`): All filtered values will be set to this float value. min_tokens_to_keep (`int`, *optional*, defaults to 1): Minimum number of tokens that cannot be filtered. """ def __init__( self, top_k: List[int], device: torch.device, filter_value: float = -math.inf, min_tokens_to_keep: int = 1, ): self.top_k = top_k self.max_top_k = max(top_k) # value - 1 as we will use top_k to index and python uses 0 based numbering self.top_k_tensor = torch.tensor( [max(x - 1, min_tokens_to_keep - 1) for x in top_k], dtype=torch.int64, device=device, ).unsqueeze(1) # 0 is a special value that disables top_k warping for this member of the batch disabled = [x == 0 for x in top_k] if any(disabled): self.top_k_disabled_mask = torch.tensor( disabled, dtype=torch.bool, device=device ).view(-1, 1) else: self.top_k_disabled_mask = None self.filter_value = filter_value def __call__(self, input_ids: torch.Tensor, scores: torch.Tensor) -> torch.Tensor: # If max_top_k is superior to the vocab, we need to clamp or the warper will fail if scores.size(-1) < self.max_top_k: max_top_k = scores.size(-1) top_k = torch.clamp_max(self.top_k_tensor, max_top_k) else: max_top_k = self.max_top_k top_k = self.top_k_tensor # Get the kth score for each member of the batch kth_scores = torch.gather(torch.topk(scores, max_top_k)[0], 1, top_k) # Mask member of kth_scores that do not want to use top_k warping if self.top_k_disabled_mask is not None: kth_scores.masked_fill_(self.top_k_disabled_mask, self.filter_value) # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = scores < kth_scores scores.masked_fill_(indices_to_remove, self.filter_value) return scores def filter(self, indices): self.top_k = [self.top_k[i] for i in indices] disabled = [x == 0 for x in self.top_k] if not all(disabled): self.top_k_tensor = self.top_k_tensor[indices] self.max_top_k = max(self.top_k) if self.top_k_disabled_mask is not None: self.top_k_disabled_mask = ( self.top_k_disabled_mask[indices] if any(disabled) else None ) return self return None class HeterogeneousTypicalLogitsWarper(LogitsWarper): r""" [`LogitsWarper`] that performs typical decoding. See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information. This version allows for a separate value for each sample and runs inplace when possible. It doesn't validate inputs. Args: mass (`float`): Value of typical_p between 0 and 1 inclusive, defaults to 0.9. filter_value (`float`, *optional*, defaults to `-float("Inf")`): All filtered values will be set to this float value. min_tokens_to_keep (`int`, *optional*, defaults to 1): Minimum number of tokens that cannot be filtered. """ def __init__( self, mass: List[float], dtype: torch.dtype, device: torch.device, filter_value: float = -math.inf, min_tokens_to_keep: int = 1, ): self.mass = mass self.mass_tensor = torch.tensor(mass, dtype=dtype, device=device).unsqueeze(1) # 1 is a special value that disables typical_p warping for this member of the batch disabled = [x == 1.0 for x in mass] if any(disabled): self.disabled_mask = torch.tensor(disabled, dtype=torch.bool, device=device) else: self.disabled_mask = None self.filter_value = filter_value self.min_tokens_to_keep = min_tokens_to_keep def __call__(self, input_ids: torch.Tensor, scores: torch.Tensor) -> torch.Tensor: # calculate entropy normalized = torch.nn.functional.log_softmax(scores, dim=-1) p = torch.exp(normalized) ent = -(normalized * p).nansum(-1, keepdim=True) # shift and sort shifted_scores = torch.abs((-normalized) - ent) sorted_scores, sorted_indices = torch.sort(shifted_scores, descending=False) sorted_logits = scores.gather(-1, sorted_indices) probs = sorted_logits.softmax(dim=-1) # This is way faster for some reason for i in range(probs.shape[0]): probs[i] = probs[i].cumsum(dim=-1) # Remove tokens with cumulative mass above the threshold last_ind = (probs < self.mass_tensor).sum(dim=1) last_ind[last_ind < 0] = 0 if self.disabled_mask is not None: last_ind.masked_fill_(self.disabled_mask, scores.shape[-1] - 1) sorted_indices_to_remove = sorted_scores > sorted_scores.gather( 1, last_ind.view(-1, 1) ) if self.min_tokens_to_keep > 1: # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below) sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0 indices_to_remove = sorted_indices_to_remove.scatter( 1, sorted_indices, sorted_indices_to_remove ) warped_scores = scores.masked_fill_(indices_to_remove, self.filter_value) return warped_scores def filter(self, indices): self.mass = [self.mass[i] for i in indices] disabled = [x == 1.0 for x in self.mass] if not all(disabled): self.mass_tensor = self.mass_tensor[indices] if self.disabled_mask is not None: self.disabled_mask = ( self.disabled_mask[indices] if any(disabled) else None ) return self return None class HeterogeneousProcessorWrapper(LogitsProcessor): r""" A wrapper for logit warpers or processors without heterogeneous parameter support. Args: processors (`Dict[int, Union[LogitsProcessor, LogitsWarper]]`): A mapping of sample indices to logit warpers or processors, to be run sequentially. """ def __init__( self, processors: Dict[int, Union[LogitsProcessor, LogitsWarper]], ): self.processors = processors def __call__(self, input_ids: torch.Tensor, scores: torch.Tensor) -> torch.Tensor: for i, processor in self.processors.items(): scores[i : i + 1] = processor(input_ids[i : i + 1], scores[i : i + 1]) return scores def filter(self, indices): new_processors = {} for i, idx in enumerate(indices): if idx in self.processors: new_processors[i] = self.processors[idx] if new_processors: self.processors = new_processors return self return None
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/utils/dist.py
import os import torch from datetime import timedelta from loguru import logger # Tensor Parallelism settings RANK = int(os.getenv("RANK", "0")) WORLD_SIZE = int(os.getenv("WORLD_SIZE", "1")) # CUDA memory fraction MEMORY_FRACTION = float(os.getenv("CUDA_MEMORY_FRACTION", "1.0")) class FakeBarrier: def wait(self): pass class FakeGroup: def __init__(self, rank, size): self._rank = rank self._size = size def allreduce(self, *args, **kwargs): return FakeBarrier() def allgather(self, inputs, local_tensor, **kwargs): assert ( len(inputs[0]) == len(local_tensor) == 1 ), f"{len(inputs[0])} != {len(local_tensor)} != 1, and the FakeGroup is supposed to join on simple tensors" for input_ in inputs: input_[0].data = local_tensor[0].data return FakeBarrier() def barrier(self, *args, **kwargs): return FakeBarrier() def size(self): return self._size def rank(self): return self._rank def initialize_torch_distributed(): if torch.cuda.is_available(): from torch.distributed import ProcessGroupNCCL # Set the device id. assert WORLD_SIZE <= torch.cuda.device_count(), "Each process is one gpu" device = RANK % torch.cuda.device_count() torch.cuda.set_device(device) torch.cuda.set_per_process_memory_fraction(MEMORY_FRACTION, device) backend = "nccl" options = ProcessGroupNCCL.Options() options.is_high_priority_stream = True options._timeout = timedelta(seconds=60) else: backend = "gloo" options = None if WORLD_SIZE == 1: return FakeGroup(RANK, WORLD_SIZE), RANK, WORLD_SIZE else: if os.getenv("DEBUG", None) == "1": return FakeGroup(RANK, WORLD_SIZE), RANK, WORLD_SIZE if not torch.distributed.is_initialized(): # Call the init process. torch.distributed.init_process_group( backend=backend, world_size=WORLD_SIZE, rank=RANK, timeout=timedelta(seconds=60), pg_options=options, ) else: logger.warning("torch.distributed is already initialized.") return torch.distributed.group.WORLD, RANK, WORLD_SIZE
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/utils/import_utils.py
import torch IS_ROCM_SYSTEM = torch.version.hip is not None IS_CUDA_SYSTEM = torch.version.cuda is not None
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/utils/watermark.py
# coding=utf-8 # Copyright 2023 Authors of "A Watermark for Large Language Models" # available at https://arxiv.org/abs/2301.10226 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch from transformers import LogitsProcessor from typing import List, Union GAMMA = float(os.getenv("WATERMARK_GAMMA", 0.5)) DELTA = float(os.getenv("WATERMARK_DELTA", 2.0)) class WatermarkLogitsProcessor(LogitsProcessor): def __init__( self, gamma: float = GAMMA, delta: float = DELTA, hash_key: int = 15485863, # just a large prime number to create a rng seed with sufficient bit width device: str = "cpu", ): # watermarking parameters self.gamma = gamma self.delta = delta self.rng = torch.Generator(device=device) self.hash_key = hash_key def _seed_rng(self, input_ids: Union[List[int], torch.LongTensor]): if isinstance(input_ids, list): assert ( len(input_ids) >= 1 ), "requires at least a 1 token prefix sequence to seed rng" prev_token = input_ids[-1] else: assert len(input_ids) == 1 input_ids = input_ids[0] assert ( input_ids.shape[-1] >= 1 ), "requires at least a 1 token prefix sequence to seed rng" prev_token = input_ids[-1].item() self.rng.manual_seed(self.hash_key * prev_token) def _get_greenlist_ids( self, input_ids: Union[List[int], torch.LongTensor], max_value: int, device: torch.device, ) -> List[int]: # seed the rng using the previous tokens/prefix self._seed_rng(input_ids) greenlist_size = int(max_value * self.gamma) vocab_permutation = torch.randperm(max_value, device=device, generator=self.rng) greenlist_ids = vocab_permutation[:greenlist_size] return greenlist_ids @staticmethod def _calc_greenlist_mask( scores: torch.FloatTensor, greenlist_token_ids ) -> torch.BoolTensor: green_tokens_mask = torch.zeros_like(scores) green_tokens_mask[-1, greenlist_token_ids] = 1 final_mask = green_tokens_mask.bool() return final_mask @staticmethod def _bias_greenlist_logits( scores: torch.Tensor, greenlist_mask: torch.Tensor, greenlist_bias: float ) -> torch.Tensor: scores[greenlist_mask] = scores[greenlist_mask] + greenlist_bias return scores def __call__( self, input_ids: Union[List[int], torch.LongTensor], scores: torch.FloatTensor ) -> torch.FloatTensor: greenlist_ids = self._get_greenlist_ids( input_ids, scores.shape[-1], scores.device ) green_tokens_mask = self._calc_greenlist_mask( scores=scores, greenlist_token_ids=greenlist_ids ) scores = self._bias_greenlist_logits( scores=scores, greenlist_mask=green_tokens_mask, greenlist_bias=self.delta ) return scores
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/utils/__init__.py
from text_generation_server.utils.convert import convert_file, convert_files from text_generation_server.utils.dist import initialize_torch_distributed from text_generation_server.utils.weights import Weights from text_generation_server.utils.peft import download_and_unload_peft from text_generation_server.utils.hub import ( weight_files, weight_hub_files, download_weights, EntryNotFoundError, LocalEntryNotFoundError, RevisionNotFoundError, ) from text_generation_server.utils.tokens import ( NextTokenChooser, HeterogeneousNextTokenChooser, StoppingCriteria, StopSequenceCriteria, FinishReason, Sampling, Greedy, ) __all__ = [ "convert_file", "convert_files", "initialize_torch_distributed", "weight_files", "weight_hub_files", "download_weights", "download_and_unload_peft", "EntryNotFoundError", "HeterogeneousNextTokenChooser", "LocalEntryNotFoundError", "RevisionNotFoundError", "Greedy", "NextTokenChooser", "Sampling", "StoppingCriteria", "StopSequenceCriteria", "FinishReason", "Weights", ]
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/utils/flash_attn.py
import os import torch from loguru import logger from text_generation_server.utils.import_utils import IS_CUDA_SYSTEM, IS_ROCM_SYSTEM if os.getenv("USE_FLASH_ATTENTION", "").lower() == "false": raise ImportError("`USE_FLASH_ATTENTION` is false.") if not torch.cuda.is_available(): raise ImportError("CUDA is not available") major, minor = torch.cuda.get_device_capability() is_sm75 = major == 7 and minor == 5 is_sm8x = major == 8 and minor >= 0 is_sm90 = major == 9 and minor == 0 HAS_FLASH_ATTN = False HAS_FLASH_ATTN_V2_CUDA = False HAS_FLASH_ATTN_V2_ROCM = False try: try: import flash_attn_2_cuda except ImportError: architecture_suffix = "" if IS_CUDA_SYSTEM: architecture_suffix = "-cuda" elif IS_ROCM_SYSTEM: architecture_suffix = "-rocm" raise ImportError( "Flash Attention V2 is not installed.\n" "Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) " f"or install flash attention v2 with `cd server && make install install-flash-attention-v2{architecture_suffix}`" ) if not (is_sm8x or is_sm90): raise ImportError( f"GPU with CUDA capability {major} {minor} is not supported for " "Flash Attention V2" ) HAS_FLASH_ATTN_V2_CUDA = IS_CUDA_SYSTEM HAS_FLASH_ATTN_V2_ROCM = IS_ROCM_SYSTEM except ImportError as e: try: import flash_attn_cuda except ImportError: raise ImportError( "Flash Attention is not installed.\n" "Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) " "or install flash attention with `cd server && make install install-flash-attention`" ) from e if IS_CUDA_SYSTEM and not (is_sm75 or is_sm8x or is_sm90): raise ImportError( f"GPU with CUDA capability {major} {minor} is not supported" ) from e elif IS_ROCM_SYSTEM: for idx in range(torch.cuda.device_count()): if "MI210" not in torch.cuda.get_device_name( idx ) and "MI250" not in torch.cuda.get_device_name(idx): raise ImportError( f"AMD GPU {torch.cuda.get_device_name(idx)} does not support flash-attention" ) logger.warning(f"Unable to use Flash Attention V2: {e}") HAS_FLASH_ATTN = True def attention( q, k, v, out, cu_seqlens, max_s, softmax_scale, window_size_left=-1, ): if window_size_left <= 0 and window_size_left != -1: raise ValueError("`window_size_left` must be > 0 or -1") if HAS_FLASH_ATTN_V2_CUDA: return flash_attn_2_cuda.varlen_fwd( q, k, v, out, cu_seqlens, cu_seqlens, max_s, max_s, 0.0, softmax_scale, False, True, window_size_left, 0, False, None, ) elif HAS_FLASH_ATTN_V2_ROCM: if window_size_left != -1: raise ValueError( f"RoCm version of Flash Attention v2 does not support window attention (window_size_left != -1, got window_size_left={window_size_left})." ) # RoCm flash API does not take the window_size_left and window_size_right arguments. return flash_attn_2_cuda.varlen_fwd( q, k, v, out, cu_seqlens, cu_seqlens, max_s, max_s, 0.0, softmax_scale, False, True, False, None, ) elif HAS_FLASH_ATTN: if window_size_left != -1: raise NotImplementedError( "window_size_left is only available with flash attn v2" ) # Flash attention v1 requires q, k and v to have the same number of heads if k.shape[1] != q.shape[1]: # MQA expand if k.shape[1] == 1: k = k.expand(-1, q.shape[1], -1) # Grouped attention reshape else: original_shape = k.shape k = ( k.unsqueeze(2) .expand(-1, -1, q.shape[1] // k.shape[1], -1) .reshape(original_shape[0], -1, original_shape[2]) ) if v.shape[1] != q.shape[1]: # MQA expand if v.shape[1] == 1: v = v.expand(-1, q.shape[1], -1) # Grouped attention reshape else: original_shape = v.shape v = ( v.unsqueeze(2) .expand(-1, -1, q.shape[1] // v.shape[1], -1) .reshape(original_shape[0], -1, original_shape[2]) ) return flash_attn_cuda.fwd( q, k, v, out, cu_seqlens, cu_seqlens, max_s, max_s, 0.0, softmax_scale, False, True, False, 0, None, ) raise NotImplementedError("flash attention is not installed")
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/utils/hub.py
import time import os from datetime import timedelta from loguru import logger from pathlib import Path from typing import Optional, List from huggingface_hub import file_download, hf_api, HfApi, hf_hub_download from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE from huggingface_hub.utils import ( LocalEntryNotFoundError, EntryNotFoundError, RevisionNotFoundError, # noqa # Import here to ease try/except in other part of the lib ) WEIGHTS_CACHE_OVERRIDE = os.getenv("WEIGHTS_CACHE_OVERRIDE", None) HF_HUB_OFFLINE = os.environ.get("HF_HUB_OFFLINE", "0").lower() in ["true", "1", "yes"] def _cached_weight_files( model_id: str, revision: Optional[str], extension: str ) -> List[str]: """Guess weight files from the cached revision snapshot directory""" d = _get_cached_revision_directory(model_id, revision) if not d: return [] filenames = _weight_files_from_dir(d, extension) return filenames def _weight_hub_files_from_model_info( info: hf_api.ModelInfo, extension: str ) -> List[str]: return [ s.rfilename for s in info.siblings if s.rfilename.endswith(extension) and len(s.rfilename.split("/")) == 1 and "arguments" not in s.rfilename and "args" not in s.rfilename and "training" not in s.rfilename ] def _weight_files_from_dir(d: Path, extension: str) -> List[str]: # os.walk: do not iterate, just scan for depth 1, not recursively # see _weight_hub_files_from_model_info, that's also what is # done there with the len(s.rfilename.split("/")) == 1 condition root, _, files = next(os.walk(str(d))) filenames = [ os.path.join(root, f) for f in files if f.endswith(extension) and "arguments" not in f and "args" not in f and "adapter" not in f and "training" not in f ] return filenames def _get_cached_revision_directory( model_id: str, revision: Optional[str] ) -> Optional[Path]: if revision is None: revision = "main" repo_cache = Path(HUGGINGFACE_HUB_CACHE) / Path( file_download.repo_folder_name(repo_id=model_id, repo_type="model") ) if not repo_cache.is_dir(): # No cache for this model return None refs_dir = repo_cache / "refs" snapshots_dir = repo_cache / "snapshots" # Resolve refs (for instance to convert main to the associated commit sha) if refs_dir.is_dir(): revision_file = refs_dir / revision if revision_file.exists(): with revision_file.open() as f: revision = f.read() # Check if revision folder exists if not snapshots_dir.exists(): return None cached_shas = os.listdir(snapshots_dir) if revision not in cached_shas: # No cache for this revision and we won't try to return a random revision return None return snapshots_dir / revision def weight_hub_files( model_id: str, revision: Optional[str] = None, extension: str = ".safetensors" ) -> List[str]: """Get the weights filenames on the hub""" api = HfApi() if HF_HUB_OFFLINE: filenames = _cached_weight_files(model_id, revision, extension) else: # Online case, fetch model info from the Hub info = api.model_info(model_id, revision=revision) filenames = _weight_hub_files_from_model_info(info, extension) if not filenames: raise EntryNotFoundError( f"No {extension} weights found for model {model_id} and revision {revision}.", None, ) return filenames def try_to_load_from_cache( model_id: str, revision: Optional[str], filename: str ) -> Optional[Path]: """Try to load a file from the Hugging Face cache""" d = _get_cached_revision_directory(model_id, revision) if not d: return None # Check if file exists in cache cached_file = d / filename return cached_file if cached_file.is_file() else None def weight_files( model_id: str, revision: Optional[str] = None, extension: str = ".safetensors" ) -> List[Path]: """Get the local files""" # Local model d = Path(model_id) if d.exists() and d.is_dir(): local_files = _weight_files_from_dir(d, extension) if not local_files: raise FileNotFoundError( f"No local weights found in {model_id} with extension {extension}" ) return [Path(f) for f in local_files] try: filenames = weight_hub_files(model_id, revision, extension) except EntryNotFoundError as e: if extension != ".safetensors": raise e # Try to see if there are pytorch weights pt_filenames = weight_hub_files(model_id, revision, extension=".bin") # Change pytorch extension to safetensors extension # It is possible that we have safetensors weights locally even though they are not on the # hub if we converted weights locally without pushing them filenames = [ f"{Path(f).stem.lstrip('pytorch_')}.safetensors" for f in pt_filenames ] if WEIGHTS_CACHE_OVERRIDE is not None: files = [] for filename in filenames: p = Path(WEIGHTS_CACHE_OVERRIDE) / filename if not p.exists(): raise FileNotFoundError( f"File {p} not found in {WEIGHTS_CACHE_OVERRIDE}." ) files.append(p) return files files = [] for filename in filenames: cache_file = try_to_load_from_cache( model_id, revision=revision, filename=filename ) if cache_file is None: raise LocalEntryNotFoundError( f"File {filename} of model {model_id} not found in " f"{os.getenv('HUGGINGFACE_HUB_CACHE', 'the local cache')}. " f"Please run `text-generation-server download-weights {model_id}` first." ) files.append(cache_file) return files def download_weights( filenames: List[str], model_id: str, revision: Optional[str] = None ) -> List[Path]: """Download the safetensors files from the hub""" def download_file(fname, tries=5, backoff: int = 5): local_file = try_to_load_from_cache(model_id, revision, fname) if local_file is not None: logger.info(f"File {fname} already present in cache.") return Path(local_file) for idx in range(tries): try: logger.info(f"Download file: {fname}") stime = time.time() local_file = hf_hub_download( filename=fname, repo_id=model_id, revision=revision, local_files_only=HF_HUB_OFFLINE, ) logger.info( f"Downloaded {local_file} in {timedelta(seconds=int(time.time() - stime))}." ) return Path(local_file) except Exception as e: if idx + 1 == tries: raise e logger.error(e) logger.info(f"Retrying in {backoff} seconds") time.sleep(backoff) logger.info(f"Retry {idx + 1}/{tries - 1}") # We do this instead of using tqdm because we want to parse the logs with the launcher start_time = time.time() files = [] for i, filename in enumerate(filenames): file = download_file(filename) elapsed = timedelta(seconds=int(time.time() - start_time)) remaining = len(filenames) - (i + 1) eta = (elapsed / (i + 1)) * remaining if remaining > 0 else 0 logger.info(f"Download: [{i + 1}/{len(filenames)}] -- ETA: {eta}") files.append(file) return files
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/utils/weights.py
import os from pathlib import Path from typing import List, Dict, Optional, Tuple from safetensors import safe_open, SafetensorError import torch from loguru import logger from huggingface_hub import hf_hub_download import json from text_generation_server.utils.log import log_once class Weights: def __init__( self, filenames: List[Path], device, dtype, process_group, aliases: Optional[Dict[str, List[str]]] = None, prefix: Optional[str] = None, ): routing = {} for filename in filenames: with safe_open(filename, framework="pytorch") as f: for k in f.keys(): if k in routing: raise RuntimeError( f"Key {k} was found in multiple files: {filename} and {routing[k]}" ) routing[k] = filename if aliases is None: aliases = {} self.aliases = aliases self.routing = routing self.device = device self.dtype = dtype self.process_group = process_group self.prefix = prefix self._handles = {} def _get_handle(self, filename): if filename not in self._handles: f = safe_open(filename, framework="pytorch") self._handles[filename] = f return self._handles[filename] def get_filename(self, tensor_name: str) -> (str, str): names = [tensor_name] if self.prefix is not None: prefixed = f"{self.prefix}.{tensor_name}" names.append(prefixed) for name in names: filename = self.routing.get(name, None) if filename is not None: return str(filename), name aliases = self.aliases.get(name, []) for alias in aliases: filename = self.routing.get(alias, None) if filename is not None: return str(filename), alias raise RuntimeError(f"weight {tensor_name} does not exist") def _get_slice(self, tensor_name: str): filename, tensor_name = self.get_filename(tensor_name) f = self._get_handle(filename) slice_ = f.get_slice(tensor_name) return slice_ def get_shape(self, tensor_name: str): return self._get_slice(tensor_name).get_shape() def get_tensor(self, tensor_name: str, to_device=True): filename, tensor_name = self.get_filename(tensor_name) f = self._get_handle(filename) tensor = f.get_tensor(tensor_name) # Special case for gptq which shouldn't convert # u4 which are disguised as int32 if tensor.dtype not in [torch.int32, torch.int64]: tensor = tensor.to(dtype=self.dtype) if to_device: tensor = tensor.to(device=self.device) return tensor def get_partial_sharded(self, tensor_name: str, dim: int): filename, tensor_name = self.get_filename(tensor_name) f = self._get_handle(filename) slice_ = f.get_slice(tensor_name) world_size = self.process_group.size() rank = self.process_group.rank() size = slice_.get_shape()[dim] block_size = size // world_size start = rank * block_size stop = (rank + 1) * block_size if dim == 0: tensor = slice_[start:stop] elif dim == 1: tensor = slice_[:, start:stop] else: raise NotImplementedError("Let's make that generic when needed") # Special case for gptq which shouldn't convert # u4 which are disguised as int32 if tensor.dtype != torch.int32: tensor = tensor.to(dtype=self.dtype) tensor = tensor.to(device=self.device) return tensor def get_sharded(self, tensor_name: str, dim: int): filename, tensor_name = self.get_filename(tensor_name) f = self._get_handle(filename) slice_ = f.get_slice(tensor_name) world_size = self.process_group.size() size = slice_.get_shape()[dim] assert ( size % world_size == 0 ), f"The choosen size {size} is not compatible with sharding on {world_size} shards" return self.get_partial_sharded(tensor_name, dim) def _get_qweight(self, name: str): slice_ = self._get_slice(name) total_size = slice_.get_shape()[1] assert total_size % 3 == 0, "Prepacked quantized qkv is not divisible by 3" single_size = total_size // 3 world_size = self.process_group.size() rank = self.process_group.rank() assert ( single_size % world_size == 0 ), f"Prepacked quantized qkv cannot be sharded across {world_size} shards" block_size = single_size // world_size start = rank * block_size stop = (rank + 1) * block_size q = slice_[:, start:stop] k = slice_[:, start + single_size : stop + single_size] v = slice_[:, start + 2 * single_size : stop + 2 * single_size] weight = torch.cat([q, k, v], dim=1) weight = weight.to(device=self.device) return weight def get_weights_col_packed_qkv(self, prefix: str, quantize: str): """ Highly specific when the underlying tensor is a simple cat of Q,K,V instead of being already alternating Q,K,V within the main tensor """ if quantize in ["gptq", "awq"]: try: qweight = self._get_qweight(f"{prefix}.qweight") except RuntimeError: raise RuntimeError( f"Cannot load `{quantize}` weight, make sure the model is already quantized." ) qzeros = self._get_qweight(f"{prefix}.qzeros") scales = self._get_qweight(f"{prefix}.scales") scales = scales.to(dtype=self.dtype) if quantize == "gptq": g_idx = self.get_tensor(f"{prefix}.g_idx") else: g_idx = None bits, groupsize, _ = self._get_gptq_params() weight = (qweight, qzeros, scales, g_idx, bits, groupsize, False) else: slice_ = self._get_slice(f"{prefix}.weight") total_size = slice_.get_shape()[0] assert total_size % 3 == 0, "Prepacked qkv is not divisible by 3" single_size = total_size // 3 world_size = self.process_group.size() rank = self.process_group.rank() assert ( single_size % world_size == 0 ), f"Prepacked qkv cannot be sharded across {world_size} shards" block_size = single_size // world_size start = rank * block_size stop = (rank + 1) * block_size q = slice_[start:stop] k = slice_[start + single_size : stop + single_size] v = slice_[start + 2 * single_size : stop + 2 * single_size] weight = torch.cat([q, k, v], dim=0) weight = weight.to(device=self.device) weight = weight.to(dtype=self.dtype) return weight def get_multi_weights_col(self, prefixes: List[str], quantize: str, dim: int): if quantize in ["gptq", "awq"]: try: qweight = torch.cat( [self.get_sharded(f"{p}.qweight", dim=1) for p in prefixes], dim=1 ) except RuntimeError: raise RuntimeError( f"Cannot load `{quantize}` weight, make sure the model is already quantized" ) qzeros = torch.cat( [self.get_sharded(f"{p}.qzeros", dim=1) for p in prefixes], dim=1 ) scales = torch.cat( [self.get_sharded(f"{p}.scales", dim=1) for p in prefixes], dim=1 ) if quantize == "gptq": w = [self.get_tensor(f"{p}.g_idx") for p in prefixes] for w2 in w[1:]: torch.testing.assert_close(w2, w[0]) g_idx = w[0] else: g_idx = None bits, groupsize, desc_act = self._get_gptq_params() from text_generation_server.utils.layers import HAS_EXLLAMA use_exllama = ( bits == 4 and HAS_EXLLAMA and quantize == "gptq" and not desc_act ) weight = (qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama) else: w = [self.get_sharded(f"{p}.weight", dim=0) for p in prefixes] weight = torch.cat(w, dim=dim) return weight def get_tensor_shard(self, var, dim): world_size = self.process_group.size() rank = self.process_group.rank() block_size = var.size()[dim] // world_size start = rank * block_size stop = (rank + 1) * block_size if dim == 0: tensor = var[start:stop] elif dim == 1: tensor = var[:, start:stop] else: raise NotImplementedError("Let's make that generic when needed") tensor = tensor.to(dtype=self.dtype) tensor = tensor.to(device=self.device) return tensor def get_multi_weights_row(self, prefix: str, quantize: str): if quantize == "gptq": use_exllama = True bits, groupsize, desc_act = self._get_gptq_params() if bits != 4: use_exllama = False if desc_act: log_once(logger.warning, "Disabling exllama because desc_act=True") use_exllama = False if self.process_group.size() > 1: g_idx = self.get_tensor(f"{prefix}.g_idx") if g_idx is not None: if ( not torch.equal( g_idx.cpu(), torch.tensor( [i // groupsize for i in range(g_idx.shape[0])], dtype=torch.int32, ), ) and not (g_idx == 0).all() ): # Exllama implementation does not support row tensor parallelism with act-order, as # it would require to reorder input activations that are split unto several GPUs use_exllama = False try: qweight = self.get_sharded(f"{prefix}.qweight", dim=0) except RuntimeError: raise RuntimeError( "Cannot load `gptq` weight, make sure the model is already quantized, or quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`" ) from text_generation_server.utils.layers import HAS_EXLLAMA, CAN_EXLLAMA if use_exllama: if not HAS_EXLLAMA: if CAN_EXLLAMA: log_once( logger.warning, "Exllama GPTQ cuda kernels (which are faster) could have been used, but are not currently installed, try using BUILD_EXTENSIONS=True", ) use_exllama = False else: log_once(logger.info, f"Using exllama kernels v{HAS_EXLLAMA}") g_idx = self.get_sharded(f"{prefix}.g_idx", dim=0) if use_exllama and groupsize != -1: qzeros = self.get_sharded(f"{prefix}.qzeros", dim=0) scales = self.get_sharded(f"{prefix}.scales", dim=0) else: qzeros = self.get_tensor(f"{prefix}.qzeros") scales = self.get_tensor(f"{prefix}.scales") if use_exllama: g_idx = g_idx - g_idx[0] weight = (qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama) elif quantize == "awq": bits, groupsize, _ = self._get_gptq_params() try: qweight = self.get_sharded(f"{prefix}.qweight", dim=0) except RuntimeError: raise RuntimeError( "Cannot load `awq` weight, make sure the model is already quantized" ) qzeros = self.get_sharded(f"{prefix}.qzeros", dim=0) scales = self.get_sharded(f"{prefix}.scales", dim=0) g_idx = None use_exllama = False weight = (qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama) else: weight = self.get_sharded(f"{prefix}.weight", dim=1) return weight def _get_gptq_params(self) -> Tuple[int, int, int]: try: bits = self.get_tensor("gptq_bits").item() groupsize = self.get_tensor("gptq_groupsize").item() desc_act = False except (SafetensorError, RuntimeError) as e: try: bits = self.gptq_bits groupsize = self.gptq_groupsize desc_act = getattr(self, "gptq_desc_act", False) except Exception: raise e return bits, groupsize, desc_act def _set_gptq_params(self, model_id, revision): filename = "config.json" try: if os.path.exists(os.path.join(model_id, filename)): filename = os.path.join(model_id, filename) else: filename = hf_hub_download( model_id, filename=filename, revision=revision ) with open(filename, "r") as f: data = json.load(f) self.gptq_bits = data["quantization_config"]["bits"] self.gptq_groupsize = data["quantization_config"]["group_size"] self.gptq_desc_act = data["quantization_config"]["desc_act"] except Exception: filename = "quantize_config.json" try: if os.path.exists(os.path.join(model_id, filename)): filename = os.path.join(model_id, filename) else: filename = hf_hub_download( model_id, filename=filename, revision=revision ) with open(filename, "r") as f: data = json.load(f) self.gptq_bits = data["bits"] self.gptq_groupsize = data["group_size"] self.gptq_desc_act = data["desc_act"] except Exception: filename = "quant_config.json" try: if os.path.exists(os.path.join(model_id, filename)): filename = os.path.join(model_id, filename) else: filename = hf_hub_download( model_id, filename=filename, revision=revision ) with open(filename, "r") as f: data = json.load(f) self.gptq_bits = data["w_bit"] self.gptq_groupsize = data["q_group_size"] self.gptq_desc_act = data["desc_act"] except Exception: pass
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/utils/medusa.py
import torch from dataclasses import dataclass from text_generation_server.utils.layers import TensorParallelHead, FastLinear @dataclass class Output: logits: torch.FloatTensor = None speculative_logits: torch.FloatTensor = None class ResBlock(torch.nn.Module): def __init__(self, config, prefix, weights): super().__init__() self.linear = FastLinear.load( config, prefix=f"{prefix}.linear", weights=weights, bias=True ) self.act = torch.nn.SiLU() def forward(self, x): return x + self.act(self.linear(x)) class MedusaModel(torch.nn.Module): def __init__(self, config, weights, lm_head): super().__init__() self.heads = torch.nn.ModuleList( [ MedusaHead(config, prefix=f"{i}", weights=weights) for i in range(config["medusa_num_heads"]) ] ) self.lm_head = lm_head def forward(self, x): logits = self.lm_head(x) speculative_logits = torch.stack([head(x) for head in self.heads], dim=1) return logits, speculative_logits class MedusaHead(torch.nn.Module): def __init__(self, config, prefix, weights): super().__init__() self.blocks = torch.nn.ModuleList( [ ResBlock(config, prefix=f"{prefix}.{i}", weights=weights) for i in range(config["medusa_num_layers"]) ] ) n = len(self.blocks) self.out = FastLinear.load( config, prefix=f"{prefix}.{n}", weights=weights, bias=False ) def forward(self, x): for block in self.blocks: x = block(x) x = self.out(x) return x
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/utils/layers.py
import os import torch import torch.distributed from torch import nn from torch.nn import functional as F from typing import List from loguru import logger from functools import lru_cache HAS_BITS_AND_BYTES = True try: import bitsandbytes as bnb from bitsandbytes.nn import Int8Params, Params4bit except ImportError: HAS_BITS_AND_BYTES = False from accelerate import init_empty_weights from text_generation_server.utils.gptq.quant_linear import QuantLinear from text_generation_server.utils.import_utils import IS_CUDA_SYSTEM, IS_ROCM_SYSTEM from text_generation_server.utils.log import log_once HAS_AWQ = True try: from text_generation_server.utils.awq.quantize.qmodule import WQLinear except ImportError: HAS_AWQ = False try: major, _minor = torch.cuda.get_device_capability() except Exception: major = 1 HAS_EXLLAMA = False CAN_EXLLAMA = major >= 8 V2 = os.getenv("EXLLAMA_VERSION", "2") == "2" if V2 and int(os.getenv("WORLD_SIZE", "1")) > 1: V2 = False log_once( logger.warning, "Disabling exllama v2 and using v1 instead because there are issues when sharding", ) if os.getenv("DISABLE_EXLLAMA") == "True": HAS_EXLLAMA = False elif CAN_EXLLAMA: try: if V2: from text_generation_server.utils.gptq.exllamav2 import ( QuantLinear as ExllamaQuantLinear, create_exllama_buffers, set_device, ) HAS_EXLLAMA = "2" else: from text_generation_server.utils.gptq.exllama import ( Ex4bitLinear as ExllamaQuantLinear, create_exllama_buffers, set_device, ) HAS_EXLLAMA = "1" except ImportError: pass HAS_EETQ = False try: from EETQ import quant_weights, w8_a16_gemm HAS_EETQ = True except ImportError: pass # Monkey patching @classmethod def load_layer_norm(cls, prefix, weights, eps): weight = weights.get_tensor(f"{prefix}.weight") bias = weights.get_tensor(f"{prefix}.bias") with init_empty_weights(): ln = cls(weight.shape, eps=eps) ln.weight = nn.Parameter(weight) ln.bias = nn.Parameter(bias) return ln @classmethod def load_layer_norm_no_bias(cls, prefix, weights, eps): weight = weights.get_tensor(f"{prefix}.weight") with init_empty_weights(): ln = cls(weight.shape, eps=eps) ln.weight = nn.Parameter(weight) ln.bias = None return ln @classmethod def load_conv2d(cls, prefix, weights, in_channels, out_channels, kernel_size, stride): weight = weights.get_tensor(f"{prefix}.weight") bias = weights.get_tensor(f"{prefix}.bias") with init_empty_weights(): conv2d = cls( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, ) conv2d.weight = nn.Parameter(weight) conv2d.bias = nn.Parameter(bias) return conv2d @classmethod def load_conv2d_no_bias( cls, prefix, weights, in_channels, out_channels, kernel_size, stride ): weight = weights.get_tensor(f"{prefix}.weight") with init_empty_weights(): conv2d = cls( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, ) conv2d.weight = nn.Parameter(weight) conv2d.bias = None return conv2d torch.nn.Conv2d.load = load_conv2d torch.nn.Conv2d.load_no_bias = load_conv2d_no_bias torch.nn.LayerNorm.load = load_layer_norm torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias class FastLinear(nn.Module): def __init__( self, weight, bias, ) -> None: super().__init__() self.weight = nn.Parameter(weight) if bias is not None: self.bias = nn.Parameter(bias) else: self.bias = None @classmethod def load(cls, config, prefix: str, weights, bias: bool): weight = weights.get_tensor(f"{prefix}.weight") if bias: bias = weights.get_tensor(f"{prefix}.bias") else: bias = None return cls(weight, bias) def forward(self, input: torch.Tensor) -> torch.Tensor: return F.linear(input, self.weight, self.bias) class EETQLinear(nn.Module): def __init__( self, weight, bias, ) -> None: super().__init__() device = weight.device weight = torch.t(weight).contiguous().cpu() weight, scale = quant_weights(weight, torch.int8, False) self.weight = weight.cuda(device) self.scale = scale.cuda(device) self.bias = bias.cuda(device) if bias is not None else None def forward(self, input: torch.Tensor) -> torch.Tensor: output = w8_a16_gemm(input, self.weight, self.scale) output = output + self.bias if self.bias is not None else output return output class Linear8bitLt(nn.Module): def __init__( self, weight, bias, has_fp16_weights=True, memory_efficient_backward=False, threshold=0.0, index=None, ): super().__init__() assert ( not memory_efficient_backward ), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0" self.state = bnb.MatmulLtState() self.index = index # Necessary for stacked layers self.state.threshold = threshold self.state.has_fp16_weights = has_fp16_weights self.state.memory_efficient_backward = memory_efficient_backward if threshold > 0.0 and not has_fp16_weights: self.state.use_pool = True self.weight = Int8Params( weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights, ) self.weight.cuda(weight.device) self.bias = bias def init_8bit_state(self): self.state.CB = self.weight.CB self.state.SCB = self.weight.SCB self.weight.CB = None self.weight.SCB = None def forward(self, x: torch.Tensor): self.state.is_training = self.training if self.weight.CB is not None: self.init_8bit_state() # weights are cast automatically as Int8Params, but the bias has to be cast manually if self.bias is not None and self.bias.dtype != x.dtype: self.bias.data = self.bias.data.to(x.dtype) out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state) if not self.state.has_fp16_weights: if self.state.CB is not None and self.state.CxB is not None: # we converted 8-bit row major to turing/ampere format in the first inference pass # we no longer need the row-major weight del self.state.CB self.weight.data = self.state.CxB return out class Linear4bit(nn.Module): def __init__(self, weight, bias, quant_type): super().__init__() self.weight = Params4bit( weight.data, requires_grad=False, compress_statistics=True, quant_type=quant_type, ) self.compute_dtype = None self.weight.cuda(weight.device) self.bias = bias def forward(self, x: torch.Tensor): # weights are cast automatically as Int8Params, but the bias has to be cast manually if self.bias is not None and self.bias.dtype != x.dtype: self.bias.data = self.bias.data.to(x.dtype) if getattr(self.weight, "quant_state", None) is None: print( "FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first." ) inp_dtype = x.dtype if self.compute_dtype is not None: x = x.to(self.compute_dtype) bias = None if self.bias is None else self.bias.to(self.compute_dtype) out = bnb.matmul_4bit( x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state ) out = out.to(inp_dtype) return out @lru_cache(1) def warn_deprecate_bnb(): logger.warning( "Bitsandbytes 8bit is deprecated, using `eetq` is a drop-in replacement, and has much better performnce" ) def get_linear(weight, bias, quantize): if quantize is None: linear = FastLinear(weight, bias) elif quantize == "eetq": if HAS_EETQ: linear = EETQLinear(weight, bias) else: raise ImportError( "Please install EETQ from https://github.com/NetEase-FuXi/EETQ" ) elif quantize == "bitsandbytes": warn_deprecate_bnb() linear = Linear8bitLt( weight, bias, has_fp16_weights=False, threshold=6.0, ) if bias is not None: linear.bias = nn.Parameter(bias) elif quantize == "bitsandbytes-fp4": linear = Linear4bit( weight, bias, quant_type="fp4", ) elif quantize == "bitsandbytes-nf4": linear = Linear4bit( weight, bias, quant_type="nf4", ) elif quantize == "gptq": try: qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama = weight except Exception: raise NotImplementedError( f"The passed weight is not `gptq` compatible, loader needs to be updated." ) if use_exllama: linear = ExllamaQuantLinear( qweight, qzeros, scales, g_idx, bias, bits, groupsize ) else: linear = QuantLinear( qweight, qzeros, scales, g_idx, bias, bits, groupsize, ) elif quantize == "awq": try: qweight, qzeros, scales, _, bits, groupsize, _ = weight except Exception: raise NotImplementedError( f"The passed weight is not `awq` compatible, loader needs to be updated." ) linear = WQLinear( w_bit=bits, group_size=groupsize, qweight=qweight, qzeros=qzeros, scales=scales, bias=bias is not None, ) else: raise NotImplementedError(f"Quantization `{quantize}` is not implemented yet.") return linear class SuperLayer(nn.Module): def __init__(self, linear): super().__init__() self.linear = linear def forward(self, x): return self.linear.forward(x) class TensorParallelHead(SuperLayer): def __init__(self, linear, process_group, should_gather: bool): super().__init__(linear) self.process_group = process_group self.should_gather = should_gather @staticmethod def load(config, prefix: str, weights): if weights.process_group.size() > 1: try: weight = weights.get_sharded(f"{prefix}.weight", dim=0) should_gather = True except AssertionError: # If the vocab size is not divisible by number of shards # just load the entire thing. weight = weights.get_tensor(f"{prefix}.weight") should_gather = False else: weight = weights.get_tensor(f"{prefix}.weight") should_gather = False # GPTQ,AWQ,EETQ don't quantize heads (nor embeddings) if config.quantize in ["gptq", "awq", "eetq"]: quantize = None else: quantize = config.quantize return TensorParallelHead( get_linear(weight, bias=None, quantize=quantize), process_group=weights.process_group, should_gather=should_gather, ) def forward(self, input: torch.Tensor) -> torch.Tensor: if not self.should_gather: return super().forward(input) world_size = self.process_group.size() if len(input.shape) == 2 and isinstance(self.linear, FastLinear): out_dim = self.linear.weight.shape[0] if input.shape[0] == 1: world_out = input.new_empty(1, out_dim * world_size) local_out = input.new_empty(1, out_dim) gather_input = local_out else: world_out = input.new_empty(out_dim * world_size, input.shape[0]) gather_input = input.new_empty(out_dim, input.shape[0]) local_out = gather_input.T torch.mm(input, self.linear.weight.T, out=local_out) torch.distributed.all_gather_into_tensor( world_out, gather_input, group=self.process_group ) if input.shape[0] == 1: return world_out return world_out.T output = super().forward(input) world_output = [ torch.empty_like(output) for _ in range(self.process_group.size()) ] torch.distributed.all_gather(world_output, output, group=self.process_group) world_output = torch.cat(world_output, dim=-1) return world_output class TensorParallelColumnLinear(SuperLayer): @classmethod def load_qkv(cls, config, prefix: str, weights, bias: bool): """Specific method when the QKV was joined after the fact""" weight = weights.get_weights_col_packed_qkv(prefix, quantize=config.quantize) if bias: raise NotImplementedError("packed_qkv only implemented for baichuan") else: bias = None linear = get_linear(weight, bias, config.quantize) return cls(linear) @classmethod def load(cls, config, prefix: str, weights, bias: bool): return cls.load_multi(config, [prefix], weights, bias, dim=0) @classmethod def load_multi(cls, config, prefixes: List[str], weights, bias: bool, dim: int): weight = weights.get_multi_weights_col( prefixes, quantize=config.quantize, dim=dim ) if bias: b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes] bias = torch.cat(b, dim=dim) else: bias = None linear = get_linear(weight, bias, config.quantize) return cls(linear) class TensorParallelRowLinear(SuperLayer): def __init__(self, linear, process_group): super().__init__(linear) self.process_group = process_group @classmethod def load(cls, config, prefix: str, weights, bias: bool): weight = weights.get_multi_weights_row(prefix, quantize=config.quantize) if bias and weights.process_group.rank() == 0: # Rank is only on the first rank process bias = weights.get_tensor(f"{prefix}.bias") else: bias = None return cls( get_linear(weight, bias, config.quantize), process_group=weights.process_group, ) def forward(self, input: torch.Tensor, reduce: bool = True) -> torch.Tensor: out = super().forward(input) if self.process_group.size() > 1 and reduce: torch.distributed.all_reduce(out, group=self.process_group) return out class TensorParallelEmbedding(nn.Module): def __init__(self, prefix: str, weights, reduce=True): super().__init__() weight = weights.get_partial_sharded(f"{prefix}.weight", dim=0) num_embeddings = weights.get_shape(f"{prefix}.weight")[0] process_group = weights.process_group world_size = process_group.size() rank = process_group.rank() block_size = num_embeddings // world_size self.min_id = rank * block_size self.max_id = min(num_embeddings, (rank + 1) * block_size) self.null_idx = block_size self.process_group = weights.process_group self.reduce = reduce """Additional 0 entry used for masking""" self.weight = nn.Parameter(F.pad(weight, (0, 0, 0, 1))) def forward(self, input: torch.Tensor) -> torch.Tensor: # default all out of bounds values to `self.null_idx` that will then be mapped to 0 # translate for [0, self.max_id - self.min_id[ input = torch.where( (self.min_id > input) | (input >= self.max_id), self.null_idx, input - self.min_id, ) out = torch.nn.functional.embedding(input, self.weight) if self.reduce and self.process_group.size() > 1: torch.distributed.all_reduce(out, group=self.process_group) return out try: if IS_CUDA_SYSTEM: import dropout_layer_norm elif IS_ROCM_SYSTEM: from vllm import layernorm_ops else: dropout_layer_norm = None class FastLayerNorm(nn.LayerNorm): def forward(self, hidden_states, residual=None): if hidden_states.shape[-1] > 8192 or IS_ROCM_SYSTEM: if residual is not None: hidden_states += residual residual = hidden_states return super(FastLayerNorm, self).forward(hidden_states), residual else: ( normed_hidden_states, residual, *rest, ) = dropout_layer_norm.dropout_add_ln_fwd( hidden_states, residual, self.weight, self.bias, None, None, None, None, 0.0, self.eps, 1.0, 0, None, False, False, ) if residual is None: residual = hidden_states return normed_hidden_states, residual class FastRMSNorm(nn.Module): def __init__(self, weight: torch.Tensor, eps: float): super().__init__() self.weight = nn.Parameter(weight) self.variance_epsilon = eps @classmethod def load(cls, prefix, weights, eps=1e-6): weight = weights.get_tensor(f"{prefix}.weight") return cls(weight, eps) def forward(self, hidden_states, residual=None): if hidden_states.shape[-1] > 8192: if residual is not None: hidden_states += residual residual = hidden_states hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt( variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.float16, torch.bfloat16]: hidden_states = hidden_states.to(self.weight.dtype) return self.weight * hidden_states, residual elif IS_CUDA_SYSTEM: # faster post attention rms norm ( normed_hidden_states, res, *rest, ) = dropout_layer_norm.dropout_add_ln_fwd( hidden_states, residual, self.weight, None, None, None, None, None, 0.0, self.variance_epsilon, 1.0, 0, None, False, True, # Activate RMSNorm ) if res is None: res = hidden_states return normed_hidden_states, res elif IS_ROCM_SYSTEM: # We use VLLM RMSNorm kernel that can be compiled for RoCm, instead of Flash Attention ones that can not. if residual is not None: hidden_states += residual residual = hidden_states out = torch.empty_like(hidden_states) layernorm_ops.rms_norm( out, hidden_states, self.weight.data, self.variance_epsilon, ) return out, residual else: raise ValueError( "Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction." ) except ImportError: pass try: if IS_CUDA_SYSTEM: from flash_attn.layers.rotary import RotaryEmbedding import rotary_emb elif IS_ROCM_SYSTEM: from vllm import pos_encoding_ops def _create_inv_freq(dim, base, device): inv_freq = 1.0 / ( base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim) ) return inv_freq def _get_rope_config(config): if os.getenv("ROPE_SCALING", None) is not None: rope_scaling = { "type": os.environ["ROPE_SCALING"], "factor": float(os.environ["ROPE_FACTOR"]), } return rope_scaling return getattr(config, "rope_scaling", None) class PositionRotaryEmbedding(nn.Module): def __init__(self, inv_freq, scaling_factor): super().__init__() self.inv_freq = inv_freq self._seq_len_cached = 0 self._cos_cached = None self._sin_cached = None self._cos_k_cached = None self._sin_k_cached = None self.scaling_factor = scaling_factor self.dynamic_args = None def forward( self, query: torch.Tensor, key: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, ): # Such controlflows may add some overhead. if IS_CUDA_SYSTEM: rotary_dim = cos.shape[-1] q1 = query[..., :rotary_dim] q2 = query[..., rotary_dim : 2 * rotary_dim] rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False) k1 = key[..., :rotary_dim] k2 = key[..., rotary_dim : 2 * rotary_dim] rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False) elif IS_ROCM_SYSTEM: # NOTE: On RoCm systems, we use a ROPE implementatation adapted from VLLM which launches a single kernel for both query/key, contrary to flash-attn implementation used on NVIDIA systems. # Compiling flash-attn rotary on RoCm, it appears hipcc is unable to unroll loops, resulting in an even slower inference compared to eager: https://github.com/pytorch/pytorch/issues/113773 head_size = query.shape[-1] # Inplace operation, updating query and key. pos_encoding_ops.rotary_embedding(query, key, head_size, cos, sin, True) else: raise ValueError( "Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction." ) @classmethod def static(cls, config, dim, base, device): inv_freq = _create_inv_freq(dim, base, device) scaling_factor = None rope_scaling = _get_rope_config(config) if rope_scaling is not None: scaling_factor = rope_scaling["factor"] if rope_scaling["type"] == "linear": pass elif rope_scaling["type"] == "dynamic": return DynamicPositionRotaryEmbedding( dim=dim, max_position_embeddings=config.max_position_embeddings, base=base, device=inv_freq.device, scaling_factor=scaling_factor, ) elif rope_scaling["type"] == "yarn": return YarnPositionRotaryEmbedding( dim=2 * inv_freq.shape[0], max_position_embeddings=rope_scaling[ "original_max_position_embeddings" ], base=10000.0, device=inv_freq.device, scaling_factor=scaling_factor, extrapolation_factor=1, attn_factor=1, beta_fast=32, beta_slow=1, ) else: raise NotImplementedError( f"rope scaling type {rope_scaling['type']} is not implemented or invalid" ) return cls(inv_freq, scaling_factor) @classmethod def load(cls, config, prefix, weights): # XXX: Always load this in float32 ! dtype = weights.dtype weights.dtype = torch.float32 inv_freq = weights.get_tensor(f"{prefix}.inv_freq") weights.dtype = dtype scaling_factor = None rope_scaling = _get_rope_config(config) if rope_scaling is not None: scaling_factor = rope_scaling["factor"] if rope_scaling["type"] == "linear": pass elif rope_scaling["type"] == "dynamic": return DynamicPositionRotaryEmbedding( dim=2 * inv_freq.shape[0], max_position_embeddings=config.max_position_embeddings, base=10000.0, device=inv_freq.device, scaling_factor=scaling_factor, ) elif rope_scaling["type"] == "yarn": return YarnPositionRotaryEmbedding( dim=2 * inv_freq.shape[0], max_position_embeddings=rope_scaling[ "original_max_position_embeddings" ], base=10000.0, device=inv_freq.device, scaling_factor=scaling_factor, extrapolation_factor=1, attn_factor=1, beta_fast=32, beta_slow=1, ) else: raise NotImplementedError( f"rope scaling type {rope_scaling['type']} is not implemented or invalid" ) return cls(inv_freq, scaling_factor) def _update_cos_sin_cache(self, dtype, device, seqlen): # Reset the tables if the sequence length has changed, # or if we're on a new device (possibly due to tracing for instance) if ( seqlen > self._seq_len_cached or self._cos_cached.device != device or self._cos_cached.dtype != dtype ): self._seq_len_cached = seqlen t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype) if self.scaling_factor is not None: t /= self.scaling_factor # Don't do einsum, it converts fp32 to fp16 # freqs = torch.einsum("i,j->ij", t, self.inv_freq) freqs = torch.outer(t, self.inv_freq.to(device=t.device)) self._cos_cached = torch.cos(freqs).to(dtype) self._sin_cached = torch.sin(freqs).to(dtype) def get_cos_sin( self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype ): """ Return cos and sin for the asked position ids """ if IS_ROCM_SYSTEM: # For RoCm, we always use float cos/sin to avoid a cast. # For NVIDIA, for some reason, the flash-attn rotary kernel requires cos/sin and query/key to be of same dtype: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary.cpp#L26 # But later on goes and cast cos/sin to float anyway: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary_cuda.cu#L29, which looks suboptimal. dtype = torch.float32 self._update_cos_sin_cache(dtype, position_ids.device, max_s) cos = torch.index_select(self._cos_cached, 0, position_ids) sin = torch.index_select(self._sin_cached, 0, position_ids) # Note: this unsqueeze is not necessary on RoCm + VLLM ROPE implementation, but we leave it as is to avoid yet an other controlflow. return cos.unsqueeze(1), sin.unsqueeze(1) class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding): def __init__(self, dim, max_position_embeddings, base, device, scaling_factor): inv_freq = _create_inv_freq(dim, base, device) super().__init__(inv_freq, scaling_factor) self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base def _update_cos_sin_cache(self, dtype, device, seqlen): # Reset the tables if the sequence length has changed, # or if we're on a new device (possibly due to tracing for instance) if ( seqlen > self._seq_len_cached or self._cos_cached.device != device or self._cos_cached.dtype != dtype ): if seqlen > self.max_position_embeddings: newbase = self.base * ( (self.scaling_factor * seqlen / self.max_position_embeddings) - (self.scaling_factor - 1) ) ** (self.dim / (self.dim - 2)) self.inv_freq = _create_inv_freq( self.dim, newbase, self.inv_freq.device ) self._seq_len_cached = seqlen t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype) # Don't do einsum, it converts fp32 to fp16 # freqs = torch.einsum("i,j->ij", t, self.inv_freq) freqs = torch.outer(t, self.inv_freq.to(device=t.device)) self._cos_cached = torch.cos(freqs).to(dtype) self._sin_cached = torch.sin(freqs).to(dtype) # Inverse dim formula to find dim based on number of rotations import math def find_correction_dim( num_rotations, dim, base=10000, max_position_embeddings=2048 ): return ( dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi)) ) / (2 * math.log(base)) # Find dim range bounds based on rotations def find_correction_range( low_rot, high_rot, dim, base=10000, max_position_embeddings=2048 ): low = math.floor( find_correction_dim(low_rot, dim, base, max_position_embeddings) ) high = math.ceil( find_correction_dim(high_rot, dim, base, max_position_embeddings) ) return max(low, 0), min(high, dim - 1) # Clamp values just in case def linear_ramp_mask(min, max, dim): if min == max: max += 0.001 # Prevent singularity linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min) ramp_func = torch.clamp(linear_func, 0, 1) return ramp_func def get_mscale(scale=1): if scale <= 1: return 1.0 return 0.1 * math.log(scale) + 1.0 class YarnPositionRotaryEmbedding(PositionRotaryEmbedding): def __init__( self, dim, max_position_embeddings, base, device, scaling_factor, *, extrapolation_factor, attn_factor, beta_fast, beta_slow, ): inv_freq = _create_inv_freq(dim, base, device) super().__init__(inv_freq, scaling_factor) self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base self.extrapolation_factor = extrapolation_factor self.attn_factor = attn_factor self.beta_fast = beta_fast self.beta_slow = beta_slow self.mscale = float( get_mscale(self.scaling_factor) * self.attn_factor ) # Get n-d magnitude scaling corrected for interpolation def _update_cos_sin_cache(self, dtype, device, seqlen): # Reset the tables if the sequence length has changed, # or if we're on a new device (possibly due to tracing for instance) if ( seqlen > self._seq_len_cached or self._cos_cached.device != device or self._cos_cached.dtype != dtype ): if seqlen > self.max_position_embeddings: inv_freq_extrapolation = _create_inv_freq( self.dim, self.base, self.inv_freq.device ) freqs = 1.0 / inv_freq_extrapolation inv_freq_interpolation = 1.0 / (self.scaling_factor * freqs) low, high = find_correction_range( self.beta_fast, self.beta_slow, self.dim, self.base, self.max_position_embeddings, ) inv_freq_mask = ( 1 - linear_ramp_mask(low, high, self.dim // 2).float().to(device) ) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation inv_freq = ( inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask ) self.inv_freq = inv_freq self.mscale = float( get_mscale(self.scaling_factor) * self.attn_factor ) # Get n-d magnitude scaling corrected for interpolation self._seq_len_cached = seqlen t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype) # Don't do einsum, it converts fp32 to fp16 # freqs = torch.einsum("i,j->ij", t, self.inv_freq) freqs = torch.outer(t, self.inv_freq.to(device=t.device)) self._cos_cached = (torch.cos(freqs) * self.mscale).to(dtype) self._sin_cached = (torch.sin(freqs) * self.mscale).to(dtype) except ImportError: pass
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/utils/convert.py
import datetime import torch import os from loguru import logger from pathlib import Path from safetensors.torch import save_file, load_file, _find_shared_tensors, _is_complete from typing import List, Dict from collections import defaultdict def _remove_duplicate_names( state_dict: Dict[str, torch.Tensor], *, preferred_names: List[str] = None, discard_names: List[str] = None, ) -> Dict[str, List[str]]: if preferred_names is None: preferred_names = [] preferred_names = set(preferred_names) if discard_names is None: discard_names = [] discard_names = set(discard_names) shareds = _find_shared_tensors(state_dict) to_remove = defaultdict(list) for shared in shareds: complete_names = set( [name for name in shared if _is_complete(state_dict[name])] ) if not complete_names: if len(shared) == 1: # Force contiguous name = list(shared)[0] state_dict[name] = state_dict[name].clone() complete_names = {name} else: raise RuntimeError( f"Error while trying to find names to remove to save state dict, but found no suitable name to keep for saving amongst: {shared}. None is covering the entire storage.Refusing to save/load the model since you could be storing much more memory than needed. Please refer to https://huggingface.co/docs/safetensors/torch_shared_tensors for more information. Or open an issue." ) keep_name = sorted(list(complete_names))[0] # Mecanism to preferentially select keys to keep # coming from the on-disk file to allow # loading models saved with a different choice # of keep_name preferred = complete_names.difference(discard_names) if preferred: keep_name = sorted(list(preferred))[0] if preferred_names: preferred = preferred_names.intersection(complete_names) if preferred: keep_name = sorted(list(preferred))[0] for name in sorted(shared): if name != keep_name: to_remove[keep_name].append(name) return to_remove def convert_file(pt_file: Path, sf_file: Path, discard_names: List[str]): """ Convert a pytorch file to a safetensors file This will remove duplicate tensors from the file. Unfortunately, this might not respect *transformers* convention. Forcing us to check for potentially different keys during load when looking for specific tensors (making tensor sharing explicit). """ loaded = torch.load(pt_file, map_location="cpu") if "state_dict" in loaded: loaded = loaded["state_dict"] to_removes = _remove_duplicate_names(loaded, discard_names=discard_names) metadata = {"format": "pt"} for kept_name, to_remove_group in to_removes.items(): for to_remove in to_remove_group: if to_remove not in metadata: metadata[to_remove] = kept_name del loaded[to_remove] # Force tensors to be contiguous loaded = {k: v.contiguous() for k, v in loaded.items()} dirname = os.path.dirname(sf_file) os.makedirs(dirname, exist_ok=True) save_file(loaded, sf_file, metadata=metadata) reloaded = load_file(sf_file) for k in loaded: pt_tensor = loaded[k] sf_tensor = reloaded[k] if not torch.equal(pt_tensor, sf_tensor): raise RuntimeError(f"The output tensors do not match for key {k}") def convert_files(pt_files: List[Path], sf_files: List[Path], discard_names: List[str]): assert len(pt_files) == len(sf_files) N = len(pt_files) # We do this instead of using tqdm because we want to parse the logs with the launcher for i, (pt_file, sf_file) in enumerate(zip(pt_files, sf_files)): # Skip blacklisted files if ( "arguments" in pt_file.name or "args" in pt_file.name or "training" in pt_file.name ): continue start = datetime.datetime.now() convert_file(pt_file, sf_file, discard_names) elapsed = datetime.datetime.now() - start logger.info(f"Convert: [{i + 1}/{N}] -- Took: {elapsed}")
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/utils/tokens.py
import re from typing import Callable, List, Optional, Tuple import torch from text_generation_server.pb import generate_pb2 from text_generation_server.pb.generate_pb2 import FinishReason from text_generation_server.utils.logits_process import ( HeterogeneousProcessorWrapper, HeterogeneousRepetitionPenaltyLogitsProcessor, HeterogeneousTemperatureLogitsWarper, HeterogeneousTopKLogitsWarper, HeterogeneousTopPLogitsWarper, HeterogeneousTypicalLogitsWarper, static_warper, ) from text_generation_server.utils.watermark import WatermarkLogitsProcessor from transformers import PreTrainedTokenizerBase, RepetitionPenaltyLogitsProcessor class NextTokenChooser: def __init__( self, watermark=False, temperature=1.0, repetition_penalty=1.0, top_k=None, top_p=None, typical_p=None, do_sample=False, seed=0, device="cpu", ): self.watermark_processor = ( WatermarkLogitsProcessor(device=device) if watermark else None ) self.repetition_processor = ( RepetitionPenaltyLogitsProcessor(penalty=repetition_penalty) if repetition_penalty else None ) has_warpers = ( (temperature is not None and temperature != 1.0) or (top_k is not None and top_k != 0) or (top_p is not None and top_p < 1.0) or (typical_p is not None and typical_p < 1.0) ) if has_warpers: self.static_warper = static_warper( temperature=temperature, top_k=top_k, top_p=top_p, typical_p=typical_p ) else: self.static_warper = None sampling = do_sample or has_warpers self.choice = Sampling(seed, device) if sampling else Greedy() def __call__(self, input_ids, scores): if self.watermark_processor is not None: scores = self.watermark_processor(input_ids, scores) if self.repetition_processor is not None: scores = self.repetition_processor(input_ids, scores) if self.static_warper is None: next_logprob = torch.log_softmax(scores, -1) else: scores, next_logprob = self.static_warper(scores) next_id = self.choice(scores[-1]).view(1, 1) return next_id, next_logprob @classmethod def from_pb( cls, pb: generate_pb2.NextTokenChooserParameters, device: torch.device, ) -> "NextTokenChooser": return NextTokenChooser( watermark=pb.watermark, temperature=pb.temperature, repetition_penalty=pb.repetition_penalty, top_k=pb.top_k, top_p=pb.top_p, typical_p=pb.typical_p, do_sample=pb.do_sample, seed=pb.seed, device=device, ) class StopSequenceCriteria: def __init__(self, stop_sequence: str): stop_sequence = re.escape(stop_sequence) self.regex = re.compile(f"{stop_sequence}$") def __call__(self, output: str) -> bool: if self.regex.findall(output): return True return False class StoppingCriteria: def __init__( self, eos_token_id: int, stop_sequence_criterias: List[StopSequenceCriteria], max_new_tokens: int = 20, ignore_eos_token: bool = False, ): self.eos_token_id = eos_token_id self.stop_sequence_criterias = stop_sequence_criterias self.max_new_tokens = max_new_tokens self.current_tokens = 0 self.current_output = "" self.ignore_eos_token = ignore_eos_token def __call__(self, last_token: int, last_output: str) -> Tuple[bool, Optional[str]]: self.current_tokens += 1 if self.current_tokens >= self.max_new_tokens: return True, FinishReason.FINISH_REASON_LENGTH if not self.ignore_eos_token and last_token == self.eos_token_id: return True, FinishReason.FINISH_REASON_EOS_TOKEN if self.stop_sequence_criterias: self.current_output += last_output # There is no need to keep an output that is too long if len(self.current_output) > 300: # Slice to -200 to avoid doing it all the time self.current_output = self.current_output[-200:] for stop_sequence_criteria in self.stop_sequence_criterias: if stop_sequence_criteria(self.current_output): return True, FinishReason.FINISH_REASON_STOP_SEQUENCE return False, None @classmethod def from_pb( cls, pb: generate_pb2.StoppingCriteriaParameters, tokenizer: PreTrainedTokenizerBase, ) -> "StoppingCriteria": stop_sequence_criterias = [ StopSequenceCriteria(sequence) for sequence in pb.stop_sequences ] return StoppingCriteria( tokenizer.eos_token_id, stop_sequence_criterias, pb.max_new_tokens, pb.ignore_eos_token, ) def create_n_gram_speculation( input_ids: torch.Tensor, next_ids: torch.Tensor, accepted_ids: torch.Tensor, speculate: int, verbose: bool, ): # Very trivial approach, find first match in the string. # This is much less refined than actual n-gram but seems to work # relatively OK in grounded mode and is by far much faster with # much less worst case complexity as everything happens on device. B = accepted_ids.shape[0] device = input_ids.device seeds = next_ids[accepted_ids.cumsum(dim=-1) - 1] indices = (input_ids == seeds.unsqueeze(-1)).max(dim=1).indices + 1 all_indices = indices.unsqueeze(-1).expand(B, speculate) + torch.arange( speculate, device=device ) all_indices = torch.clamp(all_indices, max=input_ids.shape[1] - 1) speculative_ids = input_ids.gather(dim=-1, index=all_indices) return speculative_ids class HeterogeneousNextTokenChooser: def __init__( self, dtype: torch.dtype, device: torch.device, watermark: List[bool], temperature: List[float], repetition_penalty: List[float], top_k: List[int], top_p: List[float], typical_p: List[float], do_sample: List[bool], seeds: List[int], ): warpers = [] self.watermark_processor = ( HeterogeneousProcessorWrapper( { i: WatermarkLogitsProcessor(device=device) for i, do_watermark in enumerate(watermark) if do_watermark } ) if any(watermark) else None ) self.repetition_processor = ( HeterogeneousRepetitionPenaltyLogitsProcessor( repetition_penalty, dtype, device ) if any([x != 1.0 for x in repetition_penalty]) else None ) if any([x != 1.0 for x in temperature]): do_sample = [ sample or x != 1.0 for x, sample in zip(temperature, do_sample) ] warpers.append( HeterogeneousTemperatureLogitsWarper(temperature, dtype, device) ) if any([x != 0 for x in top_k]): do_sample = [sample or x != 0 for x, sample in zip(top_k, do_sample)] warpers.append(HeterogeneousTopKLogitsWarper(top_k, device)) if any([x < 1.0 for x in top_p]): do_sample = [sample or x < 1.0 for x, sample in zip(top_p, do_sample)] warpers.append(HeterogeneousTopPLogitsWarper(top_p, dtype, device)) if any([x < 1.0 for x in typical_p]): do_sample = [sample or x < 1.0 for x, sample in zip(typical_p, do_sample)] warpers.append(HeterogeneousTypicalLogitsWarper(typical_p, dtype, device)) self.warpers = warpers if any(do_sample): self.choice = HeterogeneousSampling(do_sample, seeds, device) else: self.choice = Greedy() self.seeds = seeds self.do_sample = do_sample self.dtype = dtype self.device = device def __call__( self, input_ids: torch.Tensor, scores: torch.Tensor, speculate: int, speculated_ids: Optional[torch.Tensor] = None, speculative_scores: Optional[torch.Tensor] = None, verbose=False, ): if speculated_ids is not None: B = scores.shape[0] // (speculated_ids.shape[1] + 1) S = speculated_ids.shape[1] + 1 scores = scores.view(B, S, -1) else: B = scores.shape[0] S = 1 scores = scores.view(B, S, -1) next_ids = torch.zeros((B, S), device=scores.device, dtype=torch.long) for j in range(S): _scores = scores[:, j] if self.watermark_processor is not None: _scores = self.watermark_processor(input_ids, _scores) if self.repetition_processor is not None: _scores = self.repetition_processor(input_ids, _scores) for warper in self.warpers: _scores = warper(input_ids, _scores) _next_ids = self.choice(_scores) scores[:, j] = _scores next_ids[:, j] = _next_ids next_ids = next_ids.view(B * S) scores = scores.view(B * S, -1) if speculated_ids is not None: accepted_ids = [] B = next_ids.shape[0] // (speculated_ids.shape[1] + 1) S = speculated_ids.shape[1] + 1 indices = [] for i in range(B): _next_ids = next_ids[i * S : (i + 1) * S] _speculated_ids = speculated_ids[i] validate_speculative = _next_ids[:-1] == _speculated_ids index = i * S accepted = 1 # First is always valid indices.append(index) for valid in validate_speculative.tolist(): if valid: index += 1 accepted += 1 indices.append(index) else: break accepted_ids.append(accepted) accepted_ids = torch.tensor( accepted_ids, device=input_ids.device, dtype=input_ids.dtype ) next_ids = next_ids[indices] scores = scores[indices] indices = torch.arange(B, device=input_ids.device) * S if speculative_scores is not None: speculative_scores = speculative_scores[indices + accepted_ids - 1] else: accepted_ids = torch.ones_like(next_ids) logprobs = torch.log_softmax(scores, -1) next_logprobs = torch.gather(logprobs, 1, next_ids.view(-1, 1)).view(-1) if speculate > 0: if speculative_scores is not None: # Medusa provided some scores speculative_ids = Greedy()(speculative_scores) else: # n-gram speculative_ids = create_n_gram_speculation( input_ids, next_ids, accepted_ids, speculate, verbose ) else: speculative_ids = None return next_ids, next_logprobs, logprobs, accepted_ids, speculative_ids def filter(self, indices): if self.watermark_processor is not None: self.watermark_processor = self.watermark_processor.filter(indices) if self.repetition_processor is not None: self.repetition_processor = self.repetition_processor.filter(indices) filtered_warpers = [] for warper in self.warpers: filtered_warper = warper.filter(indices) if filtered_warper is not None: filtered_warpers.append(filtered_warper) self.warpers = filtered_warpers self.seeds = [self.seeds[i] for i in indices] self.do_sample = [self.do_sample[i] for i in indices] if any(self.do_sample): self.choice.filter(indices) else: self.choice = Greedy() return self @classmethod def from_pb( cls, pb: List[generate_pb2.NextTokenChooserParameters], dtype: torch.dtype, device: torch.device, ) -> "HeterogeneousNextTokenChooser": return HeterogeneousNextTokenChooser( watermark=[pb_.watermark for pb_ in pb], temperature=[pb_.temperature for pb_ in pb], repetition_penalty=[pb_.repetition_penalty for pb_ in pb], top_k=[pb_.top_k for pb_ in pb], top_p=[pb_.top_p for pb_ in pb], typical_p=[pb_.typical_p for pb_ in pb], do_sample=[pb_.do_sample for pb_ in pb], seeds=[pb_.seed for pb_ in pb], device=device, dtype=dtype, ) class Sampling: def __init__(self, seed: int, device: str = "cpu"): self.generator = torch.Generator(device) self.generator.manual_seed(seed) self.seed = seed def __call__(self, logits): probs = torch.nn.functional.softmax(logits, -1) # Avoid GPU<->CPU sync done by torch multinomial # See: https://github.com/pytorch/pytorch/blob/925a3788ec5c06db62ca732a0e9425a26a00916f/aten/src/ATen/native/Distributions.cpp#L631-L637 q = torch.empty_like(probs).exponential_(1, generator=self.generator) return probs.div_(q).argmax() class Greedy: def __call__(self, logits): return logits.argmax(dim=-1) class HeterogeneousSampling: r""" Mixed greedy and probabilistic sampling. Compute both and pick the right one for each sample. """ def __init__(self, do_sample: List[bool], seeds: List[int], device: torch.device): self.seeds = seeds self.greedy_indices = [] self.sampling_mapping = {} for i, (sample, seed) in enumerate(zip(do_sample, seeds)): if sample: self.sampling_mapping[i] = Sampling(seed, device) else: self.greedy_indices.append(i) self.greedy = Greedy() def __call__(self, logits): out = torch.empty(logits.shape[0], dtype=torch.int64, device=logits.device) if self.greedy_indices: # Computing for all indices is faster than slicing torch.argmax(logits, -1, out=out) for i, sampling in self.sampling_mapping.items(): out[i] = sampling(logits[i]) return out def filter(self, indices): new_greedy_indices = [] new_sampling_mapping = {} for i, idx in enumerate(indices): if idx in self.sampling_mapping: new_sampling_mapping[i] = self.sampling_mapping[idx] else: new_greedy_indices.append(i) self.greedy_indices = new_greedy_indices self.sampling_mapping = new_sampling_mapping return self def batch_top_tokens( top_n_tokens: List[int], top_n_tokens_tensor: torch.Tensor, logprobs: torch.Tensor ) -> Tuple[List[List[int]], List[List[float]]]: """Find the top n most likely tokens for a batch of generations. When multiple tokens have equal probabilities and they don't all fit, the remaining tokens are also returned. """ max_top_n = max(top_n_tokens) # Early exit when top_n_tokens is not used if max_top_n == 0: return [[]] * len(top_n_tokens), [[]] * len(top_n_tokens) # Ensure top_n doesn't exceed vocab size top_n_tokens = [min(tok, logprobs.size(-1)) for tok in top_n_tokens] # Parallel kthvalue adapted from https://discuss.pytorch.org/t/how-to-efficiently-get-the-k-th-largest-values-in-parallel/160529/2 # Sorted topk is faster than torch.sort() since we only need a small subset sorted_top_k = torch.topk(logprobs, k=max_top_n, dim=1, sorted=True).values nth_highest = torch.gather( sorted_top_k, 1, (top_n_tokens_tensor - 1).clip(min=0).unsqueeze(1) ) nth_highest[nth_highest == -float("inf")] = torch.finfo(logprobs.dtype).min # Find the new "fuzzy" top n values top_n_indices = (logprobs >= nth_highest).nonzero() _, top_n_ishes = torch.unique_consecutive(top_n_indices[:, 0], return_counts=True) k = 1 if top_n_ishes.numel() == 0 else top_n_ishes.max() # Take a new topk for these new max n values top_k = torch.topk(logprobs, k=k, dim=1, sorted=True) top_n_ishes = top_n_ishes.tolist() top_indices = top_k.indices.tolist() top_values = top_k.values.tolist() return ( [ idxs[:n] if req_n > 0 else [] for idxs, n, req_n in zip(top_indices, top_n_ishes, top_n_tokens) ], [ vals[:n] if req_n > 0 else [] for vals, n, req_n in zip(top_values, top_n_ishes, top_n_tokens) ], )
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/utils/peft.py
import os import json from loguru import logger import torch from transformers import AutoTokenizer from peft import AutoPeftModelForCausalLM, AutoPeftModelForSeq2SeqLM def download_and_unload_peft(model_id, revision, trust_remote_code): torch_dtype = torch.float16 logger.info("Trying to load a Peft model. It might take a while without feedback") try: model = AutoPeftModelForCausalLM.from_pretrained( model_id, revision=revision, torch_dtype=torch_dtype, trust_remote_code=trust_remote_code, low_cpu_mem_usage=True, ) except Exception: model = AutoPeftModelForSeq2SeqLM.from_pretrained( model_id, revision=revision, torch_dtype=torch_dtype, trust_remote_code=trust_remote_code, low_cpu_mem_usage=True, ) logger.info("Peft model detected.") logger.info(f"Merging the lora weights.") base_model_id = model.peft_config["default"].base_model_name_or_path model = model.merge_and_unload() os.makedirs(model_id, exist_ok=True) cache_dir = model_id logger.info(f"Saving the newly created merged model to {cache_dir}") tokenizer = AutoTokenizer.from_pretrained( base_model_id, trust_remote_code=trust_remote_code ) model.save_pretrained(cache_dir, safe_serialization=True) model.config.save_pretrained(cache_dir) tokenizer.save_pretrained(cache_dir)
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/utils/log.py
from functools import lru_cache @lru_cache(10) def log_once(log, msg: str): log(msg)
0
hf_public_repos/text-generation-inference/server/text_generation_server
hf_public_repos/text-generation-inference/server/text_generation_server/utils/speculate.py
SPECULATE = None def get_speculate() -> int: global SPECULATE return SPECULATE def set_speculate(speculate: int): global SPECULATE SPECULATE = speculate
0
hf_public_repos/text-generation-inference/server/text_generation_server/utils/awq
hf_public_repos/text-generation-inference/server/text_generation_server/utils/awq/quantize/qmodule.py
# Copied logic from https://github.com/mit-han-lab/llm-awq/blob/f084f40bd996f3cf3a0633c1ad7d9d476c318aaa/awq/quantize/qmodule.py import math import torch import torch.nn as nn import awq_inference_engine # with CUDA kernels # class ScaledActivation(nn.Module): # def __init__(self, module, scales): # super().__init__() # self.act = module # self.scales = nn.Parameter(scales.data) # # def forward(self, x): # return self.act(x) / self.scales.view(1, 1, -1).to(x.device) class WQLinear(nn.Module): def __init__(self, w_bit, group_size, qweight, qzeros, scales, bias): super().__init__() if w_bit not in [4]: raise NotImplementedError("Only 4-bit are supported for now.") self.in_features = qweight.shape[0] self.out_features = qweight.shape[1] * 32 // w_bit self.w_bit = w_bit self.group_size = group_size if group_size != -1 else self.in_features # quick sanity check (make sure aligment) assert self.in_features % self.group_size == 0 assert self.out_features % (32 // self.w_bit) == 0 self.qweight = qweight self.qzeros = qzeros self.scales = scales if bias: self.bias = bias else: self.bias = None @torch.no_grad() def forward(self, x): out_shape = x.shape[:-1] + (self.out_features,) out = awq_inference_engine.gemm_forward_cuda( x.reshape(-1, x.shape[-1]), self.qweight, self.scales, self.qzeros, 8 ) out = out + self.bias if self.bias is not None else out return out.reshape(out_shape)
0
hf_public_repos/text-generation-inference/server/text_generation_server/utils
hf_public_repos/text-generation-inference/server/text_generation_server/utils/gptq/exllamav2.py
# Adapted from turboderp exllama: https://github.com/turboderp/exllamav2 from logging import getLogger import torch import torch.nn as nn import math logger = getLogger(__name__) try: from exllamav2_kernels import make_q_matrix, gemm_half_q_half except ImportError: logger.error("exllamav2_kernels not installed.") raise # Dummy tensor to pass instead of g_idx since there is no way to pass "None" to a C++ extension none_tensor = torch.empty((1, 1), device="meta") def ext_gemm_half_q_half(x, q_handle, q4_width, force_cuda): """Matrix multiplication, returns x @ q4""" output_shape = x.shape[:-1] + (q4_width,) x = x.view(-1, x.shape[-1]) output = torch.empty((x.shape[0], q4_width), dtype=torch.half, device=x.device) gemm_half_q_half(x, q_handle, output, force_cuda) return output.view(output_shape) # Group map needed for irregular group sizes def make_group_map(q_groups, num_qrows): gr = q_groups.tolist() group_map = [] num_groups = len(gr) // 2 for i in range(num_groups): bits = gr[i * 2] if i < num_groups - 1: qrows = gr[i * 2 + 3] - gr[i * 2 + 1] else: qrows = num_qrows - gr[i * 2 + 1] rows = qrows * 32 // bits for j in range(rows): group_map += [i] group_map += [rows - j] return torch.tensor(group_map, dtype=torch.short, device=q_groups.device) # Create Q matrix def ext_make_q_matrix(w: dict, temp_dq, key: str = None): """ Create Q matrix """ # EXL2 # won't work as the moment because the tensors are not the same. if "q_weight" in w: w["q_scale_max"] /= 256 w["q_perm"] = w["q_perm"].short() w["q_invperm"] = w["q_invperm"].short() if "q_group_map" not in w: w["q_group_map"] = make_group_map(w["q_groups"], w["q_weight"].shape[0]) return make_q_matrix( w["q_weight"], w["q_perm"], w["q_invperm"], w["q_scale"], w["q_scale_max"], w["q_groups"], w["q_group_map"], none_tensor, none_tensor, none_tensor, temp_dq, ) # GPTQ elif "qweight" in w: if w["scales"].dtype == torch.float: w["scales"] = w["scales"].half() # GPTQ with g_idx (act_order) if w.get("g_idx", None) is not None and not (w["g_idx"] == 0).all().item(): w["q_perm"] = torch.empty( (w["qweight"].shape[0] * 8,), dtype=torch.short, device=w["qweight"].device, ) w["q_invperm"] = torch.empty_like(w["q_perm"]) # make_q4 segfaults if g_idx is not on cpu in the act-order case. In the non act-order case, None needs to be passed for g_idx. return make_q_matrix( w["qweight"], w["q_perm"], w["q_invperm"], none_tensor, none_tensor, none_tensor, none_tensor, w["qzeros"], w["scales"], w["g_idx"].cpu(), temp_dq, ) # GPTQ without g_idx else: return make_q_matrix( w["qweight"], none_tensor, none_tensor, none_tensor, none_tensor, none_tensor, none_tensor, w["qzeros"], w["scales"], none_tensor, temp_dq, ) DEVICE = None FIXED_BYTES = 0 LAYERS = [] def set_device(device): global DEVICE DEVICE = device def create_exllama_buffers(max_total_tokens: int): global FIXED_BYTES, LAYERS, DEVICE temp_dq = ExLlamaV2DeviceTensors(DEVICE, FIXED_BYTES) for layer in LAYERS: layer.post_init(temp_dq) class QuantLinear(nn.Module): QUANT_TYPE = "exllamav2" """Linear layer implementation with per-group 4-bit quantization of the weights""" # def __init__(self, bits, group_size, infeatures, outfeatures, bias, trainable=False, **kwargs): def __init__(self, qweight, qzeros, scales, g_idx, bias, bits, groupsize): super().__init__() if bits != 4: raise ValueError( f"Exllamav2 kernel supports only bits=4, requested bits={bits}. Something is wrong in the model initialization." ) self.q_handle = None self.q_tensors = None self.bits = bits self.maxq = 2**self.bits - 1 self.infeatures = qweight.shape[0] // self.bits * 32 self.outfeatures = qweight.shape[1] self.padding = -self.outfeatures % 32 self.outfeatures = self.outfeatures + self.padding self.device = qweight.device self.qweight = qweight self.qzeros = qzeros self.scales = scales self.g_idx = g_idx self.bias = bias if bias is not None else None self.group_size = groupsize global FIXED_BYTES, LAYERS FIXED_BYTES = max(FIXED_BYTES, self.scratch_space_fixed()) LAYERS.append(self) def post_init(self, temp_dq): assert self.qweight.device.type == "cuda" assert self.qweight.device.index is not None self.q_tensors = { "qweight": self.qweight, "qzeros": self.qzeros, "scales": self.scales, "g_idx": self.g_idx, } temp_dq = temp_dq.get_scratch_slice(self.temp_dq_size()) self.q_handle = ext_make_q_matrix(self.q_tensors, temp_dq) def forward(self, x, force_cuda=False): output = ext_gemm_half_q_half(x, self.q_handle, self.outfeatures, force_cuda) if self.bias is not None: output.add_(self.bias) return output def temp_dq_size(self): return self.infeatures * self.outfeatures * 2 + 128 def temp_fwd_size(self, max_input_len, max_batch_size): return self.outfeatures * max_input_len * max_batch_size * 4 + 128 def scratch_space_fixed(self, max_input_len=4096, max_batch_size=16): return self.temp_dq_size() + self.temp_fwd_size(max_input_len, max_batch_size) class ExLlamaV2DeviceTensors: device_idx: int scratch_bytes: int scratch_idx: int scratch: torch.tensor = None def __init__(self, device, scratch_bytes): self.device = device self.scratch_bytes = scratch_bytes def prepare(self): self.scratch = torch.empty( (self.scratch_bytes // 2,), dtype=torch.half, device=self.device ) def get_scratch_slice(self, size_bytes): if self.scratch is None: self.prepare() size_bytes = ((size_bytes + 127) // 128) * 128 size_half = size_bytes // 2 scratch_slice = self.scratch.narrow(0, 0, size_half) return scratch_slice
0
hf_public_repos/text-generation-inference/server/text_generation_server/utils
hf_public_repos/text-generation-inference/server/text_generation_server/utils/gptq/custom_autotune.py
# https://github.com/fpgaminer/GPTQ-triton """ Mostly the same as the autotuner in Triton, but with a few changes like using 40 runs instead of 100. """ import builtins import math import time from typing import Dict import triton class Autotuner(triton.KernelInterface): def __init__( self, fn, arg_names, configs, key, reset_to_zero, prune_configs_by: Dict = None, nearest_power_of_two: bool = False, ): """ :param prune_configs_by: a dict of functions that are used to prune configs, fields: 'perf_model': performance model used to predicate running time with different configs, returns running time 'top_k': number of configs to bench 'prune_num_stages_by'(optional): a function used to prune num_stages. It take configs:List[Config] as its input, and returns pruned configs. 'nearest_power_of_two'(optional): whether to round key arguments to the nearest power of two when caching tuning results """ if not configs: self.configs = [triton.Config({}, num_warps=4, num_stages=2)] else: self.configs = configs self.key_idx = [arg_names.index(k) for k in key] self.nearest_power_of_two = nearest_power_of_two self.cache = {} # hook to reset all required tensor to zeros before relaunching a kernel self.hook = lambda args: 0 if reset_to_zero is not None: self.reset_idx = [arg_names.index(k) for k in reset_to_zero] def _hook(args): for i in self.reset_idx: args[i].zero_() self.hook = _hook self.arg_names = arg_names # prune configs if prune_configs_by: perf_model, top_k = ( prune_configs_by["perf_model"], prune_configs_by["top_k"], ) if "early_config_prune" in prune_configs_by: early_config_prune = prune_configs_by["early_config_prune"] else: perf_model, top_k, early_config_prune = None, None, None self.perf_model, self.configs_top_k = perf_model, top_k self.early_config_prune = early_config_prune self.fn = fn def _bench(self, *args, config, **meta): # check for conflicts, i.e. meta-parameters both provided # as kwargs and by the autotuner conflicts = meta.keys() & config.kwargs.keys() if conflicts: raise ValueError( f"Conflicting meta-parameters: {', '.join(conflicts)}." " Make sure that you don't re-define auto-tuned symbols." ) # augment meta-parameters with tunable ones current = dict(meta, **config.kwargs) def kernel_call(): if config.pre_hook: config.pre_hook(self.nargs) self.hook(args) self.fn.run( *args, num_warps=config.num_warps, num_stages=config.num_stages, **current, ) try: # In testings using only 40 reps seems to be close enough and it appears to be what PyTorch uses # PyTorch also sets fast_flush to True, but I didn't see any speedup so I'll leave the default return triton.testing.do_bench( kernel_call, quantiles=(0.5, 0.2, 0.8), rep=40 ) except triton.OutOfResources: return (float("inf"), float("inf"), float("inf")) def run(self, *args, **kwargs): self.nargs = dict(zip(self.arg_names, args)) if len(self.configs) > 1: key = tuple(args[i] for i in self.key_idx) # This reduces the amount of autotuning by rounding the keys to the nearest power of two # In my testing this gives decent results, and greatly reduces the amount of tuning required if self.nearest_power_of_two: key = tuple([2 ** int(math.log2(x) + 0.5) for x in key]) if key not in self.cache: # prune configs pruned_configs = self.prune_configs(kwargs) bench_start = time.time() timings = { config: self._bench(*args, config=config, **kwargs) for config in pruned_configs } bench_end = time.time() self.bench_time = bench_end - bench_start self.cache[key] = builtins.min(timings, key=timings.get) self.hook(args) self.configs_timings = timings config = self.cache[key] else: config = self.configs[0] self.best_config = config if config.pre_hook is not None: config.pre_hook(self.nargs) return self.fn.run( *args, num_warps=config.num_warps, num_stages=config.num_stages, **kwargs, **config.kwargs, ) def prune_configs(self, kwargs): pruned_configs = self.configs if self.early_config_prune: pruned_configs = self.early_config_prune(self.configs, self.nargs) if self.perf_model: top_k = self.configs_top_k if isinstance(top_k, float) and top_k <= 1.0: top_k = int(len(self.configs) * top_k) if len(pruned_configs) > top_k: est_timing = { config: self.perf_model( **self.nargs, **kwargs, **config.kwargs, num_stages=config.num_stages, num_warps=config.num_warps, ) for config in pruned_configs } pruned_configs = sorted(est_timing.keys(), key=lambda x: est_timing[x])[ :top_k ] return pruned_configs def warmup(self, *args, **kwargs): self.nargs = dict(zip(self.arg_names, args)) for config in self.prune_configs(kwargs): self.fn.warmup( *args, num_warps=config.num_warps, num_stages=config.num_stages, **kwargs, **config.kwargs, ) self.nargs = None def autotune( configs, key, prune_configs_by=None, reset_to_zero=None, nearest_power_of_two=False ): """ Decorator for auto-tuning a :code:`triton.jit`'d function. .. highlight:: python .. code-block:: python @triton.autotune(configs=[ triton.Config(meta={'BLOCK_SIZE': 128}, num_warps=4), triton.Config(meta={'BLOCK_SIZE': 1024}, num_warps=8), ], key=['x_size'] # the two above configs will be evaluated anytime # the value of x_size changes ) @triton.jit def kernel(x_ptr, x_size, **META): BLOCK_SIZE = META['BLOCK_SIZE'] :note: When all the configurations are evaluated, the kernel will run multiple time. This means that whatever value the kernel updates will be updated multiple times. To avoid this undesired behavior, you can use the `reset_to_zero` argument, which reset the value of the provided tensor to `zero` before running any configuration. :param configs: a list of :code:`triton.Config` objects :type configs: list[triton.Config] :param key: a list of argument names whose change in value will trigger the evaluation of all provided configs. :type key: list[str] :param prune_configs_by: a dict of functions that are used to prune configs, fields: 'perf_model': performance model used to predicate running time with different configs, returns running time 'top_k': number of configs to bench 'early_config_prune'(optional): a function used to do early prune (eg, num_stages). It take configs:List[Config] as its input, and returns pruned configs. :param reset_to_zero: a list of argument names whose value will be reset to zero before evaluating any configs. :type reset_to_zero: list[str] """ def decorator(fn): return Autotuner( fn, fn.arg_names, configs, key, reset_to_zero, prune_configs_by, nearest_power_of_two, ) return decorator def matmul248_kernel_config_pruner(configs, nargs): """ The main purpose of this function is to shrink BLOCK_SIZE_* when the corresponding dimension is smaller. """ m = max(2 ** int(math.ceil(math.log2(nargs["M"]))), 16) n = max(2 ** int(math.ceil(math.log2(nargs["N"]))), 16) k = max(2 ** int(math.ceil(math.log2(nargs["K"]))), 16) used = set() for config in configs: block_size_m = min(m, config.kwargs["BLOCK_SIZE_M"]) block_size_n = min(n, config.kwargs["BLOCK_SIZE_N"]) block_size_k = min(k, config.kwargs["BLOCK_SIZE_K"]) group_size_m = config.kwargs["GROUP_SIZE_M"] if ( block_size_m, block_size_n, block_size_k, group_size_m, config.num_stages, config.num_warps, ) in used: continue used.add( ( block_size_m, block_size_n, block_size_k, group_size_m, config.num_stages, config.num_warps, ) ) yield triton.Config( { "BLOCK_SIZE_M": block_size_m, "BLOCK_SIZE_N": block_size_n, "BLOCK_SIZE_K": block_size_k, "GROUP_SIZE_M": group_size_m, }, num_stages=config.num_stages, num_warps=config.num_warps, )
0
hf_public_repos/text-generation-inference/server/text_generation_server/utils
hf_public_repos/text-generation-inference/server/text_generation_server/utils/gptq/exllama.py
import torch from exllama_kernels import make_q4, q4_matmul, prepare_buffers, set_tuning_params # Dummy tensor to pass instead of g_idx since there is no way to pass "None" to a C++ extension none_tensor = torch.empty((1, 1), device="meta") def ext_make_q4(qweight, qzeros, scales, g_idx, device): """Construct Q4Matrix, return handle""" return make_q4( qweight, qzeros, scales, g_idx if g_idx is not None else none_tensor, device ) def ext_q4_matmul(x, q4, q4_width): """Matrix multiplication, returns x @ q4""" outshape = x.shape[:-1] + (q4_width,) x = x.view(-1, x.shape[-1]) output = torch.empty((x.shape[0], q4_width), dtype=torch.float16, device=x.device) q4_matmul(x, q4, output) return output.view(outshape) MAX_DQ = 1 MAX_INNER = 1 ACT_ORDER = False DEVICE = None TEMP_STATE = None TEMP_DQ = None def set_device(device): global DEVICE DEVICE = device def create_exllama_buffers(max_total_tokens: int): global MAX_DQ, MAX_INNER, ACT_ORDER, DEVICE, TEMP_STATE, TEMP_DQ assert DEVICE is not None, "call set_device first" if not ACT_ORDER: max_total_tokens = 1 # This temp_state buffer is required to reorder X in the act-order case. temp_state = torch.zeros( (max_total_tokens, MAX_INNER), dtype=torch.float16, device=DEVICE ) temp_dq = torch.zeros((1, MAX_DQ), dtype=torch.float16, device=DEVICE) # This temp_dq buffer is required to dequantize weights when using cuBLAS, typically for the prefill. prepare_buffers(DEVICE, temp_state, temp_dq) matmul_recons_thd = 8 matmul_fused_remap = False matmul_no_half2 = False set_tuning_params(matmul_recons_thd, matmul_fused_remap, matmul_no_half2) TEMP_STATE, TEMP_DQ = temp_state, temp_dq class Ex4bitLinear(torch.nn.Module): """Linear layer implementation with per-group 4-bit quantization of the weights""" def __init__(self, qweight, qzeros, scales, g_idx, bias, bits, groupsize): super().__init__() global MAX_DQ, MAX_INNER, ACT_ORDER, DEVICE assert bits == 4 self.device = qweight.device self.qweight = qweight self.qzeros = qzeros self.scales = scales self.g_idx = g_idx.cpu() if g_idx is not None else None self.bias = bias if bias is not None else None if self.g_idx is not None and ( (self.g_idx == 0).all() or torch.equal( g_idx.cpu(), torch.tensor( [i // groupsize for i in range(g_idx.shape[0])], dtype=torch.int32 ), ) ): self.empty_g_idx = True self.g_idx = None assert self.device.type == "cuda" assert self.device.index is not None self.q4 = ext_make_q4( self.qweight, self.qzeros, self.scales, self.g_idx, self.device.index ) self.height = qweight.shape[0] * 8 self.width = qweight.shape[1] # Infer groupsize from height of qzeros self.groupsize = None if self.qzeros.shape[0] > 1: self.groupsize = (self.qweight.shape[0] * 8) // (self.qzeros.shape[0]) if self.groupsize is not None: assert groupsize == self.groupsize # Handle act-order matrix if self.g_idx is not None: if self.groupsize is None: raise ValueError("Found group index but no groupsize. What do?") self.act_order = True else: self.act_order = False DEVICE = self.qweight.device MAX_DQ = max(MAX_DQ, self.qweight.numel() * 8) if self.act_order: MAX_INNER = max(MAX_INNER, self.height, self.width) ACT_ORDER = True def forward(self, x): out = ext_q4_matmul(x, self.q4, self.width) if self.bias is not None: out.add_(self.bias) return out
0
hf_public_repos/text-generation-inference/server/text_generation_server/utils
hf_public_repos/text-generation-inference/server/text_generation_server/utils/gptq/quant_linear.py
import math import numpy as np import torch import torch.nn as nn from torch.cuda.amp import custom_bwd, custom_fwd try: import triton import triton.language as tl from . import custom_autotune # code based https://github.com/fpgaminer/GPTQ-triton @custom_autotune.autotune( configs=[ triton.Config( { "BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=2, num_warps=8, ), triton.Config( { "BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 64, "GROUP_SIZE_M": 8, }, num_stages=3, num_warps=8, ), triton.Config( { "BLOCK_SIZE_M": 32, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 8, }, num_stages=2, num_warps=4, ), ], key=["M", "N", "K"], nearest_power_of_two=True, prune_configs_by={ "early_config_prune": custom_autotune.matmul248_kernel_config_pruner, "perf_model": None, "top_k": None, }, ) @triton.jit def matmul_248_kernel( a_ptr, b_ptr, c_ptr, scales_ptr, zeros_ptr, g_ptr, M, N, K, bits, maxq, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, stride_scales, stride_zeros, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr, ): """ Compute the matrix multiplication C = A x B. A is of shape (M, K) float16 B is of shape (K//8, N) int32 C is of shape (M, N) float16 scales is of shape (G, N) float16 zeros is of shape (G, N) float16 g_ptr is of shape (K) int32 """ infearure_per_bits = 32 // bits pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_k = tl.cdiv(K, BLOCK_SIZE_K) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + (pid % group_size_m) pid_n = (pid % num_pid_in_group) // group_size_m offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + ( offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak ) # (BLOCK_SIZE_M, BLOCK_SIZE_K) a_mask = offs_am[:, None] < M # b_ptrs is set up such that it repeats elements along the K axis 8 times b_ptrs = b_ptr + ( (offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn ) # (BLOCK_SIZE_K, BLOCK_SIZE_N) g_ptrs = g_ptr + offs_k # shifter is used to extract the N bits of each element in the 32-bit word from B scales_ptrs = scales_ptr + offs_bn[None, :] zeros_ptrs = zeros_ptr + (offs_bn[None, :] // infearure_per_bits) shifter = (offs_k % infearure_per_bits) * bits zeros_shifter = (offs_bn % infearure_per_bits) * bits accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, num_pid_k): g_idx = tl.load(g_ptrs) # Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop scales = tl.load( scales_ptrs + g_idx[:, None] * stride_scales ) # (BLOCK_SIZE_K, BLOCK_SIZE_N,) zeros = tl.load( zeros_ptrs + g_idx[:, None] * stride_zeros ) # (BLOCK_SIZE_K, BLOCK_SIZE_N,) zeros = (zeros >> zeros_shifter[None, :]) & maxq zeros = zeros + 1 a = tl.load(a_ptrs, mask=a_mask, other=0.0) # (BLOCK_SIZE_M, BLOCK_SIZE_K) b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated # Now we need to unpack b (which is N-bit values) into 32-bit values b = (b >> shifter[:, None]) & maxq # Extract the N-bit values b = (b - zeros) * scales # Scale and shift accumulator += tl.dot(a, b) a_ptrs += BLOCK_SIZE_K b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk g_ptrs += BLOCK_SIZE_K c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :] c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N) tl.store(c_ptrs, accumulator, mask=c_mask) except: print("triton not installed.") def matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq): with torch.cuda.device(input.device): output = torch.empty( (input.shape[0], qweight.shape[1]), device=input.device, dtype=torch.float16 ) grid = lambda META: ( triton.cdiv(input.shape[0], META["BLOCK_SIZE_M"]) * triton.cdiv(qweight.shape[1], META["BLOCK_SIZE_N"]), ) matmul_248_kernel[grid]( input, qweight, output, scales, qzeros, g_idx, input.shape[0], qweight.shape[1], input.shape[1], bits, maxq, input.stride(0), input.stride(1), qweight.stride(0), qweight.stride(1), output.stride(0), output.stride(1), scales.stride(0), qzeros.stride(0), ) return output class QuantLinearFunction(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx, input, qweight, scales, qzeros, g_idx, bits, maxq): output = matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq) return output class QuantLinear(nn.Module): def __init__(self, qweight, qzeros, scales, g_idx, bias, bits, groupsize): super().__init__() self.register_buffer("qweight", qweight) self.register_buffer("qzeros", qzeros) self.register_buffer("scales", scales) self.register_buffer("g_idx", g_idx) if bias is not None: self.register_buffer("bias", bias) else: self.bias = None if bits not in [2, 4, 8]: raise NotImplementedError("Only 2,4,8 bits are supported.") self.bits = bits self.maxq = 2**self.bits - 1 self.groupsize = groupsize self.outfeatures = qweight.shape[1] self.infeatures = qweight.shape[0] * 32 // bits @classmethod def new(cls, bits, groupsize, infeatures, outfeatures, bias): if bits not in [2, 4, 8]: raise NotImplementedError("Only 2,4,8 bits are supported.") qweight = torch.zeros((infeatures // 32 * bits, outfeatures), dtype=torch.int32) qzeros = torch.zeros( (math.ceil(infeatures / groupsize), outfeatures // 32 * bits), dtype=torch.int32, ) scales = torch.zeros( (math.ceil(infeatures / groupsize), outfeatures), dtype=torch.float16 ) g_idx = torch.tensor( [i // groupsize for i in range(infeatures)], dtype=torch.int32 ) if bias: bias = torch.zeros((outfeatures), dtype=torch.float16) else: bias = None return cls(qweight, qzeros, scales, g_idx, bias, bits, groupsize) def pack(self, linear, scales, zeros, g_idx=None): self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx scales = scales.t().contiguous() zeros = zeros.t().contiguous() scale_zeros = zeros * scales self.scales = scales.clone().half() if linear.bias is not None: self.bias = linear.bias.clone().half() intweight = [] for idx in range(self.infeatures): intweight.append( torch.round( (linear.weight.data[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]] ).to(torch.int)[:, None] ) intweight = torch.cat(intweight, dim=1) intweight = intweight.t().contiguous() intweight = intweight.numpy().astype(np.uint32) qweight = np.zeros( (intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32 ) i = 0 row = 0 while row < qweight.shape[0]: if self.bits in [2, 4, 8]: for j in range(i, i + (32 // self.bits)): qweight[row] |= intweight[j] << (self.bits * (j - i)) i += 32 // self.bits row += 1 else: raise NotImplementedError("Only 2,4,8 bits are supported.") qweight = qweight.astype(np.int32) self.qweight = torch.from_numpy(qweight) zeros -= 1 zeros = zeros.numpy().astype(np.uint32) qzeros = np.zeros( (zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32 ) i = 0 col = 0 while col < qzeros.shape[1]: if self.bits in [2, 4, 8]: for j in range(i, i + (32 // self.bits)): qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i)) i += 32 // self.bits col += 1 else: raise NotImplementedError("Only 2,4,8 bits are supported.") qzeros = qzeros.astype(np.int32) self.qzeros = torch.from_numpy(qzeros) def forward(self, x): out_shape = x.shape[:-1] + (self.outfeatures,) out = QuantLinearFunction.apply( x.reshape(-1, x.shape[-1]), self.qweight, self.scales, self.qzeros, self.g_idx, self.bits, self.maxq, ) out = out + self.bias if self.bias is not None else out return out.reshape(out_shape)
0
hf_public_repos/text-generation-inference/server/text_generation_server/utils
hf_public_repos/text-generation-inference/server/text_generation_server/utils/gptq/quantize.py
import time import torch.nn as nn import math import json import os import torch import transformers from texttable import Texttable from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer from huggingface_hub import HfApi from accelerate import init_empty_weights from text_generation_server.utils import initialize_torch_distributed, Weights from text_generation_server.utils.hub import weight_files from text_generation_server.utils.gptq.quant_linear import QuantLinear from loguru import logger from typing import Optional DEV = torch.device("cuda:0") class Quantizer(nn.Module): def __init__(self, shape=1): super(Quantizer, self).__init__() self.register_buffer("maxq", torch.tensor(0)) self.register_buffer("scale", torch.zeros(shape)) self.register_buffer("zero", torch.zeros(shape)) def configure( self, bits, perchannel=False, sym=True, mse=False, norm=2.4, grid=100, maxshrink=0.8, trits=False, ): self.maxq = torch.tensor(2**bits - 1) self.perchannel = perchannel self.sym = sym self.mse = mse self.norm = norm self.grid = grid self.maxshrink = maxshrink if trits: self.maxq = torch.tensor(-1) self.scale = torch.zeros_like(self.scale) def _quantize(self, x, scale, zero, maxq): if maxq < 0: return (x > scale / 2).float() * scale + (x < zero / 2).float() * zero q = torch.clamp(torch.round(x / scale) + zero, 0, maxq) return scale * (q - zero) def find_params(self, x, weight=False): dev = x.device self.maxq = self.maxq.to(dev) shape = x.shape if self.perchannel: if weight: x = x.flatten(1) else: if len(shape) == 4: x = x.permute([1, 0, 2, 3]) x = x.flatten(1) if len(shape) == 3: x = x.reshape((-1, shape[-1])).t() if len(shape) == 2: x = x.t() else: x = x.flatten().unsqueeze(0) tmp = torch.zeros(x.shape[0], device=dev) xmin = torch.minimum(x.min(1)[0], tmp) xmax = torch.maximum(x.max(1)[0], tmp) if self.sym: xmax = torch.maximum(torch.abs(xmin), xmax) tmp = xmin < 0 if torch.any(tmp): xmin[tmp] = -xmax[tmp] tmp = (xmin == 0) & (xmax == 0) xmin[tmp] = -1 xmax[tmp] = +1 if self.maxq < 0: self.scale = xmax self.zero = xmin else: self.scale = (xmax - xmin) / self.maxq if self.sym: self.zero = torch.full_like(self.scale, (self.maxq + 1) / 2) else: self.zero = torch.round(-xmin / self.scale) if self.mse: best = torch.full([x.shape[0]], float("inf"), device=dev) for i in range(int(self.maxshrink * self.grid)): p = 1 - i / self.grid xmin1 = p * xmin xmax1 = p * xmax scale1 = (xmax1 - xmin1) / self.maxq zero1 = torch.round(-xmin1 / scale1) if not self.sym else self.zero q = self._quantize( x, scale1.unsqueeze(1), zero1.unsqueeze(1), self.maxq ) q -= x q.abs_() q.pow_(self.norm) err = torch.sum(q, 1) tmp = err < best if torch.any(tmp): best[tmp] = err[tmp] self.scale[tmp] = scale1[tmp] self.zero[tmp] = zero1[tmp] if not self.perchannel: if weight: tmp = shape[0] else: tmp = shape[1] if len(shape) != 3 else shape[2] self.scale = self.scale.repeat(tmp) self.zero = self.zero.repeat(tmp) if weight: shape = [-1] + [1] * (len(shape) - 1) self.scale = self.scale.reshape(shape) self.zero = self.zero.reshape(shape) return if len(shape) == 4: self.scale = self.scale.reshape((1, -1, 1, 1)) self.zero = self.zero.reshape((1, -1, 1, 1)) if len(shape) == 3: self.scale = self.scale.reshape((1, 1, -1)) self.zero = self.zero.reshape((1, 1, -1)) if len(shape) == 2: self.scale = self.scale.unsqueeze(0) self.zero = self.zero.unsqueeze(0) def quantize(self, x): if self.ready(): return self._quantize(x, self.scale, self.zero, self.maxq) return x def enabled(self): return self.maxq > 0 def ready(self): return torch.all(self.scale != 0) class GPTQ: def __init__(self, layer, observe=False): self.layer = layer self.dev = self.layer.weight.device W = layer.weight.data.clone() if isinstance(self.layer, nn.Conv2d): W = W.flatten(1) if isinstance(self.layer, transformers.Conv1D): W = W.t() self.rows = W.shape[0] self.columns = W.shape[1] self.H = torch.zeros((self.columns, self.columns), device=self.dev) self.nsamples = 0 self.quantizer = Quantizer() self.observe = observe def add_batch(self, inp, out): # Hessian H = 2 X XT + λ I if self.observe: self.inp1 = inp self.out1 = out else: self.inp1 = None self.out1 = None if len(inp.shape) == 2: inp = inp.unsqueeze(0) tmp = inp.shape[0] if isinstance(self.layer, nn.Linear) or isinstance( self.layer, transformers.Conv1D ): if len(inp.shape) == 3: inp = inp.reshape((-1, inp.shape[-1])) inp = inp.t() if isinstance(self.layer, nn.Conv2d): unfold = nn.Unfold( self.layer.kernel_size, dilation=self.layer.dilation, padding=self.layer.padding, stride=self.layer.stride, ) inp = unfold(inp) inp = inp.permute([1, 0, 2]) inp = inp.flatten(1) self.H *= self.nsamples / (self.nsamples + tmp) self.nsamples += tmp # inp = inp.float() inp = math.sqrt(2 / self.nsamples) * inp.float() # self.H += 2 / self.nsamples * inp.matmul(inp.t()) self.H += inp.matmul(inp.t()) def print_loss(self, name, q_weight, weight_error, timecost): table = Texttable() length = 28 name = ( (name + " " * (length - len(name))) if len(name) <= length else name[:length] ) table.header(["name", "weight_error", "fp_inp_SNR", "q_inp_SNR", "time"]) # assign weight self.layer.weight.data = q_weight.reshape(self.layer.weight.shape).to( self.layer.weight.data.dtype ) if self.inp1 is not None: # quantize input to int8 quantizer = Quantizer() quantizer.configure(8, perchannel=False, sym=True, mse=False) quantizer.find_params(self.inp1) q_in = quantizer.quantize(self.inp1).type(torch.float16) q_out = self.layer(q_in) # get kinds of SNR q_SNR = torch_snr_error(q_out, self.out1).item() fp_SNR = torch_snr_error(self.layer(self.inp1), self.out1).item() else: q_SNR = "-" fp_SNR = "-" table.add_row([name, weight_error, fp_SNR, q_SNR, timecost]) print(table.draw().split("\n")[-2]) def fasterquant( self, blocksize=128, percdamp=0.01, groupsize=-1, act_order=False, name="" ): self.layer.to(self.dev) W = self.layer.weight.data.clone() if isinstance(self.layer, nn.Conv2d): W = W.flatten(1) if isinstance(self.layer, transformers.Conv1D): W = W.t() W = W.float() tick = time.time() if not self.quantizer.ready(): self.quantizer.find_params(W, weight=True) H = self.H if not self.observe: del self.H dead = torch.diag(H) == 0 H[dead, dead] = 1 W[:, dead] = 0 if act_order: perm = torch.argsort(torch.diag(H), descending=True) W = W[:, perm] H = H[perm][:, perm] Losses = torch.zeros_like(W) Q = torch.zeros_like(W) damp = percdamp * torch.mean(torch.diag(H)) diag = torch.arange(self.columns, device=self.dev) H[diag, diag] += damp H = torch.linalg.cholesky(H) H = torch.cholesky_inverse(H) try: H = torch.linalg.cholesky(H, upper=True) except Exception: # Addition because Falcon fails on h_to_4h H = torch.linalg.cholesky( H + 1e-5 * torch.eye(H.shape[0]).to(H.device), upper=True ) Hinv = H g_idx = [] scale = [] zero = [] now_idx = 1 for i1 in range(0, self.columns, blocksize): i2 = min(i1 + blocksize, self.columns) count = i2 - i1 W1 = W[:, i1:i2].clone() Q1 = torch.zeros_like(W1) Err1 = torch.zeros_like(W1) Losses1 = torch.zeros_like(W1) Hinv1 = Hinv[i1:i2, i1:i2] for i in range(count): w = W1[:, i] d = Hinv1[i, i] if groupsize != -1: if (i1 + i) % groupsize == 0: self.quantizer.find_params( W[:, (i1 + i) : (i1 + i + groupsize)], weight=True ) if ((i1 + i) // groupsize) - now_idx == -1: scale.append(self.quantizer.scale) zero.append(self.quantizer.zero) now_idx += 1 q = self.quantizer.quantize(w.unsqueeze(1)).flatten() Q1[:, i] = q Losses1[:, i] = (w - q) ** 2 / d**2 err1 = (w - q) / d W1[:, i:] -= err1.unsqueeze(1).matmul(Hinv1[i, i:].unsqueeze(0)) Err1[:, i] = err1 Q[:, i1:i2] = Q1 Losses[:, i1:i2] = Losses1 / 2 W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:]) torch.cuda.synchronize() error = torch.sum(Losses).item() groupsize = groupsize if groupsize != -1 else self.columns g_idx = [i // groupsize for i in range(self.columns)] g_idx = torch.tensor(g_idx, dtype=torch.int32, device=Q.device) if act_order: invperm = torch.argsort(perm) Q = Q[:, invperm] g_idx = g_idx[invperm] if isinstance(self.layer, transformers.Conv1D): Q = Q.t() self.print_loss( name=name, q_weight=Q, weight_error=error, timecost=(time.time() - tick) ) if scale == []: scale.append(self.quantizer.scale) zero.append(self.quantizer.zero) scale = torch.cat(scale, dim=1) zero = torch.cat(zero, dim=1) return scale, zero, g_idx, error def free(self): self.inp1 = None self.out1 = None self.H = None self.Losses = None self.Trace = None torch.cuda.empty_cache() def get_wikitext2(nsamples, seed, seqlen, model_id, trust_remote_code): from datasets import load_dataset traindata = load_dataset("wikitext", "wikitext-2-raw-v1", split="train") testdata = load_dataset("wikitext", "wikitext-2-raw-v1", split="test") try: tokenizer = AutoTokenizer.from_pretrained( model_id, use_fast=False, trust_remote_code=trust_remote_code ) except: tokenizer = AutoTokenizer.from_pretrained( model_id, use_fast=True, trust_remote_code=trust_remote_code ) trainenc = tokenizer("\n\n".join(traindata["text"]), return_tensors="pt") testenc = tokenizer("\n\n".join(testdata["text"]), return_tensors="pt") import random random.seed(seed) trainloader = [] for _ in range(nsamples): i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1) j = i + seqlen inp = trainenc.input_ids[:, i:j] tar = inp.clone() tar[:, :-1] = -100 trainloader.append((inp, tar)) return trainloader, testenc def get_ptb(nsamples, seed, seqlen, model_id, trust_remote_code): from datasets import load_dataset traindata = load_dataset("ptb_text_only", "penn_treebank", split="train") valdata = load_dataset("ptb_text_only", "penn_treebank", split="validation") try: tokenizer = AutoTokenizer.from_pretrained( model_id, use_fast=False, trust_remote_code=trust_remote_code ) except: tokenizer = AutoTokenizer.from_pretrained( model_id, use_fast=True, trust_remote_code=trust_remote_code ) trainenc = tokenizer("\n\n".join(traindata["sentence"]), return_tensors="pt") testenc = tokenizer("\n\n".join(valdata["sentence"]), return_tensors="pt") import random random.seed(seed) trainloader = [] for _ in range(nsamples): i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1) j = i + seqlen inp = trainenc.input_ids[:, i:j] tar = inp.clone() tar[:, :-1] = -100 trainloader.append((inp, tar)) return trainloader, testenc def get_c4(nsamples, seed, seqlen, model_id, trust_remote_code): from datasets import load_dataset traindata = load_dataset( "allenai/c4", "allenai--c4", data_files={"train": "en/c4-train.00000-of-01024.json.gz"}, split="train", use_auth_token=False, ) valdata = load_dataset( "allenai/c4", "allenai--c4", data_files={"validation": "en/c4-validation.00000-of-00008.json.gz"}, split="validation", use_auth_token=False, ) try: tokenizer = AutoTokenizer.from_pretrained( model_id, use_fast=False, trust_remote_code=trust_remote_code ) except: tokenizer = AutoTokenizer.from_pretrained( model_id, use_fast=True, trust_remote_code=trust_remote_code ) import random random.seed(seed) trainloader = [] for _ in range(nsamples): while True: i = random.randint(0, len(traindata) - 1) trainenc = tokenizer(traindata[i]["text"], return_tensors="pt") if trainenc.input_ids.shape[1] >= seqlen: break i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1) j = i + seqlen inp = trainenc.input_ids[:, i:j] tar = inp.clone() tar[:, :-1] = -100 trainloader.append((inp, tar)) import random random.seed(0) valenc = [] for _ in range(256): while True: i = random.randint(0, len(valdata) - 1) tmp = tokenizer(valdata[i]["text"], return_tensors="pt") if tmp.input_ids.shape[1] >= seqlen: break i = random.randint(0, tmp.input_ids.shape[1] - seqlen - 1) j = i + seqlen valenc.append(tmp.input_ids[:, i:j]) valenc = torch.hstack(valenc) class TokenizerWrapper: def __init__(self, input_ids): self.input_ids = input_ids valenc = TokenizerWrapper(valenc) return trainloader, valenc def get_ptb_new(nsamples, seed, seqlen, model_id, trust_remote_code): from datasets import load_dataset traindata = load_dataset("ptb_text_only", "penn_treebank", split="train") testdata = load_dataset("ptb_text_only", "penn_treebank", split="test") try: tokenizer = AutoTokenizer.from_pretrained( model_id, use_fast=False, trust_remote_code=trust_remote_code ) except: tokenizer = AutoTokenizer.from_pretrained( model_id, use_fast=True, trust_remote_code=trust_remote_code ) trainenc = tokenizer(" ".join(traindata["sentence"]), return_tensors="pt") testenc = tokenizer(" ".join(testdata["sentence"]), return_tensors="pt") import random random.seed(seed) trainloader = [] for _ in range(nsamples): i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1) j = i + seqlen inp = trainenc.input_ids[:, i:j] tar = inp.clone() tar[:, :-1] = -100 trainloader.append((inp, tar)) return trainloader, testenc def get_c4_new(nsamples, seed, seqlen, model_id, trust_remote_code): from datasets import load_dataset traindata = load_dataset( "allenai/c4", "allenai--c4", data_files={"train": "en/c4-train.00000-of-01024.json.gz"}, split="train", ) valdata = load_dataset( "allenai/c4", "allenai--c4", data_files={"validation": "en/c4-validation.00000-of-00008.json.gz"}, split="validation", ) try: tokenizer = AutoTokenizer.from_pretrained( model_id, use_fast=False, trust_remote_code=trust_remote_code ) except: tokenizer = AutoTokenizer.from_pretrained( model_id, use_fast=True, trust_remote_code=trust_remote_code ) import random random.seed(seed) trainloader = [] for _ in range(nsamples): while True: i = random.randint(0, len(traindata) - 1) trainenc = tokenizer(traindata[i]["text"], return_tensors="pt") if trainenc.input_ids.shape[1] >= seqlen: break i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1) j = i + seqlen inp = trainenc.input_ids[:, i:j] tar = inp.clone() tar[:, :-1] = -100 trainloader.append((inp, tar)) valenc = tokenizer(" ".join(valdata[:1100]["text"]), return_tensors="pt") valenc = valenc.input_ids[:, : (256 * seqlen)] class TokenizerWrapper: def __init__(self, input_ids): self.input_ids = input_ids valenc = TokenizerWrapper(valenc) return trainloader, valenc def get_loaders( name, nsamples=128, seed=0, seqlen=2048, model_id="", trust_remote_code=False ): if "wikitext2" in name: return get_wikitext2(nsamples, seed, seqlen, model_id, trust_remote_code) if "ptb" in name: if "new" in name: return get_ptb_new(nsamples, seed, seqlen, model_id, trust_remote_code) return get_ptb(nsamples, seed, seqlen, model_id, trust_remote_code) if "c4" in name: if "new" in name: return get_c4_new(nsamples, seed, seqlen, model_id, trust_remote_code) return get_c4(nsamples, seed, seqlen, model_id, trust_remote_code) def find_layers(module, layers=(nn.Conv2d, nn.Linear), name=""): # Skip last lm_head linear # Need isintance Falcon is inheriting Linear. if isinstance(module, layers) and "lm_head" not in name: return {name: module} res = {} for name1, child in module.named_children(): res.update( find_layers( child, layers=layers, name=name + "." + name1 if name != "" else name1 ) ) return res @torch.no_grad() def sequential( model, dataloader, dev, nsamples, bits, groupsize, *, hooks, percdamp=0.01, sym: bool = False, act_order: bool = False, ): print("Starting ...") use_cache = model.config.use_cache model.config.use_cache = False try: layers = model.model.layers prefix = "model.layers" except Exception: layers = model.transformer.h prefix = "transformer.h" dtype = next(iter(model.parameters())).dtype inps = torch.zeros( (nsamples, model.seqlen, model.config.hidden_size), dtype=dtype, device=dev ) cache = {"i": 0} extra = {} class Catcher(nn.Module): def __init__(self, module): super().__init__() self.module = module def forward(self, inp, **kwargs): inps[cache["i"]] = inp cache["i"] += 1 extra.update(kwargs.copy()) raise ValueError layers[0] = Catcher(layers[0]) for batch in dataloader: try: model(batch[0].cuda()) except ValueError: pass layers[0] = layers[0].module # layers[0] = layers[0].cpu() # model.model.embed_tokens = model.model.embed_tokens.cpu() # model.model.norm = model.model.norm.cpu() torch.cuda.empty_cache() for hook in hooks: hook.remove() outs = torch.zeros_like(inps) extra = { k: v.to(dev) if isinstance(v, torch.Tensor) else v for k, v in extra.items() } print("Ready.") quantizers = {} for i in range(len(layers)): print(f"Quantizing layer {i+1}/{len(layers)}..") print("+------------------+--------------+------------+-----------+-------+") print("| name | weight_error | fp_inp_SNR | q_inp_SNR | time |") print("+==================+==============+============+===========+=======+") layer = layers[i] layer.load() full = find_layers(layer) sequential = [list(full.keys())] for names in sequential: subset = {n: full[n] for n in names} gptq = {} for name in subset: gptq[name] = GPTQ(subset[name]) gptq[name].quantizer.configure( bits, perchannel=True, sym=sym, mse=False ) pass def add_batch(name): def tmp(_, inp, out): gptq[name].add_batch(inp[0].data, out.data) return tmp handles = [] for name in subset: handles.append(subset[name].register_forward_hook(add_batch(name))) for j in range(nsamples): outs[j] = layer(inps[j].unsqueeze(0), **extra)[0] for h in handles: h.remove() for name in subset: scale, zero, g_idx, error = gptq[name].fasterquant( percdamp=percdamp, groupsize=groupsize, act_order=act_order, name=name, ) quantizers[f"{prefix}.{i}.{name}"] = ( gptq[name].quantizer.cpu(), scale.cpu(), zero.cpu(), g_idx.cpu(), bits, groupsize, ) gptq[name].free() for j in range(nsamples): outs[j] = layer(inps[j].unsqueeze(0), **extra)[0] layer.unload() del layer del gptq torch.cuda.empty_cache() inps, outs = outs, inps print("+------------------+--------------+------------+-----------+-------+") print("\n") model.config.use_cache = use_cache return quantizers def make_quant_linear(module, names, bits, groupsize, name=""): if isinstance(module, QuantLinear): return for attr in dir(module): tmp = getattr(module, attr) name1 = name + "." + attr if name != "" else attr if name1 in names: delattr(module, attr) setattr( module, attr, QuantLinear.new( bits, groupsize, tmp.in_features, tmp.out_features, tmp.bias is not None, ), ) for name1, child in module.named_children(): make_quant_linear( child, names, bits, groupsize, name + "." + name1 if name != "" else name1 ) # TODO: perform packing on GPU def pack(model, quantizers, bits, groupsize): layers = find_layers(model) layers = {n: layers[n] for n in quantizers} make_quant_linear(model, quantizers, bits, groupsize) qlayers = find_layers(model, (QuantLinear,)) print("Packing ...") for name in qlayers: print(name) quantizers[name], scale, zero, g_idx, _, _ = quantizers[name] qlayers[name].pack(layers[name], scale, zero, g_idx) print("Done.") return model def setdeepattr(module, full_name, tensor): current = module tokens = full_name.split(".") for token in tokens[:-1]: current = getattr(current, token) setattr(current, tokens[-1], tensor) def getdeepattr(module, full_name): current = module tokens = full_name.split(".") for token in tokens: current = getattr(current, token) return current def load_weights_pre_hook(module_name, weights, recursive=False): def inner(module, args): print(f"Pre hook {module_name}") local_params = {} for k, v in module.named_parameters(): if not recursive and k.count(".") != 1: continue local_params[k] = v for k, v in module.named_buffers(): if not recursive and k.count(".") != 1: continue local_params[k] = v for local_param in local_params: current_tensor = getdeepattr(module, local_param) if current_tensor.device == torch.device("meta"): # print(f"Loading {local_param}") if module_name: tensor_name = f"{module_name}.{local_param}" else: tensor_name = local_param tensor = weights.get_tensor(tensor_name) setdeepattr(module, local_param, nn.Parameter(tensor)) else: tensor = current_tensor.to(device=torch.device("cuda:0")) if current_tensor.requires_grad: tensor = nn.Parameter(tensor) setdeepattr(module, local_param, tensor) return inner def load_weights_post_hook(module_name, weights, recursive=False): def inner(module, args, output): print(f"Post hook {module_name}") local_params = {} for k, v in module.named_parameters(): if not recursive and k.count(".") != 1: continue local_params[k] = v for k, v in module.named_buffers(): if not recursive and k.count(".") != 1: continue local_params[k] = v for local_param in local_params: # print(f"Unloading {local_param}") current_tensor = getdeepattr(module, local_param) setdeepattr( module, local_param, nn.Parameter(current_tensor.to(device=torch.device("cpu"))), ) return output return inner def quantize( model_id: str, bits: int, groupsize: int, output_dir: str, revision: str, trust_remote_code: bool, upload_to_model_id: Optional[str], percdamp: float, act_order: bool, ): print("loading model") config = AutoConfig.from_pretrained( model_id, trust_remote_code=trust_remote_code, ) with init_empty_weights(): model = AutoModelForCausalLM.from_config( config, torch_dtype=torch.float16, trust_remote_code=trust_remote_code ) model = model.eval() print("LOADED model") files = weight_files(model_id, revision, extension=".safetensors") process_group, _, _ = initialize_torch_distributed() weights = Weights( files, device=torch.device("cuda:0"), dtype=torch.float16, process_group=process_group, aliases={"embed_tokens.weight": ["lm_head.weight"]}, ) hooks = [] for name, module in model.named_modules(): def load(module, name): def _load(): load_weights_pre_hook(name, weights, recursive=True)(module, None) return _load def unload(module, name): def _unload(): load_weights_post_hook(name, weights, recursive=True)( module, None, None ) return _unload module.load = load(module, name) module.unload = unload(module, name) hooks.append( module.register_forward_pre_hook(load_weights_pre_hook(name, weights)) ) hooks.append( module.register_forward_hook(load_weights_post_hook(name, weights)) ) model.seqlen = 2048 dataset = "wikitext2" nsamples = 128 seed = None dataloader, testloader = get_loaders( dataset, nsamples=nsamples, seed=seed, model_id=model_id, seqlen=model.seqlen, trust_remote_code=trust_remote_code, ) tick = time.time() quantizers = sequential( model, dataloader, DEV, nsamples, bits, groupsize, percdamp=percdamp, act_order=act_order, hooks=hooks, ) print(time.time() - tick) pack(model, quantizers, bits, groupsize) from safetensors.torch import save_file from transformers.modeling_utils import shard_checkpoint state_dict = model.state_dict() state_dict = {k: v.cpu().contiguous() for k, v in state_dict.items()} state_dict["gptq_bits"] = torch.LongTensor([bits]) state_dict["gptq_groupsize"] = torch.LongTensor([groupsize]) max_shard_size = "10GB" shards, index = shard_checkpoint( state_dict, max_shard_size=max_shard_size, weights_name="model.safetensors" ) os.makedirs(output_dir, exist_ok=True) for shard_file, shard in shards.items(): save_file( shard, os.path.join(output_dir, shard_file), metadata={ "format": "pt", "quantized": "gptq", "origin": "text-generation-inference", }, ) if index is None: path_to_weights = os.path.join(output_dir, "model.safetensors") logger.info(f"Model weights saved in {path_to_weights}") else: save_index_file = "model.safetensors.index.json" save_index_file = os.path.join(output_dir, save_index_file) with open(save_index_file, "w", encoding="utf-8") as f: content = json.dumps(index, indent=2, sort_keys=True) + "\n" f.write(content) logger.info( f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be " f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the " f"index located at {save_index_file}." ) config = AutoConfig.from_pretrained(model_id, trust_remote_code=trust_remote_code) config.save_pretrained(output_dir) logger.info("Saved config") logger.info("Saving tokenizer") tokenizer = AutoTokenizer.from_pretrained( model_id, trust_remote_code=trust_remote_code ) tokenizer.save_pretrained(output_dir) logger.info("Saved tokenizer") if upload_to_model_id: api = HfApi() api.upload_folder( folder_path=output_dir, repo_id=upload_to_model_id, repo_type="model" )
0
hf_public_repos/text-generation-inference/server
hf_public_repos/text-generation-inference/server/exllama_kernels/setup.py
from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CUDAExtension setup( name="exllama_kernels", ext_modules=[ CUDAExtension( name="exllama_kernels", sources=[ "exllama_kernels/exllama_ext.cpp", "exllama_kernels/cuda_buffers.cu", "exllama_kernels/cuda_func/column_remap.cu", "exllama_kernels/cuda_func/q4_matmul.cu", "exllama_kernels/cuda_func/q4_matrix.cu", ], ) ], cmdclass={"build_ext": BuildExtension}, )
0
hf_public_repos/text-generation-inference/server/exllama_kernels
hf_public_repos/text-generation-inference/server/exllama_kernels/exllama_kernels/exllama_ext.cpp
// Adapted from turboderp exllama: https://github.com/turboderp/exllama #include <torch/extension.h> #include <c10/cuda/CUDAGuard.h> #include <ATen/cuda/CUDAContext.h> #include <cuda_runtime.h> #include <cuda_fp16.h> #include <cstdint> #include <cstdio> #include "util.cuh" #include "tuning.h" #include "cuda_buffers.cuh" #include "cuda_func/q4_matrix.cuh" #include "cuda_func/q4_matmul.cuh" #include "cuda_func/column_remap.cuh" // Check CUDA return code. We don't want to include Torch headers in the .cu files because parsing them adds almost a // minute to the compile time on a 12900K. Also passing exceptions back to Python is super tricky, so in place of // exceptions, CUDA functions return with a cudaError_t which we can parse and dump to the console. void check_cuda(cudaError_t ret) { switch (ret) { case cudaSuccess: break; case cudaUnspecified: printf(" **** Unspecified error\n"); TORCH_CHECK(false, "CUDA error"); break; default: printf(" **** CUDA error\n"); \ printf(" **** %s\n", cudaGetErrorString(ret)); \ TORCH_CHECK(false, "CUDA error"); \ break; } } // Some decluttering macros #define STRINGIFY_(__x) #__x #define STRINGIFY(__x) STRINGIFY_(__x) #define TORCH_CHECK_DTYPE(__x, __dtype) TORCH_CHECK((__x).dtype() == torch::__dtype, #__x " is incorrect datatype, must be " #__dtype) #define TORCH_CHECK_DTYPE_OPT(__x, __dtype) TORCH_CHECK((__x).device().is_meta() || (__x).dtype() == torch::__dtype, #__x " is incorrect datatype, must be " #__dtype) #define TORCH_CHECK_SHAPES(__x, __dim_x, __y, __dim_y, __scale_y) TORCH_CHECK((__x).size(__dim_x) == (__y).size(__dim_y) * __scale_y, #__x " and " #__y " have incompatible shapes") #define TORCH_CHECK_SHAPES_OPT(__x, __dim_x, __y, __dim_y, __scale_y) TORCH_CHECK((__x).device().is_meta() || (__x).size(__dim_x) == (__y).size(__dim_y) * __scale_y, #__x " and " #__y " have incompatible shapes") #define TORCH_CHECK_SHAPE_MOD(__x, __dim_x, __mod) TORCH_CHECK((__x).size(__dim_x) % __mod == 0, #__x ".shape[" STRINGIFY(__dim_x) "] must be a multiple of " STRINGIFY(__mod)) #define TORCH_CHECK_DEVICE_INDEX(__index) \ do { \ TORCH_CHECK(__index >= 0, "no device index"); \ TORCH_CHECK(__index < CUDA_MAX_DEVICES, "invalid device index"); \ } while(0) #define TORCH_CHECK_QUANT(__w, __w_scales, __w_zeros, __seq_g_idx, __x_map) \ do { \ TORCH_CHECK_DTYPE(__w, kInt); \ TORCH_CHECK_DTYPE(__w_scales, kHalf); \ TORCH_CHECK_DTYPE(__w_zeros, kInt); \ TORCH_CHECK_DTYPE_OPT(__seq_g_idx, kShort); \ TORCH_CHECK_DTYPE_OPT(__x_map, kInt); \ TORCH_CHECK_SHAPES_OPT(__seq_g_idx, 0, __w, 0, 2 * 8); \ TORCH_CHECK_SHAPES_OPT(__x_map, 0, __w, 0, 8); \ } while(0) int get_groupsize(torch::Tensor w, torch::Tensor w_zeros) { int groupsize = w.size(0) * 8 / w_zeros.size(0); TORCH_CHECK(groupsize * w_zeros.size(0) == w.size(0) * 8, "w.shape[-2] must be a multiple of zeros.shape[-2]") return groupsize; } // Tuning parameters ExLlamaTuning tuningParams; void set_tuning_params ( int matmul_recons_thd, bool matmul_fused_remap, bool matmul_no_half2 ) { tuningParams.matmul_recons_thd = matmul_recons_thd; tuningParams.matmul_fused_remap = matmul_fused_remap; tuningParams.matmul_no_half2 = matmul_no_half2; } // Release all unmanaged objects allocated by the extension void cleanup() { cleanup_buffers_cuda(); g_q4_free_matrices(); } // Prepare buffers for forward pass void prepare_buffers ( torch::Device device, torch::Tensor temp_state, torch::Tensor temp_dq ) { int device_index = device.index(); TORCH_CHECK_DEVICE_INDEX(device_index); const at::cuda::OptionalCUDAGuard device_guard(device); prepare_buffers_cuda ( device_index, (half*) temp_state.data_ptr(), (half*) temp_dq.data_ptr() ); } // Create Q4Matrix, return handle uintptr_t make_q4 ( torch::Tensor qweight, torch::Tensor qzeros, torch::Tensor scales, torch::Tensor g_idx, int device ) { TORCH_CHECK_DTYPE(qweight, kInt); TORCH_CHECK_DTYPE(qzeros, kInt); TORCH_CHECK_DTYPE(scales, kHalf); TORCH_CHECK_DTYPE_OPT(g_idx, kInt); TORCH_CHECK_SHAPES(qweight, 1, qzeros, 1, 8); TORCH_CHECK_SHAPES(scales, 1, qweight, 1, 1); TORCH_CHECK_SHAPES(qzeros, 0, scales, 0, 1); int width = qweight.size(1); int height = qweight.size(0) * 8; int groups = qzeros.size(0); Q4Matrix* m = new Q4Matrix ( height, width, groups, (uint32_t*) qweight.data_ptr(), (uint32_t*) qzeros.data_ptr(), (half*) scales.data_ptr(), g_idx.device().is_meta() ? NULL : (uint32_t*) g_idx.data_ptr(), device ); g_q4_keep_matrix(m); return reinterpret_cast<uintptr_t> (m); } // Matmul half @ quant -> half void q4_matmul ( torch::Tensor x, uintptr_t w, torch::Tensor out ) { Q4Matrix* wm = reinterpret_cast<Q4Matrix*> (w); TORCH_CHECK_DTYPE(x, kHalf); TORCH_CHECK_DTYPE(out, kHalf); TORCH_CHECK_SHAPES(x, 0, out, 0, 1); TORCH_CHECK(wm->height == x.size(-1), "x and w have incompatible shapes") const at::cuda::OptionalCUDAGuard device_guard(device_of(x)); int x_height = x.size(0); if (tuningParams.matmul_recons_thd == 0 || x_height < tuningParams.matmul_recons_thd) { q4_matmul_cuda ( &tuningParams, (half*) x.data_ptr(), x_height, wm, (half*) out.data_ptr() ); } else { q4_matmul_recons_cuda ( &tuningParams, (half*) x.data_ptr(), x_height, wm, (half*) out.data_ptr(), at::cuda::getCurrentCUDABlasHandle() ); } } // Remap columns in half tensor void column_remap ( torch::Tensor x, torch::Tensor x_new, torch::Tensor x_map ) { TORCH_CHECK_DTYPE(x, kHalf); TORCH_CHECK_DTYPE(x_new, kHalf); TORCH_CHECK_DTYPE(x_map, kInt); TORCH_CHECK_SHAPES(x_map, 0, x, 1, 1); int height = x.size(0); int width = x.size(1); const at::cuda::OptionalCUDAGuard device_guard(device_of(x)); column_remap_cuda ( (half*) x.data_ptr(), (half*) x_new.data_ptr(), height, width, (uint32_t*) x_map.data_ptr() ); } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("set_tuning_params", &set_tuning_params, "set_tuning_params"); m.def("prepare_buffers", &prepare_buffers, "prepare_buffers"); m.def("cleanup", &cleanup, "cleanup"); m.def("make_q4", &make_q4, "make_q4"); m.def("q4_matmul", &q4_matmul, "q4_matmul"); }
0
hf_public_repos/text-generation-inference/server/exllama_kernels
hf_public_repos/text-generation-inference/server/exllama_kernels/exllama_kernels/cuda_buffers.cu
// Adapted from turboderp exllama: https://github.com/turboderp/exllama #define _cuda_buffers_cu #include "cuda_buffers.cuh" CudaBuffers* g_buffers[CUDA_MAX_DEVICES] = {NULL}; // __constant__ half2 q4_table[16][256]; // half2 q4_table_host[16][256]; // bool q4_table_init = false; CudaBuffers::CudaBuffers ( int _device, half* _temp_state, half* _temp_dq ) : device(_device), temp_state(_temp_state), temp_dq(_temp_dq) { cudaSetDevice(_device); cudaStreamCreate(&alt_stream_1); cudaStreamCreate(&alt_stream_2); cudaStreamCreate(&alt_stream_3); cudaEventCreate(&alt_stream_1_done); cudaEventCreate(&alt_stream_2_done); cudaEventCreate(&alt_stream_3_done); } CudaBuffers::~CudaBuffers() { cudaStreamDestroy(alt_stream_1); cudaStreamDestroy(alt_stream_2); cudaStreamDestroy(alt_stream_3); cudaEventDestroy(alt_stream_1_done); cudaEventDestroy(alt_stream_2_done); cudaEventDestroy(alt_stream_3_done); } CudaBuffers* get_buffers(const int device_index) { return g_buffers[device_index]; } void prepare_buffers_cuda ( int _device, half* _temp_state, half* _temp_dq ) { CudaBuffers* buffers = new CudaBuffers ( _device, _temp_state, _temp_dq ); g_buffers[_device] = buffers; } void cleanup_buffers_cuda() { for (int i = 0; i < CUDA_MAX_DEVICES; i++) { if (!g_buffers[i]) continue; delete g_buffers[i]; g_buffers[i] = NULL; } }
0
hf_public_repos/text-generation-inference/server/exllama_kernels
hf_public_repos/text-generation-inference/server/exllama_kernels/exllama_kernels/tuning.h
// Adapted from turboderp exllama: https://github.com/turboderp/exllama #ifndef _tuning_h #define _tuning_h struct ExLlamaTuning { int matmul_recons_thd; bool matmul_fused_remap; bool matmul_no_half2; }; #endif
0
hf_public_repos/text-generation-inference/server/exllama_kernels
hf_public_repos/text-generation-inference/server/exllama_kernels/exllama_kernels/util.cuh
// Adapted from turboderp exllama: https://github.com/turboderp/exllama #ifndef _util_cuh #define _util_cuh #include <cuda_runtime.h> #include <cuda_fp16.h> #include <cstdint> #include <cstdio> #define cudaUnspecified cudaErrorApiFailureBase // React to failure on return code != cudaSuccess #define _cuda_check(fn) \ do { \ {_cuda_err = fn;} \ if (_cuda_err != cudaSuccess) goto _cuda_fail; \ } while(false) // React to failure on return code == 0 #define _alloc_check(fn) \ do { \ if (!(fn)) { _cuda_err = cudaUnspecified; goto _cuda_fail; } \ else _cuda_err = cudaSuccess; \ } while(false) #endif
0
hf_public_repos/text-generation-inference/server/exllama_kernels
hf_public_repos/text-generation-inference/server/exllama_kernels/exllama_kernels/cuda_buffers.cuh
// Adapted from turboderp exllama: https://github.com/turboderp/exllama #ifndef _cuda_buffers_cuh #define _cuda_buffers_cuh #include <cuda_runtime.h> #include <cuda_fp16.h> #include <cstdint> #include <cstdio> const int CUDA_MAX_DEVICES = 16; // #ifndef _cuda_buffers_cu // extern __constant__ half2 q4_table[16][256]; // #endif class CudaBuffers { public: int device; half* temp_state; // [max_hidden_rows * intermediate_size] half* temp_dq; // size of largest quant tensor * 8 cudaStream_t alt_stream_1; cudaStream_t alt_stream_2; cudaStream_t alt_stream_3; cudaEvent_t alt_stream_1_done; cudaEvent_t alt_stream_2_done; cudaEvent_t alt_stream_3_done; CudaBuffers ( int _device, half* _temp_state, half* _temp_dq ); ~CudaBuffers(); }; CudaBuffers* get_buffers(const int device_index); void prepare_buffers_cuda ( int _device, half* _temp_state, half* _temp_dq ); void cleanup_buffers_cuda(); #endif
0
hf_public_repos/text-generation-inference/server/exllama_kernels
hf_public_repos/text-generation-inference/server/exllama_kernels/exllama_kernels/cuda_compat.cuh
// Adapted from turboderp exllama: https://github.com/turboderp/exllama #ifndef _cuda_compat_cuh #define _cuda_compat_cuh // atomicAdd for half types, to support CC < 7.x __device__ __forceinline__ void atomicAdd_half(half* address, half val) { unsigned int * address_as_ui = (unsigned int *) ((char *)address - ((size_t)address & 2)); unsigned int old = *address_as_ui; unsigned int assumed; do { assumed = old; __half_raw hsum; hsum.x = (size_t)address & 2 ? (old >> 16) : (old & 0xffff); half tmpres = __hadd(hsum, val); hsum = __half_raw(tmpres); old = (size_t)address & 2 ? (old & 0xffff) | (hsum.x << 16) : (old & 0xffff0000) | hsum.x; old = atomicCAS(address_as_ui, assumed, old); } while (assumed != old); } // atomicAdd for half2 types __device__ __forceinline__ void atomicAdd_half2(half2* address, half2 val) { unsigned int* address_as_ui = (unsigned int*)address; unsigned int old = *address_as_ui; unsigned int assumed; do { assumed = old; half2 old_val = *((half2*)&old); half2 new_val = __hadd2(old_val, val); old = atomicCAS(address_as_ui, assumed, *((unsigned int*)&new_val)); } while (assumed != old); } // #if defined(__CUDA_ARCH__) #if __CUDA_ARCH__ < 700 __device__ __forceinline__ void atomicAdd(half* address, half val) { atomicAdd_half(address, val); } #if __CUDA_ARCH__ < 600 __device__ __forceinline__ void atomicAdd(half2* address, half2 val) { atomicAdd_half2(address, val); } #endif #endif #endif #endif
0
hf_public_repos/text-generation-inference/server/exllama_kernels
hf_public_repos/text-generation-inference/server/exllama_kernels/exllama_kernels/matrix.cuh
// Adapted from turboderp exllama: https://github.com/turboderp/exllama #ifndef _matrix_cuh #define _matrix_cuh #include <cuda_runtime.h> #include <cuda_fp16.h> class MatrixView_half { public: const half* data; const int height; const int width; __device__ __forceinline__ MatrixView_half(const half* data, const int height, const int width) : data(data), height(height), width(width) { } __device__ __forceinline__ half item(int row, int column) const { return data[row * width + column]; } __device__ __forceinline__ half2 item_half2(int row, int column) const { return ((half2*)data)[(row * width + column) / 2]; } __device__ __forceinline__ half2 item_half2half2(int row, int column) const { return __half2half2(data[row * width + column]); } __device__ __forceinline__ const half* item_ptr(int row, int column) const { return &data[row * width + column]; } }; class MatrixView_half_rw { public: half* data; const int height; const int width; __device__ __forceinline__ MatrixView_half_rw(half* data, const int height, const int width) : data(data), height(height), width(width) { } __device__ __forceinline__ half item(int row, int column) const { return data[row * width + column]; } __device__ __forceinline__ half2 item_half2(int row, int column) const { return ((half2*)data)[(row * width + column) / 2]; } __device__ __forceinline__ half* item_ptr(int row, int column) { return &data[row * width + column]; } __device__ __forceinline__ void set(int row, int column, half value) { data[row * width + column] = value; } __device__ __forceinline__ void set_half2(int row, int column, half2 value) { ((half2*)data)[(row * width + column) / 2] = value; } }; class MatrixView_q4_row { public: const uint32_t* data; const int height; const int width; __device__ __forceinline__ MatrixView_q4_row(const uint32_t* data, const int height, const int width) : data(data), height(height), width(width) { } __device__ __forceinline__ int item(int row, int column) const { int shift = (column & 0x07) * 4; return (data[row * width / 8 + column / 8] >> shift) & 0x0f; } }; class MatrixView_q4_column { public: const uint32_t* data; const int height; const int width; __device__ __forceinline__ MatrixView_q4_column(const uint32_t* data, const int height, const int width) : data(data), height(height), width(width) { } __device__ __forceinline__ int item(int row, int column) const { int shift = (row & 0x07) * 4; return (data[row / 8 * width + column] >> shift) & 0x0f; } __device__ __forceinline__ uint32_t item_uint32_t(int row, int column) { return data[row / 8 * width + column]; } __device__ __forceinline__ const uint32_t* item_uint32_ptr(int row, int column) { return &data[row / 8 * width + column]; } }; // TODO: Rewrite all these dot product functions using functors or something, move to q4_matmul.cu // Accumulated dot product of 8-element row vectors in h and quantized column vectors in v, constant zero/scale __device__ __forceinline__ half2 dot_product_8 ( const half2 acc, MatrixView_half& h_, const int h_row, const int h_column, // divisible by 8 MatrixView_q4_column& v_, const int v_row, // divisible by 8 const int v_column, const half2 v_scale_2, const uint32_t v_zero, // + 1 (!!) const int count ) { const half2* h_ptr = (const half2*) h_.item_ptr(h_row, h_column); const uint32_t* v_ptr = (const uint32_t*) v_.item_uint32_ptr(v_row, v_column); half2 result = acc; for (int i = 0; i < count; i++) { uint32_t v_read = *v_ptr; v_ptr += v_.width; half v_0 = __int2half_rn((int)((v_read ) & 0x0f) - v_zero); half v_1 = __int2half_rn((int)((v_read >> 4) & 0x0f) - v_zero); half v_2 = __int2half_rn((int)((v_read >> 8) & 0x0f) - v_zero); half v_3 = __int2half_rn((int)((v_read >> 12) & 0x0f) - v_zero); half v_4 = __int2half_rn((int)((v_read >> 16) & 0x0f) - v_zero); half v_5 = __int2half_rn((int)((v_read >> 20) & 0x0f) - v_zero); half v_6 = __int2half_rn((int)((v_read >> 24) & 0x0f) - v_zero); half v_7 = __int2half_rn((int)((v_read >> 28) ) - v_zero); half2 v_01 = __halves2half2(v_0, v_1); half2 v_23 = __halves2half2(v_2, v_3); half2 v_45 = __halves2half2(v_4, v_5); half2 v_67 = __halves2half2(v_6, v_7); // half2 v_01 = q4_table[v_zero - 1][(v_read ) & 0xff]; // (constant memory is too slow apparently) // half2 v_23 = q4_table[v_zero - 1][(v_read >> 8) & 0xff]; // half2 v_45 = q4_table[v_zero - 1][(v_read >> 16) & 0xff]; // half2 v_67 = q4_table[v_zero - 1][(v_read >> 24) ]; half2 tmp = __hmul2(*h_ptr++, v_01); tmp = __hfma2(*h_ptr++, v_23, tmp); tmp = __hfma2(*h_ptr++, v_45, tmp); tmp = __hfma2(*h_ptr++, v_67, tmp); result = __hfma2(v_scale_2, tmp, result); } return result; } __device__ __forceinline__ half dot_product_8_h ( const half acc, MatrixView_half& h_, const int h_row, const int h_column, // divisible by 8 MatrixView_q4_column& v_, const int v_row, // divisible by 8 const int v_column, const half v_scale, const uint32_t v_zero, // + 1 (!!) const int count ) { const half* h_ptr = h_.item_ptr(h_row, h_column); const uint32_t* v_ptr = (const uint32_t*) v_.item_uint32_ptr(v_row, v_column); half result = acc; for (int i = 0; i < count; i++) { uint32_t v_read = *v_ptr; v_ptr += v_.width; half v_0 = __int2half_rn((int)((v_read ) & 0x0f) - v_zero); half v_1 = __int2half_rn((int)((v_read >> 4) & 0x0f) - v_zero); half v_2 = __int2half_rn((int)((v_read >> 8) & 0x0f) - v_zero); half v_3 = __int2half_rn((int)((v_read >> 12) & 0x0f) - v_zero); half v_4 = __int2half_rn((int)((v_read >> 16) & 0x0f) - v_zero); half v_5 = __int2half_rn((int)((v_read >> 20) & 0x0f) - v_zero); half v_6 = __int2half_rn((int)((v_read >> 24) & 0x0f) - v_zero); half v_7 = __int2half_rn((int)((v_read >> 28) ) - v_zero); half tmp = __hmul(*h_ptr++, v_0); tmp = __hfma(*h_ptr++, v_1, tmp); tmp = __hfma(*h_ptr++, v_2, tmp); tmp = __hfma(*h_ptr++, v_3, tmp); tmp = __hfma(*h_ptr++, v_4, tmp); tmp = __hfma(*h_ptr++, v_5, tmp); tmp = __hfma(*h_ptr++, v_6, tmp); tmp = __hfma(*h_ptr++, v_7, tmp); result = __hfma(v_scale, tmp, result); } return result; } // Accumulated dot product of 8-element row vectors in h and quantized column vectors in v, constant zero/scale, with x_map __device__ __forceinline__ half2 dot_product_8_x_map ( const half2 acc, MatrixView_half& h_, const int h_row, const int h_column, // divisible by 8 MatrixView_q4_column& v_, const int v_row, // divisible by 8 const int v_column, const half2 v_scale_2, const uint32_t v_zero, // + 1 (!!) const int count, const uint32_t* x_map ) { const half* h_ptr = h_.item_ptr(h_row, 0); const uint32_t* x_map_ptr = x_map + h_column; const uint32_t* v_ptr = (const uint32_t*) v_.item_uint32_ptr(v_row, v_column); half2 result = acc; for (int i = 0; i < count; i++) { uint32_t v_read = *v_ptr; v_ptr += v_.width; half v_0 = __int2half_rn((int)((v_read ) & 0x0f) - v_zero); half v_1 = __int2half_rn((int)((v_read >> 4) & 0x0f) - v_zero); half v_2 = __int2half_rn((int)((v_read >> 8) & 0x0f) - v_zero); half v_3 = __int2half_rn((int)((v_read >> 12) & 0x0f) - v_zero); half v_4 = __int2half_rn((int)((v_read >> 16) & 0x0f) - v_zero); half v_5 = __int2half_rn((int)((v_read >> 20) & 0x0f) - v_zero); half v_6 = __int2half_rn((int)((v_read >> 24) & 0x0f) - v_zero); half v_7 = __int2half_rn((int)((v_read >> 28) ) - v_zero); half2 v_01 = __halves2half2(v_0, v_1); half2 v_23 = __halves2half2(v_2, v_3); half2 v_45 = __halves2half2(v_4, v_5); half2 v_67 = __halves2half2(v_6, v_7); half h_0 = h_ptr[*x_map_ptr++]; half h_1 = h_ptr[*x_map_ptr++]; half h_2 = h_ptr[*x_map_ptr++]; half h_3 = h_ptr[*x_map_ptr++]; half h_4 = h_ptr[*x_map_ptr++]; half h_5 = h_ptr[*x_map_ptr++]; half h_6 = h_ptr[*x_map_ptr++]; half h_7 = h_ptr[*x_map_ptr++]; half2 h_01 = __halves2half2(h_0, h_1); half2 h_23 = __halves2half2(h_2, h_3); half2 h_45 = __halves2half2(h_4, h_5); half2 h_67 = __halves2half2(h_6, h_7); half2 tmp = __hmul2(h_01, v_01); tmp = __hfma2(h_23, v_23, tmp); tmp = __hfma2(h_45, v_45, tmp); tmp = __hfma2(h_67, v_67, tmp); result = __hfma2(v_scale_2, tmp, result); } return result; } __device__ __forceinline__ half dot_product_8_x_map_h ( const half acc, MatrixView_half& h_, const int h_row, const int h_column, // divisible by 8 MatrixView_q4_column& v_, const int v_row, // divisible by 8 const int v_column, const half v_scale, const uint32_t v_zero, // + 1 (!!) const int count, const uint32_t* x_map ) { const half* h_ptr = h_.item_ptr(h_row, 0); const uint32_t* x_map_ptr = x_map + h_column; const uint32_t* v_ptr = (const uint32_t*) v_.item_uint32_ptr(v_row, v_column); half result = acc; for (int i = 0; i < count; i++) { uint32_t v_read = *v_ptr; v_ptr += v_.width; half v_0 = __int2half_rn((int)((v_read ) & 0x0f) - v_zero); half v_1 = __int2half_rn((int)((v_read >> 4) & 0x0f) - v_zero); half v_2 = __int2half_rn((int)((v_read >> 8) & 0x0f) - v_zero); half v_3 = __int2half_rn((int)((v_read >> 12) & 0x0f) - v_zero); half v_4 = __int2half_rn((int)((v_read >> 16) & 0x0f) - v_zero); half v_5 = __int2half_rn((int)((v_read >> 20) & 0x0f) - v_zero); half v_6 = __int2half_rn((int)((v_read >> 24) & 0x0f) - v_zero); half v_7 = __int2half_rn((int)((v_read >> 28) ) - v_zero); half tmp = __hmul(h_ptr[*x_map_ptr++], v_0); tmp = __hfma(h_ptr[*x_map_ptr++], v_1, tmp); tmp = __hfma(h_ptr[*x_map_ptr++], v_2, tmp); tmp = __hfma(h_ptr[*x_map_ptr++], v_3, tmp); tmp = __hfma(h_ptr[*x_map_ptr++], v_4, tmp); tmp = __hfma(h_ptr[*x_map_ptr++], v_5, tmp); tmp = __hfma(h_ptr[*x_map_ptr++], v_6, tmp); tmp = __hfma(h_ptr[*x_map_ptr++], v_7, tmp); result = __hfma(v_scale, tmp, result); } return result; } #endif
0
hf_public_repos/text-generation-inference/server/exllama_kernels/exllama_kernels
hf_public_repos/text-generation-inference/server/exllama_kernels/exllama_kernels/cuda_func/column_remap.cuh
// Adapted from turboderp exllama: https://github.com/turboderp/exllama #ifndef _column_remap_cuh #define _column_remap_cuh #include <cuda_runtime.h> #include <cuda_fp16.h> #include <cstdint> void column_remap_cuda ( const half* x, half* x_new, const int x_height, const int x_width, const uint32_t* x_map ); #endif
0
hf_public_repos/text-generation-inference/server/exllama_kernels/exllama_kernels
hf_public_repos/text-generation-inference/server/exllama_kernels/exllama_kernels/cuda_func/q4_matrix.cu
// Adapted from turboderp exllama: https://github.com/turboderp/exllama #include "q4_matrix.cuh" #include <vector> #include "../util.cuh" #include "../matrix.cuh" using namespace std; const int UNSHUF_BLOCKSIZE_X = 64; const int RECONS_THREADS_X = 64; // Block size and thread count along columns in out, each thread converts 1 column const int RECONS_THREADS_Y = 1; // Block size and thread count along rows in x and out, each thread converts 8 rows vector<Q4Matrix*> g_q4_matrices; void g_q4_keep_matrix(Q4Matrix* m) { g_q4_matrices.push_back(m); } void g_q4_free_matrices() { for (const auto& m : g_q4_matrices) delete m; g_q4_matrices.clear(); } Q4Matrix::Q4Matrix ( const int _height, const int _width, const int _groups, uint32_t* _qweight, uint32_t* _qzeros, half* _scales, uint32_t* _g_idx, const int _device ) : height(_height), width(_width), groups(_groups), device(_device) { cudaSetDevice(device); cuda_qweight = _qweight; cuda_qzeros = _qzeros; cuda_scales = _scales; groupsize = height / groups; if (_g_idx) make_sequential(_g_idx); } Q4Matrix::~Q4Matrix() { } // Make sequential __global__ void make_sequential_kernel ( const uint32_t* __restrict__ w, uint32_t* __restrict__ w_new, const uint32_t* __restrict__ x_map, const int w_height, const int w_width ) { const uint64_t* w2 = (uint64_t*) w; uint64_t* w_new2 = (uint64_t*) w_new; int w2_stride = w_width >> 1; int w2_column = UNSHUF_BLOCKSIZE_X * blockIdx.x + threadIdx.x; int w_new2_row = blockIdx.y; int x_map_idx = w_new2_row << 3; uint64_t dst = 0; #pragma unroll for (int i = 0; i < 8; i++) { int source_row = x_map[x_map_idx++]; int w2_row = source_row >> 3; int w2_subrow = source_row & 0x07; int w2_row_shift = w2_subrow << 2; int wnew2_row_shift = i << 2; uint64_t src = w2[w2_row * w2_stride + w2_column]; src >>= w2_row_shift; src &= 0x0000000f0000000f; src <<= wnew2_row_shift; dst |= src; } w_new2[w_new2_row * w2_stride + w2_column] = dst; } void Q4Matrix::make_sequential(const uint32_t* cpu_g_idx) { uint32_t* cuda_new_qweight = NULL; cudaMalloc(&cuda_new_qweight, height / 8 * width * sizeof(uint32_t)); cudaMalloc(&cuda_x_map, height * sizeof(uint32_t)); // TODO: Should probably be allocated in PyTorch uint32_t* cpu_g_idx_map = (uint32_t*) calloc(groups, sizeof(uint32_t)); uint32_t* cpu_x_map = (uint32_t*) malloc(height * sizeof(uint32_t)); uint32_t* cpu_x_map_inv = (uint32_t*) malloc(height * sizeof(uint32_t)); // Group histogram for (int i = 0; i < height; i++) cpu_g_idx_map[cpu_g_idx[i]]++; // Group map for (int i = 0, acc = 0; i < groups; i++) { short tmp = cpu_g_idx_map[i]; cpu_g_idx_map[i] = acc; acc += tmp; } // X map (inverse) for (int row = 0; row < height; row++) { uint32_t target_group = cpu_g_idx[row]; uint32_t target_row = cpu_g_idx_map[target_group]; cpu_g_idx_map[target_group]++; cpu_x_map_inv[row] = target_row; } // X map for (int row = 0; row < height; row++) cpu_x_map[cpu_x_map_inv[row]] = row; // Move to CUDA cudaMemcpyAsync(cuda_x_map, cpu_x_map, height * sizeof(uint32_t), cudaMemcpyHostToDevice); // Rearrange rows in w dim3 threads(UNSHUF_BLOCKSIZE_X, 1, 1); dim3 blocks(width / UNSHUF_BLOCKSIZE_X / 2, height / 8, 1); make_sequential_kernel<<<blocks, threads>>>(cuda_qweight, cuda_new_qweight, cuda_x_map, height / 8, width); // Replace qweights cudaMemcpyAsync(cuda_qweight, cuda_new_qweight, height / 8 * width * sizeof(uint32_t), cudaMemcpyDeviceToDevice); // Cleanup cudaDeviceSynchronize(); cudaFree(cuda_new_qweight); free(cpu_g_idx_map); free(cpu_x_map); free(cpu_x_map_inv); } __global__ void reconstruct_kernel ( const uint32_t* __restrict__ w, half* __restrict__ out, // (y) const half* __restrict__ w_scales, const uint32_t* __restrict__ w_zeros, const int height, const int width, const int groupsize ) { // Start of block int column = RECONS_THREADS_X * blockIdx.x + threadIdx.x; int row = (RECONS_THREADS_Y * blockIdx.y + threadIdx.y) * 8; // Views MatrixView_q4_column w_(w, height, width); MatrixView_half_rw out_(out, height, width); MatrixView_half w_scales_(w_scales, height / groupsize, width); MatrixView_q4_row w_zeros_(w_zeros, height / groupsize, width); // Groupsize version int group = row / groupsize; half w_scale = w_scales_.item(group, column); uint32_t w_zero = w_zeros_.item(group, column) + 1; uint32_t w_read = w_.item_uint32_t(row, column); half* out_ptr = out_.item_ptr(row, column); #pragma unroll for (int s = 0; s < 32; s += 4) { half w_item = __hmul(__int2half_rn((int)((w_read >> s) & 0x0f) - w_zero), w_scale); *out_ptr = w_item; out_ptr += out_.width; } } void Q4Matrix::reconstruct(half* out) { dim3 threads(RECONS_THREADS_X, RECONS_THREADS_Y, 1); dim3 blocks ( (width + threads.x - 1) / threads.x, (height / 8 + threads.y - 1) / threads.y, 1 ); reconstruct_kernel<<<blocks, threads>>>(cuda_qweight, out, cuda_scales, cuda_qzeros, height / 8, width, groupsize); }
0
hf_public_repos/text-generation-inference/server/exllama_kernels/exllama_kernels
hf_public_repos/text-generation-inference/server/exllama_kernels/exllama_kernels/cuda_func/q4_matmul.cuh
// Adapted from turboderp exllama: https://github.com/turboderp/exllama #ifndef _q4_matmul_cuh #define _q4_matmul_cuh #include <cuda_runtime.h> #include <cuda_fp16.h> #include <cstdint> #include <cstdio> #include <ATen/cuda/CUDAContext.h> #include "q4_matrix.cuh" #include "../tuning.h" void q4_matmul_cuda ( ExLlamaTuning* tuningParams, const half* x, const int x_height, const Q4Matrix* w, half* out, bool no_zero = false, cudaStream_t alt_stream = NULL ); void q4_matmul_recons_cuda ( ExLlamaTuning* tuningParams, const half* x, const int x_height, Q4Matrix* w, half* out, const cublasHandle_t handle, bool no_zero = false ); #endif
0
hf_public_repos/text-generation-inference/server/exllama_kernels/exllama_kernels
hf_public_repos/text-generation-inference/server/exllama_kernels/exllama_kernels/cuda_func/column_remap.cu
// Adapted from turboderp exllama: https://github.com/turboderp/exllama #include "column_remap.cuh" #include "../util.cuh" const int SHUF_BLOCKSIZE_X = 256; const int SHUF_BLOCKSIZE_Y = 16; __global__ void column_remap_kernel ( const half* __restrict__ x, half* __restrict__ x_new, const int x_width, const int x_height, const uint32_t* x_map ) { int x_column = SHUF_BLOCKSIZE_X * blockIdx.x + threadIdx.x; int x_row = SHUF_BLOCKSIZE_Y * blockIdx.y; int x_stride = x_width; int x_idx = x_row * x_stride + x_column; int x_row_end = min(x_row + SHUF_BLOCKSIZE_Y, x_height); int x_idx_end = x_row_end * x_stride + x_column; int s_column = x_map[x_column]; int s_idx = x_row * x_stride + s_column; while (x_idx < x_idx_end) { x_new[x_idx] = x[s_idx]; x_idx += x_stride; s_idx += x_stride; } } // Remap columns in x to correspond to sequential group index before matmul // // perform x -> seq_x such that seq_x @ seq_w == x @ w void column_remap_cuda ( const half* x, half* x_new, const int x_height, const int x_width, const uint32_t* x_map ) { dim3 threads(SHUF_BLOCKSIZE_X, 1, 1); dim3 blocks ( (x_width + SHUF_BLOCKSIZE_X - 1) / SHUF_BLOCKSIZE_X, (x_height + SHUF_BLOCKSIZE_Y - 1) / SHUF_BLOCKSIZE_Y, 1 ); column_remap_kernel<<<blocks, threads>>>(x, x_new, x_width, x_height, x_map); }
0
hf_public_repos/text-generation-inference/server/exllama_kernels/exllama_kernels
hf_public_repos/text-generation-inference/server/exllama_kernels/exllama_kernels/cuda_func/q4_matrix.cuh
// Adapted from turboderp exllama: https://github.com/turboderp/exllama #ifndef _q4_matrix_cuh #define _q4_matrix_cuh #include <cuda_runtime.h> #include <cuda_fp16.h> #include <cstdint> class Q4Matrix { public: int device; int height; int width; int groups; int groupsize; uint32_t* cuda_qweight = NULL; uint32_t* cuda_qzeros = NULL; half* cuda_scales = NULL; uint32_t* cuda_x_map = NULL; Q4Matrix ( const int _height, const int _width, const int _groups, uint32_t* _qweight, uint32_t* _qzeros, half* _scales, uint32_t* _g_idx, const int _device ); ~Q4Matrix(); void reconstruct(half* out); private: void make_sequential(const uint32_t* cpu_g_idx); }; void g_q4_keep_matrix(Q4Matrix* m); void g_q4_free_matrices(); #endif
0
hf_public_repos/text-generation-inference/server/exllama_kernels/exllama_kernels
hf_public_repos/text-generation-inference/server/exllama_kernels/exllama_kernels/cuda_func/q4_matmul.cu
#include "q4_matmul.cuh" #include "column_remap.cuh" #include "../util.cuh" #include "../matrix.cuh" #include "../cuda_compat.cuh" #include "../cuda_buffers.cuh" const int THREADS_X = 32; // Block size and thread count along columns in w and out const int THREADS_Y = 1; // Block size and thread count along rows in x and out typedef void (*fp_q4_matmul_kernel) ( const half*, const uint32_t*, half*, const half*, const uint32_t*, const int, const int, const int, const int, const int, const uint32_t*, bool ); template<bool use_half2, bool use_groupsize, bool use_x_map> __global__ void q4_matmul_kernel ( const half* __restrict__ x, const uint32_t* __restrict__ w, half* __restrict__ out, const half* __restrict__ w_scales, const uint32_t* __restrict__ w_zeros, const int height, const int dim, const int width, const int groupsize, const int block_size_z, const uint32_t* __restrict__ x_map, bool no_zero ) { // Start of block int x_column = block_size_z * blockIdx.z; int x_column_end = min(dim, block_size_z * (blockIdx.z + 1)); int w_column = THREADS_X * blockIdx.x + threadIdx.x; int x_row = THREADS_Y * blockIdx.y + threadIdx.y; int iterations = (x_column_end - x_column) / 8; // Views MatrixView_half x_(x, height, dim); MatrixView_half w_scales_(w_scales, dim / groupsize, width); MatrixView_q4_row w_zeros_(w_zeros, dim / groupsize, width); MatrixView_q4_column w_(w, dim, width); MatrixView_half_rw out_(out, height, width); // Zero output if (!no_zero && blockIdx.z == 0 && (threadIdx.x & 1) == 0) { *((uint32_t*) out_.item_ptr(x_row, w_column)) = 0; __syncthreads(); } // Loop over part of x row (and w column) half2 acc = {}; half acc_h = {}; if constexpr (use_groupsize) { // For quant matrices where groupsize divides BLOCK_SIZE_Z we always start on a group boundary, so this // could be slightly faster for (int k = x_column, group = x_column / groupsize; k < x_column + iterations * 8; group++, k += groupsize) { if constexpr (use_half2) { half2 w_scale = w_scales_.item_half2half2(group, w_column); uint32_t w_zero = w_zeros_.item(group, w_column) + 1; if constexpr (use_x_map) acc = dot_product_8_x_map(acc, x_, x_row, k, w_, k, w_column, w_scale, w_zero, groupsize / 8, x_map); else acc = dot_product_8 (acc, x_, x_row, k, w_, k, w_column, w_scale, w_zero, groupsize / 8); } else { half w_scale = w_scales_.item(group, w_column); uint32_t w_zero = w_zeros_.item(group, w_column) + 1; if constexpr (use_x_map) acc_h = dot_product_8_x_map_h(acc_h, x_, x_row, k, w_, k, w_column, w_scale, w_zero, groupsize / 8, x_map); else acc_h = dot_product_8_h (acc_h, x_, x_row, k, w_, k, w_column, w_scale, w_zero, groupsize / 8); } } } else { // Otherwise assume groupsize is a multiple of 8, do 8 columns per iteration and trust the cache for (int k = x_column; k < x_column + iterations * 8; k += 8) { if constexpr (use_half2) { int group = k / groupsize; half2 w_scale = w_scales_.item_half2half2(group, w_column); uint32_t w_zero = w_zeros_.item(group, w_column) + 1; if constexpr (use_x_map) acc = dot_product_8_x_map(acc, x_, x_row, k, w_, k, w_column, w_scale, w_zero, 1, x_map); else acc = dot_product_8 (acc, x_, x_row, k, w_, k, w_column, w_scale, w_zero, 1); } else { int group = k / groupsize; half w_scale = w_scales_.item(group, w_column); uint32_t w_zero = w_zeros_.item(group, w_column) + 1; if constexpr (use_x_map) acc_h = dot_product_8_x_map_h(acc_h, x_, x_row, k, w_, k, w_column, w_scale, w_zero, 1, x_map); else acc_h = dot_product_8_h (acc_h, x_, x_row, k, w_, k, w_column, w_scale, w_zero, 1); } } } // Add to block result if constexpr (use_half2) { half result = __hadd(acc.x, acc.y); atomicAdd(out_.item_ptr(x_row, w_column), result); } else { atomicAdd(out_.item_ptr(x_row, w_column), acc_h); } } fp_q4_matmul_kernel q4_matmul_kernel_pick(ExLlamaTuning* tuningParams, int block_size_z, int groupsize, uint32_t* x_map) { // <bool use_half2, bool use_groupsize, bool use_x_map> if (tuningParams->matmul_no_half2) { if (block_size_z % groupsize == 0) { if (x_map) return q4_matmul_kernel<false, true, true >; else return q4_matmul_kernel<false, true, false>; } else { if (x_map) return q4_matmul_kernel<false, false, true >; else return q4_matmul_kernel<false, false, false>; } } else { if (block_size_z % groupsize == 0) { if (x_map) return q4_matmul_kernel<true, true, true >; else return q4_matmul_kernel<true, true, false>; } else { if (x_map) return q4_matmul_kernel<true, false, true >; else return q4_matmul_kernel<true, false, false>; } } }; // Compute y = x @ w void q4_matmul_cuda ( ExLlamaTuning* tuningParams, const half* x, const int x_height, const Q4Matrix* w, half* out, bool no_zero, cudaStream_t alt_stream ) { int height = x_height; int dim = w->height; int width = w->width; cudaSetDevice(w->device); uint32_t* x_map = w->cuda_x_map; const half* x_mapped = x; if (x_map && !tuningParams->matmul_fused_remap && !alt_stream) { CudaBuffers* buffers = get_buffers(w->device); column_remap_cuda(x, buffers->temp_state, x_height, dim, w->cuda_x_map); x_mapped = buffers->temp_state; x_map = NULL; } int block_size_z; if (w->width == 4096) block_size_z = 384; // 7B else if (w->width == 11008) block_size_z = 256; else if (w->width == 5120) block_size_z = 384; // 13B else if (w->width == 13824) block_size_z = 256; else if (w->width == 6656) block_size_z = 256; // 33B else if (w->width == 17920) block_size_z = 128; else block_size_z = 256; //if (!no_zero) cudaMemsetAsync(out, 0, x_height * w->width * sizeof(half)); dim3 threads(THREADS_X, THREADS_Y, 1); dim3 blocks ( (width + threads.x - 1) / threads.x, (height + threads.y - 1) / threads.y, (dim + block_size_z - 1) / block_size_z ); fp_q4_matmul_kernel kernel = q4_matmul_kernel_pick(tuningParams, block_size_z, w->groupsize, x_map); kernel<<<blocks, threads, 0, alt_stream>>> (x_mapped, w->cuda_qweight, out, w->cuda_scales, w->cuda_qzeros, height, dim, width, w->groupsize, block_size_z, x_map, no_zero); } void q4_matmul_recons_cuda ( ExLlamaTuning* tuningParams, const half* x, const int x_height, Q4Matrix* w, half* out, const cublasHandle_t handle, bool no_zero ) { int height = x_height; int dim = w->height; int width = w->width; cudaSetDevice(w->device); CudaBuffers* buffers = get_buffers(w->device); const half* x_mapped = x; if (w->cuda_x_map) { column_remap_cuda(x, buffers->temp_state, x_height, dim, w->cuda_x_map); x_mapped = buffers->temp_state; } w->reconstruct(buffers->temp_dq); const half alpha = __float2half(1.0f); const half beta = no_zero ? __float2half(1.0f) : __float2half(0.0f); cublasHgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, width, height, dim, &alpha, buffers->temp_dq, width, x_mapped, dim, &beta, out, width); // const float alpha = 1.0f; // const float beta = no_zero ? 1.0f : 0.0f; // cublasSgemmEx(handle, CUBLAS_OP_N, CUBLAS_OP_N, width, height, dim, &alpha, buffers->temp_dq, CUDA_R_16F, width, // x_mapped, CUDA_R_16F, dim, &beta, out, CUDA_R_16F, width); }
0
hf_public_repos/text-generation-inference/server
hf_public_repos/text-generation-inference/server/tests/conftest.py
import pytest from text_generation_server.pb import generate_pb2 @pytest.fixture def default_pb_parameters(): return generate_pb2.NextTokenChooserParameters( temperature=1.0, repetition_penalty=1.0, top_k=0, top_p=1.0, typical_p=1.0, do_sample=False, ) @pytest.fixture def default_pb_stop_parameters(): return generate_pb2.StoppingCriteriaParameters(stop_sequences=[], max_new_tokens=10)
0
hf_public_repos/text-generation-inference/server/tests
hf_public_repos/text-generation-inference/server/tests/models/test_causal_lm.py
import pytest import torch from copy import copy from transformers import AutoTokenizer from text_generation_server.pb import generate_pb2 from text_generation_server.models.causal_lm import CausalLM, CausalLMBatch @pytest.fixture(scope="session") def default_causal_lm(): return CausalLM("gpt2") @pytest.fixture(scope="session") def gpt2_tokenizer(): tokenizer = AutoTokenizer.from_pretrained("gpt2", padding_side="left") tokenizer.pad_token_id = 50256 return tokenizer @pytest.fixture def default_pb_request(default_pb_parameters, default_pb_stop_parameters): return generate_pb2.Request( id=0, inputs="Test", prefill_logprobs=True, truncate=100, parameters=default_pb_parameters, stopping_parameters=default_pb_stop_parameters, ) @pytest.fixture def default_pb_batch(default_pb_request): return generate_pb2.Batch(id=0, requests=[default_pb_request], size=1) @pytest.fixture def default_causal_lm_batch(default_pb_batch, gpt2_tokenizer): return CausalLMBatch.from_pb( default_pb_batch, gpt2_tokenizer, torch.float32, torch.device("cpu") ) @pytest.fixture def default_multi_requests_causal_lm_batch(default_pb_request, gpt2_tokenizer): req_0 = copy(default_pb_request) req_0.id = 1 req_1 = default_pb_request req_1.id = 2 req_1.stopping_parameters.max_new_tokens = 5 batch_pb = generate_pb2.Batch(id=1, requests=[req_0, req_1], size=2) return CausalLMBatch.from_pb( batch_pb, gpt2_tokenizer, torch.float32, torch.device("cpu") ) def test_batch_from_pb(default_pb_batch, default_causal_lm_batch): batch = default_causal_lm_batch assert batch.batch_id == default_pb_batch.id assert batch.requests == default_pb_batch.requests assert len(batch.input_ids) == default_pb_batch.size assert batch.input_ids[0][-1] == 14402 assert torch.all(batch.input_ids[0][:-1] == 50256) assert batch.attention_mask[0, 0] == 1 assert torch.all(batch.attention_mask[0, 1:] == 0) assert batch.past_key_values is None assert all( [ torch.equal(input_ids, all_input_ids[:, 0]) for input_ids, all_input_ids in zip(batch.input_ids, batch.all_input_ids) ] ) assert batch.input_lengths == [1] assert len(batch) == default_pb_batch.size assert len(batch.next_token_choosers) == len(batch.stopping_criterias) == len(batch) assert batch.max_input_length == batch.input_lengths[0] def test_batch_concatenate_no_prefill(default_causal_lm_batch): with pytest.raises(ValueError): CausalLMBatch.concatenate([default_causal_lm_batch, default_causal_lm_batch]) def test_causal_lm_batch_type(default_causal_lm): assert default_causal_lm.batch_type == CausalLMBatch def test_causal_lm_generate_token(default_causal_lm, default_causal_lm_batch): sequence_length = len(default_causal_lm_batch.all_input_ids[0]) generations, next_batch, _ = default_causal_lm.generate_token( default_causal_lm_batch ) assert len(generations) == len(next_batch) assert isinstance(next_batch, CausalLMBatch) assert len(next_batch.all_input_ids) == len(next_batch) assert len(next_batch.all_input_ids[0]) == sequence_length + 1 assert len(next_batch.attention_mask[0]) == 11 assert next_batch.all_input_ids[0][-1] == 13 assert next_batch.all_input_ids[0][-2] == 14402 assert torch.all(next_batch.all_input_ids[0][:-2] == 50256) assert torch.all(next_batch.attention_mask[0][0:2] == 1) assert torch.all(next_batch.attention_mask[0][2:] == 0) assert next_batch.input_ids.shape == (len(next_batch), 1) assert next_batch.input_ids[0, 0] == 13 assert next_batch.input_lengths == [2] assert next_batch.max_input_length == next_batch.input_lengths[0] assert next_batch.past_key_values is not None assert all( [p[0].shape == (1, 12, sequence_length, 64) for p in next_batch.past_key_values] ) assert all( [p[1].shape == (1, 12, sequence_length, 64) for p in next_batch.past_key_values] ) assert all([generation.generated_text is None for generation in generations]) assert all([len(generation.prefill_tokens) == 1 for generation in generations]) assert all( [ token_id.item() == 13 for generation in generations for token_id in generation.tokens.token_ids ] ) assert all( [ token_text == "." for generation in generations for token_text in generation.tokens.texts ] ) assert generations[0].request_id == 0 def test_causal_lm_generate_token_completion( default_causal_lm, default_causal_lm_batch ): next_batch = default_causal_lm_batch for _ in range(default_causal_lm_batch.stopping_criterias[0].max_new_tokens - 1): generations, next_batch, _ = default_causal_lm.generate_token(next_batch) assert len(generations) == len(next_batch) generations, next_batch, _ = default_causal_lm.generate_token(next_batch) assert next_batch is None assert len(generations) == 1 assert generations[0].generated_text.text == ".java:784) at net.minecraft." assert generations[0].request_id == default_causal_lm_batch.requests[0].id assert ( generations[0].generated_text.generated_tokens == default_causal_lm_batch.stopping_criterias[0].max_new_tokens ) def test_causal_lm_generate_token_completion_multi( default_causal_lm, default_multi_requests_causal_lm_batch ): next_batch = default_multi_requests_causal_lm_batch for i in range( default_multi_requests_causal_lm_batch.stopping_criterias[1].max_new_tokens - 1 ): generations, next_batch, _ = default_causal_lm.generate_token(next_batch) assert len(generations) == len(next_batch) generations, next_batch, _ = default_causal_lm.generate_token(next_batch) assert next_batch is not None assert len(generations) == 2 assert generations[1].generated_text.text == ".java:784)" assert ( generations[1].request_id == default_multi_requests_causal_lm_batch.requests[1].id ) assert ( generations[1].generated_text.generated_tokens == default_multi_requests_causal_lm_batch.stopping_criterias[1].max_new_tokens ) # Copy stopping_criterias before filtering stopping_criterias = ( default_multi_requests_causal_lm_batch.stopping_criterias.copy() ) next_batch = next_batch.filter([next_batch.requests[0].id]) for _ in range( stopping_criterias[0].max_new_tokens - stopping_criterias[1].max_new_tokens - 1 ): generations, next_batch, _ = default_causal_lm.generate_token(next_batch) assert len(generations) == len(next_batch) generations, next_batch, _ = default_causal_lm.generate_token(next_batch) assert next_batch is None assert len(generations) == 1 assert generations[0].generated_text.text == ".java:784) at net.minecraft." assert ( generations[0].request_id == default_multi_requests_causal_lm_batch.requests[0].id ) assert ( generations[0].generated_text.generated_tokens == default_multi_requests_causal_lm_batch.stopping_criterias[0].max_new_tokens ) def test_batch_concatenate( default_causal_lm, default_causal_lm_batch, default_multi_requests_causal_lm_batch ): next_batch_0 = default_causal_lm_batch _, next_batch_0, _ = default_causal_lm.generate_token(next_batch_0) _, next_batch_0, _ = default_causal_lm.generate_token(next_batch_0) next_batch_1 = default_multi_requests_causal_lm_batch _, next_batch_1, _ = default_causal_lm.generate_token(next_batch_1) # Clone past_key_values before concatenating to compare after, # because they are removed from the concatenated batches next_batch_0_past_key_values = [ (k.clone(), v.clone()) for (k, v) in next_batch_0.past_key_values ] next_batch_1_past_key_values = [ (k.clone(), v.clone()) for (k, v) in next_batch_1.past_key_values ] next_batch = CausalLMBatch.concatenate([next_batch_0, next_batch_1]) assert torch.equal(next_batch.all_input_ids[0], next_batch_0.all_input_ids[0]) assert torch.equal(next_batch.all_input_ids[1], next_batch_1.all_input_ids[0]) assert torch.equal(next_batch.all_input_ids[2], next_batch_1.all_input_ids[1]) assert torch.all( next_batch.attention_mask[0, : -next_batch.padding_right_offset] == 1 ) assert torch.all( next_batch.attention_mask[1:, 1 : -next_batch.padding_right_offset] == 1 ) assert torch.all(next_batch.attention_mask[1:, 3:] == 0) assert next_batch.batch_id == 0 assert next_batch.input_ids[0, 0] == 12355 assert torch.all(next_batch.input_ids[1:] == 13) assert next_batch.input_lengths == [3, 2, 2] assert next_batch.max_input_length == 3 assert next_batch.requests[0] == next_batch_0.requests[0] assert next_batch.requests[1:] == next_batch_1.requests assert next_batch.next_token_choosers[0] == next_batch_0.next_token_choosers[0] assert next_batch.next_token_choosers[1:] == next_batch_1.next_token_choosers assert next_batch.stopping_criterias[0] == next_batch_0.stopping_criterias[0] assert next_batch.stopping_criterias[1:] == next_batch_1.stopping_criterias assert next_batch.past_key_values is not None assert all([p[0].shape == (3, 12, 2, 64) for p in next_batch.past_key_values]) assert all([p[1].shape == (3, 12, 2, 64) for p in next_batch.past_key_values]) for i, past in enumerate(next_batch.past_key_values): assert torch.equal(next_batch_0_past_key_values[i][0][0, :, -2:], past[0][0]) assert torch.equal( next_batch_1_past_key_values[i][0][:, :, -1:], past[0][1:, :, -1:, :] ) assert torch.equal(next_batch_0_past_key_values[i][1][0, :, -2:], past[1][0]) assert torch.equal( next_batch_1_past_key_values[i][1][:, :, -1:], past[1][1:, :, -1:, :] ) for _ in range( default_multi_requests_causal_lm_batch.stopping_criterias[1].max_new_tokens - 2 ): generations, next_batch, _ = default_causal_lm.generate_token(next_batch) assert len(generations) == len(next_batch) generations, next_batch, _ = default_causal_lm.generate_token(next_batch) assert next_batch is not None assert len(generations) == 3 assert generations[2].generated_text.text == ".java:784)" assert ( generations[2].request_id == default_multi_requests_causal_lm_batch.requests[1].id ) assert ( generations[2].generated_text.generated_tokens == default_multi_requests_causal_lm_batch.stopping_criterias[1].max_new_tokens ) next_batch = next_batch.filter( [next_batch.requests[0].id, next_batch.requests[1].id] ) for _ in range( default_causal_lm_batch.stopping_criterias[0].max_new_tokens - default_multi_requests_causal_lm_batch.stopping_criterias[1].max_new_tokens - 2 ): generations, next_batch, _ = default_causal_lm.generate_token(next_batch) assert len(generations) == len(next_batch) generations, next_batch, _ = default_causal_lm.generate_token(next_batch) assert next_batch is not None assert len(generations) == 2 assert generations[0].generated_text.text == ".java:784) at net.minecraft." assert generations[0].request_id == default_causal_lm_batch.requests[0].id assert ( generations[0].generated_text.generated_tokens == default_causal_lm_batch.stopping_criterias[0].max_new_tokens ) next_batch = next_batch.filter([next_batch.requests[1].id]) for _ in range( default_multi_requests_causal_lm_batch.stopping_criterias[0].max_new_tokens - default_causal_lm_batch.stopping_criterias[0].max_new_tokens - default_multi_requests_causal_lm_batch.stopping_criterias[1].max_new_tokens - 4 ): generations, next_batch, _ = default_causal_lm.generate_token(next_batch) assert len(generations) == len(next_batch) generations, next_batch, _ = default_causal_lm.generate_token(next_batch) assert next_batch is None assert len(generations) == 1 assert generations[0].generated_text.text == ".java:784) at net.minecraft." assert ( generations[0].request_id == default_multi_requests_causal_lm_batch.requests[0].id ) assert ( generations[0].generated_text.generated_tokens == default_multi_requests_causal_lm_batch.stopping_criterias[0].max_new_tokens )
0
hf_public_repos/text-generation-inference/server/tests
hf_public_repos/text-generation-inference/server/tests/models/test_model.py
import pytest import torch from transformers import AutoTokenizer from text_generation_server.models import Model def get_test_model(): class TestModel(Model): def batch_type(self): raise NotImplementedError def generate_token(self, batch): raise NotImplementedError tokenizer = AutoTokenizer.from_pretrained("huggingface/llama-7b") model = TestModel( torch.nn.Linear(1, 1), tokenizer, False, torch.float32, torch.device("cpu") ) return model @pytest.mark.private def test_decode_streaming_english_spaces(): model = get_test_model() truth = "Hello here, this is a simple test" all_input_ids = [15043, 1244, 29892, 445, 338, 263, 2560, 1243] assert ( all_input_ids == model.tokenizer(truth, add_special_tokens=False)["input_ids"] ) decoded_text = "" offset = 0 token_offset = 0 for i in range(len(all_input_ids)): text, offset, token_offset = model.decode_token( all_input_ids[: i + 1], offset, token_offset ) decoded_text += text assert decoded_text == truth @pytest.mark.private def test_decode_streaming_chinese_utf8(): model = get_test_model() truth = "我很感谢你的热情" all_input_ids = [ 30672, 232, 193, 139, 233, 135, 162, 235, 179, 165, 30919, 30210, 234, 134, 176, 30993, ] decoded_text = "" offset = 0 token_offset = 0 for i in range(len(all_input_ids)): text, offset, token_offset = model.decode_token( all_input_ids[: i + 1], offset, token_offset ) decoded_text += text assert decoded_text == truth
0
hf_public_repos/text-generation-inference/server/tests
hf_public_repos/text-generation-inference/server/tests/models/test_seq2seq_lm.py
import pytest import torch from copy import copy from transformers import AutoTokenizer from text_generation_server.pb import generate_pb2 from text_generation_server.models.seq2seq_lm import Seq2SeqLM, Seq2SeqLMBatch @pytest.fixture(scope="session") def mt0_small_tokenizer(): tokenizer = AutoTokenizer.from_pretrained( "bigscience/mt0-small", padding_side="left" ) tokenizer.bos_token_id = 0 return tokenizer @pytest.fixture(scope="session") def default_seq2seq_lm(): return Seq2SeqLM("bigscience/mt0-small") @pytest.fixture def default_pb_request(default_pb_parameters, default_pb_stop_parameters): return generate_pb2.Request( id=0, inputs="Test", prefill_logprobs=True, truncate=100, parameters=default_pb_parameters, stopping_parameters=default_pb_stop_parameters, ) @pytest.fixture def default_pb_batch(default_pb_request): return generate_pb2.Batch(id=0, requests=[default_pb_request], size=1) @pytest.fixture def default_seq2seq_lm_batch(default_pb_batch, mt0_small_tokenizer): return Seq2SeqLMBatch.from_pb( default_pb_batch, mt0_small_tokenizer, torch.float32, torch.device("cpu") ) @pytest.fixture def default_multi_requests_seq2seq_lm_batch(default_pb_request, mt0_small_tokenizer): req_0 = copy(default_pb_request) req_0.id = 1 req_1 = default_pb_request req_1.id = 2 req_1.stopping_parameters.max_new_tokens = 5 batch_pb = generate_pb2.Batch(id=0, requests=[req_0, req_1], size=2) return Seq2SeqLMBatch.from_pb( batch_pb, mt0_small_tokenizer, torch.float32, torch.device("cpu") ) def test_batch_from_pb(default_pb_batch, default_seq2seq_lm_batch): batch = default_seq2seq_lm_batch sequence_length = len(default_seq2seq_lm_batch.input_ids[0]) assert batch.batch_id == default_pb_batch.id assert batch.requests == default_pb_batch.requests assert batch.input_ids.shape == (default_pb_batch.size, sequence_length) assert batch.input_ids[0][-2] == 4268 assert batch.input_ids[0][-1] == 1 assert torch.all(batch.input_ids[0][:-2] == 0) assert torch.all(batch.attention_mask[0][-2:] == 1) assert torch.all(batch.attention_mask[0][:-2] == 0) assert len(batch.decoder_input_ids) == default_pb_batch.size assert batch.decoder_attention_mask is None assert batch.encoder_last_hidden_state is None assert batch.past_key_values is None assert batch.input_lengths == [2] assert batch.decoder_input_lengths == [1] assert len(batch) == default_pb_batch.size assert len(batch.next_token_choosers) == len(batch.stopping_criterias) == len(batch) assert batch.max_input_length == batch.input_lengths[0] assert batch.max_decoder_input_length == batch.decoder_input_lengths[0] def test_batch_concatenate_no_prefill(default_seq2seq_lm_batch): with pytest.raises(ValueError): Seq2SeqLMBatch.concatenate([default_seq2seq_lm_batch, default_seq2seq_lm_batch]) def test_seq2seq_lm_batch_type(default_seq2seq_lm): assert default_seq2seq_lm.batch_type == Seq2SeqLMBatch def test_seq2seq_lm_generate_token(default_seq2seq_lm, default_seq2seq_lm_batch): sequence_length = len(default_seq2seq_lm_batch.input_ids[0]) generations, next_batch, _ = default_seq2seq_lm.generate_token( default_seq2seq_lm_batch ) assert len(generations) == len(next_batch) assert isinstance(next_batch, Seq2SeqLMBatch) assert next_batch.input_ids is None assert torch.equal( next_batch.attention_mask, default_seq2seq_lm_batch.attention_mask ) assert next_batch.input_lengths == default_seq2seq_lm_batch.input_lengths assert next_batch.max_input_length == default_seq2seq_lm_batch.max_input_length assert ( next_batch.next_token_choosers == default_seq2seq_lm_batch.next_token_choosers ) assert next_batch.stopping_criterias == default_seq2seq_lm_batch.stopping_criterias assert len(next_batch.decoder_input_ids) == len(next_batch) assert next_batch.all_decoder_input_ids[0][0] == 0 assert next_batch.all_decoder_input_ids[0][1] == 259 assert next_batch.decoder_attention_mask is None assert next_batch.encoder_last_hidden_state.shape == (1, sequence_length, 512) assert next_batch.decoder_input_lengths == [2] assert next_batch.max_decoder_input_length == 2 assert next_batch.past_key_values is not None assert all( [p[0].shape == (len(next_batch), 6, 1, 64) for p in next_batch.past_key_values] ) assert all( [p[1].shape == (len(next_batch), 6, 1, 64) for p in next_batch.past_key_values] ) assert all( [ p[2].shape == (len(next_batch), 6, sequence_length, 64) for p in next_batch.past_key_values ] ) assert all( [ p[3].shape == (len(next_batch), 6, sequence_length, 64) for p in next_batch.past_key_values ] ) assert all([generation.generated_text is None for generation in generations]) assert all([len(generation.prefill_tokens) == 1 for generation in generations]) assert all( [ token_id.item() == 259 for generation in generations for token_id in generation.tokens.token_ids ] ) assert all( [ token_text == " " for generation in generations for token_text in generation.tokens.texts ] ) assert generations[0].request_id == 0 def test_seq2seq_lm_generate_token_completion( default_seq2seq_lm, default_seq2seq_lm_batch ): next_batch = default_seq2seq_lm_batch for _ in range(6): generations, next_batch, _ = default_seq2seq_lm.generate_token(next_batch) assert len(generations) == len(next_batch) generations, next_batch, _ = default_seq2seq_lm.generate_token(next_batch) assert next_batch is None assert len(generations) == 1 assert generations[0].generated_text.text == "a few weeks" assert generations[0].request_id == default_seq2seq_lm_batch.requests[0].id assert generations[0].generated_text.generated_tokens == 7 def test_seq2seq_lm_generate_token_completion_multi( default_seq2seq_lm, default_multi_requests_seq2seq_lm_batch ): next_batch = default_multi_requests_seq2seq_lm_batch for i in range(4): generations, next_batch, _ = default_seq2seq_lm.generate_token(next_batch) assert len(generations) == len(next_batch) generations, next_batch, _ = default_seq2seq_lm.generate_token(next_batch) assert next_batch is not None assert len(generations) == 2 assert generations[1].generated_text.text == "a few " assert ( generations[1].request_id == default_multi_requests_seq2seq_lm_batch.requests[1].id ) assert generations[1].generated_text.generated_tokens == 5 next_batch = next_batch.filter([next_batch.requests[0].id]) generations, next_batch, _ = default_seq2seq_lm.generate_token(next_batch) assert len(generations) == len(next_batch) generations, next_batch, _ = default_seq2seq_lm.generate_token(next_batch) assert next_batch is None assert len(generations) == 1 assert generations[0].generated_text.text == "a few weeks" assert ( generations[0].request_id == default_multi_requests_seq2seq_lm_batch.requests[0].id ) assert generations[0].generated_text.generated_tokens == 7 def test_batch_concatenate( default_seq2seq_lm, default_seq2seq_lm_batch, default_multi_requests_seq2seq_lm_batch, ): next_batch_0 = default_seq2seq_lm_batch _, next_batch_0, _ = default_seq2seq_lm.generate_token(next_batch_0) _, next_batch_0, _ = default_seq2seq_lm.generate_token(next_batch_0) next_batch_1 = default_multi_requests_seq2seq_lm_batch _, next_batch_1, _ = default_seq2seq_lm.generate_token(next_batch_1) # Copy hidden state because it is removed from the concatenated branches next_batch_0_encoder_last_hidden_state = next_batch_0.encoder_last_hidden_state next_batch_1_encoder_last_hidden_state = next_batch_1.encoder_last_hidden_state # Clone past_key_values before concatenating to compare after, # because they are removed from the concatenated batches next_batch_0_past_key_values = [ [t.clone() for t in layer] for layer in next_batch_0.past_key_values ] next_batch_1_past_key_values = [ [t.clone() for t in layer] for layer in next_batch_1.past_key_values ] next_batch = Seq2SeqLMBatch.concatenate([next_batch_0, next_batch_1]) assert next_batch.batch_id == 0 assert torch.equal( next_batch.decoder_input_ids[0], next_batch_0.decoder_input_ids[0] ) assert next_batch.all_decoder_input_ids[1][0] == 0 assert next_batch.all_decoder_input_ids[2][0] == 0 assert torch.equal( next_batch.decoder_input_ids[1:, -2:], next_batch_1.decoder_input_ids ) assert torch.all(next_batch.decoder_attention_mask[0, :3] == 1) assert torch.all(next_batch.decoder_attention_mask[0, 3:] == 0) assert torch.all(next_batch.decoder_attention_mask[1:, 0] == 0) assert torch.all(next_batch.decoder_attention_mask[1:, 1:3] == 1) assert torch.equal( next_batch.encoder_last_hidden_state[0], next_batch_0_encoder_last_hidden_state[0, -2:], ) assert torch.equal( next_batch.encoder_last_hidden_state[1:], next_batch_1_encoder_last_hidden_state[:, -2:], ) assert next_batch.input_lengths == [2, 2, 2] assert next_batch.decoder_input_lengths == [3, 2, 2] assert next_batch.max_input_length == 2 assert next_batch.max_decoder_input_length == 3 assert next_batch.requests[0] == next_batch_0.requests[0] assert next_batch.requests[1:] == next_batch_1.requests assert next_batch.next_token_choosers[0] == next_batch_0.next_token_choosers[0] assert next_batch.next_token_choosers[1:] == next_batch_1.next_token_choosers assert next_batch.stopping_criterias[0] == next_batch_0.stopping_criterias[0] assert next_batch.stopping_criterias[1:] == next_batch_1.stopping_criterias assert next_batch.past_key_values is not None assert all( [p[0].shape == (len(next_batch), 6, 2, 64) for p in next_batch.past_key_values] ) assert all( [p[1].shape == (len(next_batch), 6, 2, 64) for p in next_batch.past_key_values] ) assert all( [p[2].shape == (len(next_batch), 6, 2, 64) for p in next_batch.past_key_values] ) assert all( [p[3].shape == (len(next_batch), 6, 2, 64) for p in next_batch.past_key_values] ) for i, past in enumerate(next_batch.past_key_values): assert torch.equal(next_batch_0_past_key_values[i][0][0, :, -2:, :], past[0][0]) assert torch.equal( next_batch_1_past_key_values[i][0][:, :, -1:, :], past[0][1:, :, -1:, :] ) assert torch.equal(next_batch_0_past_key_values[i][1][0, :, -2:, :], past[1][0]) assert torch.equal( next_batch_1_past_key_values[i][1][:, :, -1:, :], past[1][1:, :, -1:, :] ) assert torch.equal(next_batch_0_past_key_values[i][2][0, :, -2:, :], past[2][0]) assert torch.equal( next_batch_1_past_key_values[i][2][:, :, -2:, :], past[2][1:] ) assert torch.equal(next_batch_0_past_key_values[i][3][0, :, -2:, :], past[3][0]) assert torch.equal( next_batch_1_past_key_values[i][3][:, :, -2:, :], past[3][1:] ) for _ in range(3): generations, next_batch, _ = default_seq2seq_lm.generate_token(next_batch) assert len(generations) == len(next_batch) generations, next_batch, _ = default_seq2seq_lm.generate_token(next_batch) assert next_batch is not None assert len(generations) == 3 assert generations[2].generated_text.text == "a few " assert ( generations[2].request_id == default_multi_requests_seq2seq_lm_batch.requests[1].id ) assert generations[2].generated_text.generated_tokens == 5 next_batch = next_batch.filter( [next_batch.requests[0].id, next_batch.requests[1].id] ) generations, next_batch, _ = default_seq2seq_lm.generate_token(next_batch) assert next_batch is not None assert len(generations) == 2 assert generations[0].generated_text.text == "a few weeks" assert generations[0].request_id == default_seq2seq_lm_batch.requests[0].id assert generations[0].generated_text.generated_tokens == 7 next_batch = next_batch.filter([next_batch.requests[1].id]) generations, next_batch, _ = default_seq2seq_lm.generate_token(next_batch) assert next_batch is None assert len(generations) == 1 assert generations[0].generated_text.text == "a few weeks" assert ( generations[0].request_id == default_multi_requests_seq2seq_lm_batch.requests[0].id ) assert generations[0].generated_text.generated_tokens == 7
0
hf_public_repos/text-generation-inference/server/tests
hf_public_repos/text-generation-inference/server/tests/models/test_bloom.py
import pytest import torch from copy import copy from transformers import AutoTokenizer from text_generation_server.pb import generate_pb2 from text_generation_server.models.causal_lm import CausalLMBatch from text_generation_server.utils import weight_hub_files, download_weights from text_generation_server.models.bloom import BloomCausalLMBatch, BLOOMSharded @pytest.fixture(scope="session") def default_bloom(): model_id = "bigscience/bloom-560m" revision = "main" filenames = weight_hub_files(model_id, revision, ".safetensors") download_weights(filenames, model_id, revision) return BLOOMSharded(model_id) @pytest.fixture(scope="session") def bloom_560m_tokenizer(): return AutoTokenizer.from_pretrained("bigscience/bloom-560m", padding_side="left") @pytest.fixture def default_pb_request(default_pb_parameters, default_pb_stop_parameters): return generate_pb2.Request( id=0, inputs="Test", prefill_logprobs=True, truncate=100, parameters=default_pb_parameters, stopping_parameters=default_pb_stop_parameters, ) @pytest.fixture def default_pb_batch(default_pb_request): return generate_pb2.Batch(id=0, requests=[default_pb_request], size=1) @pytest.fixture def default_bloom_batch(default_pb_batch, bloom_560m_tokenizer): return BloomCausalLMBatch.from_pb( default_pb_batch, bloom_560m_tokenizer, torch.float32, torch.device("cpu") ) @pytest.fixture def default_multi_requests_bloom_batch(default_pb_request, bloom_560m_tokenizer): req_0 = copy(default_pb_request) req_0.id = 1 req_1 = default_pb_request req_1.id = 2 req_1.stopping_parameters.max_new_tokens = 5 batch_pb = generate_pb2.Batch(id=0, requests=[req_0, req_1], size=2) return BloomCausalLMBatch.from_pb( batch_pb, bloom_560m_tokenizer, torch.float32, torch.device("cpu") ) def test_batch_from_pb(default_pb_batch, default_bloom_batch): batch = default_bloom_batch assert batch.batch_id == default_pb_batch.id assert batch.requests == default_pb_batch.requests assert len(batch.input_ids) == default_pb_batch.size assert batch.input_ids[0][-1] == 10264 assert torch.all(batch.input_ids[0][:-1] == 3) assert batch.attention_mask[0][0] == 1 assert torch.all(batch.attention_mask[0][1:] == 0) assert batch.past_key_values is None assert all( [ torch.equal(input_ids, all_input_ids[:, 0]) for input_ids, all_input_ids in zip(batch.input_ids, batch.all_input_ids) ] ) assert batch.input_lengths == [1] assert len(batch) == default_pb_batch.size assert len(batch.next_token_choosers) == len(batch.stopping_criterias) == len(batch) assert batch.max_input_length == batch.input_lengths[0] def test_batch_concatenate_no_prefill(default_bloom_batch): with pytest.raises(ValueError): BloomCausalLMBatch.concatenate([default_bloom_batch, default_bloom_batch]) def test_causal_lm_batch_type(default_bloom): assert default_bloom.batch_type == BloomCausalLMBatch def test_causal_lm_generate_token(default_bloom, default_bloom_batch): sequence_length = len(default_bloom_batch.all_input_ids[0]) generations, next_batch, _ = default_bloom.generate_token(default_bloom_batch) assert len(generations) == len(default_bloom_batch) assert isinstance(next_batch, CausalLMBatch) assert not next_batch.keys_head_dim_last assert len(next_batch.all_input_ids) == len(next_batch) assert len(next_batch.all_input_ids[0]) == sequence_length + 1 assert len(next_batch.attention_mask[0]) == 11 assert torch.all(next_batch.all_input_ids[0][-2:] == 10264) assert torch.all(next_batch.all_input_ids[0][:-2] == 3) assert torch.all(next_batch.attention_mask[0][:2] == 1) assert torch.all(next_batch.attention_mask[0][2:] == 0) assert next_batch.input_ids.shape == (len(next_batch), 1) assert next_batch.input_ids[0, 0] == 10264 assert next_batch.input_lengths == [2] assert next_batch.max_input_length == next_batch.input_lengths[0] assert next_batch.past_key_values is not None assert all( [p[0].shape == (16, 64, sequence_length) for p in next_batch.past_key_values] ) assert all( [p[1].shape == (16, sequence_length, 64) for p in next_batch.past_key_values] ) assert all([generation.generated_text is None for generation in generations]) assert all([len(generation.prefill_tokens) == 1 for generation in generations]) assert all( [ token_id.item() == 10264 for generation in generations for token_id in generation.tokens.token_ids ] ) assert all( [ token_text == "Test" for generation in generations for token_text in generation.tokens.texts ] ) assert generations[0].request_id == 0 def test_causal_lm_generate_token_completion(default_bloom, default_bloom_batch): next_batch = default_bloom_batch for _ in range(default_bloom_batch.stopping_criterias[0].max_new_tokens - 1): generations, next_batch, _ = default_bloom.generate_token(next_batch) assert len(generations) == len(default_bloom_batch) generations, next_batch, _ = default_bloom.generate_token(next_batch) assert next_batch is None assert len(generations) == 1 assert ( generations[0].generated_text.text == "TestTestTestTestTestTestTestTestTestTest" ) assert generations[0].request_id == default_bloom_batch.requests[0].id assert ( generations[0].generated_text.generated_tokens == default_bloom_batch.stopping_criterias[0].max_new_tokens ) def test_causal_lm_generate_token_completion_multi( default_bloom, default_multi_requests_bloom_batch ): next_batch = default_multi_requests_bloom_batch for i in range( default_multi_requests_bloom_batch.stopping_criterias[1].max_new_tokens - 1 ): generations, next_batch, _ = default_bloom.generate_token(next_batch) assert len(generations) == len(default_multi_requests_bloom_batch) generations, next_batch, _ = default_bloom.generate_token(next_batch) assert next_batch is not None assert len(generations) == 2 assert generations[1].generated_text.text == "TestTestTestTestTest" assert ( generations[1].request_id == default_multi_requests_bloom_batch.requests[1].id ) assert ( generations[1].generated_text.generated_tokens == default_multi_requests_bloom_batch.stopping_criterias[1].max_new_tokens ) # Copy stopping_criterias before filtering stopping_criterias = default_multi_requests_bloom_batch.stopping_criterias.copy() next_batch = next_batch.filter([next_batch.requests[0].id]) for _ in range( stopping_criterias[0].max_new_tokens - stopping_criterias[1].max_new_tokens - 1 ): generations, next_batch, _ = default_bloom.generate_token(next_batch) assert len(generations) == len(next_batch) generations, next_batch, _ = default_bloom.generate_token(next_batch) assert next_batch is None assert len(generations) == 1 assert ( generations[0].generated_text.text == "TestTestTestTestTestTestTestTestTestTest" ) assert ( generations[0].request_id == default_multi_requests_bloom_batch.requests[0].id ) assert ( generations[0].generated_text.generated_tokens == default_multi_requests_bloom_batch.stopping_criterias[0].max_new_tokens ) def test_batch_concatenate( default_bloom, default_bloom_batch, default_multi_requests_bloom_batch ): next_batch_0 = default_bloom_batch _, next_batch_0, _ = default_bloom.generate_token(next_batch_0) _, next_batch_0, _ = default_bloom.generate_token(next_batch_0) next_batch_1 = default_multi_requests_bloom_batch _, next_batch_1, _ = default_bloom.generate_token(next_batch_1) # Clone past_key_values before concatenating to compare after, # because they are removed from the concatenated batches next_batch_0_past_key_values = [ (k.clone(), v.clone()) for (k, v) in next_batch_0.past_key_values ] next_batch_1_past_key_values = [ (k.clone(), v.clone()) for (k, v) in next_batch_1.past_key_values ] next_batch = BloomCausalLMBatch.concatenate([next_batch_0, next_batch_1]) assert torch.equal(next_batch.all_input_ids[0], next_batch_0.all_input_ids[0]) assert torch.equal(next_batch.all_input_ids[1], next_batch_1.all_input_ids[0]) assert torch.equal(next_batch.all_input_ids[2], next_batch_1.all_input_ids[1]) assert torch.all( next_batch.attention_mask[0, : -next_batch.padding_right_offset] == 1 ) assert torch.all( next_batch.attention_mask[1:, 1 : -next_batch.padding_right_offset] == 1 ) assert torch.all(next_batch.attention_mask[1:, 3:] == 0) assert next_batch.batch_id == 0 assert torch.all(next_batch.input_ids == 10264) assert next_batch.input_lengths == [3, 2, 2] assert next_batch.max_input_length == 3 assert next_batch.requests[0] == next_batch_0.requests[0] assert next_batch.requests[1:] == next_batch_1.requests assert next_batch.next_token_choosers[0] == next_batch_0.next_token_choosers[0] assert next_batch.next_token_choosers[1:] == next_batch_1.next_token_choosers assert next_batch.stopping_criterias[0] == next_batch_0.stopping_criterias[0] assert next_batch.stopping_criterias[1:] == next_batch_1.stopping_criterias assert next_batch.past_key_values is not None assert all([p[0].shape == (3, 16, 64, 2) for p in next_batch.past_key_values]) assert all([p[1].shape == (3, 16, 2, 64) for p in next_batch.past_key_values]) for i, past in enumerate(next_batch.past_key_values): assert torch.equal(next_batch_0_past_key_values[i][0][:, :, -2:], past[0][0]) assert torch.equal( next_batch_1_past_key_values[i][0][:, :, -1:], past[0][1:, :, :, -1].reshape(-1, 64, 1), ) assert torch.equal(next_batch_0_past_key_values[i][1][:, -2:, :], past[1][0]) assert torch.equal( next_batch_1_past_key_values[i][1][:, -1:, :], past[1][1:, :, -1, :].reshape(-1, 1, 64), ) for _ in range( default_multi_requests_bloom_batch.stopping_criterias[1].max_new_tokens - 2 ): generations, next_batch, _ = default_bloom.generate_token(next_batch) assert len(generations) == len(next_batch) generations, next_batch, _ = default_bloom.generate_token(next_batch) assert next_batch is not None assert len(generations) == 3 assert generations[2].generated_text.text == "TestTestTestTestTest" assert ( generations[2].request_id == default_multi_requests_bloom_batch.requests[1].id ) assert ( generations[2].generated_text.generated_tokens == default_multi_requests_bloom_batch.stopping_criterias[1].max_new_tokens ) next_batch = next_batch.filter( [next_batch.requests[0].id, next_batch.requests[1].id] ) for _ in range( default_bloom_batch.stopping_criterias[0].max_new_tokens - default_multi_requests_bloom_batch.stopping_criterias[1].max_new_tokens - 2 ): generations, next_batch, _ = default_bloom.generate_token(next_batch) assert len(generations) == len(next_batch) generations, next_batch, _ = default_bloom.generate_token(next_batch) assert next_batch is not None assert len(generations) == 2 assert ( generations[0].generated_text.text == "TestTestTestTestTestTestTestTestTestTest" ) assert generations[0].request_id == default_bloom_batch.requests[0].id assert ( generations[0].generated_text.generated_tokens == default_bloom_batch.stopping_criterias[0].max_new_tokens ) next_batch = next_batch.filter([next_batch.requests[1].id]) for _ in range( default_multi_requests_bloom_batch.stopping_criterias[0].max_new_tokens - default_bloom_batch.stopping_criterias[0].max_new_tokens - default_multi_requests_bloom_batch.stopping_criterias[1].max_new_tokens - 4 ): generations, next_batch, _ = default_bloom.generate_token(next_batch) assert len(generations) == len(next_batch) generations, next_batch, _ = default_bloom.generate_token(next_batch) assert next_batch is None assert len(generations) == 1 assert ( generations[0].generated_text.text == "TestTestTestTestTestTestTestTestTestTest" ) assert ( generations[0].request_id == default_multi_requests_bloom_batch.requests[0].id ) assert ( generations[0].generated_text.generated_tokens == default_multi_requests_bloom_batch.stopping_criterias[0].max_new_tokens )
0