Upload 2 files
Browse files
README.md
CHANGED
@@ -1,84 +1,86 @@
|
|
1 |
---
|
2 |
dataset_info:
|
3 |
features:
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
33 |
config_name: e3c
|
34 |
splits:
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
download_size: 230213492
|
81 |
-
dataset_size:
|
82 |
---
|
83 |
|
84 |
# Dataset Card for E3C
|
@@ -107,4 +109,4 @@ information about clinical entities based on medical taxonomies, to be used for
|
|
107 |
url = {https://uts.nlm.nih.gov/uts/umls/home},
|
108 |
year = {2021},
|
109 |
}
|
110 |
-
```
|
|
|
1 |
---
|
2 |
dataset_info:
|
3 |
features:
|
4 |
+
- name: text
|
5 |
+
dtype: string
|
6 |
+
- name: tokens
|
7 |
+
sequence: string
|
8 |
+
- name: tokens_offsets
|
9 |
+
sequence:
|
10 |
+
sequence: int32
|
11 |
+
- name: clinical_entity_tags
|
12 |
+
sequence:
|
13 |
+
class_label:
|
14 |
+
names:
|
15 |
+
'0': O
|
16 |
+
'1': B-CLINENTITY
|
17 |
+
'2': I-CLINENTITY
|
18 |
+
- name: clinical_entity_cuid
|
19 |
+
sequence: string
|
20 |
+
- name: temporal_information_tags
|
21 |
+
sequence:
|
22 |
+
class_label:
|
23 |
+
names:
|
24 |
+
'0': O
|
25 |
+
'1': B-EVENT
|
26 |
+
'2': B-ACTOR
|
27 |
+
'3': B-BODYPART
|
28 |
+
'4': B-TIMEX3
|
29 |
+
'5': B-RML
|
30 |
+
'6': I-EVENT
|
31 |
+
'7': I-ACTOR
|
32 |
+
'8': I-BODYPART
|
33 |
+
'9': I-TIMEX3
|
34 |
+
'10': I-RML
|
35 |
config_name: e3c
|
36 |
splits:
|
37 |
+
- name: en.layer1
|
38 |
+
num_bytes: 1632165
|
39 |
+
num_examples: 1520
|
40 |
+
- name: en.layer2
|
41 |
+
num_bytes: 3263885
|
42 |
+
num_examples: 2873
|
43 |
+
- name: en.layer2.validation
|
44 |
+
num_bytes: 371196
|
45 |
+
num_examples: 334
|
46 |
+
- name: es.layer1
|
47 |
+
num_bytes: 1599169
|
48 |
+
num_examples: 1134
|
49 |
+
- name: es.layer2
|
50 |
+
num_bytes: 3192361
|
51 |
+
num_examples: 2347
|
52 |
+
- name: es.layer2.validation
|
53 |
+
num_bytes: 352193
|
54 |
+
num_examples: 261
|
55 |
+
- name: eu.layer1
|
56 |
+
num_bytes: 1931109
|
57 |
+
num_examples: 3126
|
58 |
+
- name: eu.layer2
|
59 |
+
num_bytes: 1066405
|
60 |
+
num_examples: 1594
|
61 |
+
- name: eu.layer2.validation
|
62 |
+
num_bytes: 279306
|
63 |
+
num_examples: 468
|
64 |
+
- name: fr.layer1
|
65 |
+
num_bytes: 1610663
|
66 |
+
num_examples: 1109
|
67 |
+
- name: fr.layer2
|
68 |
+
num_bytes: 3358033
|
69 |
+
num_examples: 2389
|
70 |
+
- name: fr.layer2.validation
|
71 |
+
num_bytes: 361816
|
72 |
+
num_examples: 293
|
73 |
+
- name: it.layer1
|
74 |
+
num_bytes: 1633613
|
75 |
+
num_examples: 1146
|
76 |
+
- name: it.layer2
|
77 |
+
num_bytes: 3373977
|
78 |
+
num_examples: 2436
|
79 |
+
- name: it.layer2.validation
|
80 |
+
num_bytes: 366932
|
81 |
+
num_examples: 275
|
82 |
download_size: 230213492
|
83 |
+
dataset_size: 24392823
|
84 |
---
|
85 |
|
86 |
# Dataset Card for E3C
|
|
|
109 |
url = {https://uts.nlm.nih.gov/uts/umls/home},
|
110 |
year = {2021},
|
111 |
}
|
112 |
+
```
|
e3c.py
CHANGED
@@ -70,6 +70,9 @@ class E3C(datasets.GeneratorBasedBuilder):
|
|
70 |
],
|
71 |
),
|
72 |
),
|
|
|
|
|
|
|
73 |
"temporal_information_tags": datasets.Sequence(
|
74 |
datasets.features.ClassLabel(
|
75 |
names=[
|
@@ -285,6 +288,25 @@ class E3C(datasets.GeneratorBasedBuilder):
|
|
285 |
def get_annotations(entities: ResultSet, text: str) -> list:
|
286 |
"""Extract the offset, the text and the type of the entity.
|
287 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
Args:
|
289 |
entities: The entities to extract.
|
290 |
text: The text of the document.
|
@@ -296,6 +318,7 @@ class E3C(datasets.GeneratorBasedBuilder):
|
|
296 |
int(entity.get("begin")),
|
297 |
int(entity.get("end")),
|
298 |
text[int(entity.get("begin")) : int(entity.get("end"))],
|
|
|
299 |
]
|
300 |
for entity in entities
|
301 |
]
|
@@ -320,7 +343,7 @@ class E3C(datasets.GeneratorBasedBuilder):
|
|
320 |
soup = BeautifulSoup(soup_file, "xml")
|
321 |
text = soup.find("cas:Sofa").get("sofaString")
|
322 |
yield {
|
323 |
-
"CLINENTITY": self.
|
324 |
soup.find_all("custom:CLINENTITY"), text
|
325 |
),
|
326 |
"EVENT": self.get_annotations(soup.find_all("custom:EVENT"), text),
|
@@ -362,6 +385,7 @@ class E3C(datasets.GeneratorBasedBuilder):
|
|
362 |
[token[0] - sentence[0], token[1] - sentence[0]] for token in filtered_tokens
|
363 |
]
|
364 |
clinical_labels = ["O"] * len(filtered_tokens)
|
|
|
365 |
temporal_information_labels = ["O"] * len(filtered_tokens)
|
366 |
for entity_type in [
|
367 |
"CLINENTITY",
|
@@ -386,6 +410,7 @@ class E3C(datasets.GeneratorBasedBuilder):
|
|
386 |
clinical_labels[idx_token] = f"B-{entity_type}"
|
387 |
else:
|
388 |
clinical_labels[idx_token] = f"I-{entity_type}"
|
|
|
389 |
else:
|
390 |
if idx_token == annotated_tokens[0]:
|
391 |
temporal_information_labels[idx_token] = f"B-{entity_type}"
|
@@ -395,7 +420,12 @@ class E3C(datasets.GeneratorBasedBuilder):
|
|
395 |
"text": sentence[-1],
|
396 |
"tokens": list(map(lambda token: token[2], filtered_tokens)),
|
397 |
"clinical_entity_tags": clinical_labels,
|
|
|
398 |
"temporal_information_tags": temporal_information_labels,
|
399 |
"tokens_offsets": tokens_offsets,
|
400 |
}
|
401 |
guid += 1
|
|
|
|
|
|
|
|
|
|
70 |
],
|
71 |
),
|
72 |
),
|
73 |
+
"clinical_entity_cuid": datasets.Sequence(
|
74 |
+
datasets.Value("string"),
|
75 |
+
),
|
76 |
"temporal_information_tags": datasets.Sequence(
|
77 |
datasets.features.ClassLabel(
|
78 |
names=[
|
|
|
288 |
def get_annotations(entities: ResultSet, text: str) -> list:
|
289 |
"""Extract the offset, the text and the type of the entity.
|
290 |
|
291 |
+
Args:
|
292 |
+
entities: The entities to extract.
|
293 |
+
text: The text of the document.
|
294 |
+
Returns:
|
295 |
+
A list of list containing the offset, the text and the type of the entity.
|
296 |
+
"""
|
297 |
+
return [
|
298 |
+
|
299 |
+
[
|
300 |
+
int(entity.get("begin")),
|
301 |
+
int(entity.get("end")),
|
302 |
+
text[int(entity.get("begin")) : int(entity.get("end"))],
|
303 |
+
]
|
304 |
+
for entity in entities
|
305 |
+
]
|
306 |
+
|
307 |
+
def get_clinical_annotations(self, entities: ResultSet, text: str) -> list:
|
308 |
+
"""Extract the offset, the text and the type of the entity.
|
309 |
+
|
310 |
Args:
|
311 |
entities: The entities to extract.
|
312 |
text: The text of the document.
|
|
|
318 |
int(entity.get("begin")),
|
319 |
int(entity.get("end")),
|
320 |
text[int(entity.get("begin")) : int(entity.get("end"))],
|
321 |
+
entity.get("entityID"),
|
322 |
]
|
323 |
for entity in entities
|
324 |
]
|
|
|
343 |
soup = BeautifulSoup(soup_file, "xml")
|
344 |
text = soup.find("cas:Sofa").get("sofaString")
|
345 |
yield {
|
346 |
+
"CLINENTITY": self.get_clinical_annotations(
|
347 |
soup.find_all("custom:CLINENTITY"), text
|
348 |
),
|
349 |
"EVENT": self.get_annotations(soup.find_all("custom:EVENT"), text),
|
|
|
385 |
[token[0] - sentence[0], token[1] - sentence[0]] for token in filtered_tokens
|
386 |
]
|
387 |
clinical_labels = ["O"] * len(filtered_tokens)
|
388 |
+
clinical_cuid = ["CUI_LESS"] * len(filtered_tokens)
|
389 |
temporal_information_labels = ["O"] * len(filtered_tokens)
|
390 |
for entity_type in [
|
391 |
"CLINENTITY",
|
|
|
410 |
clinical_labels[idx_token] = f"B-{entity_type}"
|
411 |
else:
|
412 |
clinical_labels[idx_token] = f"I-{entity_type}"
|
413 |
+
clinical_cuid[idx_token] = entities[-1]
|
414 |
else:
|
415 |
if idx_token == annotated_tokens[0]:
|
416 |
temporal_information_labels[idx_token] = f"B-{entity_type}"
|
|
|
420 |
"text": sentence[-1],
|
421 |
"tokens": list(map(lambda token: token[2], filtered_tokens)),
|
422 |
"clinical_entity_tags": clinical_labels,
|
423 |
+
"clinical_entity_cuid": clinical_cuid,
|
424 |
"temporal_information_tags": temporal_information_labels,
|
425 |
"tokens_offsets": tokens_offsets,
|
426 |
}
|
427 |
guid += 1
|
428 |
+
|
429 |
+
if __name__ == "__main__":
|
430 |
+
builder = E3C()
|
431 |
+
builder.download_and_prepare()
|