metadata
dataset_info:
- config_name: en
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': CLINENTITY
'2': EVENT
'3': ACTOR
'4': BODYPART
'5': TIMEX3
'6': RML
splits:
- name: en
num_bytes: 507939
num_examples: 1520
download_size: 230213492
dataset_size: 507939
- config_name: es
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': CLINENTITY
'2': EVENT
'3': ACTOR
'4': BODYPART
'5': TIMEX3
'6': RML
splits:
- name: es
num_bytes: 501523
num_examples: 1134
download_size: 230213492
dataset_size: 501523
- config_name: eu
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': CLINENTITY
'2': EVENT
'3': ACTOR
'4': BODYPART
'5': TIMEX3
'6': RML
splits:
- name: eu
num_bytes: 615175
num_examples: 3126
download_size: 230213492
dataset_size: 615175
- config_name: fr
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': CLINENTITY
'2': EVENT
'3': ACTOR
'4': BODYPART
'5': TIMEX3
'6': RML
splits:
- name: fr
num_bytes: 506754
num_examples: 1109
download_size: 230213492
dataset_size: 506754
- config_name: it
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': CLINENTITY
'2': EVENT
'3': ACTOR
'4': BODYPART
'5': TIMEX3
'6': RML
splits:
- name: it
num_bytes: 516047
num_examples: 1146
download_size: 230213492
dataset_size: 516047
- config_name: e3c
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': CLINENTITY
'2': EVENT
'3': ACTOR
'4': BODYPART
'5': TIMEX3
'6': RML
splits:
- name: en.layer1
num_bytes: 507939
num_examples: 1520
- name: en.layer2
num_bytes: 1017690
num_examples: 2873
- name: es.layer1
num_bytes: 501523
num_examples: 1134
- name: es.layer2
num_bytes: 1002221
num_examples: 2347
- name: eu.layer1
num_bytes: 615175
num_examples: 3126
- name: eu.layer2
num_bytes: 342204
num_examples: 1594
- name: fr.layer1
num_bytes: 506754
num_examples: 1109
- name: fr.layer2
num_bytes: 1027933
num_examples: 2389
- name: it.layer1
num_bytes: 516047
num_examples: 1146
- name: it.layer2
num_bytes: 1071873
num_examples: 2436
download_size: 230213492
dataset_size: 7109359
Dataset Card for E3C
Dataset Description
- Homepage: https://github.com/hltfbk/E3C-Corpus
- Public: True
- Tasks: NER,RE
The European Clinical Case Corpus (E3C) project aims at collecting and
annotating a large corpus of clinical documents in five European languages (Spanish,
Basque, English, French and Italian), which will be freely distributed. Annotations
include temporal information, to allow temporal reasoning on chronologies, and
information about clinical entities based on medical taxonomies, to be used for semantic reasoning.
Citation Information
@report{Magnini2021,
author = {Bernardo Magnini and Begoña Altuna and Alberto Lavelli and Manuela Speranza
and Roberto Zanoli and Fondazione Bruno Kessler},
keywords = {Clinical data,clinical enti-ties,corpus,multilingual,temporal information},
title = {The E3C Project:
European Clinical Case Corpus El proyecto E3C: European Clinical Case Corpus},
url = {https://uts.nlm.nih.gov/uts/umls/home},
year = {2021},
}