smeoni commited on
Commit
1424af7
·
1 Parent(s): ccc963f

Upload 2 files

Browse files
Files changed (2) hide show
  1. README.md +78 -76
  2. e3c.py +31 -1
README.md CHANGED
@@ -1,84 +1,86 @@
1
  ---
2
  dataset_info:
3
  features:
4
- - name: text
5
- dtype: string
6
- - name: tokens
7
- sequence: string
8
- - name: tokens_offsets
9
- sequence:
10
- sequence: int32
11
- - name: clinical_entity_tags
12
- sequence:
13
- class_label:
14
- names:
15
- "0": O
16
- "1": B-CLINENTITY
17
- "2": I-CLINENTITY
18
- - name: temporal_information_tags
19
- sequence:
20
- class_label:
21
- names:
22
- "0": O
23
- "1": B-EVENT
24
- "2": B-ACTOR
25
- "3": B-BODYPART
26
- "4": B-TIMEX3
27
- "5": B-RML
28
- "6": I-EVENT
29
- "7": I-ACTOR
30
- "8": I-BODYPART
31
- "9": I-TIMEX3
32
- "10": I-RML
 
 
33
  config_name: e3c
34
  splits:
35
- - name: en.layer1
36
- num_bytes: 1273610
37
- num_examples: 1520
38
- - name: en.layer2
39
- num_bytes: 2550153
40
- num_examples: 2873
41
- - name: en.layer2.validation
42
- num_bytes: 290108
43
- num_examples: 334
44
- - name: es.layer1
45
- num_bytes: 1252571
46
- num_examples: 1134
47
- - name: es.layer2
48
- num_bytes: 2498266
49
- num_examples: 2347
50
- - name: es.layer2.validation
51
- num_bytes: 275770
52
- num_examples: 261
53
- - name: eu.layer1
54
- num_bytes: 1519021
55
- num_examples: 3126
56
- - name: eu.layer2
57
- num_bytes: 839955
58
- num_examples: 1594
59
- - name: eu.layer2.validation
60
- num_bytes: 220097
61
- num_examples: 468
62
- - name: fr.layer1
63
- num_bytes: 1258738
64
- num_examples: 1109
65
- - name: fr.layer2
66
- num_bytes: 2628628
67
- num_examples: 2389
68
- - name: fr.layer2.validation
69
- num_bytes: 282527
70
- num_examples: 293
71
- - name: it.layer1
72
- num_bytes: 1276534
73
- num_examples: 1146
74
- - name: it.layer2
75
- num_bytes: 2641257
76
- num_examples: 2436
77
- - name: it.layer2.validation
78
- num_bytes: 286702
79
- num_examples: 275
80
  download_size: 230213492
81
- dataset_size: 19093937
82
  ---
83
 
84
  # Dataset Card for E3C
@@ -107,4 +109,4 @@ information about clinical entities based on medical taxonomies, to be used for
107
  url = {https://uts.nlm.nih.gov/uts/umls/home},
108
  year = {2021},
109
  }
110
- ```
 
1
  ---
2
  dataset_info:
3
  features:
4
+ - name: text
5
+ dtype: string
6
+ - name: tokens
7
+ sequence: string
8
+ - name: tokens_offsets
9
+ sequence:
10
+ sequence: int32
11
+ - name: clinical_entity_tags
12
+ sequence:
13
+ class_label:
14
+ names:
15
+ '0': O
16
+ '1': B-CLINENTITY
17
+ '2': I-CLINENTITY
18
+ - name: clinical_entity_cuid
19
+ sequence: string
20
+ - name: temporal_information_tags
21
+ sequence:
22
+ class_label:
23
+ names:
24
+ '0': O
25
+ '1': B-EVENT
26
+ '2': B-ACTOR
27
+ '3': B-BODYPART
28
+ '4': B-TIMEX3
29
+ '5': B-RML
30
+ '6': I-EVENT
31
+ '7': I-ACTOR
32
+ '8': I-BODYPART
33
+ '9': I-TIMEX3
34
+ '10': I-RML
35
  config_name: e3c
36
  splits:
37
+ - name: en.layer1
38
+ num_bytes: 1632165
39
+ num_examples: 1520
40
+ - name: en.layer2
41
+ num_bytes: 3263885
42
+ num_examples: 2873
43
+ - name: en.layer2.validation
44
+ num_bytes: 371196
45
+ num_examples: 334
46
+ - name: es.layer1
47
+ num_bytes: 1599169
48
+ num_examples: 1134
49
+ - name: es.layer2
50
+ num_bytes: 3192361
51
+ num_examples: 2347
52
+ - name: es.layer2.validation
53
+ num_bytes: 352193
54
+ num_examples: 261
55
+ - name: eu.layer1
56
+ num_bytes: 1931109
57
+ num_examples: 3126
58
+ - name: eu.layer2
59
+ num_bytes: 1066405
60
+ num_examples: 1594
61
+ - name: eu.layer2.validation
62
+ num_bytes: 279306
63
+ num_examples: 468
64
+ - name: fr.layer1
65
+ num_bytes: 1610663
66
+ num_examples: 1109
67
+ - name: fr.layer2
68
+ num_bytes: 3358033
69
+ num_examples: 2389
70
+ - name: fr.layer2.validation
71
+ num_bytes: 361816
72
+ num_examples: 293
73
+ - name: it.layer1
74
+ num_bytes: 1633613
75
+ num_examples: 1146
76
+ - name: it.layer2
77
+ num_bytes: 3373977
78
+ num_examples: 2436
79
+ - name: it.layer2.validation
80
+ num_bytes: 366932
81
+ num_examples: 275
82
  download_size: 230213492
83
+ dataset_size: 24392823
84
  ---
85
 
86
  # Dataset Card for E3C
 
109
  url = {https://uts.nlm.nih.gov/uts/umls/home},
110
  year = {2021},
111
  }
112
+ ```
e3c.py CHANGED
@@ -70,6 +70,9 @@ class E3C(datasets.GeneratorBasedBuilder):
70
  ],
71
  ),
72
  ),
 
 
 
73
  "temporal_information_tags": datasets.Sequence(
74
  datasets.features.ClassLabel(
75
  names=[
@@ -285,6 +288,25 @@ class E3C(datasets.GeneratorBasedBuilder):
285
  def get_annotations(entities: ResultSet, text: str) -> list:
286
  """Extract the offset, the text and the type of the entity.
287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
288
  Args:
289
  entities: The entities to extract.
290
  text: The text of the document.
@@ -296,6 +318,7 @@ class E3C(datasets.GeneratorBasedBuilder):
296
  int(entity.get("begin")),
297
  int(entity.get("end")),
298
  text[int(entity.get("begin")) : int(entity.get("end"))],
 
299
  ]
300
  for entity in entities
301
  ]
@@ -320,7 +343,7 @@ class E3C(datasets.GeneratorBasedBuilder):
320
  soup = BeautifulSoup(soup_file, "xml")
321
  text = soup.find("cas:Sofa").get("sofaString")
322
  yield {
323
- "CLINENTITY": self.get_annotations(
324
  soup.find_all("custom:CLINENTITY"), text
325
  ),
326
  "EVENT": self.get_annotations(soup.find_all("custom:EVENT"), text),
@@ -362,6 +385,7 @@ class E3C(datasets.GeneratorBasedBuilder):
362
  [token[0] - sentence[0], token[1] - sentence[0]] for token in filtered_tokens
363
  ]
364
  clinical_labels = ["O"] * len(filtered_tokens)
 
365
  temporal_information_labels = ["O"] * len(filtered_tokens)
366
  for entity_type in [
367
  "CLINENTITY",
@@ -386,6 +410,7 @@ class E3C(datasets.GeneratorBasedBuilder):
386
  clinical_labels[idx_token] = f"B-{entity_type}"
387
  else:
388
  clinical_labels[idx_token] = f"I-{entity_type}"
 
389
  else:
390
  if idx_token == annotated_tokens[0]:
391
  temporal_information_labels[idx_token] = f"B-{entity_type}"
@@ -395,7 +420,12 @@ class E3C(datasets.GeneratorBasedBuilder):
395
  "text": sentence[-1],
396
  "tokens": list(map(lambda token: token[2], filtered_tokens)),
397
  "clinical_entity_tags": clinical_labels,
 
398
  "temporal_information_tags": temporal_information_labels,
399
  "tokens_offsets": tokens_offsets,
400
  }
401
  guid += 1
 
 
 
 
 
70
  ],
71
  ),
72
  ),
73
+ "clinical_entity_cuid": datasets.Sequence(
74
+ datasets.Value("string"),
75
+ ),
76
  "temporal_information_tags": datasets.Sequence(
77
  datasets.features.ClassLabel(
78
  names=[
 
288
  def get_annotations(entities: ResultSet, text: str) -> list:
289
  """Extract the offset, the text and the type of the entity.
290
 
291
+ Args:
292
+ entities: The entities to extract.
293
+ text: The text of the document.
294
+ Returns:
295
+ A list of list containing the offset, the text and the type of the entity.
296
+ """
297
+ return [
298
+
299
+ [
300
+ int(entity.get("begin")),
301
+ int(entity.get("end")),
302
+ text[int(entity.get("begin")) : int(entity.get("end"))],
303
+ ]
304
+ for entity in entities
305
+ ]
306
+
307
+ def get_clinical_annotations(self, entities: ResultSet, text: str) -> list:
308
+ """Extract the offset, the text and the type of the entity.
309
+
310
  Args:
311
  entities: The entities to extract.
312
  text: The text of the document.
 
318
  int(entity.get("begin")),
319
  int(entity.get("end")),
320
  text[int(entity.get("begin")) : int(entity.get("end"))],
321
+ entity.get("entityID"),
322
  ]
323
  for entity in entities
324
  ]
 
343
  soup = BeautifulSoup(soup_file, "xml")
344
  text = soup.find("cas:Sofa").get("sofaString")
345
  yield {
346
+ "CLINENTITY": self.get_clinical_annotations(
347
  soup.find_all("custom:CLINENTITY"), text
348
  ),
349
  "EVENT": self.get_annotations(soup.find_all("custom:EVENT"), text),
 
385
  [token[0] - sentence[0], token[1] - sentence[0]] for token in filtered_tokens
386
  ]
387
  clinical_labels = ["O"] * len(filtered_tokens)
388
+ clinical_cuid = ["CUI_LESS"] * len(filtered_tokens)
389
  temporal_information_labels = ["O"] * len(filtered_tokens)
390
  for entity_type in [
391
  "CLINENTITY",
 
410
  clinical_labels[idx_token] = f"B-{entity_type}"
411
  else:
412
  clinical_labels[idx_token] = f"I-{entity_type}"
413
+ clinical_cuid[idx_token] = entities[-1]
414
  else:
415
  if idx_token == annotated_tokens[0]:
416
  temporal_information_labels[idx_token] = f"B-{entity_type}"
 
420
  "text": sentence[-1],
421
  "tokens": list(map(lambda token: token[2], filtered_tokens)),
422
  "clinical_entity_tags": clinical_labels,
423
+ "clinical_entity_cuid": clinical_cuid,
424
  "temporal_information_tags": temporal_information_labels,
425
  "tokens_offsets": tokens_offsets,
426
  }
427
  guid += 1
428
+
429
+ if __name__ == "__main__":
430
+ builder = E3C()
431
+ builder.download_and_prepare()