Dataset Viewer
media_hash
stringclasses 10
values | model_name
stringclasses 8
values | label
stringclasses 1
value | timestamp
int64 1,756B
1,756B
| file_age_hours
float32 0.07
0.17
| media_image
imagewidth (px) 256
1.32k
|
---|---|---|---|---|---|
aa61c9178cef77bd
|
runwayml/stable-diffusion-v1-5-midjourney-v6
|
-1
| 1,755,777,540,069 | 0.17 | |
935d559cdda8d2c3
|
SG161222/RealVisXL_V4.0
|
-1
| 1,755,777,543,597 | 0.17 | |
840c4d74a085c3b4
|
Lykon/dreamshaper-8-inpainting
|
-1
| 1,755,777,591,516 | 0.16 | |
10f8f18f18d2be10
|
diffusers/stable-diffusion-xl-1.0-inpainting-0.1
|
-1
| 1,755,777,658,470 | 0.14 | |
5addb8d9239856f8
|
deepseek-ai/Janus-Pro-7B
|
-1
| 1,755,777,662,986 | 0.14 | |
888a9ba228b57eec
|
diffusers/stable-diffusion-xl-1.0-inpainting-0.1
|
-1
| 1,755,777,665,445 | 0.14 | |
85aff38fb41dcdaf
|
Corcelio/mobius
|
-1
| 1,755,777,680,697 | 0.13 | |
4d93867524f6c02d
|
black-forest-labs/FLUX.1-dev
|
-1
| 1,755,777,781,466 | 0.11 | |
49ad567ce28416f1
|
deepseek-ai/Janus-Pro-7B
|
-1
| 1,755,777,787,301 | 0.1 | |
f3a4ef0114735ecc
|
DeepFloyd/IF
|
-1
| 1,755,777,918,443 | 0.07 |
BitMind Image Benchmarks
This dataset contains AI-generated image samples.
Dataset Structure
Each config represents a batch upload with:
- Parquet files in
data/
containing image data and metadata
Loading the Dataset
from datasets import load_dataset
# List available configs (timestamps)
configs = ['split_20250821_110436', 'split_20250821_112432', ...]
# Load specific config
dataset = load_dataset('bitmind/bm-image-benchmarks', 'split_20250821_110436')
# Access data
for sample in dataset['train']:
print(f"Model: {sample['model_name']}")
print(f"Label: {sample['label']}")
# sample['media_image'] contains the PIL Image
image = sample['media_image']
image.show() # Display the image
Processing Images
from datasets import load_dataset
from PIL import Image
# Load dataset (images and metadata)
config = 'split_20250821_110436' # Use your desired config
dataset = load_dataset('bitmind/bm-image-benchmarks', config)
# Process images with metadata
for sample in dataset['train']:
image = sample['media_image'] # PIL Image object
print(f"Model: {sample['model_name']}")
print(f"Label: {sample['label']}")
print(f"Hash: {sample['media_hash']}")
# Your image processing code here
# image.save(f"{sample['media_hash']}.png")
- Downloads last month
- 873