Dataset Viewer
Auto-converted to Parquet
media_hash
stringclasses
10 values
model_name
stringclasses
8 values
label
stringclasses
1 value
timestamp
int64
1,756B
1,756B
file_age_hours
float32
0.07
0.17
media_image
imagewidth (px)
256
1.32k
aa61c9178cef77bd
runwayml/stable-diffusion-v1-5-midjourney-v6
-1
1,755,777,540,069
0.17
935d559cdda8d2c3
SG161222/RealVisXL_V4.0
-1
1,755,777,543,597
0.17
840c4d74a085c3b4
Lykon/dreamshaper-8-inpainting
-1
1,755,777,591,516
0.16
10f8f18f18d2be10
diffusers/stable-diffusion-xl-1.0-inpainting-0.1
-1
1,755,777,658,470
0.14
5addb8d9239856f8
deepseek-ai/Janus-Pro-7B
-1
1,755,777,662,986
0.14
888a9ba228b57eec
diffusers/stable-diffusion-xl-1.0-inpainting-0.1
-1
1,755,777,665,445
0.14
85aff38fb41dcdaf
Corcelio/mobius
-1
1,755,777,680,697
0.13
4d93867524f6c02d
black-forest-labs/FLUX.1-dev
-1
1,755,777,781,466
0.11
49ad567ce28416f1
deepseek-ai/Janus-Pro-7B
-1
1,755,777,787,301
0.1
f3a4ef0114735ecc
DeepFloyd/IF
-1
1,755,777,918,443
0.07

BitMind Image Benchmarks

This dataset contains AI-generated image samples.

Dataset Structure

Each config represents a batch upload with:

  • Parquet files in data/ containing image data and metadata

Loading the Dataset

from datasets import load_dataset

# List available configs (timestamps)
configs = ['split_20250821_110436', 'split_20250821_112432', ...]

# Load specific config
dataset = load_dataset('bitmind/bm-image-benchmarks', 'split_20250821_110436')

# Access data
for sample in dataset['train']:
    print(f"Model: {sample['model_name']}")
    print(f"Label: {sample['label']}")
    # sample['media_image'] contains the PIL Image
    image = sample['media_image']
    image.show()  # Display the image

Processing Images

from datasets import load_dataset
from PIL import Image

# Load dataset (images and metadata)
config = 'split_20250821_110436'  # Use your desired config
dataset = load_dataset('bitmind/bm-image-benchmarks', config)

# Process images with metadata
for sample in dataset['train']:
    image = sample['media_image']  # PIL Image object
    print(f"Model: {sample['model_name']}")
    print(f"Label: {sample['label']}")
    print(f"Hash: {sample['media_hash']}")
    
    # Your image processing code here
    # image.save(f"{sample['media_hash']}.png")
Downloads last month
873