code
stringlengths
5
1M
repo_name
stringlengths
5
109
path
stringlengths
6
208
language
stringclasses
1 value
license
stringclasses
15 values
size
int64
5
1M
package com.aergonaut.lifeaquatic.tileentity import java.util import cofh.api.fluid.ITankContainerBucketable import cofh.api.tileentity.ITileInfo import cofh.lib.util.helpers.{FluidHelper, ItemHelper} import com.aergonaut.lifeaquatic.recipe.VatRecipe import net.minecraft.entity.player.EntityPlayer import net.minecraft.init.Items import net.minecraft.inventory.ISidedInventory import net.minecraft.item.{Item, ItemStack} import net.minecraft.nbt.{NBTTagCompound, NBTTagList} import net.minecraft.util.{ChatComponentText, IChatComponent} import net.minecraftforge.common.util.ForgeDirection import net.minecraftforge.fluids._ class TileEntityVat extends TileEntityBase with ISidedInventory with ITankContainerBucketable with ITileInfo { var formed: Boolean = false // x, y, z var offset: Array[Int] = Array(0, 0, 0) var input: Option[ItemStack] = None var catalyst: Option[ItemStack] = None val waterTank: FluidTank = new FluidTank(12000) val outputTank: FluidTank = new FluidTank(12000) var maxProcessTime: Int = 1 var processTime: Int = 0 var currentRecipe: Option[VatRecipe] = None var activeCatalystAmount = 0 def master: Option[TileEntityVat] = { if (!formed) return None if (offset(0) == 0 && offset(1) == 0 && offset(2) == 0) { return Some(this) } val xx = xCoord - offset(0) val yy = yCoord - offset(1) val zz = zCoord - offset(2) val tile = worldObj.getTileEntity(xx, yy, zz) if (tile.isInstanceOf[TileEntityVat]) Some(tile.asInstanceOf[TileEntityVat]) else None } override protected def readFromNBTCustom(nBTTagCompound: NBTTagCompound): Unit = { formed = nBTTagCompound.getBoolean("formed") offset = nBTTagCompound.getIntArray("offset") waterTank.readFromNBT(nBTTagCompound.getCompoundTag("waterTank")) outputTank.readFromNBT(nBTTagCompound.getCompoundTag("outputTank")) val currentRecipeTag = nBTTagCompound.getCompoundTag("currentRecipe") if (currentRecipeTag.hasKey("Empty")) { currentRecipe = None } else { currentRecipe = VatRecipe.loadRecipeFromNBT(currentRecipeTag) } processTime = nBTTagCompound.getInteger("processTime") maxProcessTime = nBTTagCompound.getInteger("maxProcessTime") activeCatalystAmount = nBTTagCompound.getInteger("activeCatalystAmount") } override def readFromNBT(nBTTagCompound: NBTTagCompound): Unit = { super.readFromNBT(nBTTagCompound) val invTagList = nBTTagCompound.getTagList("inventory", 10) for (i <- 0 until invTagList.tagCount()) { val tag = invTagList.getCompoundTagAt(i) val slot = tag.getByte("Slot").toInt slot match { case TileEntityVat.InputSlot => input = Some(ItemStack.loadItemStackFromNBT(tag)) case TileEntityVat.CatalystSlot => catalyst = Some(ItemStack.loadItemStackFromNBT(tag)) case _ => {} } } } override protected def writeToNBTCustom(nBTTagCompound: NBTTagCompound): Unit = { // multiblock formation and master positioning nBTTagCompound.setBoolean("formed", formed) nBTTagCompound.setIntArray("offset", offset) // tanks val waterTankTAg = waterTank.writeToNBT(new NBTTagCompound()) nBTTagCompound.setTag("waterTank", waterTankTAg) val outputTankTag = outputTank.writeToNBT(new NBTTagCompound()) nBTTagCompound.setTag("outputTank", outputTankTag) // current recipe val currentRecipeTag = new NBTTagCompound() if (currentRecipe.isEmpty) { currentRecipeTag.setString("None", "") } else { currentRecipe.get.writeToNBT(currentRecipeTag) } nBTTagCompound.setTag("currentRecipe", currentRecipeTag) // sync progress nBTTagCompound.setInteger("processTime", processTime) nBTTagCompound.setInteger("maxProcessTime", maxProcessTime) nBTTagCompound.setInteger("activeCatalystAmount", activeCatalystAmount) } override def writeToNBT(nBTTagCompound: NBTTagCompound): Unit = { super.writeToNBT(nBTTagCompound) val invTagList = new NBTTagList() if (input.nonEmpty) { val inputTag = new NBTTagCompound() inputTag.setByte("Slot", TileEntityVat.InputSlot.toByte) input.get.writeToNBT(inputTag) invTagList.appendTag(inputTag) } if (catalyst.nonEmpty) { val catalystTag = new NBTTagCompound() catalystTag.setByte("Slot", TileEntityVat.CatalystSlot.toByte) catalyst.get.writeToNBT(catalystTag) invTagList.appendTag(catalystTag) } nBTTagCompound.setTag("inventory", invTagList) } override def updateEntity(): Unit = { if (!worldObj.isRemote && master.nonEmpty && master.get == this) { var update = false if (processTime > 0) { if (input.isEmpty) { processTime = 0 currentRecipe = None } else { processTime -= 1 } update = true } else { if (currentRecipe.nonEmpty) { val recipe = currentRecipe.get // consume the input decrStackSize(TileEntityVat.InputSlot, 1) // consume the fuels waterTank.drain(recipe.waterCost, true) activeCatalystAmount -= recipe.catalystCost // produce the output outputTank.fill(recipe.output.copy(), true) // clear the recipe currentRecipe = None update = true } else { // search for a recipe with the current conditions currentRecipe = VatRecipe.findRecipeForInput(input, waterTank.getFluidAmount, activeCatalystAmount) if (currentRecipe.nonEmpty) { processTime = currentRecipe.get.processTime maxProcessTime = processTime update = true } else { // maybe we didn't have enough catalyst // pretend to consume one and try the search again if (catalyst.nonEmpty) { val catalystValue = TileEntityVat.CatalystMapping(catalyst.get.getItem) currentRecipe = VatRecipe.findRecipeForInput(input, waterTank.getFluidAmount, activeCatalystAmount + catalystValue) if (currentRecipe.nonEmpty) { // adding more catalyst did it, so actually consume one decrStackSize(TileEntityVat.CatalystSlot, 1) activeCatalystAmount += catalystValue processTime = currentRecipe.get.processTime maxProcessTime = processTime update = true } } } } } if (update) { markDirty() worldObj.markBlockForUpdate(xCoord, yCoord, zCoord) } } } def progress: Int = ((maxProcessTime - processTime) / maxProcessTime.toFloat).round // ISidedInventory override def canExtractItem(p_102008_1_ : Int, p_102008_2_ : ItemStack, p_102008_3_ : Int): Boolean = false override def canInsertItem(slot: Int, stack: ItemStack, side: Int): Boolean = { master.exists(_._canInsertItem(slot, stack, side)) } def _canInsertItem(slot: Int, stack: ItemStack, side: Int): Boolean = { isItemValidForSlot(slot, stack) } override def getAccessibleSlotsFromSide(p_94128_1_ : Int): Array[Int] = Array(TileEntityVat.InputSlot, TileEntityVat.CatalystSlot) override def decrStackSize(p_70298_1_ : Int, p_70298_2_ : Int): ItemStack = { master.flatMap(_._decrStackSize(p_70298_1_, p_70298_2_)).orNull } def _decrStackSize(slot: Int, amount: Int): Option[ItemStack] = { val stack = Option(getStackInSlot(slot)) stack.map(s => { if (s.stackSize <= amount) { setInventorySlotContents(slot, null) s } else { val newStack = s.splitStack(amount) if (newStack.stackSize == 0) setInventorySlotContents(slot, null) newStack } }) } override def closeInventory(): Unit = {} override def getSizeInventory: Int = if (formed) 2 else 0 override def getInventoryStackLimit: Int = 64 override def isItemValidForSlot(p_94041_1_ : Int, p_94041_2_ : ItemStack): Boolean = p_94041_1_ match { case TileEntityVat.InputSlot => ItemHelper.isOre(p_94041_2_) case TileEntityVat.CatalystSlot => TileEntityVat.Catalysts(p_94041_2_.getItem) } override def getStackInSlotOnClosing(p_70304_1_ : Int): ItemStack = { master.flatMap(_._getStackInSlotOnClosing(p_70304_1_)).orNull } def _getStackInSlotOnClosing(slot: Int): Option[ItemStack] = { val stack = Option(getStackInSlot(slot)) if (stack.nonEmpty) setInventorySlotContents(slot, null) stack } override def openInventory(): Unit = {} override def setInventorySlotContents(p_70299_1_ : Int, p_70299_2_ : ItemStack): Unit = { master.foreach(_._setInventorySlotContents(p_70299_1_, Option(p_70299_2_))) } def _setInventorySlotContents(slot: Int, stack: Option[ItemStack]): Unit = slot match { case TileEntityVat.InputSlot => input = _processStackAndInsert(stack) case TileEntityVat.CatalystSlot => catalyst = _processStackAndInsert(stack) } def _processStackAndInsert(stack: Option[ItemStack]): Option[ItemStack] = stack.map(s => { if (s.stackSize > getInventoryStackLimit) s.stackSize = getInventoryStackLimit s }) override def isUseableByPlayer(p_70300_1_ : EntityPlayer): Boolean = true override def getStackInSlot(p_70301_1_ : Int): ItemStack = master.flatMap(_._getStackInSlot(p_70301_1_)).orNull private def _getStackInSlot(slot: Int): Option[ItemStack] = slot match { case TileEntityVat.InputSlot => input case TileEntityVat.CatalystSlot => catalyst } override def hasCustomInventoryName: Boolean = false override def getInventoryName: String = "LifeAquaticVat" // ITankContainerBucketable override def allowBucketFill(stack: ItemStack): Boolean = { if (!FluidContainerRegistry.isBucket(stack)) return false val fluid = Option(FluidHelper.getFluidForFilledItem(stack)) fluid.exists(fl => FluidHelper.isFluidEqual(fl, FluidHelper.WATER)) } override def allowBucketDrain(stack: ItemStack): Boolean = false override def drain(from: ForgeDirection, resource: FluidStack, doDrain: Boolean): FluidStack = drain(from, resource.amount, doDrain) override def drain(from: ForgeDirection, maxDrain: Int, doDrain: Boolean): FluidStack = master.flatMap(_._drain(from, maxDrain, doDrain)).orNull def _drain(from: ForgeDirection, maxDrain: Int, doDrain: Boolean): Option[FluidStack] = Option(outputTank.drain(maxDrain, doDrain)) override def canFill(from: ForgeDirection, fluid: Fluid): Boolean = FluidHelper.isFluidEqualOrNull(fluid, FluidHelper.WATER) override def canDrain(from: ForgeDirection, fluid: Fluid): Boolean = true override def fill(from: ForgeDirection, resource: FluidStack, doFill: Boolean): Int = master.map(_._fill(from, resource, doFill)).getOrElse(0) def _fill(from: ForgeDirection, resource: FluidStack, doFill: Boolean): Int = waterTank.fill(resource, doFill) override def getTankInfo(from: ForgeDirection): Array[FluidTankInfo] = master.map(_._getTankInfo(from)).getOrElse(Array()) def _getTankInfo(from: ForgeDirection): Array[FluidTankInfo] = Array(waterTank.getInfo, outputTank.getInfo) override def getTileInfo(info: util.List[IChatComponent], side: ForgeDirection, player: EntityPlayer, debug: Boolean): Unit = { if (!formed) return info.add(new ChatComponentText("Available recipes:")) } } object TileEntityVat { final val InputSlot = 0 final val CatalystSlot = 1 final val Catalysts = Set(Items.gunpowder) final val CatalystMapping: Map[Item, Int] = Map((Items.gunpowder -> 2000)) }
aergonaut/LifeAquatic
src/main/scala/com/aergonaut/lifeaquatic/tileentity/TileEntityVat.scala
Scala
mit
11,549
class Outer { def assertNoFields(c: Class[_]): Unit = { assert(c.getDeclaredFields.isEmpty) } def assertHasOuter(c: Class[_]): Unit = { assert(c.getDeclaredFields.exists(_.getName.contains("outer"))) } class Member final class FinalMember def test: Unit = { assertHasOuter(classOf[Member]) assertNoFields(classOf[FinalMember]) final class C assertNoFields(classOf[C]) class D assertNoFields(classOf[D]) (() => {class E; assertNoFields(classOf[E])}).apply() // The outer reference elision currently runs on a class-by-class basis. If it cannot rule out that a class has // subclasses, it will not remove the outer reference. A smarter analysis here could detect if no members of // a sealed (or effectively sealed) hierarchy use the outer reference, the optimization could be performed. class Parent class Child extends Parent assertHasOuter(classOf[Parent]) // Note: outer references (if they haven't been elided) are used in pattern matching as follows. // This isn't relevant to term-owned classes, as you can't refer to them with a prefix that includes // the outer class. val outer1 = new Outer val outer2 = new Outer (new outer1.Member: Any) match { case _: outer2.Member => sys.error("wrong match!") case _: outer1.Member => // okay case x => throw new MatchError(x) } // ... continuing on that theme, note that `Member` isn't considered as a local class, it is owned by a the class // `LocalOuter`, which itself happens to be term-owned. So we expect that it has an outer reference, and that this // is respected in type tests. class LocalOuter { class Member final class FinalMember } assertNoFields(classOf[LocalOuter]) assertHasOuter(classOf[LocalOuter#Member]) val localOuter1 = new LocalOuter val localOuter2 = new LocalOuter (new localOuter1.Member: Any) match { case _: localOuter2.Member => sys.error("wrong match!") case _: localOuter1.Member => // okay case x => throw new MatchError(x) } // Final member classes still lose the outer reference. assertNoFields(classOf[LocalOuter#FinalMember]) } } object Test { def main(args: Array[String]): Unit = { new Outer().test } }
scala/scala
test/files/run/t9408.scala
Scala
apache-2.0
2,341
package cc.factorie.app.nlp.ner /** * @author Kate Silverstein * created on 3/23/15 */ import org.scalatest._ import cc.factorie.app.nlp.load._ class TestNerTaggers extends FlatSpec { val conllTestFilename = this.getClass.getResource("/conll-ner-input").getPath val ontoTestFilename = this.getClass.getResource("/parser-test-input").getPath "LoadConll2003" should "load 2 documents" in { val testDocs = LoadConll2003.fromFilename(conllTestFilename) println(testDocs.length) testDocs.foreach(d => println(d.sections.flatMap(_.tokens).mkString(","))) assert(testDocs.length == 2, "failed to load documents") assert(testDocs.head.tokenCount > 0, "failed to load document with tokens") assert(testDocs.head.sections.flatMap(_.tokens).forall(t => t.attr.contains(classOf[LabeledIobConllNerTag])), "token with no LabeledIobConllNerTag") val bilouTestDocs = LoadConll2003(BILOU=true).fromFilename(conllTestFilename) assert(bilouTestDocs.length == 2, "failed to load documents") assert(bilouTestDocs.head.tokenCount > 0, "failed to load document with tokens") assert(bilouTestDocs.head.sections.flatMap(_.tokens).forall(t => t.attr.contains(classOf[LabeledBilouConllNerTag])), "token with no LabeledBilouConllNerTag") } "LoadOntonotes5" should "load 1 document" in { val testDocs = LoadOntonotes5.fromFilename(ontoTestFilename) assert(testDocs.length == 1, "failed to load documents") assert(testDocs.head.tokenCount > 0, "failed to load document with tokens") assert(testDocs.head.sections.flatMap(_.tokens).forall(t => t.attr.contains(classOf[LabeledBilouOntonotesNerTag])), "token with no LabeledBilouOntonotesNerTag") } // TODO add an actual test for training/testing ChainNer, but without loading all of the lexicons (since this takes awhile) -ks }
hlin117/factorie
src/test/scala/cc/factorie/app/nlp/ner/TestNerTaggers.scala
Scala
apache-2.0
1,831
package extracells.common.integration import net.minecraftforge.common.config.Configuration class Integration { def loadConfig(config: Configuration): Unit = { for (mod <- Mods.values) mod.loadConfig(config) } def preInit(): Unit = { if (Mods.IGW.correctSide() && Mods.IGW.shouldLoad){} //TODO: IGW } def init(): Unit = { //TODO: Integration } def postInit(): Unit = { //TODO: Integration } }
ruifung/ExtraCells2
src/main/scala/extracells/common/integration/Integration.scala
Scala
mit
442
package one.lockstep.vault import one.lockstep.util.crypto._ import one.lockstep.util._ import com.softwaremill.quicklens._ case class VaultEdit(unlockedContents: UnlockedVault.Contents, pendingPasscode: Option[Bytes] = None) { def put(entryId: String, entrySpec: sdk.Spec): VaultEdit = { import Ciphersuite128._ //todo consider user-specified ciphers val (entry, secret) = entrySpec match { case explicit: ExplicitSpec => (VaultEntry(entryId, explicit.kind, explicit.public, explicit.attrs), explicit.secret) case KeyGenSpec(entryType @ VaultEntry.Type.cipher, attrs) => val key = cipher.keygen() val entry = VaultEntry(entryId, entryType, None, attrs) (entry, key.raw) case KeyGenSpec(entryType @ VaultEntry.Type.signature, attrs) => ??? // val KeyPair(publicKey, privateKey) = Crypto.sig.keygen() // val entry = VaultEntry(id, entryType, Some(publicKey.raw), attrs) // (entry, privateKey.raw) case KeyGenSpec(entryType @ VaultEntry.Type.decryption, attrs) => ??? // val KeyPair(publicKey, privateKey) = Crypto.asym.keygen() // val entry = VaultEntry(id, entryType, Some(publicKey.raw), attrs) // (entry, privateKey.raw) case unsupported: sdk.Spec => throw new UnsupportedOperationException(unsupported.toString) } copy(unlockedContents = unlockedContents + (entry, secret)) } def remove(entryId: String): VaultEdit = this.modify(_.unlockedContents).using(_ - entryId) def putEntryAttr(entryId: String, attrId: String, value: Bytes): VaultEdit = this.modify(_.unlockedContents.public.entries.at(entryId).attrs).using(_ + (attrId -> value)) def removeEntryAttr(entryId: String, attrId: String): VaultEdit = this.modify(_.unlockedContents.public.entries.at(entryId).attrs).using(_ - attrId) def putVaultAttr(attrId: String, value: Bytes): VaultEdit = this.modify(_.unlockedContents.public.attrs).using(_ + (attrId -> value)) def removeVaultAttr(attrId: String): VaultEdit = this.modify(_.unlockedContents.public.attrs).using(_ - attrId) def changePasscode(passcode: Bytes): VaultEdit = copy(pendingPasscode = Some(passcode)) } object VaultEdit { def apply(): VaultEdit = VaultEdit(UnlockedVault.Contents()) }
lockstep-one/vault
vault-client/src/main/scala/one/lockstep/vault/VaultEdit.scala
Scala
agpl-3.0
2,306
/** * * Device * Ledger wallet * * Created by Pierre Pollastri on 16/01/15. * * The MIT License (MIT) * * Copyright (c) 2015 Ledger * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ package com.ledger.ledgerwallet.models import java.security.KeyStore import java.security.KeyStore.SecretKeyEntry import java.util.Date import javax.crypto.spec.SecretKeySpec import com.ledger.ledgerwallet.crypto.SecretKey import com.ledger.ledgerwallet.remote.api.m2fa.GcmAPI import com.ledger.ledgerwallet.utils.{Benchmark, GooglePlayServiceHelper} import org.json.JSONObject import com.ledger.ledgerwallet.concurrent.ExecutionContext.Implicits.ui import scala.collection.JavaConversions._ import android.content.Context import com.ledger.ledgerwallet.base.model.{Collection, BaseModel} import scala.concurrent.Future import scala.util.{Success, Try} class PairedDongle(_id: String = null, _name: String = null, _date: Date = null) extends BaseModel { val id = string("id").set(_id) val name = string("name").set(_name) val createdAt = date("created_at").set(_date) def pairingKey(implicit context: Context): Option[SecretKey] = PairedDongle.retrievePairingKey(id.get) def delete()(implicit context: Context): Unit = { PairedDongle.deletePairingKey(context, id.get) GcmAPI.defaultInstance.removeDongleToken(this) PairedDongle.delete(this) } def this() = { this(null, null, null) } } object PairedDongle extends Collection[PairedDongle] { def get(id: String)(implicit context: Context): Option[PairedDongle] = { val serializedDongle = context.getSharedPreferences(PreferencesName, Context.MODE_PRIVATE).getString(id, null) if (serializedDongle == null) return None val dongle = Try(inflate(new JSONObject(serializedDongle))) dongle getOrElse None } def all(implicit context: Context): Array[PairedDongle] = { val serializedDongles = context.getSharedPreferences(PreferencesName, Context.MODE_PRIVATE).getAll var dongles = Array[PairedDongle]() serializedDongles foreach {case (key, value) => value match { case json: String => val dongle = Try(inflate(new JSONObject(json))) if (dongle.isSuccess && dongle.get.isDefined) dongles = dongles :+ dongle.get.get case _ => } } dongles } def create(id: String, name: String, pairingKey: Array[Byte])(implicit context: Context): PairedDongle = { implicit val LogTag = "PairedDongle Creation" Benchmark { val dongle = new PairedDongle(id, name, new Date()) context .getSharedPreferences(PreferencesName, Context.MODE_PRIVATE) .edit() .putString(id, dongle.toJson.toString) .commit() Future { storePairingKey(context, id, pairingKey) } GooglePlayServiceHelper.getGcmRegistrationId onComplete { case Success(regId) => GcmAPI.defaultInstance.updateDonglesToken(regId) case _ => } dongle } } def delete(dongle: PairedDongle)(implicit context: Context): Unit = { context .getSharedPreferences(PreferencesName, Context.MODE_PRIVATE) .edit() .remove(dongle.id.get) .commit() } def retrievePairingKey(id: String)(implicit context: Context): Option[SecretKey] = SecretKey.get(context, id) def storePairingKey(context: Context, id: String, pairingKey: Array[Byte]): Unit = { SecretKey.create(context, id, pairingKey) } def deletePairingKey(context: Context, id: String): Unit = SecretKey.delete(context, id) val PreferencesName = "PairedDonglePreferences" }
Morveus/ledger-wallet-android
app/src/main/scala/com/ledger/ledgerwallet/models/PairedDongle.scala
Scala
mit
4,634
package com.gossiperl.client.actors import akka.actor.SupervisorStrategy.Escalate import akka.actor._ import com.gossiperl.client.exceptions.GossiperlClientException import com.gossiperl.client.{GossiperlClientProtocol, GossiperlClient, OverlayConfiguration} import scala.collection.mutable.{ Map => MutableMap } object SupervisorProtocol { case class Connect( c: OverlayConfiguration, client: GossiperlClient ) case class Disconnect( c: OverlayConfiguration ) case class ForwardEvent( config: OverlayConfiguration, event: GossiperlClientProtocol.ProtocolOp ) case class OverlayStopped( c: OverlayConfiguration ) } object Supervisor { val supervisorName = "gossiperl-client-supervisor" protected val clientStore = MutableMap.empty[String, GossiperlClient] } class Supervisor extends ActorEx with ActorLogging { import Supervisor._ import akka.util.Timeout import scala.concurrent.duration._ import scala.concurrent.ExecutionContext.Implicits.global implicit val timeout = Timeout(1 seconds) log.debug(s"Supervisor $supervisorName running.") override val supervisorStrategy = OneForOneStrategy(maxNrOfRetries = 10, withinTimeRange = 10 seconds) { case _:Exception => Escalate } def receive = { case SupervisorProtocol.Connect( config, client ) => clientStore.get( config.overlayName ) match { case Some(existing) => val message = s"Overlay ${config.overlayName} already used by client $existing" client.event.applyOrElse( GossiperlClientProtocol.Error(config, message, new GossiperlClientException(message)), unhandled ) case None => context.actorOf(Props( new OverlayWorker( config ) ), name = config.overlayName) clientStore.put( config.overlayName, client ) client.event.applyOrElse( GossiperlClientProtocol.Accepted( config ), unhandled ) } case SupervisorProtocol.OverlayStopped( config ) => clientStore.get( config.overlayName ) match { case Some(stopped) => log.debug(s"Overlay ${config.overlayName} is now stopped. Notifying the client...") clientStore.remove(config.overlayName) stopped.event.applyOrElse( GossiperlClientProtocol.Stopped( config ), unhandled ) case None => log.error(s"Could not find the client for ${config.overlayName}. Could not notify stopped state.") } case SupervisorProtocol.Disconnect( config ) => clientStore.get( config.overlayName ) match { case Some(client) => !:(s"/user/${supervisorName}/${config.overlayName}", OverlayWorkerProtocol.Disconnect) onFailure { case ex => self ! SupervisorProtocol.ForwardEvent( config, GossiperlClientProtocol.Error(config, "There was an error handing in a shutdown request.", ex) ) } case None => log.error(s"Overlay ${config.overlayName} not found.") } case SupervisorProtocol.ForwardEvent( config, sourceEvent ) => clientStore.get( config.overlayName ) match { case Some(client) => client.event.applyOrElse( sourceEvent, unhandled ) case None => log.error(s"Overlay ${config.overlayName} not found. Event $sourceEvent not handed in.") } } }
gossiperl/gossiperl-client-scala
src/main/scala/com/gossiperl/client/actors/Supervisor.scala
Scala
mit
3,240
package org.jetbrains.plugins.scala package lang package psi package api package toplevel import javax.swing.Icon import com.intellij.extapi.psi.StubBasedPsiElementBase import com.intellij.navigation.ItemPresentation import com.intellij.openapi.editor.colors.TextAttributesKey import com.intellij.psi._ import com.intellij.psi.search.{LocalSearchScope, SearchScope} import com.intellij.psi.stubs.NamedStub import com.intellij.psi.util.PsiTreeUtil import org.jetbrains.plugins.scala.extensions.PsiElementExt import org.jetbrains.plugins.scala.icons.Icons import org.jetbrains.plugins.scala.lang.psi.api.base.patterns.ScCaseClause import org.jetbrains.plugins.scala.lang.psi.api.expr._ import org.jetbrains.plugins.scala.lang.psi.api.statements.params.ScClassParameter import org.jetbrains.plugins.scala.lang.psi.api.toplevel.templates.ScTemplateBody import org.jetbrains.plugins.scala.lang.psi.api.toplevel.typedef._ import org.jetbrains.plugins.scala.lang.psi.impl.ScalaPsiElementFactory.createIdentifier import org.jetbrains.plugins.scala.lang.psi.impl.toplevel.synthetic.JavaIdentifier import org.jetbrains.plugins.scala.lang.refactoring.util.ScalaNamesUtil import org.jetbrains.plugins.scala.macroAnnotations.{Cached, ModCount} trait ScNamedElement extends ScalaPsiElement with PsiNameIdentifierOwner with NavigatablePsiElement { @Cached(synchronized = false, ModCount.anyScalaPsiModificationCount, this) def name: String = { this match { case st: StubBasedPsiElementBase[_] => st.getGreenStub match { case namedStub: NamedStub[_] => namedStub.getName case _ => nameInner } case _ => nameInner } } def name_=(it: String) { setName(it) } def nameInner: String = nameId.getText @Cached(synchronized = false, ModCount.anyScalaPsiModificationCount, this) def nameContext: PsiElement = this.withParentsInFile .find(ScalaPsiUtil.isNameContext) .orNull override def getTextOffset: Int = nameId.getTextRange.getStartOffset override def getName: String = ScalaNamesUtil.toJavaName(name) def nameId: PsiElement override def getNameIdentifier: PsiIdentifier = if (nameId != null) new JavaIdentifier(nameId) else null override def setName(name: String): PsiElement = { val id = nameId.getNode val parent = id.getTreeParent val newId = createIdentifier(name) parent.replaceChild(id, newId) this } override def getPresentation: ItemPresentation = { val clazz: ScTemplateDefinition = nameContext.getParent match { case _: ScTemplateBody | _: ScEarlyDefinitions => PsiTreeUtil.getParentOfType(this, classOf[ScTemplateDefinition], true) case _ if this.isInstanceOf[ScClassParameter] => PsiTreeUtil.getParentOfType(this, classOf[ScTemplateDefinition], true) case _ => null } val parentMember: ScMember = PsiTreeUtil.getParentOfType(this, classOf[ScMember], false) new ItemPresentation { def getPresentableText: String = name def getTextAttributesKey: TextAttributesKey = null def getLocationString: String = clazz match { case _: ScTypeDefinition => "(" + clazz.qualifiedName + ")" case _: ScNewTemplateDefinition => "(<anonymous>)" case _ => "" } override def getIcon(open: Boolean): Icon = parentMember match {case mem: ScMember => mem.getIcon(0) case _ => null} } } override def getIcon(flags: Int): Icon = nameContext match { case null => null case _: ScCaseClause => Icons.PATTERN_VAL case x => x.getIcon(flags) } abstract override def getUseScope: SearchScope = { ScalaPsiUtil.intersectScopes(super.getUseScope, nameContext match { case member: ScMember if member != this => Some(member.getUseScope) case caseClause: ScCaseClause => Some(new LocalSearchScope(caseClause)) case elem @ (_: ScEnumerator | _: ScGenerator) => Option(PsiTreeUtil.getContextOfType(elem, true, classOf[ScForStatement])) .orElse(Option(PsiTreeUtil.getContextOfType(elem, true, classOf[ScBlock], classOf[ScMember]))) .map(new LocalSearchScope(_)) case _ => None }) } }
ilinum/intellij-scala
src/org/jetbrains/plugins/scala/lang/psi/api/toplevel/ScNamedElement.scala
Scala
apache-2.0
4,195
/* * Copyright 2010 Twitter, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. You may obtain * a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.twitter.logging import com.twitter.util.{HandleSignal, Return, StorageUnit, Time, Try} import java.io.{File, FilenameFilter, FileOutputStream, OutputStream} import java.nio.charset.Charset import java.text.SimpleDateFormat import java.util.{Calendar, Date, logging => javalog} sealed abstract class Policy object Policy { case object Never extends Policy case object Hourly extends Policy case object Daily extends Policy case class Weekly(dayOfWeek: Int) extends Policy case object SigHup extends Policy case class MaxSize(size: StorageUnit) extends Policy private[this] val singletonPolicyNames: Map[String, Policy] = Map("never" -> Never, "hourly" -> Hourly, "daily" -> Daily, "sighup" -> SigHup) // Regex object that matches "Weekly(n)" and extracts the `dayOfWeek` number. private[this] val weeklyRegex = """(?i)weekly\\(([1-7]+)\\)""".r /** * Parse a string into a Policy object. Parsing rules are as follows: * * - Case-insensitive names of singleton Policy objects (e.g. Never, Hourly, * Daily) are parsed into their corresponding objects. * - "Weekly(n)" is parsed into `Weekly` objects with `n` as the day-of-week * integer. * - util-style data size strings (e.g. 3.megabytes, 1.gigabyte) are * parsed into `StorageUnit` objects and used to produce `MaxSize` policies. * See `StorageUnit.parse(String)` for more details. */ def parse(s: String): Policy = (s, singletonPolicyNames.get(s.toLowerCase), Try(StorageUnit.parse(s.toLowerCase))) match { case (weeklyRegex(dayOfWeek), _, _) => Weekly(dayOfWeek.toInt) case (_, Some(singleton), _) => singleton case (_, _, Return(storageUnit)) => MaxSize(storageUnit) case _ => throw new Exception("Invalid log roll policy: " + s) } } object FileHandler { val UTF8 = Charset.forName("UTF-8") /** * Generates a HandlerFactory that returns a FileHandler * * @param filename * Filename to log to. * * @param rollPolicy * When to roll the logfile. * * @param append * Append to an existing logfile, or truncate it? * * @param rotateCount * How many rotated logfiles to keep around, maximum. -1 means to keep them all. */ def apply( filename: String, rollPolicy: Policy = Policy.Never, append: Boolean = true, rotateCount: Int = -1, formatter: Formatter = new Formatter(), level: Option[Level] = None ) = () => new FileHandler(filename, rollPolicy, append, rotateCount, formatter, level) } /** * A log handler that writes log entries into a file, and rolls this file * at a requested interval (hourly, daily, or weekly). */ class FileHandler( path: String, rollPolicy: Policy, val append: Boolean, rotateCount: Int, formatter: Formatter, level: Option[Level]) extends Handler(formatter, level) { // This converts relative paths to absolute paths, as expected val (filename, name) = { val f = new File(path) (f.getAbsolutePath, f.getName) } val (filenamePrefix, filenameSuffix) = { val n = filename.lastIndexOf('.') if (n > 0) { (filename.substring(0, n), filename.substring(n)) } else { (filename, "") } } // Thread-safety is guarded by synchronized on this private var stream: OutputStream = null @volatile private var openTime: Long = 0 // Thread-safety is guarded by synchronized on this private var nextRollTime: Option[Long] = None // Thread-safety is guarded by synchronized on this private var bytesWrittenToFile: Long = 0 private val maxFileSize: Option[StorageUnit] = rollPolicy match { case Policy.MaxSize(size) => Some(size) case _ => None } openLog() // If nextRollTime.isDefined by openLog(), then it will always remain isDefined. // This allows us to avoid volatile reads in the publish method. private val examineRollTime = nextRollTime.isDefined if (rollPolicy == Policy.SigHup) { HandleSignal("HUP") { signal => val oldStream = stream synchronized { stream = openStream() } try { oldStream.close() } catch { case e: Throwable => handleThrowable(e) } } } def flush() { synchronized { stream.flush() } } def close() { synchronized { flush() try { stream.close() } catch { case e: Throwable => handleThrowable(e) } } } private def openStream(): OutputStream = { val dir = new File(filename).getParentFile if ((dir ne null) && !dir.exists) dir.mkdirs new FileOutputStream(filename, append) } private def openLog() { synchronized { stream = openStream() openTime = Time.now.inMilliseconds nextRollTime = computeNextRollTime(openTime) bytesWrittenToFile = 0 } } /** * Compute the suffix for a rolled logfile, based on the roll policy. */ def timeSuffix(date: Date) = { val dateFormat = rollPolicy match { case Policy.Never => new SimpleDateFormat("yyyy") case Policy.SigHup => new SimpleDateFormat("yyyy") case Policy.Hourly => new SimpleDateFormat("yyyyMMdd-HH") case Policy.Daily => new SimpleDateFormat("yyyyMMdd") case Policy.Weekly(_) => new SimpleDateFormat("yyyyMMdd") case Policy.MaxSize(_) => new SimpleDateFormat("yyyyMMdd-HHmmss") } dateFormat.setCalendar(formatter.calendar) dateFormat.format(date) } /** * Return the time (in absolute milliseconds) of the next desired * logfile roll. */ def computeNextRollTime(now: Long): Option[Long] = { lazy val next = { val n = formatter.calendar.clone.asInstanceOf[Calendar] n.setTimeInMillis(now) n.set(Calendar.MILLISECOND, 0) n.set(Calendar.SECOND, 0) n.set(Calendar.MINUTE, 0) n } val rv = rollPolicy match { case Policy.MaxSize(_) | Policy.Never | Policy.SigHup => None case Policy.Hourly => { next.add(Calendar.HOUR_OF_DAY, 1) Some(next) } case Policy.Daily => { next.set(Calendar.HOUR_OF_DAY, 0) next.add(Calendar.DAY_OF_MONTH, 1) Some(next) } case Policy.Weekly(weekday) => { next.set(Calendar.HOUR_OF_DAY, 0) do { next.add(Calendar.DAY_OF_MONTH, 1) } while (next.get(Calendar.DAY_OF_WEEK) != weekday) Some(next) } } rv map { _.getTimeInMillis } } /** * Delete files when "too many" have accumulated. * This duplicates logrotate's "rotate count" option. */ private def removeOldFiles() { if (rotateCount >= 0) { // collect files which are not `filename`, but which share the prefix/suffix val prefixName = new File(filenamePrefix).getName val rotatedFiles = new File(filename).getParentFile().listFiles( new FilenameFilter { def accept(f: File, fname: String): Boolean = fname != name && fname.startsWith(prefixName) && fname.endsWith(filenameSuffix) } ).sortBy(_.getName) val toDeleteCount = math.max(0, rotatedFiles.size - rotateCount) rotatedFiles.take(toDeleteCount).foreach(_.delete()) } } def roll() = synchronized { stream.close() val newFilename = filenamePrefix + "-" + timeSuffix(new Date(openTime)) + filenameSuffix new File(filename).renameTo(new File(newFilename)) openLog() removeOldFiles() } def publish(record: javalog.LogRecord) { try { val formattedLine = getFormatter.format(record) val formattedBytes = formattedLine.getBytes(FileHandler.UTF8) val lineSizeBytes = formattedBytes.length if (examineRollTime) { // Only allow a single thread at a time to do a roll synchronized { nextRollTime foreach { time => if (Time.now.inMilliseconds > time) roll() } } } maxFileSize foreach { size => synchronized { if (bytesWrittenToFile + lineSizeBytes > size.bytes) roll() } } synchronized { stream.write(formattedBytes) stream.flush() bytesWrittenToFile += lineSizeBytes } } catch { case e: Throwable => handleThrowable(e) } } private def handleThrowable(e: Throwable) { System.err.println(Formatter.formatStackTrace(e, 30).mkString("\\n")) } }
mosesn/util
util-logging/src/main/scala/com/twitter/logging/FileHandler.scala
Scala
apache-2.0
8,974
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.execution.adaptive import scala.collection.mutable import org.apache.spark.sql.catalyst.expressions import org.apache.spark.sql.catalyst.expressions.{ListQuery, SubqueryExpression} import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan import org.apache.spark.sql.catalyst.plans.physical.UnspecifiedDistribution import org.apache.spark.sql.catalyst.rules.Rule import org.apache.spark.sql.catalyst.trees.TreePattern.{DYNAMIC_PRUNING_SUBQUERY, IN_SUBQUERY, SCALAR_SUBQUERY} import org.apache.spark.sql.execution._ import org.apache.spark.sql.execution.command.{DataWritingCommandExec, ExecutedCommandExec} import org.apache.spark.sql.execution.datasources.v2.V2CommandExec import org.apache.spark.sql.execution.exchange.Exchange import org.apache.spark.sql.internal.SQLConf /** * This rule wraps the query plan with an [[AdaptiveSparkPlanExec]], which executes the query plan * and re-optimize the plan during execution based on runtime data statistics. * * Note that this rule is stateful and thus should not be reused across query executions. */ case class InsertAdaptiveSparkPlan( adaptiveExecutionContext: AdaptiveExecutionContext) extends Rule[SparkPlan] { override def apply(plan: SparkPlan): SparkPlan = applyInternal(plan, false) private def applyInternal(plan: SparkPlan, isSubquery: Boolean): SparkPlan = plan match { case _ if !conf.adaptiveExecutionEnabled => plan case _: ExecutedCommandExec => plan case _: CommandResultExec => plan case c: DataWritingCommandExec => c.copy(child = apply(c.child)) case c: V2CommandExec => c.withNewChildren(c.children.map(apply)) case _ if shouldApplyAQE(plan, isSubquery) => if (supportAdaptive(plan)) { try { // Plan sub-queries recursively and pass in the shared stage cache for exchange reuse. // Fall back to non-AQE mode if AQE is not supported in any of the sub-queries. val subqueryMap = buildSubqueryMap(plan) val planSubqueriesRule = PlanAdaptiveSubqueries(subqueryMap) val preprocessingRules = Seq( planSubqueriesRule) // Run pre-processing rules. val newPlan = AdaptiveSparkPlanExec.applyPhysicalRules(plan, preprocessingRules) logDebug(s"Adaptive execution enabled for plan: $plan") AdaptiveSparkPlanExec(newPlan, adaptiveExecutionContext, preprocessingRules, isSubquery) } catch { case SubqueryAdaptiveNotSupportedException(subquery) => logWarning(s"${SQLConf.ADAPTIVE_EXECUTION_ENABLED.key} is enabled " + s"but is not supported for sub-query: $subquery.") plan } } else { logWarning(s"${SQLConf.ADAPTIVE_EXECUTION_ENABLED.key} is enabled " + s"but is not supported for query: $plan.") plan } case _ => plan } // AQE is only useful when the query has exchanges or sub-queries. This method returns true if // one of the following conditions is satisfied: // - The config ADAPTIVE_EXECUTION_FORCE_APPLY is true. // - The input query is from a sub-query. When this happens, it means we've already decided to // apply AQE for the main query and we must continue to do it. // - The query contains exchanges. // - The query may need to add exchanges. It's an overkill to run `EnsureRequirements` here, so // we just check `SparkPlan.requiredChildDistribution` and see if it's possible that the // the query needs to add exchanges later. // - The query contains sub-query. private def shouldApplyAQE(plan: SparkPlan, isSubquery: Boolean): Boolean = { conf.getConf(SQLConf.ADAPTIVE_EXECUTION_FORCE_APPLY) || isSubquery || { plan.find { case _: Exchange => true case p if !p.requiredChildDistribution.forall(_ == UnspecifiedDistribution) => true case p => p.expressions.exists(_.find { case _: SubqueryExpression => true case _ => false }.isDefined) }.isDefined } } private def supportAdaptive(plan: SparkPlan): Boolean = { sanityCheck(plan) && !plan.logicalLink.exists(_.isStreaming) && plan.children.forall(supportAdaptive) } private def sanityCheck(plan: SparkPlan): Boolean = plan.logicalLink.isDefined /** * Returns an expression-id-to-execution-plan map for all the sub-queries. * For each sub-query, generate the adaptive execution plan for each sub-query by applying this * rule, or reuse the execution plan from another sub-query of the same semantics if possible. */ private def buildSubqueryMap(plan: SparkPlan): Map[Long, BaseSubqueryExec] = { val subqueryMap = mutable.HashMap.empty[Long, BaseSubqueryExec] if (!plan.containsAnyPattern(SCALAR_SUBQUERY, IN_SUBQUERY, DYNAMIC_PRUNING_SUBQUERY)) { return subqueryMap.toMap } plan.foreach(_.expressions.foreach(_.foreach { case expressions.ScalarSubquery(p, _, exprId, _) if !subqueryMap.contains(exprId.id) => val executedPlan = compileSubquery(p) verifyAdaptivePlan(executedPlan, p) val subquery = SubqueryExec.createForScalarSubquery( s"subquery#${exprId.id}", executedPlan) subqueryMap.put(exprId.id, subquery) case expressions.InSubquery(_, ListQuery(query, _, exprId, _, _)) if !subqueryMap.contains(exprId.id) => val executedPlan = compileSubquery(query) verifyAdaptivePlan(executedPlan, query) val subquery = SubqueryExec(s"subquery#${exprId.id}", executedPlan) subqueryMap.put(exprId.id, subquery) case expressions.DynamicPruningSubquery(value, buildPlan, buildKeys, broadcastKeyIndex, onlyInBroadcast, exprId) if !subqueryMap.contains(exprId.id) => val executedPlan = compileSubquery(buildPlan) verifyAdaptivePlan(executedPlan, buildPlan) val name = s"dynamicpruning#${exprId.id}" val subquery = SubqueryAdaptiveBroadcastExec( name, broadcastKeyIndex, buildKeys, executedPlan) subqueryMap.put(exprId.id, subquery) case _ => })) subqueryMap.toMap } def compileSubquery(plan: LogicalPlan): SparkPlan = { // Apply the same instance of this rule to sub-queries so that sub-queries all share the // same `stageCache` for Exchange reuse. this.applyInternal( QueryExecution.createSparkPlan(adaptiveExecutionContext.session, adaptiveExecutionContext.session.sessionState.planner, plan.clone()), true) } private def verifyAdaptivePlan(plan: SparkPlan, logicalPlan: LogicalPlan): Unit = { if (!plan.isInstanceOf[AdaptiveSparkPlanExec]) { throw SubqueryAdaptiveNotSupportedException(logicalPlan) } } } private case class SubqueryAdaptiveNotSupportedException(plan: LogicalPlan) extends Exception {}
wangmiao1981/spark
sql/core/src/main/scala/org/apache/spark/sql/execution/adaptive/InsertAdaptiveSparkPlan.scala
Scala
apache-2.0
7,650
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package whisk.core.cli.test import java.util.Date import scala.concurrent.duration.DurationInt import scala.language.postfixOps import org.junit.runner.RunWith import org.scalatest.BeforeAndAfter import org.scalatest.junit.JUnitRunner import common.TestHelpers import common.TestUtils import common.Wsk import common.WskAdmin import common.WskProps import common.WskTestHelpers import spray.json._ import spray.json.DefaultJsonProtocol.StringJsonFormat import whisk.core.WhiskConfig import whisk.core.database.test.DbUtils import whisk.core.entity._ import whisk.core.entity.test.ExecHelpers /** * Tests that "old-style" sequences can be invoked */ @RunWith(classOf[JUnitRunner]) class SequenceMigrationTests extends TestHelpers with BeforeAndAfter with DbUtils with ExecHelpers with WskTestHelpers { implicit val wskprops = WskProps() val wsk = new Wsk val whiskConfig = new WhiskConfig(WhiskEntityStore.requiredProperties) // handle on the entity datastore val entityStore = WhiskEntityStore.datastore(whiskConfig) val (user, namespace) = WskAdmin.getUser(wskprops.authKey) val allowedActionDuration = 120 seconds behavior of "Sequence Migration" it should "check default namespace '_' is preserved in WhiskAction of old style sequence" in { // read json file and add the appropriate namespace val seqJsonFile = "seq_type_2.json" val jsonFile = TestUtils.getTestActionFilename(seqJsonFile) val source = scala.io.Source.fromFile(jsonFile) val jsonString = try source.mkString finally source.close() val entityJson = jsonString.parseJson.asJsObject // add default namespace (i.e., user) to the json object val entityJsonWithNamespace = JsObject(entityJson.fields + ("namespace" -> JsString(namespace))) val wskEntity = entityJsonWithNamespace.convertTo[WhiskAction] wskEntity.exec match { case SequenceExec(components) => // check '_' is preserved components.size shouldBe 2 assert(components.forall { _.path.namespace.contains('_') }, "default namespace lost") case _ => assert(false) } } it should "invoke an old-style (kind sequence) sequence and get the result" in { val seqName = "seq_type_2" testOldStyleSequence(seqName, s"$seqName.json") } it should "not display code from an old sequence on action get" in { // install sequence in db val seqName = "seq_type_2" installActionInDb(s"$seqName.json") val stdout = wsk.action.get(seqName).stdout stdout.contains("code") shouldBe false } /** * helper function that tests old style sequence based on two actions echo and word_count * @param seqName the name of the sequence * @param seqFileName the name of the json file that contains the whisk action associated with the sequence */ private def testOldStyleSequence(seqName: String, seqFileName: String) = { // create entities to insert in the entity store val echo = "echo.json" val wc = "word_count.json" val entities = Seq(echo, wc, seqFileName) for (entity <- entities) { installActionInDb(entity) } // invoke sequence val now = "it is now " + new Date() val run = wsk.action.invoke(seqName, Map("payload" -> now.mkString("\n").toJson)) withActivation(wsk.activation, run, totalWait = allowedActionDuration) { activation => val result = activation.response.result.get result.fields.get("count") shouldBe Some(JsNumber(now.split(" ").size)) } } /** * helper function that takes a json file containing a whisk action (minus the namespace), adds namespace and installs in db */ private def installActionInDb(actionJson: String) = { // read json file and add the appropriate namespace val jsonFile = TestUtils.getTestActionFilename(actionJson) val source = scala.io.Source.fromFile(jsonFile) val jsonString = try source.mkString finally source.close() val entityJson = jsonString.parseJson.asJsObject // add default namespace (i.e., user) to the json object val entityJsonWithNamespace = JsObject(entityJson.fields + ("namespace" -> JsString(namespace))) val wskEntity = entityJsonWithNamespace.convertTo[WhiskAction] implicit val tid = transid() // needed for put db below put(entityStore, wskEntity) } after { cleanup() // cleanup entities from db } }
lzbj/openwhisk
tests/src/test/scala/whisk/core/cli/test/SequenceMigrationTests.scala
Scala
apache-2.0
5,462
/* Copyright 2014 Reo_SP Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package reo7sp.boardpp.board import com.badlogic.gdx.graphics.Color import scala.collection.mutable /** * Created by reo7sp on 1/17/14 at 2:42 PM */ class Canvas { val points = new mutable.HashSet[Point] def +=(x: Int, y: Int): Canvas = +=(x, y, BoardSession.color, BoardSession.radius) def +=(x: Int, y: Int, color: Color, radius: Int): Canvas = { points += Point(x, y, color, radius) this } def -=(x: Int, y: Int, radius: Int) = { def intersects(x1: Int, y1: Int, radius1: Int) = { val x0 = x - radius / 2 val y0 = y - radius / 2 val xmin = x1 val xmax = xmin + radius1 val ymin = y1 val ymax = ymin + radius1 ((xmin > x0 && xmin < x0 + radius) && (xmax > x0 && xmax < x0 + radius)) && ((ymin > y0 && ymin < y0 + radius) && (ymax > y0 && ymax < y0 + radius)) } for (point <- points) { if (intersects(point.x, point.y, point.radius)) { points -= point } } this } case class Point(x: Int, y: Int, color: Color, radius: Int) }
reo7sp/BoardPP
src/main/java/reo7sp/boardpp/board/Canvas.scala
Scala
apache-2.0
1,604
/*Β§ =========================================================================== KnapScal - Core =========================================================================== Copyright (C) 2015-2016 Gianluca Costa =========================================================================== Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. =========================================================================== */ package info.gianlucacosta.knapscal.knapsack import org.apache.commons.math3.fraction.Fraction case class Item(profit: Int, weight: Int) extends Ordered[Item] { require(profit > 0, s"Profit ${profit} must be >= 0") require(weight > 0, s"Weight ${weight} must be >= 0") val relativeProfit: Fraction = new Fraction(profit, weight) override def compare(that: Item): Int = -relativeProfit.compareTo(that.relativeProfit) override def toString: String = s"(${profit}, ${weight})" }
giancosta86/KnapScal-core
src/main/scala/info/gianlucacosta/knapscal/knapsack/Item.scala
Scala
apache-2.0
1,414
package eu.timepit.refined.internal import eu.timepit.refined.api.{RefType, Validate} import eu.timepit.refined.macros.RefineMacro @deprecated( "RefineMFullyApplied has been replaced in favor or RefinedTypeOps. " + "Replace 'new RefineMFullyApplied[F, T, P]' with 'new RefinedTypeOps[F[T, P], T]'.", "0.9.1" ) final class RefineMFullyApplied[F[_, _], T, P] { def apply(t: T)(implicit rt: RefType[F], v: Validate[T, P]): F[T, P] = macro RefineMacro.impl[F, T, P] }
fthomas/refined
modules/core/shared/src/main/scala-3.0-/eu/timepit/refined/internal/RefineMFullyApplied.scala
Scala
mit
481
package com.svds.kafka.connect.opentsdb import org.scalatest.FlatSpec import scala.collection.JavaConversions._ import scala.collection.mutable.Map class OpenTsdbSinkConnectorSpec extends FlatSpec { private val connector = new OpenTsdbSinkConnector it should "create a list of the number of tasks configurations specified by maxTasks, even if each task configuration element of the list is empty" in { assert(this.connector.taskConfigs(2).size == 2) } it should "have default configuration with localhost and 4242 as the OpenTSDB host & port" in { val config = this.connector.config val props = Map[String, String]() val parsedProps = config.parse(props) assert(parsedProps(OpenTsdbConnectorConfig.OpenTsdbHost) == "localhost") assert(parsedProps(OpenTsdbConnectorConfig.OpenTsdbPort) == 4242) } it should "return OpenTsdbSinkTask as its task class" in { assert(this.connector.taskClass == classOf[OpenTsdbSinkTask]) } }
jeff-svds/kafka-connect-opentsdb
src/test/scala/com/svds/kafka/connect/opentsdb/OpenTsdbSinkConnectorSpec.scala
Scala
apache-2.0
970
package com.twitter.finagle.thrift.service import com.twitter.finagle.Filter /** * Used in conjunction with a `ServicePerEndpoint` builder to allow for filtering * of a `ServicePerEndpoint`. */ trait Filterable[+T] extends com.twitter.finagle.service.Filterable[T] { /** * Prepend the given type-agnostic [[Filter]]. */ def filtered(filter: Filter.TypeAgnostic): T }
twitter/finagle
finagle-thrift/src/main/scala/com/twitter/finagle/thrift/service/Filterable.scala
Scala
apache-2.0
384
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.hive.execution import java.io.File import java.net.URI import org.apache.hadoop.fs.Path import org.apache.parquet.format.converter.ParquetMetadataConverter.NO_FILTER import org.apache.parquet.hadoop.ParquetFileReader import org.scalatest.BeforeAndAfterEach import org.apache.spark.SparkException import org.apache.spark.sql.{AnalysisException, QueryTest, Row, SaveMode} import org.apache.spark.sql.catalyst.TableIdentifier import org.apache.spark.sql.catalyst.analysis.{NoSuchPartitionException, TableAlreadyExistsException} import org.apache.spark.sql.catalyst.catalog._ import org.apache.spark.sql.catalyst.parser.ParseException import org.apache.spark.sql.connector.catalog.CatalogManager import org.apache.spark.sql.connector.catalog.SupportsNamespaces.{PROP_OWNER_NAME, PROP_OWNER_TYPE} import org.apache.spark.sql.execution.command.{DDLSuite, DDLUtils} import org.apache.spark.sql.functions._ import org.apache.spark.sql.hive.HiveExternalCatalog import org.apache.spark.sql.hive.HiveUtils.{CONVERT_METASTORE_ORC, CONVERT_METASTORE_PARQUET} import org.apache.spark.sql.hive.orc.OrcFileOperator import org.apache.spark.sql.hive.test.TestHiveSingleton import org.apache.spark.sql.internal.{HiveSerDe, SQLConf} import org.apache.spark.sql.internal.SQLConf.ORC_IMPLEMENTATION import org.apache.spark.sql.internal.StaticSQLConf.CATALOG_IMPLEMENTATION import org.apache.spark.sql.test.SQLTestUtils import org.apache.spark.sql.types._ import org.apache.spark.util.Utils // TODO(gatorsmile): combine HiveCatalogedDDLSuite and HiveDDLSuite class HiveCatalogedDDLSuite extends DDLSuite with TestHiveSingleton with BeforeAndAfterEach { override def afterEach(): Unit = { try { // drop all databases, tables and functions after each test spark.sessionState.catalog.reset() } finally { super.afterEach() } } protected override def generateTable( catalog: SessionCatalog, name: TableIdentifier, isDataSource: Boolean, partitionCols: Seq[String] = Seq("a", "b")): CatalogTable = { val storage = if (isDataSource) { val serde = HiveSerDe.sourceToSerDe("parquet") assert(serde.isDefined, "The default format is not Hive compatible") CatalogStorageFormat( locationUri = Some(catalog.defaultTablePath(name)), inputFormat = serde.get.inputFormat, outputFormat = serde.get.outputFormat, serde = serde.get.serde, compressed = false, properties = Map.empty) } else { CatalogStorageFormat( locationUri = Some(catalog.defaultTablePath(name)), inputFormat = Some("org.apache.hadoop.mapred.SequenceFileInputFormat"), outputFormat = Some("org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat"), serde = Some("org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe"), compressed = false, properties = Map("serialization.format" -> "1")) } val metadata = new MetadataBuilder() .putString("key", "value") .build() val schema = new StructType() .add("col1", "int", nullable = true, metadata = metadata) .add("col2", "string") CatalogTable( identifier = name, tableType = CatalogTableType.EXTERNAL, storage = storage, schema = schema.copy( fields = schema.fields ++ partitionCols.map(StructField(_, IntegerType))), provider = if (isDataSource) Some("parquet") else Some("hive"), partitionColumnNames = partitionCols, createTime = 0L, createVersion = org.apache.spark.SPARK_VERSION, tracksPartitionsInCatalog = true) } protected override def normalizeCatalogTable(table: CatalogTable): CatalogTable = { val nondeterministicProps = Set( "CreateTime", "transient_lastDdlTime", "grantTime", "lastUpdateTime", "last_modified_by", "last_modified_time", "Owner:", "COLUMN_STATS_ACCURATE", // The following are hive specific schema parameters which we do not need to match exactly. "numFiles", "numRows", "rawDataSize", "totalSize", "totalNumberFiles", "maxFileSize", "minFileSize" ) table.copy( createTime = 0L, lastAccessTime = 0L, owner = "", properties = table.properties.filterKeys(!nondeterministicProps.contains(_)), // View texts are checked separately viewText = None ) } test("alter table: set location") { testSetLocation(isDatasourceTable = false) } test("alter table: set properties") { testSetProperties(isDatasourceTable = false) } test("alter table: unset properties") { testUnsetProperties(isDatasourceTable = false) } test("alter table: set serde") { testSetSerde(isDatasourceTable = false) } test("alter table: set serde partition") { testSetSerdePartition(isDatasourceTable = false) } test("alter table: change column") { testChangeColumn(isDatasourceTable = false) } test("alter table: rename partition") { testRenamePartitions(isDatasourceTable = false) } test("alter table: drop partition") { testDropPartitions(isDatasourceTable = false) } test("alter table: add partition") { testAddPartitions(isDatasourceTable = false) } test("drop table") { testDropTable(isDatasourceTable = false) } test("alter datasource table add columns - orc") { testAddColumn("orc") } test("alter datasource table add columns - partitioned - orc") { testAddColumnPartitioned("orc") } test("SPARK-22431: illegal nested type") { val queries = Seq( "CREATE TABLE t USING hive AS SELECT STRUCT('a' AS `$a`, 1 AS b) q", "CREATE TABLE t(q STRUCT<`$a`:INT, col2:STRING>, i1 INT) USING hive", "CREATE VIEW t AS SELECT STRUCT('a' AS `$a`, 1 AS b) q") queries.foreach(query => { val err = intercept[SparkException] { spark.sql(query) }.getMessage assert(err.contains("Cannot recognize hive type string")) }) withView("v") { spark.sql("CREATE VIEW v AS SELECT STRUCT('a' AS `a`, 1 AS b) q") checkAnswer(sql("SELECT q.`a`, q.b FROM v"), Row("a", 1) :: Nil) val err = intercept[SparkException] { spark.sql("ALTER VIEW v AS SELECT STRUCT('a' AS `$a`, 1 AS b) q") }.getMessage assert(err.contains("Cannot recognize hive type string")) } } test("SPARK-22431: table with nested type") { withTable("t", "x") { spark.sql("CREATE TABLE t(q STRUCT<`$a`:INT, col2:STRING>, i1 INT) USING PARQUET") checkAnswer(spark.table("t"), Nil) spark.sql("CREATE TABLE x (q STRUCT<col1:INT, col2:STRING>, i1 INT)") checkAnswer(spark.table("x"), Nil) } } test("SPARK-22431: view with nested type") { withView("v") { spark.sql("CREATE VIEW v AS SELECT STRUCT('a' AS `a`, 1 AS b) q") checkAnswer(spark.table("v"), Row(Row("a", 1)) :: Nil) spark.sql("ALTER VIEW v AS SELECT STRUCT('a' AS `b`, 1 AS b) q1") val df = spark.table("v") assert("q1".equals(df.schema.fields(0).name)) checkAnswer(df, Row(Row("a", 1)) :: Nil) } } test("SPARK-22431: alter table tests with nested types") { withTable("t1", "t2", "t3") { spark.sql("CREATE TABLE t1 (q STRUCT<col1:INT, col2:STRING>, i1 INT)") spark.sql("ALTER TABLE t1 ADD COLUMNS (newcol1 STRUCT<`col1`:STRING, col2:Int>)") val newcol = spark.sql("SELECT * FROM t1").schema.fields(2).name assert("newcol1".equals(newcol)) spark.sql("CREATE TABLE t2(q STRUCT<`a`:INT, col2:STRING>, i1 INT) USING PARQUET") spark.sql("ALTER TABLE t2 ADD COLUMNS (newcol1 STRUCT<`$col1`:STRING, col2:Int>)") spark.sql("ALTER TABLE t2 ADD COLUMNS (newcol2 STRUCT<`col1`:STRING, col2:Int>)") val df2 = spark.table("t2") checkAnswer(df2, Nil) assert("newcol1".equals(df2.schema.fields(2).name)) assert("newcol2".equals(df2.schema.fields(3).name)) spark.sql("CREATE TABLE t3(q STRUCT<`$a`:INT, col2:STRING>, i1 INT) USING PARQUET") spark.sql("ALTER TABLE t3 ADD COLUMNS (newcol1 STRUCT<`$col1`:STRING, col2:Int>)") spark.sql("ALTER TABLE t3 ADD COLUMNS (newcol2 STRUCT<`col1`:STRING, col2:Int>)") val df3 = spark.table("t3") checkAnswer(df3, Nil) assert("newcol1".equals(df3.schema.fields(2).name)) assert("newcol2".equals(df3.schema.fields(3).name)) } } test("SPARK-22431: negative alter table tests with nested types") { withTable("t1") { spark.sql("CREATE TABLE t1 (q STRUCT<col1:INT, col2:STRING>, i1 INT) USING hive") val err = intercept[SparkException] { spark.sql("ALTER TABLE t1 ADD COLUMNS (newcol1 STRUCT<`$col1`:STRING, col2:Int>)") }.getMessage assert(err.contains("Cannot recognize hive type string:")) } } test("SPARK-26630: table with old input format and without partitioned will use HadoopRDD") { withTable("table_old", "table_ctas_old") { sql( """ |CREATE TABLE table_old (col1 LONG, col2 STRING, col3 DOUBLE, col4 BOOLEAN) |STORED AS |INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat' |OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat' """.stripMargin) sql( """ |INSERT INTO table_old |VALUES (2147483648, 'AAA', 3.14, false), (2147483649, 'BBB', 3.142, true) """.stripMargin) checkAnswer( sql("SELECT col1, col2, col3, col4 FROM table_old"), Row(2147483648L, "AAA", 3.14, false) :: Row(2147483649L, "BBB", 3.142, true) :: Nil) sql("CREATE TABLE table_ctas_old AS SELECT col1, col2, col3, col4 FROM table_old") checkAnswer( sql("SELECT col1, col2, col3, col4 from table_ctas_old"), Row(2147483648L, "AAA", 3.14, false) :: Row(2147483649L, "BBB", 3.142, true) :: Nil) } } test("SPARK-26630: table with old input format and partitioned will use HadoopRDD") { withTable("table_pt_old", "table_ctas_pt_old") { sql( """ |CREATE TABLE table_pt_old (col1 LONG, col2 STRING, col3 DOUBLE, col4 BOOLEAN) |PARTITIONED BY (pt INT) |STORED AS |INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat' |OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat' """.stripMargin) sql( """ |INSERT INTO table_pt_old PARTITION (pt = 1) |VALUES (2147483648, 'AAA', 3.14, false), (2147483649, 'BBB', 3.142, true) """.stripMargin) checkAnswer( sql("SELECT col1, col2, col3, col4 FROM table_pt_old WHERE pt = 1"), Row(2147483648L, "AAA", 3.14, false) :: Row(2147483649L, "BBB", 3.142, true) :: Nil) sql("CREATE TABLE table_ctas_pt_old AS SELECT col1, col2, col3, col4 FROM table_pt_old") checkAnswer( sql("SELECT col1, col2, col3, col4 from table_ctas_pt_old"), Row(2147483648L, "AAA", 3.14, false) :: Row(2147483649L, "BBB", 3.142, true) :: Nil) } } test("SPARK-26630: table with new input format and without partitioned will use NewHadoopRDD") { withTable("table_new", "table_ctas_new") { sql( """ |CREATE TABLE table_new (col1 LONG, col2 STRING, col3 DOUBLE, col4 BOOLEAN) |STORED AS |INPUTFORMAT 'org.apache.hadoop.mapreduce.lib.input.TextInputFormat' |OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat' """.stripMargin) sql( """ |INSERT INTO table_new |VALUES (2147483648, 'AAA', 3.14, false), (2147483649, 'BBB', 3.142, true) """.stripMargin) checkAnswer( sql("SELECT col1, col2, col3, col4 FROM table_new"), Row(2147483648L, "AAA", 3.14, false) :: Row(2147483649L, "BBB", 3.142, true) :: Nil) sql("CREATE TABLE table_ctas_new AS SELECT col1, col2, col3, col4 FROM table_new") checkAnswer( sql("SELECT col1, col2, col3, col4 from table_ctas_new"), Row(2147483648L, "AAA", 3.14, false) :: Row(2147483649L, "BBB", 3.142, true) :: Nil) } } test("SPARK-26630: table with new input format and partitioned will use NewHadoopRDD") { withTable("table_pt_new", "table_ctas_pt_new") { sql( """ |CREATE TABLE table_pt_new (col1 LONG, col2 STRING, col3 DOUBLE, col4 BOOLEAN) |PARTITIONED BY (pt INT) |STORED AS |INPUTFORMAT 'org.apache.hadoop.mapreduce.lib.input.TextInputFormat' |OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat' """.stripMargin) sql( """ |INSERT INTO table_pt_new PARTITION (pt = 1) |VALUES (2147483648, 'AAA', 3.14, false), (2147483649, 'BBB', 3.142, true) """.stripMargin) checkAnswer( sql("SELECT col1, col2, col3, col4 FROM table_pt_new WHERE pt = 1"), Row(2147483648L, "AAA", 3.14, false) :: Row(2147483649L, "BBB", 3.142, true) :: Nil) sql("CREATE TABLE table_ctas_pt_new AS SELECT col1, col2, col3, col4 FROM table_pt_new") checkAnswer( sql("SELECT col1, col2, col3, col4 from table_ctas_pt_new"), Row(2147483648L, "AAA", 3.14, false) :: Row(2147483649L, "BBB", 3.142, true) :: Nil) } } test("Create Table LIKE USING Hive built-in ORC in Hive catalog") { val catalog = spark.sessionState.catalog withTable("s", "t") { sql("CREATE TABLE s(a INT, b INT) USING parquet") val source = catalog.getTableMetadata(TableIdentifier("s")) assert(source.provider == Some("parquet")) sql("CREATE TABLE t LIKE s USING org.apache.spark.sql.hive.orc") val table = catalog.getTableMetadata(TableIdentifier("t")) assert(table.provider == Some("org.apache.spark.sql.hive.orc")) } } private def checkOwner(db: String, expected: String): Unit = { val owner = sql(s"DESCRIBE DATABASE EXTENDED $db") .where("database_description_item='Owner Name'") .collect().head.getString(1) assert(owner === expected) } test("Database Ownership") { val catalog = spark.sessionState.catalog try { val db1 = "spark_29425_1" val db2 = "spark_29425_2" val owner = "spark_29425" sql(s"CREATE DATABASE $db1") checkOwner(db1, Utils.getCurrentUserName()) sql(s"ALTER DATABASE $db1 SET DBPROPERTIES ('a'='a')") checkOwner(db1, Utils.getCurrentUserName()) // TODO: Specify ownership should be forbidden after we implement `SET OWNER` syntax sql(s"CREATE DATABASE $db2 WITH DBPROPERTIES('ownerName'='$owner')") checkOwner(db2, owner) sql(s"ALTER DATABASE $db2 SET DBPROPERTIES ('a'='a')") checkOwner(db2, owner) // TODO: Changing ownership should be forbidden after we implement `SET OWNER` syntax sql(s"ALTER DATABASE $db2 SET DBPROPERTIES ('ownerName'='a')") checkOwner(db2, "a") } finally { catalog.reset() } } } class HiveDDLSuite extends QueryTest with SQLTestUtils with TestHiveSingleton with BeforeAndAfterEach { import testImplicits._ val hiveFormats = Seq("PARQUET", "ORC", "TEXTFILE", "SEQUENCEFILE", "RCFILE", "AVRO") private val reversedProperties = Seq("ownerName", "ownerType") override def afterEach(): Unit = { try { // drop all databases, tables and functions after each test spark.sessionState.catalog.reset() } finally { super.afterEach() } } // check if the directory for recording the data of the table exists. private def tableDirectoryExists( tableIdentifier: TableIdentifier, dbPath: Option[String] = None): Boolean = { val expectedTablePath = if (dbPath.isEmpty) { hiveContext.sessionState.catalog.defaultTablePath(tableIdentifier) } else { new Path(new Path(dbPath.get), tableIdentifier.table).toUri } val filesystemPath = new Path(expectedTablePath.toString) val fs = filesystemPath.getFileSystem(spark.sessionState.newHadoopConf()) fs.exists(filesystemPath) } test("drop tables") { withTable("tab1") { val tabName = "tab1" assert(!tableDirectoryExists(TableIdentifier(tabName))) sql(s"CREATE TABLE $tabName(c1 int)") assert(tableDirectoryExists(TableIdentifier(tabName))) sql(s"DROP TABLE $tabName") assert(!tableDirectoryExists(TableIdentifier(tabName))) sql(s"DROP TABLE IF EXISTS $tabName") sql(s"DROP VIEW IF EXISTS $tabName") } } test("create a hive table without schema") { import testImplicits._ withTempPath { tempDir => withTable("tab1", "tab2") { (("a", "b") :: Nil).toDF().write.json(tempDir.getCanonicalPath) var e = intercept[AnalysisException] { sql("CREATE TABLE tab1 USING hive") }.getMessage assert(e.contains("Unable to infer the schema. The schema specification is required to " + "create the table `default`.`tab1`")) e = intercept[AnalysisException] { sql(s"CREATE TABLE tab2 USING hive location '${tempDir.getCanonicalPath}'") }.getMessage assert(e.contains("Unable to infer the schema. The schema specification is required to " + "create the table `default`.`tab2`")) } } } test("drop external tables in default database") { withTempDir { tmpDir => val tabName = "tab1" withTable(tabName) { assert(tmpDir.listFiles.isEmpty) sql( s""" |create table $tabName |stored as parquet |location '${tmpDir.toURI}' |as select 1, '3' """.stripMargin) val hiveTable = spark.sessionState.catalog.getTableMetadata(TableIdentifier(tabName, Some("default"))) assert(hiveTable.tableType == CatalogTableType.EXTERNAL) assert(tmpDir.listFiles.nonEmpty) sql(s"DROP TABLE $tabName") assert(tmpDir.listFiles.nonEmpty) } } } test("drop external data source table in default database") { withTempDir { tmpDir => val tabName = "tab1" withTable(tabName) { assert(tmpDir.listFiles.isEmpty) withSQLConf(SQLConf.PARQUET_WRITE_LEGACY_FORMAT.key -> "true") { Seq(1 -> "a").toDF("i", "j") .write .mode(SaveMode.Overwrite) .format("parquet") .option("path", tmpDir.toString) .saveAsTable(tabName) } val hiveTable = spark.sessionState.catalog.getTableMetadata(TableIdentifier(tabName, Some("default"))) // This data source table is external table assert(hiveTable.tableType == CatalogTableType.EXTERNAL) assert(tmpDir.listFiles.nonEmpty) sql(s"DROP TABLE $tabName") // The data are not deleted since the table type is EXTERNAL assert(tmpDir.listFiles.nonEmpty) } } } test("create table and view with comment") { val catalog = spark.sessionState.catalog val tabName = "tab1" withTable(tabName) { sql(s"CREATE TABLE $tabName(c1 int) COMMENT 'BLABLA'") val viewName = "view1" withView(viewName) { sql(s"CREATE VIEW $viewName COMMENT 'no comment' AS SELECT * FROM $tabName") val tableMetadata = catalog.getTableMetadata(TableIdentifier(tabName, Some("default"))) val viewMetadata = catalog.getTableMetadata(TableIdentifier(viewName, Some("default"))) assert(tableMetadata.comment == Option("BLABLA")) assert(viewMetadata.comment == Option("no comment")) // Ensure that `comment` is removed from the table property assert(tableMetadata.properties.get("comment").isEmpty) assert(viewMetadata.properties.get("comment").isEmpty) } } } test("create Hive-serde table and view with unicode columns and comment") { val catalog = spark.sessionState.catalog val tabName = "tab1" val viewName = "view1" // scalastyle:off // non ascii characters are not allowed in the source code, so we disable the scalastyle. val colName1 = "ε’Œ" val colName2 = "ε°Ό" val comment = "εΊ™" // scalastyle:on withTable(tabName) { sql(s""" |CREATE TABLE $tabName(`$colName1` int COMMENT '$comment') |COMMENT '$comment' |PARTITIONED BY (`$colName2` int) """.stripMargin) sql(s"INSERT OVERWRITE TABLE $tabName partition (`$colName2`=2) SELECT 1") withView(viewName) { sql( s""" |CREATE VIEW $viewName(`$colName1` COMMENT '$comment', `$colName2`) |COMMENT '$comment' |AS SELECT `$colName1`, `$colName2` FROM $tabName """.stripMargin) val tableMetadata = catalog.getTableMetadata(TableIdentifier(tabName, Some("default"))) val viewMetadata = catalog.getTableMetadata(TableIdentifier(viewName, Some("default"))) assert(tableMetadata.comment == Option(comment)) assert(viewMetadata.comment == Option(comment)) assert(tableMetadata.schema.fields.length == 2 && viewMetadata.schema.fields.length == 2) val column1InTable = tableMetadata.schema.fields.head val column1InView = viewMetadata.schema.fields.head assert(column1InTable.name == colName1 && column1InView.name == colName1) assert(column1InTable.getComment() == Option(comment)) assert(column1InView.getComment() == Option(comment)) assert(tableMetadata.schema.fields(1).name == colName2 && viewMetadata.schema.fields(1).name == colName2) checkAnswer(sql(s"SELECT `$colName1`, `$colName2` FROM $tabName"), Row(1, 2) :: Nil) checkAnswer(sql(s"SELECT `$colName1`, `$colName2` FROM $viewName"), Row(1, 2) :: Nil) } } } test("create table: partition column names exist in table definition") { val e = intercept[AnalysisException] { sql("CREATE TABLE tbl(a int) PARTITIONED BY (a string)") } assert(e.message == "Found duplicate column(s) in the table definition of `default`.`tbl`: `a`") } test("create partitioned table without specifying data type for the partition columns") { val e = intercept[AnalysisException] { sql("CREATE TABLE tbl(a int) PARTITIONED BY (b) STORED AS parquet") } assert(e.message.contains("Must specify a data type for each partition column while creating " + "Hive partitioned table.")) } test("add/drop partition with location - managed table") { val tab = "tab_with_partitions" withTempDir { tmpDir => val basePath = new File(tmpDir.getCanonicalPath) val part1Path = new File(basePath + "/part1") val part2Path = new File(basePath + "/part2") val dirSet = part1Path :: part2Path :: Nil // Before data insertion, all the directory are empty assert(dirSet.forall(dir => dir.listFiles == null || dir.listFiles.isEmpty)) withTable(tab) { sql( s""" |CREATE TABLE $tab (key INT, value STRING) |PARTITIONED BY (ds STRING, hr STRING) """.stripMargin) sql( s""" |ALTER TABLE $tab ADD |PARTITION (ds='2008-04-08', hr=11) LOCATION '${part1Path.toURI}' |PARTITION (ds='2008-04-08', hr=12) LOCATION '${part2Path.toURI}' """.stripMargin) assert(dirSet.forall(dir => dir.listFiles == null || dir.listFiles.isEmpty)) sql(s"INSERT OVERWRITE TABLE $tab partition (ds='2008-04-08', hr=11) SELECT 1, 'a'") sql(s"INSERT OVERWRITE TABLE $tab partition (ds='2008-04-08', hr=12) SELECT 2, 'b'") // add partition will not delete the data assert(dirSet.forall(dir => dir.listFiles.nonEmpty)) checkAnswer( spark.table(tab), Row(1, "a", "2008-04-08", "11") :: Row(2, "b", "2008-04-08", "12") :: Nil ) sql(s"ALTER TABLE $tab DROP PARTITION (ds='2008-04-08', hr=11)") // drop partition will delete the data assert(part1Path.listFiles == null || part1Path.listFiles.isEmpty) assert(part2Path.listFiles.nonEmpty) sql(s"DROP TABLE $tab") // drop table will delete the data of the managed table assert(dirSet.forall(dir => dir.listFiles == null || dir.listFiles.isEmpty)) } } } test("SPARK-19129: drop partition with a empty string will drop the whole table") { val df = spark.createDataFrame(Seq((0, "a"), (1, "b"))).toDF("partCol1", "name") df.write.mode("overwrite").partitionBy("partCol1").saveAsTable("partitionedTable") val e = intercept[AnalysisException] { spark.sql("alter table partitionedTable drop partition(partCol1='')") }.getMessage assert(e.contains("Partition spec is invalid. The spec ([partCol1=]) contains an empty " + "partition column value")) } test("add/drop partitions - external table") { val catalog = spark.sessionState.catalog withTempDir { tmpDir => val basePath = tmpDir.getCanonicalPath val partitionPath_1stCol_part1 = new File(basePath + "/ds=2008-04-08") val partitionPath_1stCol_part2 = new File(basePath + "/ds=2008-04-09") val partitionPath_part1 = new File(basePath + "/ds=2008-04-08/hr=11") val partitionPath_part2 = new File(basePath + "/ds=2008-04-09/hr=11") val partitionPath_part3 = new File(basePath + "/ds=2008-04-08/hr=12") val partitionPath_part4 = new File(basePath + "/ds=2008-04-09/hr=12") val dirSet = tmpDir :: partitionPath_1stCol_part1 :: partitionPath_1stCol_part2 :: partitionPath_part1 :: partitionPath_part2 :: partitionPath_part3 :: partitionPath_part4 :: Nil val externalTab = "extTable_with_partitions" withTable(externalTab) { assert(tmpDir.listFiles.isEmpty) sql( s""" |CREATE EXTERNAL TABLE $externalTab (key INT, value STRING) |PARTITIONED BY (ds STRING, hr STRING) |LOCATION '${tmpDir.toURI}' """.stripMargin) // Before data insertion, all the directory are empty assert(dirSet.forall(dir => dir.listFiles == null || dir.listFiles.isEmpty)) for (ds <- Seq("2008-04-08", "2008-04-09"); hr <- Seq("11", "12")) { sql( s""" |INSERT OVERWRITE TABLE $externalTab |partition (ds='$ds',hr='$hr') |SELECT 1, 'a' """.stripMargin) } val hiveTable = catalog.getTableMetadata(TableIdentifier(externalTab, Some("default"))) assert(hiveTable.tableType == CatalogTableType.EXTERNAL) // After data insertion, all the directory are not empty assert(dirSet.forall(dir => dir.listFiles.nonEmpty)) val message = intercept[AnalysisException] { sql(s"ALTER TABLE $externalTab DROP PARTITION (ds='2008-04-09', unknownCol='12')") } assert(message.getMessage.contains("unknownCol is not a valid partition column in table " + "`default`.`exttable_with_partitions`")) sql( s""" |ALTER TABLE $externalTab DROP PARTITION (ds='2008-04-08'), |PARTITION (hr='12') """.stripMargin) assert(catalog.listPartitions(TableIdentifier(externalTab)).map(_.spec).toSet == Set(Map("ds" -> "2008-04-09", "hr" -> "11"))) // drop partition will not delete the data of external table assert(dirSet.forall(dir => dir.listFiles.nonEmpty)) sql( s""" |ALTER TABLE $externalTab ADD PARTITION (ds='2008-04-08', hr='12') |PARTITION (ds='2008-04-08', hr=11) """.stripMargin) assert(catalog.listPartitions(TableIdentifier(externalTab)).map(_.spec).toSet == Set(Map("ds" -> "2008-04-08", "hr" -> "11"), Map("ds" -> "2008-04-08", "hr" -> "12"), Map("ds" -> "2008-04-09", "hr" -> "11"))) // add partition will not delete the data assert(dirSet.forall(dir => dir.listFiles.nonEmpty)) sql(s"DROP TABLE $externalTab") // drop table will not delete the data of external table assert(dirSet.forall(dir => dir.listFiles.nonEmpty)) } } } test("drop views") { withTable("tab1") { val tabName = "tab1" spark.range(10).write.saveAsTable("tab1") withView("view1") { val viewName = "view1" assert(tableDirectoryExists(TableIdentifier(tabName))) assert(!tableDirectoryExists(TableIdentifier(viewName))) sql(s"CREATE VIEW $viewName AS SELECT * FROM tab1") assert(tableDirectoryExists(TableIdentifier(tabName))) assert(!tableDirectoryExists(TableIdentifier(viewName))) sql(s"DROP VIEW $viewName") assert(tableDirectoryExists(TableIdentifier(tabName))) sql(s"DROP VIEW IF EXISTS $viewName") } } } test("alter views - rename") { val tabName = "tab1" withTable(tabName) { spark.range(10).write.saveAsTable(tabName) val oldViewName = "view1" val newViewName = "view2" withView(oldViewName, newViewName) { val catalog = spark.sessionState.catalog sql(s"CREATE VIEW $oldViewName AS SELECT * FROM $tabName") assert(catalog.tableExists(TableIdentifier(oldViewName))) assert(!catalog.tableExists(TableIdentifier(newViewName))) sql(s"ALTER VIEW $oldViewName RENAME TO $newViewName") assert(!catalog.tableExists(TableIdentifier(oldViewName))) assert(catalog.tableExists(TableIdentifier(newViewName))) } } } test("alter views - set/unset tblproperties") { val tabName = "tab1" withTable(tabName) { spark.range(10).write.saveAsTable(tabName) val viewName = "view1" withView(viewName) { def checkProperties(expected: Map[String, String]): Boolean = { val properties = spark.sessionState.catalog.getTableMetadata(TableIdentifier(viewName)) .properties properties.filterNot { case (key, value) => Seq("transient_lastDdlTime", CatalogTable.VIEW_DEFAULT_DATABASE).contains(key) || key.startsWith(CatalogTable.VIEW_QUERY_OUTPUT_PREFIX) } == expected } sql(s"CREATE VIEW $viewName AS SELECT * FROM $tabName") checkProperties(Map()) sql(s"ALTER VIEW $viewName SET TBLPROPERTIES ('p' = 'an')") checkProperties(Map("p" -> "an")) // no exception or message will be issued if we set it again sql(s"ALTER VIEW $viewName SET TBLPROPERTIES ('p' = 'an')") checkProperties(Map("p" -> "an")) // the value will be updated if we set the same key to a different value sql(s"ALTER VIEW $viewName SET TBLPROPERTIES ('p' = 'b')") checkProperties(Map("p" -> "b")) sql(s"ALTER VIEW $viewName UNSET TBLPROPERTIES ('p')") checkProperties(Map()) val message = intercept[AnalysisException] { sql(s"ALTER VIEW $viewName UNSET TBLPROPERTIES ('p')") }.getMessage assert(message.contains( "Attempted to unset non-existent property 'p' in table '`default`.`view1`'")) } } } private def assertErrorForAlterTableOnView(sqlText: String): Unit = { val message = intercept[AnalysisException](sql(sqlText)).getMessage assert(message.contains("Cannot alter a view with ALTER TABLE. Please use ALTER VIEW instead")) } private def assertErrorForAlterViewOnTable(sqlText: String): Unit = { val message = intercept[AnalysisException](sql(sqlText)).getMessage assert(message.contains("Cannot alter a table with ALTER VIEW. Please use ALTER TABLE instead")) } test("create table - SET TBLPROPERTIES EXTERNAL to TRUE") { val tabName = "tab1" withTable(tabName) { val message = intercept[AnalysisException] { sql(s"CREATE TABLE $tabName (height INT, length INT) TBLPROPERTIES('EXTERNAL'='TRUE')") }.getMessage assert(message.contains("Cannot set or change the preserved property key: 'EXTERNAL'")) } } test("alter table - SET TBLPROPERTIES EXTERNAL to TRUE") { val tabName = "tab1" withTable(tabName) { val catalog = spark.sessionState.catalog sql(s"CREATE TABLE $tabName (height INT, length INT)") assert( catalog.getTableMetadata(TableIdentifier(tabName)).tableType == CatalogTableType.MANAGED) val message = intercept[AnalysisException] { sql(s"ALTER TABLE $tabName SET TBLPROPERTIES ('EXTERNAL' = 'TRUE')") }.getMessage assert(message.contains("Cannot set or change the preserved property key: 'EXTERNAL'")) // The table type is not changed to external assert( catalog.getTableMetadata(TableIdentifier(tabName)).tableType == CatalogTableType.MANAGED) // The table property is case sensitive. Thus, external is allowed sql(s"ALTER TABLE $tabName SET TBLPROPERTIES ('external' = 'TRUE')") // The table type is not changed to external assert( catalog.getTableMetadata(TableIdentifier(tabName)).tableType == CatalogTableType.MANAGED) } } test("alter views and alter table - misuse") { val tabName = "tab1" withTable(tabName) { spark.range(10).write.saveAsTable(tabName) val oldViewName = "view1" val newViewName = "view2" withView(oldViewName, newViewName) { val catalog = spark.sessionState.catalog sql(s"CREATE VIEW $oldViewName AS SELECT * FROM $tabName") assert(catalog.tableExists(TableIdentifier(tabName))) assert(catalog.tableExists(TableIdentifier(oldViewName))) assert(!catalog.tableExists(TableIdentifier(newViewName))) assertErrorForAlterViewOnTable(s"ALTER VIEW $tabName RENAME TO $newViewName") assertErrorForAlterTableOnView(s"ALTER TABLE $oldViewName RENAME TO $newViewName") assertErrorForAlterViewOnTable(s"ALTER VIEW $tabName SET TBLPROPERTIES ('p' = 'an')") assertErrorForAlterTableOnView(s"ALTER TABLE $oldViewName SET TBLPROPERTIES ('p' = 'an')") assertErrorForAlterViewOnTable(s"ALTER VIEW $tabName UNSET TBLPROPERTIES ('p')") assertErrorForAlterTableOnView(s"ALTER TABLE $oldViewName UNSET TBLPROPERTIES ('p')") assertErrorForAlterTableOnView(s"ALTER TABLE $oldViewName SET LOCATION '/path/to/home'") assertErrorForAlterTableOnView(s"ALTER TABLE $oldViewName SET SERDE 'whatever'") assertErrorForAlterTableOnView(s"ALTER TABLE $oldViewName SET SERDEPROPERTIES ('x' = 'y')") assertErrorForAlterTableOnView( s"ALTER TABLE $oldViewName PARTITION (a=1, b=2) SET SERDEPROPERTIES ('x' = 'y')") assertErrorForAlterTableOnView( s"ALTER TABLE $oldViewName ADD IF NOT EXISTS PARTITION (a='4', b='8')") assertErrorForAlterTableOnView(s"ALTER TABLE $oldViewName DROP IF EXISTS PARTITION (a='2')") assertErrorForAlterTableOnView(s"ALTER TABLE $oldViewName RECOVER PARTITIONS") assertErrorForAlterTableOnView( s"ALTER TABLE $oldViewName PARTITION (a='1') RENAME TO PARTITION (a='100')") assert(catalog.tableExists(TableIdentifier(tabName))) assert(catalog.tableExists(TableIdentifier(oldViewName))) assert(!catalog.tableExists(TableIdentifier(newViewName))) } } } test("Insert overwrite Hive table should output correct schema") { withSQLConf(CONVERT_METASTORE_PARQUET.key -> "false") { withTable("tbl", "tbl2") { withView("view1") { spark.sql("CREATE TABLE tbl(id long)") spark.sql("INSERT OVERWRITE TABLE tbl VALUES 4") spark.sql("CREATE VIEW view1 AS SELECT id FROM tbl") withTempPath { path => sql( s""" |CREATE TABLE tbl2(ID long) USING hive |OPTIONS(fileFormat 'parquet') |LOCATION '${path.toURI}' """.stripMargin) spark.sql("INSERT OVERWRITE TABLE tbl2 SELECT ID FROM view1") val expectedSchema = StructType(Seq(StructField("ID", LongType, true))) assert(spark.read.parquet(path.toString).schema == expectedSchema) checkAnswer(spark.table("tbl2"), Seq(Row(4))) } } } } } test("Create Hive table as select should output correct schema") { withSQLConf(CONVERT_METASTORE_PARQUET.key -> "false") { withTable("tbl", "tbl2") { withView("view1") { spark.sql("CREATE TABLE tbl(id long)") spark.sql("INSERT OVERWRITE TABLE tbl VALUES 4") spark.sql("CREATE VIEW view1 AS SELECT id FROM tbl") withTempPath { path => sql( s""" |CREATE TABLE tbl2 USING hive |OPTIONS(fileFormat 'parquet') |LOCATION '${path.toURI}' |AS SELECT ID FROM view1 """.stripMargin) val expectedSchema = StructType(Seq(StructField("ID", LongType, true))) assert(spark.read.parquet(path.toString).schema == expectedSchema) checkAnswer(spark.table("tbl2"), Seq(Row(4))) } } } } } test("SPARK-25313 Insert overwrite directory should output correct schema") { withSQLConf(CONVERT_METASTORE_PARQUET.key -> "false") { withTable("tbl") { withView("view1") { spark.sql("CREATE TABLE tbl(id long)") spark.sql("INSERT OVERWRITE TABLE tbl VALUES 4") spark.sql("CREATE VIEW view1 AS SELECT id FROM tbl") withTempPath { path => spark.sql(s"INSERT OVERWRITE LOCAL DIRECTORY '${path.getCanonicalPath}' " + "STORED AS PARQUET SELECT ID FROM view1") val expectedSchema = StructType(Seq(StructField("ID", LongType, true))) assert(spark.read.parquet(path.toString).schema == expectedSchema) checkAnswer(spark.read.parquet(path.toString), Seq(Row(4))) } } } } } test("alter table partition - storage information") { sql("CREATE TABLE boxes (height INT, length INT) PARTITIONED BY (width INT)") sql("INSERT OVERWRITE TABLE boxes PARTITION (width=4) SELECT 4, 4") val catalog = spark.sessionState.catalog val expectedSerde = "com.sparkbricks.serde.ColumnarSerDe" val expectedSerdeProps = Map("compress" -> "true") val expectedSerdePropsString = expectedSerdeProps.map { case (k, v) => s"'$k'='$v'" }.mkString(", ") val oldPart = catalog.getPartition(TableIdentifier("boxes"), Map("width" -> "4")) assume(oldPart.storage.serde != Some(expectedSerde), "bad test: serde was already set") assume(oldPart.storage.properties.filterKeys(expectedSerdeProps.contains) != expectedSerdeProps, "bad test: serde properties were already set") sql(s"""ALTER TABLE boxes PARTITION (width=4) | SET SERDE '$expectedSerde' | WITH SERDEPROPERTIES ($expectedSerdePropsString) |""".stripMargin) val newPart = catalog.getPartition(TableIdentifier("boxes"), Map("width" -> "4")) assert(newPart.storage.serde == Some(expectedSerde)) assert(newPart.storage.properties.filterKeys(expectedSerdeProps.contains) == expectedSerdeProps) } test("MSCK REPAIR RABLE") { val catalog = spark.sessionState.catalog val tableIdent = TableIdentifier("tab1") sql("CREATE TABLE tab1 (height INT, length INT) PARTITIONED BY (a INT, b INT)") val part1 = Map("a" -> "1", "b" -> "5") val part2 = Map("a" -> "2", "b" -> "6") val root = new Path(catalog.getTableMetadata(tableIdent).location) val fs = root.getFileSystem(spark.sessionState.newHadoopConf()) // valid fs.mkdirs(new Path(new Path(root, "a=1"), "b=5")) fs.createNewFile(new Path(new Path(root, "a=1/b=5"), "a.csv")) // file fs.createNewFile(new Path(new Path(root, "a=1/b=5"), "_SUCCESS")) // file fs.mkdirs(new Path(new Path(root, "A=2"), "B=6")) fs.createNewFile(new Path(new Path(root, "A=2/B=6"), "b.csv")) // file fs.createNewFile(new Path(new Path(root, "A=2/B=6"), "c.csv")) // file fs.createNewFile(new Path(new Path(root, "A=2/B=6"), ".hiddenFile")) // file fs.mkdirs(new Path(new Path(root, "A=2/B=6"), "_temporary")) // invalid fs.mkdirs(new Path(new Path(root, "a"), "b")) // bad name fs.mkdirs(new Path(new Path(root, "b=1"), "a=1")) // wrong order fs.mkdirs(new Path(root, "a=4")) // not enough columns fs.createNewFile(new Path(new Path(root, "a=1"), "b=4")) // file fs.createNewFile(new Path(new Path(root, "a=1"), "_SUCCESS")) // _SUCCESS fs.mkdirs(new Path(new Path(root, "a=1"), "_temporary")) // _temporary fs.mkdirs(new Path(new Path(root, "a=1"), ".b=4")) // start with . try { sql("MSCK REPAIR TABLE tab1") assert(catalog.listPartitions(tableIdent).map(_.spec).toSet == Set(part1, part2)) assert(catalog.getPartition(tableIdent, part1).parameters("numFiles") == "1") assert(catalog.getPartition(tableIdent, part2).parameters("numFiles") == "2") } finally { fs.delete(root, true) } } test("drop table using drop view") { withTable("tab1") { sql("CREATE TABLE tab1(c1 int)") val message = intercept[AnalysisException] { sql("DROP VIEW tab1") }.getMessage assert(message.contains("Cannot drop a table with DROP VIEW. Please use DROP TABLE instead")) } } test("drop view using drop table") { withTable("tab1") { spark.range(10).write.saveAsTable("tab1") withView("view1") { sql("CREATE VIEW view1 AS SELECT * FROM tab1") val message = intercept[AnalysisException] { sql("DROP TABLE view1") }.getMessage assert(message.contains("Cannot drop a view with DROP TABLE. Please use DROP VIEW instead")) } } } test("create view with mismatched schema") { withTable("tab1") { spark.range(10).write.saveAsTable("tab1") withView("view1") { val e = intercept[AnalysisException] { sql("CREATE VIEW view1 (col1, col3) AS SELECT * FROM tab1") }.getMessage assert(e.contains("the SELECT clause (num: `1`) does not match") && e.contains("CREATE VIEW (num: `2`)")) } } } test("create view with specified schema") { withView("view1") { sql("CREATE VIEW view1 (col1, col2) AS SELECT 1, 2") checkAnswer( sql("SELECT * FROM view1"), Row(1, 2) :: Nil ) } } test("desc table for Hive table - partitioned table") { withTable("tbl") { sql("CREATE TABLE tbl(a int) PARTITIONED BY (b int)") assert(sql("DESC tbl").collect().containsSlice( Seq( Row("a", "int", null), Row("b", "int", null), Row("# Partition Information", "", ""), Row("# col_name", "data_type", "comment"), Row("b", "int", null) ) )) } } test("desc table for Hive table - bucketed + sorted table") { withTable("tbl") { sql( s""" |CREATE TABLE tbl (id int, name string) |CLUSTERED BY(id) |SORTED BY(id, name) INTO 1024 BUCKETS |PARTITIONED BY (ds string) """.stripMargin) val x = sql("DESC FORMATTED tbl").collect() assert(x.containsSlice( Seq( Row("Num Buckets", "1024", ""), Row("Bucket Columns", "[`id`]", ""), Row("Sort Columns", "[`id`, `name`]", "") ) )) } } test("desc table for data source table using Hive Metastore") { assume(spark.sparkContext.conf.get(CATALOG_IMPLEMENTATION) == "hive") val tabName = "tab1" withTable(tabName) { sql(s"CREATE TABLE $tabName(a int comment 'test') USING parquet ") checkAnswer( sql(s"DESC $tabName").select("col_name", "data_type", "comment"), Row("a", "int", "test") :: Nil ) } } private def createDatabaseWithLocation(tmpDir: File, dirExists: Boolean): Unit = { val catalog = spark.sessionState.catalog val dbName = "db1" val tabName = "tab1" val fs = new Path(tmpDir.toString).getFileSystem(spark.sessionState.newHadoopConf()) withTable(tabName) { if (dirExists) { assert(tmpDir.listFiles.isEmpty) } else { assert(!fs.exists(new Path(tmpDir.toString))) } sql(s"CREATE DATABASE $dbName Location '${tmpDir.toURI.getPath.stripSuffix("/")}'") val db1 = catalog.getDatabaseMetadata(dbName) val dbPath = new URI(tmpDir.toURI.toString.stripSuffix("/")) assert(db1.copy(properties = db1.properties -- Seq(PROP_OWNER_NAME, PROP_OWNER_TYPE)) === CatalogDatabase(dbName, "", dbPath, Map.empty)) sql("USE db1") sql(s"CREATE TABLE $tabName as SELECT 1") assert(tableDirectoryExists(TableIdentifier(tabName), Option(tmpDir.toString))) assert(tmpDir.listFiles.nonEmpty) sql(s"DROP TABLE $tabName") assert(tmpDir.listFiles.isEmpty) sql("USE default") sql(s"DROP DATABASE $dbName") assert(!fs.exists(new Path(tmpDir.toString))) } } test("create/drop database - location without pre-created directory") { withTempPath { tmpDir => createDatabaseWithLocation(tmpDir, dirExists = false) } } test("create/drop database - location with pre-created directory") { withTempDir { tmpDir => createDatabaseWithLocation(tmpDir, dirExists = true) } } private def dropDatabase(cascade: Boolean, tableExists: Boolean): Unit = { val dbName = "db1" val dbPath = new Path(spark.sessionState.conf.warehousePath) val fs = dbPath.getFileSystem(spark.sessionState.newHadoopConf()) sql(s"CREATE DATABASE $dbName") val catalog = spark.sessionState.catalog val expectedDBLocation = s"file:${dbPath.toUri.getPath.stripSuffix("/")}/$dbName.db" val expectedDBUri = CatalogUtils.stringToURI(expectedDBLocation) val db1 = catalog.getDatabaseMetadata(dbName) assert(db1.copy(properties = db1.properties -- Seq(PROP_OWNER_NAME, PROP_OWNER_TYPE)) == CatalogDatabase( dbName, "", expectedDBUri, Map.empty)) // the database directory was created assert(fs.exists(dbPath) && fs.isDirectory(dbPath)) sql(s"USE $dbName") val tabName = "tab1" assert(!tableDirectoryExists(TableIdentifier(tabName), Option(expectedDBLocation))) sql(s"CREATE TABLE $tabName as SELECT 1") assert(tableDirectoryExists(TableIdentifier(tabName), Option(expectedDBLocation))) if (!tableExists) { sql(s"DROP TABLE $tabName") assert(!tableDirectoryExists(TableIdentifier(tabName), Option(expectedDBLocation))) } sql(s"USE default") val sqlDropDatabase = s"DROP DATABASE $dbName ${if (cascade) "CASCADE" else "RESTRICT"}" if (tableExists && !cascade) { val message = intercept[AnalysisException] { sql(sqlDropDatabase) }.getMessage assert(message.contains(s"Database $dbName is not empty. One or more tables exist.")) // the database directory was not removed assert(fs.exists(new Path(expectedDBLocation))) } else { sql(sqlDropDatabase) // the database directory was removed and the inclusive table directories are also removed assert(!fs.exists(new Path(expectedDBLocation))) } } test("drop database containing tables - CASCADE") { dropDatabase(cascade = true, tableExists = true) } test("drop an empty database - CASCADE") { dropDatabase(cascade = true, tableExists = false) } test("drop database containing tables - RESTRICT") { dropDatabase(cascade = false, tableExists = true) } test("drop an empty database - RESTRICT") { dropDatabase(cascade = false, tableExists = false) } test("drop default database") { Seq("true", "false").foreach { caseSensitive => withSQLConf(SQLConf.CASE_SENSITIVE.key -> caseSensitive) { var message = intercept[AnalysisException] { sql("DROP DATABASE default") }.getMessage assert(message.contains("Can not drop default database")) // SQLConf.CASE_SENSITIVE does not affect the result // because the Hive metastore is not case sensitive. message = intercept[AnalysisException] { sql("DROP DATABASE DeFault") }.getMessage assert(message.contains("Can not drop default database")) } } } test("Create Cataloged Table As Select - Drop Table After Runtime Exception") { withTable("tab") { intercept[SparkException] { sql( """ |CREATE TABLE tab |STORED AS TEXTFILE |SELECT 1 AS a, (SELECT a FROM (SELECT 1 AS a UNION ALL SELECT 2 AS a) t) AS b """.stripMargin) } // After hitting runtime exception, we should drop the created table. assert(!spark.sessionState.catalog.tableExists(TableIdentifier("tab"))) } } test("CREATE TABLE LIKE a temporary view") { Seq(None, Some("parquet"), Some("orc"), Some("hive")) foreach { provider => // CREATE TABLE LIKE a temporary view. withCreateTableLikeTempView(location = None, provider) // CREATE TABLE LIKE a temporary view location ... withTempDir { tmpDir => withCreateTableLikeTempView(Some(tmpDir.toURI.toString), provider) } } } private def withCreateTableLikeTempView( location : Option[String], provider: Option[String]): Unit = { val sourceViewName = "tab1" val targetTabName = "tab2" val tableType = if (location.isDefined) CatalogTableType.EXTERNAL else CatalogTableType.MANAGED withTempView(sourceViewName) { withTable(targetTabName) { spark.range(10).select($"id" as "a", $"id" as "b", $"id" as "c", $"id" as "d") .createTempView(sourceViewName) val locationClause = if (location.nonEmpty) s"LOCATION '${location.getOrElse("")}'" else "" val providerClause = if (provider.nonEmpty) s"USING ${provider.get}" else "" sql(s"CREATE TABLE $targetTabName LIKE $sourceViewName $providerClause $locationClause") val sourceTable = spark.sessionState.catalog.getTempViewOrPermanentTableMetadata( TableIdentifier(sourceViewName)) val targetTable = spark.sessionState.catalog.getTableMetadata( TableIdentifier(targetTabName, Some("default"))) checkCreateTableLike(sourceTable, targetTable, tableType, provider) } } } test("CREATE TABLE LIKE a data source table") { Seq(None, Some("parquet"), Some("orc"), Some("hive")) foreach { provider => // CREATE TABLE LIKE a data source table. withCreateTableLikeDSTable(location = None, provider) // CREATE TABLE LIKE a data source table location ... withTempDir { tmpDir => withCreateTableLikeDSTable(Some(tmpDir.toURI.toString), provider) } } } private def withCreateTableLikeDSTable( location : Option[String], provider: Option[String]): Unit = { val sourceTabName = "tab1" val targetTabName = "tab2" val tableType = if (location.isDefined) CatalogTableType.EXTERNAL else CatalogTableType.MANAGED withTable(sourceTabName, targetTabName) { spark.range(10).select($"id" as "a", $"id" as "b", $"id" as "c", $"id" as "d") .write.format("json").saveAsTable(sourceTabName) val locationClause = if (location.nonEmpty) s"LOCATION '${location.getOrElse("")}'" else "" val providerClause = if (provider.nonEmpty) s"USING ${provider.get}" else "" sql(s"CREATE TABLE $targetTabName LIKE $sourceTabName $providerClause $locationClause") val sourceTable = spark.sessionState.catalog.getTableMetadata( TableIdentifier(sourceTabName, Some("default"))) val targetTable = spark.sessionState.catalog.getTableMetadata( TableIdentifier(targetTabName, Some("default"))) // The table type of the source table should be a Hive-managed data source table assert(DDLUtils.isDatasourceTable(sourceTable)) assert(sourceTable.tableType == CatalogTableType.MANAGED) checkCreateTableLike(sourceTable, targetTable, tableType, provider) } } test("CREATE TABLE LIKE an external data source table") { Seq(None, Some("parquet"), Some("orc"), Some("hive")) foreach { provider => // CREATE TABLE LIKE an external data source table. withCreateTableLikeExtDSTable(location = None, provider) // CREATE TABLE LIKE an external data source table location ... withTempDir { tmpDir => withCreateTableLikeExtDSTable(Some(tmpDir.toURI.toString), provider) } } } private def withCreateTableLikeExtDSTable( location : Option[String], provider: Option[String]): Unit = { val sourceTabName = "tab1" val targetTabName = "tab2" val tableType = if (location.isDefined) CatalogTableType.EXTERNAL else CatalogTableType.MANAGED withTable(sourceTabName, targetTabName) { withTempPath { dir => val path = dir.getCanonicalPath spark.range(10).select($"id" as "a", $"id" as "b", $"id" as "c", $"id" as "d") .write.format("parquet").save(path) sql(s"CREATE TABLE $sourceTabName USING parquet OPTIONS (PATH '${dir.toURI}')") val locationClause = if (location.nonEmpty) s"LOCATION '${location.getOrElse("")}'" else "" val providerClause = if (provider.nonEmpty) s"USING ${provider.get}" else "" sql(s"CREATE TABLE $targetTabName LIKE $sourceTabName $providerClause $locationClause") // The source table should be an external data source table val sourceTable = spark.sessionState.catalog.getTableMetadata( TableIdentifier(sourceTabName, Some("default"))) val targetTable = spark.sessionState.catalog.getTableMetadata( TableIdentifier(targetTabName, Some("default"))) // The table type of the source table should be an external data source table assert(DDLUtils.isDatasourceTable(sourceTable)) assert(sourceTable.tableType == CatalogTableType.EXTERNAL) checkCreateTableLike(sourceTable, targetTable, tableType, provider) } } } test("CREATE TABLE LIKE a managed Hive serde table") { Seq(None, Some("parquet"), Some("orc"), Some("hive")) foreach { provider => // CREATE TABLE LIKE a managed Hive serde table. withCreateTableLikeManagedHiveTable(location = None, provider) // CREATE TABLE LIKE a managed Hive serde table location ... withTempDir { tmpDir => withCreateTableLikeManagedHiveTable(Some(tmpDir.toURI.toString), provider) } } } private def withCreateTableLikeManagedHiveTable( location : Option[String], provider: Option[String]): Unit = { val sourceTabName = "tab1" val targetTabName = "tab2" val tableType = if (location.isDefined) CatalogTableType.EXTERNAL else CatalogTableType.MANAGED val catalog = spark.sessionState.catalog withTable(sourceTabName, targetTabName) { sql(s"CREATE TABLE $sourceTabName TBLPROPERTIES('prop1'='value1') AS SELECT 1 key, 'a'") val locationClause = if (location.nonEmpty) s"LOCATION '${location.getOrElse("")}'" else "" val providerClause = if (provider.nonEmpty) s"USING ${provider.get}" else "" sql(s"CREATE TABLE $targetTabName LIKE $sourceTabName $providerClause $locationClause") val sourceTable = catalog.getTableMetadata( TableIdentifier(sourceTabName, Some("default"))) assert(sourceTable.tableType == CatalogTableType.MANAGED) assert(sourceTable.properties.get("prop1").nonEmpty) val targetTable = catalog.getTableMetadata( TableIdentifier(targetTabName, Some("default"))) checkCreateTableLike(sourceTable, targetTable, tableType, provider) } } test("CREATE TABLE LIKE an external Hive serde table") { Seq(None, Some("parquet"), Some("orc"), Some("hive")) foreach { provider => // CREATE TABLE LIKE an external Hive serde table. withCreateTableLikeExtHiveTable(location = None, provider) // CREATE TABLE LIKE an external Hive serde table location ... withTempDir { tmpDir => withCreateTableLikeExtHiveTable(Some(tmpDir.toURI.toString), provider) } } } private def withCreateTableLikeExtHiveTable( location : Option[String], provider: Option[String]): Unit = { val catalog = spark.sessionState.catalog val tableType = if (location.isDefined) CatalogTableType.EXTERNAL else CatalogTableType.MANAGED withTempDir { tmpDir => val basePath = tmpDir.toURI val sourceTabName = "tab1" val targetTabName = "tab2" withTable(sourceTabName, targetTabName) { assert(tmpDir.listFiles.isEmpty) sql( s""" |CREATE EXTERNAL TABLE $sourceTabName (key INT comment 'test', value STRING) |COMMENT 'Apache Spark' |PARTITIONED BY (ds STRING, hr STRING) |LOCATION '$basePath' """.stripMargin) for (ds <- Seq("2008-04-08", "2008-04-09"); hr <- Seq("11", "12")) { sql( s""" |INSERT OVERWRITE TABLE $sourceTabName |partition (ds='$ds',hr='$hr') |SELECT 1, 'a' """.stripMargin) } val locationClause = if (location.nonEmpty) s"LOCATION '${location.getOrElse("")}'" else "" val providerClause = if (provider.nonEmpty) s"USING ${provider.get}" else "" sql(s"CREATE TABLE $targetTabName LIKE $sourceTabName $providerClause $locationClause") val sourceTable = catalog.getTableMetadata( TableIdentifier(sourceTabName, Some("default"))) assert(sourceTable.tableType == CatalogTableType.EXTERNAL) assert(sourceTable.comment == Option("Apache Spark")) val targetTable = catalog.getTableMetadata( TableIdentifier(targetTabName, Some("default"))) checkCreateTableLike(sourceTable, targetTable, tableType, provider) } } } test("CREATE TABLE LIKE a view") { Seq(None, Some("parquet"), Some("orc"), Some("hive")) foreach { provider => // CREATE TABLE LIKE a view. withCreateTableLikeView(location = None, provider) // CREATE TABLE LIKE a view location ... withTempDir { tmpDir => withCreateTableLikeView(Some(tmpDir.toURI.toString), provider) } } } private def withCreateTableLikeView( location : Option[String], provider: Option[String]): Unit = { val sourceTabName = "tab1" val sourceViewName = "view" val targetTabName = "tab2" val tableType = if (location.isDefined) CatalogTableType.EXTERNAL else CatalogTableType.MANAGED withTable(sourceTabName, targetTabName) { withView(sourceViewName) { spark.range(10).select($"id" as "a", $"id" as "b", $"id" as "c", $"id" as "d") .write.format("json").saveAsTable(sourceTabName) sql(s"CREATE VIEW $sourceViewName AS SELECT * FROM $sourceTabName") val locationClause = if (location.nonEmpty) s"LOCATION '${location.getOrElse("")}'" else "" val providerClause = if (provider.nonEmpty) s"USING ${provider.get}" else "" sql(s"CREATE TABLE $targetTabName LIKE $sourceViewName $providerClause $locationClause") val sourceView = spark.sessionState.catalog.getTableMetadata( TableIdentifier(sourceViewName, Some("default"))) // The original source should be a VIEW with an empty path assert(sourceView.tableType == CatalogTableType.VIEW) assert(sourceView.viewText.nonEmpty) assert(sourceView.viewCatalogAndNamespace == Seq(CatalogManager.SESSION_CATALOG_NAME, "default")) assert(sourceView.viewQueryColumnNames == Seq("a", "b", "c", "d")) val targetTable = spark.sessionState.catalog.getTableMetadata( TableIdentifier(targetTabName, Some("default"))) checkCreateTableLike(sourceView, targetTable, tableType, provider) } } } private def checkCreateTableLike( sourceTable: CatalogTable, targetTable: CatalogTable, tableType: CatalogTableType, provider: Option[String]): Unit = { // The created table should be a MANAGED table or EXTERNAL table with empty view text // and original text. assert(targetTable.tableType == tableType, s"the created table must be a/an ${tableType.name} table") assert(targetTable.viewText.isEmpty, "the view text in the created table must be empty") assert(targetTable.viewCatalogAndNamespace.isEmpty, "the view catalog and namespace in the created table must be empty") assert(targetTable.viewQueryColumnNames.isEmpty, "the view query output columns in the created table must be empty") assert(targetTable.comment.isEmpty, "the comment in the created table must be empty") assert(targetTable.unsupportedFeatures.isEmpty, "the unsupportedFeatures in the create table must be empty") val metastoreGeneratedProperties = Seq( "CreateTime", "transient_lastDdlTime", "grantTime", "lastUpdateTime", "last_modified_by", "last_modified_time", "Owner:", "totalNumberFiles", "maxFileSize", "minFileSize" ) assert(targetTable.properties.filterKeys(!metastoreGeneratedProperties.contains(_)).isEmpty, "the table properties of source tables should not be copied in the created table") provider match { case Some(_) => assert(targetTable.provider == provider) if (DDLUtils.isHiveTable(provider)) { assert(DDLUtils.isHiveTable(targetTable), "the target table should be a hive table if provider is hive") } case None => if (sourceTable.tableType == CatalogTableType.VIEW) { // Source table is a temporary/permanent view, which does not have a provider. // The created target table uses the default data source format assert(targetTable.provider == Option(spark.sessionState.conf.defaultDataSourceName)) } else { assert(targetTable.provider == sourceTable.provider) } if (DDLUtils.isDatasourceTable(sourceTable) || sourceTable.tableType == CatalogTableType.VIEW) { assert(DDLUtils.isDatasourceTable(targetTable), "the target table should be a data source table") } else { assert(!DDLUtils.isDatasourceTable(targetTable), "the target table should be a Hive serde table") } } assert(targetTable.storage.locationUri.nonEmpty, "target table path should not be empty") // User-specified location and sourceTable's location can be same or different, // when we creating an external table. So we don't need to do this check if (tableType != CatalogTableType.EXTERNAL) { assert(sourceTable.storage.locationUri != targetTable.storage.locationUri, "source table/view path should be different from target table path") } // The source table contents should not been seen in the target table. assert(spark.table(sourceTable.identifier).count() != 0, "the source table should be nonempty") assert(spark.table(targetTable.identifier).count() == 0, "the target table should be empty") // Their schema should be identical checkAnswer( sql(s"DESC ${sourceTable.identifier}"), sql(s"DESC ${targetTable.identifier}")) withSQLConf("hive.exec.dynamic.partition.mode" -> "nonstrict") { // Check whether the new table can be inserted using the data from the original table sql(s"INSERT INTO TABLE ${targetTable.identifier} SELECT * FROM ${sourceTable.identifier}") } // After insertion, the data should be identical checkAnswer( sql(s"SELECT * FROM ${sourceTable.identifier}"), sql(s"SELECT * FROM ${targetTable.identifier}")) } test("create table with the same name as an index table") { val tabName = "tab1" val indexName = tabName + "_index" withTable(tabName) { // Spark SQL does not support creating index. Thus, we have to use Hive client. val client = spark.sharedState.externalCatalog.unwrapped.asInstanceOf[HiveExternalCatalog].client sql(s"CREATE TABLE $tabName(a int)") try { client.runSqlHive( s"CREATE INDEX $indexName ON TABLE $tabName (a) AS 'COMPACT' WITH DEFERRED REBUILD") val indexTabName = spark.sessionState.catalog.listTables("default", s"*$indexName*").head.table // Even if index tables exist, listTables and getTable APIs should still work checkAnswer( spark.catalog.listTables().toDF(), Row(indexTabName, "default", null, null, false) :: Row(tabName, "default", null, "MANAGED", false) :: Nil) assert(spark.catalog.getTable("default", indexTabName).name === indexTabName) intercept[TableAlreadyExistsException] { sql(s"CREATE TABLE $indexTabName(b int) USING hive") } intercept[TableAlreadyExistsException] { sql(s"ALTER TABLE $tabName RENAME TO $indexTabName") } // When tableExists is not invoked, we still can get an AnalysisException val e = intercept[AnalysisException] { sql(s"DESCRIBE $indexTabName") }.getMessage assert(e.contains("Hive index table is not supported.")) } finally { client.runSqlHive(s"DROP INDEX IF EXISTS $indexName ON $tabName") } } } test("insert skewed table") { val tabName = "tab1" withTable(tabName) { // Spark SQL does not support creating skewed table. Thus, we have to use Hive client. val client = spark.sharedState.externalCatalog.unwrapped.asInstanceOf[HiveExternalCatalog].client client.runSqlHive( s""" |CREATE Table $tabName(col1 int, col2 int) |PARTITIONED BY (part1 string, part2 string) |SKEWED BY (col1) ON (3, 4) STORED AS DIRECTORIES """.stripMargin) val hiveTable = spark.sessionState.catalog.getTableMetadata(TableIdentifier(tabName, Some("default"))) assert(hiveTable.unsupportedFeatures.contains("skewed columns")) // Call loadDynamicPartitions against a skewed table with enabling list bucketing sql( s""" |INSERT OVERWRITE TABLE $tabName |PARTITION (part1='a', part2) |SELECT 3, 4, 'b' """.stripMargin) // Call loadPartitions against a skewed table with enabling list bucketing sql( s""" |INSERT INTO TABLE $tabName |PARTITION (part1='a', part2='b') |SELECT 1, 2 """.stripMargin) checkAnswer( sql(s"SELECT * from $tabName"), Row(3, 4, "a", "b") :: Row(1, 2, "a", "b") :: Nil) } } test("desc table for data source table - no user-defined schema") { Seq("parquet", "json", "orc").foreach { fileFormat => withTable("t1") { withTempPath { dir => val path = dir.toURI.toString spark.range(1).write.format(fileFormat).save(path) sql(s"CREATE TABLE t1 USING $fileFormat OPTIONS (PATH '$path')") val desc = sql("DESC FORMATTED t1").collect().toSeq assert(desc.contains(Row("id", "bigint", null))) } } } } test("datasource and statistics table property keys are not allowed") { import org.apache.spark.sql.hive.HiveExternalCatalog.DATASOURCE_PREFIX import org.apache.spark.sql.hive.HiveExternalCatalog.STATISTICS_PREFIX withTable("tbl") { sql("CREATE TABLE tbl(a INT) STORED AS parquet") Seq(DATASOURCE_PREFIX, STATISTICS_PREFIX).foreach { forbiddenPrefix => val e = intercept[AnalysisException] { sql(s"ALTER TABLE tbl SET TBLPROPERTIES ('${forbiddenPrefix}foo' = 'loser')") } assert(e.getMessage.contains(forbiddenPrefix + "foo")) val e2 = intercept[AnalysisException] { sql(s"ALTER TABLE tbl UNSET TBLPROPERTIES ('${forbiddenPrefix}foo')") } assert(e2.getMessage.contains(forbiddenPrefix + "foo")) val e3 = intercept[AnalysisException] { sql(s"CREATE TABLE tbl2 (a INT) TBLPROPERTIES ('${forbiddenPrefix}foo'='anything')") } assert(e3.getMessage.contains(forbiddenPrefix + "foo")) } } } test("truncate table - datasource table") { import testImplicits._ val data = (1 to 10).map { i => (i, i) }.toDF("width", "length") // Test both a Hive compatible and incompatible code path. Seq("json", "parquet").foreach { format => withTable("rectangles") { data.write.format(format).saveAsTable("rectangles") assume(spark.table("rectangles").collect().nonEmpty, "bad test; table was empty to begin with") sql("TRUNCATE TABLE rectangles") assert(spark.table("rectangles").collect().isEmpty) // not supported since the table is not partitioned val e = intercept[AnalysisException] { sql("TRUNCATE TABLE rectangles PARTITION (width=1)") } assert(e.message.contains("Operation not allowed")) } } } test("truncate partitioned table - datasource table") { import testImplicits._ val data = (1 to 10).map { i => (i % 3, i % 5, i) }.toDF("width", "length", "height") withTable("partTable") { data.write.partitionBy("width", "length").saveAsTable("partTable") // supported since partitions are stored in the metastore sql("TRUNCATE TABLE partTable PARTITION (width=1, length=1)") assert(spark.table("partTable").filter($"width" === 1).collect().nonEmpty) assert(spark.table("partTable").filter($"width" === 1 && $"length" === 1).collect().isEmpty) } withTable("partTable") { data.write.partitionBy("width", "length").saveAsTable("partTable") // support partial partition spec sql("TRUNCATE TABLE partTable PARTITION (width=1)") assert(spark.table("partTable").collect().nonEmpty) assert(spark.table("partTable").filter($"width" === 1).collect().isEmpty) } withTable("partTable") { data.write.partitionBy("width", "length").saveAsTable("partTable") // do nothing if no partition is matched for the given partial partition spec sql("TRUNCATE TABLE partTable PARTITION (width=100)") assert(spark.table("partTable").count() == data.count()) // throw exception if no partition is matched for the given non-partial partition spec. intercept[NoSuchPartitionException] { sql("TRUNCATE TABLE partTable PARTITION (width=100, length=100)") } // throw exception if the column in partition spec is not a partition column. val e = intercept[AnalysisException] { sql("TRUNCATE TABLE partTable PARTITION (unknown=1)") } assert(e.message.contains("unknown is not a valid partition column")) } } test("create hive serde table with new syntax") { withTable("t", "t2", "t3") { withTempPath { path => sql( s""" |CREATE TABLE t(id int) USING hive |OPTIONS(fileFormat 'orc', compression 'Zlib') |LOCATION '${path.toURI}' """.stripMargin) val table = spark.sessionState.catalog.getTableMetadata(TableIdentifier("t")) assert(DDLUtils.isHiveTable(table)) assert(table.storage.serde == Some("org.apache.hadoop.hive.ql.io.orc.OrcSerde")) assert(table.storage.properties.get("compression") == Some("Zlib")) assert(spark.table("t").collect().isEmpty) sql("INSERT INTO t SELECT 1") checkAnswer(spark.table("t"), Row(1)) // Check if this is compressed as ZLIB. val maybeOrcFile = path.listFiles().find(_.getName.startsWith("part")) assertCompression(maybeOrcFile, "orc", "ZLIB") sql("CREATE TABLE t2 USING HIVE AS SELECT 1 AS c1, 'a' AS c2") val table2 = spark.sessionState.catalog.getTableMetadata(TableIdentifier("t2")) assert(DDLUtils.isHiveTable(table2)) assert(table2.storage.serde == Some("org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe")) checkAnswer(spark.table("t2"), Row(1, "a")) sql("CREATE TABLE t3(a int, p int) USING hive PARTITIONED BY (p)") sql("INSERT INTO t3 PARTITION(p=1) SELECT 0") checkAnswer(spark.table("t3"), Row(0, 1)) } } } test("create hive serde table with Catalog") { withTable("t") { withTempDir { dir => val df = spark.catalog.createTable( "t", "hive", new StructType().add("i", "int"), Map("path" -> dir.getCanonicalPath, "fileFormat" -> "parquet")) assert(df.collect().isEmpty) val table = spark.sessionState.catalog.getTableMetadata(TableIdentifier("t")) assert(DDLUtils.isHiveTable(table)) assert(table.storage.inputFormat == Some("org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat")) assert(table.storage.outputFormat == Some("org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat")) assert(table.storage.serde == Some("org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe")) sql("INSERT INTO t SELECT 1") checkAnswer(spark.table("t"), Row(1)) } } } test("create hive serde table with DataFrameWriter.saveAsTable") { withTable("t", "t1") { Seq(1 -> "a").toDF("i", "j") .write.format("hive").option("fileFormat", "avro").saveAsTable("t") checkAnswer(spark.table("t"), Row(1, "a")) Seq("c" -> 1).toDF("i", "j").write.format("hive") .mode(SaveMode.Overwrite).option("fileFormat", "parquet").saveAsTable("t") checkAnswer(spark.table("t"), Row("c", 1)) var table = spark.sessionState.catalog.getTableMetadata(TableIdentifier("t")) assert(DDLUtils.isHiveTable(table)) assert(table.storage.inputFormat == Some("org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat")) assert(table.storage.outputFormat == Some("org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat")) assert(table.storage.serde == Some("org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe")) Seq(9 -> "x").toDF("i", "j") .write.format("hive").mode(SaveMode.Overwrite).option("fileFormat", "avro").saveAsTable("t") checkAnswer(spark.table("t"), Row(9, "x")) table = spark.sessionState.catalog.getTableMetadata(TableIdentifier("t")) assert(DDLUtils.isHiveTable(table)) assert(table.storage.inputFormat == Some("org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat")) assert(table.storage.outputFormat == Some("org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat")) assert(table.storage.serde == Some("org.apache.hadoop.hive.serde2.avro.AvroSerDe")) val e2 = intercept[AnalysisException] { Seq(1 -> "a").toDF("i", "j").write.format("hive").bucketBy(4, "i").saveAsTable("t1") } assert(e2.message.contains("Creating bucketed Hive serde table is not supported yet")) val e3 = intercept[AnalysisException] { spark.table("t").write.format("hive").mode("overwrite").saveAsTable("t") } assert(e3.message.contains("Cannot overwrite table default.t that is also being read from")) } } test("append data to hive serde table") { withTable("t", "t1") { Seq(1 -> "a").toDF("i", "j") .write.format("hive").option("fileFormat", "avro").saveAsTable("t") checkAnswer(spark.table("t"), Row(1, "a")) sql("INSERT INTO t SELECT 2, 'b'") checkAnswer(spark.table("t"), Row(1, "a") :: Row(2, "b") :: Nil) Seq(3 -> "c").toDF("i", "j") .write.format("hive").mode("append").saveAsTable("t") checkAnswer(spark.table("t"), Row(1, "a") :: Row(2, "b") :: Row(3, "c") :: Nil) Seq(3.5 -> 3).toDF("i", "j") .write.format("hive").mode("append").saveAsTable("t") checkAnswer(spark.table("t"), Row(1, "a") :: Row(2, "b") :: Row(3, "c") :: Row(3, "3") :: Nil) Seq(4 -> "d").toDF("i", "j").write.saveAsTable("t1") val e = intercept[AnalysisException] { Seq(5 -> "e").toDF("i", "j") .write.format("hive").mode("append").saveAsTable("t1") } assert(e.message.contains("The format of the existing table default.t1 is ")) assert(e.message.contains("It doesn't match the specified format `HiveFileFormat`.")) } } test("create partitioned hive serde table as select") { withTable("t", "t1") { withSQLConf("hive.exec.dynamic.partition.mode" -> "nonstrict") { Seq(10 -> "y").toDF("i", "j").write.format("hive").partitionBy("i").saveAsTable("t") checkAnswer(spark.table("t"), Row("y", 10) :: Nil) Seq((1, 2, 3)).toDF("i", "j", "k").write.mode("overwrite").format("hive") .partitionBy("j", "k").saveAsTable("t") checkAnswer(spark.table("t"), Row(1, 2, 3) :: Nil) spark.sql("create table t1 using hive partitioned by (i) as select 1 as i, 'a' as j") checkAnswer(spark.table("t1"), Row("a", 1) :: Nil) } } } test("read/write files with hive data source is not allowed") { withTempDir { dir => val e = intercept[AnalysisException] { spark.read.format("hive").load(dir.getAbsolutePath) } assert(e.message.contains("Hive data source can only be used with tables")) val e2 = intercept[AnalysisException] { Seq(1 -> "a").toDF("i", "j").write.format("hive").save(dir.getAbsolutePath) } assert(e2.message.contains("Hive data source can only be used with tables")) val e3 = intercept[AnalysisException] { spark.readStream.format("hive").load(dir.getAbsolutePath) } assert(e3.message.contains("Hive data source can only be used with tables")) val e4 = intercept[AnalysisException] { spark.readStream.schema(new StructType()).parquet(dir.getAbsolutePath) .writeStream.format("hive").start(dir.getAbsolutePath) } assert(e4.message.contains("Hive data source can only be used with tables")) } } test("partitioned table should always put partition columns at the end of table schema") { def getTableColumns(tblName: String): Seq[String] = { spark.sessionState.catalog.getTableMetadata(TableIdentifier(tblName)).schema.map(_.name) } val provider = spark.sessionState.conf.defaultDataSourceName withTable("t", "t1", "t2", "t3", "t4", "t5", "t6") { sql(s"CREATE TABLE t(a int, b int, c int, d int) USING $provider PARTITIONED BY (d, b)") assert(getTableColumns("t") == Seq("a", "c", "d", "b")) sql(s"CREATE TABLE t1 USING $provider PARTITIONED BY (d, b) AS SELECT 1 a, 1 b, 1 c, 1 d") assert(getTableColumns("t1") == Seq("a", "c", "d", "b")) Seq((1, 1, 1, 1)).toDF("a", "b", "c", "d").write.partitionBy("d", "b").saveAsTable("t2") assert(getTableColumns("t2") == Seq("a", "c", "d", "b")) withTempPath { path => val dataPath = new File(new File(path, "d=1"), "b=1").getCanonicalPath Seq(1 -> 1).toDF("a", "c").write.save(dataPath) sql(s"CREATE TABLE t3 USING $provider LOCATION '${path.toURI}'") assert(getTableColumns("t3") == Seq("a", "c", "d", "b")) } sql("CREATE TABLE t4(a int, b int, c int, d int) USING hive PARTITIONED BY (d, b)") assert(getTableColumns("t4") == Seq("a", "c", "d", "b")) withSQLConf("hive.exec.dynamic.partition.mode" -> "nonstrict") { sql("CREATE TABLE t5 USING hive PARTITIONED BY (d, b) AS SELECT 1 a, 1 b, 1 c, 1 d") assert(getTableColumns("t5") == Seq("a", "c", "d", "b")) Seq((1, 1, 1, 1)).toDF("a", "b", "c", "d").write.format("hive") .partitionBy("d", "b").saveAsTable("t6") assert(getTableColumns("t6") == Seq("a", "c", "d", "b")) } } } test("create hive table with a non-existing location") { withTable("t", "t1") { withTempPath { dir => spark.sql(s"CREATE TABLE t(a int, b int) USING hive LOCATION '${dir.toURI}'") val table = spark.sessionState.catalog.getTableMetadata(TableIdentifier("t")) assert(table.location == makeQualifiedPath(dir.getAbsolutePath)) spark.sql("INSERT INTO TABLE t SELECT 1, 2") assert(dir.exists()) checkAnswer(spark.table("t"), Row(1, 2)) } // partition table withTempPath { dir => spark.sql( s""" |CREATE TABLE t1(a int, b int) |USING hive |PARTITIONED BY(a) |LOCATION '${dir.toURI}' """.stripMargin) val table = spark.sessionState.catalog.getTableMetadata(TableIdentifier("t1")) assert(table.location == makeQualifiedPath(dir.getAbsolutePath)) spark.sql("INSERT INTO TABLE t1 PARTITION(a=1) SELECT 2") val partDir = new File(dir, "a=1") assert(partDir.exists()) checkAnswer(spark.table("t1"), Row(2, 1)) } } } Seq(true, false).foreach { shouldDelete => val tcName = if (shouldDelete) "non-existing" else "existed" test(s"CTAS for external hive table with a $tcName location") { withTable("t", "t1") { withSQLConf("hive.exec.dynamic.partition.mode" -> "nonstrict") { withTempDir { dir => if (shouldDelete) dir.delete() spark.sql( s""" |CREATE TABLE t |USING hive |LOCATION '${dir.toURI}' |AS SELECT 3 as a, 4 as b, 1 as c, 2 as d """.stripMargin) val table = spark.sessionState.catalog.getTableMetadata(TableIdentifier("t")) assert(table.location == makeQualifiedPath(dir.getAbsolutePath)) checkAnswer(spark.table("t"), Row(3, 4, 1, 2)) } // partition table withTempDir { dir => if (shouldDelete) dir.delete() spark.sql( s""" |CREATE TABLE t1 |USING hive |PARTITIONED BY(a, b) |LOCATION '${dir.toURI}' |AS SELECT 3 as a, 4 as b, 1 as c, 2 as d """.stripMargin) val table = spark.sessionState.catalog.getTableMetadata(TableIdentifier("t1")) assert(table.location == makeQualifiedPath(dir.getAbsolutePath)) val partDir = new File(dir, "a=3") assert(partDir.exists()) checkAnswer(spark.table("t1"), Row(1, 2, 3, 4)) } } } } } Seq("parquet", "hive").foreach { datasource => Seq("a b", "a:b", "a%b", "a,b").foreach { specialChars => test(s"partition column name of $datasource table containing $specialChars") { withTable("t") { withTempDir { dir => spark.sql( s""" |CREATE TABLE t(a string, `$specialChars` string) |USING $datasource |PARTITIONED BY(`$specialChars`) |LOCATION '${dir.toURI}' """.stripMargin) assert(dir.listFiles().isEmpty) spark.sql(s"INSERT INTO TABLE t PARTITION(`$specialChars`=2) SELECT 1") val partEscaped = s"${ExternalCatalogUtils.escapePathName(specialChars)}=2" val partFile = new File(dir, partEscaped) assert(partFile.listFiles().nonEmpty) checkAnswer(spark.table("t"), Row("1", "2") :: Nil) withSQLConf("hive.exec.dynamic.partition.mode" -> "nonstrict") { spark.sql(s"INSERT INTO TABLE t PARTITION(`$specialChars`) SELECT 3, 4") val partEscaped1 = s"${ExternalCatalogUtils.escapePathName(specialChars)}=4" val partFile1 = new File(dir, partEscaped1) assert(partFile1.listFiles().nonEmpty) checkAnswer(spark.table("t"), Row("1", "2") :: Row("3", "4") :: Nil) } } } } } } Seq("a b", "a:b", "a%b").foreach { specialChars => test(s"hive table: location uri contains $specialChars") { // On Windows, it looks colon in the file name is illegal by default. See // https://support.microsoft.com/en-us/help/289627 assume(!Utils.isWindows || specialChars != "a:b") withTable("t") { withTempDir { dir => val loc = new File(dir, specialChars) loc.mkdir() // The parser does not recognize the backslashes on Windows as they are. // These currently should be escaped. val escapedLoc = loc.getAbsolutePath.replace("\\\\", "\\\\\\\\") spark.sql( s""" |CREATE TABLE t(a string) |USING hive |LOCATION '$escapedLoc' """.stripMargin) val table = spark.sessionState.catalog.getTableMetadata(TableIdentifier("t")) assert(table.location == makeQualifiedPath(loc.getAbsolutePath)) assert(new Path(table.location).toString.contains(specialChars)) assert(loc.listFiles().isEmpty) if (specialChars != "a:b") { spark.sql("INSERT INTO TABLE t SELECT 1") assert(loc.listFiles().length >= 1) checkAnswer(spark.table("t"), Row("1") :: Nil) } else { val e = intercept[AnalysisException] { spark.sql("INSERT INTO TABLE t SELECT 1") }.getMessage assert(e.contains("java.net.URISyntaxException: Relative path in absolute URI: a:b")) } } withTempDir { dir => val loc = new File(dir, specialChars) loc.mkdir() val escapedLoc = loc.getAbsolutePath.replace("\\\\", "\\\\\\\\") spark.sql( s""" |CREATE TABLE t1(a string, b string) |USING hive |PARTITIONED BY(b) |LOCATION '$escapedLoc' """.stripMargin) val table = spark.sessionState.catalog.getTableMetadata(TableIdentifier("t1")) assert(table.location == makeQualifiedPath(loc.getAbsolutePath)) assert(new Path(table.location).toString.contains(specialChars)) assert(loc.listFiles().isEmpty) if (specialChars != "a:b") { spark.sql("INSERT INTO TABLE t1 PARTITION(b=2) SELECT 1") val partFile = new File(loc, "b=2") assert(partFile.listFiles().nonEmpty) checkAnswer(spark.table("t1"), Row("1", "2") :: Nil) spark.sql("INSERT INTO TABLE t1 PARTITION(b='2017-03-03 12:13%3A14') SELECT 1") val partFile1 = new File(loc, "b=2017-03-03 12:13%3A14") assert(!partFile1.exists()) if (!Utils.isWindows) { // Actual path becomes "b=2017-03-03%2012%3A13%253A14" on Windows. val partFile2 = new File(loc, "b=2017-03-03 12%3A13%253A14") assert(partFile2.listFiles().nonEmpty) checkAnswer(spark.table("t1"), Row("1", "2") :: Row("1", "2017-03-03 12:13%3A14") :: Nil) } } else { val e = intercept[AnalysisException] { spark.sql("INSERT INTO TABLE t1 PARTITION(b=2) SELECT 1") }.getMessage assert(e.contains("java.net.URISyntaxException: Relative path in absolute URI: a:b")) val e1 = intercept[AnalysisException] { spark.sql("INSERT INTO TABLE t1 PARTITION(b='2017-03-03 12:13%3A14') SELECT 1") }.getMessage assert(e1.contains("java.net.URISyntaxException: Relative path in absolute URI: a:b")) } } } } } test("SPARK-19905: Hive SerDe table input paths") { withTable("spark_19905") { withTempView("spark_19905_view") { spark.range(10).createOrReplaceTempView("spark_19905_view") sql("CREATE TABLE spark_19905 STORED AS RCFILE AS SELECT * FROM spark_19905_view") assert(spark.table("spark_19905").inputFiles.nonEmpty) assert(sql("SELECT input_file_name() FROM spark_19905").count() > 0) } } } hiveFormats.foreach { tableType => test(s"alter hive serde table add columns -- partitioned - $tableType") { withTable("tab") { sql( s""" |CREATE TABLE tab (c1 int, c2 int) |PARTITIONED BY (c3 int) STORED AS $tableType """.stripMargin) sql("INSERT INTO tab PARTITION (c3=1) VALUES (1, 2)") sql("ALTER TABLE tab ADD COLUMNS (c4 int)") checkAnswer( sql("SELECT * FROM tab WHERE c3 = 1"), Seq(Row(1, 2, null, 1)) ) assert(spark.table("tab").schema .contains(StructField("c4", IntegerType))) sql("INSERT INTO tab PARTITION (c3=2) VALUES (2, 3, 4)") checkAnswer( spark.table("tab"), Seq(Row(1, 2, null, 1), Row(2, 3, 4, 2)) ) checkAnswer( sql("SELECT * FROM tab WHERE c3 = 2 AND c4 IS NOT NULL"), Seq(Row(2, 3, 4, 2)) ) sql("ALTER TABLE tab ADD COLUMNS (c5 char(10))") assert(spark.table("tab").schema.find(_.name == "c5") .get.metadata.getString("HIVE_TYPE_STRING") == "char(10)") } } } hiveFormats.foreach { tableType => test(s"alter hive serde table add columns -- with predicate - $tableType ") { withTable("tab") { sql(s"CREATE TABLE tab (c1 int, c2 int) STORED AS $tableType") sql("INSERT INTO tab VALUES (1, 2)") sql("ALTER TABLE tab ADD COLUMNS (c4 int)") checkAnswer( sql("SELECT * FROM tab WHERE c4 IS NULL"), Seq(Row(1, 2, null)) ) assert(spark.table("tab").schema .contains(StructField("c4", IntegerType))) sql("INSERT INTO tab VALUES (2, 3, 4)") checkAnswer( sql("SELECT * FROM tab WHERE c4 = 4 "), Seq(Row(2, 3, 4)) ) checkAnswer( spark.table("tab"), Seq(Row(1, 2, null), Row(2, 3, 4)) ) } } } Seq(true, false).foreach { caseSensitive => test(s"alter add columns with existing column name - caseSensitive $caseSensitive") { withSQLConf(SQLConf.CASE_SENSITIVE.key -> s"$caseSensitive") { withTable("tab") { sql("CREATE TABLE tab (c1 int) PARTITIONED BY (c2 int) STORED AS PARQUET") if (!caseSensitive) { // duplicating partitioning column name val e1 = intercept[AnalysisException] { sql("ALTER TABLE tab ADD COLUMNS (C2 string)") }.getMessage assert(e1.contains("Found duplicate column(s)")) // duplicating data column name val e2 = intercept[AnalysisException] { sql("ALTER TABLE tab ADD COLUMNS (C1 string)") }.getMessage assert(e2.contains("Found duplicate column(s)")) } else { // hive catalog will still complains that c1 is duplicate column name because hive // identifiers are case insensitive. val e1 = intercept[AnalysisException] { sql("ALTER TABLE tab ADD COLUMNS (C2 string)") }.getMessage assert(e1.contains("HiveException")) // hive catalog will still complains that c1 is duplicate column name because hive // identifiers are case insensitive. val e2 = intercept[AnalysisException] { sql("ALTER TABLE tab ADD COLUMNS (C1 string)") }.getMessage assert(e2.contains("HiveException")) } } } } } test("SPARK-21216: join with a streaming DataFrame") { import org.apache.spark.sql.execution.streaming.MemoryStream import testImplicits._ implicit val _sqlContext = spark.sqlContext Seq((1, "one"), (2, "two"), (4, "four")).toDF("number", "word").createOrReplaceTempView("t1") // Make a table and ensure it will be broadcast. sql("""CREATE TABLE smallTable(word string, number int) |ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' |STORED AS TEXTFILE """.stripMargin) sql( """INSERT INTO smallTable |SELECT word, number from t1 """.stripMargin) val inputData = MemoryStream[Int] val joined = inputData.toDS().toDF() .join(spark.table("smallTable"), $"value" === $"number") val sq = joined.writeStream .format("memory") .queryName("t2") .start() try { inputData.addData(1, 2) sq.processAllAvailable() checkAnswer( spark.table("t2"), Seq(Row(1, "one", 1), Row(2, "two", 2)) ) } finally { sq.stop() } } test("table name with schema") { // regression test for SPARK-11778 withDatabase("usrdb") { spark.sql("create schema usrdb") withTable("usrdb.test") { spark.sql("create table usrdb.test(c int)") spark.read.table("usrdb.test") } } } private def assertCompression(maybeFile: Option[File], format: String, compression: String) = { assert(maybeFile.isDefined) val actualCompression = format match { case "orc" => OrcFileOperator.getFileReader(maybeFile.get.toPath.toString).get.getCompression.name case "parquet" => val footer = ParquetFileReader.readFooter( sparkContext.hadoopConfiguration, new Path(maybeFile.get.getPath), NO_FILTER) footer.getBlocks.get(0).getColumns.get(0).getCodec.toString } assert(compression === actualCompression) } Seq(("orc", "ZLIB"), ("parquet", "GZIP")).foreach { case (fileFormat, compression) => test(s"SPARK-22158 convertMetastore should not ignore table property - $fileFormat") { withSQLConf(CONVERT_METASTORE_ORC.key -> "true", CONVERT_METASTORE_PARQUET.key -> "true") { withTable("t") { withTempPath { path => sql( s""" |CREATE TABLE t(id int) USING hive |OPTIONS(fileFormat '$fileFormat', compression '$compression') |LOCATION '${path.toURI}' """.stripMargin) val table = spark.sessionState.catalog.getTableMetadata(TableIdentifier("t")) assert(DDLUtils.isHiveTable(table)) assert(table.storage.serde.get.contains(fileFormat)) assert(table.storage.properties.get("compression") == Some(compression)) assert(spark.table("t").collect().isEmpty) sql("INSERT INTO t SELECT 1") checkAnswer(spark.table("t"), Row(1)) val maybeFile = path.listFiles().find(_.getName.startsWith("part")) assertCompression(maybeFile, fileFormat, compression) } } } } } private def getReader(path: String): org.apache.orc.Reader = { val conf = spark.sessionState.newHadoopConf() val files = org.apache.spark.sql.execution.datasources.orc.OrcUtils.listOrcFiles(path, conf) assert(files.length == 1) val file = files.head val fs = file.getFileSystem(conf) val readerOptions = org.apache.orc.OrcFile.readerOptions(conf).filesystem(fs) org.apache.orc.OrcFile.createReader(file, readerOptions) } test("SPARK-23355 convertMetastoreOrc should not ignore table properties - STORED AS") { Seq("native", "hive").foreach { orcImpl => withSQLConf(ORC_IMPLEMENTATION.key -> orcImpl, CONVERT_METASTORE_ORC.key -> "true") { withTable("t") { withTempPath { path => sql( s""" |CREATE TABLE t(id int) STORED AS ORC |TBLPROPERTIES ( | orc.compress 'ZLIB', | orc.compress.size '1001', | orc.row.index.stride '2002', | hive.exec.orc.default.block.size '3003', | hive.exec.orc.compression.strategy 'COMPRESSION') |LOCATION '${path.toURI}' """.stripMargin) val table = spark.sessionState.catalog.getTableMetadata(TableIdentifier("t")) assert(DDLUtils.isHiveTable(table)) assert(table.storage.serde.get.contains("orc")) val properties = table.properties assert(properties.get("orc.compress") == Some("ZLIB")) assert(properties.get("orc.compress.size") == Some("1001")) assert(properties.get("orc.row.index.stride") == Some("2002")) assert(properties.get("hive.exec.orc.default.block.size") == Some("3003")) assert(properties.get("hive.exec.orc.compression.strategy") == Some("COMPRESSION")) assert(spark.table("t").collect().isEmpty) sql("INSERT INTO t SELECT 1") checkAnswer(spark.table("t"), Row(1)) val maybeFile = path.listFiles().find(_.getName.startsWith("part")) Utils.tryWithResource(getReader(maybeFile.head.getCanonicalPath)) { reader => assert(reader.getCompressionKind.name === "ZLIB") assert(reader.getCompressionSize == 1001) assert(reader.getRowIndexStride == 2002) } } } } } } test("SPARK-23355 convertMetastoreParquet should not ignore table properties - STORED AS") { withSQLConf(CONVERT_METASTORE_PARQUET.key -> "true") { withTable("t") { withTempPath { path => sql( s""" |CREATE TABLE t(id int) STORED AS PARQUET |TBLPROPERTIES ( | parquet.compression 'GZIP' |) |LOCATION '${path.toURI}' """.stripMargin) val table = spark.sessionState.catalog.getTableMetadata(TableIdentifier("t")) assert(DDLUtils.isHiveTable(table)) assert(table.storage.serde.get.contains("parquet")) val properties = table.properties assert(properties.get("parquet.compression") == Some("GZIP")) assert(spark.table("t").collect().isEmpty) sql("INSERT INTO t SELECT 1") checkAnswer(spark.table("t"), Row(1)) val maybeFile = path.listFiles().find(_.getName.startsWith("part")) assertCompression(maybeFile, "parquet", "GZIP") } } } } test("load command for non local invalid path validation") { withTable("tbl") { sql("CREATE TABLE tbl(i INT, j STRING) USING hive") val e = intercept[AnalysisException]( sql("load data inpath '/doesnotexist.csv' into table tbl")) assert(e.message.contains("LOAD DATA input path does not exist")) } } test("SPARK-22252: FileFormatWriter should respect the input query schema in HIVE") { withTable("t1", "t2", "t3", "t4") { spark.range(1).select($"id" as "col1", $"id" as "col2").write.saveAsTable("t1") spark.sql("select COL1, COL2 from t1").write.format("hive").saveAsTable("t2") checkAnswer(spark.table("t2"), Row(0, 0)) // Test picking part of the columns when writing. spark.range(1).select($"id", $"id" as "col1", $"id" as "col2").write.saveAsTable("t3") spark.sql("select COL1, COL2 from t3").write.format("hive").saveAsTable("t4") checkAnswer(spark.table("t4"), Row(0, 0)) } } test("SPARK-24812: desc formatted table for last access verification") { withTable("t1") { sql( "CREATE TABLE IF NOT EXISTS t1 (c1_int INT, c2_string STRING, c3_float FLOAT)") val desc = sql("DESC FORMATTED t1").filter($"col_name".startsWith("Last Access")) .select("data_type") // check if the last access time doesn't have the default date of year // 1970 as its a wrong access time assert((desc.first.toString.contains("UNKNOWN"))) } } test("SPARK-24681 checks if nested column names do not include ',', ':', and ';'") { val expectedMsg = "Cannot create a table having a nested column whose name contains invalid " + "characters (',', ':', ';') in Hive metastore." Seq("nested,column", "nested:column", "nested;column").foreach { nestedColumnName => withTable("t") { val e = intercept[AnalysisException] { spark.range(1) .select(struct(lit(0).as(nestedColumnName)).as("toplevel")) .write .format("hive") .saveAsTable("t") }.getMessage assert(e.contains(expectedMsg)) } } } test("desc formatted table should also show viewOriginalText for views") { withView("v1", "v2") { sql("CREATE VIEW v1 AS SELECT 1 AS value") assert(sql("DESC FORMATTED v1").collect().containsSlice( Seq( Row("Type", "VIEW", ""), Row("View Text", "SELECT 1 AS value", ""), Row("View Original Text", "SELECT 1 AS value", "") ) )) hiveClient.runSqlHive("CREATE VIEW v2 AS SELECT * FROM (SELECT 1) T") assert(sql("DESC FORMATTED v2").collect().containsSlice( Seq( Row("Type", "VIEW", ""), Row("View Text", "SELECT `t`.`_c0` FROM (SELECT 1) `T`", ""), Row("View Original Text", "SELECT * FROM (SELECT 1) T", "") ) )) } } test("Hive CTAS can't create partitioned table by specifying schema") { val err1 = intercept[ParseException] { spark.sql( s""" |CREATE TABLE t (a int) |PARTITIONED BY (b string) |STORED AS parquet |AS SELECT 1 as a, "a" as b """.stripMargin) }.getMessage assert(err1.contains("Schema may not be specified in a Create Table As Select " + "(CTAS) statement")) val err2 = intercept[ParseException] { spark.sql( s""" |CREATE TABLE t |PARTITIONED BY (b string) |STORED AS parquet |AS SELECT 1 as a, "a" as b """.stripMargin) }.getMessage assert(err2.contains("Create Partitioned Table As Select cannot specify data type for " + "the partition columns of the target table")) } test("Hive CTAS with dynamic partition") { Seq("orc", "parquet").foreach { format => withTable("t") { withSQLConf("hive.exec.dynamic.partition.mode" -> "nonstrict") { spark.sql( s""" |CREATE TABLE t |PARTITIONED BY (b) |STORED AS $format |AS SELECT 1 as a, "a" as b """.stripMargin) checkAnswer(spark.table("t"), Row(1, "a")) assert(spark.sessionState.catalog.getTableMetadata(TableIdentifier("t")) .partitionColumnNames === Seq("b")) } } } } test("Create Table LIKE STORED AS Hive Format") { val catalog = spark.sessionState.catalog withTable("s") { sql("CREATE TABLE s(a INT, b INT) STORED AS ORC") hiveFormats.foreach { tableType => val expectedSerde = HiveSerDe.sourceToSerDe(tableType) withTable("t") { sql(s"CREATE TABLE t LIKE s STORED AS $tableType") val table = catalog.getTableMetadata(TableIdentifier("t")) assert(table.provider == Some("hive")) assert(table.storage.serde == expectedSerde.get.serde) assert(table.storage.inputFormat == expectedSerde.get.inputFormat) assert(table.storage.outputFormat == expectedSerde.get.outputFormat) } } } } test("Create Table LIKE with specified TBLPROPERTIES") { val catalog = spark.sessionState.catalog withTable("s", "t") { sql("CREATE TABLE s(a INT, b INT) USING hive TBLPROPERTIES('a'='apple')") val source = catalog.getTableMetadata(TableIdentifier("s")) assert(source.properties("a") == "apple") sql("CREATE TABLE t LIKE s STORED AS parquet TBLPROPERTIES('f'='foo', 'b'='bar')") val table = catalog.getTableMetadata(TableIdentifier("t")) assert(table.properties.get("a") === None) assert(table.properties("f") == "foo") assert(table.properties("b") == "bar") } } test("Create Table LIKE with row format") { val catalog = spark.sessionState.catalog withTable("sourceHiveTable", "sourceDsTable", "targetHiveTable1", "targetHiveTable2") { sql("CREATE TABLE sourceHiveTable(a INT, b INT) STORED AS PARQUET") sql("CREATE TABLE sourceDsTable(a INT, b INT) USING PARQUET") // row format doesn't work in create targetDsTable var e = intercept[AnalysisException] { spark.sql( """ |CREATE TABLE targetDsTable LIKE sourceHiveTable USING PARQUET |ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' """.stripMargin) }.getMessage assert(e.contains("'ROW FORMAT' must be used with 'STORED AS'")) // row format doesn't work with provider hive e = intercept[AnalysisException] { spark.sql( """ |CREATE TABLE targetHiveTable LIKE sourceHiveTable USING hive |ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' |WITH SERDEPROPERTIES ('test' = 'test') """.stripMargin) }.getMessage assert(e.contains("'ROW FORMAT' must be used with 'STORED AS'")) // row format doesn't work without 'STORED AS' e = intercept[AnalysisException] { spark.sql( """ |CREATE TABLE targetDsTable LIKE sourceDsTable |ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' |WITH SERDEPROPERTIES ('test' = 'test') """.stripMargin) }.getMessage assert(e.contains("'ROW FORMAT' must be used with 'STORED AS'")) // row format works with STORED AS hive format (from hive table) spark.sql( """ |CREATE TABLE targetHiveTable1 LIKE sourceHiveTable STORED AS PARQUET |ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' |WITH SERDEPROPERTIES ('test' = 'test') """.stripMargin) var table = catalog.getTableMetadata(TableIdentifier("targetHiveTable1")) assert(table.provider === Some("hive")) assert(table.storage.inputFormat === Some("org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat")) assert(table.storage.serde === Some("org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe")) assert(table.storage.properties("test") == "test") // row format works with STORED AS hive format (from datasource table) spark.sql( """ |CREATE TABLE targetHiveTable2 LIKE sourceDsTable STORED AS PARQUET |ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' |WITH SERDEPROPERTIES ('test' = 'test') """.stripMargin) table = catalog.getTableMetadata(TableIdentifier("targetHiveTable2")) assert(table.provider === Some("hive")) assert(table.storage.inputFormat === Some("org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat")) assert(table.storage.serde === Some("org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe")) assert(table.storage.properties("test") == "test") } } test("SPARK-30098: create table without provider should " + "use default data source under non-legacy mode") { val catalog = spark.sessionState.catalog withSQLConf( SQLConf.LEGACY_CREATE_HIVE_TABLE_BY_DEFAULT_ENABLED.key -> "false") { withTable("s") { val defaultProvider = conf.defaultDataSourceName sql("CREATE TABLE s(a INT, b INT)") val table = catalog.getTableMetadata(TableIdentifier("s")) assert(table.provider === Some(defaultProvider)) } } } test("SPARK-30098: create table without provider should " + "use hive under legacy mode") { val catalog = spark.sessionState.catalog withSQLConf( SQLConf.LEGACY_CREATE_HIVE_TABLE_BY_DEFAULT_ENABLED.key -> "true") { withTable("s") { sql("CREATE TABLE s(a INT, b INT)") val table = catalog.getTableMetadata(TableIdentifier("s")) assert(table.provider === Some("hive")) } } } }
jkbradley/spark
sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveDDLSuite.scala
Scala
apache-2.0
108,983
package com.wavesplatform.it.asset import com.typesafe.config.Config import com.wavesplatform.common.state.ByteStr import com.wavesplatform.common.utils.EitherExt2 import com.wavesplatform.features.BlockchainFeatures import com.wavesplatform.it.NodeConfigs import com.wavesplatform.it.NodeConfigs.Default import com.wavesplatform.it.api.LeaseInfo import com.wavesplatform.it.api.SyncHttpApi._ import com.wavesplatform.it.sync._ import com.wavesplatform.it.transactions.BaseTransactionSuite import com.wavesplatform.lang.v1.compiler.Terms.CONST_BYTESTR import com.wavesplatform.lang.v1.estimator.v3.ScriptEstimatorV3 import com.wavesplatform.lang.v1.traits.domain.{Lease, Recipient} import com.wavesplatform.transaction.TxVersion import com.wavesplatform.transaction.smart.script.ScriptCompiler class LeaseActionSuite extends BaseTransactionSuite { override protected def nodeConfigs: Seq[Config] = NodeConfigs .Builder(Default, 2, Seq.empty) .overrideBase(_.preactivatedFeatures((BlockchainFeatures.SynchronousCalls.id, 1))) .buildNonConflicting() private def compile(script: String): String = ScriptCompiler.compile(script, ScriptEstimatorV3(fixOverflow = true)).explicitGet()._1.bytes().base64 private val dAppLeaseAmount = 123 private val txLeaseAmount = 456 private lazy val dAppAcc = firstKeyPair private lazy val dAppAddress = firstAddress private lazy val invoker = secondKeyPair private lazy val invokerAddress = secondAddress test("set script") { val dApp = compile( s""" | {-# STDLIB_VERSION 5 #-} | {-# CONTENT_TYPE DAPP #-} | {-# SCRIPT_TYPE ACCOUNT #-} | | @Callable(i) | func lease() = { | [ | Lease(i.caller, $dAppLeaseAmount) | ] | } | | @Callable(i) | func leaseCancel(leaseId: ByteVector) = { | [ | LeaseCancel(leaseId) | ] | } """.stripMargin ) sender.setScript(dAppAcc, Some(dApp), waitForTx = true) } test("active leases") { val leaseTxId = sender.lease(dAppAcc, invokerAddress, txLeaseAmount, smartMinFee, TxVersion.V2, waitForTx = true).id val leaseTxHeight = sender.transactionStatus(leaseTxId).height.get val invokeId = sender.invokeScript(invoker, dAppAddress, Some("lease"), Nil, fee = invokeFee, waitForTx = true)._1.id val invokeHeight = sender.transactionStatus(invokeId).height.get val recipient = Recipient.Address(ByteStr.decodeBase58(invokerAddress).get) val leaseActionId = Lease.calculateId(Lease(recipient, dAppLeaseAmount, 0), ByteStr.decodeBase58(invokeId).get).toString sender.activeLeases(dAppAddress) should contain theSameElementsAs Seq( LeaseInfo(leaseTxId, leaseTxId, dAppAddress, invokerAddress, txLeaseAmount, leaseTxHeight), LeaseInfo(leaseActionId, invokeId, dAppAddress, invokerAddress, dAppLeaseAmount, invokeHeight) ) val leaseTxIdParam = List(CONST_BYTESTR(ByteStr.decodeBase58(leaseTxId).get).explicitGet()) sender.invokeScript(dAppAcc, dAppAddress, Some("leaseCancel"), leaseTxIdParam, fee = invokeFee, waitForTx = true) sender.activeLeases(dAppAddress) shouldBe Seq( LeaseInfo(leaseActionId, invokeId, dAppAddress, invokerAddress, dAppLeaseAmount, invokeHeight) ) } }
wavesplatform/Waves
node-it/src/test/scala/com/wavesplatform/it/asset/LeaseActionSuite.scala
Scala
mit
3,362
package com.sfxcode.sapphire.extension.concurrent.akka import java.util.concurrent.{ ExecutorService, ThreadFactory } import akka.dispatch.{ DispatcherPrerequisites, ExecutorServiceConfigurator, ExecutorServiceFactory } import com.typesafe.config.Config class JavaFXEventThreadExecutorServiceConfigurator(config: Config, prerequisites: DispatcherPrerequisites) extends ExecutorServiceConfigurator(config, prerequisites) { private val f = new ExecutorServiceFactory { def createExecutorService: ExecutorService = JavaFXExecutorService } def createExecutorServiceFactory(id: String, threadFactory: ThreadFactory): ExecutorServiceFactory = f }
sfxcode/sapphire-extension
src/main/scala/com/sfxcode/sapphire/extension/concurrent/akka/JavaFXEventThreadExecutorServiceConfigurator.scala
Scala
apache-2.0
657
package com.redis.serialization object Format { def apply(f: PartialFunction[Any, Any]): Format = new Format(f) implicit val default: Format = new Format(Map.empty) def formatDouble(d: Double, inclusive: Boolean = true) = (if (inclusive) ("") else ("(")) + { if (d.isInfinity) { if (d > 0.0) "+inf" else "-inf" } else { d.toString } } } class Format(val format: PartialFunction[Any, Any]) { def apply(in: Any): Array[Byte] = (if (format.isDefinedAt(in)) (format(in)) else (in)) match { case b: Array[Byte] => b case d: Double => Format.formatDouble(d, true).getBytes("UTF-8") case x => x.toString.getBytes("UTF-8") } def orElse(that: Format): Format = Format(format orElse that.format) def orElse(that: PartialFunction[Any, Any]): Format = Format(format orElse that) } object Parse { def apply[T](f: (Array[Byte]) => T) = new Parse[T](f) object Implicits { implicit val parseString = Parse[String](new String(_, "UTF-8")) implicit val parseByteArray = Parse[Array[Byte]](x => x) implicit val parseInt = Parse[Int](new String(_, "UTF-8").toInt) implicit val parseLong = Parse[Long](new String(_, "UTF-8").toLong) implicit val parseDouble = Parse[Double](new String(_, "UTF-8").toDouble) } implicit val parseDefault = Parse[String](new String(_, "UTF-8")) val parseStringSafe = Parse[String](xs => new String(xs.iterator.flatMap{ case x if x > 31 && x < 127 => Iterator.single(x.toChar) case 10 => "\\\\n".iterator case 13 => "\\\\r".iterator case x => "\\\\x%02x".format(x).iterator }.toArray)) } class Parse[A](val f: (Array[Byte]) => A) extends Function1[Array[Byte], A] { def apply(in: Array[Byte]): A = f(in) }
Tjoene/thesis
Case_Programs/scala-redis-2.9-pre-scala-2.10/src/main/scala/com/redis/Serialization.scala
Scala
gpl-2.0
1,750
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.execution.command.schema import scala.collection.JavaConverters._ import org.apache.spark.sql.{CarbonEnv, Row, SparkSession} import org.apache.spark.sql.execution.command.{AlterTableDataTypeChangeModel, RunnableCommand} import org.apache.spark.sql.hive.{CarbonRelation, CarbonSessionState} import org.apache.spark.util.AlterTableUtil import org.apache.carbondata.common.logging.{LogService, LogServiceFactory} import org.apache.carbondata.core.locks.{ICarbonLock, LockUsage} import org.apache.carbondata.core.metadata.schema.table.CarbonTable import org.apache.carbondata.core.util.path.CarbonStorePath import org.apache.carbondata.events.{AlterTableAddColumnPreEvent, AlterTableDataTypeChangePreEvent, OperationListenerBus} import org.apache.carbondata.format.{ColumnSchema, SchemaEvolutionEntry, TableInfo} import org.apache.carbondata.spark.util.{CarbonScalaUtil, DataTypeConverterUtil} private[sql] case class CarbonAlterTableDataTypeChangeCommand( alterTableDataTypeChangeModel: AlterTableDataTypeChangeModel) extends RunnableCommand { override def run(sparkSession: SparkSession): Seq[Row] = { val LOGGER: LogService = LogServiceFactory.getLogService(this.getClass.getCanonicalName) val tableName = alterTableDataTypeChangeModel.tableName val dbName = alterTableDataTypeChangeModel.databaseName .getOrElse(sparkSession.catalog.currentDatabase) LOGGER.audit(s"Alter table change data type request has been received for $dbName.$tableName") val locksToBeAcquired = List(LockUsage.METADATA_LOCK, LockUsage.COMPACTION_LOCK) var locks = List.empty[ICarbonLock] // get the latest carbon table and check for column existence var carbonTable: CarbonTable = null var timeStamp = 0L try { locks = AlterTableUtil .validateTableAndAcquireLock(dbName, tableName, locksToBeAcquired)(sparkSession) val metastore = CarbonEnv.getInstance(sparkSession).carbonMetastore carbonTable = metastore .lookupRelation(Some(dbName), tableName)(sparkSession).asInstanceOf[CarbonRelation] .tableMeta.carbonTable val alterTableDataTypeChangeListener = AlterTableDataTypeChangePreEvent(carbonTable, alterTableDataTypeChangeModel) OperationListenerBus.getInstance().fireEvent(alterTableDataTypeChangeListener) val columnName = alterTableDataTypeChangeModel.columnName val carbonColumns = carbonTable.getCreateOrderColumn(tableName).asScala.filter(!_.isInvisible) if (!carbonColumns.exists(_.getColName.equalsIgnoreCase(columnName))) { LOGGER.audit(s"Alter table change data type request has failed. " + s"Column $columnName does not exist") sys.error(s"Column does not exist: $columnName") } val carbonColumn = carbonColumns.filter(_.getColName.equalsIgnoreCase(columnName)) if (carbonColumn.size == 1) { CarbonScalaUtil .validateColumnDataType(alterTableDataTypeChangeModel.dataTypeInfo, carbonColumn.head) } else { LOGGER.audit(s"Alter table change data type request has failed. " + s"Column $columnName is invalid") sys.error(s"Invalid Column: $columnName") } // read the latest schema file val carbonTablePath = CarbonStorePath.getCarbonTablePath(carbonTable.getStorePath, carbonTable.getCarbonTableIdentifier) val tableInfo: TableInfo = metastore.getThriftTableInfo(carbonTablePath)(sparkSession) // maintain the added column for schema evolution history var addColumnSchema: ColumnSchema = null var deletedColumnSchema: ColumnSchema = null val columnSchemaList = tableInfo.fact_table.table_columns.asScala.filter(!_.isInvisible) columnSchemaList.foreach { columnSchema => if (columnSchema.column_name.equalsIgnoreCase(columnName)) { deletedColumnSchema = columnSchema.deepCopy columnSchema.setData_type(DataTypeConverterUtil .convertToThriftDataType(alterTableDataTypeChangeModel.dataTypeInfo.dataType)) columnSchema.setPrecision(alterTableDataTypeChangeModel.dataTypeInfo.precision) columnSchema.setScale(alterTableDataTypeChangeModel.dataTypeInfo.scale) addColumnSchema = columnSchema } } timeStamp = System.currentTimeMillis val schemaEvolutionEntry = new SchemaEvolutionEntry(timeStamp) schemaEvolutionEntry.setAdded(List(addColumnSchema).asJava) schemaEvolutionEntry.setRemoved(List(deletedColumnSchema).asJava) tableInfo.getFact_table.getSchema_evolution.getSchema_evolution_history.get(0) .setTime_stamp(System.currentTimeMillis) AlterTableUtil .updateSchemaInfo(carbonTable, schemaEvolutionEntry, tableInfo)(sparkSession, sparkSession.sessionState.asInstanceOf[CarbonSessionState]) LOGGER.info(s"Alter table for data type change is successful for table $dbName.$tableName") LOGGER.audit(s"Alter table for data type change is successful for table $dbName.$tableName") } catch { case e: Exception => LOGGER .error("Alter table change datatype failed : " + e.getMessage) if (carbonTable != null) { AlterTableUtil.revertDataTypeChanges(dbName, tableName, timeStamp)(sparkSession) } sys.error(s"Alter table data type change operation failed: ${e.getMessage}") } finally { // release lock after command execution completion AlterTableUtil.releaseLocks(locks) } Seq.empty } }
HuaweiBigData/carbondata
integration/spark2/src/main/scala/org/apache/spark/sql/execution/command/schema/CarbonAlterTableDataTypeChangeCommand.scala
Scala
apache-2.0
6,360
package mr.merc.ai import mr.merc.map.hex.TerrainHex import mr.merc.map.terrain.TerrainType._ import mr.merc.unit.Soldier import mr.merc.players.Player import org.scalatest._ import mr.merc.unit.AttackAttribute._ import org.scalatest.funsuite.AnyFunSuite import org.scalatest.matchers.should.Matchers class AttackResultPredictorTest extends AnyFunSuite with Matchers { import mr.merc.unit.TestUtil._ val attackerHex = new TerrainHex(0, 0, DesertSand) val defenderHex = new TerrainHex(0, 1, DesertSand) test("simple prediction") { val attacker = new Soldier("1", soldierType(10, 60, 10, 1), Player("1")) val defender = new Soldier("2", soldierType(10, 40, 10, 1), Player("2")) val pred = AttackResultPredictor.predictResult(attacker, defender, attackerHex, defenderHex, attacker.soldierType.attacks(0), Some(defender.soldierType.attacks(0))) assert(pred.defenderDies === 0.6) assert(pred.attackerDies === 0.4 * 0.4) assert(pred.expectedDamageToAttacker === 0.4 * 0.4 * 10) assert(pred.expectedDamageToDefender === 0.6 * 10) } test("complex prediction") { val attacker = new Soldier("1", soldierType(10, 60, 5, 2), Player("1")) val defender = new Soldier("2", soldierType(10, 40, 5, 2), Player("2")) val pred = AttackResultPredictor.predictResult(attacker, defender, attackerHex, defenderHex, attacker.soldierType.attacks(0), Some(defender.soldierType.attacks(0))) assert(pred.defenderDies === 0.6 * 0.6) assert(pred.attackerDies === 0.4 * 0.4 * (1 - 0.6 * 0.6)) pred.expectedDamageToAttacker should be(((1 - 0.6 * 0.6) * 10 * 0.4 + 0.6 * 0.6 * 5 * 0.4) +- 0.01) pred.expectedDamageToDefender should be(6d +- 0.01) } test("prediction with defender without attack") { val attacker = new Soldier("1", soldierType(10, 40, 5, 2), Player("1")) val defender = new Soldier("2", soldierType(10, 60, 10, 1), Player("2")) val pred = AttackResultPredictor.predictResult(attacker, defender, attackerHex, defenderHex, attacker.soldierType.attacks(0), None) assert(pred.attackerDies === 0) assert(pred.defenderDies === 0.4 * 0.4) assert(pred.expectedDamageToAttacker === 0) assert(pred.expectedDamageToDefender === 4) } test("prediction with defender first strike") { val attacker = new Soldier("1", soldierType(10, 40, 10, 1), Player("1")) val defender = new Soldier("2", soldierType(10, 60, 10, 1, Set(Firststrike)), Player("2")) val pred = AttackResultPredictor.predictResult(attacker, defender, attackerHex, defenderHex, attacker.soldierType.attacks(0), Some(defender.soldierType.attacks(0))) assert(pred.attackerDies === 0.6) assert(pred.defenderDies === 0.4 * 0.4) assert(pred.expectedDamageToDefender === 0.4 * 0.4 * 10) assert(pred.expectedDamageToAttacker === 0.6 * 10) } test("prediction with attacker first strike") { val attacker = new Soldier("1", soldierType(10, 60, 10, 1, Set(Firststrike)), Player("1")) val defender = new Soldier("2", soldierType(10, 40, 10, 1), Player("2")) val pred = AttackResultPredictor.predictResult(attacker, defender, attackerHex, defenderHex, attacker.soldierType.attacks(0), Some(defender.soldierType.attacks(0))) assert(pred.defenderDies === 0.6) assert(pred.attackerDies === 0.4 * 0.4) assert(pred.expectedDamageToAttacker === 0.4 * 0.4 * 10) assert(pred.expectedDamageToDefender === 0.6 * 10) } test("prediction with attacker berserk") { val attacker = new Soldier("1", soldierType(10, 60, 10, 1, Set(Berserk)), Player("1")) val defender = new Soldier("2", soldierType(10, 40, 0, 1), Player("2")) val pred = AttackResultPredictor.predictResult(attacker, defender, attackerHex, defenderHex, attacker.soldierType.attacks(0), Some(defender.soldierType.attacks(0))) assert(pred.defenderDies > 0.9) assert(pred.attackerDies === 0) assert(pred.expectedDamageToAttacker === 0) assert(pred.expectedDamageToDefender > 9) } test("prediction with defender berserk") { val attacker = new Soldier("1", soldierType(10, 60, 10, 1), Player("1")) val defender = new Soldier("2", soldierType(10, 40, 0, 1, Set(Berserk)), Player("2")) val pred = AttackResultPredictor.predictResult(attacker, defender, attackerHex, defenderHex, attacker.soldierType.attacks(0), Some(defender.soldierType.attacks(0))) assert(pred.defenderDies > 0.9) assert(pred.attackerDies === 0) assert(pred.expectedDamageToAttacker === 0) assert(pred.expectedDamageToDefender > 9) } test("prediction with attacker who drains") { val attacker = new Soldier("1", soldierType(10, 50, 10, 1, Set(Drain)), Player("1")) val defender = new Soldier("2", soldierType(10, 50, 10, 1), Player("2")) attacker.hp = 5 val pred = AttackResultPredictor.predictResult(attacker, defender, attackerHex, defenderHex, attacker.soldierType.attacks(0), Some(defender.soldierType.attacks(0))) assert(pred.defenderDies === 0.5) assert(pred.attackerDies === 0.5 * 0.5) assert(pred.expectedDamageToAttacker === 0.5 * 0.5 * 5 - 0.5 * 5) assert(pred.expectedDamageToDefender === 10 / 2) } test("prediction with defender who drains") { val attacker = new Soldier("1", soldierType(10, 50, 5, 1), Player("1")) val defender = new Soldier("2", soldierType(10, 50, 10, 1, Set(Drain)), Player("2")) val pred = AttackResultPredictor.predictResult(attacker, defender, attackerHex, defenderHex, attacker.soldierType.attacks(0), Some(defender.soldierType.attacks(0))) assert(pred.defenderDies === 0) assert(pred.attackerDies === 0.5) assert(pred.expectedDamageToAttacker === 5) assert(pred.expectedDamageToDefender === (0.5 * 5) - (0.5 * 0.5 * 10 / 2)) } }
RenualdMarch/merc
src/test/scala/mr/merc/ai/AttackResultPredictorTest.scala
Scala
gpl-3.0
5,713
package com.twitter.finagle.stats import com.twitter.ostrich.Stats class OstrichStatsReceiver extends StatsReceiverWithCumulativeGauges { val repr: AnyRef = Stats protected[this] def registerGauge(name: Seq[String], f: => Float) { Stats.makeGauge(variableName(name)) { f } } protected[this] def deregisterGauge(name: Seq[String]) { Stats.clearGauge(variableName(name)) } def counter(name: String*) = new Counter { private[this] val name_ = variableName(name) def incr(delta: Int) { Stats.incr(name_, delta) } } def stat(name: String*) = new Stat { private[this] val name_ = variableName(name) def add(value: Float) { Stats.addTiming(name_, value.toInt) } } private[this] def variableName(name: Seq[String]) = name mkString "/" }
enachb/finagle_2.9_durgh
finagle-ostrich/src/main/scala/com/twitter/finagle/stats/OstrichStatsReceiver.scala
Scala
apache-2.0
792
package me.lachlanap.toc4pdf.proc import org.apache.pdfbox.pdmodel.PDDocument import org.apache.pdfbox.pdmodel.interactive.action.`type`._ import org.apache.pdfbox.pdmodel.interactive.documentnavigation.destination._ import org.apache.pdfbox.pdmodel.interactive.documentnavigation.outline.PDOutlineItem import me.lachlanap.toc4pdf.model._ class BookmarkParser(document: PDDocument) { def bookmarks: Outline = { val outline = document.getDocumentCatalog().getDocumentOutline() Outline(outlineItemsAsStream(outline.getFirstChild).map { item => processItem(item) }) } private def outlineItemsAsStream(item: PDOutlineItem): Stream[PDOutlineItem] = { if (item == null) Stream.empty else item #:: outlineItemsAsStream(item.getNextSibling) } private def processItem(item: PDOutlineItem, depth: String = ""): Bookmark = { val children = outlineItemsAsStream(item.getFirstChild).map(processItem(_)) item.getAction match { case actionLaunch: PDActionLaunch => ExternalBookmark(item.getTitle, children, actionLaunch.getFile.getFile) case actionGoto: PDActionGoTo => InternalBookmark(item.getTitle, children, pageNumber(actionGoto), zoom(actionGoto)) } } private def pageNumber(actionGoto: PDActionGoTo): Int = { actionGoto.getDestination match { case pageDestination: PDPageDestination => pageNumber(pageDestination) case _ => 0 } } private def pageNumber(pageDestination: PDPageDestination) = if (pageDestination.getPageNumber < 0) pageDestination.findPageNumber else pageDestination.getPageNumber private def zoom(actionGoto: PDActionGoTo): Zoom = { actionGoto.getDestination match { case pageDestination: PDPageDestination => zoom(pageDestination) case _ => ZoomFitWidth } } private def zoom(destination: PDPageDestination) = destination match { case _: PDPageFitWidthDestination => ZoomFitWidth case _: PDPageFitHeightDestination => ZoomFitHeight case _: PDPageFitRectangleDestination => ZoomFitRectangle case _: PDPageFitDestination => ZoomFitPage case _: PDPageXYZDestination => ZoomAbsolute case _ => ZoomOther } }
thorinii/toc4pdf
src/main/scala/me/lachlanap/toc4pdf/proc/BookmarkParser.scala
Scala
mit
2,321
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.catalyst.optimizer import org.apache.spark.sql.catalyst.expressions._ import org.apache.spark.sql.catalyst.plans.logical._ import org.apache.spark.sql.internal.SQLConf import org.apache.spark.sql.types._ /** * This aims to handle a nested column aliasing pattern inside the `ColumnPruning` optimizer rule. * If a project or its child references to nested fields, and not all the fields * in a nested attribute are used, we can substitute them by alias attributes; then a project * of the nested fields as aliases on the children of the child will be created. */ object NestedColumnAliasing { def unapply(plan: LogicalPlan): Option[LogicalPlan] = plan match { /** * This pattern is needed to support [[Filter]] plan cases like * [[Project]]->[[Filter]]->listed plan in `canProjectPushThrough` (e.g., [[Window]]). * The reason why we don't simply add [[Filter]] in `canProjectPushThrough` is that * the optimizer can hit an infinite loop during the [[PushDownPredicates]] rule. */ case Project(projectList, Filter(condition, child)) if SQLConf.get.nestedSchemaPruningEnabled && canProjectPushThrough(child) => val exprCandidatesToPrune = projectList ++ Seq(condition) ++ child.expressions getAliasSubMap(exprCandidatesToPrune, child.producedAttributes.toSeq).map { case (nestedFieldToAlias, attrToAliases) => NestedColumnAliasing.replaceToAliases(plan, nestedFieldToAlias, attrToAliases) } case Project(projectList, child) if SQLConf.get.nestedSchemaPruningEnabled && canProjectPushThrough(child) => val exprCandidatesToPrune = projectList ++ child.expressions getAliasSubMap(exprCandidatesToPrune, child.producedAttributes.toSeq).map { case (nestedFieldToAlias, attrToAliases) => NestedColumnAliasing.replaceToAliases(plan, nestedFieldToAlias, attrToAliases) } case p if SQLConf.get.nestedSchemaPruningEnabled && canPruneOn(p) => val exprCandidatesToPrune = p.expressions getAliasSubMap(exprCandidatesToPrune, p.producedAttributes.toSeq).map { case (nestedFieldToAlias, attrToAliases) => NestedColumnAliasing.replaceToAliases(p, nestedFieldToAlias, attrToAliases) } case _ => None } /** * Replace nested columns to prune unused nested columns later. */ private def replaceToAliases( plan: LogicalPlan, nestedFieldToAlias: Map[ExtractValue, Alias], attrToAliases: Map[ExprId, Seq[Alias]]): LogicalPlan = plan match { case Project(projectList, child) => Project( getNewProjectList(projectList, nestedFieldToAlias), replaceWithAliases(child, nestedFieldToAlias, attrToAliases)) // The operators reaching here was already guarded by `canPruneOn`. case other => replaceWithAliases(other, nestedFieldToAlias, attrToAliases) } /** * Return a replaced project list. */ def getNewProjectList( projectList: Seq[NamedExpression], nestedFieldToAlias: Map[ExtractValue, Alias]): Seq[NamedExpression] = { projectList.map(_.transform { case f: ExtractValue if nestedFieldToAlias.contains(f) => nestedFieldToAlias(f).toAttribute }.asInstanceOf[NamedExpression]) } /** * Return a plan with new children replaced with aliases, and expressions replaced with * aliased attributes. */ def replaceWithAliases( plan: LogicalPlan, nestedFieldToAlias: Map[ExtractValue, Alias], attrToAliases: Map[ExprId, Seq[Alias]]): LogicalPlan = { plan.withNewChildren(plan.children.map { plan => Project(plan.output.flatMap(a => attrToAliases.getOrElse(a.exprId, Seq(a))), plan) }).transformExpressions { case f: ExtractValue if nestedFieldToAlias.contains(f) => nestedFieldToAlias(f).toAttribute } } /** * Returns true for those operators that we can prune nested column on it. */ private def canPruneOn(plan: LogicalPlan) = plan match { case _: Aggregate => true case _: Expand => true case _ => false } /** * Returns true for those operators that project can be pushed through. */ private def canProjectPushThrough(plan: LogicalPlan) = plan match { case _: GlobalLimit => true case _: LocalLimit => true case _: Repartition => true case _: Sample => true case _: RepartitionByExpression => true case _: Join => true case _: Window => true case _: Sort => true case _ => false } /** * Return root references that are individually accessed as a whole, and `GetStructField`s * or `GetArrayStructField`s which on top of other `ExtractValue`s or special expressions. * Check `SelectedField` to see which expressions should be listed here. */ private def collectRootReferenceAndExtractValue(e: Expression): Seq[Expression] = e match { case _: AttributeReference => Seq(e) case GetStructField(_: ExtractValue | _: AttributeReference, _, _) => Seq(e) case GetArrayStructFields(_: MapValues | _: MapKeys | _: ExtractValue | _: AttributeReference, _, _, _, _) => Seq(e) case es if es.children.nonEmpty => es.children.flatMap(collectRootReferenceAndExtractValue) case _ => Seq.empty } /** * Return two maps in order to replace nested fields to aliases. * * If `exclusiveAttrs` is given, any nested field accessors of these attributes * won't be considered in nested fields aliasing. * * 1. ExtractValue -> Alias: A new alias is created for each nested field. * 2. ExprId -> Seq[Alias]: A reference attribute has multiple aliases pointing it. */ def getAliasSubMap(exprList: Seq[Expression], exclusiveAttrs: Seq[Attribute] = Seq.empty) : Option[(Map[ExtractValue, Alias], Map[ExprId, Seq[Alias]])] = { val (nestedFieldReferences, otherRootReferences) = exprList.flatMap(collectRootReferenceAndExtractValue).partition { case _: ExtractValue => true case _ => false } // Note that when we group by extractors with their references, we should remove // cosmetic variations. val exclusiveAttrSet = AttributeSet(exclusiveAttrs ++ otherRootReferences) val aliasSub = nestedFieldReferences.asInstanceOf[Seq[ExtractValue]] .filter(!_.references.subsetOf(exclusiveAttrSet)) .groupBy(_.references.head.canonicalized.asInstanceOf[Attribute]) .flatMap { case (attr, nestedFields: Seq[ExtractValue]) => // Remove redundant `ExtractValue`s if they share the same parent nest field. // For example, when `a.b` and `a.b.c` are in project list, we only need to alias `a.b`. // We only need to deal with two `ExtractValue`: `GetArrayStructFields` and // `GetStructField`. Please refer to the method `collectRootReferenceAndExtractValue`. val dedupNestedFields = nestedFields.filter { case e @ (_: GetStructField | _: GetArrayStructFields) => val child = e.children.head nestedFields.forall(f => child.find(_.semanticEquals(f)).isEmpty) case _ => true } // Each expression can contain multiple nested fields. // Note that we keep the original names to deliver to parquet in a case-sensitive way. val nestedFieldToAlias = dedupNestedFields.distinct.map { f => val exprId = NamedExpression.newExprId (f, Alias(f, s"_gen_alias_${exprId.id}")(exprId, Seq.empty, None)) } // If all nested fields of `attr` are used, we don't need to introduce new aliases. // By default, ColumnPruning rule uses `attr` already. // Note that we need to remove cosmetic variations first, so we only count a // nested field once. if (nestedFieldToAlias.nonEmpty && dedupNestedFields.map(_.canonicalized) .distinct .map { nestedField => totalFieldNum(nestedField.dataType) } .sum < totalFieldNum(attr.dataType)) { Some(attr.exprId -> nestedFieldToAlias) } else { None } } if (aliasSub.isEmpty) { None } else { Some((aliasSub.values.flatten.toMap, aliasSub.map(x => (x._1, x._2.map(_._2))))) } } /** * Return total number of fields of this type. This is used as a threshold to use nested column * pruning. It's okay to underestimate. If the number of reference is bigger than this, the parent * reference is used instead of nested field references. */ private def totalFieldNum(dataType: DataType): Int = dataType match { case _: AtomicType => 1 case StructType(fields) => fields.map(f => totalFieldNum(f.dataType)).sum case ArrayType(elementType, _) => totalFieldNum(elementType) case MapType(keyType, valueType, _) => totalFieldNum(keyType) + totalFieldNum(valueType) case _ => 1 // UDT and others } } /** * This prunes unnecessary nested columns from `Generate` and optional `Project` on top * of it. */ object GeneratorNestedColumnAliasing { def unapply(plan: LogicalPlan): Option[LogicalPlan] = plan match { // Either `nestedPruningOnExpressions` or `nestedSchemaPruningEnabled` is enabled, we // need to prune nested columns through Project and under Generate. The difference is // when `nestedSchemaPruningEnabled` is on, nested columns will be pruned further at // file format readers if it is supported. case Project(projectList, g: Generate) if (SQLConf.get.nestedPruningOnExpressions || SQLConf.get.nestedSchemaPruningEnabled) && canPruneGenerator(g.generator) => // On top on `Generate`, a `Project` that might have nested column accessors. // We try to get alias maps for both project list and generator's children expressions. val exprsToPrune = projectList ++ g.generator.children NestedColumnAliasing.getAliasSubMap(exprsToPrune, g.qualifiedGeneratorOutput).map { case (nestedFieldToAlias, attrToAliases) => // Defer updating `Generate.unrequiredChildIndex` to next round of `ColumnPruning`. val newChild = NestedColumnAliasing.replaceWithAliases(g, nestedFieldToAlias, attrToAliases) Project(NestedColumnAliasing.getNewProjectList(projectList, nestedFieldToAlias), newChild) } case g: Generate if SQLConf.get.nestedSchemaPruningEnabled && canPruneGenerator(g.generator) => // If any child output is required by higher projection, we cannot prune on it even we // only use part of nested column of it. A required child output means it is referred // as a whole or partially by higher projection, pruning it here will cause unresolved // query plan. NestedColumnAliasing.getAliasSubMap( g.generator.children, g.requiredChildOutput).map { case (nestedFieldToAlias, attrToAliases) => // Defer updating `Generate.unrequiredChildIndex` to next round of `ColumnPruning`. NestedColumnAliasing.replaceWithAliases(g, nestedFieldToAlias, attrToAliases) } case _ => None } /** * This is a while-list for pruning nested fields at `Generator`. */ def canPruneGenerator(g: Generator): Boolean = g match { case _: Explode => true case _: Stack => true case _: PosExplode => true case _: Inline => true case _ => false } }
witgo/spark
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/NestedColumnAliasing.scala
Scala
apache-2.0
12,226
package main.scala import org.apache.spark.SparkContext import org.apache.spark.SparkConf import org.apache.spark.streaming.twitter._ import org.apache.spark.streaming._ import org.apache.spark.SparkContext._ import twitter4j.Status object TweetMain { def main(args: Array[String]) = { System.setProperty("twitter4j.oauth.consumerKey", "") System.setProperty("twitter4j.oauth.consumerSecret", "") System.setProperty("twitter4j.oauth.accessToken", "") System.setProperty("twitter4j.oauth.accessTokenSecret", "") val conf = new SparkConf().setAppName("Hash Tags") val sc = new SparkContext(conf) val stopWords = sc.textFile("stopWords") val stopWordSet = stopWords.collect.toSet val ssc = new StreamingContext(sc, Seconds(5)) ssc.checkpoint("StreamingCheckpoint") val twitterStream = TwitterUtils.createStream(ssc, None) val topHashTags = twitterStream.flatMap(x => getHashTags(x)) val topUsername = twitterStream.flatMap(x => getUserName(x)) val popularText = twitterStream.flatMap(tweet => tweet.getText.split("\\\\W+")) .filter(x => x.length() > 1) .filter(word => !stopWordSet.contains(word)) .map(_.replaceAll("#|@", "")) .map(x => x.toLowerCase()) topHashTags.saveAsTextFiles("twitterData/hash", "a") topHashTags.print topUsername.saveAsTextFiles("twitterData/user", "a") topUsername.print popularText.print popularText.saveAsTextFiles("twitterData/text", "a") ssc.start ssc.awaitTermination } def getHashTags(tweet: Status) = { raw"(?:(?<=\\s)|^)#(\\w*[A-Za-z_]+\\w*)".r .findAllIn(tweet.getText).matchData.toList } def getUserName(tweet: Status) = { raw"(?:(?<=\\s)|^)@(\\w*[A-Za-z_]+\\w*)".r .findAllIn(tweet.getText).matchData.toList } }
CoE4BD/TwitterTextAnalytics-SparkStreaming
TweetMain.scala
Scala
apache-2.0
1,793
package ict.spark.mllib.optimization import org.apache.spark.Logging import org.apache.spark.rdd.RDD import org.apache.spark.mllib.linalg.{ Vectors, Vector } import ict.spark.mllib.linalg.MyBLAS._ import scala.collection.mutable.ArrayBuffer trait MSVMOptimizer extends Serializable { def optimize(data: RDD[(Double, Vector)], initialWeights: Array[Vector]): Array[Vector] } /** * ImprovedGradientDescent * Class used to solve an optimization problem using Gradient Descent. * @param gradient Gradient function to be used. * @param updater Updater to be used to update weights after every iteration. */ class MSVMGGradientDescent private[mllib] ( private var gradient: MSVMGradient, private var updater: MSVMUpdater) extends MSVMOptimizer with Logging { private var numClass: Int = 3 private var stepSize: Double = 1.0 private var numIterations: Int = 100 private var regParam: Double = 0.0 private var miniBatchFraction: Double = 1.0 def setNumClass(numClass: Int): this.type = { this.numClass = numClass this } /** * Set the initial step size of SGD for the first step. Default 1.0. * In subsequent steps, the step size will decrease with stepSize/sqrt(t) */ def setStepSize(step: Double): this.type = { this.stepSize = step this } /** * Set fraction of data to be used for each SGD iteration. * Default 1.0 (corresponding to deterministic/classical gradient descent) */ def setMiniBatchFraction(fraction: Double): this.type = { this.miniBatchFraction = fraction this } /** * Set the number of iterations for SGD. Default 100. */ def setNumIterations(iters: Int): this.type = { this.numIterations = iters this } /** * Set the regularization parameter. Default 0.0. */ def setRegParam(regParam: Double): this.type = { this.regParam = regParam this } /** * Set the gradient function (of the loss function of one single data example) * to be used for SGD. */ def setGradient(gradient: MSVMGradient): this.type = { this.gradient = gradient this } /** * Set the updater function to actually perform a gradient step in a given direction. * The updater is responsible to perform the update from the regularization term as well, * and therefore determines what kind or regularization is used, if any. */ def setUpdater(updater: MSVMUpdater): this.type = { this.updater = updater this } /** * Runs gradient descent on the given training data. * @param data training data * @param initialWeights initial weights * @return solution vector */ def optimize(data: RDD[(Double, Vector)], initialWeights: Array[Vector]): Array[Vector] = { val weights = MSVMGGradientDescent.runMiniBatchSGD( data, gradient, updater, numClass, stepSize, numIterations, regParam, miniBatchFraction, initialWeights) weights } } /** * Top-level method to run gradient descent. */ object MSVMGGradientDescent extends Logging { /** * Run stochastic gradient descent (SGD) in parallel using mini batches. * In each iteration, we sample a subset (fraction miniBatchFraction) of the total data * in order to compute a gradient estimate. * Sampling, and averaging the subgradients over this subset is performed using one standard * spark map-reduce in each iteration. * * @param data - Input data for SGD. RDD of the set of data examples, each of * the form (label, [feature values]). * @param gradient - Gradient object (used to compute the gradient of the loss function of * one single data example) * @param updater - Updater function to actually perform a gradient step in a given direction. * @param stepSize - initial step size for the first step * @param numIterations - number of iterations that SGD should be run. * @param regParam - regularization parameter * @param miniBatchFraction - fraction of the input data set that should be used for * one iteration of SGD. Default value 1.0. * * @return A tuple containing two elements. The first element is a column matrix containing * weights for every feature, and the second element is an array containing the * stochastic loss computed for every iteration. */ def runMiniBatchSGD( data: RDD[(Double, Vector)], gradient: MSVMGradient, updater: MSVMUpdater, numClass: Int, stepSize: Double, numIterations: Int, regParam: Double, miniBatchFraction: Double, initialWeights: Array[Vector]): Array[Vector] = { val stochasticLossHistory = new ArrayBuffer[Double](numIterations) val numExamples = data.count() val miniBatchSize = numExamples * miniBatchFraction // if no data, return initial weights to avoid NaNs if (numExamples == 0) { logInfo("ImprovedGradientDescent.runMiniBatchSGD returning initial weights, no data found") return initialWeights } // Initialize weights as a column vector var weights = initialWeights val numFeatures = weights(0).size /** * For the first iteration, the regVal will be initialized as sum of weight squares * if it's L2 updater; for L1 updater, the same logic is followed. */ for (i <- 1 to numIterations) { val bcWeights = data.context.broadcast(weights) // val bcWeights = weights // Sample a subset (fraction miniBatchFraction) of the total data // compute and sum up the subgradients on this subset (this is one map-reduce) val sampledData: RDD[(Double, Vector)] = data.sample(false, miniBatchFraction, 42 + i) val subGradRDD: RDD[Array[Vector]] = sampledData .map(sData => { val grad = gradient.compute(sData._2, sData._1.toInt, bcWeights.value) grad }) var gradientSum: Array[Vector] = subGradRDD.reduce( (subGrad1: Array[Vector], subGrad2: Array[Vector]) => { // axpy(1, subGrad1._1, subGrad2._1) var retGrad = subGrad1 for (i <- 0 to subGrad1.length - 1) { retGrad(i) = add(subGrad1(i), subGrad2(i)) } retGrad }) // scal gradientSum.map(elem => scal(1 / miniBatchSize, elem)) val update = updater.compute(weights, gradientSum, stepSize, i, regParam) weights = update } weights } }
opinion-extraction-propagation/TASC-PTASC
src/main/scala/ict/spark/mllib/optimization/Optimizer.scala
Scala
apache-2.0
6,466
package de.frosner.broccoli.controllers import de.frosner.broccoli.models._ import de.frosner.broccoli.services.WebSocketService.Msg import de.frosner.broccoli.services._ import de.frosner.broccoli.RemoveSecrets.ToRemoveSecretsOps import de.frosner.broccoli.auth.{Account, Role} import de.frosner.broccoli.instances.NomadInstances import de.frosner.broccoli.nomad import de.frosner.broccoli.websocket.{BroccoliMessageHandler, IncomingMessage, OutgoingMessage} import jp.t2v.lab.play2.auth.test.Helpers._ import org.mockito.Matchers import org.mockito.Matchers._ import org.mockito.Mockito._ import org.specs2.mock.Mockito import play.api.libs.iteratee.Enumerator import play.api.libs.json._ import play.api.test._ import play.api.libs.concurrent.Execution.Implicits.defaultContext import scala.util.Success class WebSocketControllerSpec extends PlaySpecification with AuthUtils with ModelArbitraries with nomad.ModelArbitraries with Mockito with ToRemoveSecretsOps { val instanceWithStatus = InstanceWithStatus( instance = Instance( id = "i", template = Template( id = "t", template = "{{id}} {{secret}}", description = "d", parameterInfos = Map( "id" -> ParameterInfo("id", None, None, None, ParameterType.Raw, None), "secret" -> ParameterInfo( id = "secret", name = None, default = Some(StringParameterValue("value")), secret = Some(true), `type` = ParameterType.String, orderIndex = None ) ) ), parameterValues = Map( "id" -> StringParameterValue("i"), "secret" -> StringParameterValue("thisshouldnotappearanywhere") ) ), status = JobStatus.Unknown, services = List( Service( name = "n", protocol = "http", address = "localhost", port = 8888, status = ServiceStatus.Unknown ) ), periodicRuns = Seq.empty ) private def wrap(messageType: IncomingMessage.Type, payload: JsValue): JsValue = JsObject( Map( "messageType" -> Json.toJson(messageType), "payload" -> payload )) private def testWs(controllerSetup: SecurityService => WebSocketController, inMsg: IncomingMessage, expectations: Map[Option[(String, Role)], OutgoingMessage]) = expectations.foreach { case (maybeInstanceRegexAndRole, outMsg) => val maybeAccount = maybeInstanceRegexAndRole.map { case (instanceRegex, role) => Account("user", instanceRegex, role) } val securityService = maybeAccount .map { account => withAuthConf(mock[SecurityService], List(account)) } .getOrElse { withAuthNone(mock[SecurityService]) } val controller = controllerSetup(securityService) when(controller.webSocketService.newConnection(Matchers.anyString(), any[Account])) .thenReturn(Enumerator.empty[Msg]) when(controller.webSocketService.newConnection(any[Account])) .thenReturn(("session_id", Enumerator.empty[Msg])) val result = maybeAccount .map { account => controller.requestToSocket(FakeRequest().withLoggedIn(controller)(account.name)) } .getOrElse { controller.requestToSocket(FakeRequest()) } WsTestUtil.wrapConnection(result) match { case Right((incoming, outgoing)) => incoming.feed(Json.toJson(inMsg)).end verify(controller.webSocketService) .send(Matchers.anyString(), Matchers.eq(Json.toJson(outMsg))) case Left(_) => throw new IllegalStateException() } } sequential // http://stackoverflow.com/questions/31041842/error-with-play-2-4-tests-the-cachemanager-has-been-shut-down-it-can-no-longe "WebSocketController" should { "establish a websocket connection correctly (with authentication)" in new WithApplication { val account = Account("user", ".*", Role.Administrator) val instanceService = withInstances(mock[InstanceService], Seq.empty) val controller = WebSocketController( webSocketService = mock[WebSocketService], templateService = withTemplates(mock[TemplateService], Seq.empty), instanceService = instanceService, aboutService = withDummyValues(mock[AboutInfoService]), securityService = withAuthConf(mock[SecurityService], List(account)), messageHandler = new BroccoliMessageHandler(mock[NomadInstances], instanceService), playEnv = playEnv, cacheApi = cacheApi ) val result = controller.requestToSocket(FakeRequest().withLoggedIn(controller)(account.name)) val maybeConnection = WsTestUtil.wrapConnection(result) maybeConnection should beRight } "establish a websocket connection correctly (without authentication)" in new WithApplication { val account = Account("user", ".*", Role.Administrator) val instanceService = withInstances(mock[InstanceService], Seq.empty) val controller = WebSocketController( webSocketService = mock[WebSocketService], templateService = withTemplates(mock[TemplateService], Seq.empty), instanceService = instanceService, aboutService = withDummyValues(mock[AboutInfoService]), securityService = withAuthNone(mock[SecurityService]), messageHandler = new BroccoliMessageHandler(mock[NomadInstances], instanceService), playEnv = playEnv, cacheApi = cacheApi ) when(controller.webSocketService.newConnection(any[Account])).thenReturn(("id", null)) val result = controller.requestToSocket(FakeRequest()) val maybeConnection = WsTestUtil.wrapConnection(result) maybeConnection should beRight } "decline the websocket connection if not authenticated" in new WithApplication { val account = Account("user", ".*", Role.Administrator) val instanceService = withInstances(mock[InstanceService], Seq.empty) val controller = WebSocketController( webSocketService = mock[WebSocketService], templateService = withTemplates(mock[TemplateService], Seq.empty), instanceService = instanceService, aboutService = withDummyValues(mock[AboutInfoService]), securityService = withAuthConf(mock[SecurityService], List(account)), messageHandler = new BroccoliMessageHandler(mock[NomadInstances], instanceService), playEnv = playEnv, cacheApi = cacheApi ) val result = controller.requestToSocket(FakeRequest()) val maybeConnection = WsTestUtil.wrapConnection(result) maybeConnection should beLeft.like { case d => d.header.status === 403 } } "send about info, template and instance list after establishing the connection" in new WithApplication { val account = Account("user", ".*", Role.Administrator) val instances = Seq( instanceWithStatus ) val templates = Seq.empty[Template] private val instanceService = withInstances(mock[InstanceService], instances) val controller = WebSocketController( webSocketService = mock[WebSocketService], templateService = withTemplates(mock[TemplateService], templates), instanceService = instanceService, aboutService = withDummyValues(mock[AboutInfoService]), securityService = withAuthNone(mock[SecurityService]), messageHandler = new BroccoliMessageHandler(mock[NomadInstances], instanceService), playEnv = playEnv, cacheApi = cacheApi ) when(controller.webSocketService.newConnection(any[Account])).thenReturn(("id", Enumerator.empty[Msg])) val result = controller.requestToSocket(FakeRequest()) val maybeConnection = WsTestUtil.wrapConnection(result) maybeConnection should beRight.like { case (incoming, outgoing) => val messages = outgoing.get (messages should haveSize(3)) and (messages should contain( Json.toJson(OutgoingMessage.ListTemplates(templates)), Json.toJson(OutgoingMessage.ListInstances(instances)), Json.toJson(OutgoingMessage.AboutInfoMsg(controller.aboutService.aboutInfo(null))) )) } } "process instance addition requests if no auth is enabled" in new WithApplication { val id = "id" val instanceService = withInstances(mock[InstanceService], Seq.empty) val controller = WebSocketController( webSocketService = mock[WebSocketService], templateService = withTemplates(mock[TemplateService], Seq.empty), instanceService = instanceService, aboutService = withDummyValues(mock[AboutInfoService]), securityService = withAuthNone(mock[SecurityService]), messageHandler = new BroccoliMessageHandler(mock[NomadInstances], instanceService), playEnv = playEnv, cacheApi = cacheApi ) when(controller.webSocketService.newConnection(any[Account])).thenReturn((id, Enumerator.empty[Msg])) val instanceCreation = InstanceCreation( "template", Map( "id" -> JsString("blib") ) ) when(controller.instanceService.addInstance(instanceCreation)).thenReturn(Success(instanceWithStatus)) val result = controller.requestToSocket(FakeRequest()) val maybeConnection = WsTestUtil.wrapConnection(result) maybeConnection match { case Right((incoming, outgoing)) => val resultMsg = OutgoingMessage.AddInstanceSuccess( InstanceCreated( instanceCreation, instanceWithStatus ) ) incoming.feed(Json.toJson(IncomingMessage.AddInstance(instanceCreation))).end verify(controller.webSocketService).send(id, Json.toJson(resultMsg)) case Left(_) => throw new IllegalStateException() } } "process instance addition correctly" in new WithApplication { val instanceCreation = InstanceCreation( "template", Map( "id" -> JsString("blib") ) ) val success = OutgoingMessage.AddInstanceSuccess( InstanceCreated( instanceCreation, instanceWithStatus ) ) val roleFailure = OutgoingMessage.AddInstanceError(InstanceError.RolesRequired(Role.Administrator)) val regexFailure = OutgoingMessage.AddInstanceError(InstanceError.UserRegexDenied("blib", "bla")) testWs( controllerSetup = { securityService => val instanceService = withInstances(mock[InstanceService], Seq.empty) val controller = WebSocketController( webSocketService = mock[WebSocketService], templateService = withTemplates(mock[TemplateService], Seq.empty), instanceService = instanceService, aboutService = withDummyValues(mock[AboutInfoService]), securityService = securityService, messageHandler = new BroccoliMessageHandler(mock[NomadInstances], instanceService), playEnv = playEnv, cacheApi = cacheApi ) when(controller.instanceService.addInstance(instanceCreation)).thenReturn(Success(instanceWithStatus)) controller }, inMsg = IncomingMessage.AddInstance(instanceCreation), expectations = Map( None -> success, Some((".*", Role.Administrator)) -> success, Some(("bla", Role.Administrator)) -> regexFailure, Some((".*", Role.Operator)) -> roleFailure, Some((".*", Role.User)) -> roleFailure ) ) } "process instance deletion correctly" in new WithApplication { val instanceDeletion = "id" val success = OutgoingMessage.DeleteInstanceSuccess( InstanceDeleted( instanceDeletion, instanceWithStatus ) ) val roleFailure = OutgoingMessage.DeleteInstanceError(InstanceError.RolesRequired(Role.Administrator)) val regexFailure = OutgoingMessage.DeleteInstanceError(InstanceError.UserRegexDenied(instanceDeletion, "bla")) testWs( controllerSetup = { securityService => val instanceService = withInstances(mock[InstanceService], Seq.empty) val controller = WebSocketController( webSocketService = mock[WebSocketService], templateService = withTemplates(mock[TemplateService], Seq.empty), instanceService = instanceService, aboutService = withDummyValues(mock[AboutInfoService]), securityService = securityService, messageHandler = new BroccoliMessageHandler(mock[NomadInstances], instanceService), playEnv = playEnv, cacheApi = cacheApi ) when(controller.instanceService.deleteInstance(instanceDeletion)).thenReturn(Success(instanceWithStatus)) controller }, inMsg = IncomingMessage.DeleteInstance(instanceDeletion), expectations = Map( None -> success, Some((".*", Role.Administrator)) -> success, Some(("bla", Role.Administrator)) -> regexFailure, Some((".*", Role.Operator)) -> roleFailure, Some((".*", Role.User)) -> roleFailure ) ) } "process instance parameter updates correctly" in new WithApplication { val instanceUpdate = InstanceUpdate( instanceId = Some("id"), status = None, parameterValues = Some( Map( "id" -> JsString("blib") ) ), periodicJobsToStop = None, selectedTemplate = None ) val success = OutgoingMessage.UpdateInstanceSuccess( InstanceUpdated( instanceUpdate, instanceWithStatus ) ) testWs( controllerSetup = { securityService => val instanceService = withInstances(mock[InstanceService], Seq.empty) val controller = WebSocketController( webSocketService = mock[WebSocketService], templateService = withTemplates(mock[TemplateService], Seq.empty), instanceService = instanceService, aboutService = withDummyValues(mock[AboutInfoService]), securityService = securityService, messageHandler = new BroccoliMessageHandler(mock[NomadInstances], instanceService), playEnv = playEnv, cacheApi = cacheApi ) when( controller.instanceService.updateInstance( id = instanceUpdate.instanceId.get, statusUpdater = instanceUpdate.status, parameterValuesUpdater = instanceUpdate.parameterValues, templateSelector = instanceUpdate.selectedTemplate, periodicJobsToStop = instanceUpdate.periodicJobsToStop )).thenReturn(Success(instanceWithStatus)) controller }, inMsg = IncomingMessage.UpdateInstance(instanceUpdate), expectations = Map( None -> success, Some((".*", Role.Administrator)) -> success, Some(("bla", Role.Administrator)) -> OutgoingMessage.UpdateInstanceError( InstanceError.UserRegexDenied(instanceUpdate.instanceId.get, "bla")), Some((".*", Role.Operator)) -> OutgoingMessage.UpdateInstanceError( InstanceError.RolesRequired(Role.Administrator) ), Some((".*", Role.User)) -> OutgoingMessage.UpdateInstanceError( InstanceError.RolesRequired(Role.Administrator, Role.Operator) ) ) ) } "process instance status updates correctly" in new WithApplication { val instanceUpdate = InstanceUpdate( instanceId = Some("id"), status = Some(JobStatus.Running), parameterValues = None, periodicJobsToStop = None, selectedTemplate = None ) val success = OutgoingMessage.UpdateInstanceSuccess( InstanceUpdated( instanceUpdate, instanceWithStatus ) ) val secretSuccess = OutgoingMessage.UpdateInstanceSuccess( InstanceUpdated( instanceUpdate, instanceWithStatus.removeSecrets ) ) val instanceService = withInstances(mock[InstanceService], Seq.empty) testWs( controllerSetup = { securityService => val controller = WebSocketController( webSocketService = mock[WebSocketService], templateService = withTemplates(mock[TemplateService], Seq.empty), instanceService = instanceService, aboutService = withDummyValues(mock[AboutInfoService]), securityService = securityService, messageHandler = new BroccoliMessageHandler(mock[NomadInstances], instanceService), playEnv = playEnv, cacheApi = cacheApi ) when( controller.instanceService.updateInstance( id = instanceUpdate.instanceId.get, statusUpdater = instanceUpdate.status, parameterValuesUpdater = instanceUpdate.parameterValues, templateSelector = instanceUpdate.selectedTemplate, periodicJobsToStop = instanceUpdate.periodicJobsToStop )).thenReturn(Success(instanceWithStatus)) controller }, inMsg = IncomingMessage.UpdateInstance(instanceUpdate), expectations = Map( None -> success, Some((".*", Role.Administrator)) -> success, Some(("bla", Role.Administrator)) -> OutgoingMessage.UpdateInstanceError( InstanceError.UserRegexDenied(instanceUpdate.instanceId.get, "bla") ), Some((".*", Role.Operator)) -> secretSuccess, Some((".*", Role.User)) -> OutgoingMessage.UpdateInstanceError( InstanceError.RolesRequired(Role.Administrator, Role.Operator) ) ) ) } "process instance template updates correctly" in new WithApplication { val instanceUpdate = InstanceUpdate( instanceId = Some("id"), status = None, parameterValues = None, periodicJobsToStop = None, selectedTemplate = Some("templateId") ) val success = OutgoingMessage.UpdateInstanceSuccess( InstanceUpdated( instanceUpdate, instanceWithStatus ) ) val instanceService = withInstances(mock[InstanceService], Seq.empty) testWs( controllerSetup = { securityService => val controller = WebSocketController( webSocketService = mock[WebSocketService], templateService = withTemplates(mock[TemplateService], Seq.empty), instanceService = instanceService, aboutService = withDummyValues(mock[AboutInfoService]), securityService = securityService, messageHandler = new BroccoliMessageHandler(mock[NomadInstances], instanceService), playEnv = playEnv, cacheApi = cacheApi ) when( controller.instanceService.updateInstance( id = instanceUpdate.instanceId.get, statusUpdater = instanceUpdate.status, parameterValuesUpdater = instanceUpdate.parameterValues, templateSelector = instanceUpdate.selectedTemplate, periodicJobsToStop = instanceUpdate.periodicJobsToStop )).thenReturn(Success(instanceWithStatus)) controller }, inMsg = IncomingMessage.UpdateInstance(instanceUpdate), expectations = Map( None -> success, Some((".*", Role.Administrator)) -> success, Some(("bla", Role.Administrator)) -> OutgoingMessage.UpdateInstanceError( InstanceError.UserRegexDenied(instanceUpdate.instanceId.get, "bla") ), Some((".*", Role.Operator)) -> OutgoingMessage.UpdateInstanceError( InstanceError.RolesRequired(Role.Administrator) ), Some((".*", Role.User)) -> OutgoingMessage.UpdateInstanceError( InstanceError.RolesRequired(Role.Administrator, Role.Operator) ) ) ) } "process instance periodic run stops correctly" in new WithApplication { val instanceUpdate = InstanceUpdate( instanceId = Some("id"), status = None, parameterValues = None, periodicJobsToStop = Some(List("id/periodic-1518101460")), selectedTemplate = None ) val success = OutgoingMessage.UpdateInstanceSuccess( InstanceUpdated( instanceUpdate, instanceWithStatus ) ) val secretSuccess = OutgoingMessage.UpdateInstanceSuccess( InstanceUpdated( instanceUpdate, instanceWithStatus.removeSecrets ) ) val instanceService = withInstances(mock[InstanceService], Seq.empty) testWs( controllerSetup = { securityService => val controller = WebSocketController( webSocketService = mock[WebSocketService], templateService = withTemplates(mock[TemplateService], Seq.empty), instanceService = instanceService, aboutService = withDummyValues(mock[AboutInfoService]), securityService = securityService, messageHandler = new BroccoliMessageHandler(mock[NomadInstances], instanceService), playEnv = playEnv, cacheApi = cacheApi ) when( controller.instanceService.updateInstance( id = instanceUpdate.instanceId.get, statusUpdater = instanceUpdate.status, parameterValuesUpdater = instanceUpdate.parameterValues, templateSelector = instanceUpdate.selectedTemplate, periodicJobsToStop = instanceUpdate.periodicJobsToStop )).thenReturn(Success(instanceWithStatus)) controller }, inMsg = IncomingMessage.UpdateInstance(instanceUpdate), expectations = Map( None -> success, Some((".*", Role.Administrator)) -> success, Some(("bla", Role.Administrator)) -> OutgoingMessage.UpdateInstanceError( InstanceError.UserRegexDenied(instanceUpdate.instanceId.get, "bla") ), Some((".*", Role.Operator)) -> secretSuccess, Some((".*", Role.User)) -> OutgoingMessage.UpdateInstanceError( InstanceError.RolesRequired(Role.Administrator, Role.Operator) ) ) ) } } }
FRosner/cluster-broccoli
server/src/test/scala/de/frosner/broccoli/controllers/WebSocketControllerSpec.scala
Scala
apache-2.0
22,748
package dotty.tools package dotc import core.Contexts._ import reporting.Reporter import io.AbstractFile import scala.annotation.internal.sharable /** A main class for running compiler benchmarks. Can instantiate a given * number of compilers and run each (sequentially) a given number of times * on the same sources. */ object Bench extends Driver: @sharable private var numRuns = 1 private def ntimes(n: Int)(op: => Reporter): Reporter = (0 until n).foldLeft(emptyReporter)((_, _) => op) @sharable private var times: Array[Int] = _ override def doCompile(compiler: Compiler, files: List[AbstractFile])(using Context): Reporter = times = new Array[Int](numRuns) var reporter: Reporter = emptyReporter for i <- 0 until numRuns do val start = System.nanoTime() reporter = super.doCompile(compiler, files) times(i) = ((System.nanoTime - start) / 1000000).toInt println(s"time elapsed: ${times(i)}ms") if ctx.settings.Xprompt.value then print("hit <return> to continue >") System.in.nn.read() println() reporter def extractNumArg(args: Array[String], name: String, default: Int = 1): (Int, Array[String]) = { val pos = args indexOf name if (pos < 0) (default, args) else (args(pos + 1).toInt, (args take pos) ++ (args drop (pos + 2))) } def reportTimes() = val best = times.sorted val measured = numRuns / 3 val avgBest = best.take(measured).sum / measured val avgLast = times.reverse.take(measured).sum / measured println(s"best out of $numRuns runs: ${best(0)}") println(s"average out of best $measured: $avgBest") println(s"average out of last $measured: $avgLast") override def process(args: Array[String], rootCtx: Context): Reporter = val (numCompilers, args1) = extractNumArg(args, "#compilers") val (numRuns, args2) = extractNumArg(args1, "#runs") this.numRuns = numRuns var reporter: Reporter = emptyReporter for i <- 0 until numCompilers do reporter = super.process(args2, rootCtx) reportTimes() reporter end Bench
dotty-staging/dotty
compiler/src/dotty/tools/dotc/Bench.scala
Scala
apache-2.0
2,104
/** * Created by Romain Reuillon on 02/11/16. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ package fr.iscpif.doors.server import better.files.File import cats.{Applicative, Monad} import cats.data.{Ior, Kleisli} import fr.iscpif.doors.ext.Data._ import fr.iscpif.doors.server.DSL.Executable import slick.dbio.DBIOAction import slick.driver.H2Driver import slick.driver.H2Driver.api._ import slick.lifted.{Query, QueryBase, TableQuery} import scala.concurrent.Await import scala.concurrent.ExecutionContext.Implicits.global import scala.concurrent.duration.Duration import scala.util._ import squants.time._ import scala.Either package object db { private[server] lazy val dbScheme = new db.DBScheme { lazy val users = TableQuery[db.Users] lazy val locks = TableQuery[db.Locks] lazy val userLocks = TableQuery[db.UserLocks] lazy val emails = TableQuery[db.Emails] lazy val versions = TableQuery[db.Versions] lazy val secrets = TableQuery[db.Secrets] } type Database = slick.driver.H2Driver.api.Database trait DBScheme { def users: TableQuery[Users] def locks: TableQuery[Locks] def userLocks: TableQuery[UserLocks] def emails: TableQuery[Emails] def versions: TableQuery[Versions] def secrets: TableQuery[Secrets] } object DB { object ConvertToDB { implicit def action[U] = new ConvertToDB[DBIOAction[U, NoStream, Effect.All], U] { def toDB(t: DBIOAction[U, NoStream, Effect.All]) = t } implicit def query[U] = new ConvertToDB[QueryBase[U], U] { def toDB(t: QueryBase[U]): DBIOAction[U, NoStream, Effect.All] = t.result } implicit def rep[U] = new ConvertToDB[Rep[U], U] { def toDB(t: Rep[U]): DBIOAction[U, NoStream, Effect.All] = t.result } } trait ConvertToDB[-T, U] { def toDB(t: T): DBIOAction[U, NoStream, Effect.All] } def pure[T](t: T): DB[T] = Kleisli[DBIOAction[?, NoStream, Effect.All], DBScheme, T] { _ => DBIOAction.successful(t) } def apply[T, D](dbEffect: fr.iscpif.doors.server.db.DBScheme => D)(implicit toDB: ConvertToDB[D, T]): DB[T] = Kleisli[DBIOAction[?, NoStream, Effect.All], fr.iscpif.doors.server.db.DBScheme, T] { (s: fr.iscpif.doors.server.db.DBScheme) => toDB.toDB(dbEffect(s)) } } implicit def dbIOActionIsMonad = new Monad[DBIOAction[?, NoStream, Effect.All]] { override def pure[A](x: A): DBIOAction[A, NoStream, Effect.All] = DBIOAction.successful(x) override def flatMap[A, B](fa: DBIOAction[A, NoStream, Effect.All])(f: (A) => DBIOAction[B, NoStream, Effect.All]): DBIOAction[B, NoStream, Effect.All] = for { a <- fa b <- f(a) } yield b override def tailRecM[A, B](a: A)(f: (A) => DBIOAction[Either[A, B], NoStream, Effect.All]): DBIOAction[B, NoStream, Effect.All] = flatMap(f(a)) { case Right(b) => pure(b) case Left(nextA) => tailRecM(nextA)(f) } } type DB[T] = Kleisli[DBIOAction[?, NoStream, Effect.All], fr.iscpif.doors.server.db.DBScheme, T] def runTransaction[T, M[_]](f: DB[T], db: Database)(implicit io: freedsl.io.IO[M]) = io(doRunTransaction(f, db)) def doRunTransaction[T](f: DB[T], db: Database) = Await.result(db.run(f(dbScheme).transactionally), Duration.Inf) lazy val dbVersion = 1 case class User(id: UserID, name: String, password: Password, hashAlgorithm: HashingAlgorithm) case class Lock(id: LockID, state: StateID, time: Time, increment: Option[Long]) sealed trait EmailStatus object EmailStatus { case object Contact extends EmailStatus case object Other extends EmailStatus case object Deprecated extends EmailStatus } case class Email(lockID: LockID, address: EmailAddress, status: EmailStatus) case class UserLock(userID: UserID, lock: LockID) case class Version(id: Int) case class Secret(lockID: LockID, secret: String, deadline: Long) lazy val dbName = "h2" def saltConfig = "salt" def adminLogin = "adminLogin" def adminPass = "adminPass" def smtpHostName = "smtpHostName" def smtpPort = "smtpPort" def updateDB(db: Database) = { def max(s: Seq[Int]): Option[Int] = if (s.isEmpty) None else Some(s.max) doRunTransaction( DB { scheme => for { v <- scheme.versions.map{_.id}.max.filter{_ < dbVersion}.result //FIXME: Versions table to be updated // _ <- scheme.versions += Version(f) } yield () //TODO:Β UPDATEΒ DB } , db ) } def initDB(location: File) = { location.parent.toJava.mkdirs() lazy val db: Database = Database.forDriver( driver = new org.h2.Driver, url = s"jdbc:h2:/${location}" ) def dbWorks = Try { Await.result(db.run(dbScheme.versions.length.result), Duration.Inf) } match { case Failure(_) β‡’ false case Success(_) β‡’ true } if (!dbWorks) doRunTransaction(DB( scheme => (scheme.users.schema ++ scheme.locks.schema ++ scheme.userLocks.schema ++ scheme.emails.schema ++ scheme.versions.schema ++ scheme.secrets.schema).create ), db) db } }
ISCPIF/doors
server/src/main/scala/fr/iscpif/doors/server/db/package.scala
Scala
agpl-3.0
5,874
package com.nutomic.ensichat.fragments import android.content.SharedPreferences.OnSharedPreferenceChangeListener import android.content.{Intent, SharedPreferences} import android.os.Bundle import android.preference.{PreferenceFragment, PreferenceManager} import com.nutomic.ensichat.R import com.nutomic.ensichat.activities.EnsichatActivity import com.nutomic.ensichat.core.interfaces.SettingsInterface._ import com.nutomic.ensichat.core.messages.body.UserInfo import com.nutomic.ensichat.fragments.SettingsFragment._ import com.nutomic.ensichat.service.ChatService object SettingsFragment { val Version = "version" } /** * Settings screen. */ class SettingsFragment extends PreferenceFragment with OnSharedPreferenceChangeListener { private lazy val activity = getActivity.asInstanceOf[EnsichatActivity] private lazy val version = findPreference(Version) private lazy val prefs = PreferenceManager.getDefaultSharedPreferences(getActivity) override def onCreate(savedInstanceState: Bundle): Unit = { super.onCreate(savedInstanceState) addPreferencesFromResource(R.xml.settings) val packageInfo = getActivity.getPackageManager.getPackageInfo(getActivity.getPackageName, 0) version.setSummary(packageInfo.versionName) prefs.registerOnSharedPreferenceChangeListener(this) } override def onDestroy(): Unit = { super.onDestroy() prefs.unregisterOnSharedPreferenceChangeListener(this) } /** * Sends the updated username or status to all contacts. */ override def onSharedPreferenceChanged(sharedPreferences: SharedPreferences, key: String) { key match { case KeyUserName | KeyUserStatus => val ui = new UserInfo(prefs.getString(KeyUserName, ""), prefs.getString(KeyUserStatus, "")) activity.database.get.getContacts.foreach(c => activity.service.get.sendTo(c.address, ui)) case KeyAddresses => val intent = new Intent(getActivity, classOf[ChatService]) intent.setAction(ChatService.ActionNetworkChanged) getActivity.startService(intent) case _ => } } }
Nutomic/ensichat
android/src/main/scala/com/nutomic/ensichat/fragments/SettingsFragment.scala
Scala
mpl-2.0
2,085
/* * Copyright (C) 2016 Nikos Katzouris * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package app.runutils import java.io.PrintWriter import logic.Modes.ModeAtom import logic.{AtomSignature, Clause, Literal, Theory, Variable} import utils.lookaheads._ import utils.parsers.ModesParser import BKHandling._ import com.typesafe.scalalogging.LazyLogging import woled.State import scala.io.Source import scala.util.matching.Regex /** * Created by nkatz on 9/13/16. */ object Globals { def apply(): Unit = { new Globals("") } //var hedgePredictionThreshold = 0.0 // Quick & dirty, for experiments var sleepingExpertsLearningRate = 0.0 // Quick & dirty, for experiments var sleepingExpertsFeedBackBias = 0.0 var hedgeInertia = false var timeDebug = List[Double]() var scoringFunction = "default" // precision for initiation, recall for termination var totalPos = 0 var totalNegs = 0 // This may be set to a different value (e.g. passed from cmd) during the construction of the Globals instance var MAX_CLAUSE_LENGTH = 15 var LEARNING_WHOLE_THEORIES = false // not really used anywhere val cwd: String = System.getProperty("user.dir") // Current working dir val ASPHandler = s"$cwd/asp/ASPHandler.py" /* Global names */ val FIND_ALL_REFMS = "findAllRefs" val ABDUCTION = "abduction" val DEDUCTION = "deduction" val GET_QUERIES = "getQueries" val GET_GROUNDINGS = "getGroundings" val XHAIL = "xhail" val CHECKSAT = "checksat" val ILED = "iled" val INFERENCE = "inference" val SEARCH_MODELS = "search_models" //used to search alternative abductive explanations with iterative abductive search val SCORE_RULES = "score_rules" val GROW_NEW_RULE_TEST = "grow_new_rule_test" // These values may be set during the construction of the Globals instance var glvalues = scala.collection.mutable.Map[String, String]( "cwa" -> "true", "iter-deepening" -> "false", "mode" -> "incremental", "perfect-fit" -> "true", "iterations" -> "1", //"1000", "variableDepth" -> "1", "withWeaks" -> "false", "withBacktracking" -> "true", "refinementSearch" -> "setCover", // either setCover or fullSearch // specializeOnly does not generate new kernel sets on new examples, // it only tries to refine an initial hypothesis based // on an initial kernel set, acquired from the first window "specializeOnly" -> "false", "compressKernels" -> "true", "ruleEvaluationFunction" -> "precision", //"mestimate"//"precision" // specializationDepth is used by OLED only. It specifies how "deep" in the // specialization lattice of a bottom clause we want to search. For instance // with specializationDepth=2, OLED generates candidate refinements of a clause // by using the 1-subsets and the 2-subsets of the corresponding bottom clause. // with specializationDepth=2 it uses 1-subsets, 2-subsets and 3-subsets and so on "specializationDepth" -> "1", // if OLEDdownscoreBySimilarity is true then OLED penalizes candidate clauses // that are too similar to existing clauses in the current hypothesis, // to allow for exploring the quality of different clauses (that may be never // selected, because of a tie in score with other clauses) "OLEDdownscoreBySimilarity" -> "true", "distributed" -> "false", "with-jep" -> "false", "domain" -> "any", // Use this to get non-empty revisions at any point. This is necessary // because there are cases where the model corresponding to an empty // theory may have lower cost (in the optimization) than a model that // corresponds to a theory (e.g. when including any initiation rule in the theory yields // many fps). In such cases the solver will opt for an empty theory, which is not // always desirable. This parameter is used by the MCTS version of OLED. "smallest-nonempty" -> "false", // Weights on examples "tp-weight" -> "1", "fp-weight" -> "1", "fn-weight" -> "1", "with-inertia" -> "false", "weight-learning" -> "false", "with-ec" -> "true" ) // if jep is used "UNSAT" else "UNSATISFIABLE" def UNSAT = if (glvalues("with-jep").toBoolean) "UNSAT" else "UNSATISFIABLE" // This is a storage of the current initiation/termination // parts of the theory. These fields are used by the monolithic version // of OLED only, when learning with inertia (from edge interval points) // to get the joint theory and see if it satisfies each new example. Abduction // and new clauses are generated if not. //-------------------------------------------------------------------------------------- // UPDATE: Testing for new clause generation using the satisfiability of the // current joint theory works, for srongly-initiated fluents with no or very // small amount of noise, but it takes a lot of time in large learning tasks. // The reason is that the joint theory is unsatisfiable in most cases, since it // contains over-general rules that erroneously re-initiate or terminate a target // fluent. This means that abduction and new kernel set generation takes place // almost always, in every new mini-batch, which causes great delays in the execution. // For this to work we'd need a more ILED-style apporach, where clauses are not scored, // but corrected at every new mistake. In the absence on noise this makes the joint // theory to quickly converge to the correct one. On the other hand, if there is a // substantial amount of noise in the data, therefore the edge interval points are // frequently corrupted, there is no hope to learn strongly-initiated fluents, so there // is no point discussing it or trying to fix it with simple modifications in the BK. //-------------------------------------------------------------------------------------- var CURRENT_THEORY_INITIATED: Vector[Clause] = Vector[Clause]() var CURRENT_THEORY_TERMINATED: Vector[Clause] = Vector[Clause]() def getCurrentJointTheory() = { Theory((CURRENT_THEORY_INITIATED ++ CURRENT_THEORY_TERMINATED).toList) } //var errorProb = Vector.empty[Int] } class Globals(val entryPath: String) extends LazyLogging { /* * Global values and utils. */ val state = new State val cwd: String = System.getProperty("user.dir") // Current working dir val inputPath: String = entryPath // Path to bk and modes files val modesFile: String = s"$inputPath/modes" // Mode Declarations file //val AUXILIARY_PREDS = "auxiliaryPredicates" val BK_INITIATED_ONLY = s"$inputPath/bk-initiated-only.lp" val BK_TERMINATED_ONLY = s"$inputPath/bk-terminated-only.lp" val ABDUCE_WITH_INERTIA = s"$inputPath/abduce-with-inertia.lp" val INITIATED_ONLY_INERTIA = s"$inputPath/initiated-only-with-inertia.lp" val BK_INITIATED_ONLY_MARKDED = s"$inputPath/bk-score-initiated.lp" // BK for scoring initiation rules val BK_TERMINATED_ONLY_MARKDED = s"$inputPath/bk-score-terminated.lp" // BK for scoring termination rules val BK_RULE_SCORING_MARKDED = s"$inputPath/bk-score.lp" // BK for rule scoring when learning without the EC. val USER_BK = s"$inputPath/bk" val BK_WHOLE_EC = s"$inputPath/bk.lp" val BK_WHOLE = s"$inputPath/bk.lp" // for learning without the EC, no practical difference val BK_CROSSVAL = s"$inputPath/bk-for-crossval.lp" val ILED_NO_INERTIA: String = inputPath + "/bk-no-inertia.lp" def matches(p: Regex, str: String) = p.pattern.matcher(str).matches val modesParser = new ModesParser val MODES: List[String] = Source.fromFile(modesFile).getLines.toList.filter(line => !matches("""""".r, line) && !line.startsWith("%")) val MODEHS: List[ModeAtom] = MODES.filter(m => m.contains("modeh") && !m.startsWith("%")).map(x => x). map(x => modesParser.getParseResult(modesParser.parseModes(modesParser.modeh, x))) if (MODEHS.isEmpty) logger.error("No head mode declarations found.") val MODEBS: List[ModeAtom] = MODES.filter(m => m.contains("modeb") && !m.startsWith("%")). map(x => modesParser.getParseResult(modesParser.parseModes(modesParser.modeb, x))) if (MODEBS.isEmpty) logger.error("No body mode declarations found.") /* The input to this method is a Literal representation of mode atoms and example pattern atoms (variabilized). */ def getTypeAxioms(m: Literal): Set[String] = { val plmrkTerms = m.placeMarkers val (posPlmrkTerms, negPlrmTerms, grndPlmrkTerms) = (plmrkTerms._1, plmrkTerms._2, plmrkTerms._3) val allPlmrks = (posPlmrkTerms ++ negPlrmTerms ++ grndPlmrkTerms).map(x => x.asInstanceOf[Variable]).toSet allPlmrks.foldLeft(Set[String]()) { (accum, y) => val allOtherPlmrks = allPlmrks diff Set(y) if (y.inOrOutVar == "+" || y.inOrOutVar == "-") { val result_ = s"${y._type}(${{ y.name }}) :- ${m.tostring}." // the regex below matches variable symbols which do not appear in predicate of function // names. So it will match X0 in p(X0) but not in pX0(X0), pxX0(X0), pX_0(X0), p_2X0(X0) and so on val result = allOtherPlmrks.foldLeft(result_) { (x1, y1) => x1.replaceAll(s"(?<![a-zA-Z0-9_]+)${y1.name}", "_") } accum + result } else { accum } } } // Example patterns as a list[ModeAtom] (helper) val eps1: List[ModeAtom] = MODES.filter(m => m.contains("examplePattern") && !m.startsWith("%")). map(x => modesParser.getParseResult(modesParser.parseModes(modesParser.exmplPattern, x))) val eps2: List[ModeAtom] = eps1 match { case List() => MODEHS // if no example patterns are found, use the head mode declarations for them case _ => eps1 } // Auxiliary predicates. These are input predicates which are not part of the target language // but are necessary for extracting the types of entities in the domain (e.g. think of coords/4 in CAVIAR). private val inputPreds: List[ModeAtom] = { MODES.filter(m => m.contains("inputPredicate") && !m.startsWith("%")). map(x => modesParser.getParseResult(modesParser.parseModes(modesParser.inputPred, x))) } if (inputPreds.exists(p => p.isNAF)) { logger.error(s"NAF is not allowed in input predicates.") System.exit(-1) } // This method generates types axioms for the mode declarations, // i.e. rules of the form: time(X1) :- happensAt(active(_),X1). private val typeAxioms = { val m = inputPreds.filter(x => !x.isNAF).map(x => x.varbed) val x = m.flatMap(getTypeAxioms).toSet //x foreach println x } /* * Comparison predicates compare numerical values to a threshold, e.g: * * close(p1, p2, 30, 10) * * meaning that the Euclidean distance of p1, p2 at time 10 is less than 30. * * Comparison predicates may be declared in the modes file like this: * * comparisonPredicate(close(+person,+person,#numvalue,+time), lessThan, comparison_term_position(3)) * * The #numvalue placemarker indicates the position of the actual numerical threshold * while the 'lessThan' term (can also be 'greaterThan') declares the intended "semantics" * of the predicate. Note that numvalue has to be the type of this term in the corresponding body declaration. The * comparison_term_position(3) indicates the position of the comparison term in the atom. In folded atoms the whole * "path" to this term needs to be specified e.g. * * comparisonPredicate(far(+person,+person,test(+person, p(#threshold_value)),+time), greaterThan, comparison_term_position(3,2,1)) * * Here to find the comparison term take atom.terms(3).terms(2).terms(1). See also the method getComparisonTerm * in the Modes class and the getComparisonTerm in the Literal class. * * Comparison predicate declarations are used internally to allow for two tasks that simplify the learning process: * * 1. Reduce clauses: When a comparison predicate in the lessThan semantics and with numvalue1 is added to a rule, * then any other similar predicate with numvalue2 such that numvalue2 > numvalue1 is removed from the rule. * Rules with comparison predicate in the greaterThan semantics are reduced accordingly. * 2. When generating candidate specializations, rules that consist of comparison predicates only (e.g. close/4 * predicates only) are omitted. * */ val comparisonPredicates: List[ModeAtom] = { MODES.filter(m => m.contains("comparisonPredicate") && !m.startsWith("%")). map(x => modesParser.getParseResult(modesParser.parseModes(modesParser.compPred, x))) } MODEBS foreach { m => val x = comparisonPredicates.find(z => z == m).getOrElse(ModeAtom()) if (x != ModeAtom()) { m.compRelation = x.compRelation m.comparisonTermPosition = x.comparisonTermPosition } } val headAtomSignatures: List[AtomSignature] = { MODEHS.map(x => new AtomSignature(x.functor, x.arity)) } val bodyAtomSignatures: List[AtomSignature] = { MODEBS.map(x => new AtomSignature(x.functor, x.arity)) } /* Reads the background knowledge from $inputPath/bk.lp and produces helper files (e.g. for rule evaluation, bottom clause generation etc.) */ def generateBKFiles_Event_Calculus() = { //private val PY_LESSTHAN = // "#script (python)\nfrom gringo import Fun\nimport math\n\ndef less_than(x,y):\n return float(x) < float(y)\n\n#end." val EC_AXIOM_1 = "holdsAt(F,Te) :- fluent(F), not sdFluent(F), initiatedAt(F,Ts), next(Ts, Te)." val EC_AXIOM_2 = "holdsAt(F,Te) :- fluent(F), not sdFluent(F), holdsAt(F,Ts), " + "not terminatedAt(F,Ts), next(Ts, Te)." //private val RIGHT_BEFORE_DEF = "right_before(X,Z) :- time(X), time(Z), Z = X+40." ///* /*val RIGHT_BEFORE_DEF ="\n#script (python)\ntimes = []\ndef collect_all(a):\n times.append(a)\n " + "return 1\ndef sorted():\n times.sort()\n return zip(range(len(times)), times)\n#end.\ncollect_all." + "\ncollect_all :- time(X), @collect_all(X) == 0.\nsorted_pair(X,N) :- collect_all, " + "(X,N) = @sorted().\nnext(X, Y) :- sorted_pair(A,X), sorted_pair(A+1,Y).\n"*/ val RIGHT_BEFORE_DEF = """ |#script (python) |times = [] |def collect_all(a): | times.append(a) | return 1 |def sorted(): | times.sort() | return zip(range(len(times)), times) |def end_time(): | times.sort() | return times[-1] |def start_time(): | times.sort() | return times[0] |#end. |collect_all. |collect_all :- time(X), @collect_all(X) == 0. |sorted_pair(X,N) :- collect_all, (X,N) = @sorted(). |next(X, Y) :- sorted_pair(A,X), sorted_pair(A+1,Y). |start_end :- collect_all. |start_end(X,Y) :- start_end, X = @start_time(), Y = @end_time(). |%endTime(X) :- X = @end_time(). |startTime(X) :- X = @start_time(). |""".stripMargin //*/ val INIT_TIME_DEF = "initialTime(X) :- time(X), #false : X > Y, time(Y)." val INIT_HOLDS_DEF = "%THIS SHOULD NOT BE HERE!\nholdsAt(F,T) :- initialTime(T), example(holdsAt(F,T))." val CORE_EVENT_CALCULUS_BK = List(EC_AXIOM_1, EC_AXIOM_2, RIGHT_BEFORE_DEF, INIT_TIME_DEF, INIT_HOLDS_DEF) val CROSSVAL_EVENT_CALCULUS_BK = List(EC_AXIOM_1, EC_AXIOM_2, RIGHT_BEFORE_DEF) val INITIATED_ONLY_EVENT_CALCULUS_BK = List(EC_AXIOM_1, RIGHT_BEFORE_DEF, INIT_TIME_DEF, INIT_HOLDS_DEF) val TERMINATED_ONLY_EVENT_CALCULUS_BK = List(EC_AXIOM_1, EC_AXIOM_2, RIGHT_BEFORE_DEF, INIT_TIME_DEF, INIT_HOLDS_DEF, "holdsAt(F,T) :- fluent(F), not sdFluent(F), examplesInitialTime(T), example(holdsAt(F,T)).", "examplesInitialTime(X) :- example(holdsAt(_,X)), #false : X > Y, example(holdsAt(_,Y)).") // Read the user-input BK val userBK = Source.fromFile(USER_BK).getLines.toList.mkString("\n") // Generate the ASP scoring rules: val scoringRules = generateScoringBK(MODEHS) // Type axioms: val tas = this.typeAxioms.mkString("\n") // Generate bk.lp file (it will be used for reasoning) val bkFile = new java.io.File(BK_WHOLE_EC) val pw1 = new PrintWriter(bkFile) pw1.write(userBK + "\n") pw1.write(CORE_EVENT_CALCULUS_BK.mkString("\n")) pw1.write("\n" + tas) pw1.close() bkFile.deleteOnExit() // Generate initiation-only BK file val initOnlyBKFile = new java.io.File(BK_INITIATED_ONLY) val pw2 = new PrintWriter(initOnlyBKFile) pw2.write(userBK + "\n") pw2.write(INITIATED_ONLY_EVENT_CALCULUS_BK.mkString("\n")) pw2.write("\n" + tas) pw2.close() initOnlyBKFile.deleteOnExit() // Generate termination-only BK file val termOnlyBKFile = new java.io.File(BK_TERMINATED_ONLY) val pw3 = new PrintWriter(termOnlyBKFile) pw3.write(userBK + "\n") pw3.write(TERMINATED_ONLY_EVENT_CALCULUS_BK.mkString("\n")) pw3.write("\n" + tas) pw3.close() termOnlyBKFile.deleteOnExit() // Generate initiation-scoring rules val scoreInitFile = new java.io.File(BK_INITIATED_ONLY_MARKDED) val pw4 = new PrintWriter(scoreInitFile) pw4.write(userBK + "\n") pw4.write("\n" + scoringRules._1 + "\n" + RIGHT_BEFORE_DEF + "\n") pw4.write("\n" + tas) pw4.close() scoreInitFile.deleteOnExit() // Generate termination-scoring rules val scoreTermFile = new java.io.File(BK_TERMINATED_ONLY_MARKDED) val pw5 = new PrintWriter(scoreTermFile) pw5.write(userBK + "\n") pw5.write("\n" + scoringRules._2 + "\n" + RIGHT_BEFORE_DEF + "\n") pw5.write("\n" + tas) pw5.close() scoreTermFile.deleteOnExit() // Generate cross-validation file val crossValFile = new java.io.File(BK_CROSSVAL) val pw6 = new PrintWriter(crossValFile) pw6.write(userBK + "\n") pw6.write(CROSSVAL_EVENT_CALCULUS_BK.mkString("\n")) pw6.write("\n" + tas) pw6.close() crossValFile.deleteOnExit() } def generateBKFiles_No_Event_Calculus() = { // Read the user-input BK val userBK = Source.fromFile(USER_BK).getLines.toList.mkString("\n") // Generate the ASP scoring rules: val scoringRules = generateScoringBK(MODEHS) // Type axioms: val tas = this.typeAxioms.mkString("\n") // Generate bk.lp file (it will be used for reasoning) val bkFile = new java.io.File(BK_WHOLE) val pw1 = new PrintWriter(bkFile) pw1.write(userBK + "\n") pw1.write("\n" + tas) pw1.close() bkFile.deleteOnExit() // Generate BK file for rule scoring val scoreTermFile = new java.io.File(BK_RULE_SCORING_MARKDED) val pw5 = new PrintWriter(scoreTermFile) pw5.write(userBK + "\n") pw5.write("\n" + scoringRules._2 + "\n") pw5.write("\n" + tas) pw5.close() scoreTermFile.deleteOnExit() // Generate cross-validation file val crossValFile = new java.io.File(BK_CROSSVAL) val pw6 = new PrintWriter(crossValFile) pw6.write(userBK + "\n") pw6.write("\n" + tas) pw6.close() crossValFile.deleteOnExit() } if (Globals.glvalues("with-ec").toBoolean) { generateBKFiles_Event_Calculus() } else { generateBKFiles_No_Event_Calculus() } val EXAMPLE_PATTERNS: List[Literal] = eps2 map (p => p.varbed) val EXAMPLE_PATTERNS_AS_STRINGS: List[String] = EXAMPLE_PATTERNS map (_.tostring) private val coverageDirectives = getCoverageDirectives(EXAMPLE_PATTERNS_AS_STRINGS) val TPS_RULES: String = coverageDirectives._1 val FPS_RULES: String = coverageDirectives._2 val FNS_RULES: String = coverageDirectives._3 val TPS_RULES_MARKED: String = coverageDirectives._4 val FPS_RULES_MARKED: String = coverageDirectives._5 val FNS_RULES_MARKED: String = coverageDirectives._6 val CONSTRAINT_COVER_ALL_POSITIVES: String = coverageDirectives._7 val CONSTRAINT_EXCLUDE_ALL_NEGATIVES: String = coverageDirectives._8 val SHOW_TPS_ARITY_1 = "\n#show tps/1." val SHOW_TPS_ARITY_2 = "\n#show tps/2." val SHOW_FPS_ARITY_1 = "\n#show fps/1." val SHOW_FPS_ARITY_2 = "\n#show fps/2." val SHOW_FNS_ARITY_1 = "\n#show fns/1." val SHOW_FNS_ARITY_2 = "\n#show fns/2." val SHOW_TIME = "\n#show times/1." val SHOW_INTERPRETATIONS_COUNT = "\n#show countGroundings/1." val INCLUDE_BK: String => String = (file: String) => s"\n\n#include " + "\"" + file + "\".\n" val HIDE = "\n#show.\n" // if jep is used "UNSAT" else "UNSATISFIABLE" def UNSAT = if (Globals.glvalues("with-jep").toBoolean) "UNSAT" else "UNSATISFIABLE" val SAT = "SAT" val TPS_COUNT_RULE: String = tpsCountRules(EXAMPLE_PATTERNS) val FPS_COUNT_RULE: String = fpsCountRules(EXAMPLE_PATTERNS) val FNS_COUNT_RULE: String = fnsCountRules(EXAMPLE_PATTERNS) // FNs for terminated: not marked(I,exmpl), example(exmpl) (same as FNs for initiated) // TPs for terminated: marked(I, exmpl), example(exmpl) (same as TPs for initiated) val TIMES_COUNT_RULE = "\ntimes(X) :- X = #count { Z: time(Z) }.\n" /* def EXAMPLE_COUNT_RULE = this.EXAMPLE_PATTERNS.map{ x => s"exampleGrounding(${x.tostring}):-${x.getTypePredicates(this).mkString(",")}.\n"+ s"countGroundings(X) :- X = #count { ${x.getVars.toList.map(_.tostring).mkString(",")}: " + s"exampleGrounding(${x.tostring}),${x.getTypePredicates(this).mkString(",")} }." }.mkString("\n")+"\n" */ /* I NEED TO FIND A WAY TO MAKE THIS GENERIC (NON- EVENT CALCULUS SPECIFIC). * FOR EXAMPLE, THE USER COULD SPECIFY IT IN THE MODES FILE. */ /* def EXAMPLE_COUNT_RULE = "exampleGrounding(holdsAt(F,T)):-fluent(F),time(T).\n"+ "countGroundings(X) :- X = #count { F,T: exampleGrounding(holdsAt(F,T)),fluent(F),time(T) }.\n" */ def EXAMPLE_COUNT_RULE = { val targetPred = EXAMPLE_PATTERNS.head val tpstr = targetPred.tostring val vars = targetPred.getVars.map(x => x.name).mkString(",") val typePreds = targetPred.getTypePredicates(this).mkString(",") s"exampleGrounding($tpstr) :- $typePreds.\ncountGroundings(X) :- X = #count { $vars: exampleGrounding($tpstr),$typePreds }.\n" } /* val LOOK_AHEADS = { val f = Source.fromFile(modesFile).getLines.toList.filter(line => line.startsWith("lookahead")) if (f.nonEmpty) f.map( x => new LookAheadSpecification(x) ) else Nil } */ private val LOOK_AHEADS_TEST = { val f = Source.fromFile(modesFile).getLines.toList.filter(line => line.startsWith("lookahead")) if (f.nonEmpty) f.map(x => new LookAheadUtils.LookAheadSpecification(x)) else Nil } /* def getAdditionalLanguageBias(predicateName: String) = { val f = Source.fromFile(modesFile).getLines.toList.filter(line => line.startsWith(s"$predicateName")) f.map(x => x.split(s"$predicateName\\(")(1).split("\\)")(0)).filter(p => (MODEHS++MODEBS).exists(q => q.functor == p)) } val FORCE_PREDS = getAdditionalLanguageBias("force") val BASIC_PREDS = getAdditionalLanguageBias("basic") val AUXILIARY_PREDS = getAdditionalLanguageBias("auxiliary") */ var EVALUATION_FUNCTION = "precision_recall" // alternative is foil_gain var MAX_CLAUSE_LENGTH = 15 var LEARNING_WHOLE_THEORIES = false var TOP_THEORY_SCORE = 0.0 var TOP_THEORY_SCORE_COUNT = 0 /* * The following are not used anywhere, they are for debugging */ /* private val initHead = "initiatedAt(meeting(X0,X1),X2)" private val initHead1 = "initiatedAt(meeting(X1,X0),X2)" private val termHead = "terminatedAt(meeting(X0,X1),X2)" private val termHead1 = "terminatedAt(meeting(X1,X0),X2)" private val BCBodyLits = List("happensAt(inactive(X1),X2)","happensAt(inactive(X0),X2)", "happensAt(active(X1),X2)","happensAt(active(X0),X2)", "happensAt(walking(X1),X2)","happensAt(walking(X0),X2)", "happensAt(running(X1),X2)","happensAt(running(X0),X2)", "happensAt(appear(X1),X2)","happensAt(appear(X0),X2)", "happensAt(disappear(X1),X2)","happensAt(disappear(X0),X2)", "not happensAt(disappear(X1),X2)","not happensAt(disappear(X0),X2)", "close(X0,X1,24,X2)","close(X1,X0,24,X2)","close(X0,X1,25,X2)","close(X1,X0,25,X2)", "close(X0,X1,30,X2)","close(X1,X0,30,X2)","close(X0,X1,34,X2)","close(X1,X0,34,X2)", "far(X0,X1,24,X2)","far(X1,X0,24,X2)","far(X0,X1,25,X2)","far(X1,X0,25,X2)", "far(X0,X1,30,X2)","far(X1,X0,30,X2)","far(X0,X1,34,X2)","far(X1,X0,34,X2)") val initBC1 = { val h = Literal.toLiteral(initHead) val b = BCBodyLits map (x => Literal.toLiteral(x)) Clause(List(h) ++ b) } val initBC2 = { val h = Literal.toLiteral(initHead1) val b = BCBodyLits map (x => Literal.toLiteral(x)) Clause(List(h) ++ b) } val termBC1 = { val h = Literal.toLiteral(termHead) val b = BCBodyLits map (x => Literal.toLiteral(x)) Clause(List(h) ++ b) } val termBC2 = { val h = Literal.toLiteral(termHead1) val b = BCBodyLits map (x => Literal.toLiteral(x)) Clause(List(h) ++ b) } */ }
nkatzz/OLED
src/main/scala/app/runutils/Globals.scala
Scala
gpl-3.0
25,519
/* * Copyright 2011-2014 Chris de Vreeze * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package nl.ebpi.yaidom.convert import scala.collection.JavaConverters.bufferAsJavaListConverter import org.xml.sax.Attributes import org.xml.sax.ContentHandler import org.xml.sax.ext.LexicalHandler import org.xml.sax.helpers.AttributesImpl import nl.ebpi.yaidom.core.Declarations import nl.ebpi.yaidom.core.Scope import nl.ebpi.yaidom.simple.Comment import nl.ebpi.yaidom.simple.Document import nl.ebpi.yaidom.simple.DocumentConverter import nl.ebpi.yaidom.simple.Elem import nl.ebpi.yaidom.simple.ElemConverter import nl.ebpi.yaidom.simple.EntityRef import nl.ebpi.yaidom.simple.Node import nl.ebpi.yaidom.simple.ProcessingInstruction import nl.ebpi.yaidom.simple.Text import YaidomToSaxEventsConversions.SaxEventsProducer /** * Converter from yaidom nodes to SAX event producers, in particular from [[nl.ebpi.yaidom.simple.Elem]] to `SaxEventsProducer`, * and from [[nl.ebpi.yaidom.simple.Document]] to `SaxEventsProducer`. * * @author Chris de Vreeze */ trait YaidomToSaxEventsConversions extends ElemConverter[SaxEventsProducer] with DocumentConverter[SaxEventsProducer] { /** Converts a yaidom `Document` to a `SaxEventsProducer` */ final def convertDocument(doc: Document): SaxEventsProducer = { { (handler: ContentHandler) => handler.startDocument() doc.children foreach { ch => convertNode(ch, Scope.Empty)(handler) } handler.endDocument() } } /** * Converts a yaidom `Elem` to a `SaxEventsProducer`. * The assumed parent scope is the empty scope. */ final def convertElem(elm: Elem): SaxEventsProducer = { convertElem(elm, Scope.Empty) } /** * Converts a yaidom node to a `SaxEventsProducer`. * The given parent scope is used, in case the node is an `Elem`. */ final def convertNode(node: Node, parentScope: Scope): SaxEventsProducer = { node match { case e: Elem => convertElem(e, parentScope) case t: Text => convertText(t) case pi: ProcessingInstruction => convertProcessingInstruction(pi) // Difficult to convert yaidom EntityRef to SAX event producer, because of missing declaration case er: EntityRef => (handler => ()) case c: Comment => convertComment(c) } } /** * Converts a yaidom `Elem` to a `SaxEventsProducer`. * The given parent scope is used, that is, the prefix mappings before the outer "start element event" correspond to * `parentScope.relativize(elm.scope)`. */ final def convertElem(elm: Elem, parentScope: Scope): SaxEventsProducer = { { (handler: ContentHandler) => // Not tail-recursive, but the recursion depth should be limited val namespaces: Declarations = parentScope.relativize(elm.scope) val namespacesMap = namespaces.prefixNamespaceMap for ((prefix, nsUri) <- namespacesMap) handler.startPrefixMapping(prefix, nsUri) generateStartElementEvent(elm, handler, parentScope) // Recursive calls. Not tail-recursive, but recursion depth should be limited. for (node <- elm.children) { convertNode(node, elm.scope)(handler) } generateEndElementEvent(elm, handler, parentScope) for ((prefix, nsUri) <- namespacesMap) handler.endPrefixMapping(prefix) } } /** * Converts a yaidom `Text` to a `SaxEventsProducer`. */ final def convertText(text: Text): SaxEventsProducer = { { (handler: ContentHandler) => handler match { case handler: ContentHandler with LexicalHandler => if (text.isCData) handler.startCDATA() handler.characters(text.text.toCharArray, 0, text.text.length) if (text.isCData) handler.endCDATA() case _ => handler.characters(text.text.toCharArray, 0, text.text.length) } } } /** * Converts a yaidom `ProcessingInstruction` to a `SaxEventsProducer`. */ final def convertProcessingInstruction( processingInstruction: ProcessingInstruction): SaxEventsProducer = { { (handler: ContentHandler) => handler.processingInstruction(processingInstruction.target, processingInstruction.data) } } /** * Converts a yaidom `Comment` to a `SaxEventsProducer`. */ final def convertComment(comment: Comment): SaxEventsProducer = { { (handler: ContentHandler) => handler match { case handler: ContentHandler with LexicalHandler => handler.comment(comment.text.toCharArray, 0, comment.text.length) case _ => () } } } private def generateStartElementEvent(elm: Elem, handler: ContentHandler, parentScope: Scope): Unit = { val uri = elm.resolvedName.namespaceUriOption.getOrElse("") val attrs: Attributes = getAttributes(elm) handler.startElement(uri, elm.localName, elm.qname.toString, attrs) } private def generateEndElementEvent(elm: Elem, handler: ContentHandler, parentScope: Scope): Unit = { val uri = elm.resolvedName.namespaceUriOption.getOrElse("") handler.endElement(uri, elm.localName, elm.qname.toString) } private def getAttributes(elm: Elem): Attributes = { val attrs = new AttributesImpl addNormalAttributes(elm, attrs) attrs } /** * Gets the normal (non-namespace-declaration) attributes, and adds them to the passed Attributes object. * This method is called internally, providing the attributes that are passed to the startElement call. */ final def addNormalAttributes(elm: Elem, attrs: AttributesImpl): Attributes = { val attrScope = elm.attributeScope for ((attrQName, attrValue) <- elm.attributes) { val attrEName = attrScope.resolveQNameOption(attrQName).getOrElse(sys.error(s"Corrupt non-resolvable attribute: $attrQName")) val uri = attrEName.namespaceUriOption.getOrElse("") val tpe = "CDATA" attrs.addAttribute(uri, attrQName.localPart, attrQName.toString, tpe, attrValue) } attrs } /** * Gets the namespace-declaration attributes, and adds them to the passed Attributes object. * This method is not called internally. */ final def addNamespaceDeclarationAttributes(elm: Elem, parentScope: Scope, attrs: AttributesImpl): Attributes = { val namespaces: Declarations = parentScope.relativize(elm.scope) val namespacesMap = namespaces.prefixNamespaceMap val tpe = "CDATA" val xmlNs = "http://www.w3.org/XML/1998/namespace" for ((prefix, nsUri) <- namespacesMap) { if (prefix == "") { attrs.addAttribute(xmlNs, "xmlns", "xmlns", tpe, nsUri) } else { val qname = s"xmlns:$prefix" attrs.addAttribute(xmlNs, prefix, qname, tpe, nsUri) } } attrs } } object YaidomToSaxEventsConversions { /** Producer of SAX events, given a `ContentHandler` on which the SAX event handlers are invoked */ type SaxEventsProducer = (ContentHandler => Unit) }
EBPI/yaidom
src/main/scala/nl/ebpi/yaidom/convert/YaidomToSaxEventsConversions.scala
Scala
apache-2.0
7,458
package org.pgscala.embedded import java.io.File import java.net.{HttpURLConnection, URL} import java.security.MessageDigest import java.text.NumberFormat import java.util.regex.Pattern import com.typesafe.scalalogging.StrictLogging import org.apache.commons.io.FileUtils import org.pgscala.embedded.Util._ import scala.concurrent.Future import scala.concurrent.Await import scala.concurrent.duration.Duration.Inf import scala.util.Try object PostgresSizeUpdater extends StrictLogging { case class DownloadAttributes(version: PostgresVersion, variant: Int, os: OS, size: Long, sha256: Array[Byte]) private[this] val resolver = new PostgresVersionSpec() private[this] def makePostgresDownload(_ver: PostgresVersion, _os: OS): PostgresDownloadBase = try { PostgresDownload(_ver, _os) } catch { case _: Throwable => new { val version = _ver val os = _os val url = { val resolved = resolver.resolveActual(_ver, _os) logger.info(s"Could not retrieve (${_ver}, ${_os}) from metadata, downloading: $resolved ...") resolved } val variant = {( Pattern.quote(s"postgresql-${_ver}-") + "(\\\\d+)" + Pattern.quote(s"-${os.name.classifier}${os.architecture.classifier}-binaries.${os.name.archiveMode}")) .r.findFirstMatchIn(url) .getOrElse(sys.error(s"Could not decode variant from url: $url")) .group(1).toInt } val (size, sha256) = { val buffer = new Array[Byte](65536) val is = new URL(url).openStream() try { val md = MessageDigest.getInstance("SHA-256") var length = 0L while ({ val read = is.read(buffer) if (read != -1) { md.update(buffer, 0, read) length += read true } else { false } }) {} (length, md.digest()) } finally { is.close() } } } with PostgresDownloadBase } implicit val executionContext = EmbeddedSpec.executionContext lazy val downloadAttributes = Await.result(Future.sequence(for { ver <- PostgresVersion.values.take(7) os <- OS.values } yield Future { val download = makePostgresDownload(ver, os) val url = download.downloadUrl val conn = new java.net.URL(url).openConnection().asInstanceOf[HttpURLConnection] conn.setRequestMethod("HEAD") try { val is = conn.getInputStream() try { val size = conn.getHeaderField("Content-Length").toLong val sha256 = download.sha256 val nf = NumberFormat.getInstance() logger.debug(s"Retrieved attributes for $ver-${download.variant} on OS $os - size: ${nf.format(size)} - sha256: ${bin2Hex(sha256)}") DownloadAttributes(ver, download.variant, os, size, sha256) } finally { is.close() } } finally { conn.disconnect() } }), Inf) def main(args: Array[String]): Unit = { val file = new File(EmbeddedSpec.projectRoot, "src/main/resources/org/pgscala/embedded/version-metadata.txt") val oldBody = Try { FileUtils.readFileToString(file, "UTF-8") } getOrElse "" val sb = new StringBuilder for (DownloadAttributes(ver, variant, os, size, sha256) <- downloadAttributes) { ((sb ++= ver.toString += '-') append variant += ';' ++= os.toString += ';') append size += ';' ++= bin2Hex(sha256) += '\\n' } val newBody = sb.toString if (newBody != oldBody) { logger.info("Updated version-metadata.txt in {}", file) FileUtils.writeStringToFile(file, newBody, "UTF-8") } else { logger.debug("No need to update version-metadata.txt, as it contains the correct sizes") } EmbeddedSpec.shutdown() } }
melezov/pgscala-embedded
src/test/scala/org/pgscala/embedded/PostgresSizeUpdater.scala
Scala
mit
3,778
package io.github.binaryfoo.lagotto import org.joda.time.DateTime import scala.collection.AbstractIterator case class PivotedLogEntry(row: Map[String, String]) extends LogEntry { override def timestamp: DateTime = null override def source: SourceRef = null override def exportAsSeq: Seq[(String, String)] = row.toSeq override def lines: String = "" override def apply(id: String): String = row(id) } /** * A single value for one of the N rows included in a single PivotedLogEntry. */ case class PivotedValue(field: String, value: String) extends LogEntry { override def timestamp: DateTime = null override def source: SourceRef = null override def exportAsSeq: Seq[(String, String)] = null override def lines: String = "" override def apply(id: String): String = { if (field != id) { throw new IllegalArgumentException(s"Wrong value being queried $id != $field") } value } } /** * Supports a use case like: * * time(HH:mm),pivot(mti),count * * Instead of getting each time,mti,count pair in the vertical you get something like: * * time(HH:mm),0200 - count,0210 - count,0400 - count, 0410 - count * 13:59,10,9,1,1 * * Without the pivot you'd have: * * time(HH:mm),mti,count * 13:59,0200,10 * 13:59,0210,9 * 13:59,0400,1 * 13:59,0410,1 */ class PivotedIterator(val rotateOn: DirectExpr, val pivot: PivotExpr, val pivoted: Seq[FieldExpr], val entries: Iterator[LogEntry]) extends AbstractIterator[PivotedLogEntry] { private val (aggregateOfPivot, toPivot) = pivoted.partition { case a@AggregateExpr(_, _) => a.expr.exists(_.isInstanceOf[PivotResultExpr]) case _ => false } private val aggregateOps: Seq[PivotAggregate] = extractAggregateOps private val (pivotedFields, pivotedLookup) = pivotResultFields val fields: Seq[String] = Seq(rotateOn.field) ++ pivotedFields ++ aggregateOfPivot.map(_.field) // value of pivot expr private var currentKey: String = null // pivot expr -> values of toPivot // will be flattened into a single row private var current: Map[String, Seq[String]] = Map.empty def readNext(): PivotedLogEntry = { for (e <- entries) { val thisKey = rotateOn(e) val row = if (thisKey != currentKey) outputRow() else null currentKey = thisKey current = current.updated(pivot(e), toPivot.map(_(e))) if (row != null) return row } outputRow() } def outputRow() = { if (currentKey != null) { val pivotedRow = fields.zip(Seq(currentKey) ++ pivot.distinctValues().flatMap { v => current.getOrElse(v, toPivot.map(_ => "0")) }).toMap val rowAggregates = aggregateOps.map { case PivotAggregate(resultName, field, op) => val a = op.copy() pivotedLookup(field).foreach(name => a += PivotedValue(field, pivotedRow(name))) (resultName, a.result()) } current = Map.empty new PivotedLogEntry(pivotedRow ++ rowAggregates) } else { null } } override def hasNext: Boolean = entries.hasNext || current.nonEmpty override def next(): PivotedLogEntry = readNext() private def extractAggregateOps: Seq[PivotAggregate] = { aggregateOfPivot.map { case AggregateExpr(resultName, op) => op match { case o: FieldBasedAggregateOp => val pivotedField = o.expr.asInstanceOf[PivotResultExpr].pivotedField if (!toPivot.exists(_.field == pivotedField)) throw new IAmSorryDave(s"$pivotedField must be in the field list to calculate ${o.field}") PivotAggregate(resultName, pivotedField, op) case CountIfBuilder(condition@FieldFilterOn(expr)) => val pivotedField = expr.asInstanceOf[PivotResultExpr].pivotedField if (!toPivot.exists(_.field == pivotedField)) throw new IAmSorryDave(s"$pivotedField must be in the field list to calculate count(if($condition))") PivotAggregate(resultName, pivotedField, op) } case x => throw new IAmSorryDave(s"Can't process $x") } } private def pivotResultFields: (Seq[String], Map[String, Seq[String]]) = { val pivoted: Seq[(String, String)] = pivot.distinctValues().flatMap(v => toPivot.map(p => p.field -> (v + " - " + p.field))) val pivotResultFields = pivoted.map(_._2) val pivotResultLookup = pivoted.groupBy(_._1).mapValues(_.map(_._2)) (pivotResultFields, pivotResultLookup) } } case class PivotAggregate(resultName: String, pivotField: String, op: AggregateOp)
binaryfoo/lagotto
src/main/scala/io/github/binaryfoo/lagotto/PivotedLogEntry.scala
Scala
mit
4,524
package io.iohk.ethereum.utils import java.math.BigInteger import java.nio.{ByteBuffer, ByteOrder} import akka.util.ByteString import scala.util.Random object ByteUtils { /** * Calculates number of matching bytes from the beginning of both arrays. * Due to performance reasons needs to be as fast as possible which means usage of while loops and var's. * * @param a - first array of bytes to check * @param b - second array to bytes to check * @return Length of common prefix shared by both arrays */ def matchingLength(a: Array[Byte], b: Array[Byte]): Int = { var prefixLen = 0 while (prefixLen < a.length && prefixLen < b.length && a(prefixLen) == b(prefixLen)) { prefixLen = prefixLen + 1 } prefixLen } def bigIntegerToBytes(b: BigInteger, numBytes: Int): Array[Byte] = { val bytes = new Array[Byte](numBytes) val biBytes = b.toByteArray val start = if (biBytes.length == numBytes + 1) 1 else 0 val length = Math.min(biBytes.length, numBytes) System.arraycopy(biBytes, start, bytes, numBytes - length, length) bytes } def bigIntToBytes(b: BigInt, numBytes: Int): Array[Byte] = bigIntegerToBytes(b.bigInteger, numBytes) def toBigInt(bytes: ByteString): BigInt = bytes.foldLeft(BigInt(0)) { (n, b) => (n << 8) + (b & 0xff) } /** * Calculates xor distance between two byte arrays. Due to performance reasons needs to be as fast as possible * which means usage of while loops and var's. * * @param a - array of bytes to xor * @param b - array of bytes to xor * @return Array[Byte] - each element of array is equal to `(a(i) ^ b(i))` */ def xor(a: Array[Byte], b: Array[Byte]): Array[Byte] = { val ret = new Array[Byte](a.length) var i = 0 while (i < a.length) { ret(i) = (a(i) ^ b(i)).toByte i += 1 } ret } def or(arrays: Array[Byte]*): Array[Byte] = { require(arrays.map(_.length).distinct.length <= 1, "All the arrays should have the same length") require(arrays.nonEmpty, "There should be one or more arrays") val zeroes = Array.fill(arrays.head.length)(0.toByte) arrays.foldLeft[Array[Byte]](zeroes) { case (prevOr, array) => prevOr.zip(array).map { case (b1, b2) => (b1 | b2).toByte } } } def and(arrays: Array[Byte]*): Array[Byte] = { require(arrays.map(_.length).distinct.length <= 1, "All the arrays should have the same length") require(arrays.nonEmpty, "There should be one or more arrays") val ones = Array.fill(arrays.head.length)(0xff.toByte) arrays.foldLeft[Array[Byte]](ones) { case (prevOr, array) => prevOr.zip(array).map { case (b1, b2) => (b1 & b2).toByte } } } def randomBytes(len: Int): Array[Byte] = { val arr = new Array[Byte](len) new Random().nextBytes(arr) arr } def bigEndianToShort(bs: Array[Byte]): Short = { val n = bs(0) << 8 (n | bs(1) & 0xff).toShort } def padLeft(bytes: ByteString, length: Int, byte: Byte = 0): ByteString = { val l = math.max(0, length - bytes.length) val fill = Seq.fill[Byte](l)(byte) fill ++: bytes } def compactPickledBytesToArray(buffer: ByteBuffer): Array[Byte] = { val data = Array.ofDim[Byte](buffer.limit()) buffer.rewind() buffer.get(data) data } def compactPickledBytes(buffer: ByteBuffer): ByteString = { ByteString(compactPickledBytesToArray(buffer)) } def byteSequenceToBuffer(bytes: IndexedSeq[Byte]): ByteBuffer = ByteBuffer.wrap(bytes.toArray) def bytesToInts(bytes: Array[Byte], bigEndian: Boolean): Array[Int] = { val ret = new Array[Int](bytes.length / 4) bytesToIntsMut(bytes, ret, bigEndian) ret } def intsToBytes(ints: Array[Int], bigEndian: Boolean): Array[Byte] = { val ret = new Array[Byte](ints.length * 4) intsToBytesMut(ints, ret, bigEndian) ret } def getIntFromWord(arr: Array[Byte]): Int = { ByteBuffer.wrap(arr, 0, 4).order(ByteOrder.LITTLE_ENDIAN).getInt } /** * Converts array of Int to corresponding array of bytes. Due to performance reasons needs to be as fast as possible * which means usage of while loops and var's. * * @param arr - array of int's to convert * @param b - array for resulting byte conversion. It will be mutated in place, and it's length needs to be equal to * `(arr.length * 4)` * @param bigEndian - param specifying which int representation should be used. * @return Unit */ def intsToBytesMut(arr: Array[Int], b: Array[Byte], bigEndian: Boolean) { if (!bigEndian) { var off = 0 var i = 0 while (i < arr.length) { val ii = arr(i) b(off) = (ii & 0xff).toByte off += 1 b(off) = ((ii >> 8) & 0xff).toByte off += 1 b(off) = ((ii >> 16) & 0xff).toByte off += 1 b(off) = ((ii >> 24) & 0xff).toByte off += 1 i = i + 1 } } else { var off = 0 var i = 0 while (i < arr.length) { val ii = arr(i) b(off) = ((ii >> 24) & 0xff).toByte off += 1 b(off) = ((ii >> 16) & 0xff).toByte off += 1 b(off) = ((ii >> 8) & 0xff).toByte off += 1 b(off) = (ii & 0xff).toByte off += 1 i = i + 1 } } } /** * Converts array of bytes to corresponding array of ints. Due to performance reasons needs to be as fast as possible * which means usage of while loops and var's. * * @param b - array of bytes to convert * @param arr - array for resulting int conversion. It will be mutated in place, and it's length needs to be equal to * `(b.length / 4)` * @param bigEndian - param specifying which int representation should be used. * @return Unit */ def bytesToIntsMut(b: Array[Byte], arr: Array[Int], bigEndian: Boolean) { if (!bigEndian) { var off = 0 var i = 0 while (i < arr.length) { var ii: Int = b(off) & 0x000000ff off += 1 ii |= (b(off) << 8) & 0x0000ff00 off += 1 ii |= (b(off) << 16) & 0x00ff0000 off += 1 ii |= (b(off) << 24) off += 1 arr(i) = ii i = i + 1 } } else { var off = 0 var i = 0 while (i < arr.length) { var ii: Int = b(off) << 24 off += 1 ii |= (b(off) << 16) & 0x00ff0000 off += 1 ii |= (b(off) << 8) & 0x0000ff00 off += 1 ii |= b(off) & 0x000000ff off += 1 arr(i) = ii i = i + 1 } } } }
input-output-hk/etc-client
src/main/scala/io/iohk/ethereum/utils/ByteUtils.scala
Scala
mit
6,606
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.scheduler import java.util.concurrent._ import java.util.concurrent.atomic.{AtomicBoolean, AtomicLong} import scala.util.DynamicVariable import org.apache.spark.SparkContext import org.apache.spark.internal.config._ import org.apache.spark.util.Utils /** * Asynchronously passes SparkListenerEvents to registered SparkListeners. * * Until `start()` is called, all posted events are only buffered. Only after this listener bus * has started will events be actually propagated to all attached listeners. This listener bus * is stopped when `stop()` is called, and it will drop further events after stopping. */ private[spark] class LiveListenerBus(val sparkContext: SparkContext) extends SparkListenerBus { self => import LiveListenerBus._ // Cap the capacity of the event queue so we get an explicit error (rather than // an OOM exception) if it's perpetually being added to more quickly than it's being drained. private lazy val eventQueue = new LinkedBlockingQueue[SparkListenerEvent]( sparkContext.conf.get(LISTENER_BUS_EVENT_QUEUE_CAPACITY)) // Indicate if `start()` is called private val started = new AtomicBoolean(false) // Indicate if `stop()` is called private val stopped = new AtomicBoolean(false) /** A counter for dropped events. It will be reset every time we log it. */ private val droppedEventsCounter = new AtomicLong(0L) /** When `droppedEventsCounter` was logged last time in milliseconds. */ @volatile private var lastReportTimestamp = 0L // Indicate if we are processing some event // Guarded by `self` private var processingEvent = false private val logDroppedEvent = new AtomicBoolean(false) // A counter that represents the number of events produced and consumed in the queue private val eventLock = new Semaphore(0) private val listenerThread = new Thread(name) { setDaemon(true) override def run(): Unit = Utils.tryOrStopSparkContext(sparkContext) { LiveListenerBus.withinListenerThread.withValue(true) { while (true) { eventLock.acquire() self.synchronized { processingEvent = true } try { val event = eventQueue.poll if (event == null) { // Get out of the while loop and shutdown the daemon thread if (!stopped.get) { throw new IllegalStateException("Polling `null` from eventQueue means" + " the listener bus has been stopped. So `stopped` must be true") } return } postToAll(event) } finally { self.synchronized { processingEvent = false } } } } } } /** * Start sending events to attached listeners. * * This first sends out all buffered events posted before this listener bus has started, then * listens for any additional events asynchronously while the listener bus is still running. * This should only be called once. * */ def start(): Unit = { if (started.compareAndSet(false, true)) { listenerThread.start() } else { throw new IllegalStateException(s"$name already started!") } } def post(event: SparkListenerEvent): Unit = { if (stopped.get) { // Drop further events to make `listenerThread` exit ASAP logError(s"$name has already stopped! Dropping event $event") return } val eventAdded = eventQueue.offer(event) if (eventAdded) { eventLock.release() } else { onDropEvent(event) droppedEventsCounter.incrementAndGet() } val droppedEvents = droppedEventsCounter.get if (droppedEvents > 0) { // Don't log too frequently if (System.currentTimeMillis() - lastReportTimestamp >= 60 * 1000) { // There may be multiple threads trying to decrease droppedEventsCounter. // Use "compareAndSet" to make sure only one thread can win. // And if another thread is increasing droppedEventsCounter, "compareAndSet" will fail and // then that thread will update it. if (droppedEventsCounter.compareAndSet(droppedEvents, 0)) { val prevLastReportTimestamp = lastReportTimestamp lastReportTimestamp = System.currentTimeMillis() logWarning(s"Dropped $droppedEvents SparkListenerEvents since " + new java.util.Date(prevLastReportTimestamp)) } } } } /** * For testing only. Wait until there are no more events in the queue, or until the specified * time has elapsed. Throw `TimeoutException` if the specified time elapsed before the queue * emptied. * Exposed for testing. */ @throws(classOf[TimeoutException]) def waitUntilEmpty(timeoutMillis: Long): Unit = { val finishTime = System.currentTimeMillis + timeoutMillis while (!queueIsEmpty) { if (System.currentTimeMillis > finishTime) { throw new TimeoutException( s"The event queue is not empty after $timeoutMillis milliseconds") } /* Sleep rather than using wait/notify, because this is used only for testing and * wait/notify add overhead in the general case. */ Thread.sleep(10) } } /** * For testing only. Return whether the listener daemon thread is still alive. * Exposed for testing. */ def listenerThreadIsAlive: Boolean = listenerThread.isAlive /** * Return whether the event queue is empty. * * The use of synchronized here guarantees that all events that once belonged to this queue * have already been processed by all attached listeners, if this returns true. */ private def queueIsEmpty: Boolean = synchronized { eventQueue.isEmpty && !processingEvent } /** * Stop the listener bus. It will wait until the queued events have been processed, but drop the * new events after stopping. */ def stop(): Unit = { if (!started.get()) { throw new IllegalStateException(s"Attempted to stop $name that has not yet started!") } if (stopped.compareAndSet(false, true)) { // Call eventLock.release() so that listenerThread will poll `null` from `eventQueue` and know // `stop` is called. eventLock.release() listenerThread.join() } else { // Keep quiet } } /** * If the event queue exceeds its capacity, the new events will be dropped. The subclasses will be * notified with the dropped events. * * Note: `onDropEvent` can be called in any thread. */ def onDropEvent(event: SparkListenerEvent): Unit = { if (logDroppedEvent.compareAndSet(false, true)) { // Only log the following message once to avoid duplicated annoying logs. logError("Dropping SparkListenerEvent because no remaining room in event queue. " + "This likely means one of the SparkListeners is too slow and cannot keep up with " + "the rate at which tasks are being started by the scheduler.") } } } private[spark] object LiveListenerBus { // Allows for Context to check whether stop() call is made within listener thread val withinListenerThread: DynamicVariable[Boolean] = new DynamicVariable[Boolean](false) /** The thread name of Spark listener bus */ val name = "SparkListenerBus" }
mzl9039/spark
core/src/main/scala/org/apache/spark/scheduler/LiveListenerBus.scala
Scala
apache-2.0
8,100
package clasp.core.sdktools import scala.language.postfixOps import scala.concurrent.duration._ import scala.sys.process._ import scala.util.matching.Regex import org.slf4j.LoggerFactory object Command { lazy val log = LoggerFactory.getLogger(getClass()) import log.{error, debug, info, trace} def run(command: String, timeout: FiniteDuration = 0 seconds, killSignal: Int = 9): Option[String] = { debug(s"Executing '$command'") val out = new StringBuilder val logger = ProcessLogger( (o: String) => out.append(o), (e: String) => out.append(e)) val ret = if (timeout.toSeconds != 0) { s"timeout -s $killSignal ${timeout.toSeconds} $command" ! logger } else { command ! logger } debug(s"Finished executing'$command'") debug(s"Output: ${out.toString}") if (ret != 0) { return None } else { return Some(out.toString) } } def runSeq(command: Seq[String], timeout: FiniteDuration = 0 seconds, killSignal: Int = 9): Option[String] = { run(command.mkString(" "), timeout, killSignal) } def runAndParse(command: String, regex: Regex, timeout: FiniteDuration = 0 seconds, killSignal: Int = 9): Option[Vector[String]] = { val res = run(command, timeout, killSignal) res.map((s: String) => { val r = for (regex(name) <- regex.findAllIn(s)) yield name r.toVector }) } def runSeqAndParse(command: Seq[String], regex: Regex, timeout: FiniteDuration = 0 seconds, killSignal: Int = 9): Option[Vector[String]] = { runAndParse(command.mkString(" "), regex, timeout, killSignal) } }
hamiltont/clasp
src/clasp/core/sdktools/command.scala
Scala
mit
1,647
package org.scalawiki.copyvio import org.scalawiki.dto.Page import org.scalawiki.dto.cmd.Action import org.scalawiki.dto.cmd.query.prop._ import org.scalawiki.dto.cmd.query.{PageIdsParam, Query} import org.scalawiki.http.HttpClient import org.scalawiki.query.QueryLibrary import org.scalawiki.{MwBot, WithBot} import play.api.libs.functional.syntax._ import play.api.libs.json.{Json, _} import scala.concurrent.ExecutionContext.Implicits.global import scala.concurrent.Future class CopyVio(val http: HttpClient) { implicit val sourceReads = ((__ \\ "url").read[String] ~ (__ \\ "confidence").read[Double] ~ (__ \\ "violation").read[String] ~ (__ \\ "skipped").read[Boolean]) (CopyVioSource.apply _) val sourcesReads = (__ \\ "sources").read[Seq[CopyVioSource]] def baseUrl(project: String = "wikipedia", lang: String = "uk") = s"https://tools.wmflabs.org/copyvios/api.json?version=1&action=search&project=$project&lang=$lang" def search(title: String, lang: String = "uk", project: String = "wikipedia") = http.get(baseUrl(project, lang) + s"&title=$title") map parseResponse def searchByRevId(revId: Long, lang: String = "uk", project: String = "wikipedia") = http.get(baseUrl(project, lang) + s"&oldid=$revId") map parseResponse def searchByPage(page: Page) = { println(s"# [[${page.title}]]") searchByRevId(page.revisions.head.revId.get) } def parseResponse(body: String) = Json.parse(body).validate(sourcesReads).get } object CopyVio extends WithBot with QueryLibrary { val host = MwBot.ukWiki def pagesByIds(ids: Seq[Long]): Future[Seq[Page]] = { import org.scalawiki.dto.cmd.query.prop.rvprop._ val action = Action(Query(PageIdsParam(ids), Prop(Info(), Revisions(RvProp(Ids) /*,RvLimit("max")*/)))) bot.run(action) } def main(args: Array[String]) { val copyVio = new CopyVio(HttpClient.get()) for (revIds <- articlesWithTemplate("ВікіпСдія Π»ΡŽΠ±ΠΈΡ‚ΡŒ ΠΏΠ°ΠΌ'ятки"); pages <- pagesByIds(revIds); page <- pages; sources <- copyVio.searchByPage(page); suspected <- sources.filter(_.isPossible)) { println(s"## url: [${suspected.url}], violation ${suspected.violation}, confidence ${suspected.confidence}") } } }
intracer/scalawiki
scalawiki-bots/src/main/scala/org/scalawiki/copyvio/CopyVio.scala
Scala
apache-2.0
2,276
package entities trait BaseEntity { val id: Long def isValid: Boolean = true }
Kanris826/spray-slick-swagger
src/main/scala/entities/BaseEntity.scala
Scala
apache-2.0
84
package net.mentalarray.doozie.Tasks /** * Created by bwilson on 12/16/14. */ class FileBuilderTask(Jobname: String) extends WorkflowTask(Jobname) { // Set defaults and accessors for the Builder Runner. private var _srcSys: String = "hdfs" private var _destSys: String = "hdfs" private var _inPath: String = "" private var _outPath: String = "" private var _srcCheckDel: Boolean = false private var _stringAdd: String = "" // Getters def inPath: String = { _inPath } def outPath: String = { _outPath } def srcCheckDel: Boolean = { _srcCheckDel } def stringAdd: String = { _stringAdd } def srcSys: String = { _srcSys } def destSys: String = { _destSys } // Setters def inPath(inPath: => String): FileBuilderTask = { _inPath = inPath this } def outPath(outPath: => String): FileBuilderTask = { _outPath = outPath this } def srcCheckDel(delSrc: => Boolean): FileBuilderTask = { _srcCheckDel = srcCheckDel this } def stringAdd(stringAdd: => String): FileBuilderTask = { _stringAdd = stringAdd this } def srcSys(srcSys: => String): FileBuilderTask = { _srcSys = srcSys this } def destSys(destSys: => String): FileBuilderTask = { _destSys = destSys this } // Perform validation of all input parameters. override def validate = { //Verify that input path has been supplied. if (inPath.isNullOrWhitespace) throw new WorkflowStateException(this, "Input directory path must be specified.") //Verify that the target output path has been supplied. if (outPath.isNullOrWhitespace) throw new WorkflowStateException(this, "Output directory path must be specified.") } } object FileBuilderTask { def apply(Jobname: String)(cfgFn: FileBuilderTask => Unit): FileBuilderTask = { val state = new FileBuilderTask(Jobname) cfgFn(state) state } }
antagonist112358/tomahawk
workflow-engine/src/net/mentalarray/doozie/Tasks/FileBuilderTask.scala
Scala
apache-2.0
1,937
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.deploy.yarn import java.io.{FileSystem => _, _} import java.net.{InetAddress, UnknownHostException, URI} import java.nio.ByteBuffer import java.nio.charset.StandardCharsets import java.util.{Locale, Properties, UUID} import java.util.zip.{ZipEntry, ZipOutputStream} import scala.collection.JavaConverters._ import scala.collection.immutable.{Map => IMap} import scala.collection.mutable.{ArrayBuffer, HashMap, HashSet, ListBuffer, Map} import scala.util.control.NonFatal import com.google.common.base.Objects import com.google.common.io.Files import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs._ import org.apache.hadoop.fs.permission.FsPermission import org.apache.hadoop.io.Text import org.apache.hadoop.mapreduce.MRJobConfig import org.apache.hadoop.security.UserGroupInformation import org.apache.hadoop.util.StringUtils import org.apache.hadoop.yarn.api._ import org.apache.hadoop.yarn.api.ApplicationConstants.Environment import org.apache.hadoop.yarn.api.protocolrecords._ import org.apache.hadoop.yarn.api.records._ import org.apache.hadoop.yarn.client.api.{YarnClient, YarnClientApplication} import org.apache.hadoop.yarn.conf.YarnConfiguration import org.apache.hadoop.yarn.exceptions.ApplicationNotFoundException import org.apache.hadoop.yarn.security.AMRMTokenIdentifier import org.apache.hadoop.yarn.util.Records import org.apache.spark.{SecurityManager, SparkConf, SparkException} import org.apache.spark.api.python.PythonUtils import org.apache.spark.deploy.{SparkApplication, SparkHadoopUtil} import org.apache.spark.deploy.security.HadoopDelegationTokenManager import org.apache.spark.deploy.yarn.ResourceRequestHelper._ import org.apache.spark.deploy.yarn.config._ import org.apache.spark.internal.Logging import org.apache.spark.internal.config._ import org.apache.spark.internal.config.Python._ import org.apache.spark.launcher.{LauncherBackend, SparkAppHandle, YarnCommandBuilderUtils} import org.apache.spark.resource.ResourceProfile import org.apache.spark.rpc.RpcEnv import org.apache.spark.util.{CallerContext, Utils, YarnContainerInfoHelper} private[spark] class Client( val args: ClientArguments, val sparkConf: SparkConf, val rpcEnv: RpcEnv) extends Logging { import Client._ import YarnSparkHadoopUtil._ private val yarnClient = YarnClient.createYarnClient private val hadoopConf = new YarnConfiguration(SparkHadoopUtil.newConfiguration(sparkConf)) private val isClusterMode = sparkConf.get(SUBMIT_DEPLOY_MODE) == "cluster" private val isClientUnmanagedAMEnabled = sparkConf.get(YARN_UNMANAGED_AM) && !isClusterMode private var appMaster: ApplicationMaster = _ private var stagingDirPath: Path = _ // AM related configurations private val amMemory = if (isClusterMode) { sparkConf.get(DRIVER_MEMORY).toInt } else { sparkConf.get(AM_MEMORY).toInt } private val amMemoryOverhead = { val amMemoryOverheadEntry = if (isClusterMode) DRIVER_MEMORY_OVERHEAD else AM_MEMORY_OVERHEAD sparkConf.get(amMemoryOverheadEntry).getOrElse( math.max((MEMORY_OVERHEAD_FACTOR * amMemory).toLong, ResourceProfile.MEMORY_OVERHEAD_MIN_MIB)).toInt } private val amCores = if (isClusterMode) { sparkConf.get(DRIVER_CORES) } else { sparkConf.get(AM_CORES) } // Executor related configurations private val executorMemory = sparkConf.get(EXECUTOR_MEMORY) // Executor offHeap memory in MiB. protected val executorOffHeapMemory = Utils.executorOffHeapMemorySizeAsMb(sparkConf) private val executorMemoryOverhead = sparkConf.get(EXECUTOR_MEMORY_OVERHEAD).getOrElse( math.max((MEMORY_OVERHEAD_FACTOR * executorMemory).toLong, ResourceProfile.MEMORY_OVERHEAD_MIN_MIB)).toInt private val isPython = sparkConf.get(IS_PYTHON_APP) private val pysparkWorkerMemory: Int = if (isPython) { sparkConf.get(PYSPARK_EXECUTOR_MEMORY).map(_.toInt).getOrElse(0) } else { 0 } private val distCacheMgr = new ClientDistributedCacheManager() private val cachedResourcesConf = new SparkConf(false) private val keytab = sparkConf.get(KEYTAB).orNull private val amKeytabFileName: Option[String] = if (keytab != null && isClusterMode) { val principal = sparkConf.get(PRINCIPAL).orNull require((principal == null) == (keytab == null), "Both principal and keytab must be defined, or neither.") logInfo(s"Kerberos credentials: principal = $principal, keytab = $keytab") // Generate a file name that can be used for the keytab file, that does not conflict // with any user file. Some(new File(keytab).getName() + "-" + UUID.randomUUID().toString) } else { None } require(keytab == null || !Utils.isLocalUri(keytab), "Keytab should reference a local file.") private val launcherBackend = new LauncherBackend() { override protected def conf: SparkConf = sparkConf override def onStopRequest(): Unit = { if (isClusterMode && appId != null) { yarnClient.killApplication(appId) } else { setState(SparkAppHandle.State.KILLED) stop() } } } private val fireAndForget = isClusterMode && !sparkConf.get(WAIT_FOR_APP_COMPLETION) private var appId: ApplicationId = null def reportLauncherState(state: SparkAppHandle.State): Unit = { launcherBackend.setState(state) } def stop(): Unit = { if (appMaster != null) { appMaster.stopUnmanaged(stagingDirPath) } launcherBackend.close() yarnClient.stop() } /** * Submit an application running our ApplicationMaster to the ResourceManager. * * The stable Yarn API provides a convenience method (YarnClient#createApplication) for * creating applications and setting up the application submission context. This was not * available in the alpha API. */ def submitApplication(): ApplicationId = { ResourceRequestHelper.validateResources(sparkConf) var appId: ApplicationId = null try { launcherBackend.connect() yarnClient.init(hadoopConf) yarnClient.start() logInfo("Requesting a new application from cluster with %d NodeManagers" .format(yarnClient.getYarnClusterMetrics.getNumNodeManagers)) // Get a new application from our RM val newApp = yarnClient.createApplication() val newAppResponse = newApp.getNewApplicationResponse() appId = newAppResponse.getApplicationId() // The app staging dir based on the STAGING_DIR configuration if configured // otherwise based on the users home directory. // scalastyle:off FileSystemGet val appStagingBaseDir = sparkConf.get(STAGING_DIR) .map { new Path(_, UserGroupInformation.getCurrentUser.getShortUserName) } .getOrElse(FileSystem.get(hadoopConf).getHomeDirectory()) stagingDirPath = new Path(appStagingBaseDir, getAppStagingDir(appId)) // scalastyle:on FileSystemGet new CallerContext("CLIENT", sparkConf.get(APP_CALLER_CONTEXT), Option(appId.toString)).setCurrentContext() // Verify whether the cluster has enough resources for our AM verifyClusterResources(newAppResponse) // Set up the appropriate contexts to launch our AM val containerContext = createContainerLaunchContext(newAppResponse) val appContext = createApplicationSubmissionContext(newApp, containerContext) // Finally, submit and monitor the application logInfo(s"Submitting application $appId to ResourceManager") yarnClient.submitApplication(appContext) launcherBackend.setAppId(appId.toString) reportLauncherState(SparkAppHandle.State.SUBMITTED) appId } catch { case e: Throwable => if (stagingDirPath != null) { cleanupStagingDir() } throw e } } /** * Cleanup application staging directory. */ private def cleanupStagingDir(): Unit = { if (sparkConf.get(PRESERVE_STAGING_FILES)) { return } def cleanupStagingDirInternal(): Unit = { try { val fs = stagingDirPath.getFileSystem(hadoopConf) if (fs.delete(stagingDirPath, true)) { logInfo(s"Deleted staging directory $stagingDirPath") } } catch { case ioe: IOException => logWarning("Failed to cleanup staging dir " + stagingDirPath, ioe) } } cleanupStagingDirInternal() } /** * Set up the context for submitting our ApplicationMaster. * This uses the YarnClientApplication not available in the Yarn alpha API. */ def createApplicationSubmissionContext( newApp: YarnClientApplication, containerContext: ContainerLaunchContext): ApplicationSubmissionContext = { val componentName = if (isClusterMode) { config.YARN_DRIVER_RESOURCE_TYPES_PREFIX } else { config.YARN_AM_RESOURCE_TYPES_PREFIX } val yarnAMResources = getYarnResourcesAndAmounts(sparkConf, componentName) val amResources = yarnAMResources ++ getYarnResourcesFromSparkResources(SPARK_DRIVER_PREFIX, sparkConf) logDebug(s"AM resources: $amResources") val appContext = newApp.getApplicationSubmissionContext appContext.setApplicationName(sparkConf.get("spark.app.name", "Spark")) appContext.setQueue(sparkConf.get(QUEUE_NAME)) appContext.setAMContainerSpec(containerContext) appContext.setApplicationType(sparkConf.get(APPLICATION_TYPE)) sparkConf.get(APPLICATION_TAGS).foreach { tags => appContext.setApplicationTags(new java.util.HashSet[String](tags.asJava)) } sparkConf.get(MAX_APP_ATTEMPTS) match { case Some(v) => appContext.setMaxAppAttempts(v) case None => logDebug(s"${MAX_APP_ATTEMPTS.key} is not set. " + "Cluster's default value will be used.") } sparkConf.get(AM_ATTEMPT_FAILURE_VALIDITY_INTERVAL_MS).foreach { interval => appContext.setAttemptFailuresValidityInterval(interval) } val capability = Records.newRecord(classOf[Resource]) capability.setMemory(amMemory + amMemoryOverhead) capability.setVirtualCores(amCores) if (amResources.nonEmpty) { ResourceRequestHelper.setResourceRequests(amResources, capability) } logDebug(s"Created resource capability for AM request: $capability") sparkConf.get(AM_NODE_LABEL_EXPRESSION) match { case Some(expr) => val amRequest = Records.newRecord(classOf[ResourceRequest]) amRequest.setResourceName(ResourceRequest.ANY) amRequest.setPriority(Priority.newInstance(0)) amRequest.setCapability(capability) amRequest.setNumContainers(1) amRequest.setNodeLabelExpression(expr) appContext.setAMContainerResourceRequest(amRequest) case None => appContext.setResource(capability) } sparkConf.get(ROLLED_LOG_INCLUDE_PATTERN).foreach { includePattern => try { val logAggregationContext = Records.newRecord(classOf[LogAggregationContext]) logAggregationContext.setRolledLogsIncludePattern(includePattern) sparkConf.get(ROLLED_LOG_EXCLUDE_PATTERN).foreach { excludePattern => logAggregationContext.setRolledLogsExcludePattern(excludePattern) } appContext.setLogAggregationContext(logAggregationContext) } catch { case NonFatal(e) => logWarning(s"Ignoring ${ROLLED_LOG_INCLUDE_PATTERN.key} because the version of YARN " + "does not support it", e) } } appContext.setUnmanagedAM(isClientUnmanagedAMEnabled) sparkConf.get(APPLICATION_PRIORITY).foreach { appPriority => appContext.setPriority(Priority.newInstance(appPriority)) } appContext } /** * Set up security tokens for launching our ApplicationMaster container. * * In client mode, a set of credentials has been obtained by the scheduler, so they are copied * and sent to the AM. In cluster mode, new credentials are obtained and then sent to the AM, * along with whatever credentials the current user already has. */ private def setupSecurityToken(amContainer: ContainerLaunchContext): Unit = { val currentUser = UserGroupInformation.getCurrentUser() val credentials = currentUser.getCredentials() if (isClusterMode) { val credentialManager = new HadoopDelegationTokenManager(sparkConf, hadoopConf, null) credentialManager.obtainDelegationTokens(credentials) } val serializedCreds = SparkHadoopUtil.get.serialize(credentials) amContainer.setTokens(ByteBuffer.wrap(serializedCreds)) } /** Get the application report from the ResourceManager for an application we have submitted. */ def getApplicationReport(appId: ApplicationId): ApplicationReport = yarnClient.getApplicationReport(appId) /** * Return the security token used by this client to communicate with the ApplicationMaster. * If no security is enabled, the token returned by the report is null. */ private def getClientToken(report: ApplicationReport): String = Option(report.getClientToAMToken).map(_.toString).getOrElse("") /** * Fail fast if we have requested more resources per container than is available in the cluster. */ private def verifyClusterResources(newAppResponse: GetNewApplicationResponse): Unit = { val maxMem = newAppResponse.getMaximumResourceCapability().getMemory() logInfo("Verifying our application has not requested more than the maximum " + s"memory capability of the cluster ($maxMem MB per container)") val executorMem = executorMemory + executorOffHeapMemory + executorMemoryOverhead + pysparkWorkerMemory if (executorMem > maxMem) { throw new IllegalArgumentException(s"Required executor memory ($executorMemory MB), " + s"offHeap memory ($executorOffHeapMemory) MB, overhead ($executorMemoryOverhead MB), " + s"and PySpark memory ($pysparkWorkerMemory MB) is above the max threshold ($maxMem MB) " + "of this cluster! Please check the values of 'yarn.scheduler.maximum-allocation-mb' " + "and/or 'yarn.nodemanager.resource.memory-mb'.") } val amMem = amMemory + amMemoryOverhead if (amMem > maxMem) { throw new IllegalArgumentException(s"Required AM memory ($amMemory" + s"+$amMemoryOverhead MB) is above the max threshold ($maxMem MB) of this cluster! " + "Please check the values of 'yarn.scheduler.maximum-allocation-mb' and/or " + "'yarn.nodemanager.resource.memory-mb'.") } logInfo("Will allocate AM container, with %d MB memory including %d MB overhead".format( amMem, amMemoryOverhead)) // We could add checks to make sure the entire cluster has enough resources but that involves // getting all the node reports and computing ourselves. } /** * Copy the given file to a remote file system (e.g. HDFS) if needed. * The file is only copied if the source and destination file systems are different or the source * scheme is "file". This is used for preparing resources for launching the ApplicationMaster * container. Exposed for testing. */ private[yarn] def copyFileToRemote( destDir: Path, srcPath: Path, replication: Short, symlinkCache: Map[URI, Path], force: Boolean = false, destName: Option[String] = None): Path = { val destFs = destDir.getFileSystem(hadoopConf) val srcFs = srcPath.getFileSystem(hadoopConf) var destPath = srcPath if (force || !compareFs(srcFs, destFs) || "file".equals(srcFs.getScheme)) { destPath = new Path(destDir, destName.getOrElse(srcPath.getName())) logInfo(s"Uploading resource $srcPath -> $destPath") FileUtil.copy(srcFs, srcPath, destFs, destPath, false, hadoopConf) destFs.setReplication(destPath, replication) destFs.setPermission(destPath, new FsPermission(APP_FILE_PERMISSION)) } else { logInfo(s"Source and destination file systems are the same. Not copying $srcPath") } // Resolve any symlinks in the URI path so using a "current" symlink to point to a specific // version shows the specific version in the distributed cache configuration val qualifiedDestPath = destFs.makeQualified(destPath) val qualifiedDestDir = qualifiedDestPath.getParent val resolvedDestDir = symlinkCache.getOrElseUpdate(qualifiedDestDir.toUri(), { val fc = FileContext.getFileContext(qualifiedDestDir.toUri(), hadoopConf) fc.resolvePath(qualifiedDestDir) }) new Path(resolvedDestDir, qualifiedDestPath.getName()) } /** * Upload any resources to the distributed cache if needed. If a resource is intended to be * consumed locally, set up the appropriate config for downstream code to handle it properly. * This is used for setting up a container launch context for our ApplicationMaster. * Exposed for testing. */ def prepareLocalResources( destDir: Path, pySparkArchives: Seq[String]): HashMap[String, LocalResource] = { logInfo("Preparing resources for our AM container") // Upload Spark and the application JAR to the remote file system if necessary, // and add them as local resources to the application master. val fs = destDir.getFileSystem(hadoopConf) // Used to keep track of URIs added to the distributed cache. If the same URI is added // multiple times, YARN will fail to launch containers for the app with an internal // error. val distributedUris = new HashSet[String] // Used to keep track of URIs(files) added to the distribute cache have the same name. If // same name but different path files are added multiple time, YARN will fail to launch // containers for the app with an internal error. val distributedNames = new HashSet[String] val replication = sparkConf.get(STAGING_FILE_REPLICATION).map(_.toShort) .getOrElse(fs.getDefaultReplication(destDir)) val localResources = HashMap[String, LocalResource]() FileSystem.mkdirs(fs, destDir, new FsPermission(STAGING_DIR_PERMISSION)) val statCache: Map[URI, FileStatus] = HashMap[URI, FileStatus]() val symlinkCache: Map[URI, Path] = HashMap[URI, Path]() def addDistributedUri(uri: URI): Boolean = { val uriStr = uri.toString() val fileName = new File(uri.getPath).getName if (distributedUris.contains(uriStr)) { logWarning(s"Same path resource $uri added multiple times to distributed cache.") false } else if (distributedNames.contains(fileName)) { logWarning(s"Same name resource $uri added multiple times to distributed cache") false } else { distributedUris += uriStr distributedNames += fileName true } } /* * Distribute a file to the cluster. * * If the file's path is a "local:" URI, it's actually not distributed. Other files are copied * to HDFS (if not already there) and added to the application's distributed cache. * * @param path URI of the file to distribute. * @param resType Type of resource being distributed. * @param destName Name of the file in the distributed cache. * @param targetDir Subdirectory where to place the file. * @param appMasterOnly Whether to distribute only to the AM. * @return A 2-tuple. First item is whether the file is a "local:" URI. Second item is the * localized path for non-local paths, or the input `path` for local paths. * The localized path will be null if the URI has already been added to the cache. */ def distribute( path: String, resType: LocalResourceType = LocalResourceType.FILE, destName: Option[String] = None, targetDir: Option[String] = None, appMasterOnly: Boolean = false): (Boolean, String) = { val trimmedPath = path.trim() val localURI = Utils.resolveURI(trimmedPath) if (localURI.getScheme != Utils.LOCAL_SCHEME) { if (addDistributedUri(localURI)) { val localPath = getQualifiedLocalPath(localURI, hadoopConf) val linkname = targetDir.map(_ + "/").getOrElse("") + destName.orElse(Option(localURI.getFragment())).getOrElse(localPath.getName()) val destPath = copyFileToRemote(destDir, localPath, replication, symlinkCache) val destFs = FileSystem.get(destPath.toUri(), hadoopConf) distCacheMgr.addResource( destFs, hadoopConf, destPath, localResources, resType, linkname, statCache, appMasterOnly = appMasterOnly) (false, linkname) } else { (false, null) } } else { (true, trimmedPath) } } // If we passed in a keytab, make sure we copy the keytab to the staging directory on // HDFS, and setup the relevant environment vars, so the AM can login again. amKeytabFileName.foreach { kt => logInfo("To enable the AM to login from keytab, credentials are being copied over to the AM" + " via the YARN Secure Distributed Cache.") val (_, localizedPath) = distribute(keytab, destName = Some(kt), appMasterOnly = true) require(localizedPath != null, "Keytab file already distributed.") } /** * Add Spark to the cache. There are two settings that control what files to add to the cache: * - if a Spark archive is defined, use the archive. The archive is expected to contain * jar files at its root directory. * - if a list of jars is provided, filter the non-local ones, resolve globs, and * add the found files to the cache. * * Note that the archive cannot be a "local" URI. If none of the above settings are found, * then upload all files found in $SPARK_HOME/jars. */ val sparkArchive = sparkConf.get(SPARK_ARCHIVE) if (sparkArchive.isDefined) { val archive = sparkArchive.get require(!Utils.isLocalUri(archive), s"${SPARK_ARCHIVE.key} cannot be a local URI.") distribute(Utils.resolveURI(archive).toString, resType = LocalResourceType.ARCHIVE, destName = Some(LOCALIZED_LIB_DIR)) } else { sparkConf.get(SPARK_JARS) match { case Some(jars) => // Break the list of jars to upload, and resolve globs. val localJars = new ArrayBuffer[String]() jars.foreach { jar => if (!Utils.isLocalUri(jar)) { val path = getQualifiedLocalPath(Utils.resolveURI(jar), hadoopConf) val pathFs = FileSystem.get(path.toUri(), hadoopConf) val fss = pathFs.globStatus(path) if (fss == null) { throw new FileNotFoundException(s"Path ${path.toString} does not exist") } fss.filter(_.isFile()).foreach { entry => val uri = entry.getPath().toUri() statCache.update(uri, entry) distribute(uri.toString(), targetDir = Some(LOCALIZED_LIB_DIR)) } } else { localJars += jar } } // Propagate the local URIs to the containers using the configuration. sparkConf.set(SPARK_JARS, localJars.toSeq) case None => // No configuration, so fall back to uploading local jar files. logWarning(s"Neither ${SPARK_JARS.key} nor ${SPARK_ARCHIVE.key} is set, falling back " + "to uploading libraries under SPARK_HOME.") val jarsDir = new File(YarnCommandBuilderUtils.findJarsDir( sparkConf.getenv("SPARK_HOME"))) val jarsArchive = File.createTempFile(LOCALIZED_LIB_DIR, ".zip", new File(Utils.getLocalDir(sparkConf))) val jarsStream = new ZipOutputStream(new FileOutputStream(jarsArchive)) try { jarsStream.setLevel(0) jarsDir.listFiles().foreach { f => if (f.isFile && f.getName.toLowerCase(Locale.ROOT).endsWith(".jar") && f.canRead) { jarsStream.putNextEntry(new ZipEntry(f.getName)) Files.copy(f, jarsStream) jarsStream.closeEntry() } } } finally { jarsStream.close() } distribute(jarsArchive.toURI.getPath, resType = LocalResourceType.ARCHIVE, destName = Some(LOCALIZED_LIB_DIR)) jarsArchive.delete() } } /** * Copy user jar to the distributed cache if their scheme is not "local". * Otherwise, set the corresponding key in our SparkConf to handle it downstream. */ Option(args.userJar).filter(_.trim.nonEmpty).foreach { jar => val (isLocal, localizedPath) = distribute(jar, destName = Some(APP_JAR_NAME)) if (isLocal) { require(localizedPath != null, s"Path $jar already distributed") // If the resource is intended for local use only, handle this downstream // by setting the appropriate property sparkConf.set(APP_JAR, localizedPath) } } /** * Do the same for any additional resources passed in through ClientArguments. * Each resource category is represented by a 3-tuple of: * (1) comma separated list of resources in this category, * (2) resource type, and * (3) whether to add these resources to the classpath */ val cachedSecondaryJarLinks = ListBuffer.empty[String] List( (sparkConf.get(JARS_TO_DISTRIBUTE), LocalResourceType.FILE, true), (sparkConf.get(FILES_TO_DISTRIBUTE), LocalResourceType.FILE, false), (sparkConf.get(ARCHIVES_TO_DISTRIBUTE), LocalResourceType.ARCHIVE, false) ).foreach { case (flist, resType, addToClasspath) => flist.foreach { file => val (_, localizedPath) = distribute(file, resType = resType) // If addToClassPath, we ignore adding jar multiple times to distributed cache. if (addToClasspath) { if (localizedPath != null) { cachedSecondaryJarLinks += localizedPath } } else { if (localizedPath == null) { throw new IllegalArgumentException(s"Attempt to add ($file) multiple times" + " to the distributed cache.") } } } } if (cachedSecondaryJarLinks.nonEmpty) { sparkConf.set(SECONDARY_JARS, cachedSecondaryJarLinks.toSeq) } if (isClusterMode && args.primaryPyFile != null) { distribute(args.primaryPyFile, appMasterOnly = true) } pySparkArchives.foreach { f => val uri = Utils.resolveURI(f) if (uri.getScheme != Utils.LOCAL_SCHEME) { distribute(f) } } // The python files list needs to be treated especially. All files that are not an // archive need to be placed in a subdirectory that will be added to PYTHONPATH. sparkConf.get(PY_FILES).foreach { f => val targetDir = if (f.endsWith(".py")) Some(LOCALIZED_PYTHON_DIR) else None distribute(f, targetDir = targetDir) } // Update the configuration with all the distributed files, minus the conf archive. The // conf archive will be handled by the AM differently so that we avoid having to send // this configuration by other means. See SPARK-14602 for one reason of why this is needed. distCacheMgr.updateConfiguration(cachedResourcesConf) // Upload the conf archive to HDFS manually, and record its location in the configuration. // This will allow the AM to know where the conf archive is in HDFS, so that it can be // distributed to the containers. // // This code forces the archive to be copied, so that unit tests pass (since in that case both // file systems are the same and the archive wouldn't normally be copied). In most (all?) // deployments, the archive would be copied anyway, since it's a temp file in the local file // system. val remoteConfArchivePath = new Path(destDir, LOCALIZED_CONF_ARCHIVE) val remoteFs = FileSystem.get(remoteConfArchivePath.toUri(), hadoopConf) cachedResourcesConf.set(CACHED_CONF_ARCHIVE, remoteConfArchivePath.toString()) val localConfArchive = new Path(createConfArchive().toURI()) copyFileToRemote(destDir, localConfArchive, replication, symlinkCache, force = true, destName = Some(LOCALIZED_CONF_ARCHIVE)) // Manually add the config archive to the cache manager so that the AM is launched with // the proper files set up. distCacheMgr.addResource( remoteFs, hadoopConf, remoteConfArchivePath, localResources, LocalResourceType.ARCHIVE, LOCALIZED_CONF_DIR, statCache, appMasterOnly = false) localResources } /** * Create an archive with the config files for distribution. * * These will be used by AM and executors. The files are zipped and added to the job as an * archive, so that YARN will explode it when distributing to AM and executors. This directory * is then added to the classpath of AM and executor process, just to make sure that everybody * is using the same default config. * * This follows the order of precedence set by the startup scripts, in which HADOOP_CONF_DIR * shows up in the classpath before YARN_CONF_DIR. * * Currently this makes a shallow copy of the conf directory. If there are cases where a * Hadoop config directory contains subdirectories, this code will have to be fixed. * * The archive also contains some Spark configuration. Namely, it saves the contents of * SparkConf in a file to be loaded by the AM process. */ private def createConfArchive(): File = { val hadoopConfFiles = new HashMap[String, File]() // SPARK_CONF_DIR shows up in the classpath before HADOOP_CONF_DIR/YARN_CONF_DIR sys.env.get("SPARK_CONF_DIR").foreach { localConfDir => val dir = new File(localConfDir) if (dir.isDirectory) { val files = dir.listFiles(new FileFilter { override def accept(pathname: File): Boolean = { pathname.isFile && pathname.getName.endsWith(".xml") } }) files.foreach { f => hadoopConfFiles(f.getName) = f } } } // SPARK-23630: during testing, Spark scripts filter out hadoop conf dirs so that user's // environments do not interfere with tests. This allows a special env variable during // tests so that custom conf dirs can be used by unit tests. val confDirs = Seq("HADOOP_CONF_DIR", "YARN_CONF_DIR") ++ (if (Utils.isTesting) Seq("SPARK_TEST_HADOOP_CONF_DIR") else Nil) confDirs.foreach { envKey => sys.env.get(envKey).foreach { path => val dir = new File(path) if (dir.isDirectory()) { val files = dir.listFiles() if (files == null) { logWarning("Failed to list files under directory " + dir) } else { files.foreach { file => if (file.isFile && !hadoopConfFiles.contains(file.getName())) { hadoopConfFiles(file.getName()) = file } } } } } } val confArchive = File.createTempFile(LOCALIZED_CONF_DIR, ".zip", new File(Utils.getLocalDir(sparkConf))) val confStream = new ZipOutputStream(new FileOutputStream(confArchive)) logDebug(s"Creating an archive with the config files for distribution at $confArchive.") try { confStream.setLevel(0) // Upload $SPARK_CONF_DIR/log4j.properties file to the distributed cache to make sure that // the executors will use the latest configurations instead of the default values. This is // required when user changes log4j.properties directly to set the log configurations. If // configuration file is provided through --files then executors will be taking configurations // from --files instead of $SPARK_CONF_DIR/log4j.properties. // Also upload metrics.properties to distributed cache if exists in classpath. // If user specify this file using --files then executors will use the one // from --files instead. for { prop <- Seq("log4j.properties", "metrics.properties") url <- Option(Utils.getContextOrSparkClassLoader.getResource(prop)) if url.getProtocol == "file" } { val file = new File(url.getPath()) confStream.putNextEntry(new ZipEntry(file.getName())) Files.copy(file, confStream) confStream.closeEntry() } // Save the Hadoop config files under a separate directory in the archive. This directory // is appended to the classpath so that the cluster-provided configuration takes precedence. confStream.putNextEntry(new ZipEntry(s"$LOCALIZED_HADOOP_CONF_DIR/")) confStream.closeEntry() hadoopConfFiles.foreach { case (name, file) => if (file.canRead()) { confStream.putNextEntry(new ZipEntry(s"$LOCALIZED_HADOOP_CONF_DIR/$name")) Files.copy(file, confStream) confStream.closeEntry() } } // Save the YARN configuration into a separate file that will be overlayed on top of the // cluster's Hadoop conf. confStream.putNextEntry(new ZipEntry(SparkHadoopUtil.SPARK_HADOOP_CONF_FILE)) hadoopConf.writeXml(confStream) confStream.closeEntry() // Save Spark configuration to a file in the archive. val props = confToProperties(sparkConf) // If propagating the keytab to the AM, override the keytab name with the name of the // distributed file. amKeytabFileName.foreach { kt => props.setProperty(KEYTAB.key, kt) } writePropertiesToArchive(props, SPARK_CONF_FILE, confStream) // Write the distributed cache config to the archive. writePropertiesToArchive(confToProperties(cachedResourcesConf), DIST_CACHE_CONF_FILE, confStream) } finally { confStream.close() } confArchive } /** * Set up the environment for launching our ApplicationMaster container. */ private def setupLaunchEnv( stagingDirPath: Path, pySparkArchives: Seq[String]): HashMap[String, String] = { logInfo("Setting up the launch environment for our AM container") val env = new HashMap[String, String]() populateClasspath(args, hadoopConf, sparkConf, env, sparkConf.get(DRIVER_CLASS_PATH)) env("SPARK_YARN_STAGING_DIR") = stagingDirPath.toString env("SPARK_USER") = UserGroupInformation.getCurrentUser().getShortUserName() // Pick up any environment variables for the AM provided through spark.yarn.appMasterEnv.* val amEnvPrefix = "spark.yarn.appMasterEnv." sparkConf.getAll .filter { case (k, v) => k.startsWith(amEnvPrefix) } .map { case (k, v) => (k.substring(amEnvPrefix.length), v) } .foreach { case (k, v) => YarnSparkHadoopUtil.addPathToEnvironment(env, k, v) } // If pyFiles contains any .py files, we need to add LOCALIZED_PYTHON_DIR to the PYTHONPATH // of the container processes too. Add all non-.py files directly to PYTHONPATH. // // NOTE: the code currently does not handle .py files defined with a "local:" scheme. val pythonPath = new ListBuffer[String]() val (pyFiles, pyArchives) = sparkConf.get(PY_FILES).partition(_.endsWith(".py")) if (pyFiles.nonEmpty) { pythonPath += buildPath(Environment.PWD.$$(), LOCALIZED_PYTHON_DIR) } (pySparkArchives ++ pyArchives).foreach { path => val uri = Utils.resolveURI(path) if (uri.getScheme != Utils.LOCAL_SCHEME) { pythonPath += buildPath(Environment.PWD.$$(), new Path(uri).getName()) } else { pythonPath += uri.getPath() } } // Finally, update the Spark config to propagate PYTHONPATH to the AM and executors. if (pythonPath.nonEmpty) { val pythonPathList = (sys.env.get("PYTHONPATH") ++ pythonPath) env("PYTHONPATH") = (env.get("PYTHONPATH") ++ pythonPathList) .mkString(ApplicationConstants.CLASS_PATH_SEPARATOR) val pythonPathExecutorEnv = (sparkConf.getExecutorEnv.toMap.get("PYTHONPATH") ++ pythonPathList).mkString(ApplicationConstants.CLASS_PATH_SEPARATOR) sparkConf.setExecutorEnv("PYTHONPATH", pythonPathExecutorEnv) } if (isClusterMode) { // propagate PYSPARK_DRIVER_PYTHON and PYSPARK_PYTHON to driver in cluster mode Seq("PYSPARK_DRIVER_PYTHON", "PYSPARK_PYTHON").foreach { envname => if (!env.contains(envname)) { sys.env.get(envname).foreach(env(envname) = _) } } sys.env.get("PYTHONHASHSEED").foreach(env.put("PYTHONHASHSEED", _)) } sys.env.get(ENV_DIST_CLASSPATH).foreach { dcp => env(ENV_DIST_CLASSPATH) = dcp } env } /** * Set up a ContainerLaunchContext to launch our ApplicationMaster container. * This sets up the launch environment, java options, and the command for launching the AM. */ private def createContainerLaunchContext(newAppResponse: GetNewApplicationResponse) : ContainerLaunchContext = { logInfo("Setting up container launch context for our AM") val appId = newAppResponse.getApplicationId val pySparkArchives = if (sparkConf.get(IS_PYTHON_APP)) { findPySparkArchives() } else { Nil } val launchEnv = setupLaunchEnv(stagingDirPath, pySparkArchives) val localResources = prepareLocalResources(stagingDirPath, pySparkArchives) val amContainer = Records.newRecord(classOf[ContainerLaunchContext]) amContainer.setLocalResources(localResources.asJava) amContainer.setEnvironment(launchEnv.asJava) val javaOpts = ListBuffer[String]() // Set the environment variable through a command prefix // to append to the existing value of the variable var prefixEnv: Option[String] = None // Add Xmx for AM memory javaOpts += "-Xmx" + amMemory + "m" val tmpDir = new Path(Environment.PWD.$$(), YarnConfiguration.DEFAULT_CONTAINER_TEMP_DIR) javaOpts += "-Djava.io.tmpdir=" + tmpDir // TODO: Remove once cpuset version is pushed out. // The context is, default gc for server class machines ends up using all cores to do gc - // hence if there are multiple containers in same node, Spark GC affects all other containers' // performance (which can be that of other Spark containers) // Instead of using this, rely on cpusets by YARN to enforce "proper" Spark behavior in // multi-tenant environments. Not sure how default Java GC behaves if it is limited to subset // of cores on a node. val useConcurrentAndIncrementalGC = launchEnv.get("SPARK_USE_CONC_INCR_GC").exists(_.toBoolean) if (useConcurrentAndIncrementalGC) { // In our expts, using (default) throughput collector has severe perf ramifications in // multi-tenant machines javaOpts += "-XX:+UseConcMarkSweepGC" javaOpts += "-XX:MaxTenuringThreshold=31" javaOpts += "-XX:SurvivorRatio=8" javaOpts += "-XX:+CMSIncrementalMode" javaOpts += "-XX:+CMSIncrementalPacing" javaOpts += "-XX:CMSIncrementalDutyCycleMin=0" javaOpts += "-XX:CMSIncrementalDutyCycle=10" } // Include driver-specific java options if we are launching a driver if (isClusterMode) { sparkConf.get(DRIVER_JAVA_OPTIONS).foreach { opts => javaOpts ++= Utils.splitCommandString(opts) .map(Utils.substituteAppId(_, appId.toString)) .map(YarnSparkHadoopUtil.escapeForShell) } val libraryPaths = Seq(sparkConf.get(DRIVER_LIBRARY_PATH), sys.props.get("spark.driver.libraryPath")).flatten if (libraryPaths.nonEmpty) { prefixEnv = Some(createLibraryPathPrefix(libraryPaths.mkString(File.pathSeparator), sparkConf)) } if (sparkConf.get(AM_JAVA_OPTIONS).isDefined) { logWarning(s"${AM_JAVA_OPTIONS.key} will not take effect in cluster mode") } } else { // Validate and include yarn am specific java options in yarn-client mode. sparkConf.get(AM_JAVA_OPTIONS).foreach { opts => if (opts.contains("-Dspark")) { val msg = s"${AM_JAVA_OPTIONS.key} is not allowed to set Spark options (was '$opts')." throw new SparkException(msg) } if (opts.contains("-Xmx")) { val msg = s"${AM_JAVA_OPTIONS.key} is not allowed to specify max heap memory settings " + s"(was '$opts'). Use spark.yarn.am.memory instead." throw new SparkException(msg) } javaOpts ++= Utils.splitCommandString(opts) .map(Utils.substituteAppId(_, appId.toString)) .map(YarnSparkHadoopUtil.escapeForShell) } sparkConf.get(AM_LIBRARY_PATH).foreach { paths => prefixEnv = Some(createLibraryPathPrefix(paths, sparkConf)) } } // For log4j configuration to reference javaOpts += ("-Dspark.yarn.app.container.log.dir=" + ApplicationConstants.LOG_DIR_EXPANSION_VAR) val userClass = if (isClusterMode) { Seq("--class", YarnSparkHadoopUtil.escapeForShell(args.userClass)) } else { Nil } val userJar = if (args.userJar != null) { Seq("--jar", args.userJar) } else { Nil } val primaryPyFile = if (isClusterMode && args.primaryPyFile != null) { Seq("--primary-py-file", new Path(args.primaryPyFile).getName()) } else { Nil } val primaryRFile = if (args.primaryRFile != null) { Seq("--primary-r-file", args.primaryRFile) } else { Nil } val amClass = if (isClusterMode) { Utils.classForName("org.apache.spark.deploy.yarn.ApplicationMaster").getName } else { Utils.classForName("org.apache.spark.deploy.yarn.ExecutorLauncher").getName } if (args.primaryRFile != null && (args.primaryRFile.endsWith(".R") || args.primaryRFile.endsWith(".r"))) { args.userArgs = ArrayBuffer(args.primaryRFile) ++ args.userArgs } val userArgs = args.userArgs.flatMap { arg => Seq("--arg", YarnSparkHadoopUtil.escapeForShell(arg)) } val amArgs = Seq(amClass) ++ userClass ++ userJar ++ primaryPyFile ++ primaryRFile ++ userArgs ++ Seq("--properties-file", buildPath(Environment.PWD.$$(), LOCALIZED_CONF_DIR, SPARK_CONF_FILE)) ++ Seq("--dist-cache-conf", buildPath(Environment.PWD.$$(), LOCALIZED_CONF_DIR, DIST_CACHE_CONF_FILE)) // Command for the ApplicationMaster val commands = prefixEnv ++ Seq(Environment.JAVA_HOME.$$() + "/bin/java", "-server") ++ javaOpts ++ amArgs ++ Seq( "1>", ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stdout", "2>", ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stderr") // TODO: it would be nicer to just make sure there are no null commands here val printableCommands = commands.map(s => if (s == null) "null" else s).toList amContainer.setCommands(printableCommands.asJava) logDebug("===============================================================================") logDebug("YARN AM launch context:") logDebug(s" user class: ${Option(args.userClass).getOrElse("N/A")}") logDebug(" env:") if (log.isDebugEnabled) { Utils.redact(sparkConf, launchEnv.toSeq).foreach { case (k, v) => logDebug(s" $k -> $v") } } logDebug(" resources:") localResources.foreach { case (k, v) => logDebug(s" $k -> $v")} logDebug(" command:") logDebug(s" ${printableCommands.mkString(" ")}") logDebug("===============================================================================") // send the acl settings into YARN to control who has access via YARN interfaces val securityManager = new SecurityManager(sparkConf) amContainer.setApplicationACLs( YarnSparkHadoopUtil.getApplicationAclsForYarn(securityManager).asJava) setupSecurityToken(amContainer) amContainer } /** * Report the state of an application until it has exited, either successfully or * due to some failure, then return a pair of the yarn application state (FINISHED, FAILED, * KILLED, or RUNNING) and the final application state (UNDEFINED, SUCCEEDED, FAILED, * or KILLED). * * @param appId ID of the application to monitor. * @param returnOnRunning Whether to also return the application state when it is RUNNING. * @param logApplicationReport Whether to log details of the application report every iteration. * @param interval How often to poll the YARN RM for application status (in ms). * @return A pair of the yarn application state and the final application state. */ def monitorApplication( appId: ApplicationId, returnOnRunning: Boolean = false, logApplicationReport: Boolean = true, interval: Long = sparkConf.get(REPORT_INTERVAL)): YarnAppReport = { var lastState: YarnApplicationState = null while (true) { Thread.sleep(interval) val report: ApplicationReport = try { getApplicationReport(appId) } catch { case e: ApplicationNotFoundException => logError(s"Application $appId not found.") cleanupStagingDir() return YarnAppReport(YarnApplicationState.KILLED, FinalApplicationStatus.KILLED, None) case NonFatal(e) if !e.isInstanceOf[InterruptedIOException] => val msg = s"Failed to contact YARN for application $appId." logError(msg, e) // Don't necessarily clean up staging dir because status is unknown return YarnAppReport(YarnApplicationState.FAILED, FinalApplicationStatus.FAILED, Some(msg)) } val state = report.getYarnApplicationState if (logApplicationReport) { logInfo(s"Application report for $appId (state: $state)") // If DEBUG is enabled, log report details every iteration // Otherwise, log them every time the application changes state if (log.isDebugEnabled) { logDebug(formatReportDetails(report, getDriverLogsLink(report))) } else if (lastState != state) { logInfo(formatReportDetails(report, getDriverLogsLink(report))) } } if (lastState != state) { state match { case YarnApplicationState.RUNNING => reportLauncherState(SparkAppHandle.State.RUNNING) case YarnApplicationState.FINISHED => report.getFinalApplicationStatus match { case FinalApplicationStatus.FAILED => reportLauncherState(SparkAppHandle.State.FAILED) case FinalApplicationStatus.KILLED => reportLauncherState(SparkAppHandle.State.KILLED) case _ => reportLauncherState(SparkAppHandle.State.FINISHED) } case YarnApplicationState.FAILED => reportLauncherState(SparkAppHandle.State.FAILED) case YarnApplicationState.KILLED => reportLauncherState(SparkAppHandle.State.KILLED) case _ => } } if (state == YarnApplicationState.FINISHED || state == YarnApplicationState.FAILED || state == YarnApplicationState.KILLED) { cleanupStagingDir() return createAppReport(report) } if (returnOnRunning && state == YarnApplicationState.RUNNING) { return createAppReport(report) } if (state == YarnApplicationState.ACCEPTED && isClientUnmanagedAMEnabled && appMaster == null && report.getAMRMToken != null) { appMaster = startApplicationMasterService(report) } lastState = state } // Never reached, but keeps compiler happy throw new SparkException("While loop is depleted! This should never happen...") } private def startApplicationMasterService(report: ApplicationReport): ApplicationMaster = { // Add AMRMToken to establish connection between RM and AM val token = report.getAMRMToken val amRMToken: org.apache.hadoop.security.token.Token[AMRMTokenIdentifier] = new org.apache.hadoop.security.token.Token[AMRMTokenIdentifier]( token.getIdentifier().array(), token.getPassword().array, new Text(token.getKind()), new Text(token.getService())) val currentUGI = UserGroupInformation.getCurrentUser currentUGI.addToken(amRMToken) // Start Application Service in a separate thread and continue with application monitoring val appMaster = new ApplicationMaster( new ApplicationMasterArguments(Array.empty), sparkConf, hadoopConf) val amService = new Thread("Unmanaged Application Master Service") { override def run(): Unit = { appMaster.runUnmanaged(rpcEnv, report.getCurrentApplicationAttemptId, stagingDirPath, cachedResourcesConf) } } amService.setDaemon(true) amService.start() appMaster } /** * Format an application report and optionally, links to driver logs, in a human-friendly manner. * * @param report The application report from YARN. * @param driverLogsLinks A map of driver log files and their links. Keys are the file names * (e.g. `stdout`), and values are the links. If empty, nothing will be * printed. * @return Human-readable version of the input data. */ private def formatReportDetails(report: ApplicationReport, driverLogsLinks: IMap[String, String]): String = { val details = Seq[(String, String)]( ("client token", getClientToken(report)), ("diagnostics", report.getDiagnostics), ("ApplicationMaster host", report.getHost), ("ApplicationMaster RPC port", report.getRpcPort.toString), ("queue", report.getQueue), ("start time", report.getStartTime.toString), ("final status", report.getFinalApplicationStatus.toString), ("tracking URL", report.getTrackingUrl), ("user", report.getUser) ) ++ driverLogsLinks.map { case (fname, link) => (s"Driver Logs ($fname)", link) } // Use more loggable format if value is null or empty details.map { case (k, v) => val newValue = Option(v).filter(_.nonEmpty).getOrElse("N/A") s"\\n\\t $k: $newValue" }.mkString("") } /** * Fetch links to the logs of the driver for the given application report. This requires * query the ResourceManager via RPC. Returns an empty map if the links could not be fetched. * If this feature is disabled via [[CLIENT_INCLUDE_DRIVER_LOGS_LINK]], or if the application * report indicates that the driver container isn't currently running, an empty map is * returned immediately. */ private def getDriverLogsLink(appReport: ApplicationReport): IMap[String, String] = { if (!sparkConf.get(CLIENT_INCLUDE_DRIVER_LOGS_LINK) || appReport.getYarnApplicationState != YarnApplicationState.RUNNING) { return IMap.empty } try { Option(appReport.getCurrentApplicationAttemptId) .flatMap(attemptId => Option(yarnClient.getApplicationAttemptReport(attemptId))) .flatMap(attemptReport => Option(attemptReport.getAMContainerId)) .flatMap(amContainerId => Option(yarnClient.getContainerReport(amContainerId))) .flatMap(containerReport => Option(containerReport.getLogUrl)) .map(YarnContainerInfoHelper.getLogUrlsFromBaseUrl) .getOrElse(IMap.empty) } catch { case e: Exception => logWarning(s"Unable to get driver log links for $appId: $e") // Include the full stack trace only at DEBUG level to reduce verbosity logDebug(s"Unable to get driver log links for $appId", e) IMap.empty } } /** * Submit an application to the ResourceManager. * If set spark.yarn.submit.waitAppCompletion to true, it will stay alive * reporting the application's status until the application has exited for any reason. * Otherwise, the client process will exit after submission. * If the application finishes with a failed, killed, or undefined status, * throw an appropriate SparkException. */ def run(): Unit = { this.appId = submitApplication() if (!launcherBackend.isConnected() && fireAndForget) { val report = getApplicationReport(appId) val state = report.getYarnApplicationState logInfo(s"Application report for $appId (state: $state)") logInfo(formatReportDetails(report, getDriverLogsLink(report))) if (state == YarnApplicationState.FAILED || state == YarnApplicationState.KILLED) { throw new SparkException(s"Application $appId finished with status: $state") } } else { val YarnAppReport(appState, finalState, diags) = monitorApplication(appId) if (appState == YarnApplicationState.FAILED || finalState == FinalApplicationStatus.FAILED) { diags.foreach { err => logError(s"Application diagnostics message: $err") } throw new SparkException(s"Application $appId finished with failed status") } if (appState == YarnApplicationState.KILLED || finalState == FinalApplicationStatus.KILLED) { throw new SparkException(s"Application $appId is killed") } if (finalState == FinalApplicationStatus.UNDEFINED) { throw new SparkException(s"The final status of application $appId is undefined") } } } private def findPySparkArchives(): Seq[String] = { sys.env.get("PYSPARK_ARCHIVES_PATH") .map(_.split(",").toSeq) .getOrElse { val pyLibPath = Seq(sys.env("SPARK_HOME"), "python", "lib").mkString(File.separator) val pyArchivesFile = new File(pyLibPath, "pyspark.zip") require(pyArchivesFile.exists(), s"$pyArchivesFile not found; cannot run pyspark application in YARN mode.") val py4jFile = new File(pyLibPath, PythonUtils.PY4J_ZIP_NAME) require(py4jFile.exists(), s"$py4jFile not found; cannot run pyspark application in YARN mode.") Seq(pyArchivesFile.getAbsolutePath(), py4jFile.getAbsolutePath()) } } } private object Client extends Logging { // Alias for the user jar val APP_JAR_NAME: String = "__app__.jar" // Staging directory for any temporary jars or files val SPARK_STAGING: String = ".sparkStaging" // Staging directory is private! -> rwx-------- val STAGING_DIR_PERMISSION: FsPermission = FsPermission.createImmutable(Integer.parseInt("700", 8).toShort) // App files are world-wide readable and owner writable -> rw-r--r-- val APP_FILE_PERMISSION: FsPermission = FsPermission.createImmutable(Integer.parseInt("644", 8).toShort) // Distribution-defined classpath to add to processes val ENV_DIST_CLASSPATH = "SPARK_DIST_CLASSPATH" // Subdirectory where the user's Spark and Hadoop config files will be placed. val LOCALIZED_CONF_DIR = "__spark_conf__" // Subdirectory in the conf directory containing Hadoop config files. val LOCALIZED_HADOOP_CONF_DIR = "__hadoop_conf__" // File containing the conf archive in the AM. See prepareLocalResources(). val LOCALIZED_CONF_ARCHIVE = LOCALIZED_CONF_DIR + ".zip" // Name of the file in the conf archive containing Spark configuration. val SPARK_CONF_FILE = "__spark_conf__.properties" // Name of the file in the conf archive containing the distributed cache info. val DIST_CACHE_CONF_FILE = "__spark_dist_cache__.properties" // Subdirectory where the user's python files (not archives) will be placed. val LOCALIZED_PYTHON_DIR = "__pyfiles__" // Subdirectory where Spark libraries will be placed. val LOCALIZED_LIB_DIR = "__spark_libs__" /** * Return the path to the given application's staging directory. */ private def getAppStagingDir(appId: ApplicationId): String = { buildPath(SPARK_STAGING, appId.toString()) } /** * Populate the classpath entry in the given environment map with any application * classpath specified through the Hadoop and Yarn configurations. */ private[yarn] def populateHadoopClasspath(conf: Configuration, env: HashMap[String, String]) : Unit = { val classPathElementsToAdd = getYarnAppClasspath(conf) ++ getMRAppClasspath(conf) classPathElementsToAdd.foreach { c => YarnSparkHadoopUtil.addPathToEnvironment(env, Environment.CLASSPATH.name, c.trim) } } private def getYarnAppClasspath(conf: Configuration): Seq[String] = Option(conf.getStrings(YarnConfiguration.YARN_APPLICATION_CLASSPATH)) match { case Some(s) => s.toSeq case None => getDefaultYarnApplicationClasspath } private def getMRAppClasspath(conf: Configuration): Seq[String] = Option(conf.getStrings("mapreduce.application.classpath")) match { case Some(s) => s.toSeq case None => getDefaultMRApplicationClasspath } private[yarn] def getDefaultYarnApplicationClasspath: Seq[String] = YarnConfiguration.DEFAULT_YARN_APPLICATION_CLASSPATH.toSeq private[yarn] def getDefaultMRApplicationClasspath: Seq[String] = StringUtils.getStrings(MRJobConfig.DEFAULT_MAPREDUCE_APPLICATION_CLASSPATH).toSeq /** * Populate the classpath entry in the given environment map. * * User jars are generally not added to the JVM's system classpath; those are handled by the AM * and executor backend. When the deprecated `spark.yarn.user.classpath.first` is used, user jars * are included in the system classpath, though. The extra class path and other uploaded files are * always made available through the system class path. * * @param args Client arguments (when starting the AM) or null (when starting executors). */ private[yarn] def populateClasspath( args: ClientArguments, conf: Configuration, sparkConf: SparkConf, env: HashMap[String, String], extraClassPath: Option[String] = None): Unit = { extraClassPath.foreach { cp => addClasspathEntry(getClusterPath(sparkConf, cp), env) } addClasspathEntry(Environment.PWD.$$(), env) addClasspathEntry(Environment.PWD.$$() + Path.SEPARATOR + LOCALIZED_CONF_DIR, env) if (sparkConf.get(USER_CLASS_PATH_FIRST)) { // in order to properly add the app jar when user classpath is first // we have to do the mainJar separate in order to send the right thing // into addFileToClasspath val mainJar = if (args != null) { getMainJarUri(Option(args.userJar)) } else { getMainJarUri(sparkConf.get(APP_JAR)) } mainJar.foreach(addFileToClasspath(sparkConf, conf, _, APP_JAR_NAME, env)) val secondaryJars = if (args != null) { getSecondaryJarUris(Option(sparkConf.get(JARS_TO_DISTRIBUTE))) } else { getSecondaryJarUris(sparkConf.get(SECONDARY_JARS)) } secondaryJars.foreach { x => addFileToClasspath(sparkConf, conf, x, null, env) } } // Add the Spark jars to the classpath, depending on how they were distributed. addClasspathEntry(buildPath(Environment.PWD.$$(), LOCALIZED_LIB_DIR, "*"), env) if (sparkConf.get(SPARK_ARCHIVE).isEmpty) { sparkConf.get(SPARK_JARS).foreach { jars => jars.filter(Utils.isLocalUri).foreach { jar => val uri = new URI(jar) addClasspathEntry(getClusterPath(sparkConf, uri.getPath()), env) } } } if (sparkConf.get(POPULATE_HADOOP_CLASSPATH)) { populateHadoopClasspath(conf, env) } sys.env.get(ENV_DIST_CLASSPATH).foreach { cp => addClasspathEntry(getClusterPath(sparkConf, cp), env) } // Add the localized Hadoop config at the end of the classpath, in case it contains other // files (such as configuration files for different services) that are not part of the // YARN cluster's config. addClasspathEntry( buildPath(Environment.PWD.$$(), LOCALIZED_CONF_DIR, LOCALIZED_HADOOP_CONF_DIR), env) } /** * Returns a list of URIs representing the user classpath. * * @param conf Spark configuration. */ def getUserClasspath(conf: SparkConf): Array[URI] = { val mainUri = getMainJarUri(conf.get(APP_JAR)) val secondaryUris = getSecondaryJarUris(conf.get(SECONDARY_JARS)) (mainUri ++ secondaryUris).toArray } private def getMainJarUri(mainJar: Option[String]): Option[URI] = { mainJar.flatMap { path => val uri = Utils.resolveURI(path) if (uri.getScheme == Utils.LOCAL_SCHEME) Some(uri) else None }.orElse(Some(new URI(APP_JAR_NAME))) } private def getSecondaryJarUris(secondaryJars: Option[Seq[String]]): Seq[URI] = { secondaryJars.getOrElse(Nil).map(new URI(_)) } /** * Adds the given path to the classpath, handling "local:" URIs correctly. * * If an alternate name for the file is given, and it's not a "local:" file, the alternate * name will be added to the classpath (relative to the job's work directory). * * If not a "local:" file and no alternate name, the linkName will be added to the classpath. * * @param conf Spark configuration. * @param hadoopConf Hadoop configuration. * @param uri URI to add to classpath (optional). * @param fileName Alternate name for the file (optional). * @param env Map holding the environment variables. */ private def addFileToClasspath( conf: SparkConf, hadoopConf: Configuration, uri: URI, fileName: String, env: HashMap[String, String]): Unit = { if (uri != null && uri.getScheme == Utils.LOCAL_SCHEME) { addClasspathEntry(getClusterPath(conf, uri.getPath), env) } else if (fileName != null) { addClasspathEntry(buildPath(Environment.PWD.$$(), fileName), env) } else if (uri != null) { val localPath = getQualifiedLocalPath(uri, hadoopConf) val linkName = Option(uri.getFragment()).getOrElse(localPath.getName()) addClasspathEntry(buildPath(Environment.PWD.$$(), linkName), env) } } /** * Add the given path to the classpath entry of the given environment map. * If the classpath is already set, this appends the new path to the existing classpath. */ private def addClasspathEntry(path: String, env: HashMap[String, String]): Unit = YarnSparkHadoopUtil.addPathToEnvironment(env, Environment.CLASSPATH.name, path) /** * Returns the path to be sent to the NM for a path that is valid on the gateway. * * This method uses two configuration values: * * - spark.yarn.config.gatewayPath: a string that identifies a portion of the input path that may * only be valid in the gateway node. * - spark.yarn.config.replacementPath: a string with which to replace the gateway path. This may * contain, for example, env variable references, which will be expanded by the NMs when * starting containers. * * If either config is not available, the input path is returned. */ def getClusterPath(conf: SparkConf, path: String): String = { val localPath = conf.get(GATEWAY_ROOT_PATH) val clusterPath = conf.get(REPLACEMENT_ROOT_PATH) if (localPath != null && clusterPath != null) { path.replace(localPath, clusterPath) } else { path } } /** * Return whether two URI represent file system are the same */ private[spark] def compareUri(srcUri: URI, dstUri: URI): Boolean = { if (srcUri.getScheme() == null || srcUri.getScheme() != dstUri.getScheme()) { return false } val srcAuthority = srcUri.getAuthority() val dstAuthority = dstUri.getAuthority() if (srcAuthority != null && !srcAuthority.equalsIgnoreCase(dstAuthority)) { return false } var srcHost = srcUri.getHost() var dstHost = dstUri.getHost() // In HA or when using viewfs, the host part of the URI may not actually be a host, but the // name of the HDFS namespace. Those names won't resolve, so avoid even trying if they // match. if (srcHost != null && dstHost != null && srcHost != dstHost) { try { srcHost = InetAddress.getByName(srcHost).getCanonicalHostName() dstHost = InetAddress.getByName(dstHost).getCanonicalHostName() } catch { case e: UnknownHostException => return false } } Objects.equal(srcHost, dstHost) && srcUri.getPort() == dstUri.getPort() } /** * Return whether the two file systems are the same. */ protected def compareFs(srcFs: FileSystem, destFs: FileSystem): Boolean = { val srcUri = srcFs.getUri() val dstUri = destFs.getUri() compareUri(srcUri, dstUri) } /** * Given a local URI, resolve it and return a qualified local path that corresponds to the URI. * This is used for preparing local resources to be included in the container launch context. */ private def getQualifiedLocalPath(localURI: URI, hadoopConf: Configuration): Path = { val qualifiedURI = if (localURI.getScheme == null) { // If not specified, assume this is in the local filesystem to keep the behavior // consistent with that of Hadoop new URI(FileSystem.getLocal(hadoopConf).makeQualified(new Path(localURI)).toString) } else { localURI } new Path(qualifiedURI) } /** * Whether to consider jars provided by the user to have precedence over the Spark jars when * loading user classes. */ def isUserClassPathFirst(conf: SparkConf, isDriver: Boolean): Boolean = { if (isDriver) { conf.get(DRIVER_USER_CLASS_PATH_FIRST) } else { conf.get(EXECUTOR_USER_CLASS_PATH_FIRST) } } /** * Joins all the path components using Path.SEPARATOR. */ def buildPath(components: String*): String = { components.mkString(Path.SEPARATOR) } def createAppReport(report: ApplicationReport): YarnAppReport = { val diags = report.getDiagnostics() val diagsOpt = if (diags != null && diags.nonEmpty) Some(diags) else None YarnAppReport(report.getYarnApplicationState(), report.getFinalApplicationStatus(), diagsOpt) } /** * Create a properly quoted and escaped library path string to be added as a prefix to the command * executed by YARN. This is different from normal quoting / escaping due to YARN executing the * command through "bash -c". */ def createLibraryPathPrefix(libpath: String, conf: SparkConf): String = { val cmdPrefix = if (Utils.isWindows) { Utils.libraryPathEnvPrefix(Seq(libpath)) } else { val envName = Utils.libraryPathEnvName // For quotes, escape both the quote and the escape character when encoding in the command // string. val quoted = libpath.replace("\\"", "\\\\\\\\\\\\\\"") envName + "=\\\\\\"" + quoted + File.pathSeparator + "$" + envName + "\\\\\\"" } getClusterPath(conf, cmdPrefix) } def confToProperties(conf: SparkConf): Properties = { val props = new Properties() conf.getAll.foreach { case (k, v) => props.setProperty(k, v) } props } def writePropertiesToArchive(props: Properties, name: String, out: ZipOutputStream): Unit = { out.putNextEntry(new ZipEntry(name)) val writer = new OutputStreamWriter(out, StandardCharsets.UTF_8) props.store(writer, "Spark configuration.") writer.flush() out.closeEntry() } } private[spark] class YarnClusterApplication extends SparkApplication { override def start(args: Array[String], conf: SparkConf): Unit = { // SparkSubmit would use yarn cache to distribute files & jars in yarn mode, // so remove them from sparkConf here for yarn mode. conf.remove(JARS) conf.remove(FILES) conf.remove(ARCHIVES) new Client(new ClientArguments(args), conf, null).run() } } private[spark] case class YarnAppReport( appState: YarnApplicationState, finalState: FinalApplicationStatus, diagnostics: Option[String])
witgo/spark
resource-managers/yarn/src/main/scala/org/apache/spark/deploy/yarn/Client.scala
Scala
apache-2.0
68,386
package models.services import javax.inject.Inject import java.util.UUID import models._ import models.daos._ import shared.Util.reverseEffect import scala.concurrent.Future import scala.concurrent.ExecutionContext.Implicits.global /** * Handles majors (student side major) * Collection of functions to get majors */ class MajorServiceImpl @Inject() ( majorDAO: MajorDAO, majorSubjectDAO: MajorSubjectDAO, userMajorDAO: UserMajorDAO, departmentDAO: DepartmentDAO ) extends MajorService { /** * Returns a matching Major with a matching name * * @param name The name of the Major, in Korean * @param majorType The type of the Major * @return The found major. */ def find(name: String, majorType: MajorType): Future[Option[Major]] = majorDAO.findByName(name).map { majorSeq => majorSeq.filter(_.majorType == majorType).headOption } def find(name: String, majorType: MajorType, year: Short): Future[Option[Major]] = majorDAO.findByName(name).map { majorSeq => majorSeq.filter(m => m.majorType == majorType && m.year == year).headOption } /** * Returns a sequence of majors of a given user * @param subject The user to search * @return The sequence majors the user has */ def findByUser(userID: UUID): Future[Seq[Major]] = for { ums <- userMajorDAO.allMajor(userID) ms <- reverseEffect(ums.map(um => majorDAO.findById(um.majorID))) } yield { ms.map { case Some(m) => m case None => throw new NoSuchElementException("User has an invalid major") } } /** * Returns a sequence of majors and the given subject's requiredness * * @param subject The subject to search * @return The sequence of pairs of matching majors and its requiredness */ def findBySubject(subject: Subject): Future[Seq[(Major, Boolean)]] = majorSubjectDAO.findBySubject(subject.code, subject.department) /** * Returns a sequence of majors and the subject's requiredness of a given course * * @param course The course to search * @return The sequence of pairs of matching majors and its requiredness */ def findByCourse(course: Course): Future[Seq[(Major, Boolean)]] = for { dept <- departmentDAO.findById(course.departmentId) ms <- majorSubjectDAO.findBySubject(course.codePrefix, dept) } yield { ms } def allOfType(): Future[Map[MajorType, Seq[(String, String)]]] = { majorDAO.all() .map { _.groupBy { case Major(_, _, _, majorType, _) => majorType }.map { case (majorType, majorseq) => majorType -> majorseq.map { case Major(_, nameKo, nameEn, _, _) => nameKo -> nameEn.getOrElse("") } } } } }
yoo-haemin/hufs-planner
project/app/models/services/MajorServiceImpl.scala
Scala
agpl-3.0
2,776
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.avro import java.io._ import java.net.URL import java.nio.file.{Files, Paths} import java.sql.{Date, Timestamp} import java.util.{Locale, TimeZone, UUID} import scala.collection.JavaConverters._ import org.apache.avro.Schema import org.apache.avro.Schema.{Field, Type} import org.apache.avro.Schema.Type._ import org.apache.avro.file.{DataFileReader, DataFileWriter} import org.apache.avro.generic.{GenericData, GenericDatumReader, GenericDatumWriter, GenericRecord} import org.apache.avro.generic.GenericData.{EnumSymbol, Fixed} import org.apache.commons.io.FileUtils import org.apache.spark.SparkException import org.apache.spark.sql._ import org.apache.spark.sql.TestingUDT.{IntervalData, NullData, NullUDT} import org.apache.spark.sql.execution.datasources.DataSource import org.apache.spark.sql.internal.SQLConf import org.apache.spark.sql.test.{SharedSQLContext, SQLTestUtils} import org.apache.spark.sql.types._ import org.apache.spark.util.Utils class AvroSuite extends QueryTest with SharedSQLContext with SQLTestUtils { import testImplicits._ val episodesAvro = testFile("episodes.avro") val testAvro = testFile("test.avro") override protected def beforeAll(): Unit = { super.beforeAll() spark.conf.set("spark.sql.files.maxPartitionBytes", 1024) } def checkReloadMatchesSaved(originalFile: String, newFile: String): Unit = { val originalEntries = spark.read.format("avro").load(testAvro).collect() val newEntries = spark.read.format("avro").load(newFile) checkAnswer(newEntries, originalEntries) } def checkAvroSchemaEquals(avroSchema: String, expectedAvroSchema: String): Unit = { assert(new Schema.Parser().parse(avroSchema) == new Schema.Parser().parse(expectedAvroSchema)) } def getAvroSchemaStringFromFiles(filePath: String): String = { new DataFileReader({ val file = new File(filePath) if (file.isFile) { file } else { file.listFiles() .filter(_.isFile) .filter(_.getName.endsWith("avro")) .head } }, new GenericDatumReader[Any]()).getSchema.toString(false) } test("resolve avro data source") { val databricksAvro = "com.databricks.spark.avro" // By default the backward compatibility for com.databricks.spark.avro is enabled. Seq("avro", "org.apache.spark.sql.avro.AvroFileFormat", databricksAvro).foreach { provider => assert(DataSource.lookupDataSource(provider, spark.sessionState.conf) === classOf[org.apache.spark.sql.avro.AvroFileFormat]) } withSQLConf(SQLConf.LEGACY_REPLACE_DATABRICKS_SPARK_AVRO_ENABLED.key -> "false") { val message = intercept[AnalysisException] { DataSource.lookupDataSource(databricksAvro, spark.sessionState.conf) }.getMessage assert(message.contains(s"Failed to find data source: $databricksAvro")) } } test("reading from multiple paths") { val df = spark.read.format("avro").load(episodesAvro, episodesAvro) assert(df.count == 16) } test("reading and writing partitioned data") { val df = spark.read.format("avro").load(episodesAvro) val fields = List("title", "air_date", "doctor") for (field <- fields) { withTempPath { dir => val outputDir = s"$dir/${UUID.randomUUID}" df.write.partitionBy(field).format("avro").save(outputDir) val input = spark.read.format("avro").load(outputDir) // makes sure that no fields got dropped. // We convert Rows to Seqs in order to work around SPARK-10325 assert(input.select(field).collect().map(_.toSeq).toSet === df.select(field).collect().map(_.toSeq).toSet) } } } test("request no fields") { val df = spark.read.format("avro").load(episodesAvro) df.createOrReplaceTempView("avro_table") assert(spark.sql("select count(*) from avro_table").collect().head === Row(8)) } test("convert formats") { withTempPath { dir => val df = spark.read.format("avro").load(episodesAvro) df.write.parquet(dir.getCanonicalPath) assert(spark.read.parquet(dir.getCanonicalPath).count() === df.count) } } test("rearrange internal schema") { withTempPath { dir => val df = spark.read.format("avro").load(episodesAvro) df.select("doctor", "title").write.format("avro").save(dir.getCanonicalPath) } } test("union(int, long) is read as long") { withTempPath { dir => val avroSchema: Schema = { val union = Schema.createUnion(List(Schema.create(Type.INT), Schema.create(Type.LONG)).asJava) val fields = Seq(new Field("field1", union, "doc", null.asInstanceOf[AnyVal])).asJava val schema = Schema.createRecord("name", "docs", "namespace", false) schema.setFields(fields) schema } val datumWriter = new GenericDatumWriter[GenericRecord](avroSchema) val dataFileWriter = new DataFileWriter[GenericRecord](datumWriter) dataFileWriter.create(avroSchema, new File(s"$dir.avro")) val rec1 = new GenericData.Record(avroSchema) rec1.put("field1", 1.toLong) dataFileWriter.append(rec1) val rec2 = new GenericData.Record(avroSchema) rec2.put("field1", 2) dataFileWriter.append(rec2) dataFileWriter.flush() dataFileWriter.close() val df = spark.read.format("avro").load(s"$dir.avro") assert(df.schema.fields === Seq(StructField("field1", LongType, nullable = true))) assert(df.collect().toSet == Set(Row(1L), Row(2L))) } } test("union(float, double) is read as double") { withTempPath { dir => val avroSchema: Schema = { val union = Schema.createUnion(List(Schema.create(Type.FLOAT), Schema.create(Type.DOUBLE)).asJava) val fields = Seq(new Field("field1", union, "doc", null.asInstanceOf[AnyVal])).asJava val schema = Schema.createRecord("name", "docs", "namespace", false) schema.setFields(fields) schema } val datumWriter = new GenericDatumWriter[GenericRecord](avroSchema) val dataFileWriter = new DataFileWriter[GenericRecord](datumWriter) dataFileWriter.create(avroSchema, new File(s"$dir.avro")) val rec1 = new GenericData.Record(avroSchema) rec1.put("field1", 1.toFloat) dataFileWriter.append(rec1) val rec2 = new GenericData.Record(avroSchema) rec2.put("field1", 2.toDouble) dataFileWriter.append(rec2) dataFileWriter.flush() dataFileWriter.close() val df = spark.read.format("avro").load(s"$dir.avro") assert(df.schema.fields === Seq(StructField("field1", DoubleType, nullable = true))) assert(df.collect().toSet == Set(Row(1.toDouble), Row(2.toDouble))) } } test("union(float, double, null) is read as nullable double") { withTempPath { dir => val avroSchema: Schema = { val union = Schema.createUnion( List(Schema.create(Type.FLOAT), Schema.create(Type.DOUBLE), Schema.create(Type.NULL) ).asJava ) val fields = Seq(new Field("field1", union, "doc", null.asInstanceOf[AnyVal])).asJava val schema = Schema.createRecord("name", "docs", "namespace", false) schema.setFields(fields) schema } val datumWriter = new GenericDatumWriter[GenericRecord](avroSchema) val dataFileWriter = new DataFileWriter[GenericRecord](datumWriter) dataFileWriter.create(avroSchema, new File(s"$dir.avro")) val rec1 = new GenericData.Record(avroSchema) rec1.put("field1", 1.toFloat) dataFileWriter.append(rec1) val rec2 = new GenericData.Record(avroSchema) rec2.put("field1", null) dataFileWriter.append(rec2) dataFileWriter.flush() dataFileWriter.close() val df = spark.read.format("avro").load(s"$dir.avro") assert(df.schema.fields === Seq(StructField("field1", DoubleType, nullable = true))) assert(df.collect().toSet == Set(Row(1.toDouble), Row(null))) } } test("Union of a single type") { withTempPath { dir => val UnionOfOne = Schema.createUnion(List(Schema.create(Type.INT)).asJava) val fields = Seq(new Field("field1", UnionOfOne, "doc", null.asInstanceOf[AnyVal])).asJava val schema = Schema.createRecord("name", "docs", "namespace", false) schema.setFields(fields) val datumWriter = new GenericDatumWriter[GenericRecord](schema) val dataFileWriter = new DataFileWriter[GenericRecord](datumWriter) dataFileWriter.create(schema, new File(s"$dir.avro")) val avroRec = new GenericData.Record(schema) avroRec.put("field1", 8) dataFileWriter.append(avroRec) dataFileWriter.flush() dataFileWriter.close() val df = spark.read.format("avro").load(s"$dir.avro") assert(df.first() == Row(8)) } } test("Complex Union Type") { withTempPath { dir => val fixedSchema = Schema.createFixed("fixed_name", "doc", "namespace", 4) val enumSchema = Schema.createEnum("enum_name", "doc", "namespace", List("e1", "e2").asJava) val complexUnionType = Schema.createUnion( List(Schema.create(Type.INT), Schema.create(Type.STRING), fixedSchema, enumSchema).asJava) val fields = Seq( new Field("field1", complexUnionType, "doc", null.asInstanceOf[AnyVal]), new Field("field2", complexUnionType, "doc", null.asInstanceOf[AnyVal]), new Field("field3", complexUnionType, "doc", null.asInstanceOf[AnyVal]), new Field("field4", complexUnionType, "doc", null.asInstanceOf[AnyVal]) ).asJava val schema = Schema.createRecord("name", "docs", "namespace", false) schema.setFields(fields) val datumWriter = new GenericDatumWriter[GenericRecord](schema) val dataFileWriter = new DataFileWriter[GenericRecord](datumWriter) dataFileWriter.create(schema, new File(s"$dir.avro")) val avroRec = new GenericData.Record(schema) val field1 = 1234 val field2 = "Hope that was not load bearing" val field3 = Array[Byte](1, 2, 3, 4) val field4 = "e2" avroRec.put("field1", field1) avroRec.put("field2", field2) avroRec.put("field3", new Fixed(fixedSchema, field3)) avroRec.put("field4", new EnumSymbol(enumSchema, field4)) dataFileWriter.append(avroRec) dataFileWriter.flush() dataFileWriter.close() val df = spark.sqlContext.read.format("avro").load(s"$dir.avro") assertResult(field1)(df.selectExpr("field1.member0").first().get(0)) assertResult(field2)(df.selectExpr("field2.member1").first().get(0)) assertResult(field3)(df.selectExpr("field3.member2").first().get(0)) assertResult(field4)(df.selectExpr("field4.member3").first().get(0)) } } test("Lots of nulls") { withTempPath { dir => val schema = StructType(Seq( StructField("binary", BinaryType, true), StructField("timestamp", TimestampType, true), StructField("array", ArrayType(ShortType), true), StructField("map", MapType(StringType, StringType), true), StructField("struct", StructType(Seq(StructField("int", IntegerType, true)))))) val rdd = spark.sparkContext.parallelize(Seq[Row]( Row(null, new Timestamp(1), Array[Short](1, 2, 3), null, null), Row(null, null, null, null, null), Row(null, null, null, null, null), Row(null, null, null, null, null))) val df = spark.createDataFrame(rdd, schema) df.write.format("avro").save(dir.toString) assert(spark.read.format("avro").load(dir.toString).count == rdd.count) } } test("Struct field type") { withTempPath { dir => val schema = StructType(Seq( StructField("float", FloatType, true), StructField("short", ShortType, true), StructField("byte", ByteType, true), StructField("boolean", BooleanType, true) )) val rdd = spark.sparkContext.parallelize(Seq( Row(1f, 1.toShort, 1.toByte, true), Row(2f, 2.toShort, 2.toByte, true), Row(3f, 3.toShort, 3.toByte, true) )) val df = spark.createDataFrame(rdd, schema) df.write.format("avro").save(dir.toString) assert(spark.read.format("avro").load(dir.toString).count == rdd.count) } } private def createDummyCorruptFile(dir: File): Unit = { Utils.tryWithResource { FileUtils.forceMkdir(dir) val corruptFile = new File(dir, "corrupt.avro") new BufferedWriter(new FileWriter(corruptFile)) } { writer => writer.write("corrupt") } } test("Ignore corrupt Avro file if flag IGNORE_CORRUPT_FILES enabled") { withSQLConf(SQLConf.IGNORE_CORRUPT_FILES.key -> "true") { withTempPath { dir => createDummyCorruptFile(dir) val message = intercept[FileNotFoundException] { spark.read.format("avro").load(dir.getAbsolutePath).schema }.getMessage assert(message.contains("No Avro files found.")) val srcFile = new File("src/test/resources/episodes.avro") val destFile = new File(dir, "episodes.avro") FileUtils.copyFile(srcFile, destFile) val result = spark.read.format("avro").load(srcFile.getAbsolutePath).collect() checkAnswer(spark.read.format("avro").load(dir.getAbsolutePath), result) } } } test("Throws IOException on reading corrupt Avro file if flag IGNORE_CORRUPT_FILES disabled") { withSQLConf(SQLConf.IGNORE_CORRUPT_FILES.key -> "false") { withTempPath { dir => createDummyCorruptFile(dir) val message = intercept[org.apache.spark.SparkException] { spark.read.format("avro").load(dir.getAbsolutePath) }.getMessage assert(message.contains("Could not read file")) } } } test("Date field type") { withTempPath { dir => val schema = StructType(Seq( StructField("float", FloatType, true), StructField("date", DateType, true) )) TimeZone.setDefault(TimeZone.getTimeZone("UTC")) val rdd = spark.sparkContext.parallelize(Seq( Row(1f, null), Row(2f, new Date(1451948400000L)), Row(3f, new Date(1460066400500L)) )) val df = spark.createDataFrame(rdd, schema) df.write.format("avro").save(dir.toString) assert(spark.read.format("avro").load(dir.toString).count == rdd.count) checkAnswer( spark.read.format("avro").load(dir.toString).select("date"), Seq(Row(null), Row(new Date(1451865600000L)), Row(new Date(1459987200000L)))) } } test("Array data types") { withTempPath { dir => val testSchema = StructType(Seq( StructField("byte_array", ArrayType(ByteType), true), StructField("short_array", ArrayType(ShortType), true), StructField("float_array", ArrayType(FloatType), true), StructField("bool_array", ArrayType(BooleanType), true), StructField("long_array", ArrayType(LongType), true), StructField("double_array", ArrayType(DoubleType), true), StructField("decimal_array", ArrayType(DecimalType(10, 0)), true), StructField("bin_array", ArrayType(BinaryType), true), StructField("timestamp_array", ArrayType(TimestampType), true), StructField("array_array", ArrayType(ArrayType(StringType), true), true), StructField("struct_array", ArrayType( StructType(Seq(StructField("name", StringType, true))))))) val arrayOfByte = new Array[Byte](4) for (i <- arrayOfByte.indices) { arrayOfByte(i) = i.toByte } val rdd = spark.sparkContext.parallelize(Seq( Row(arrayOfByte, Array[Short](1, 2, 3, 4), Array[Float](1f, 2f, 3f, 4f), Array[Boolean](true, false, true, false), Array[Long](1L, 2L), Array[Double](1.0, 2.0), Array[BigDecimal](BigDecimal.valueOf(3)), Array[Array[Byte]](arrayOfByte, arrayOfByte), Array[Timestamp](new Timestamp(0)), Array[Array[String]](Array[String]("CSH, tearing down the walls that divide us", "-jd")), Array[Row](Row("Bobby G. can't swim"))))) val df = spark.createDataFrame(rdd, testSchema) df.write.format("avro").save(dir.toString) assert(spark.read.format("avro").load(dir.toString).count == rdd.count) } } test("write with compression - sql configs") { withTempPath { dir => val uncompressDir = s"$dir/uncompress" val bzip2Dir = s"$dir/bzip2" val xzDir = s"$dir/xz" val deflateDir = s"$dir/deflate" val snappyDir = s"$dir/snappy" val df = spark.read.format("avro").load(testAvro) spark.conf.set(SQLConf.AVRO_COMPRESSION_CODEC.key, "uncompressed") df.write.format("avro").save(uncompressDir) spark.conf.set(SQLConf.AVRO_COMPRESSION_CODEC.key, "bzip2") df.write.format("avro").save(bzip2Dir) spark.conf.set(SQLConf.AVRO_COMPRESSION_CODEC.key, "xz") df.write.format("avro").save(xzDir) spark.conf.set(SQLConf.AVRO_COMPRESSION_CODEC.key, "deflate") spark.conf.set(SQLConf.AVRO_DEFLATE_LEVEL.key, "9") df.write.format("avro").save(deflateDir) spark.conf.set(SQLConf.AVRO_COMPRESSION_CODEC.key, "snappy") df.write.format("avro").save(snappyDir) val uncompressSize = FileUtils.sizeOfDirectory(new File(uncompressDir)) val bzip2Size = FileUtils.sizeOfDirectory(new File(bzip2Dir)) val xzSize = FileUtils.sizeOfDirectory(new File(xzDir)) val deflateSize = FileUtils.sizeOfDirectory(new File(deflateDir)) val snappySize = FileUtils.sizeOfDirectory(new File(snappyDir)) assert(uncompressSize > deflateSize) assert(snappySize > deflateSize) assert(snappySize > bzip2Size) assert(bzip2Size > xzSize) } } test("dsl test") { val results = spark.read.format("avro").load(episodesAvro).select("title").collect() assert(results.length === 8) } test("old avro data source name works") { val results = spark.read.format("com.databricks.spark.avro") .load(episodesAvro).select("title").collect() assert(results.length === 8) } test("support of various data types") { // This test uses data from test.avro. You can see the data and the schema of this file in // test.json and test.avsc val all = spark.read.format("avro").load(testAvro).collect() assert(all.length == 3) val str = spark.read.format("avro").load(testAvro).select("string").collect() assert(str.map(_(0)).toSet.contains("Terran is IMBA!")) val simple_map = spark.read.format("avro").load(testAvro).select("simple_map").collect() assert(simple_map(0)(0).getClass.toString.contains("Map")) assert(simple_map.map(_(0).asInstanceOf[Map[String, Some[Int]]].size).toSet == Set(2, 0)) val union0 = spark.read.format("avro").load(testAvro).select("union_string_null").collect() assert(union0.map(_(0)).toSet == Set("abc", "123", null)) val union1 = spark.read.format("avro").load(testAvro).select("union_int_long_null").collect() assert(union1.map(_(0)).toSet == Set(66, 1, null)) val union2 = spark.read.format("avro").load(testAvro).select("union_float_double").collect() assert( union2 .map(x => java.lang.Double.valueOf(x(0).toString)) .exists(p => Math.abs(p - Math.PI) < 0.001)) val fixed = spark.read.format("avro").load(testAvro).select("fixed3").collect() assert(fixed.map(_(0).asInstanceOf[Array[Byte]]).exists(p => p(1) == 3)) val enum = spark.read.format("avro").load(testAvro).select("enum").collect() assert(enum.map(_(0)).toSet == Set("SPADES", "CLUBS", "DIAMONDS")) val record = spark.read.format("avro").load(testAvro).select("record").collect() assert(record(0)(0).getClass.toString.contains("Row")) assert(record.map(_(0).asInstanceOf[Row](0)).contains("TEST_STR123")) val array_of_boolean = spark.read.format("avro").load(testAvro).select("array_of_boolean").collect() assert(array_of_boolean.map(_(0).asInstanceOf[Seq[Boolean]].size).toSet == Set(3, 1, 0)) val bytes = spark.read.format("avro").load(testAvro).select("bytes").collect() assert(bytes.map(_(0).asInstanceOf[Array[Byte]].length).toSet == Set(3, 1, 0)) } test("sql test") { spark.sql( s""" |CREATE TEMPORARY VIEW avroTable |USING avro |OPTIONS (path "${episodesAvro}") """.stripMargin.replaceAll("\\n", " ")) assert(spark.sql("SELECT * FROM avroTable").collect().length === 8) } test("conversion to avro and back") { // Note that test.avro includes a variety of types, some of which are nullable. We expect to // get the same values back. withTempPath { dir => val avroDir = s"$dir/avro" spark.read.format("avro").load(testAvro).write.format("avro").save(avroDir) checkReloadMatchesSaved(testAvro, avroDir) } } test("conversion to avro and back with namespace") { // Note that test.avro includes a variety of types, some of which are nullable. We expect to // get the same values back. withTempPath { tempDir => val name = "AvroTest" val namespace = "org.apache.spark.avro" val parameters = Map("recordName" -> name, "recordNamespace" -> namespace) val avroDir = tempDir + "/namedAvro" spark.read.format("avro").load(testAvro) .write.options(parameters).format("avro").save(avroDir) checkReloadMatchesSaved(testAvro, avroDir) // Look at raw file and make sure has namespace info val rawSaved = spark.sparkContext.textFile(avroDir) val schema = rawSaved.collect().mkString("") assert(schema.contains(name)) assert(schema.contains(namespace)) } } test("converting some specific sparkSQL types to avro") { withTempPath { tempDir => val testSchema = StructType(Seq( StructField("Name", StringType, false), StructField("Length", IntegerType, true), StructField("Time", TimestampType, false), StructField("Decimal", DecimalType(10, 2), true), StructField("Binary", BinaryType, false))) val arrayOfByte = new Array[Byte](4) for (i <- arrayOfByte.indices) { arrayOfByte(i) = i.toByte } val cityRDD = spark.sparkContext.parallelize(Seq( Row("San Francisco", 12, new Timestamp(666), null, arrayOfByte), Row("Palo Alto", null, new Timestamp(777), null, arrayOfByte), Row("Munich", 8, new Timestamp(42), Decimal(3.14), arrayOfByte))) val cityDataFrame = spark.createDataFrame(cityRDD, testSchema) val avroDir = tempDir + "/avro" cityDataFrame.write.format("avro").save(avroDir) assert(spark.read.format("avro").load(avroDir).collect().length == 3) // TimesStamps are converted to longs val times = spark.read.format("avro").load(avroDir).select("Time").collect() assert(times.map(_(0)).toSet == Set(new Timestamp(666), new Timestamp(777), new Timestamp(42))) // DecimalType should be converted to string val decimals = spark.read.format("avro").load(avroDir).select("Decimal").collect() assert(decimals.map(_(0)).contains(new java.math.BigDecimal("3.14"))) // There should be a null entry val length = spark.read.format("avro").load(avroDir).select("Length").collect() assert(length.map(_(0)).contains(null)) val binary = spark.read.format("avro").load(avroDir).select("Binary").collect() for (i <- arrayOfByte.indices) { assert(binary(1)(0).asInstanceOf[Array[Byte]](i) == arrayOfByte(i)) } } } test("correctly read long as date/timestamp type") { withTempPath { tempDir => val currentTime = new Timestamp(System.currentTimeMillis()) val currentDate = new Date(System.currentTimeMillis()) val schema = StructType(Seq( StructField("_1", DateType, false), StructField("_2", TimestampType, false))) val writeDs = Seq((currentDate, currentTime)).toDS val avroDir = tempDir + "/avro" writeDs.write.format("avro").save(avroDir) assert(spark.read.format("avro").load(avroDir).collect().length == 1) val readDs = spark.read.schema(schema).format("avro").load(avroDir).as[(Date, Timestamp)] assert(readDs.collect().sameElements(writeDs.collect())) } } test("support of globbed paths") { val resourceDir = testFile(".") val e1 = spark.read.format("avro").load(resourceDir + "../*/episodes.avro").collect() assert(e1.length == 8) val e2 = spark.read.format("avro").load(resourceDir + "../../*/*/episodes.avro").collect() assert(e2.length == 8) } test("does not coerce null date/timestamp value to 0 epoch.") { withTempPath { tempDir => val nullTime: Timestamp = null val nullDate: Date = null val schema = StructType(Seq( StructField("_1", DateType, nullable = true), StructField("_2", TimestampType, nullable = true)) ) val writeDs = Seq((nullDate, nullTime)).toDS val avroDir = tempDir + "/avro" writeDs.write.format("avro").save(avroDir) val readValues = spark.read.schema(schema).format("avro").load(avroDir).as[(Date, Timestamp)].collect assert(readValues.size == 1) assert(readValues.head == ((nullDate, nullTime))) } } test("support user provided avro schema") { val avroSchema = """ |{ | "type" : "record", | "name" : "test_schema", | "fields" : [{ | "name" : "string", | "type" : "string", | "doc" : "Meaningless string of characters" | }] |} """.stripMargin val result = spark .read .option("avroSchema", avroSchema) .format("avro") .load(testAvro) .collect() val expected = spark.read.format("avro").load(testAvro).select("string").collect() assert(result.sameElements(expected)) } test("support user provided avro schema with defaults for missing fields") { val avroSchema = """ |{ | "type" : "record", | "name" : "test_schema", | "fields" : [{ | "name" : "missingField", | "type" : "string", | "default" : "foo" | }] |} """.stripMargin val result = spark .read .option("avroSchema", avroSchema) .format("avro").load(testAvro).select("missingField").first assert(result === Row("foo")) } test("support user provided avro schema for writing nullable enum type") { withTempPath { tempDir => val avroSchema = """ |{ | "type" : "record", | "name" : "test_schema", | "fields" : [{ | "name": "enum", | "type": [{ "type": "enum", | "name": "Suit", | "symbols" : ["SPADES", "HEARTS", "DIAMONDS", "CLUBS"] | }, "null"] | }] |} """.stripMargin val df = spark.createDataFrame(spark.sparkContext.parallelize(Seq( Row("SPADES"), Row(null), Row("HEARTS"), Row("DIAMONDS"), Row(null), Row("CLUBS"), Row("HEARTS"), Row("SPADES"))), StructType(Seq(StructField("Suit", StringType, true)))) val tempSaveDir = s"$tempDir/save/" df.write.format("avro").option("avroSchema", avroSchema).save(tempSaveDir) checkAnswer(df, spark.read.format("avro").load(tempSaveDir)) checkAvroSchemaEquals(avroSchema, getAvroSchemaStringFromFiles(tempSaveDir)) // Writing df containing data not in the enum will throw an exception val message = intercept[SparkException] { spark.createDataFrame(spark.sparkContext.parallelize(Seq( Row("SPADES"), Row("NOT-IN-ENUM"), Row("HEARTS"), Row("DIAMONDS"))), StructType(Seq(StructField("Suit", StringType, true)))) .write.format("avro").option("avroSchema", avroSchema) .save(s"$tempDir/${UUID.randomUUID()}") }.getCause.getMessage assert(message.contains("org.apache.spark.sql.avro.IncompatibleSchemaException: " + "Cannot write \\"NOT-IN-ENUM\\" since it's not defined in enum")) } } test("support user provided avro schema for writing non-nullable enum type") { withTempPath { tempDir => val avroSchema = """ |{ | "type" : "record", | "name" : "test_schema", | "fields" : [{ | "name": "enum", | "type": { "type": "enum", | "name": "Suit", | "symbols" : ["SPADES", "HEARTS", "DIAMONDS", "CLUBS"] | } | }] |} """.stripMargin val dfWithNull = spark.createDataFrame(spark.sparkContext.parallelize(Seq( Row("SPADES"), Row(null), Row("HEARTS"), Row("DIAMONDS"), Row(null), Row("CLUBS"), Row("HEARTS"), Row("SPADES"))), StructType(Seq(StructField("Suit", StringType, true)))) val df = spark.createDataFrame(dfWithNull.na.drop().rdd, StructType(Seq(StructField("Suit", StringType, false)))) val tempSaveDir = s"$tempDir/save/" df.write.format("avro").option("avroSchema", avroSchema).save(tempSaveDir) checkAnswer(df, spark.read.format("avro").load(tempSaveDir)) checkAvroSchemaEquals(avroSchema, getAvroSchemaStringFromFiles(tempSaveDir)) // Writing df containing nulls without using avro union type will // throw an exception as avro uses union type to handle null. val message1 = intercept[SparkException] { dfWithNull.write.format("avro") .option("avroSchema", avroSchema).save(s"$tempDir/${UUID.randomUUID()}") }.getCause.getMessage assert(message1.contains("org.apache.avro.AvroRuntimeException: Not a union:")) // Writing df containing data not in the enum will throw an exception val message2 = intercept[SparkException] { spark.createDataFrame(spark.sparkContext.parallelize(Seq( Row("SPADES"), Row("NOT-IN-ENUM"), Row("HEARTS"), Row("DIAMONDS"))), StructType(Seq(StructField("Suit", StringType, false)))) .write.format("avro").option("avroSchema", avroSchema) .save(s"$tempDir/${UUID.randomUUID()}") }.getCause.getMessage assert(message2.contains("org.apache.spark.sql.avro.IncompatibleSchemaException: " + "Cannot write \\"NOT-IN-ENUM\\" since it's not defined in enum")) } } test("support user provided avro schema for writing nullable fixed type") { withTempPath { tempDir => val avroSchema = """ |{ | "type" : "record", | "name" : "test_schema", | "fields" : [{ | "name": "fixed2", | "type": [{ "type": "fixed", | "size": 2, | "name": "fixed2" | }, "null"] | }] |} """.stripMargin val df = spark.createDataFrame(spark.sparkContext.parallelize(Seq( Row(Array(192, 168).map(_.toByte)), Row(null))), StructType(Seq(StructField("fixed2", BinaryType, true)))) val tempSaveDir = s"$tempDir/save/" df.write.format("avro").option("avroSchema", avroSchema).save(tempSaveDir) checkAnswer(df, spark.read.format("avro").load(tempSaveDir)) checkAvroSchemaEquals(avroSchema, getAvroSchemaStringFromFiles(tempSaveDir)) // Writing df containing binary data that doesn't fit FIXED size will throw an exception val message1 = intercept[SparkException] { spark.createDataFrame(spark.sparkContext.parallelize(Seq( Row(Array(192, 168, 1).map(_.toByte)))), StructType(Seq(StructField("fixed2", BinaryType, true)))) .write.format("avro").option("avroSchema", avroSchema) .save(s"$tempDir/${UUID.randomUUID()}") }.getCause.getMessage assert(message1.contains("org.apache.spark.sql.avro.IncompatibleSchemaException: " + "Cannot write 3 bytes of binary data into FIXED Type with size of 2 bytes")) // Writing df containing binary data that doesn't fit FIXED size will throw an exception val message2 = intercept[SparkException] { spark.createDataFrame(spark.sparkContext.parallelize(Seq( Row(Array(192).map(_.toByte)))), StructType(Seq(StructField("fixed2", BinaryType, true)))) .write.format("avro").option("avroSchema", avroSchema) .save(s"$tempDir/${UUID.randomUUID()}") }.getCause.getMessage assert(message2.contains("org.apache.spark.sql.avro.IncompatibleSchemaException: " + "Cannot write 1 byte of binary data into FIXED Type with size of 2 bytes")) } } test("support user provided avro schema for writing non-nullable fixed type") { withTempPath { tempDir => val avroSchema = """ |{ | "type" : "record", | "name" : "test_schema", | "fields" : [{ | "name": "fixed2", | "type": { "type": "fixed", | "size": 2, | "name": "fixed2" | } | }] |} """.stripMargin val df = spark.createDataFrame(spark.sparkContext.parallelize(Seq( Row(Array(192, 168).map(_.toByte)), Row(Array(1, 1).map(_.toByte)))), StructType(Seq(StructField("fixed2", BinaryType, false)))) val tempSaveDir = s"$tempDir/save/" df.write.format("avro").option("avroSchema", avroSchema).save(tempSaveDir) checkAnswer(df, spark.read.format("avro").load(tempSaveDir)) checkAvroSchemaEquals(avroSchema, getAvroSchemaStringFromFiles(tempSaveDir)) // Writing df containing binary data that doesn't fit FIXED size will throw an exception val message1 = intercept[SparkException] { spark.createDataFrame(spark.sparkContext.parallelize(Seq( Row(Array(192, 168, 1).map(_.toByte)))), StructType(Seq(StructField("fixed2", BinaryType, false)))) .write.format("avro").option("avroSchema", avroSchema) .save(s"$tempDir/${UUID.randomUUID()}") }.getCause.getMessage assert(message1.contains("org.apache.spark.sql.avro.IncompatibleSchemaException: " + "Cannot write 3 bytes of binary data into FIXED Type with size of 2 bytes")) // Writing df containing binary data that doesn't fit FIXED size will throw an exception val message2 = intercept[SparkException] { spark.createDataFrame(spark.sparkContext.parallelize(Seq( Row(Array(192).map(_.toByte)))), StructType(Seq(StructField("fixed2", BinaryType, false)))) .write.format("avro").option("avroSchema", avroSchema) .save(s"$tempDir/${UUID.randomUUID()}") }.getCause.getMessage assert(message2.contains("org.apache.spark.sql.avro.IncompatibleSchemaException: " + "Cannot write 1 byte of binary data into FIXED Type with size of 2 bytes")) } } test("error handling for unsupported Interval data types") { withTempDir { dir => val tempDir = new File(dir, "files").getCanonicalPath var msg = intercept[AnalysisException] { sql("select interval 1 days").write.format("avro").mode("overwrite").save(tempDir) }.getMessage assert(msg.contains("Cannot save interval data type into external storage.")) msg = intercept[AnalysisException] { spark.udf.register("testType", () => new IntervalData()) sql("select testType()").write.format("avro").mode("overwrite").save(tempDir) }.getMessage assert(msg.toLowerCase(Locale.ROOT) .contains(s"avro data source does not support calendarinterval data type.")) } } test("support Null data types") { withTempDir { dir => val tempDir = new File(dir, "files").getCanonicalPath val df = sql("select null") df.write.format("avro").mode("overwrite").save(tempDir) checkAnswer(spark.read.format("avro").load(tempDir), df) } } test("throw exception if unable to write with user provided Avro schema") { val input: Seq[(DataType, Schema.Type)] = Seq( (NullType, NULL), (BooleanType, BOOLEAN), (ByteType, INT), (ShortType, INT), (IntegerType, INT), (LongType, LONG), (FloatType, FLOAT), (DoubleType, DOUBLE), (BinaryType, BYTES), (DateType, INT), (TimestampType, LONG), (DecimalType(4, 2), BYTES) ) def assertException(f: () => AvroSerializer) { val message = intercept[org.apache.spark.sql.avro.IncompatibleSchemaException] { f() }.getMessage assert(message.contains("Cannot convert Catalyst type")) } def resolveNullable(schema: Schema, nullable: Boolean): Schema = { if (nullable && schema.getType != NULL) { Schema.createUnion(schema, Schema.create(NULL)) } else { schema } } for { i <- input j <- input nullable <- Seq(true, false) } if (i._2 != j._2) { val avroType = resolveNullable(Schema.create(j._2), nullable) val avroArrayType = resolveNullable(Schema.createArray(avroType), nullable) val avroMapType = resolveNullable(Schema.createMap(avroType), nullable) val name = "foo" val avroField = new Field(name, avroType, "", null.asInstanceOf[AnyVal]) val recordSchema = Schema.createRecord("name", "doc", "space", true, Seq(avroField).asJava) val avroRecordType = resolveNullable(recordSchema, nullable) val catalystType = i._1 val catalystArrayType = ArrayType(catalystType, nullable) val catalystMapType = MapType(StringType, catalystType, nullable) val catalystStructType = StructType(Seq(StructField(name, catalystType, nullable))) for { avro <- Seq(avroType, avroArrayType, avroMapType, avroRecordType) catalyst <- Seq(catalystType, catalystArrayType, catalystMapType, catalystStructType) } { assertException(() => new AvroSerializer(catalyst, avro, nullable)) } } } test("reading from invalid path throws exception") { // Directory given has no avro files intercept[AnalysisException] { withTempPath(dir => spark.read.format("avro").load(dir.getCanonicalPath)) } intercept[AnalysisException] { spark.read.format("avro").load("very/invalid/path/123.avro") } // In case of globbed path that can't be matched to anything, another exception is thrown (and // exception message is helpful) intercept[AnalysisException] { spark.read.format("avro").load("*/*/*/*/*/*/*/something.avro") } intercept[FileNotFoundException] { withTempPath { dir => FileUtils.touch(new File(dir, "test")) withSQLConf(AvroFileFormat.IgnoreFilesWithoutExtensionProperty -> "true") { spark.read.format("avro").load(dir.toString) } } } intercept[FileNotFoundException] { withTempPath { dir => FileUtils.touch(new File(dir, "test")) spark .read .option("ignoreExtension", false) .format("avro") .load(dir.toString) } } } test("SQL test insert overwrite") { withTempPath { tempDir => val tempEmptyDir = s"$tempDir/sqlOverwrite" // Create a temp directory for table that will be overwritten new File(tempEmptyDir).mkdirs() spark.sql( s""" |CREATE TEMPORARY VIEW episodes |USING avro |OPTIONS (path "${episodesAvro}") """.stripMargin.replaceAll("\\n", " ")) spark.sql( s""" |CREATE TEMPORARY VIEW episodesEmpty |(name string, air_date string, doctor int) |USING avro |OPTIONS (path "$tempEmptyDir") """.stripMargin.replaceAll("\\n", " ")) assert(spark.sql("SELECT * FROM episodes").collect().length === 8) assert(spark.sql("SELECT * FROM episodesEmpty").collect().isEmpty) spark.sql( s""" |INSERT OVERWRITE TABLE episodesEmpty |SELECT * FROM episodes """.stripMargin.replaceAll("\\n", " ")) assert(spark.sql("SELECT * FROM episodesEmpty").collect().length == 8) } } test("test save and load") { // Test if load works as expected withTempPath { tempDir => val df = spark.read.format("avro").load(episodesAvro) assert(df.count == 8) val tempSaveDir = s"$tempDir/save/" df.write.format("avro").save(tempSaveDir) val newDf = spark.read.format("avro").load(tempSaveDir) assert(newDf.count == 8) } } test("test load with non-Avro file") { // Test if load works as expected withTempPath { tempDir => val df = spark.read.format("avro").load(episodesAvro) assert(df.count == 8) val tempSaveDir = s"$tempDir/save/" df.write.format("avro").save(tempSaveDir) Files.createFile(new File(tempSaveDir, "non-avro").toPath) withSQLConf(AvroFileFormat.IgnoreFilesWithoutExtensionProperty -> "true") { val newDf = spark.read.format("avro").load(tempSaveDir) assert(newDf.count() == 8) } } } test("read avro with user defined schema: read partial columns") { val partialColumns = StructType(Seq( StructField("string", StringType, false), StructField("simple_map", MapType(StringType, IntegerType), false), StructField("complex_map", MapType(StringType, MapType(StringType, StringType)), false), StructField("union_string_null", StringType, true), StructField("union_int_long_null", LongType, true), StructField("fixed3", BinaryType, true), StructField("fixed2", BinaryType, true), StructField("enum", StringType, false), StructField("record", StructType(Seq(StructField("value_field", StringType, false))), false), StructField("array_of_boolean", ArrayType(BooleanType), false), StructField("bytes", BinaryType, true))) val withSchema = spark.read.schema(partialColumns).format("avro").load(testAvro).collect() val withOutSchema = spark .read .format("avro") .load(testAvro) .select("string", "simple_map", "complex_map", "union_string_null", "union_int_long_null", "fixed3", "fixed2", "enum", "record", "array_of_boolean", "bytes") .collect() assert(withSchema.sameElements(withOutSchema)) } test("read avro with user defined schema: read non-exist columns") { val schema = StructType( Seq( StructField("non_exist_string", StringType, true), StructField( "record", StructType(Seq( StructField("non_exist_field", StringType, false), StructField("non_exist_field2", StringType, false))), false))) val withEmptyColumn = spark.read.schema(schema).format("avro").load(testAvro).collect() assert(withEmptyColumn.forall(_ == Row(null: String, Row(null: String, null: String)))) } test("read avro file partitioned") { withTempPath { dir => val df = (0 to 1024 * 3).toDS.map(i => s"record${i}").toDF("records") val outputDir = s"$dir/${UUID.randomUUID}" df.write.format("avro").save(outputDir) val input = spark.read.format("avro").load(outputDir) assert(input.collect.toSet.size === 1024 * 3 + 1) assert(input.rdd.partitions.size > 2) } } case class NestedBottom(id: Int, data: String) case class NestedMiddle(id: Int, data: NestedBottom) case class NestedTop(id: Int, data: NestedMiddle) test("Validate namespace in avro file that has nested records with the same name") { withTempPath { dir => val writeDf = spark.createDataFrame(List(NestedTop(1, NestedMiddle(2, NestedBottom(3, "1"))))) writeDf.write.format("avro").save(dir.toString) val schema = getAvroSchemaStringFromFiles(dir.toString) assert(schema.contains("\\"namespace\\":\\"topLevelRecord\\"")) assert(schema.contains("\\"namespace\\":\\"topLevelRecord.data\\"")) } } test("saving avro that has nested records with the same name") { withTempPath { tempDir => // Save avro file on output folder path val writeDf = spark.createDataFrame(List(NestedTop(1, NestedMiddle(2, NestedBottom(3, "1"))))) val outputFolder = s"$tempDir/duplicate_names/" writeDf.write.format("avro").save(outputFolder) // Read avro file saved on the last step val readDf = spark.read.format("avro").load(outputFolder) // Check if the written DataFrame is equals than read DataFrame assert(readDf.collect().sameElements(writeDf.collect())) } } test("check namespace - toAvroType") { val sparkSchema = StructType(Seq( StructField("name", StringType, nullable = false), StructField("address", StructType(Seq( StructField("city", StringType, nullable = false), StructField("state", StringType, nullable = false))), nullable = false))) val employeeType = SchemaConverters.toAvroType(sparkSchema, recordName = "employee", nameSpace = "foo.bar") assert(employeeType.getFullName == "foo.bar.employee") assert(employeeType.getName == "employee") assert(employeeType.getNamespace == "foo.bar") val addressType = employeeType.getField("address").schema() assert(addressType.getFullName == "foo.bar.employee.address") assert(addressType.getName == "address") assert(addressType.getNamespace == "foo.bar.employee") } test("check empty namespace - toAvroType") { val sparkSchema = StructType(Seq( StructField("name", StringType, nullable = false), StructField("address", StructType(Seq( StructField("city", StringType, nullable = false), StructField("state", StringType, nullable = false))), nullable = false))) val employeeType = SchemaConverters.toAvroType(sparkSchema, recordName = "employee") assert(employeeType.getFullName == "employee") assert(employeeType.getName == "employee") assert(employeeType.getNamespace == null) val addressType = employeeType.getField("address").schema() assert(addressType.getFullName == "employee.address") assert(addressType.getName == "address") assert(addressType.getNamespace == "employee") } case class NestedMiddleArray(id: Int, data: Array[NestedBottom]) case class NestedTopArray(id: Int, data: NestedMiddleArray) test("saving avro that has nested records with the same name inside an array") { withTempPath { tempDir => // Save avro file on output folder path val writeDf = spark.createDataFrame( List(NestedTopArray(1, NestedMiddleArray(2, Array( NestedBottom(3, "1"), NestedBottom(4, "2") )))) ) val outputFolder = s"$tempDir/duplicate_names_array/" writeDf.write.format("avro").save(outputFolder) // Read avro file saved on the last step val readDf = spark.read.format("avro").load(outputFolder) // Check if the written DataFrame is equals than read DataFrame assert(readDf.collect().sameElements(writeDf.collect())) } } case class NestedMiddleMap(id: Int, data: Map[String, NestedBottom]) case class NestedTopMap(id: Int, data: NestedMiddleMap) test("saving avro that has nested records with the same name inside a map") { withTempPath { tempDir => // Save avro file on output folder path val writeDf = spark.createDataFrame( List(NestedTopMap(1, NestedMiddleMap(2, Map( "1" -> NestedBottom(3, "1"), "2" -> NestedBottom(4, "2") )))) ) val outputFolder = s"$tempDir/duplicate_names_map/" writeDf.write.format("avro").save(outputFolder) // Read avro file saved on the last step val readDf = spark.read.format("avro").load(outputFolder) // Check if the written DataFrame is equals than read DataFrame assert(readDf.collect().sameElements(writeDf.collect())) } } test("SPARK-24805: do not ignore files without .avro extension by default") { withTempDir { dir => Files.copy( Paths.get(new URL(episodesAvro).toURI), Paths.get(dir.getCanonicalPath, "episodes")) val fileWithoutExtension = s"${dir.getCanonicalPath}/episodes" val df1 = spark.read.format("avro").load(fileWithoutExtension) assert(df1.count == 8) val schema = new StructType() .add("title", StringType) .add("air_date", StringType) .add("doctor", IntegerType) val df2 = spark.read.schema(schema).format("avro").load(fileWithoutExtension) assert(df2.count == 8) } } test("SPARK-24836: checking the ignoreExtension option") { withTempPath { tempDir => val df = spark.read.format("avro").load(episodesAvro) assert(df.count == 8) val tempSaveDir = s"$tempDir/save/" df.write.format("avro").save(tempSaveDir) Files.createFile(new File(tempSaveDir, "non-avro").toPath) val newDf = spark .read .option("ignoreExtension", false) .format("avro") .load(tempSaveDir) assert(newDf.count == 8) } } test("SPARK-24836: ignoreExtension must override hadoop's config") { withTempDir { dir => Files.copy( Paths.get(new URL(episodesAvro).toURI), Paths.get(dir.getCanonicalPath, "episodes")) val hadoopConf = spark.sessionState.newHadoopConf() withSQLConf(AvroFileFormat.IgnoreFilesWithoutExtensionProperty -> "true") { val newDf = spark .read .option("ignoreExtension", "true") .format("avro") .load(s"${dir.getCanonicalPath}/episodes") assert(newDf.count() == 8) } } } test("SPARK-24881: write with compression - avro options") { def getCodec(dir: String): Option[String] = { val files = new File(dir) .listFiles() .filter(_.isFile) .filter(_.getName.endsWith("avro")) files.map { file => val reader = new DataFileReader(file, new GenericDatumReader[Any]()) val r = reader.getMetaString("avro.codec") r }.map(v => if (v == "null") "uncompressed" else v).headOption } def checkCodec(df: DataFrame, dir: String, codec: String): Unit = { val subdir = s"$dir/$codec" df.write.option("compression", codec).format("avro").save(subdir) assert(getCodec(subdir) == Some(codec)) } withTempPath { dir => val path = dir.toString val df = spark.read.format("avro").load(testAvro) checkCodec(df, path, "uncompressed") checkCodec(df, path, "deflate") checkCodec(df, path, "snappy") checkCodec(df, path, "bzip2") checkCodec(df, path, "xz") } } private def checkSchemaWithRecursiveLoop(avroSchema: String): Unit = { val message = intercept[IncompatibleSchemaException] { SchemaConverters.toSqlType(new Schema.Parser().parse(avroSchema)) }.getMessage assert(message.contains("Found recursive reference in Avro schema")) } test("Detect recursive loop") { checkSchemaWithRecursiveLoop(""" |{ | "type": "record", | "name": "LongList", | "fields" : [ | {"name": "value", "type": "long"}, // each element has a long | {"name": "next", "type": ["null", "LongList"]} // optional next element | ] |} """.stripMargin) checkSchemaWithRecursiveLoop(""" |{ | "type": "record", | "name": "LongList", | "fields": [ | { | "name": "value", | "type": { | "type": "record", | "name": "foo", | "fields": [ | { | "name": "parent", | "type": "LongList" | } | ] | } | } | ] |} """.stripMargin) checkSchemaWithRecursiveLoop(""" |{ | "type": "record", | "name": "LongList", | "fields" : [ | {"name": "value", "type": "long"}, | {"name": "array", "type": {"type": "array", "items": "LongList"}} | ] |} """.stripMargin) checkSchemaWithRecursiveLoop(""" |{ | "type": "record", | "name": "LongList", | "fields" : [ | {"name": "value", "type": "long"}, | {"name": "map", "type": {"type": "map", "values": "LongList"}} | ] |} """.stripMargin) } }
WindCanDie/spark
external/avro/src/test/scala/org/apache/spark/sql/avro/AvroSuite.scala
Scala
apache-2.0
53,335
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.catalyst.expressions import java.util.Comparator import org.apache.spark.sql.catalyst.analysis.TypeCheckResult import org.apache.spark.sql.catalyst.expressions.codegen.{CodegenContext, CodegenFallback, ExprCode} import org.apache.spark.sql.catalyst.util.{ArrayData, GenericArrayData, MapData} import org.apache.spark.sql.types._ /** * Given an array or map, returns its size. */ @ExpressionDescription( usage = "_FUNC_(expr) - Returns the size of an array or a map.", extended = " > SELECT _FUNC_(array('b', 'd', 'c', 'a'));\\n 4") case class Size(child: Expression) extends UnaryExpression with ExpectsInputTypes { override def dataType: DataType = IntegerType override def inputTypes: Seq[AbstractDataType] = Seq(TypeCollection(ArrayType, MapType)) override def nullSafeEval(value: Any): Int = child.dataType match { case _: ArrayType => value.asInstanceOf[ArrayData].numElements() case _: MapType => value.asInstanceOf[MapData].numElements() } override def doGenCode(ctx: CodegenContext, ev: ExprCode): ExprCode = { nullSafeCodeGen(ctx, ev, c => s"${ev.value} = ($c).numElements();") } } /** * Returns an unordered array containing the keys of the map. */ @ExpressionDescription( usage = "_FUNC_(map) - Returns an unordered array containing the keys of the map.", extended = " > SELECT _FUNC_(map(1, 'a', 2, 'b'));\\n [1,2]") case class MapKeys(child: Expression) extends UnaryExpression with ExpectsInputTypes { override def inputTypes: Seq[AbstractDataType] = Seq(MapType) override def dataType: DataType = ArrayType(child.dataType.asInstanceOf[MapType].keyType) override def nullSafeEval(map: Any): Any = { map.asInstanceOf[MapData].keyArray() } override def doGenCode(ctx: CodegenContext, ev: ExprCode): ExprCode = { nullSafeCodeGen(ctx, ev, c => s"${ev.value} = ($c).keyArray();") } override def prettyName: String = "map_keys" } /** * Returns an unordered array containing the values of the map. */ @ExpressionDescription( usage = "_FUNC_(map) - Returns an unordered array containing the values of the map.", extended = " > SELECT _FUNC_(map(1, 'a', 2, 'b'));\\n [\\"a\\",\\"b\\"]") case class MapValues(child: Expression) extends UnaryExpression with ExpectsInputTypes { override def inputTypes: Seq[AbstractDataType] = Seq(MapType) override def dataType: DataType = ArrayType(child.dataType.asInstanceOf[MapType].valueType) override def nullSafeEval(map: Any): Any = { map.asInstanceOf[MapData].valueArray() } override def doGenCode(ctx: CodegenContext, ev: ExprCode): ExprCode = { nullSafeCodeGen(ctx, ev, c => s"${ev.value} = ($c).valueArray();") } override def prettyName: String = "map_values" } /** * Sorts the input array in ascending / descending order according to the natural ordering of * the array elements and returns it. */ // scalastyle:off line.size.limit @ExpressionDescription( usage = "_FUNC_(array(obj1, obj2, ...), ascendingOrder) - Sorts the input array in ascending order according to the natural ordering of the array elements.", extended = " > SELECT _FUNC_(array('b', 'd', 'c', 'a'), true);\\n 'a', 'b', 'c', 'd'") // scalastyle:on line.size.limit case class SortArray(base: Expression, ascendingOrder: Expression) extends BinaryExpression with ExpectsInputTypes with CodegenFallback { def this(e: Expression) = this(e, Literal(true)) override def left: Expression = base override def right: Expression = ascendingOrder override def dataType: DataType = base.dataType override def inputTypes: Seq[AbstractDataType] = Seq(ArrayType, BooleanType) override def checkInputDataTypes(): TypeCheckResult = base.dataType match { case ArrayType(dt, _) if RowOrdering.isOrderable(dt) => ascendingOrder match { case Literal(_: Boolean, BooleanType) => TypeCheckResult.TypeCheckSuccess case _ => TypeCheckResult.TypeCheckFailure( "Sort order in second argument requires a boolean literal.") } case ArrayType(dt, _) => TypeCheckResult.TypeCheckFailure( s"$prettyName does not support sorting array of type ${dt.simpleString}") case _ => TypeCheckResult.TypeCheckFailure(s"$prettyName only supports array input.") } @transient private lazy val lt: Comparator[Any] = { val ordering = base.dataType match { case _ @ ArrayType(n: AtomicType, _) => n.ordering.asInstanceOf[Ordering[Any]] case _ @ ArrayType(a: ArrayType, _) => a.interpretedOrdering.asInstanceOf[Ordering[Any]] case _ @ ArrayType(s: StructType, _) => s.interpretedOrdering.asInstanceOf[Ordering[Any]] } new Comparator[Any]() { override def compare(o1: Any, o2: Any): Int = { if (o1 == null && o2 == null) { 0 } else if (o1 == null) { -1 } else if (o2 == null) { 1 } else { ordering.compare(o1, o2) } } } } @transient private lazy val gt: Comparator[Any] = { val ordering = base.dataType match { case _ @ ArrayType(n: AtomicType, _) => n.ordering.asInstanceOf[Ordering[Any]] case _ @ ArrayType(a: ArrayType, _) => a.interpretedOrdering.asInstanceOf[Ordering[Any]] case _ @ ArrayType(s: StructType, _) => s.interpretedOrdering.asInstanceOf[Ordering[Any]] } new Comparator[Any]() { override def compare(o1: Any, o2: Any): Int = { if (o1 == null && o2 == null) { 0 } else if (o1 == null) { 1 } else if (o2 == null) { -1 } else { -ordering.compare(o1, o2) } } } } override def nullSafeEval(array: Any, ascending: Any): Any = { val elementType = base.dataType.asInstanceOf[ArrayType].elementType val data = array.asInstanceOf[ArrayData].toArray[AnyRef](elementType) if (elementType != NullType) { java.util.Arrays.sort(data, if (ascending.asInstanceOf[Boolean]) lt else gt) } new GenericArrayData(data.asInstanceOf[Array[Any]]) } override def prettyName: String = "sort_array" } /** * Checks if the array (left) has the element (right) */ @ExpressionDescription( usage = "_FUNC_(array, value) - Returns TRUE if the array contains the value.", extended = " > SELECT _FUNC_(array(1, 2, 3), 2);\\n true") case class ArrayContains(left: Expression, right: Expression) extends BinaryExpression with ImplicitCastInputTypes { override def dataType: DataType = BooleanType override def inputTypes: Seq[AbstractDataType] = right.dataType match { case NullType => Seq() case _ => left.dataType match { case n @ ArrayType(element, _) => Seq(n, element) case _ => Seq() } } override def checkInputDataTypes(): TypeCheckResult = { if (right.dataType == NullType) { TypeCheckResult.TypeCheckFailure("Null typed values cannot be used as arguments") } else if (!left.dataType.isInstanceOf[ArrayType] || left.dataType.asInstanceOf[ArrayType].elementType != right.dataType) { TypeCheckResult.TypeCheckFailure( "Arguments must be an array followed by a value of same type as the array members") } else { TypeCheckResult.TypeCheckSuccess } } override def nullable: Boolean = { left.nullable || right.nullable || left.dataType.asInstanceOf[ArrayType].containsNull } override def nullSafeEval(arr: Any, value: Any): Any = { var hasNull = false arr.asInstanceOf[ArrayData].foreach(right.dataType, (i, v) => if (v == null) { hasNull = true } else if (v == value) { return true } ) if (hasNull) { null } else { false } } override def doGenCode(ctx: CodegenContext, ev: ExprCode): ExprCode = { nullSafeCodeGen(ctx, ev, (arr, value) => { val i = ctx.freshName("i") val getValue = ctx.getValue(arr, right.dataType, i) s""" for (int $i = 0; $i < $arr.numElements(); $i ++) { if ($arr.isNullAt($i)) { ${ev.isNull} = true; } else if (${ctx.genEqual(right.dataType, value, getValue)}) { ${ev.isNull} = false; ${ev.value} = true; break; } } """ }) } override def prettyName: String = "array_contains" }
gioenn/xSpark
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/collectionOperations.scala
Scala
apache-2.0
9,090
package de.tototec.sbuild.internal import scala.annotation.tailrec import de.tototec.sbuild.Logger import de.tototec.sbuild.ProjectConfigurationException class DependentClassesOrderer { private[this] val log = Logger[DependentClassesOrderer] def orderClasses(classes: Seq[Class[_]], dependencies: Seq[(Class[_], Class[_])]): Seq[Class[_]] = { var unchained: Seq[Class[_]] = classes var chained: Seq[Class[_]] = Seq() log.debug(s"Trying to order plugins: ${unchained}") def hasNoDeps(plugin: Class[_]): Boolean = dependencies.filter { case (a, b) => a == plugin && unchained.contains(b) }.isEmpty @tailrec def searchNextResolved(candidates: Seq[Class[_]]): Option[Class[_]] = candidates match { case Seq() => None case head +: tail => if (hasNoDeps(head)) Some(head) else searchNextResolved(tail) } while (!unchained.isEmpty) { log.debug(s"aleady chained: ${chained}") log.debug(s"still needs chaining: ${unchained}") searchNextResolved(unchained) match { case None => throw new ProjectConfigurationException("Could not resolve inter plugin dependencies") case Some(c) => // val c = c_.asInstanceOf[Class[_]] val unchainedSize = unchained.size log.debug(s"chaining plugin: ${c} with id: ${System.identityHashCode(c)}") chained ++= Seq(c) unchained = unchained.filter(_ != c) require(unchainedSize > unchained.size, "Unchained plugins must shrink after one plugin is chained") } } chained } }
SBuild-org/sbuild
de.tototec.sbuild/src/main/scala/de/tototec/sbuild/internal/DependentClassesOrderer.scala
Scala
apache-2.0
1,568
/* * SimpleMovieTest.scala * Simple movie example tests. * * Created By: Avi Pfeffer ([email protected]) * Creation Date: Jan 1, 2009 * * Copyright 2013 Avrom J. Pfeffer and Charles River Analytics, Inc. * See http://www.cra.com or email [email protected] for information. * * See http://www.github.com/p2t2/figaro for a copy of the software license. */ package com.cra.figaro.test.example import org.scalatest.Matchers import org.scalatest.WordSpec import com.cra.figaro.algorithm._ import com.cra.figaro.algorithm.sampling._ import com.cra.figaro.algorithm.factored._ import com.cra.figaro.library.atomic.discrete._ import com.cra.figaro.language._ import com.cra.figaro.language.Universe._ import com.cra.figaro.test._ import com.cra.figaro.test.tags.Example class SimpleMovieTest extends WordSpec with Matchers { "A PRM with a global constraint without mutation" should { "produce the correct probability under variable elimination" taggedAs (Example) in { test((e: Element[Boolean]) => VariableElimination(e)) } "produce the correct probability under importance sampling" taggedAs (Example) in { test((e: Element[Boolean]) => Importance(20000, e)) } "produce the correct probability under Metropolis-Hastings" taggedAs (Example) in { test((e: Element[Boolean]) => { val m = MetropolisHastings(100000, chooseScheme, 0, e); /*m.debug = true;*/ m }) } } class Actor(name: String) { val famous = Flip(0.1)(name + "famous", universe) } class Movie(name: String) { val quality = Select(0.3 -> 'low, 0.5 -> 'medium, 0.2 -> 'high)(name + "quality", universe) } class Appearance(name: String, val actor: Actor, val movie: Movie) { def probAward(quality: Symbol, famous: Boolean) = (quality, famous) match { case ('low, false) => 0.001 case ('low, true) => 0.01 case ('medium, false) => 0.01 case ('medium, true) => 0.05 case ('high, false) => 0.05 case ('high, true) => 0.2 } val pa = Apply(movie.quality, actor.famous, (q: Symbol, f: Boolean) => probAward(q, f))(name + "probAward", universe) val award = SwitchingFlip(pa)(name + "award", universe) } val numActors = 3 val numMovies = 2 val numAppearances = 3 var actors: Array[Actor] = _ var movies: Array[Movie] = _ var appearances: Array[Appearance] = _ val random = new scala.util.Random() // A proposal either proposes to switch the awardee to another awardee or proposes the properties of a movie or // an actor. def chooseScheme(): ProposalScheme = { DisjointScheme( (0.5, () => switchAwards()), (0.25, () => ProposalScheme(actors(random.nextInt(numActors)).famous)), (0.25, () => ProposalScheme(movies(random.nextInt(numMovies)).quality))) } /* * It's possible that as a result of other attributes changing, an appearance becomes awarded or unawarded. * Therefore, we have to take this into account in the proposal scheme. */ def switchAwards(): ProposalScheme = { val (awarded, unawarded) = appearances.partition(_.award.value) awarded.length match { case 1 => val other = unawarded(random.nextInt(numAppearances - 1)) ProposalScheme(awarded(0).award, other.award) case 0 => ProposalScheme(appearances(random.nextInt(numAppearances)).award) // make something unawarded awarded case _ => ProposalScheme(awarded(random.nextInt(awarded.length)).award) } } def test(algorithmCreator: Element[Boolean] => ProbQueryAlgorithm): Unit = { Universe.createNew() val actor1 = new Actor("actor1") val actor2 = new Actor("actor2") val actor3 = new Actor("actor3") val movie1 = new Movie("movie1") val movie2 = new Movie("movie2") val appearance1 = new Appearance("appearance1", actor1, movie1) val appearance2 = new Appearance("appearance2", actor2, movie2) val appearance3 = new Appearance("appearance3", actor3, movie2) actors = Array(actor1, actor2, actor3) movies = Array(movie1, movie2) appearances = Array(appearance1, appearance2, appearance3) // Ensure that exactly one appearance gets an award. val appearanceAwards: Array[Element[Boolean]] = appearances map (_.award) val allAwards: Element[List[Boolean]] = Inject(appearanceAwards: _*)("allAwards", universe) def uniqueAwardCondition(awards: List[Boolean]) = awards.count((b: Boolean) => b) == 1 allAwards.setCondition(uniqueAwardCondition) actor3.famous.observe(true) movie2.quality.observe('high) // We first make sure the initial state satisfies the unique award condition, and then make sure that all // subsequent proposals keep that condition. appearances.foreach(_.award.randomness = 0.0) appearances(random.nextInt(numAppearances)).award.randomness = 1.0 appearances.foreach(appearance => appearance.award.value = appearance.award.generateValue(appearance.award.randomness)) allAwards.generate() val qAppearance1Award = 0.1 * (0.3 * 0.01 + 0.5 * 0.05 + 0.2 * 0.2) + 0.9 * (0.3 * 0 + 0.5 * 0.01 + 0.2 * 0.05) val qAppearance2Award = 0.1 * 0.2 + 0.9 * 0.05 val qAppearance3Award = 0.2 val qAppearance1Only = qAppearance1Award * (1 - qAppearance2Award) * (1 - qAppearance3Award) val qAppearance2Only = qAppearance2Award * (1 - qAppearance1Award) * (1 - qAppearance3Award) val qAppearance3Only = qAppearance3Award * (1 - qAppearance1Award) * (1 - qAppearance2Award) val pAppearance3Award = qAppearance3Only / (qAppearance1Only + qAppearance2Only + qAppearance3Only) val alg = algorithmCreator(appearance3.award) alg.start() alg.stop() alg.probability(appearance3.award, true) should be(pAppearance3Award +- 0.01) alg.kill() } }
jyuhuan/figaro
Figaro/src/test/scala/com/cra/figaro/test/example/SimpleMovieTest.scala
Scala
bsd-3-clause
5,789
package forcomp import scala.collection.mutable object Anagrams { /** A word is simply a `String`. */ type Word = String /** A sentence is a `List` of words. */ type Sentence = List[Word] /** `Occurrences` is a `List` of pairs of characters and positive integers saying * how often the character appears. * This list is sorted alphabetically w.r.t. to the character in each pair. * All characters in the occurrence list are lowercase. * * Any list of pairs of lowercase characters and their frequency which is not sorted * is **not** an occurrence list. * * Note: If the frequency of some character is zero, then that character should not be * in the list. */ type Occurrences = List[(Char, Int)] /** The dictionary is simply a sequence of words. * It is predefined and obtained as a sequence using the utility method `loadDictionary`. */ val dictionary: List[Word] = loadDictionary /** Converts the word into its character occurrence list. * * Note: the uppercase and lowercase version of the character are treated as the * same character, and are represented as a lowercase character in the occurrence list. * * Note: you must use `groupBy` to implement this method! */ def wordOccurrences(w: Word): Occurrences = w .toLowerCase .groupBy(c => c) .mapValues(_.length) .toList .sorted /** Converts a sentence into its character occurrence list. */ def sentenceOccurrences(s: Sentence): Occurrences = wordOccurrences(s mkString) /** The `dictionaryByOccurrences` is a `Map` from different occurrences to a sequence of all * the words that have that occurrence count. * This map serves as an easy way to obtain all the anagrams of a word given its occurrence list. * * For example, the word "eat" has the following character occurrence list: * * `List(('a', 1), ('e', 1), ('t', 1))` * * Incidentally, so do the words "ate" and "tea". * * This means that the `dictionaryByOccurrences` map will contain an entry: * * List(('a', 1), ('e', 1), ('t', 1)) -> Seq("ate", "eat", "tea") * */ lazy val dictionaryByOccurrences: Map[Occurrences, List[Word]] = dictionary groupBy wordOccurrences withDefaultValue Nil /** Returns all the anagrams of a given word. */ def wordAnagrams(word: Word): List[Word] = dictionaryByOccurrences(wordOccurrences(word)) /** Returns the list of all subsets of the occurrence list. * This includes the occurrence itself, i.e. `List(('k', 1), ('o', 1))` * is a subset of `List(('k', 1), ('o', 1))`. * It also include the empty subset `List()`. * * Example: the subsets of the occurrence list `List(('a', 2), ('b', 2))` are: * * List( * List(), * List(('a', 1)), * List(('a', 2)), * List(('b', 1)), * List(('a', 1), ('b', 1)), * List(('a', 2), ('b', 1)), * List(('b', 2)), * List(('a', 1), ('b', 2)), * List(('a', 2), ('b', 2)) * ) * * Note that the order of the occurrence list subsets does not matter -- the subsets * in the example above could have been displayed in some other order. */ def combinations(occurrences: Occurrences): List[Occurrences] = occurrences match { case Nil => List(Nil) case (char, times) :: xs => for { comb <- combinations(xs) n <- 0 to times } yield if (n == 0) comb else (char, n) :: comb } /** Subtracts occurrence list `y` from occurrence list `x`. * * The precondition is that the occurrence list `y` is a subset of * the occurrence list `x` -- any character appearing in `y` must * appear in `x`, and its frequency in `y` must be smaller or equal * than its frequency in `x`. * * Note: the resulting value is an occurrence - meaning it is sorted * and has no zero-entries. */ // def subtract(x: Occurrences, y: Occurrences): Occurrences = { // // val ymap = y.toMap withDefaultValue 0 // // x.foldLeft(Map[Char, Int]()) { // case (map, (char, times)) => // if (times - ymap(char) > 0) map + (char -> times) // else map // }.toList.sortWith(_._1 < _._1) // } def subtract(x: Occurrences, y: Occurrences): Occurrences = y .foldLeft(x.toMap) { case (xs, (char, times)) => val diff = xs.apply(char) - times if (diff > 0) xs.updated(char, diff) else xs.filterKeys(_ != char) } .toList.sorted /** Returns a list of all anagram sentences of the given sentence. * * An anagram of a sentence is formed by taking the occurrences of all the characters of * all the words in the sentence, and producing all possible combinations of words with those characters, * such that the words have to be from the dictionary. * * The number of words in the sentence and its anagrams does not have to correspond. * For example, the sentence `List("I", "love", "you")` is an anagram of the sentence `List("You", "olive")`. * * Also, two sentences with the same words but in a different order are considered two different anagrams. * For example, sentences `List("You", "olive")` and `List("olive", "you")` are different anagrams of * `List("I", "love", "you")`. * * Here is a full example of a sentence `List("Yes", "man")` and its anagrams for our dictionary: * * List( * List(en, as, my), * List(en, my, as), * List(man, yes), * List(men, say), * List(as, en, my), * List(as, my, en), * List(sane, my), * List(Sean, my), * List(my, en, as), * List(my, as, en), * List(my, sane), * List(my, Sean), * List(say, men), * List(yes, man) * ) * * The different sentences do not have to be output in the order shown above - any order is fine as long as * all the anagrams are there. Every returned word has to exist in the dictionary. * * Note: in case that the words of the sentence are in the dictionary, then the sentence is the anagram of itself, * so it has to be returned in this list. * * Note: There is only one anagram of an empty sentence. */ def sentenceAnagrams(sentence: Sentence): List[Sentence] = { def subSentence(occ: Occurrences): List[Sentence] = if (occ.isEmpty) List(Nil) else for { combination <- combinations(occ) word <- dictionaryByOccurrences(combination) sentence <- subSentence(subtract(occ, combination)) } yield word :: sentence subSentence(sentenceOccurrences(sentence)) } def sentenceAnagramsMemo(sentence: Sentence): List[Sentence] = { val cache = mutable.Map[Occurrences, List[Sentence]]() def subSentenceMemo(occurrences: Occurrences): List[Sentence] = cache.getOrElseUpdate(occurrences, subSentence(occurrences)) def subSentence(occ: Occurrences): List[Sentence] = if (occ.isEmpty) List(Nil) else for { combination <- combinations(occ) word <- dictionaryByOccurrences(combination) sentence <- subSentenceMemo(subtract(occ, combination)) } yield word :: sentence subSentence(sentenceOccurrences(sentence)) } }
yurii-khomenko/fpScalaSpec
c1w6forcomp/src/main/scala/forcomp/Anagrams.scala
Scala
gpl-3.0
7,252
package org.jetbrains.plugins.scala package lang package psi package impl package toplevel package templates import com.intellij.lang.ASTNode import com.intellij.psi.PsiClass import org.jetbrains.plugins.scala.JavaArrayFactoryUtil.ScTemplateParentsFactory import org.jetbrains.plugins.scala.extensions._ import org.jetbrains.plugins.scala.lang.lexer.ScalaTokenTypes import org.jetbrains.plugins.scala.lang.parser.ScalaElementTypes._ import org.jetbrains.plugins.scala.lang.psi.api.base.ScStableCodeReferenceElement import org.jetbrains.plugins.scala.lang.psi.api.base.types._ import org.jetbrains.plugins.scala.lang.psi.api.expr.ScNewTemplateDefinition import org.jetbrains.plugins.scala.lang.psi.api.statements.{ScFunction, ScTypeAlias, ScTypeAliasDefinition} import org.jetbrains.plugins.scala.lang.psi.api.toplevel.ScEarlyDefinitions import org.jetbrains.plugins.scala.lang.psi.api.toplevel.templates._ import org.jetbrains.plugins.scala.lang.psi.api.toplevel.typedef._ import org.jetbrains.plugins.scala.lang.psi.impl.toplevel.synthetic.ScSyntheticClass import org.jetbrains.plugins.scala.lang.psi.impl.toplevel.typedef.SyntheticMembersInjector import org.jetbrains.plugins.scala.lang.psi.stubs.ScExtendsBlockStub import org.jetbrains.plugins.scala.lang.psi.types._ import org.jetbrains.plugins.scala.lang.psi.types.api.designator.ScDesignatorType import org.jetbrains.plugins.scala.lang.psi.types.result._ import org.jetbrains.plugins.scala.macroAnnotations.{Cached, CachedInUserData, ModCount} import org.jetbrains.plugins.scala.project.ProjectContext import scala.collection.{Seq, mutable} /** * @author AlexanderPodkhalyuzin * Date: 20.02.2008 */ class ScExtendsBlockImpl private(stub: ScExtendsBlockStub, node: ASTNode) extends ScalaStubBasedElementImpl(stub, EXTENDS_BLOCK, node) with ScExtendsBlock { def this(node: ASTNode) = this(null, node) def this(stub: ScExtendsBlockStub) = this(stub, null) override def toString: String = "ExtendsBlock" @Cached(ModCount.anyScalaPsiModificationCount, this) def templateBody: Option[ScTemplateBody] = { def childStubTemplate(stub: ScExtendsBlockStub) = Option(stub.findChildStubByType(TEMPLATE_BODY)) .map(_.getPsi) def lastChildTemplateBody = getLastChild match { case tb: ScTemplateBody => Some(tb) case _ => None } byPsiOrStub(lastChildTemplateBody)(childStubTemplate) } def empty: Boolean = getNode.getFirstChildNode == null def selfType: Option[ScType] = selfTypeElement.flatMap { _.typeElement }.flatMap { _.`type`().toOption } @CachedInUserData(this, ModCount.getBlockModificationCount) def superTypes: List[ScType] = { val buffer = mutable.ListBuffer.empty[ScType] val stdTypes = projectContext.stdTypes import stdTypes._ def addType(t: ScType) { t match { case ScCompoundType(comps, _, _) => comps.foreach(addType) case _ => buffer += t } } templateParents match { case Some(parents: ScTemplateParents) => parents.superTypes.foreach(addType) case _ => syntheticTypeElements.map(_.`type`().getOrAny).foreach(addType) } if (isUnderCaseClass) { val prod = scalaProduct if (prod != null) buffer += prod val ser = scalaSerializable if (ser != null) buffer += ser } if (!isScalaObject) { val obj = scalaObject if (obj != null && !obj.element.asInstanceOf[PsiClass].isDeprecated) buffer += obj } def extract(scType: ScType): Boolean = { scType.extractClass match { case Some(_: ScObject) => true case Some(_: ScTrait) => false case Some(_: ScClass) => true case Some(c: PsiClass) if !c.isInterface => true case _ => false } } val findResult = buffer.find { case AnyVal | AnyRef | Any => true case t => extract(t) } findResult match { case Some(AnyVal) => //do nothing case res@(Some(AnyRef) | Some(Any)) => buffer -= res.get if (javaObject != null) buffer += javaObject case Some(_) => //do nothing case _ => if (javaObject != null) buffer += javaObject } buffer.toList } def isScalaObject: Boolean = { getParentByStub match { case clazz: PsiClass => clazz.qualifiedName == "scala.ScalaObject" case _ => false } } private def scalaProductClass: PsiClass = ScalaPsiManager.instance(getProject).getCachedClass(getResolveScope, "scala.Product").orNull private def scalaSerializableClass: PsiClass = ScalaPsiManager.instance(getProject).getCachedClass(getResolveScope, "scala.Serializable").orNull private def scalaObjectClass: PsiClass = ScalaPsiManager.instance(getProject).getCachedClass(getResolveScope, "scala.ScalaObject").orNull private def javaObjectClass: PsiClass = ScalaPsiManager.instance(getProject).getCachedClass(getResolveScope, "java.lang.Object").orNull private def scalaProduct: ScType = { val sp = scalaProductClass if (sp != null) ScalaType.designator(sp) else null } private def scalaSerializable: ScType = { val sp = scalaSerializableClass if (sp != null) ScalaType.designator(sp) else null } private def scalaObject: ScDesignatorType = { val so = scalaObjectClass if (so != null) ScDesignatorType(so) else null } private def javaObject: ScDesignatorType = { val so = javaObjectClass if (so != null) ScDesignatorType(so) else null } def isAnonymousClass: Boolean = getParent match { case _: ScNewTemplateDefinition => templateBody.isDefined case _ => false } @Cached(ModCount.getBlockModificationCount, this) def syntheticTypeElements: Seq[ScTypeElement] = { if (templateParents.nonEmpty) return Seq.empty //will be handled separately getContext match { case td: ScTypeDefinition => SyntheticMembersInjector.injectSupers(td) case _ => Seq.empty } } @CachedInUserData(this, ModCount.getBlockModificationCount) def supers: Seq[PsiClass] = { val typeElements = templateParents.fold(syntheticTypeElements) { _.allTypeElements } val buffer = mutable.ListBuffer(ScExtendsBlockImpl.extractSupers(typeElements): _*) if (isUnderCaseClass) { val prod = scalaProductClass if (prod != null) buffer += prod val ser = scalaSerializableClass if (ser != null) buffer += ser } if (!isScalaObject) { val obj = scalaObjectClass if (obj != null && !obj.isDeprecated) buffer += obj } buffer.find { case _: ScSyntheticClass => true case _: ScObject => true case _: ScTrait => false case _: ScClass => true case c: PsiClass if !c.isInterface => true case _ => false } match { case Some(s: ScSyntheticClass) if s.stdType.isAnyVal => //do nothing case Some(s: ScSyntheticClass) if s.stdType.isAnyRef || s.stdType.isAny => buffer -= s if (javaObjectClass != null) buffer += javaObjectClass case Some(_: PsiClass) => //do nothing case _ => if (javaObjectClass != null) buffer += javaObjectClass } buffer } def members: Seq[ScMember] = { templateBodies.flatMap { _.members } ++ earlyDefinitions.toSeq.flatMap { _.members } } def typeDefinitions: Seq[ScTypeDefinition] = templateBodies.flatMap { _.typeDefinitions } def nameId = null def aliases: Seq[ScTypeAlias] = templateBodies.flatMap { _.aliases } def functions: Seq[ScFunction] = templateBodies.flatMap { _.functions } def selfTypeElement: Option[ScSelfTypeElement] = templateBody.flatMap { _.selfTypeElement } def templateParents: Option[ScTemplateParents] = getStubOrPsiChildren(TEMPLATE_PARENTS, ScTemplateParentsFactory).headOption def earlyDefinitions: Option[ScEarlyDefinitions] = this.stubOrPsiChild(EARLY_DEFINITIONS) override def addEarlyDefinitions(): ScEarlyDefinitions = { earlyDefinitions.getOrElse { val text = "class A extends {} with B {}" val templDef = ScalaPsiElementFactory.createTemplateDefinitionFromText(text, getParentByStub.getContext, getParentByStub) val extBlock = templDef.extendsBlock val kExtends = extBlock.children.find(_.getNode.getElementType == ScalaTokenTypes.kEXTENDS).get val kWith = extBlock.children.find(_.getNode.getElementType == ScalaTokenTypes.kWITH).get val firstElem = if (templateParents.isEmpty) kExtends else kExtends.getNextSibling val anchor = if (templateParents.isEmpty) getFirstChild else templateParents.get this.addRangeBefore(firstElem, kWith, anchor) earlyDefinitions.get } } def isUnderCaseClass: Boolean = getParentByStub match { case td: ScTypeDefinition if td.isCase => true case _ => false } private def templateBodies = templateBody.toSeq } object ScExtendsBlockImpl { private def extractSupers(typeElements: Seq[ScTypeElement]) (implicit project: ProjectContext): Seq[PsiClass] = typeElements.flatMap { element => def tail(): Option[PsiClass] = element.`type`().toOption .flatMap(_.extractClass) def refTail(reference: ScStableCodeReferenceElement): Option[PsiClass] = reference.resolveNoConstructor match { case Array(head) => head.element match { case c: PsiClass => Some(c) case ta: ScTypeAliasDefinition => ta.aliasedType.toOption .flatMap(_.extractClass) case _ => tail() } case _ => tail() } val maybeReference = element match { case ScSimpleTypeElement(result) => result case ScParameterizedTypeElement(ScSimpleTypeElement(result), _) => result case _ => None } maybeReference match { case Some(reference) => refTail(reference) case _ => tail() } } }
jastice/intellij-scala
scala/scala-impl/src/org/jetbrains/plugins/scala/lang/psi/impl/toplevel/templates/ScExtendsBlockImpl.scala
Scala
apache-2.0
10,038
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.execution.datasources.v2 import java.util.{Locale, OptionalLong} import org.apache.commons.lang3.StringUtils import org.apache.hadoop.fs.Path import org.apache.spark.internal.Logging import org.apache.spark.internal.config.IO_WARNING_LARGEFILETHRESHOLD import org.apache.spark.sql.{AnalysisException, SparkSession} import org.apache.spark.sql.catalyst.expressions.{AttributeSet, Expression, ExpressionSet} import org.apache.spark.sql.catalyst.expressions.codegen.GenerateUnsafeProjection import org.apache.spark.sql.catalyst.plans.QueryPlan import org.apache.spark.sql.connector.read.{Batch, InputPartition, Scan, Statistics, SupportsReportStatistics} import org.apache.spark.sql.execution.PartitionedFileUtil import org.apache.spark.sql.execution.datasources._ import org.apache.spark.sql.internal.connector.SupportsMetadata import org.apache.spark.sql.sources.Filter import org.apache.spark.sql.types.StructType import org.apache.spark.util.Utils trait FileScan extends Scan with Batch with SupportsReportStatistics with SupportsMetadata with Logging { /** * Returns whether a file with `path` could be split or not. */ def isSplitable(path: Path): Boolean = { false } def sparkSession: SparkSession def fileIndex: PartitioningAwareFileIndex /** * Returns the required data schema */ def readDataSchema: StructType /** * Returns the required partition schema */ def readPartitionSchema: StructType /** * Returns the filters that can be use for partition pruning */ def partitionFilters: Seq[Expression] /** * Returns the data filters that can be use for file listing */ def dataFilters: Seq[Expression] /** * Create a new `FileScan` instance from the current one * with different `partitionFilters` and `dataFilters` */ def withFilters(partitionFilters: Seq[Expression], dataFilters: Seq[Expression]): FileScan /** * If a file with `path` is unsplittable, return the unsplittable reason, * otherwise return `None`. */ def getFileUnSplittableReason(path: Path): String = { assert(!isSplitable(path)) "undefined" } protected def seqToString(seq: Seq[Any]): String = seq.mkString("[", ", ", "]") private lazy val (normalizedPartitionFilters, normalizedDataFilters) = { val output = readSchema().toAttributes val partitionFilterAttributes = AttributeSet(partitionFilters).map(a => a.name -> a).toMap val dataFiltersAttributes = AttributeSet(dataFilters).map(a => a.name -> a).toMap val normalizedPartitionFilters = ExpressionSet(partitionFilters.map( QueryPlan.normalizeExpressions(_, output.map(a => partitionFilterAttributes.getOrElse(a.name, a))))) val normalizedDataFilters = ExpressionSet(dataFilters.map( QueryPlan.normalizeExpressions(_, output.map(a => dataFiltersAttributes.getOrElse(a.name, a))))) (normalizedPartitionFilters, normalizedDataFilters) } override def equals(obj: Any): Boolean = obj match { case f: FileScan => fileIndex == f.fileIndex && readSchema == f.readSchema && normalizedPartitionFilters == f.normalizedPartitionFilters && normalizedDataFilters == f.normalizedDataFilters case _ => false } override def hashCode(): Int = getClass.hashCode() val maxMetadataValueLength = sparkSession.sessionState.conf.maxMetadataStringLength override def description(): String = { val metadataStr = getMetaData().toSeq.sorted.map { case (key, value) => val redactedValue = Utils.redact(sparkSession.sessionState.conf.stringRedactionPattern, value) key + ": " + StringUtils.abbreviate(redactedValue, maxMetadataValueLength) }.mkString(", ") s"${this.getClass.getSimpleName} $metadataStr" } override def getMetaData(): Map[String, String] = { val locationDesc = fileIndex.getClass.getSimpleName + Utils.buildLocationMetadata(fileIndex.rootPaths, maxMetadataValueLength) Map( "Format" -> s"${this.getClass.getSimpleName.replace("Scan", "").toLowerCase(Locale.ROOT)}", "ReadSchema" -> readDataSchema.catalogString, "PartitionFilters" -> seqToString(partitionFilters), "DataFilters" -> seqToString(dataFilters), "Location" -> locationDesc) } protected def partitions: Seq[FilePartition] = { val selectedPartitions = fileIndex.listFiles(partitionFilters, dataFilters) val maxSplitBytes = FilePartition.maxSplitBytes(sparkSession, selectedPartitions) val partitionAttributes = fileIndex.partitionSchema.toAttributes val attributeMap = partitionAttributes.map(a => normalizeName(a.name) -> a).toMap val readPartitionAttributes = readPartitionSchema.map { readField => attributeMap.get(normalizeName(readField.name)).getOrElse { throw new AnalysisException(s"Can't find required partition column ${readField.name} " + s"in partition schema ${fileIndex.partitionSchema}") } } lazy val partitionValueProject = GenerateUnsafeProjection.generate(readPartitionAttributes, partitionAttributes) val splitFiles = selectedPartitions.flatMap { partition => // Prune partition values if part of the partition columns are not required. val partitionValues = if (readPartitionAttributes != partitionAttributes) { partitionValueProject(partition.values).copy() } else { partition.values } partition.files.flatMap { file => val filePath = file.getPath PartitionedFileUtil.splitFiles( sparkSession = sparkSession, file = file, filePath = filePath, isSplitable = isSplitable(filePath), maxSplitBytes = maxSplitBytes, partitionValues = partitionValues ) }.toArray.sortBy(_.length)(implicitly[Ordering[Long]].reverse) } if (splitFiles.length == 1) { val path = new Path(splitFiles(0).filePath) if (!isSplitable(path) && splitFiles(0).length > sparkSession.sparkContext.getConf.get(IO_WARNING_LARGEFILETHRESHOLD)) { logWarning(s"Loading one large unsplittable file ${path.toString} with only one " + s"partition, the reason is: ${getFileUnSplittableReason(path)}") } } FilePartition.getFilePartitions(sparkSession, splitFiles, maxSplitBytes) } override def planInputPartitions(): Array[InputPartition] = { partitions.toArray } override def estimateStatistics(): Statistics = { new Statistics { override def sizeInBytes(): OptionalLong = { val compressionFactor = sparkSession.sessionState.conf.fileCompressionFactor val size = (compressionFactor * fileIndex.sizeInBytes).toLong OptionalLong.of(size) } override def numRows(): OptionalLong = OptionalLong.empty() } } override def toBatch: Batch = this override def readSchema(): StructType = StructType(readDataSchema.fields ++ readPartitionSchema.fields) // Returns whether the two given arrays of [[Filter]]s are equivalent. protected def equivalentFilters(a: Array[Filter], b: Array[Filter]): Boolean = { a.sortBy(_.hashCode()).sameElements(b.sortBy(_.hashCode())) } private val isCaseSensitive = sparkSession.sessionState.conf.caseSensitiveAnalysis private def normalizeName(name: String): String = { if (isCaseSensitive) { name } else { name.toLowerCase(Locale.ROOT) } } }
maropu/spark
sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/v2/FileScan.scala
Scala
apache-2.0
8,248
/** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package kafka.api import java.util.Properties import java.util.concurrent.TimeUnit import kafka.consumer.SimpleConsumer import kafka.integration.KafkaServerTestHarness import kafka.message.Message import kafka.server.KafkaConfig import kafka.utils.TestUtils import org.apache.kafka.clients.producer._ import org.apache.kafka.common.config.ConfigException import org.apache.kafka.common.errors.SerializationException import org.apache.kafka.common.serialization.ByteArraySerializer import org.junit.Assert._ import org.junit.{After, Before, Test} class ProducerSendTest extends KafkaServerTestHarness { val numServers = 2 val overridingProps = new Properties() overridingProps.put(KafkaConfig.NumPartitionsProp, 4.toString) def generateConfigs() = TestUtils.createBrokerConfigs(numServers, zkConnect, false).map(KafkaConfig.fromProps(_, overridingProps)) private var consumer1: SimpleConsumer = null private var consumer2: SimpleConsumer = null private val topic = "topic" private val numRecords = 100 @Before override def setUp() { super.setUp() // TODO: we need to migrate to new consumers when 0.9 is final consumer1 = new SimpleConsumer("localhost", servers(0).boundPort(), 100, 1024*1024, "") consumer2 = new SimpleConsumer("localhost", servers(1).boundPort(), 100, 1024*1024, "") } @After override def tearDown() { consumer1.close() consumer2.close() super.tearDown() } /** * testSendOffset checks the basic send API behavior * * 1. Send with null key/value/partition-id should be accepted; send with null topic should be rejected. * 2. Last message of the non-blocking send should return the correct offset metadata */ @Test def testSendOffset() { var producer = TestUtils.createNewProducer(brokerList) val partition = new Integer(0) object callback extends Callback { var offset = 0L def onCompletion(metadata: RecordMetadata, exception: Exception) { if (exception == null) { assertEquals(offset, metadata.offset()) assertEquals(topic, metadata.topic()) assertEquals(partition, metadata.partition()) offset += 1 } else { fail("Send callback returns the following exception", exception) } } } try { // create topic TestUtils.createTopic(zkUtils, topic, 1, 2, servers) // send a normal record val record0 = new ProducerRecord[Array[Byte],Array[Byte]](topic, partition, "key".getBytes, "value".getBytes) assertEquals("Should have offset 0", 0L, producer.send(record0, callback).get.offset) // send a record with null value should be ok val record1 = new ProducerRecord[Array[Byte],Array[Byte]](topic, partition, "key".getBytes, null) assertEquals("Should have offset 1", 1L, producer.send(record1, callback).get.offset) // send a record with null key should be ok val record2 = new ProducerRecord[Array[Byte],Array[Byte]](topic, partition, null, "value".getBytes) assertEquals("Should have offset 2", 2L, producer.send(record2, callback).get.offset) // send a record with null part id should be ok val record3 = new ProducerRecord[Array[Byte],Array[Byte]](topic, null, "key".getBytes, "value".getBytes) assertEquals("Should have offset 3", 3L, producer.send(record3, callback).get.offset) // send a record with null topic should fail try { val record4 = new ProducerRecord[Array[Byte],Array[Byte]](null, partition, "key".getBytes, "value".getBytes) producer.send(record4, callback) fail("Should not allow sending a record without topic") } catch { case iae: IllegalArgumentException => // this is ok case e: Throwable => fail("Only expecting IllegalArgumentException", e) } // non-blocking send a list of records for (i <- 1 to numRecords) producer.send(record0, callback) // check that all messages have been acked via offset assertEquals("Should have offset " + (numRecords + 4), numRecords + 4L, producer.send(record0, callback).get.offset) } finally { if (producer != null) { producer.close() producer = null } } } @Test def testSerializer() { // send a record with a wrong type should receive a serialization exception try { val producer = createNewProducerWithWrongSerializer(brokerList) val record5 = new ProducerRecord[Array[Byte],Array[Byte]](topic, new Integer(0), "key".getBytes, "value".getBytes) producer.send(record5) fail("Should have gotten a SerializationException") } catch { case se: SerializationException => // this is ok } try { createNewProducerWithNoSerializer(brokerList) fail("Instantiating a producer without specifying a serializer should cause a ConfigException") } catch { case ce : ConfigException => // this is ok } // create a producer with explicit serializers should succeed createNewProducerWithExplicitSerializer(brokerList) } private def createNewProducerWithWrongSerializer(brokerList: String) : KafkaProducer[Array[Byte],Array[Byte]] = { import org.apache.kafka.clients.producer.ProducerConfig val producerProps = new Properties() producerProps.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokerList) producerProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer") producerProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer") return new KafkaProducer[Array[Byte],Array[Byte]](producerProps) } private def createNewProducerWithNoSerializer(brokerList: String) : KafkaProducer[Array[Byte],Array[Byte]] = { import org.apache.kafka.clients.producer.ProducerConfig val producerProps = new Properties() producerProps.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokerList) return new KafkaProducer[Array[Byte],Array[Byte]](producerProps) } private def createNewProducerWithExplicitSerializer(brokerList: String) : KafkaProducer[Array[Byte],Array[Byte]] = { import org.apache.kafka.clients.producer.ProducerConfig val producerProps = new Properties() producerProps.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokerList) return new KafkaProducer[Array[Byte],Array[Byte]](producerProps, new ByteArraySerializer, new ByteArraySerializer) } /** * testClose checks the closing behavior * * After close() returns, all messages should be sent with correct returned offset metadata */ @Test def testClose() { var producer = TestUtils.createNewProducer(brokerList) try { // create topic TestUtils.createTopic(zkUtils, topic, 1, 2, servers) // non-blocking send a list of records val record0 = new ProducerRecord[Array[Byte],Array[Byte]](topic, null, "key".getBytes, "value".getBytes) for (i <- 1 to numRecords) producer.send(record0) val response0 = producer.send(record0) // close the producer producer.close() producer = null // check that all messages have been acked via offset, // this also checks that messages with same key go to the same partition assertTrue("The last message should be acked before producer is shutdown", response0.isDone) assertEquals("Should have offset " + numRecords, numRecords.toLong, response0.get.offset) } finally { if (producer != null) { producer.close() producer = null } } } /** * testSendToPartition checks the partitioning behavior * * The specified partition-id should be respected */ @Test def testSendToPartition() { var producer = TestUtils.createNewProducer(brokerList) try { // create topic val leaders = TestUtils.createTopic(zkUtils, topic, 2, 2, servers) val partition = 1 // make sure leaders exist val leader1 = leaders(partition) assertTrue("Leader for topic \\"topic\\" partition 1 should exist", leader1.isDefined) val responses = for (i <- 1 to numRecords) yield producer.send(new ProducerRecord[Array[Byte],Array[Byte]](topic, partition, null, ("value" + i).getBytes)) val futures = responses.toList futures.map(_.get) for (future <- futures) assertTrue("Request should have completed", future.isDone) // make sure all of them end up in the same partition with increasing offset values for ((future, offset) <- futures zip (0 until numRecords)) { assertEquals(offset.toLong, future.get.offset) assertEquals(topic, future.get.topic) assertEquals(partition, future.get.partition) } // make sure the fetched messages also respect the partitioning and ordering val fetchResponse1 = if(leader1.get == configs(0).brokerId) { consumer1.fetch(new FetchRequestBuilder().addFetch(topic, partition, 0, Int.MaxValue).build()) } else { consumer2.fetch(new FetchRequestBuilder().addFetch(topic, partition, 0, Int.MaxValue).build()) } val messageSet1 = fetchResponse1.messageSet(topic, partition).iterator.toBuffer assertEquals("Should have fetched " + numRecords + " messages", numRecords, messageSet1.size) // TODO: also check topic and partition after they are added in the return messageSet for (i <- 0 to numRecords - 1) { assertEquals(new Message(bytes = ("value" + (i + 1)).getBytes), messageSet1(i).message) assertEquals(i.toLong, messageSet1(i).offset) } } finally { if (producer != null) { producer.close() producer = null } } } /** * testAutoCreateTopic * * The topic should be created upon sending the first message */ @Test def testAutoCreateTopic() { var producer = TestUtils.createNewProducer(brokerList, retries = 5) try { // Send a message to auto-create the topic val record = new ProducerRecord[Array[Byte],Array[Byte]](topic, null, "key".getBytes, "value".getBytes) assertEquals("Should have offset 0", 0L, producer.send(record).get.offset) // double check that the topic is created with leader elected TestUtils.waitUntilLeaderIsElectedOrChanged(zkUtils, topic, 0) } finally { if (producer != null) { producer.close() producer = null } } } /** * Test that flush immediately sends all accumulated requests. */ @Test def testFlush() { var producer = TestUtils.createNewProducer(brokerList, lingerMs = Long.MaxValue) try { TestUtils.createTopic(zkUtils, topic, 2, 2, servers) val record = new ProducerRecord[Array[Byte], Array[Byte]](topic, "value".getBytes) for(i <- 0 until 50) { val responses = (0 until numRecords) map (i => producer.send(record)) assertTrue("No request is complete.", responses.forall(!_.isDone())) producer.flush() assertTrue("All requests are complete.", responses.forall(_.isDone())) } } finally { if (producer != null) producer.close() } } /** * Test close with zero timeout from caller thread */ @Test def testCloseWithZeroTimeoutFromCallerThread() { var producer: KafkaProducer[Array[Byte],Array[Byte]] = null try { // create topic val leaders = TestUtils.createTopic(zkUtils, topic, 2, 2, servers) val leader0 = leaders(0) val leader1 = leaders(1) // create record val record0 = new ProducerRecord[Array[Byte], Array[Byte]](topic, 0, null, "value".getBytes) val record1 = new ProducerRecord[Array[Byte], Array[Byte]](topic, 1, null, "value".getBytes) // Test closing from caller thread. for(i <- 0 until 50) { producer = TestUtils.createNewProducer(brokerList, lingerMs = Long.MaxValue) val responses = (0 until numRecords) map (i => producer.send(record0)) assertTrue("No request is complete.", responses.forall(!_.isDone())) producer.close(0, TimeUnit.MILLISECONDS) responses.foreach { future => try { future.get() fail("No message should be sent successfully.") } catch { case e: Exception => assertEquals("java.lang.IllegalStateException: Producer is closed forcefully.", e.getMessage) } } val fetchResponse = if (leader0.get == configs(0).brokerId) { consumer1.fetch(new FetchRequestBuilder().addFetch(topic, 0, 0, Int.MaxValue).build()) } else { consumer2.fetch(new FetchRequestBuilder().addFetch(topic, 0, 0, Int.MaxValue).build()) } assertEquals("Fetch response should have no message returned.", 0, fetchResponse.messageSet(topic, 0).size) } } finally { if (producer != null) producer.close() } } /** * Test close with zero and non-zero timeout from sender thread */ @Test def testCloseWithZeroTimeoutFromSenderThread() { var producer: KafkaProducer[Array[Byte],Array[Byte]] = null try { // create topic val leaders = TestUtils.createTopic(zkUtils, topic, 1, 2, servers) val leader = leaders(0) // create record val record = new ProducerRecord[Array[Byte], Array[Byte]](topic, 0, null, "value".getBytes) // Test closing from sender thread. class CloseCallback(producer: KafkaProducer[Array[Byte], Array[Byte]]) extends Callback { override def onCompletion(metadata: RecordMetadata, exception: Exception) { // Trigger another batch in accumulator before close the producer. These messages should // not be sent. (0 until numRecords) map (i => producer.send(record)) // The close call will be called by all the message callbacks. This tests idempotence of the close call. producer.close(0, TimeUnit.MILLISECONDS) // Test close with non zero timeout. Should not block at all. producer.close(Long.MaxValue, TimeUnit.MICROSECONDS) } } for(i <- 0 until 50) { producer = TestUtils.createNewProducer(brokerList, lingerMs = Long.MaxValue) // send message to partition 0 val responses = ((0 until numRecords) map (i => producer.send(record, new CloseCallback(producer)))) assertTrue("No request is complete.", responses.forall(!_.isDone())) // flush the messages. producer.flush() assertTrue("All request are complete.", responses.forall(_.isDone())) // Check the messages received by broker. val fetchResponse = if (leader.get == configs(0).brokerId) { consumer1.fetch(new FetchRequestBuilder().addFetch(topic, 0, 0, Int.MaxValue).build()) } else { consumer2.fetch(new FetchRequestBuilder().addFetch(topic, 0, 0, Int.MaxValue).build()) } val expectedNumRecords = (i + 1) * numRecords assertEquals("Fetch response to partition 0 should have %d messages.".format(expectedNumRecords), expectedNumRecords, fetchResponse.messageSet(topic, 0).size) } } finally { if (producer != null) producer.close() } } }
vkroz/kafka
core/src/test/scala/integration/kafka/api/ProducerSendTest.scala
Scala
apache-2.0
16,095
/* * The MIT License (MIT) * * Copyright (c) 2016 Algolia * http://www.algolia.com/ * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ package algolia.dsl import algolia.definitions._ import algolia.objects.{ CompoundEntry, DictionaryEntry, DictionarySettings, PluralEntry, StopwordEntry } import algolia.responses.{DictionaryTask, SearchDictionaryResult} import algolia.{AlgoliaClient, AlgoliaClientException, Executable} import org.json4s.Formats import scala.concurrent.{ExecutionContext, Future} trait DictionaryDsl { implicit val formats: Formats // Save Dictionary Definition implicit object SaveStopwordDictionaryDefinitionExecutable extends SaveDictionaryDefinitionExecutable[StopwordEntry] implicit object SavePluralDictionaryDefinitionExecutable extends SaveDictionaryDefinitionExecutable[PluralEntry] implicit object SaveCompoundDictionaryDefinitionExecutable extends SaveDictionaryDefinitionExecutable[CompoundEntry] sealed abstract class SaveDictionaryDefinitionExecutable[T <: DictionaryEntry] extends Executable[SaveDictionaryDefinition[T], DictionaryTask] { override def apply( client: AlgoliaClient, query: SaveDictionaryDefinition[T] )( implicit executor: ExecutionContext ): Future[DictionaryTask] = { if (query.dictionaryEntries.isEmpty) { return Future.failed( new AlgoliaClientException(s"Dictionary entries cannot be empty") ) } client.request[DictionaryTask](query.build()) } } // Replace Dictionary Definition implicit object ReplaceStopwordDictionaryDefinitionExecutable extends ReplaceDictionaryDefinitionExecutable[StopwordEntry] implicit object ReplacePluralDictionaryDefinitionExecutable extends ReplaceDictionaryDefinitionExecutable[PluralEntry] implicit object ReplaceCompoundDictionaryDefinitionExecutable extends ReplaceDictionaryDefinitionExecutable[CompoundEntry] sealed abstract class ReplaceDictionaryDefinitionExecutable[ T <: DictionaryEntry ] extends Executable[ReplaceDictionaryDefinition[T], DictionaryTask] { override def apply( client: AlgoliaClient, query: ReplaceDictionaryDefinition[T] )( implicit executor: ExecutionContext ): Future[DictionaryTask] = { if (query.dictionaryEntries.isEmpty) { return Future.failed( new AlgoliaClientException(s"Dictionary entries cannot be empty") ) } client.request[DictionaryTask](query.build()) } } // Delete Dictionary Definition implicit object DeleteDictionaryDefinitionExecutable extends Executable[DeleteDictionaryDefinition, DictionaryTask] { override def apply( client: AlgoliaClient, query: DeleteDictionaryDefinition )( implicit executor: ExecutionContext ): Future[DictionaryTask] = { if (query.objectIDs.isEmpty) { return Future.failed( new AlgoliaClientException(s"Dictionary entries cannot be empty") ) } client.request[DictionaryTask](query.build()) } } // Clear Dictionary Definition implicit object ClearDictionaryDefinitionExecutable extends Executable[ClearDictionaryDefinition, DictionaryTask] { override def apply( client: AlgoliaClient, query: ClearDictionaryDefinition )( implicit executor: ExecutionContext ): Future[DictionaryTask] = { client.request[DictionaryTask](query.build()) } } // Search Dictionary Definition implicit object SearchStopwordDictionaryDefinitionExecutable extends SearchDictionaryDefinitionExecutable[StopwordEntry] implicit object SearchPluralDictionaryDefinitionExecutable extends SearchDictionaryDefinitionExecutable[PluralEntry] implicit object SearchCompoundDictionaryDefinitionExecutable extends SearchDictionaryDefinitionExecutable[CompoundEntry] sealed abstract class SearchDictionaryDefinitionExecutable[ T <: DictionaryEntry ] extends Executable[SearchDictionaryDefinition[T], SearchDictionaryResult] { override def apply( client: AlgoliaClient, query: SearchDictionaryDefinition[T] )( implicit executor: ExecutionContext ): Future[SearchDictionaryResult] = { client.requestSearch[SearchDictionaryResult](query.build()) } } // Dictionary Settings Definition implicit object SetSettingsDictionaryDefinitionExecutable extends Executable[SetSettingsDictionaryDefinition, DictionaryTask] { override def apply( client: AlgoliaClient, query: SetSettingsDictionaryDefinition )(implicit executor: ExecutionContext): Future[DictionaryTask] = { client.requestSearch[DictionaryTask](query.build()) } } implicit object GetSettingsDictionaryDefinitionExecutable extends Executable[GetSettingsDictionaryDefinition, DictionarySettings] { override def apply( client: AlgoliaClient, query: GetSettingsDictionaryDefinition )(implicit executor: ExecutionContext): Future[DictionarySettings] = { client.requestSearch[DictionarySettings](query.build()) } } }
algolia/algoliasearch-client-scala
src/main/scala/algolia/dsl/DictionaryDsl.scala
Scala
mit
6,226
/* * Copyright (C) 2016 DANS - Data Archiving and Networked Services ([email protected]) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package nl.knaw.dans.easy.agreement.fixture import java.util.TimeZone import org.joda.time.{ DateTime, DateTimeUtils, DateTimeZone } trait FixedDateTime { val nowYMD = "2018-03-22" val now = s"${ nowYMD }T21:43:01.576" val nowUTC = s"${ nowYMD }T20:43:01Z" /** Causes DateTime.now() to return a predefined value. */ DateTimeUtils.setCurrentMillisFixed(new DateTime(nowUTC).getMillis) DateTimeZone.setDefault(DateTimeZone.forTimeZone(TimeZone.getTimeZone("Europe/Amsterdam"))) }
DANS-KNAW/easy-license-creator
src/test/scala/nl/knaw/dans/easy/agreement/fixture/FixedDateTime.scala
Scala
apache-2.0
1,141
/* * Copyright (c) 2014-2015 Snowplow Analytics Ltd. All rights reserved. * * This program is licensed to you under the Apache License Version 2.0, * and you may not use this file except in compliance with the Apache License Version 2.0. * You may obtain a copy of the Apache License Version 2.0 at http://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, * software distributed under the Apache License Version 2.0 is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the Apache License Version 2.0 for the specific language governing permissions and limitations there under. */ package com.snowplowanalytics.schemaddl package generators package redshift // Scalaz import scalaz._ import Scalaz._ // This project import com.snowplowanalytics.schemaddl.generators.redshift.Ddl.DataTypes.RedshiftInteger import utils.{ StringUtils => SU } /** * Module containing functions for data type suggestions */ object TypeSuggestions { import Ddl._ /** * Type alias for function suggesting an encode type based on map of * JSON Schema properties */ type DataTypeSuggestion = (Map[String, String], String) => Option[DataType] // For complex enums Suggest VARCHAR with length of longest element val complexEnumSuggestion: DataTypeSuggestion = (properties, columnName) => properties.get("enum") match { case Some(enums) if isComplexEnum(enums) => val longest = excludeNull(enums).map(_.length).max Some(DataTypes.RedshiftVarchar(longest)) case _ => None } // Suggest VARCHAR(4096) for all product types. Should be in the beginning val productSuggestion: DataTypeSuggestion = (properties, columnName) => properties.get("type") match { case (Some(types)) if excludeNull(types).size > 1 => Some(CustomDataTypes.ProductType(List(s"Product type $types encountered in $columnName"))) case _ => None } val timestampSuggestion: DataTypeSuggestion = (properties, columnName) => (properties.get("type"), properties.get("format")) match { case (Some(types), Some("date-time")) if types.contains("string") => Some(DataTypes.RedshiftTimestamp) case _ => None } val arraySuggestion: DataTypeSuggestion = (properties, columnName) => properties.get("type") match { case Some(types) if types.contains("array") => Some(DataTypes.RedshiftVarchar(5000)) case _ => None } val numberSuggestion: DataTypeSuggestion = (properties, columnName) => (properties.get("type"), properties.get("multipleOf")) match { case (Some(types), Some(multipleOf)) if types.contains("number") && multipleOf == "0.01" => Some(DataTypes.RedshiftDecimal(Some(36), Some(2))) case (Some(types), _) if types.contains("number") => Some(DataTypes.RedshiftDouble) case _ => None } val integerSuggestion: DataTypeSuggestion = (properties, columnName) => { (properties.get("type"), properties.get("maximum"), properties.get("enum"), properties.get("multipleOf")) match { case (Some(types), Some(maximum), _, _) if excludeNull(types) == Set("integer") => getIntSize(maximum) // Contains only enum case (types, _, Some(enum), _) if (types.isEmpty || excludeNull(types.get) == Set("integer")) && SU.isIntegerList(enum) => val max = enum.split(",").toList.map(el => try Some(el.toLong) catch { case e: NumberFormatException => None } ) val maxLong = max.sequence.getOrElse(Nil).maximum maxLong.flatMap(m => getIntSize(m)) // This will short-circuit integer suggestions on any non-integer enum case (Some(types), _, _, _) if excludeNull(types) == Set("integer") => Some(DataTypes.RedshiftBigInt) case (Some(types), max, _, Some(multipleOf)) if types.contains("number") && multipleOf == "1" => max.flatMap(m => getIntSize(m)).orElse(Some(RedshiftInteger)) case _ => None } } val charSuggestion: DataTypeSuggestion = (properties, columnName) => { (properties.get("type"), properties.get("minLength"), properties.get("maxLength")) match { case (Some(types), Some(SU.IntegerAsString(minLength)), Some(SU.IntegerAsString(maxLength))) if (minLength == maxLength && excludeNull(types) == Set("string")) => Some(DataTypes.RedshiftChar(maxLength)) case _ => None } } val booleanSuggestion: DataTypeSuggestion = (properties, columnName) => { properties.get("type") match { case Some(types) if excludeNull(types) == Set("boolean") => Some(DataTypes.RedshiftBoolean) case _ => None } } val uuidSuggestion: DataTypeSuggestion = (properties, columnName) => { (properties.get("type"), properties.get("format")) match { case (Some(types), Some("uuid")) if types.contains("string") => Some(DataTypes.RedshiftChar(36)) case _ => None } } val varcharSuggestion: DataTypeSuggestion = (properties, columnName) => { (properties.get("type"), properties.get("maxLength"), properties.get("enum"), properties.get("format")) match { case (Some(types), _, _, Some("ipv6")) if types.contains("string") => Some(DataTypes.RedshiftVarchar(39)) case (Some(types), _, _, Some("ipv4")) if types.contains("string") => Some(DataTypes.RedshiftVarchar(15)) case (Some(types), Some(SU.IntegerAsString(maxLength)), _, _) if types.contains("string") => Some(DataTypes.RedshiftVarchar(maxLength)) case (_, _, Some(enum), _) => { val enumItems = enum.split(",") val maxLength = enumItems.toList.reduceLeft((a, b) => if (a.length > b.length) a else b).length if (enumItems.length == 1) { Some(DataTypes.RedshiftChar(maxLength)) } else { Some(DataTypes.RedshiftVarchar(maxLength)) } } case _ => None } } /** * Get set of types or enum as string excluding null * * @param types comma-separated types * @return set of strings */ private def excludeNull(types: String): Set[String] = types.split(",").toSet - "null" /** * Helper function to get size of Integer * * @param max upper bound extracted from properties as string * @return Long representing biggest possible value or None if it's not Int */ private def getIntSize(max: => String): Option[DataType] = try { val maxLong = max.toLong getIntSize(maxLong) } catch { case e: NumberFormatException => None } /** * Helper function to get size of Integer * * @param max upper bound * @return Long representing biggest possible value or None if it's not Int */ private def getIntSize(max: Long): Option[DataType] = if (max <= Short.MaxValue) Some(DataTypes.RedshiftSmallInt) else if (max <= Int.MaxValue) Some(DataTypes.RedshiftInteger) else if (max <= Long.MaxValue) Some(DataTypes.RedshiftBigInt) else None /** * Check enum contains some different types * (string and number or number and boolean) */ private def isComplexEnum(enum: String) = { // Predicates def isNumeric(s: String) = try { s.toDouble true } catch { case e: NumberFormatException => false } def isNonNumeric(s: String) = !isNumeric(s) def isBoolean(s: String) = s == "true" || s == "false" val nonNullEnum = excludeNull(enum) somePredicates(nonNullEnum, List(isNumeric _, isNonNumeric _, isBoolean _), 2) } /** * Check at least some `quantity` of `predicates` are true on `instances` * * @param instances list of instances to check on * @param predicates list of predicates to check * @param quantity required quantity */ private def somePredicates(instances: Set[String], predicates: List[String => Boolean], quantity: Int): Boolean = { if (quantity == 0) true else predicates match { case Nil => false case h :: tail if instances.exists(h) => somePredicates(instances, tail, quantity - 1) case _ :: tail => somePredicates(instances, tail, quantity) } } }
snowplow/iglu-utils
src/main/scala/com.snowplowanalytics/schemaddl/generators/redshift/TypeSuggestions.scala
Scala
apache-2.0
8,314
package util import scala.concurrent._ import ExecutionContext.Implicits.global import org.apache.commons.mail.{DefaultAuthenticator, HtmlEmail} import org.slf4j.LoggerFactory import app.Context import service.{AccountService, RepositoryService, IssuesService, SystemSettingsService} import servlet.Database import SystemSettingsService.Smtp import _root_.util.ControlUtil.defining trait Notifier extends RepositoryService with AccountService with IssuesService { def toNotify(r: RepositoryService.RepositoryInfo, issueId: Int, content: String) (msg: String => String)(implicit context: Context): Unit protected def recipients(issue: model.Issue)(notify: String => Unit)(implicit context: Context) = ( // individual repository's owner issue.userName :: // collaborators getCollaborators(issue.userName, issue.repositoryName) ::: // participants issue.openedUserName :: getComments(issue.userName, issue.repositoryName, issue.issueId).map(_.commentedUserName) ) .distinct .withFilter ( n => n != context.loginAccount.get.userName && n == issue.assignedUserName.orNull ) // the operation in person is excluded, and not assigned users are excluded .foreach ( getAccountByUserName(_) filterNot (_.isGroupAccount) foreach (x => notify(x.mailAddress)) ) } object Notifier { // TODO We want to be able to switch to mock. def apply(): Notifier = new SystemSettingsService {}.loadSystemSettings match { case settings if settings.notification => new Mailer(settings.smtp.get) case _ => new MockMailer } def msgIssue(url: String) = (content: String) => s""" |${content}<br/> |--<br/> |<a href="${url}">View it on GitBucket</a> """.stripMargin def msgPullRequest(url: String) = (content: String) => s""" |${content}<hr/> |View, comment on, or merge it at:<br/> |<a href="${url}">${url}</a> """.stripMargin def msgComment(url: String) = (content: String) => s""" |${content}<br/> |--<br/> |<a href="${url}">View it on GitBucket</a> """.stripMargin def msgStatus(url: String) = (content: String) => s""" |${content} <a href="${url}">#${url split('/') last}</a> """.stripMargin } class Mailer(private val smtp: Smtp) extends Notifier { private val logger = LoggerFactory.getLogger(classOf[Mailer]) def toNotify(r: RepositoryService.RepositoryInfo, issueId: Int, content: String) (msg: String => String)(implicit context: Context) = { val database = Database(context.request.getServletContext) val f = future { // TODO Can we use the Database Session in other than Transaction Filter? database withSession { getIssue(r.owner, r.name, issueId.toString) foreach { issue => defining( s"[${r.name}] ${issue.title} (#${issueId})" -> msg(view.Markdown.toHtml(content, r, false, true))) { case (subject, msg) => recipients(issue) { to => val email = new HtmlEmail email.setHostName(smtp.host) email.setSmtpPort(smtp.port.get) smtp.user.foreach { user => email.setAuthenticator(new DefaultAuthenticator(user, smtp.password.getOrElse(""))) } smtp.ssl.foreach { ssl => email.setSSLOnConnect(ssl) } smtp.fromAddress .map (_ -> smtp.fromName.orNull) .orElse (Some("[email protected]" -> context.loginAccount.get.userName)) .foreach { case (address, name) => email.setFrom(address, name) } email.setCharset("UTF-8") email.setSubject(subject) email.setHtmlMsg(msg) email.addTo(to).send } } } } "Notifications Successful." } f onSuccess { case s => logger.debug(s) } f onFailure { case t => logger.error("Notifications Failed.", t) } } } class MockMailer extends Notifier { def toNotify(r: RepositoryService.RepositoryInfo, issueId: Int, content: String) (msg: String => String)(implicit context: Context): Unit = {} }
takuok/gitbucket
src/main/scala/util/Notifier.scala
Scala
apache-2.0
4,346
/** * Copyright 2009 Jorge Ortiz * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * **/ package org.scala_tools.javautils.s2j import java.util.{Set => JSet} import scala.collection.jcl.{SetWrapper => JCLSetWrapper} import scala.collection.mutable.Set import org.scala_tools.javautils.j2s.JSetWrapper class RichSMutableSet[T](set: Set[T]) { def asJava: JSet[T] = set match { case sw: JCLSetWrapper[_] => sw.underlying.asInstanceOf[JSet[T]] case sw: JSetWrapper[_] => sw.asJava.asInstanceOf[JSet[T]] case _ => new SMutableSetWrapper[T] { type Wrapped = Set[T] val underlying = set } } }
jorgeortiz85/scala-javautils
src/main/scala/org/scala_tools/javautils/s2j/RichSMutableSet.scala
Scala
apache-2.0
1,142
package x7c1.wheat.modern.database.selector import android.database.sqlite.SQLiteDatabase import x7c1.wheat.macros.reify.{HasConstructor, New} import x7c1.wheat.modern.database.selector.SelectorProvidable.CanReify import scala.language.reflectiveCalls trait CanProvideSelector[A]{ type Selector def createFrom(db: SQLiteDatabase): Selector } class SelectorProvidable[A, S: CanReify] extends CanProvideSelector[A]{ override type Selector = S override def createFrom(db: SQLiteDatabase): S = New[S](db) } object SelectorProvidable { object Implicits { implicit class SelectorProvidableDatabase(val db: SQLiteDatabase) extends AnyVal { def selectorOf[A](implicit x: CanProvideSelector[A]): x.Selector = { x createFrom db } } } type CanReify[A] = HasConstructor[SQLiteDatabase => A] }
x7c1/Linen
wheat-modern/src/main/scala/x7c1/wheat/modern/database/selector/CanProvideSelector.scala
Scala
mit
829
package looty package views.loot import looty.model.{ComputedItem, LootContainerId} import org.scalajs.jquery.JQuery ////////////////////////////////////////////////////////////// // Copyright (c) 2014 Ben Jackman, Jeff Gomberg // All Rights Reserved // please contact [email protected] or [email protected] // for licensing inquiries // Created by bjackman @ 8/24/14 6:28 PM ////////////////////////////////////////////////////////////// object Container { val visCls = "visible-loot-container" val invisCls = "invisible-loot-container" } class Container(val id: LootContainerId, html: JQuery, initialVisible: Boolean, refreshFn: () => Unit) { import Container._ private var _items = Vector.empty[ComputedItem] def items = _items def setItems(items: Vector[ComputedItem]) { html.removeClass("loading") _items = items } def refresh() { html.addClass("loading") refreshFn() } private var listeners = Vector.empty[Boolean => Unit] private var _visible = initialVisible private def refreshHtml() { if (visible) { html.addClass(visCls).removeClass(invisCls) } else { html.addClass(invisCls).removeClass(visCls) } } private def changed() { refreshHtml() listeners.foreach(_(_visible)) } def visible = _visible def hide() { _visible = false changed() } def show() { _visible = true changed() } def toggle() { _visible = !_visible changed() } def onChange(f: Boolean => Unit) { listeners :+= f } } class Containers { var _containers = Vector.empty[Container] var _allMap = Map.empty[LootContainerId, Container] def all = _containers def addContainer(c: Container) { _containers :+= c _allMap += c.id -> c c.onChange(v => conChanged(c)) } def get(id: LootContainerId): Option[Container] = _allMap.get(id) private def conChanged(c: Container) { changed(c) } private var listeners = Vector.empty[Container => Unit] def onChange(f: (Container) => Unit) { listeners :+= f } private def changed(c: Container) { listeners.foreach(_(c)) } }
benjaminjackman/looty
looty/src/main/scala/looty/views/loot/Container.scala
Scala
gpl-2.0
2,127
/* * Copyright 2020 Precog Data * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package quasar.impl.storage.mapdb import slamdata.Predef._ import quasar.impl.storage.{IsPrefix, PrefixStore} import scala.collection.JavaConverters._ import java.util.{Map => JMap} import cats.effect.{Blocker, ContextShift, Sync} import cats.syntax.functor._ import fs2.Stream import org.mapdb.{BTreeMap, DB, Serializer} import org.mapdb.serializer.{GroupSerializer, SerializerArrayTuple} import shapeless._ import shapeless.ops.hlist._ import shapeless.ops.traversable._ final class MapDbPrefixStore[F[_]: Sync: ContextShift, K <: HList, V] private ( db: DB, store: BTreeMap[Array[AnyRef], V], blocker: Blocker)( implicit kToArray: ToTraversable.Aux[K, Array, AnyRef], kFromTraversable: FromTraversable[K]) extends PrefixStore[F, K, V] { type Constraint[P <: HList] = PrefixStore.ToArray[P] def prefixedEntries[P <: HList](p: P)( implicit pfx: IsPrefix[P, K], pToArray: ToTraversable.Aux[P, Array, AnyRef]) : Stream[F, (K, V)] = entriesStream(store.prefixSubMap(pToArray(p))) def deletePrefixed[P <: HList](p: P)( implicit pfx: IsPrefix[P, K], pToArray: ToTraversable.Aux[P, Array, AnyRef]) : F[Unit] = blocker.delay[F, Unit] { store.prefixSubMap(pToArray(p)).clear() db.commit() } val entries: Stream[F, (K, V)] = entriesStream(store) def lookup(k: K): F[Option[V]] = blocker.delay(Option(store.get(kToArray(k)))) def insert(k: K, v: V): F[Unit] = blocker.delay[F, Unit] { store.put(kToArray(k), v) db.commit() } def delete(k: K): F[Boolean] = blocker.delay(Option(store.remove(kToArray(k))).nonEmpty) //// private def entriesStream(m: JMap[Array[AnyRef], V]): Stream[F, (K, V)] = Stream.eval(Sync[F].delay(m.entrySet.iterator)) .flatMap(it => Stream.fromIterator[F](it.asScala)) .evalMap(e => mkKey(e.getKey).tupleRight(e.getValue)) .translate(blocker.blockOnK[F]) private def mkKey(parts: Array[AnyRef]): F[K] = kFromTraversable(parts) match { case Some(k) => Sync[F].pure(k) case None => Sync[F].raiseError[K](new RuntimeException( s"Unable to decode key from '${parts.mkString("[", ", ", "]")}'")) } } object MapDbPrefixStore { // If instantiation fails due to lack of FromTraversable, ensure // scala.Predef.classOf is in scope. def apply[F[_]]: PartiallyApplied[F] = new PartiallyApplied[F] final class PartiallyApplied[F[_]] { def apply[SS <: HList, V, K <: HList, S[X] <: Serializer[X]]( name: String, db: DB, keySerializer: SS, valueSerializer: GroupSerializer[V], blocker: Blocker)( implicit sync: Sync[F], contextShift: ContextShift[F], ssComapped: Comapped.Aux[SS, S, K], ssToList: ToTraversable.Aux[SS, List, S[_]], kToArray: ToTraversable.Aux[K, Array, AnyRef], kFromTraversable: FromTraversable[K]) : F[PrefixStore.Legacy[F, K, V]] = blocker.delay[F, PrefixStore.Legacy[F, K, V]] { val store = db.treeMap(name) .keySerializer(new SerializerArrayTuple(ssToList(keySerializer): _*)) .valueSerializer(valueSerializer) .createOrOpen() new MapDbPrefixStore[F, K, V](db, store, blocker) } } }
quasar-analytics/quasar
impl/src/main/scala/quasar/impl/storage/mapdb/MapDbPrefixStore.scala
Scala
apache-2.0
3,939
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.execution.command.v1 import org.apache.spark.sql.{AnalysisException, Row, SaveMode} import org.apache.spark.sql.execution.command /** * This base suite contains unified tests for the `SHOW PARTITIONS` command that check V1 * table catalogs. The tests that cannot run for all V1 catalogs are located in more * specific test suites: * * - V1 In-Memory catalog: `org.apache.spark.sql.execution.command.v1.ShowPartitionsSuite` * - V1 Hive External catalog: `org.apache.spark.sql.hive.execution.command.ShowPartitionsSuite` */ trait ShowPartitionsSuiteBase extends command.ShowPartitionsSuiteBase { test("show everything in the default database") { val table = "dateTable" withTable(table) { createDateTable(table) runShowPartitionsSql( s"show partitions default.$table", Row("year=2015/month=1") :: Row("year=2015/month=2") :: Row("year=2016/month=2") :: Row("year=2016/month=3") :: Nil) } } // The test fails for V2 Table Catalogs with the exception: // org.apache.spark.sql.AnalysisException: CREATE VIEW is only supported with v1 tables. test("show partitions of a view") { val table = "dateTable" withTable(table) { createDateTable(table) val view = "view1" withView(view) { sql(s"CREATE VIEW $view as select * from $table") val errMsg = intercept[AnalysisException] { sql(s"SHOW PARTITIONS $view") }.getMessage assert(errMsg.contains("'SHOW PARTITIONS' expects a table")) } } } test("show partitions of a temporary view") { val viewName = "test_view" withTempView(viewName) { spark.range(10).createTempView(viewName) val errMsg = intercept[AnalysisException] { sql(s"SHOW PARTITIONS $viewName") }.getMessage assert(errMsg.contains("'SHOW PARTITIONS' expects a table")) } } test("SPARK-33591: null as a partition value") { val t = "part_table" withTable(t) { sql(s"CREATE TABLE $t (col1 INT, p1 STRING) $defaultUsing PARTITIONED BY (p1)") sql(s"INSERT INTO TABLE $t PARTITION (p1 = null) SELECT 0") checkAnswer(sql(s"SHOW PARTITIONS $t"), Row("p1=__HIVE_DEFAULT_PARTITION__")) checkAnswer( sql(s"SHOW PARTITIONS $t PARTITION (p1 = null)"), Row("p1=__HIVE_DEFAULT_PARTITION__")) } } } /** * The class contains tests for the `SHOW PARTITIONS` command to check V1 In-Memory table catalog. */ class ShowPartitionsSuite extends ShowPartitionsSuiteBase with CommandSuiteBase { // The test is placed here because it fails with `USING HIVE`: // org.apache.spark.sql.AnalysisException: // Hive data source can only be used with tables, you can't use it with CREATE TEMP VIEW USING test("issue exceptions on the temporary view") { val viewName = "test_view" withTempView(viewName) { sql(s""" |CREATE TEMPORARY VIEW $viewName (c1 INT, c2 STRING) |$defaultUsing""".stripMargin) val errMsg = intercept[AnalysisException] { sql(s"SHOW PARTITIONS $viewName") }.getMessage assert(errMsg.contains("'SHOW PARTITIONS' expects a table")) } } test("show partitions from a datasource") { import testImplicits._ withTable("part_datasrc") { val df = (1 to 3).map(i => (i, s"val_$i", i * 2)).toDF("a", "b", "c") df.write .partitionBy("a") .format("parquet") .mode(SaveMode.Overwrite) .saveAsTable("part_datasrc") assert(sql("SHOW PARTITIONS part_datasrc").count() == 3) } } test("SPARK-33904: null and empty string as partition values") { withNamespaceAndTable("ns", "tbl") { t => createNullPartTable(t, "parquet") runShowPartitionsSql( s"SHOW PARTITIONS $t", Row("part=__HIVE_DEFAULT_PARTITION__") :: Nil) checkAnswer(spark.table(t), Row(0, null) :: Row(1, null) :: Nil) } } }
shaneknapp/spark
sql/core/src/test/scala/org/apache/spark/sql/execution/command/v1/ShowPartitionsSuite.scala
Scala
apache-2.0
4,748
package com.hackathon import org.joda.time.DateTime case class IssueType(issueType: Long, name: String) object IssueType { def apply(issueType: Long): IssueType = issueType match { case 1 => IssueType(1, "Glass on road") case 2 => IssueType(2, "Construction") case 3 => IssueType(3, "Car on bike lane") case 4 => IssueType(4, "Bike crash") case _ => IssueType(0, "Unknown") } def apply: IssueType = apply(0) } object Severity { def apply(severity: Long): String = severity match { case 1 => "orange" case 2 => "red" case _ => "unknown" } } case class Issue( id: String, timestamp: Long, issueType: Long, issueName: String, severity: Long, longitude: Double, latitude: Double, creator: String ) case class DistancedIssue( count: Int, id: String, `type`: Long, severity: Long, latitude: Double, longitude: Double, distance: Double, angle: Double ) case class TimestampedIssue(timestamp: Long, id: String, severity: Long, `type`: Long, latitude: Double, longitude: Double) case class IssuesSince(count: Long, issues: List[TimestampedIssue]) object Issue { def apply(latitude: Double, longitude: Double, severity: Long, creator: String): Issue = Issue( "", DateTime.now.getMillis, 0, IssueType(0).name, severity, longitude, latitude, creator ) }
norefle/hackathon-locations-backend
src/main/scala/com/hackathon/Issue.scala
Scala
mit
1,469
package ch.ltouroumov.modularmachines.common.blocks import ch.ltouroumov.modularmachines.Settings import ch.ltouroumov.modularmachines.ModularMachines import ch.ltouroumov.modularmachines.common.texture.ConnectedTextureHandler import net.minecraft.block.Block import net.minecraft.block.material.Material import net.minecraft.client.renderer.texture.IIconRegister import net.minecraft.util.IIcon import net.minecraft.world.IBlockAccess import net.minecraftforge.common.util.ForgeDirection class MachineGlass extends Block(Material.glass) { setHardness(1.0F) setStepSound(Block.soundTypeGlass) setBlockName("MachineGlass") setCreativeTab(ModularMachines.tabModularMachines) val textureHandler = new ConnectedTextureHandler(Settings.assetName("Window_Side"), block => block.isInstanceOf[MachineGlass]) override def registerBlockIcons(register: IIconRegister) = textureHandler.loadTextures(register) override def getIcon(side:Int, meta:Int): IIcon = textureHandler.getTexture(side) override def getIcon(world: IBlockAccess, x: Int, y: Int, z:Int, side: Int): IIcon = textureHandler.getTexture(world, x, y, z, side) override def shouldSideBeRendered(world: IBlockAccess, x: Int, y: Int, z: Int, side: Int): Boolean = textureHandler.shouldRenderSide(world, x, y, z, side) override def isOpaqueCube = false }
ltouroumov/modular-machines
src/main/scala/ch/ltouroumov/modularmachines/common/blocks/MachineGlass.scala
Scala
gpl-2.0
1,348
package scala.quoted /** Excetion thrown when an Expr or Type is used ouside of the scope where it is valid */ class ScopeException(msg: String) extends Exception(msg)
som-snytt/dotty
library/src/scala/quoted/ScopeException.scala
Scala
apache-2.0
169
package pl.touk.nussknacker.ui.definition import pl.touk.nussknacker.engine.ModelData import pl.touk.nussknacker.engine.api.{FragmentSpecificData, MetaData} import pl.touk.nussknacker.engine.api.async.{DefaultAsyncInterpretationValue, DefaultAsyncInterpretationValueDeterminer} import pl.touk.nussknacker.engine.api.component.{ComponentGroupName, SingleComponentConfig} import pl.touk.nussknacker.engine.api.definition.{Parameter, RawParameterEditor} import pl.touk.nussknacker.engine.api.deployment.DeploymentManager import pl.touk.nussknacker.engine.api.component.{AdditionalPropertyConfig, ParameterConfig} import pl.touk.nussknacker.engine.api.typed.typing.{Typed, Unknown} import pl.touk.nussknacker.engine.canonicalgraph.CanonicalProcess import pl.touk.nussknacker.engine.canonicalgraph.canonicalnode.FlatNode import pl.touk.nussknacker.engine.component.ComponentsUiConfigExtractor import pl.touk.nussknacker.engine.definition.DefinitionExtractor.ObjectDefinition import pl.touk.nussknacker.engine.definition.ProcessDefinitionExtractor.ProcessDefinition import pl.touk.nussknacker.engine.definition.TypeInfos import pl.touk.nussknacker.engine.definition.TypeInfos.{ClazzDefinition, MethodInfo} import pl.touk.nussknacker.engine.definition.parameter.ParameterData import pl.touk.nussknacker.engine.definition.parameter.defaults.{DefaultValueDeterminerChain, DefaultValueDeterminerParameters} import pl.touk.nussknacker.engine.definition.parameter.editor.EditorExtractor import pl.touk.nussknacker.engine.definition.parameter.validator.{ValidatorExtractorParameters, ValidatorsExtractor} import pl.touk.nussknacker.engine.graph.node.SubprocessInputDefinition import pl.touk.nussknacker.engine.graph.node.SubprocessInputDefinition.SubprocessParameter import pl.touk.nussknacker.engine.util.Implicits.RichScalaMap import pl.touk.nussknacker.restmodel.definition._ import pl.touk.nussknacker.ui.component.ComponentDefinitionPreparer import pl.touk.nussknacker.ui.config.ComponentsGroupMappingConfigExtractor import pl.touk.nussknacker.ui.definition.additionalproperty.{AdditionalPropertyValidatorDeterminerChain, UiAdditionalPropertyEditorDeterminer} import pl.touk.nussknacker.ui.process.ProcessCategoryService import pl.touk.nussknacker.ui.process.subprocess.SubprocessDetails import pl.touk.nussknacker.ui.security.api.LoggedUser object UIProcessObjectsFactory { import net.ceedubs.ficus.Ficus._ import pl.touk.nussknacker.engine.util.config.FicusReaders._ def prepareUIProcessObjects(modelDataForType: ModelData, deploymentManager: DeploymentManager, user: LoggedUser, subprocessesDetails: Set[SubprocessDetails], isSubprocess: Boolean, processCategoryService: ProcessCategoryService, processingType: String): UIProcessObjects = { val processConfig = modelDataForType.processConfig val chosenProcessDefinition: ProcessDefinition[ObjectDefinition] = modelDataForType.processDefinition val fixedComponentsUiConfig = ComponentsUiConfigExtractor.extract(processConfig) //FIXME: how to handle dynamic configuration of subprocesses?? val subprocessInputs = fetchSubprocessInputs(subprocessesDetails, modelDataForType.modelClassLoader.classLoader, fixedComponentsUiConfig) val uiProcessDefinition = createUIProcessDefinition(chosenProcessDefinition, subprocessInputs, modelDataForType.typeDefinitions.map(prepareClazzDefinition), processCategoryService) val customTransformerAdditionalData = chosenProcessDefinition.customStreamTransformers.mapValuesNow(_._2) val dynamicComponentsConfig = uiProcessDefinition.allDefinitions.mapValues(_.componentConfig) val subprocessesComponentsConfig = subprocessInputs.mapValues(_.componentConfig) //we append fixedComponentsConfig, because configuration of default components (filters, switches) etc. will not be present in dynamicComponentsConfig... //maybe we can put them also in uiProcessDefinition.allDefinitions? val finalComponentsConfig = ComponentDefinitionPreparer.combineComponentsConfig(subprocessesComponentsConfig, fixedComponentsUiConfig, dynamicComponentsConfig) val componentsGroupMapping = ComponentsGroupMappingConfigExtractor.extract(processConfig) val additionalPropertiesConfig = processConfig .getOrElse[Map[String, AdditionalPropertyConfig]]("additionalPropertiesConfig", Map.empty) .filter(_ => !isSubprocess) // fixme: it should be introduced separate config for additionalPropertiesConfig for fragments. For now we skip that .mapValues(createUIAdditionalPropertyConfig) val defaultUseAsyncInterpretationFromConfig = processConfig.as[Option[Boolean]]("asyncExecutionConfig.defaultUseAsyncInterpretation") val defaultAsyncInterpretation: DefaultAsyncInterpretationValue = DefaultAsyncInterpretationValueDeterminer.determine(defaultUseAsyncInterpretationFromConfig) UIProcessObjects( componentGroups = ComponentDefinitionPreparer.prepareComponentsGroupList( user = user, processDefinition = uiProcessDefinition, isSubprocess = isSubprocess, componentsConfig = finalComponentsConfig, componentsGroupMapping = componentsGroupMapping, processCategoryService = processCategoryService, customTransformerAdditionalData = customTransformerAdditionalData, processingType ), processDefinition = uiProcessDefinition, componentsConfig = finalComponentsConfig, additionalPropertiesConfig = additionalPropertiesConfig, edgesForNodes = ComponentDefinitionPreparer.prepareEdgeTypes( processDefinition = chosenProcessDefinition, isSubprocess = isSubprocess, subprocessesDetails = subprocessesDetails ), customActions = deploymentManager.customActions.map(UICustomAction(_)), defaultAsyncInterpretation = defaultAsyncInterpretation.value) } private def prepareClazzDefinition(definition: ClazzDefinition): UIClazzDefinition = { def toUIBasicParam(p: TypeInfos.Parameter): UIBasicParameter = UIBasicParameter(p.name, p.refClazz) // TODO: present all overloaded methods on FE def toUIMethod(methods: List[MethodInfo]): UIMethodInfo = { val m = methods.maxBy(_.parameters.size) UIMethodInfo(m.parameters.map(toUIBasicParam), m.refClazz, m.description, m.varArgs) } val methodsWithHighestArity = definition.methods.mapValues(toUIMethod) val staticMethodsWithHighestArity = definition.staticMethods.mapValues(toUIMethod) UIClazzDefinition(definition.clazzName, methodsWithHighestArity, staticMethodsWithHighestArity) } private def fetchSubprocessInputs(subprocessesDetails: Set[SubprocessDetails], classLoader: ClassLoader, fixedComponentsConfig: Map[String, SingleComponentConfig]): Map[String, ObjectDefinition] = { val subprocessInputs = subprocessesDetails.collect { case SubprocessDetails(CanonicalProcess(MetaData(id, FragmentSpecificData(docsUrl), _, _), FlatNode(SubprocessInputDefinition(_, parameters, _)) :: _, _), category) => val config = fixedComponentsConfig.getOrElse(id, SingleComponentConfig.zero).copy(docsUrl = docsUrl) val typedParameters = parameters.map(extractSubprocessParam(classLoader, config)) (id, new ObjectDefinition(typedParameters, Typed[java.util.Map[String, Any]], Some(List(category)), config)) }.toMap subprocessInputs } private def extractSubprocessParam(classLoader: ClassLoader, componentConfig: SingleComponentConfig)(p: SubprocessParameter): Parameter = { val runtimeClass = p.typ.toRuntimeClass(classLoader) //TODO: currently if we cannot parse parameter class we assume it's unknown val typ = runtimeClass.map(Typed(_)).getOrElse(Unknown) val config = componentConfig.params.flatMap(_.get(p.name)).getOrElse(ParameterConfig.empty) val parameterData = ParameterData(typ, Nil) val extractedEditor = EditorExtractor.extract(parameterData, config) Parameter( name = p.name, typ = typ, editor = extractedEditor, validators = ValidatorsExtractor.extract(ValidatorExtractorParameters(parameterData, isOptional = true, config, extractedEditor)), // TODO: ability to pick default value from gui defaultValue = DefaultValueDeterminerChain.determineParameterDefaultValue(DefaultValueDeterminerParameters(parameterData, isOptional = true, config, extractedEditor)), additionalVariables = Map.empty, variablesToHide = Set.empty, branchParam = false, isLazyParameter = false, scalaOptionParameter = false, javaOptionalParameter = false) } def createUIObjectDefinition(objectDefinition: ObjectDefinition, processCategoryService: ProcessCategoryService): UIObjectDefinition = { UIObjectDefinition( parameters = objectDefinition.parameters.map(param => createUIParameter(param)), returnType = if (objectDefinition.hasNoReturn) None else Some(objectDefinition.returnType), categories = objectDefinition.categories.getOrElse(processCategoryService.getAllCategories), componentConfig = objectDefinition.componentConfig ) } def createUIProcessDefinition(processDefinition: ProcessDefinition[ObjectDefinition], subprocessInputs: Map[String, ObjectDefinition], types: Set[UIClazzDefinition], processCategoryService: ProcessCategoryService): UIProcessDefinition = { def createUIObjectDef(objDef: ObjectDefinition) = createUIObjectDefinition(objDef, processCategoryService) val uiProcessDefinition = UIProcessDefinition( services = processDefinition.services.mapValues(createUIObjectDef), sourceFactories = processDefinition.sourceFactories.mapValues(createUIObjectDef), sinkFactories = processDefinition.sinkFactories.mapValues(createUIObjectDef), subprocessInputs = subprocessInputs.mapValues(createUIObjectDef), customStreamTransformers = processDefinition.customStreamTransformers.mapValues(e => createUIObjectDef(e._1)), signalsWithTransformers = processDefinition.signalsWithTransformers.mapValues(e => createUIObjectDef(e._1)), globalVariables = processDefinition.expressionConfig.globalVariables.mapValues(createUIObjectDef), typesInformation = types ) uiProcessDefinition } def createUIParameter(parameter: Parameter): UIParameter = { UIParameter(name = parameter.name, typ = parameter.typ, editor = parameter.editor.getOrElse(RawParameterEditor), validators = parameter.validators, defaultValue = parameter.defaultValue.getOrElse(""), additionalVariables = parameter.additionalVariables.mapValuesNow(_.typingResult), variablesToHide = parameter.variablesToHide, branchParam = parameter.branchParam) } def createUIAdditionalPropertyConfig(config: AdditionalPropertyConfig): UiAdditionalPropertyConfig = { val editor = UiAdditionalPropertyEditorDeterminer.determine(config) val determinedValidators = AdditionalPropertyValidatorDeterminerChain(config).determine() UiAdditionalPropertyConfig(config.defaultValue, editor, determinedValidators, config.label) } } object SortedComponentGroup { def apply(name: ComponentGroupName, components: List[ComponentTemplate]): ComponentGroup = ComponentGroup(name, components.sortBy(_.label.toLowerCase)) }
TouK/nussknacker
ui/server/src/main/scala/pl/touk/nussknacker/ui/definition/UIProcessObjectsFactory.scala
Scala
apache-2.0
11,548
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.ml.regression import scala.util.Random import org.apache.spark.SparkFunSuite import org.apache.spark.ml.feature.Instance import org.apache.spark.ml.feature.LabeledPoint import org.apache.spark.ml.linalg.{DenseVector, Vector, Vectors} import org.apache.spark.ml.param.{ParamMap, ParamsSuite} import org.apache.spark.ml.util.{DefaultReadWriteTest, MLTestingUtils} import org.apache.spark.ml.util.TestingUtils._ import org.apache.spark.mllib.util.{LinearDataGenerator, MLlibTestSparkContext} import org.apache.spark.sql.{DataFrame, Row} class LinearRegressionSuite extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest { import testImplicits._ private val seed: Int = 42 @transient var datasetWithDenseFeature: DataFrame = _ @transient var datasetWithStrongNoise: DataFrame = _ @transient var datasetWithDenseFeatureWithoutIntercept: DataFrame = _ @transient var datasetWithSparseFeature: DataFrame = _ @transient var datasetWithWeight: DataFrame = _ @transient var datasetWithWeightConstantLabel: DataFrame = _ @transient var datasetWithWeightZeroLabel: DataFrame = _ override def beforeAll(): Unit = { super.beforeAll() datasetWithDenseFeature = sc.parallelize(LinearDataGenerator.generateLinearInput( intercept = 6.3, weights = Array(4.7, 7.2), xMean = Array(0.9, -1.3), xVariance = Array(0.7, 1.2), nPoints = 10000, seed, eps = 0.1), 2).map(_.asML).toDF() datasetWithStrongNoise = sc.parallelize(LinearDataGenerator.generateLinearInput( intercept = 6.3, weights = Array(4.7, 7.2), xMean = Array(0.9, -1.3), xVariance = Array(0.7, 1.2), nPoints = 100, seed, eps = 5.0), 2).map(_.asML).toDF() /* datasetWithDenseFeatureWithoutIntercept is not needed for correctness testing but is useful for illustrating training model without intercept */ datasetWithDenseFeatureWithoutIntercept = sc.parallelize( LinearDataGenerator.generateLinearInput( intercept = 0.0, weights = Array(4.7, 7.2), xMean = Array(0.9, -1.3), xVariance = Array(0.7, 1.2), nPoints = 10000, seed, eps = 0.1), 2).map(_.asML).toDF() val r = new Random(seed) // When feature size is larger than 4096, normal optimizer is chosen // as the solver of linear regression in the case of "auto" mode. val featureSize = 4100 datasetWithSparseFeature = sc.parallelize(LinearDataGenerator.generateLinearInput( intercept = 0.0, weights = Seq.fill(featureSize)(r.nextDouble()).toArray, xMean = Seq.fill(featureSize)(r.nextDouble()).toArray, xVariance = Seq.fill(featureSize)(r.nextDouble()).toArray, nPoints = 200, seed, eps = 0.1, sparsity = 0.7), 2).map(_.asML).toDF() /* R code: A <- matrix(c(0, 1, 2, 3, 5, 7, 11, 13), 4, 2) b <- c(17, 19, 23, 29) w <- c(1, 2, 3, 4) df <- as.data.frame(cbind(A, b)) */ datasetWithWeight = sc.parallelize(Seq( Instance(17.0, 1.0, Vectors.dense(0.0, 5.0).toSparse), Instance(19.0, 2.0, Vectors.dense(1.0, 7.0)), Instance(23.0, 3.0, Vectors.dense(2.0, 11.0)), Instance(29.0, 4.0, Vectors.dense(3.0, 13.0)) ), 2).toDF() /* R code: A <- matrix(c(0, 1, 2, 3, 5, 7, 11, 13), 4, 2) b.const <- c(17, 17, 17, 17) w <- c(1, 2, 3, 4) df.const.label <- as.data.frame(cbind(A, b.const)) */ datasetWithWeightConstantLabel = sc.parallelize(Seq( Instance(17.0, 1.0, Vectors.dense(0.0, 5.0).toSparse), Instance(17.0, 2.0, Vectors.dense(1.0, 7.0)), Instance(17.0, 3.0, Vectors.dense(2.0, 11.0)), Instance(17.0, 4.0, Vectors.dense(3.0, 13.0)) ), 2).toDF() datasetWithWeightZeroLabel = sc.parallelize(Seq( Instance(0.0, 1.0, Vectors.dense(0.0, 5.0).toSparse), Instance(0.0, 2.0, Vectors.dense(1.0, 7.0)), Instance(0.0, 3.0, Vectors.dense(2.0, 11.0)), Instance(0.0, 4.0, Vectors.dense(3.0, 13.0)) ), 2).toDF() } /** * Enable the ignored test to export the dataset into CSV format, * so we can validate the training accuracy compared with R's glmnet package. */ ignore("export test data into CSV format") { datasetWithDenseFeature.rdd.map { case Row(label: Double, features: Vector) => label + "," + features.toArray.mkString(",") }.repartition(1).saveAsTextFile("target/tmp/LinearRegressionSuite/datasetWithDenseFeature") datasetWithDenseFeatureWithoutIntercept.rdd.map { case Row(label: Double, features: Vector) => label + "," + features.toArray.mkString(",") }.repartition(1).saveAsTextFile( "target/tmp/LinearRegressionSuite/datasetWithDenseFeatureWithoutIntercept") datasetWithSparseFeature.rdd.map { case Row(label: Double, features: Vector) => label + "," + features.toArray.mkString(",") }.repartition(1).saveAsTextFile("target/tmp/LinearRegressionSuite/datasetWithSparseFeature") } test("params") { ParamsSuite.checkParams(new LinearRegression) val model = new LinearRegressionModel("linearReg", Vectors.dense(0.0), 0.0) ParamsSuite.checkParams(model) } test("linear regression: default params") { val lir = new LinearRegression assert(lir.getLabelCol === "label") assert(lir.getFeaturesCol === "features") assert(lir.getPredictionCol === "prediction") assert(lir.getRegParam === 0.0) assert(lir.getElasticNetParam === 0.0) assert(lir.getFitIntercept) assert(lir.getStandardization) assert(lir.getSolver == "auto") val model = lir.fit(datasetWithDenseFeature) MLTestingUtils.checkCopyAndUids(lir, model) assert(model.hasSummary) val copiedModel = model.copy(ParamMap.empty) assert(copiedModel.hasSummary) model.setSummary(None) assert(!model.hasSummary) model.transform(datasetWithDenseFeature) .select("label", "prediction") .collect() assert(model.getFeaturesCol === "features") assert(model.getPredictionCol === "prediction") assert(model.intercept !== 0.0) assert(model.hasParent) val numFeatures = datasetWithDenseFeature.select("features").first().getAs[Vector](0).size assert(model.numFeatures === numFeatures) } test("linear regression handles singular matrices") { // check for both constant columns with intercept (zero std) and collinear val singularDataConstantColumn = sc.parallelize(Seq( Instance(17.0, 1.0, Vectors.dense(1.0, 5.0).toSparse), Instance(19.0, 2.0, Vectors.dense(1.0, 7.0)), Instance(23.0, 3.0, Vectors.dense(1.0, 11.0)), Instance(29.0, 4.0, Vectors.dense(1.0, 13.0)) ), 2).toDF() Seq("auto", "l-bfgs", "normal").foreach { solver => val trainer = new LinearRegression().setSolver(solver).setFitIntercept(true) val model = trainer.fit(singularDataConstantColumn) // to make it clear that WLS did not solve analytically intercept[UnsupportedOperationException] { model.summary.coefficientStandardErrors } assert(model.summary.objectiveHistory !== Array(0.0)) } val singularDataCollinearFeatures = sc.parallelize(Seq( Instance(17.0, 1.0, Vectors.dense(10.0, 5.0).toSparse), Instance(19.0, 2.0, Vectors.dense(14.0, 7.0)), Instance(23.0, 3.0, Vectors.dense(22.0, 11.0)), Instance(29.0, 4.0, Vectors.dense(26.0, 13.0)) ), 2).toDF() Seq("auto", "l-bfgs", "normal").foreach { solver => val trainer = new LinearRegression().setSolver(solver).setFitIntercept(true) val model = trainer.fit(singularDataCollinearFeatures) intercept[UnsupportedOperationException] { model.summary.coefficientStandardErrors } assert(model.summary.objectiveHistory !== Array(0.0)) } } test("linear regression with intercept without regularization") { Seq("auto", "l-bfgs", "normal").foreach { solver => val trainer1 = new LinearRegression().setSolver(solver) // The result should be the same regardless of standardization without regularization val trainer2 = (new LinearRegression).setStandardization(false).setSolver(solver) val model1 = trainer1.fit(datasetWithDenseFeature) val model2 = trainer2.fit(datasetWithDenseFeature) /* Using the following R code to load the data and train the model using glmnet package. library("glmnet") data <- read.csv("path", header=FALSE, stringsAsFactors=FALSE) features <- as.matrix(data.frame(as.numeric(data$V2), as.numeric(data$V3))) label <- as.numeric(data$V1) coefficients <- coef(glmnet(features, label, family="gaussian", alpha = 0, lambda = 0)) > coefficients 3 x 1 sparse Matrix of class "dgCMatrix" s0 (Intercept) 6.298698 as.numeric.data.V2. 4.700706 as.numeric.data.V3. 7.199082 */ val interceptR = 6.298698 val coefficientsR = Vectors.dense(4.700706, 7.199082) assert(model1.intercept ~== interceptR relTol 1E-3) assert(model1.coefficients ~= coefficientsR relTol 1E-3) assert(model2.intercept ~== interceptR relTol 1E-3) assert(model2.coefficients ~= coefficientsR relTol 1E-3) model1.transform(datasetWithDenseFeature).select("features", "prediction").collect().foreach { case Row(features: DenseVector, prediction1: Double) => val prediction2 = features(0) * model1.coefficients(0) + features(1) * model1.coefficients(1) + model1.intercept assert(prediction1 ~== prediction2 relTol 1E-5) } } } test("linear regression without intercept without regularization") { Seq("auto", "l-bfgs", "normal").foreach { solver => val trainer1 = (new LinearRegression).setFitIntercept(false).setSolver(solver) // Without regularization the results should be the same val trainer2 = (new LinearRegression).setFitIntercept(false).setStandardization(false) .setSolver(solver) val model1 = trainer1.fit(datasetWithDenseFeature) val modelWithoutIntercept1 = trainer1.fit(datasetWithDenseFeatureWithoutIntercept) val model2 = trainer2.fit(datasetWithDenseFeature) val modelWithoutIntercept2 = trainer2.fit(datasetWithDenseFeatureWithoutIntercept) /* coefficients <- coef(glmnet(features, label, family="gaussian", alpha = 0, lambda = 0, intercept = FALSE)) > coefficients 3 x 1 sparse Matrix of class "dgCMatrix" s0 (Intercept) . as.numeric.data.V2. 6.973403 as.numeric.data.V3. 5.284370 */ val coefficientsR = Vectors.dense(6.973403, 5.284370) assert(model1.intercept ~== 0 absTol 1E-2) assert(model1.coefficients ~= coefficientsR relTol 1E-2) assert(model2.intercept ~== 0 absTol 1E-2) assert(model2.coefficients ~= coefficientsR relTol 1E-2) /* Then again with the data with no intercept: > coefficientsWithoutIntercept 3 x 1 sparse Matrix of class "dgCMatrix" s0 (Intercept) . as.numeric.data3.V2. 4.70011 as.numeric.data3.V3. 7.19943 */ val coefficientsWithoutInterceptR = Vectors.dense(4.70011, 7.19943) assert(modelWithoutIntercept1.intercept ~== 0 absTol 1E-3) assert(modelWithoutIntercept1.coefficients ~= coefficientsWithoutInterceptR relTol 1E-3) assert(modelWithoutIntercept2.intercept ~== 0 absTol 1E-3) assert(modelWithoutIntercept2.coefficients ~= coefficientsWithoutInterceptR relTol 1E-3) } } test("linear regression with intercept with L1 regularization") { Seq("auto", "l-bfgs", "normal").foreach { solver => val trainer1 = (new LinearRegression).setElasticNetParam(1.0).setRegParam(0.57) .setSolver(solver) val trainer2 = (new LinearRegression).setElasticNetParam(1.0).setRegParam(0.57) .setSolver(solver).setStandardization(false) val model1 = trainer1.fit(datasetWithDenseFeature) val model2 = trainer2.fit(datasetWithDenseFeature) /* coefficients <- coef(glmnet(features, label, family="gaussian", alpha = 1.0, lambda = 0.57 )) > coefficients 3 x 1 sparse Matrix of class "dgCMatrix" s0 (Intercept) 6.242284 as.numeric.d1.V2. 4.019605 as.numeric.d1.V3. 6.679538 */ val interceptR1 = 6.242284 val coefficientsR1 = Vectors.dense(4.019605, 6.679538) assert(model1.intercept ~== interceptR1 relTol 1E-2) assert(model1.coefficients ~= coefficientsR1 relTol 1E-2) /* coefficients <- coef(glmnet(features, label, family="gaussian", alpha = 1.0, lambda = 0.57, standardize=FALSE )) > coefficients 3 x 1 sparse Matrix of class "dgCMatrix" s0 (Intercept) 6.416948 as.numeric.data.V2. 3.893869 as.numeric.data.V3. 6.724286 */ val interceptR2 = 6.416948 val coefficientsR2 = Vectors.dense(3.893869, 6.724286) assert(model2.intercept ~== interceptR2 relTol 1E-3) assert(model2.coefficients ~= coefficientsR2 relTol 1E-3) model1.transform(datasetWithDenseFeature).select("features", "prediction") .collect().foreach { case Row(features: DenseVector, prediction1: Double) => val prediction2 = features(0) * model1.coefficients(0) + features(1) * model1.coefficients(1) + model1.intercept assert(prediction1 ~== prediction2 relTol 1E-5) } } } test("linear regression without intercept with L1 regularization") { Seq("auto", "l-bfgs", "normal").foreach { solver => val trainer1 = (new LinearRegression).setElasticNetParam(1.0).setRegParam(0.57) .setFitIntercept(false).setSolver(solver) val trainer2 = (new LinearRegression).setElasticNetParam(1.0).setRegParam(0.57) .setFitIntercept(false).setStandardization(false).setSolver(solver) val model1 = trainer1.fit(datasetWithDenseFeature) val model2 = trainer2.fit(datasetWithDenseFeature) /* coefficients <- coef(glmnet(features, label, family="gaussian", alpha = 1.0, lambda = 0.57, intercept=FALSE )) > coefficients 3 x 1 sparse Matrix of class "dgCMatrix" s0 (Intercept) . as.numeric.data.V2. 6.272927 as.numeric.data.V3. 4.782604 */ val interceptR1 = 0.0 val coefficientsR1 = Vectors.dense(6.272927, 4.782604) assert(model1.intercept ~== interceptR1 absTol 1E-2) assert(model1.coefficients ~= coefficientsR1 relTol 1E-2) /* coefficients <- coef(glmnet(features, label, family="gaussian", alpha = 1.0, lambda = 0.57, intercept=FALSE, standardize=FALSE )) > coefficients 3 x 1 sparse Matrix of class "dgCMatrix" s0 (Intercept) . as.numeric.data.V2. 6.207817 as.numeric.data.V3. 4.775780 */ val interceptR2 = 0.0 val coefficientsR2 = Vectors.dense(6.207817, 4.775780) assert(model2.intercept ~== interceptR2 absTol 1E-2) assert(model2.coefficients ~= coefficientsR2 relTol 1E-2) model1.transform(datasetWithDenseFeature).select("features", "prediction") .collect().foreach { case Row(features: DenseVector, prediction1: Double) => val prediction2 = features(0) * model1.coefficients(0) + features(1) * model1.coefficients(1) + model1.intercept assert(prediction1 ~== prediction2 relTol 1E-5) } } } test("linear regression with intercept with L2 regularization") { Seq("auto", "l-bfgs", "normal").foreach { solver => val trainer1 = (new LinearRegression).setElasticNetParam(0.0).setRegParam(2.3) .setSolver(solver) val trainer2 = (new LinearRegression).setElasticNetParam(0.0).setRegParam(2.3) .setStandardization(false).setSolver(solver) val model1 = trainer1.fit(datasetWithDenseFeature) val model2 = trainer2.fit(datasetWithDenseFeature) /* coefficients <- coef(glmnet(features, label, family="gaussian", alpha = 0.0, lambda = 2.3)) > coefficients 3 x 1 sparse Matrix of class "dgCMatrix" s0 (Intercept) 5.260103 as.numeric.d1.V2. 3.725522 as.numeric.d1.V3. 5.711203 */ val interceptR1 = 5.260103 val coefficientsR1 = Vectors.dense(3.725522, 5.711203) assert(model1.intercept ~== interceptR1 relTol 1E-2) assert(model1.coefficients ~= coefficientsR1 relTol 1E-2) /* coefficients <- coef(glmnet(features, label, family="gaussian", alpha = 0.0, lambda = 2.3, standardize=FALSE)) > coefficients 3 x 1 sparse Matrix of class "dgCMatrix" s0 (Intercept) 5.790885 as.numeric.d1.V2. 3.432373 as.numeric.d1.V3. 5.919196 */ val interceptR2 = 5.790885 val coefficientsR2 = Vectors.dense(3.432373, 5.919196) assert(model2.intercept ~== interceptR2 relTol 1E-2) assert(model2.coefficients ~= coefficientsR2 relTol 1E-2) model1.transform(datasetWithDenseFeature).select("features", "prediction").collect().foreach { case Row(features: DenseVector, prediction1: Double) => val prediction2 = features(0) * model1.coefficients(0) + features(1) * model1.coefficients(1) + model1.intercept assert(prediction1 ~== prediction2 relTol 1E-5) } } } test("linear regression without intercept with L2 regularization") { Seq("auto", "l-bfgs", "normal").foreach { solver => val trainer1 = (new LinearRegression).setElasticNetParam(0.0).setRegParam(2.3) .setFitIntercept(false).setSolver(solver) val trainer2 = (new LinearRegression).setElasticNetParam(0.0).setRegParam(2.3) .setFitIntercept(false).setStandardization(false).setSolver(solver) val model1 = trainer1.fit(datasetWithDenseFeature) val model2 = trainer2.fit(datasetWithDenseFeature) /* coefficients <- coef(glmnet(features, label, family="gaussian", alpha = 0.0, lambda = 2.3, intercept = FALSE)) > coefficients 3 x 1 sparse Matrix of class "dgCMatrix" s0 (Intercept) . as.numeric.d1.V2. 5.493430 as.numeric.d1.V3. 4.223082 */ val interceptR1 = 0.0 val coefficientsR1 = Vectors.dense(5.493430, 4.223082) assert(model1.intercept ~== interceptR1 absTol 1E-2) assert(model1.coefficients ~= coefficientsR1 relTol 1E-2) /* coefficients <- coef(glmnet(features, label, family="gaussian", alpha = 0.0, lambda = 2.3, intercept = FALSE, standardize=FALSE)) > coefficients 3 x 1 sparse Matrix of class "dgCMatrix" s0 (Intercept) . as.numeric.d1.V2. 5.244324 as.numeric.d1.V3. 4.203106 */ val interceptR2 = 0.0 val coefficientsR2 = Vectors.dense(5.244324, 4.203106) assert(model2.intercept ~== interceptR2 absTol 1E-2) assert(model2.coefficients ~= coefficientsR2 relTol 1E-2) model1.transform(datasetWithDenseFeature).select("features", "prediction").collect().foreach { case Row(features: DenseVector, prediction1: Double) => val prediction2 = features(0) * model1.coefficients(0) + features(1) * model1.coefficients(1) + model1.intercept assert(prediction1 ~== prediction2 relTol 1E-5) } } } test("linear regression with intercept with ElasticNet regularization") { Seq("auto", "l-bfgs", "normal").foreach { solver => val trainer1 = (new LinearRegression).setElasticNetParam(0.3).setRegParam(1.6) .setSolver(solver) val trainer2 = (new LinearRegression).setElasticNetParam(0.3).setRegParam(1.6) .setStandardization(false).setSolver(solver) val model1 = trainer1.fit(datasetWithDenseFeature) val model2 = trainer2.fit(datasetWithDenseFeature) /* coefficients <- coef(glmnet(features, label, family="gaussian", alpha = 0.3, lambda = 1.6 )) > coefficients 3 x 1 sparse Matrix of class "dgCMatrix" s0 (Intercept) 5.689855 as.numeric.d1.V2. 3.661181 as.numeric.d1.V3. 6.000274 */ val interceptR1 = 5.689855 val coefficientsR1 = Vectors.dense(3.661181, 6.000274) assert(model1.intercept ~== interceptR1 relTol 1E-2) assert(model1.coefficients ~= coefficientsR1 relTol 1E-2) /* coefficients <- coef(glmnet(features, label, family="gaussian", alpha = 0.3, lambda = 1.6 standardize=FALSE)) > coefficients 3 x 1 sparse Matrix of class "dgCMatrix" s0 (Intercept) 6.113890 as.numeric.d1.V2. 3.407021 as.numeric.d1.V3. 6.152512 */ val interceptR2 = 6.113890 val coefficientsR2 = Vectors.dense(3.407021, 6.152512) assert(model2.intercept ~== interceptR2 relTol 1E-2) assert(model2.coefficients ~= coefficientsR2 relTol 1E-2) model1.transform(datasetWithDenseFeature).select("features", "prediction") .collect().foreach { case Row(features: DenseVector, prediction1: Double) => val prediction2 = features(0) * model1.coefficients(0) + features(1) * model1.coefficients(1) + model1.intercept assert(prediction1 ~== prediction2 relTol 1E-5) } } } test("linear regression without intercept with ElasticNet regularization") { Seq("auto", "l-bfgs", "normal").foreach { solver => val trainer1 = (new LinearRegression).setElasticNetParam(0.3).setRegParam(1.6) .setFitIntercept(false).setSolver(solver) val trainer2 = (new LinearRegression).setElasticNetParam(0.3).setRegParam(1.6) .setFitIntercept(false).setStandardization(false).setSolver(solver) val model1 = trainer1.fit(datasetWithDenseFeature) val model2 = trainer2.fit(datasetWithDenseFeature) /* coefficients <- coef(glmnet(features, label, family="gaussian", alpha = 0.3, lambda = 1.6, intercept=FALSE )) > coefficients 3 x 1 sparse Matrix of class "dgCMatrix" s0 (Intercept) . as.numeric.d1.V2. 5.643748 as.numeric.d1.V3. 4.331519 */ val interceptR1 = 0.0 val coefficientsR1 = Vectors.dense(5.643748, 4.331519) assert(model1.intercept ~== interceptR1 absTol 1E-2) assert(model1.coefficients ~= coefficientsR1 relTol 1E-2) /* coefficients <- coef(glmnet(features, label, family="gaussian", alpha = 0.3, lambda = 1.6, intercept=FALSE, standardize=FALSE )) > coefficients 3 x 1 sparse Matrix of class "dgCMatrix" s0 (Intercept) . as.numeric.d1.V2. 5.455902 as.numeric.d1.V3. 4.312266 */ val interceptR2 = 0.0 val coefficientsR2 = Vectors.dense(5.455902, 4.312266) assert(model2.intercept ~== interceptR2 absTol 1E-2) assert(model2.coefficients ~= coefficientsR2 relTol 1E-2) model1.transform(datasetWithDenseFeature).select("features", "prediction") .collect().foreach { case Row(features: DenseVector, prediction1: Double) => val prediction2 = features(0) * model1.coefficients(0) + features(1) * model1.coefficients(1) + model1.intercept assert(prediction1 ~== prediction2 relTol 1E-5) } } } test("linear regression model with constant label") { /* R code: for (formula in c(b.const ~ . -1, b.const ~ .)) { model <- lm(formula, data=df.const.label, weights=w) print(as.vector(coef(model))) } [1] -9.221298 3.394343 [1] 17 0 0 */ val expected = Seq( Vectors.dense(0.0, -9.221298, 3.394343), Vectors.dense(17.0, 0.0, 0.0)) Seq("auto", "l-bfgs", "normal").foreach { solver => var idx = 0 for (fitIntercept <- Seq(false, true)) { val model1 = new LinearRegression() .setFitIntercept(fitIntercept) .setWeightCol("weight") .setPredictionCol("myPrediction") .setSolver(solver) .fit(datasetWithWeightConstantLabel) val actual1 = Vectors.dense(model1.intercept, model1.coefficients(0), model1.coefficients(1)) assert(actual1 ~== expected(idx) absTol 1e-4) // Schema of summary.predictions should be a superset of the input dataset assert((datasetWithWeightConstantLabel.schema.fieldNames.toSet + model1.getPredictionCol) .subsetOf(model1.summary.predictions.schema.fieldNames.toSet)) val model2 = new LinearRegression() .setFitIntercept(fitIntercept) .setWeightCol("weight") .setPredictionCol("myPrediction") .setSolver(solver) .fit(datasetWithWeightZeroLabel) val actual2 = Vectors.dense(model2.intercept, model2.coefficients(0), model2.coefficients(1)) assert(actual2 ~== Vectors.dense(0.0, 0.0, 0.0) absTol 1e-4) // Schema of summary.predictions should be a superset of the input dataset assert((datasetWithWeightZeroLabel.schema.fieldNames.toSet + model2.getPredictionCol) .subsetOf(model2.summary.predictions.schema.fieldNames.toSet)) idx += 1 } } } test("regularized linear regression through origin with constant label") { // The problem is ill-defined if fitIntercept=false, regParam is non-zero. // An exception is thrown in this case. Seq("auto", "l-bfgs", "normal").foreach { solver => for (standardization <- Seq(false, true)) { val model = new LinearRegression().setFitIntercept(false) .setRegParam(0.1).setStandardization(standardization).setSolver(solver) intercept[IllegalArgumentException] { model.fit(datasetWithWeightConstantLabel) } } } } test("linear regression with l-bfgs when training is not needed") { // When label is constant, l-bfgs solver returns results without training. // There are two possibilities: If the label is non-zero but constant, // and fitIntercept is true, then the model return yMean as intercept without training. // If label is all zeros, then all coefficients are zero regardless of fitIntercept, so // no training is needed. for (fitIntercept <- Seq(false, true)) { for (standardization <- Seq(false, true)) { val model1 = new LinearRegression() .setFitIntercept(fitIntercept) .setStandardization(standardization) .setWeightCol("weight") .setSolver("l-bfgs") .fit(datasetWithWeightConstantLabel) if (fitIntercept) { assert(model1.summary.objectiveHistory(0) ~== 0.0 absTol 1e-4) } val model2 = new LinearRegression() .setFitIntercept(fitIntercept) .setWeightCol("weight") .setSolver("l-bfgs") .fit(datasetWithWeightZeroLabel) assert(model2.summary.objectiveHistory(0) ~== 0.0 absTol 1e-4) } } } test("linear regression model training summary") { Seq("auto", "l-bfgs", "normal").foreach { solver => val trainer = new LinearRegression().setSolver(solver).setPredictionCol("myPrediction") val model = trainer.fit(datasetWithDenseFeature) val trainerNoPredictionCol = trainer.setPredictionCol("") val modelNoPredictionCol = trainerNoPredictionCol.fit(datasetWithDenseFeature) // Training results for the model should be available assert(model.hasSummary) assert(modelNoPredictionCol.hasSummary) // Schema should be a superset of the input dataset assert((datasetWithDenseFeature.schema.fieldNames.toSet + model.getPredictionCol).subsetOf( model.summary.predictions.schema.fieldNames.toSet)) // Validate that we re-insert a prediction column for evaluation val modelNoPredictionColFieldNames = modelNoPredictionCol.summary.predictions.schema.fieldNames assert(datasetWithDenseFeature.schema.fieldNames.toSet.subsetOf( modelNoPredictionColFieldNames.toSet)) assert(modelNoPredictionColFieldNames.exists(s => s.startsWith("prediction_"))) // Residuals in [[LinearRegressionResults]] should equal those manually computed datasetWithDenseFeature.select("features", "label") .rdd .map { case Row(features: DenseVector, label: Double) => val prediction = features(0) * model.coefficients(0) + features(1) * model.coefficients(1) + model.intercept label - prediction } .zip(model.summary.residuals.rdd.map(_.getDouble(0))) .collect() .foreach { case (manualResidual: Double, resultResidual: Double) => assert(manualResidual ~== resultResidual relTol 1E-5) } /* # Use the following R code to generate model training results. # path/part-00000 is the file generated by running LinearDataGenerator.generateLinearInput # as described before the beforeAll() method. d1 <- read.csv("path/part-00000", header=FALSE, stringsAsFactors=FALSE) fit <- glm(V1 ~ V2 + V3, data = d1, family = "gaussian") names(f1)[1] = c("V2") names(f1)[2] = c("V3") f1 <- data.frame(as.numeric(d1$V2), as.numeric(d1$V3)) predictions <- predict(fit, newdata=f1) l1 <- as.numeric(d1$V1) residuals <- l1 - predictions > mean(residuals^2) # MSE [1] 0.00985449 > mean(abs(residuals)) # MAD [1] 0.07961668 > cor(predictions, l1)^2 # r^2 [1] 0.9998737 > summary(fit) Call: glm(formula = V1 ~ V2 + V3, family = "gaussian", data = d1) Deviance Residuals: Min 1Q Median 3Q Max -0.47082 -0.06797 0.00002 0.06725 0.34635 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 6.3022157 0.0018600 3388 <2e-16 *** V2 4.6982442 0.0011805 3980 <2e-16 *** V3 7.1994344 0.0009044 7961 <2e-16 *** --- .... */ assert(model.summary.meanSquaredError ~== 0.00985449 relTol 1E-4) assert(model.summary.meanAbsoluteError ~== 0.07961668 relTol 1E-4) assert(model.summary.r2 ~== 0.9998737 relTol 1E-4) // Normal solver uses "WeightedLeastSquares". If no regularization is applied or only L2 // regularization is applied, this algorithm uses a direct solver and does not generate an // objective history because it does not run through iterations. if (solver == "l-bfgs") { // Objective function should be monotonically decreasing for linear regression assert( model.summary .objectiveHistory .sliding(2) .forall(x => x(0) >= x(1))) } else { // To clarify that the normal solver is used here. assert(model.summary.objectiveHistory.length == 1) assert(model.summary.objectiveHistory(0) == 0.0) val devianceResidualsR = Array(-0.47082, 0.34635) val seCoefR = Array(0.0011805, 0.0009044, 0.0018600) val tValsR = Array(3980, 7961, 3388) val pValsR = Array(0, 0, 0) model.summary.devianceResiduals.zip(devianceResidualsR).foreach { x => assert(x._1 ~== x._2 absTol 1E-4) } model.summary.coefficientStandardErrors.zip(seCoefR).foreach { x => assert(x._1 ~== x._2 absTol 1E-4) } model.summary.tValues.map(_.round).zip(tValsR).foreach{ x => assert(x._1 === x._2) } model.summary.pValues.map(_.round).zip(pValsR).foreach{ x => assert(x._1 === x._2) } } } } test("linear regression model testset evaluation summary") { Seq("auto", "l-bfgs", "normal").foreach { solver => val trainer = new LinearRegression().setSolver(solver) val model = trainer.fit(datasetWithDenseFeature) // Evaluating on training dataset should yield results summary equal to training summary val testSummary = model.evaluate(datasetWithDenseFeature) assert(model.summary.meanSquaredError ~== testSummary.meanSquaredError relTol 1E-5) assert(model.summary.r2 ~== testSummary.r2 relTol 1E-5) model.summary.residuals.select("residuals").collect() .zip(testSummary.residuals.select("residuals").collect()) .forall { case (Row(r1: Double), Row(r2: Double)) => r1 ~== r2 relTol 1E-5 } } } test("linear regression with weighted samples") { val sqlContext = spark.sqlContext import sqlContext.implicits._ val numClasses = 0 def modelEquals(m1: LinearRegressionModel, m2: LinearRegressionModel): Unit = { assert(m1.coefficients ~== m2.coefficients relTol 0.01) assert(m1.intercept ~== m2.intercept relTol 0.01) } val testParams = Seq( // (elasticNetParam, regParam, fitIntercept, standardization) (0.0, 0.21, true, true), (0.0, 0.21, true, false), (0.0, 0.21, false, false), (1.0, 0.21, true, true) ) for (solver <- Seq("auto", "l-bfgs", "normal"); (elasticNetParam, regParam, fitIntercept, standardization) <- testParams) { val estimator = new LinearRegression() .setFitIntercept(fitIntercept) .setStandardization(standardization) .setRegParam(regParam) .setElasticNetParam(elasticNetParam) MLTestingUtils.testArbitrarilyScaledWeights[LinearRegressionModel, LinearRegression]( datasetWithStrongNoise.as[LabeledPoint], estimator, modelEquals) MLTestingUtils.testOutliersWithSmallWeights[LinearRegressionModel, LinearRegression]( datasetWithStrongNoise.as[LabeledPoint], estimator, numClasses, modelEquals, outlierRatio = 3) MLTestingUtils.testOversamplingVsWeighting[LinearRegressionModel, LinearRegression]( datasetWithStrongNoise.as[LabeledPoint], estimator, modelEquals, seed) } } test("linear regression model with l-bfgs with big feature datasets") { val trainer = new LinearRegression().setSolver("auto") val model = trainer.fit(datasetWithSparseFeature) // Training results for the model should be available assert(model.hasSummary) // When LBFGS is used as optimizer, objective history can be restored. assert( model.summary .objectiveHistory .sliding(2) .forall(x => x(0) >= x(1))) } test("linear regression summary with weighted samples and intercept by normal solver") { /* R code: model <- glm(formula = "b ~ .", data = df, weights = w) summary(model) Call: glm(formula = "b ~ .", data = df, weights = w) Deviance Residuals: 1 2 3 4 1.920 -1.358 -1.109 0.960 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 18.080 9.608 1.882 0.311 V1 6.080 5.556 1.094 0.471 V2 -0.600 1.960 -0.306 0.811 (Dispersion parameter for gaussian family taken to be 7.68) Null deviance: 202.00 on 3 degrees of freedom Residual deviance: 7.68 on 1 degrees of freedom AIC: 18.783 Number of Fisher Scoring iterations: 2 */ val model = new LinearRegression() .setWeightCol("weight") .setSolver("normal") .fit(datasetWithWeight) val coefficientsR = Vectors.dense(Array(6.080, -0.600)) val interceptR = 18.080 val devianceResidualsR = Array(-1.358, 1.920) val seCoefR = Array(5.556, 1.960, 9.608) val tValsR = Array(1.094, -0.306, 1.882) val pValsR = Array(0.471, 0.811, 0.311) assert(model.coefficients ~== coefficientsR absTol 1E-3) assert(model.intercept ~== interceptR absTol 1E-3) model.summary.devianceResiduals.zip(devianceResidualsR).foreach { x => assert(x._1 ~== x._2 absTol 1E-3) } model.summary.coefficientStandardErrors.zip(seCoefR).foreach{ x => assert(x._1 ~== x._2 absTol 1E-3) } model.summary.tValues.zip(tValsR).foreach{ x => assert(x._1 ~== x._2 absTol 1E-3) } model.summary.pValues.zip(pValsR).foreach{ x => assert(x._1 ~== x._2 absTol 1E-3) } val modelWithL1 = new LinearRegression() .setWeightCol("weight") .setSolver("normal") .setRegParam(0.5) .setElasticNetParam(1.0) .fit(datasetWithWeight) assert(modelWithL1.summary.objectiveHistory !== Array(0.0)) assert( modelWithL1.summary .objectiveHistory .sliding(2) .forall(x => x(0) >= x(1))) } test("linear regression summary with weighted samples and w/o intercept by normal solver") { /* R code: model <- glm(formula = "b ~ . -1", data = df, weights = w) summary(model) Call: glm(formula = "b ~ . -1", data = df, weights = w) Deviance Residuals: 1 2 3 4 1.950 2.344 -4.600 2.103 Coefficients: Estimate Std. Error t value Pr(>|t|) V1 -3.7271 2.9032 -1.284 0.3279 V2 3.0100 0.6022 4.998 0.0378 * --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for gaussian family taken to be 17.4376) Null deviance: 5962.000 on 4 degrees of freedom Residual deviance: 34.875 on 2 degrees of freedom AIC: 22.835 Number of Fisher Scoring iterations: 2 */ val model = new LinearRegression() .setWeightCol("weight") .setSolver("normal") .setFitIntercept(false) .fit(datasetWithWeight) val coefficientsR = Vectors.dense(Array(-3.7271, 3.0100)) val interceptR = 0.0 val devianceResidualsR = Array(-4.600, 2.344) val seCoefR = Array(2.9032, 0.6022) val tValsR = Array(-1.284, 4.998) val pValsR = Array(0.3279, 0.0378) assert(model.coefficients ~== coefficientsR absTol 1E-3) assert(model.intercept === interceptR) model.summary.devianceResiduals.zip(devianceResidualsR).foreach { x => assert(x._1 ~== x._2 absTol 1E-3) } model.summary.coefficientStandardErrors.zip(seCoefR).foreach{ x => assert(x._1 ~== x._2 absTol 1E-3) } model.summary.tValues.zip(tValsR).foreach{ x => assert(x._1 ~== x._2 absTol 1E-3) } model.summary.pValues.zip(pValsR).foreach{ x => assert(x._1 ~== x._2 absTol 1E-3) } } test("read/write") { def checkModelData(model: LinearRegressionModel, model2: LinearRegressionModel): Unit = { assert(model.intercept === model2.intercept) assert(model.coefficients === model2.coefficients) } val lr = new LinearRegression() testEstimatorAndModelReadWrite(lr, datasetWithWeight, LinearRegressionSuite.allParamSettings, LinearRegressionSuite.allParamSettings, checkModelData) } test("should support all NumericType labels and weights, and not support other types") { for (solver <- Seq("auto", "l-bfgs", "normal")) { val lr = new LinearRegression().setMaxIter(1).setSolver(solver) MLTestingUtils.checkNumericTypes[LinearRegressionModel, LinearRegression]( lr, spark, isClassification = false) { (expected, actual) => assert(expected.intercept === actual.intercept) assert(expected.coefficients === actual.coefficients) } } } } object LinearRegressionSuite { /** * Mapping from all Params to valid settings which differ from the defaults. * This is useful for tests which need to exercise all Params, such as save/load. * This excludes input columns to simplify some tests. */ val allParamSettings: Map[String, Any] = Map( "predictionCol" -> "myPrediction", "regParam" -> 0.01, "elasticNetParam" -> 0.1, "maxIter" -> 2, // intentionally small "fitIntercept" -> true, "tol" -> 0.8, "standardization" -> false, "solver" -> "l-bfgs" ) }
minixalpha/spark
mllib/src/test/scala/org/apache/spark/ml/regression/LinearRegressionSuite.scala
Scala
apache-2.0
41,611
package edu.gemini.qpt.core.listeners import edu.gemini.ags.api.AgsGuideQuality._ import java.beans.PropertyChangeEvent import edu.gemini.ags.api.AgsAnalysis import edu.gemini.qpt.core.Marker.Severity import edu.gemini.qpt.core.Variant import edu.gemini.qpt.core.util.MarkerManager import edu.gemini.spModel.gemini.gems.Canopus import edu.gemini.spModel.gemini.gsaoi.GsaoiOdgw import edu.gemini.spModel.guide.GuideProbeGroup import scala.collection.JavaConverters._ class AgsAnalysisListener extends MarkerModelListener[Variant] { import AgsAnalysisListener._ override def propertyChange(evt: PropertyChangeEvent): Unit = { val variant = evt.getSource.asInstanceOf[Variant] val markerManager = variant.getSchedule.getMarkerManager markerManager.clearMarkers(this, variant) // Iterate over the observations in the variant and determine if they should generate // markers based on the AgsAnalysis. for (alloc <- variant.getAllocs.asScala if !alloc.getObs.getAgsAnalysis.isEmpty) { // Only analyses with a severity level that are not ODGW and Canopus should generate a marker. for { a <- alloc.getObs.getAgsAnalysis.asScala if (a match { case AgsAnalysis.NoGuideStarForGroup(group, _) => !ignoredProbeGroups.contains(group) case _ => true }) s <- severity(a) } markerManager.addMarker(false, this, s, a.message(withProbe = true), variant, alloc) } } override protected def getMarkerManager(t: Variant): MarkerManager = { t.getSchedule.getMarkerManager } } object AgsAnalysisListener { // We want to ignore AgsAnalysis problems for ODGW and Canopus. val ignoredProbeGroups: Set[GuideProbeGroup] = Set(GsaoiOdgw.Group.instance, Canopus.Wfs.Group.instance) def severity(a: AgsAnalysis): Option[Severity] = a.quality match { case DeliversRequestedIq => None case PossibleIqDegradation => Some(Severity.Warning) case IqDegradation => Some(Severity.Warning) case PossiblyUnusable => Some(Severity.Warning) case Unusable => Some(Severity.Error) } }
arturog8m/ocs
bundle/edu.gemini.qpt.client/src/main/scala/edu/gemini/qpt/core/listeners/AgsAnalysisListener.scala
Scala
bsd-3-clause
2,133
package utest.framework import scala.concurrent.{ExecutionContext, Future} /** * An immutable tree with each node containing a value, and a `Seq` of * children. Provides all normal `Seq` functionality as well as some tree * specific methods. */ case class Tree[+T](value: T, children: Tree[T]*) { /** * The number of nodes in this tree. */ def length: Int = { children.foldLeft(1)(_ + _.length) } def map[V](f: T => V): Tree[V] = { Tree(f(value), children.map(_.map(f)): _*) } /** * An iterator over the values stored on the nodes of this tree, in a depth * first manner starting from the root. */ def iterator: Iterator[T] = { Iterator(this.value) ++ children.flatMap(_.iterator) } def leafPaths: Iterator[List[T]] = { if (children.isEmpty) Iterator(List(this.value)) else children.toIterator.flatMap(_.leafPaths).map(this.value :: _) } def toSeq: Seq[T] = iterator.toList /** * Returns an iterator for the values at the leaves of this tree */ def leaves: Iterator[T] = { if (children.isEmpty) Iterator(this.value) else children.toIterator.flatMap(_.leaves) } } /** * The executable portion of a tree of tests. Each node contains an * executable, which when run either returns a Left(result) or a * Right(sequence) of child nodes which you can execute. */ class TestCallTree(inner: => Either[(() => Any, () => Unit), IndexedSeq[TestCallTree]]) { /** * Runs the test in this [[TestCallTree]] at the specified `path`. Called * by the [[TestTreeSeq.run]] method and usually not called manually. */ def run(path: List[Int])(implicit executionContext: ExecutionContext): Any = { path match { case head :: tail => val Right(children) = inner children(head).run(tail) case Nil => val Left((res, hook)) = inner try { val resFuture = res() match { case x: Future[_] => x case notFuture => Future.successful(notFuture) } resFuture.map { r => hook(); r } } catch { case scala.util.control.NonFatal(e) => hook(); throw e } } } }
cuzfrog/scala_sbt_template
macros/src/main/scala/utest/framework/Tree.scala
Scala
apache-2.0
2,156
package controllers import play.api.mvc._ import play.api.libs.json._ /** * Used for testing stuff. */ object TestController extends Controller { object Model { import play.api.libs.functional.syntax._ import org.apache.commons.codec.binary.Base64 import play.api.data.validation.ValidationError case class Echo(method: String, version: String, body: Option[Array[Byte]], headers: Map[String, Seq[String]], session: Map[String, String], flash: Map[String, String], remoteAddress: String, queryString: Map[String, Seq[String]], uri: String, path: String) case class ToReturn(status: Int = 200, body: Option[Array[Byte]] = None, headers: Map[String, String] = Map(), cookies: List[Cookie] = List(), session: Map[String, String] = Map(), flash: Map[String, String] = Map()) implicit val byteArrayWrites = new Writes[Array[Byte]] { def writes(o: Array[Byte]) = JsString(new String((Base64.encodeBase64(o)))) } implicit val byteArrayReads = new Reads[Array[Byte]] { def reads(json: JsValue) = json match { case JsString(value) => JsSuccess(Base64.decodeBase64(value.getBytes)) case _ => JsError(Seq(JsPath() -> Seq(ValidationError("validate.error.expected.jsstring")))) } } implicit val cookieReads = Json.reads[Cookie] implicit val cookieWrites = Json.writes[Cookie] implicit val echoReads = Json.reads[Echo] implicit val echoWrites = Json.writes[Echo] implicit val toReturnReads = Json.reads[ToReturn] implicit val toReturnWrites = Json.writes[ToReturn] } import Model._ def echo = Action(parse.raw) { request => import request._ Ok(Json.toJson(Echo(method, version, body.asBytes(), headers.toMap, request.session.data, request.flash.data, remoteAddress, queryString, uri, path))) } def slave = Action(parse.json) { request => Json.fromJson[ToReturn](request.body).fold({ errors => BadRequest(errors.toString()) }, { toReturn => toReturn.body.map(body => Status(toReturn.status)(body)).getOrElse(Status(toReturn.status)) .withHeaders(toReturn.headers.toSeq:_*) .withCookies(toReturn.cookies:_*) .withSession(toReturn.session.foldLeft(request.session)((s, item) => s + item)) .flashing(toReturn.flash.toSeq:_*) }) } }
michaelahlers/team-awesome-wedding
vendor/play-2.2.1/framework/test/integrationtest-scala/app/controllers/TestController.scala
Scala
mit
2,608
package org.bitcoins.core.protocol.ln.node import org.bitcoins.core.crypto.ECPublicKey import org.bitcoins.core.protocol.NetworkElement import org.bitcoins.core.util.Factory import scodec.bits.ByteVector /** * `NodeId` is simply a wrapper for * [[org.bitcoins.core.crypto.ECPublicKey ECPublicKey]]. * This public key needs to be a * 33 byte compressed secp256k1 public key. */ case class NodeId(pubKey: ECPublicKey) extends NetworkElement { require( pubKey.isCompressed, s"Cannot create a nodeId from a public key that was not compressed ${pubKey.hex}") override def toString: String = pubKey.hex override def bytes: ByteVector = pubKey.bytes } object NodeId extends Factory[NodeId] { def fromPubKey(pubKey: ECPublicKey): NodeId = { NodeId(pubKey) } override def fromBytes(bytes: ByteVector): NodeId = { val pubKey = ECPublicKey.fromBytes(bytes) fromPubKey(pubKey) } }
bitcoin-s/bitcoin-s-core
core/src/main/scala/org/bitcoins/core/protocol/ln/node/NodeId.scala
Scala
mit
920
/* * Copyright 2016 Alexey Kardapoltsev * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.github.kardapoltsev.astparser.parser.http import org.scalatest.matchers.should.Matchers import org.scalatest.wordspec.AnyWordSpec class HttpLexerSpec extends AnyWordSpec with Matchers { import HttpLexer._ private val lexer = new HttpLexer private def scan(input: String): List[Token] = { lexer.scan(input) } "HttpLexer" should { "parse GET route" in { scan("GET /api/users/") shouldBe List( Method("GET"), Slash(), Lexeme("api"), Slash(), Lexeme("users"), Slash() ) } "parse route params" in { scan("GET /api/{userId}/") shouldBe List( Method("GET"), Slash(), Lexeme("api"), Slash(), LeftBrace(), Lexeme("userId"), RightBrace(), Slash() ) } "parse escaped route params" in { scan("GET /api/{`type`}/") shouldBe List( Method("GET"), Slash(), Lexeme("api"), Slash(), LeftBrace(), Lexeme("type"), RightBrace(), Slash() ) } "parse query params" in { scan("GET /api?{param1}&{param2}") shouldBe List( Method("GET"), Slash(), Lexeme("api"), QuestionMark(), LeftBrace(), Lexeme("param1"), RightBrace(), Ampersand(), LeftBrace(), Lexeme("param2"), RightBrace() ) } "parse escaped query params" in { scan("GET /api?{`call`}") shouldBe List( Method("GET"), Slash(), Lexeme("api"), QuestionMark(), LeftBrace(), Lexeme("call"), RightBrace() ) } "parse CACHED directive" in { scan("CACHED GET /user") shouldBe List( CachedDirective(), Method("GET"), Slash(), Lexeme("user") ) } } }
kardapoltsev/astparser
src/test/scala/com/github/kardapoltsev/astparser/parser/http/HttpLexerSpec.scala
Scala
apache-2.0
2,484
package cmwell.analytics.main import java.nio.file.Paths import akka.actor.ActorSystem import akka.stream.ActorMaterializer import cmwell.analytics.data.{DataWriterFactory, IndexWithSystemFields} import cmwell.analytics.downloader.PartitionedDownloader import cmwell.analytics.util.{DiscoverEsTopology, FindContactPoints} import org.apache.commons.io.FileUtils import org.apache.log4j.LogManager import org.rogach.scallop.{ScallopConf, ScallopOption} import scala.concurrent.ExecutionContextExecutor object DumpSystemFieldsFromEs { def main(args: Array[String]): Unit = { val logger = LogManager.getLogger(DumpSystemFieldsFromEs.getClass) implicit val system: ActorSystem = ActorSystem("dump-system-fields-from-es") implicit val executionContext: ExecutionContextExecutor = system.dispatcher implicit val actorMaterializer: ActorMaterializer = ActorMaterializer() try { // Since we expect this to be run on a CM-Well node, the default parallelism is to use half the processors // so as to avoid starving the CM-Well node from processor resources. A higher level of parallelism might // be possible (without interfering with CM-Well) since most of the work will actually be on the ES side. val defaultParallelism = 1 max (Runtime.getRuntime.availableProcessors / 2) object Opts extends ScallopConf(args) { val readIndex: ScallopOption[String] = opt[String]("read-index", short = 'i', descr = "The name of the index to read from (default: cm_well_all)", required = false) val parallelism: ScallopOption[Int] = opt[Int]("parallelism", short = 'p', descr = "The parallelism level", default = Some(defaultParallelism)) val currentOnly: ScallopOption[Boolean] = opt[Boolean]("current-only", short = 'c', descr = "Only download current uuids", default = Some(false)) val format: ScallopOption[String] = opt[String]("format", short = 'f', descr = "The data format: either 'parquet' or 'csv'", default = Some("parquet")) val out: ScallopOption[String] = opt[String]("out", short = 'o', descr = "The path to save the output to", required = true) val url: ScallopOption[String] = trailArg[String]("url", descr = "A CM-Well URL", required = true) val sourceFilter: ScallopOption[Boolean] = toggle("source-filter", noshort = true, default=Some(true), prefix = "no-", descrNo = "Do not filter _source fields (workaround for bad index)", descrYes = "Use source filtering to reduce network traffic") verify() } val esContactPoint = FindContactPoints.es(Opts.url()) val indexesOrAliasesToRead = Opts.readIndex.toOption.fold(Seq("cm_well_all"))(Seq(_)) val esTopology = DiscoverEsTopology(esContactPoint = esContactPoint, aliases = indexesOrAliasesToRead) // Calling script should clear output directory as necessary. val objectExtractor = IndexWithSystemFields val dataWriterFactory = DataWriterFactory.file(format = Opts.format(), objectExtractor, outDirectory = Opts.out()) PartitionedDownloader.runDownload( esTopology = esTopology, parallelism = Opts.parallelism(), currentOnly = Opts.currentOnly(), objectExtractor = objectExtractor, dataWriterFactory = dataWriterFactory, sourceFilter = Opts.sourceFilter()) // The Hadoop convention is to touch the (empty) _SUCCESS file to signal successful completion. FileUtils.touch(Paths.get(Opts.out(), "_SUCCESS").toFile) } catch { case ex: Throwable => logger.error(ex.getMessage, ex) System.exit(1) } finally { system.terminate() } } }
bryaakov/CM-Well
tools/dataConsistencyTool/extract-index-from-es/src/main/scala/cmwell/analytics/main/DumpSystemFieldsFromEs.scala
Scala
apache-2.0
3,668
package eu.timepit.refined import eu.timepit.refined.api.Inference import eu.timepit.refined.generic.Equal import eu.timepit.refined.numeric.Greater import eu.timepit.refined.string.StartsWith import org.scalacheck.Prop._ import org.scalacheck.Properties class GenericInferenceSpec extends Properties("GenericInference") { property("""Equal["abcd"] ==> StartsWith["ab"]""") = secure { Inference[Equal[W.`"abcd"`.T], StartsWith[W.`"ab"`.T]].isValid } property("""Equal["abcd"] =!> StartsWith["cd"]""") = secure { Inference[Equal[W.`"abcd"`.T], StartsWith[W.`"cd"`.T]].notValid } property("Equal[10] ==> Greater[5]") = secure { Inference[Equal[W.`10`.T], Greater[W.`5`.T]].isValid } property("Equal[5] =!> Greater[10]") = secure { Inference[Equal[W.`5`.T], Greater[W.`10`.T]].notValid } }
fthomas/refined
modules/core/shared/src/test/scala-3.0-/eu/timepit/refined/GenericInferenceSpec.scala
Scala
mit
825
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.catalyst.plans.logical.statsEstimation import org.apache.spark.sql.catalyst.expressions.Attribute import org.apache.spark.sql.catalyst.plans.logical.{Aggregate, Statistics} import org.apache.spark.sql.internal.SQLConf object AggregateEstimation { import EstimationUtils._ /** * Estimate the number of output rows based on column stats of group-by columns, and propagate * column stats for aggregate expressions. */ def estimate(conf: SQLConf, agg: Aggregate): Option[Statistics] = { val childStats = agg.child.stats(conf) // Check if we have column stats for all group-by columns. val colStatsExist = agg.groupingExpressions.forall { e => e.isInstanceOf[Attribute] && childStats.attributeStats.contains(e.asInstanceOf[Attribute]) } if (rowCountsExist(conf, agg.child) && colStatsExist) { // Multiply distinct counts of group-by columns. This is an upper bound, which assumes // the data contains all combinations of distinct values of group-by columns. var outputRows: BigInt = agg.groupingExpressions.foldLeft(BigInt(1))( (res, expr) => res * childStats.attributeStats(expr.asInstanceOf[Attribute]).distinctCount) outputRows = if (agg.groupingExpressions.isEmpty) { // If there's no group-by columns, the output is a single row containing values of aggregate // functions: aggregated results for non-empty input or initial values for empty input. 1 } else { // Here we set another upper bound for the number of output rows: it must not be larger than // child's number of rows. outputRows.min(childStats.rowCount.get) } val outputAttrStats = getOutputMap(childStats.attributeStats, agg.output) Some(Statistics( sizeInBytes = getOutputSize(agg.output, outputRows, outputAttrStats), rowCount = Some(outputRows), attributeStats = outputAttrStats, hints = childStats.hints)) } else { None } } }
wangyixiaohuihui/spark2-annotation
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/statsEstimation/AggregateEstimation.scala
Scala
apache-2.0
2,886
package week7.bloxorz /** * A main object that can be used to execute the Bloxorz solver */ object Bloxorz { /** * A level constructed using the `InfiniteTerrain` trait which defines * the terrain to be valid at every position. */ object InfiniteLevel extends Solver with InfiniteTerrain { val startPos = Pos(1, 3) val goal = Pos(5, 8) } /** * A simple level constructed using the StringParserTerrain */ abstract class Level extends Solver with StringParserTerrain object Level0 extends Level { val level = """------ |--ST-- |--oo-- |--oo-- |------""".stripMargin } /** * Level 1 of the official Bloxorz game */ object Level1 extends Level { val level = """ooo------- |oSoooo---- |ooooooooo- |-ooooooooo |-----ooToo |------ooo-""".stripMargin } /** Unit tests */ def main(args: Array[String]): Unit = { println(InfiniteLevel.solution) println(Level0.solution) println(Level1.solution) } }
zapstar/funprog
fp-scala/src/week7/bloxorz/Bloxorz.scala
Scala
mit
1,056
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql import org.apache.spark.sql.TestData._ import org.apache.spark.sql.functions._ import org.apache.spark.sql.test.TestSQLContext import org.apache.spark.sql.test.TestSQLContext.implicits._ import org.apache.spark.sql.types.DecimalType class DataFrameAggregateSuite extends QueryTest { test("groupBy") { checkAnswer( testData2.groupBy("a").agg(sum($"b")), Seq(Row(1, 3), Row(2, 3), Row(3, 3)) ) checkAnswer( testData2.groupBy("a").agg(sum($"b").as("totB")).agg(sum('totB)), Row(9) ) checkAnswer( testData2.groupBy("a").agg(count("*")), Row(1, 2) :: Row(2, 2) :: Row(3, 2) :: Nil ) checkAnswer( testData2.groupBy("a").agg(Map("*" -> "count")), Row(1, 2) :: Row(2, 2) :: Row(3, 2) :: Nil ) checkAnswer( testData2.groupBy("a").agg(Map("b" -> "sum")), Row(1, 3) :: Row(2, 3) :: Row(3, 3) :: Nil ) val df1 = Seq(("a", 1, 0, "b"), ("b", 2, 4, "c"), ("a", 2, 3, "d")) .toDF("key", "value1", "value2", "rest") checkAnswer( df1.groupBy("key").min(), df1.groupBy("key").min("value1", "value2").collect() ) checkAnswer( df1.groupBy("key").min("value2"), Seq(Row("a", 0), Row("b", 4)) ) } test("spark.sql.retainGroupColumns config") { checkAnswer( testData2.groupBy("a").agg(sum($"b")), Seq(Row(1, 3), Row(2, 3), Row(3, 3)) ) TestSQLContext.conf.setConf("spark.sql.retainGroupColumns", "false") checkAnswer( testData2.groupBy("a").agg(sum($"b")), Seq(Row(3), Row(3), Row(3)) ) TestSQLContext.conf.setConf("spark.sql.retainGroupColumns", "true") } test("agg without groups") { checkAnswer( testData2.agg(sum('b)), Row(9) ) } test("average") { checkAnswer( testData2.agg(avg('a)), Row(2.0)) // Also check mean checkAnswer( testData2.agg(mean('a)), Row(2.0)) checkAnswer( testData2.agg(avg('a), sumDistinct('a)), // non-partial Row(2.0, 6.0) :: Nil) checkAnswer( decimalData.agg(avg('a)), Row(new java.math.BigDecimal(2.0))) checkAnswer( decimalData.agg(avg('a), sumDistinct('a)), // non-partial Row(new java.math.BigDecimal(2.0), new java.math.BigDecimal(6)) :: Nil) checkAnswer( decimalData.agg(avg('a cast DecimalType(10, 2))), Row(new java.math.BigDecimal(2.0))) // non-partial checkAnswer( decimalData.agg(avg('a cast DecimalType(10, 2)), sumDistinct('a cast DecimalType(10, 2))), Row(new java.math.BigDecimal(2.0), new java.math.BigDecimal(6)) :: Nil) } test("null average") { checkAnswer( testData3.agg(avg('b)), Row(2.0)) checkAnswer( testData3.agg(avg('b), countDistinct('b)), Row(2.0, 1)) checkAnswer( testData3.agg(avg('b), sumDistinct('b)), // non-partial Row(2.0, 2.0)) } test("zero average") { val emptyTableData = Seq.empty[(Int, Int)].toDF("a", "b") checkAnswer( emptyTableData.agg(avg('a)), Row(null)) checkAnswer( emptyTableData.agg(avg('a), sumDistinct('b)), // non-partial Row(null, null)) } test("count") { assert(testData2.count() === testData2.map(_ => 1).count()) checkAnswer( testData2.agg(count('a), sumDistinct('a)), // non-partial Row(6, 6.0)) } test("null count") { checkAnswer( testData3.groupBy('a).agg(count('b)), Seq(Row(1, 0), Row(2, 1)) ) checkAnswer( testData3.groupBy('a).agg(count('a + 'b)), Seq(Row(1, 0), Row(2, 1)) ) checkAnswer( testData3.agg(count('a), count('b), count(lit(1)), countDistinct('a), countDistinct('b)), Row(2, 1, 2, 2, 1) ) checkAnswer( testData3.agg(count('b), countDistinct('b), sumDistinct('b)), // non-partial Row(1, 1, 2) ) } test("zero count") { val emptyTableData = Seq.empty[(Int, Int)].toDF("a", "b") assert(emptyTableData.count() === 0) checkAnswer( emptyTableData.agg(count('a), sumDistinct('a)), // non-partial Row(0, null)) } test("zero sum") { val emptyTableData = Seq.empty[(Int, Int)].toDF("a", "b") checkAnswer( emptyTableData.agg(sum('a)), Row(null)) } test("zero sum distinct") { val emptyTableData = Seq.empty[(Int, Int)].toDF("a", "b") checkAnswer( emptyTableData.agg(sumDistinct('a)), Row(null)) } }
andrewor14/iolap
sql/core/src/test/scala/org/apache/spark/sql/DataFrameAggregateSuite.scala
Scala
apache-2.0
5,253
package juan.ddd.proto.contract.routing import juan.ddd.proto.domain.routing._ trait UserRepository { def nextIdentity: UserId def userOfId(id: UserId): Option[User] def remove(user: User): Unit def save(user: User): Unit }
yoskhdia/ddd-proto
src/main/scala/juan/ddd/proto/contract/routing/UserRepository.scala
Scala
mit
238
package org.jetbrains.plugins.scala package codeInspection.typeChecking import com.intellij.codeInspection.LocalInspectionTool import org.jetbrains.plugins.scala.codeInspection.ScalaLightInspectionFixtureTestAdapter /** * Nikolay.Tropin * 9/26/13 */ class ComparingUnrelatedTypesInspectionTest extends ScalaLightInspectionFixtureTestAdapter { protected def classOfInspection: Class[_ <: LocalInspectionTool] = classOf[ComparingUnrelatedTypesInspection] protected val annotation: String = ComparingUnrelatedTypesInspection.inspectionName def testWeakConformance() { val text1 = s"""val a = 0 |val b: Short = 1 |${START}b == a$END""" val text2 = s"""val a = 0 |val b = 1.0 |${START}b != a$END""" val text3 = s"""val a = 0.0 |val b: Byte = 100 |${START}a == b$END""" val text4 = s"${START}1 == 1.0$END" checkTextHasNoErrors(text1) checkTextHasNoErrors(text2) checkTextHasNoErrors(text3) checkTextHasNoErrors(text4) } def testValueTypes() { val text1 = s"""val a = true |val b = 1 |${START}b == a$END""" val text2 = s"""val a = true |val b = 0.0 |${START}a != b$END""" val text3 = s"${START}true != 0$END" val text4: String = s"${START}1.isInstanceOf[Boolean]$END" checkTextHasError(text1) checkTextHasError(text2) checkTextHasError(text3) checkTextHasError(text4) } def testString() { val text1 = s"""val a = "a" |val b = Array('a') |${START}b == a$END""" val text2 = s"""val a = "0" |val b = 0 |${START}a == b$END""" val text3 = s"""val s = "s" |${START}s == 's'$END""" val text4 = s"""val a = "a" |val b: CharSequence = null |${START}b != a$END""" checkTextHasError(text1) checkTextHasError(text2) checkTextHasError(text3) checkTextHasNoErrors(text4) } def testInheritors() { val text1 = s"""val a = scala.collection.Iterable(1) |val b = List(0) |${START}b == a$END""" val text2 = s"""case class A(i: Int) |final class B extends A(1) |val a: A = A(0) |val b: B = new B |${START}a == b$END""" val text3 = """trait A |object B extends A |B.isInstanceOf[A]""" checkTextHasNoErrors(text1) checkTextHasNoErrors(text2) checkTextHasNoErrors(text3) } def testFinal() { val text1 = s"""case class A(i: Int) |class B extends A(1) |val a: A = A(0) |val b: B = new B |${START}a == b$END""" val text2 = s"""final class A extends Serializable |final class B extends Serializable |val a: A = new A |val b: B = new B |${START}a == b$END""" val text3 = s"""final class A extends Serializable |final class B extends Serializable |val a: A = new A |${START}a.isInstanceOf[B]$END""" checkTextHasNoErrors(text1) checkTextHasError(text2) checkTextHasError(text3) } def testTraits() { val text1 = s"""trait A |trait B |val a: A = _ |val b: B = _ |${START}a == b$END""" checkTextHasNoErrors(text1) } def testObject() { val text1 = s"""trait A |object B extends A |val a: A = _ |${START}a == B$END""" val text2 = s"""trait A |object B extends A |class C extends A |val c = new C |${START}c == B$END""" val text3 = s"""trait A |object B extends A |class C extends A |val c: A = new C |${START}c != B$END""" checkTextHasNoErrors(text1) checkTextHasError(text2) checkTextHasNoErrors(text3) } def testBoxedTypes() { val text1 = """val i = new java.lang.Integer(0) |i == 100""" val text2 = """val b = new java.lang.Boolean(false) |b equals true""" val text3 = "def test(i: Integer) = if (i == null) \\"foo\\" else \\"bar\\"" checkTextHasNoErrors(text1) checkTextHasNoErrors(text2) checkTextHasNoErrors(text3) } def testExistential(): Unit = { checkTextHasNoErrors("Seq(1).isInstanceOf[List[_])") checkTextHasError(s"${START}Some(1).isInstanceOf[List[_]]$END") checkTextHasNoErrors("def foo(x: Some[_]) { x == Some(1) }") checkTextHasError(s"def foo(x: Some[_]) { ${START}x == Seq(1)$END }") } def testNumeric(): Unit = { checkTextHasNoErrors("BigInt(1) == 1") checkTextHasNoErrors("BigInt(1) == 1L") checkTextHasNoErrors("BigInt(1) == new java.lang.Integer(1)") checkTextHasError(s"${START}BigInt(1) == true$END") checkTextHasError(s"${START}BigInt(1) == 1.toString$END") } }
LPTK/intellij-scala
test/org/jetbrains/plugins/scala/codeInspection/typeChecking/ComparingUnrelatedTypesInspectionTest.scala
Scala
apache-2.0
5,190
/* * Copyright 2021 HM Revenue & Customs * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package forms import common.Validation._ import models._ import play.api.data.Forms._ import play.api.data._ import utils.Constants._ object CurrentPensionsForm { def currentPensionsForm = Form( mapping( "currentPensionsAmt" -> optional(bigDecimal) .verifying("pla.base.errors.errorQuestion", currentPensionsAmt => currentPensionsAmt.isDefined) .verifying("pla.base.errors.errorNegative", currentPensionsAmt => isPositive(currentPensionsAmt.getOrElse(0))) .verifying("pla.base.errors.errorDecimalPlaces", currentPensionsAmt => isMaxTwoDecimalPlaces(currentPensionsAmt.getOrElse(0))) .verifying("pla.base.errors.errorMaximum", currentPensionsAmt => isLessThanDouble(currentPensionsAmt.getOrElse(BigDecimal(0)).toDouble, npsMaxCurrency)) )(CurrentPensionsModel.apply)(CurrentPensionsModel.unapply) ) }
hmrc/pensions-lifetime-allowance-frontend
app/forms/CurrentPensionsForm.scala
Scala
apache-2.0
1,458
// See LICENSE.txt for license details. package problems import chisel3._ import chisel3.util._ // Problem: // // Create a composition (chain) of two filters: // // SingleFilter - indicates that input is single decimal digit // (i.e. is less or equal to 9) // // EvenFilter - indicates that input is even number // abstract class Filter[T <: Data](dtype: T) extends Module { val io = IO(new Bundle { val in = Input(Valid(dtype)) val out = Output(Valid(dtype)) }) } class PredicateFilter[T <: Data](dtype: T, f: T => Bool) extends Filter(dtype) { io.out.valid := io.in.valid && f(io.in.bits) io.out.bits := io.in.bits } object SingleFilter { def apply[T <: UInt](dtype: T) = // Change function argument of Predicate filter below ---------- Module(new PredicateFilter(dtype, (x: T) => false.B)) // Change function argument of Predicate filter above ---------- } object EvenFilter { def apply[T <: UInt](dtype: T) = // Change function argument of Predicate filter below ---------- Module(new PredicateFilter(dtype, (x: T) => false.B)) // Change function argument of Predicate filter above ---------- } class SingleEvenFilter[T <: UInt](dtype: T) extends Filter(dtype) { // Implement composition below ---------- io.out <> io.in // Implement composition above ---------- }
timtian090/Playground
chiselTutorial/src/main/scala/problems/SingleEvenFilter.scala
Scala
mit
1,332
/** * This file is part of mycollab-services. * * mycollab-services is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * mycollab-services is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with mycollab-services. If not, see <http://www.gnu.org/licenses/>. */ package com.esofthead.mycollab.module.project.esb import com.esofthead.mycollab.module.project.domain.Project /** * @author MyCollab Ltd * @since 5.1.0 */ class DeleteProjectEvent(val projects: Array[Project], val accountId: Integer) {}
uniteddiversity/mycollab
mycollab-services/src/main/scala/com/esofthead/mycollab/module/project/esb/DeleteProjectEvent.scala
Scala
agpl-3.0
957
package org.jetbrains.plugins.scala package codeInsight package intention package types import org.jetbrains.plugins.scala.codeInsight.intentions.ScalaIntentionTestBase import org.jetbrains.plugins.scala.debugger.{ScalaVersion, Scala_2_12} class ToggleTypeAnnotationIntentionTest extends ScalaIntentionTestBase { override def familyName: String = ToggleTypeAnnotation.FamilyName override implicit val version: ScalaVersion = Scala_2_12 def testCollectionFactorySimplification(): Unit = doTest( "val v = Seq.empty[String]", "val v: Seq[String] = Seq.empty" ) def testCollectionFactoryNoSimplification(): Unit = doTest( "val v = Seq.empty[String].to[Seq]", "val v: Seq[String] = Seq.empty[String].to[Seq]" ) def testOptionFactorySimplification(): Unit = doTest( "val v = Option.empty[String]", "val v: Option[String] = Option.empty" ) def testOptionFactoryNoSimplification(): Unit = doTest( "val v = Option.empty[String].to[Option]", "val v: Option[String] = Option.empty[String].to[Option]" ) def testCompoundType(): Unit = doTest( """ |val foo = new Runnable { | def helper(): Unit = ??? | | override def run(): Unit = ??? |}""".stripMargin, """ |val foo: Runnable = new Runnable { | def helper(): Unit = ??? | | override def run(): Unit = ??? |}""".stripMargin ) def testCompoundTypeWithTypeMember(): Unit = doTest( s""" |trait Foo { | type X |} | |val f${caretTag}oo = new Foo { | override type X = Int | | def helper(x: X): Unit = ??? |} """.stripMargin, s""" |trait Foo { | type X |} | |val f${caretTag}oo: Foo { | type X = Int |} = new Foo { | override type X = Int | | def helper(x: X): Unit = ??? |} """.stripMargin ) def testInfixType(): Unit = doTest( s""" |trait A | |trait B | |def foo(): =:=[A, <:<[B, =:=[=:=[B, B], A]]] = ??? |val ba${caretTag}r = foo() """.stripMargin, s""" |trait A | |trait B | |def foo(): =:=[A, <:<[B, =:=[=:=[B, B], A]]] = ??? |val ba${caretTag}r: A =:= (B <:< (B =:= B =:= A)) = foo() """.stripMargin ) def testInfixDifferentAssociativity(): Unit = doTest( s""" |trait +[A, B] | |trait ::[A, B] | |trait A | |def foo(): ::[+[A, +[::[A, A], A]], +[A, ::[A, A]]] = ??? |val ba${caretTag}r = foo() """.stripMargin, s""" |trait +[A, B] | |trait ::[A, B] | |trait A | |def foo(): ::[+[A, +[::[A, A], A]], +[A, ::[A, A]]] = ??? |val ba${caretTag}r: (A + ((A :: A) + A)) :: (A + (A :: A)) = foo() """.stripMargin ) def testShowAsInfixAnnotation(): Unit = doTest( s""" |import scala.annotation.showAsInfix | |@showAsInfix class Map[A, B] | |def foo(): Map[Int, Map[Int, String]] = ??? |val b${caretTag}ar = foo() """.stripMargin, s""" |import scala.annotation.showAsInfix | |@showAsInfix class Map[A, B] | |def foo(): Map[Int, Map[Int, String]] = ??? |val b${caretTag}ar: Int Map (Int Map String) = foo() """.stripMargin ) }
jastice/intellij-scala
scala/scala-impl/test/org/jetbrains/plugins/scala/codeInsight/intention/types/ToggleTypeAnnotationIntentionTest.scala
Scala
apache-2.0
3,434
package io.protoless.tests.samples case object Colors extends Enumeration { type Color = Value val Black, White, Green = Value }
julien-lafont/protoless
modules/testing/src/main/scala/io/protoless/tests/samples/Colors.scala
Scala
apache-2.0
134
import stainless.lang._ import stainless.annotation._ object SimpleImperative { @mutable abstract class A { def f(): Unit } def proc(a: A) = { a.f() } case class B(var x: BigInt) extends A { def f(): Unit = { x = x + 1 } } def theorem() = { val a = B(0) proc(a) assert(a.x == 0) // should be 1 } }
epfl-lara/stainless
frontends/benchmarks/imperative/invalid/SimpleImperative.scala
Scala
apache-2.0
353
package chiselutils.utils import Chisel._ object MemShiftRegister { def apply[ T <: Data ]( in : T, n : Int, en : Bool = Bool(true) ) : T = { val memSR = Module( new MemShiftRegister( in, n ) ) memSR.io.en := en memSR.io.in := in memSR.io.out } } class MemShiftRegister[ T <: Data ]( genType : T, n : Int ) extends Module { val io = new Bundle { val in = genType.cloneType.asInput val en = Bool( INPUT ) val out = genType.cloneType.asOutput } if ( n <= 2 ) { val reg1 = Reg( genType ) val reg2 = Reg( genType ) // use this as en is implemented differently in a shift register // in ShiftRegister en is just on input when ( io.en ) { reg1 := io.in reg2 := reg1 } io.out := { if ( n == 2 ) reg2 else if ( n == 1 ) reg1 else io.in } } else { val myMem = Mem( n - 1, genType ) // put a register at the front and back val regTop = Reg( genType ) val regBot = Reg( genType ) val cntr = Counter( io.en, n - 1 ) val incrAddr = cntr._1 + UInt(1) val readAddr = UInt( width = incrAddr.getWidth ) readAddr := incrAddr when ( cntr._1 === UInt( n - 2 ) ) { readAddr := UInt( 0 ) } when ( io.en ) { myMem.write( cntr._1, regTop ) regTop := io.in regBot := myMem( readAddr ) } io.out := regBot } }
da-steve101/chisel-utils
src/main/scala/chiselutils/utils/MemShiftRegister.scala
Scala
lgpl-3.0
1,397
package nak.classify import nak.nnet.{NNObjective, NeuralNetwork} import breeze.util.{Encoder, Index} import breeze.linalg._ import nak.data.Example import breeze.numerics._ import breeze.optimize.FirstOrderMinimizer.OptParams /** * A NeuralNetwork classifier uses a neural network to get unnormalize log probabilities * for the scores of the classifier. These are used to predict terms. * @author dlwh */ class NNetClassifier[L, T](nnet: NeuralNetwork, inputEncoder: T=>DenseVector[Double], labelIndex: Index[L]) extends Classifier[L, T] { /**For the observation, return the score for each label that has a nonzero * score. */ def scores(o: T): Counter[L, Double] = { Encoder.fromIndex(labelIndex).decode(nnet(inputEncoder(o))) } } object NNetClassifier { class CounterTrainer[L, T](opt: OptParams = OptParams(),layersIn:Array[Int] = Array(100)) extends Classifier.Trainer[L, Counter[T, Double]] { type MyClassifier = NNetClassifier[L, Counter[T, Double]] def train(data: Iterable[Example[L, Counter[T, Double]]]) = { val labels = Index[L]() data foreach { labels index _.label} val featureIndex = Index[T]() for(d <- data; f <- d.features.keysIterator) featureIndex.index(f) val fEncoder = Encoder.fromIndex(featureIndex) val processedData = data.toArray.par.map { d => fEncoder.encodeDense(d.features) -> labels(d.label) } // log loss error function log( input(gold)/(sum of all outputs)) def errorFun(input: DenseVector[Double], label: Int) = { val sm = softmax(input) val obj = sm - input(label) val deriv = exp(input - sm) deriv(label) -= 1 obj -> deriv } val layers = Array(featureIndex.size) ++ layersIn ++ Array(labels.size) val obj = new NNObjective(processedData.toIndexedSeq, errorFun, layers) val guess = obj.initialWeightVector val weights = opt.minimize(obj,guess) new NNetClassifier(obj.extract(weights), {fEncoder.encodeDense(_:Counter[T, Double], true)}, labels) } } }
scalanlp/nak
src/main/scala/nak/classify/NNetClassifier.scala
Scala
apache-2.0
2,121
/* * Copyright 2001-2008 Artima, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.scalatest import org.scalatest.events._ class SpecSpec extends Spec with SharedHelpers with GivenWhenThen { describe("A Spec") { it("should return the test names in registration order from testNames") { val a = new Spec { it("should test this") {} it("should test that") {} } expect(List("should test this", "should test that")) { a.testNames.iterator.toList } val b = new Spec {} expect(List[String]()) { b.testNames.iterator.toList } val c = new Spec { it("should test that") {} it("should test this") {} } expect(List("should test that", "should test this")) { c.testNames.iterator.toList } val d = new Spec { describe("A Tester") { it("should test that") {} it("should test this") {} } } expect(List("A Tester should test that", "A Tester should test this")) { d.testNames.iterator.toList } val e = new Spec { describe("A Tester") { it("should test this") {} it("should test that") {} } } expect(List("A Tester should test this", "A Tester should test that")) { e.testNames.iterator.toList } } it("should throw DuplicateTestNameException if a duplicate test name registration is attempted") { intercept[DuplicateTestNameException] { new Spec { it("should test this") {} it("should test this") {} } } intercept[DuplicateTestNameException] { new Spec { it("should test this") {} ignore("should test this") {} } } intercept[DuplicateTestNameException] { new Spec { ignore("should test this") {} ignore("should test this") {} } } intercept[DuplicateTestNameException] { new Spec { ignore("should test this") {} it("should test this") {} } } } it("should invoke withFixture from runTest") { val a = new Spec { var withFixtureWasInvoked = false var testWasInvoked = false override def withFixture(test: NoArgTest) { withFixtureWasInvoked = true super.withFixture(test) } it("should do something") { testWasInvoked = true } } a.run(None, SilentReporter, new Stopper {}, Filter(), Map(), None, new Tracker()) assert(a.withFixtureWasInvoked) assert(a.testWasInvoked) } it("should pass the correct test name in the NoArgTest passed to withFixture") { val a = new Spec { var correctTestNameWasPassed = false override def withFixture(test: NoArgTest) { correctTestNameWasPassed = test.name == "should do something" super.withFixture(test) } it("should do something") {} } a.run(None, SilentReporter, new Stopper {}, Filter(), Map(), None, new Tracker()) assert(a.correctTestNameWasPassed) } it("should pass the correct config map in the NoArgTest passed to withFixture") { val a = new Spec { var correctConfigMapWasPassed = false override def withFixture(test: NoArgTest) { correctConfigMapWasPassed = (test.configMap == Map("hi" -> 7)) super.withFixture(test) } it("should do something") {} } a.run(None, SilentReporter, new Stopper {}, Filter(), Map("hi" -> 7), None, new Tracker()) assert(a.correctConfigMapWasPassed) } describe("(with info calls)") { class InfoInsideTestSpec extends Spec { val msg = "hi there, dude" val testName = "test name" it(testName) { info(msg) } } // In a Spec, any InfoProvided's fired during the test should be cached and sent out after the test has // suceeded or failed. This makes the report look nicer, because the info is tucked under the "specifier' // text for that test. it("should, when the info appears in the code of a successful test, report the info after the TestSucceeded") { val spec = new InfoInsideTestSpec val (infoProvidedIndex, testStartingIndex, testSucceededIndex) = getIndexesForInformerEventOrderTests(spec, spec.testName, spec.msg) assert(testSucceededIndex < infoProvidedIndex) } class InfoBeforeTestSpec extends Spec { val msg = "hi there, dude" val testName = "test name" info(msg) it(testName) {} } it("should, when the info appears in the body before a test, report the info before the test") { val spec = new InfoBeforeTestSpec val (infoProvidedIndex, testStartingIndex, testSucceededIndex) = getIndexesForInformerEventOrderTests(spec, spec.testName, spec.msg) assert(infoProvidedIndex < testStartingIndex) assert(testStartingIndex < testSucceededIndex) } it("should, when the info appears in the body after a test, report the info after the test runs") { val msg = "hi there, dude" val testName = "test name" class MySpec extends Spec { it(testName) {} info(msg) } val (infoProvidedIndex, testStartingIndex, testSucceededIndex) = getIndexesForInformerEventOrderTests(new MySpec, testName, msg) assert(testStartingIndex < testSucceededIndex) assert(testSucceededIndex < infoProvidedIndex) } it("should throw an IllegalStateException when info is called by a method invoked after the suite has been executed") { class MySpec extends Spec { callInfo() // This should work fine def callInfo() { info("howdy") } it("howdy also") { callInfo() // This should work fine } } val spec = new MySpec val myRep = new EventRecordingReporter spec.run(None, myRep, new Stopper {}, Filter(), Map(), None, new Tracker) intercept[IllegalStateException] { spec.callInfo() } } it("should send an InfoProvided with an IndentedText formatter with level 1 when called outside a test") { val spec = new InfoBeforeTestSpec val indentedText = getIndentedTextFromInfoProvided(spec) assert(indentedText === IndentedText("+ " + spec.msg, spec.msg, 0)) } it("should send an InfoProvided with an IndentedText formatter with level 2 when called within a test") { val spec = new InfoInsideTestSpec val indentedText = getIndentedTextFromInfoProvided(spec) assert(indentedText === IndentedText(" + " + spec.msg, spec.msg, 1)) } } describe("(when a nesting rule has been violated)") { it("should, if they call a describe from within an it clause, result in a TestFailedException when running the test") { class MySpec extends Spec { it("should blow up") { describe("in the wrong place, at the wrong time") { } } } val spec = new MySpec ensureTestFailedEventReceived(spec, "should blow up") } it("should, if they call a describe with a nested it from within an it clause, result in a TestFailedException when running the test") { class MySpec extends Spec { it("should blow up") { describe("in the wrong place, at the wrong time") { it("should never run") { assert(1 === 1) } } } } val spec = new MySpec ensureTestFailedEventReceived(spec, "should blow up") } it("should, if they call a nested it from within an it clause, result in a TestFailedException when running the test") { class MySpec extends Spec { it("should blow up") { it("should never run") { assert(1 === 1) } } } val spec = new MySpec ensureTestFailedEventReceived(spec, "should blow up") } it("should, if they call a nested it with tags from within an it clause, result in a TestFailedException when running the test") { class MySpec extends Spec { it("should blow up") { it("should never run", mytags.SlowAsMolasses) { assert(1 === 1) } } } val spec = new MySpec ensureTestFailedEventReceived(spec, "should blow up") } it("should, if they call a describe with a nested ignore from within an it clause, result in a TestFailedException when running the test") { class MySpec extends Spec { it("should blow up") { describe("in the wrong place, at the wrong time") { ignore("should never run") { assert(1 === 1) } } } } val spec = new MySpec ensureTestFailedEventReceived(spec, "should blow up") } it("should, if they call a nested ignore from within an it clause, result in a TestFailedException when running the test") { class MySpec extends Spec { it("should blow up") { ignore("should never run") { assert(1 === 1) } } } val spec = new MySpec ensureTestFailedEventReceived(spec, "should blow up") } it("should, if they call a nested ignore with tags from within an it clause, result in a TestFailedException when running the test") { class MySpec extends Spec { it("should blow up") { ignore("should never run", mytags.SlowAsMolasses) { assert(1 === 1) } } } val spec = new MySpec ensureTestFailedEventReceived(spec, "should blow up") } } it("should run tests registered via the 'it should behave like' syntax") { trait SharedSpecTests { this: Spec => def nonEmptyStack(s: String)(i: Int) { it("should be that I am shared") {} } } class MySpec extends Spec with SharedSpecTests { it should behave like nonEmptyStack("hi")(1) } val suite = new MySpec val reporter = new EventRecordingReporter suite.run(None, reporter, new Stopper {}, Filter(), Map(), None, new Tracker) val indexedList = reporter.eventsReceived val testStartingOption = indexedList.find(_.isInstanceOf[TestStarting]) assert(testStartingOption.isDefined) assert(testStartingOption.get.asInstanceOf[TestStarting].testName === "should be that I am shared") } it("should throw NullPointerException if a null test tag is provided") { // it intercept[NullPointerException] { new Spec { it("hi", null) {} } } val caught = intercept[NullPointerException] { new Spec { it("hi", mytags.SlowAsMolasses, null) {} } } assert(caught.getMessage === "a test tag was null") intercept[NullPointerException] { new Spec { it("hi", mytags.SlowAsMolasses, null, mytags.WeakAsAKitten) {} } } // ignore intercept[NullPointerException] { new Spec { ignore("hi", null) {} } } val caught2 = intercept[NullPointerException] { new Spec { ignore("hi", mytags.SlowAsMolasses, null) {} } } assert(caught2.getMessage === "a test tag was null") intercept[NullPointerException] { new Spec { ignore("hi", mytags.SlowAsMolasses, null, mytags.WeakAsAKitten) {} } } } class TestWasCalledSuite extends Spec { var theTestThisCalled = false var theTestThatCalled = false it("should run this") { theTestThisCalled = true } it("should run that, maybe") { theTestThatCalled = true } } it("should execute all tests when run is called with testName None") { val b = new TestWasCalledSuite b.run(None, SilentReporter, new Stopper {}, Filter(), Map(), None, new Tracker) assert(b.theTestThisCalled) assert(b.theTestThatCalled) } it("should execute one test when run is called with a defined testName") { val a = new TestWasCalledSuite a.run(Some("should run this"), SilentReporter, new Stopper {}, Filter(), Map(), None, new Tracker) assert(a.theTestThisCalled) assert(!a.theTestThatCalled) } it("should report as ignored, and not run, tests marked ignored") { val a = new Spec { var theTestThisCalled = false var theTestThatCalled = false it("test this") { theTestThisCalled = true } it("test that") { theTestThatCalled = true } } val repA = new TestIgnoredTrackingReporter a.run(None, repA, new Stopper {}, Filter(), Map(), None, new Tracker) assert(!repA.testIgnoredReceived) assert(a.theTestThisCalled) assert(a.theTestThatCalled) val b = new Spec { var theTestThisCalled = false var theTestThatCalled = false ignore("test this") { theTestThisCalled = true } it("test that") { theTestThatCalled = true } } val repB = new TestIgnoredTrackingReporter b.run(None, repB, new Stopper {}, Filter(), Map(), None, new Tracker) assert(repB.testIgnoredReceived) assert(repB.lastEvent.isDefined) assert(repB.lastEvent.get.testName endsWith "test this") assert(!b.theTestThisCalled) assert(b.theTestThatCalled) val c = new Spec { var theTestThisCalled = false var theTestThatCalled = false it("test this") { theTestThisCalled = true } ignore("test that") { theTestThatCalled = true } } val repC = new TestIgnoredTrackingReporter c.run(None, repC, new Stopper {}, Filter(), Map(), None, new Tracker) assert(repC.testIgnoredReceived) assert(repC.lastEvent.isDefined) assert(repC.lastEvent.get.testName endsWith "test that", repC.lastEvent.get.testName) assert(c.theTestThisCalled) assert(!c.theTestThatCalled) // The order I want is order of appearance in the file. // Will try and implement that tomorrow. Subtypes will be able to change the order. val d = new Spec { var theTestThisCalled = false var theTestThatCalled = false ignore("test this") { theTestThisCalled = true } ignore("test that") { theTestThatCalled = true } } val repD = new TestIgnoredTrackingReporter d.run(None, repD, new Stopper {}, Filter(), Map(), None, new Tracker) assert(repD.testIgnoredReceived) assert(repD.lastEvent.isDefined) assert(repD.lastEvent.get.testName endsWith "test that") // last because should be in order of appearance assert(!d.theTestThisCalled) assert(!d.theTestThatCalled) } it("should ignore a test marked as ignored if run is invoked with that testName") { // If I provide a specific testName to run, then it should ignore an Ignore on that test // method and actually invoke it. val e = new Spec { var theTestThisCalled = false var theTestThatCalled = false ignore("test this") { theTestThisCalled = true } it("test that") { theTestThatCalled = true } } val repE = new TestIgnoredTrackingReporter e.run(Some("test this"), repE, new Stopper {}, Filter(), Map(), None, new Tracker) assert(repE.testIgnoredReceived) assert(!e.theTestThisCalled) assert(!e.theTestThatCalled) } it("should run only those tests selected by the tags to include and exclude sets") { // Nothing is excluded val a = new Spec { var theTestThisCalled = false var theTestThatCalled = false it("test this", mytags.SlowAsMolasses) { theTestThisCalled = true } it("test that") { theTestThatCalled = true } } val repA = new TestIgnoredTrackingReporter a.run(None, repA, new Stopper {}, Filter(), Map(), None, new Tracker) assert(!repA.testIgnoredReceived) assert(a.theTestThisCalled) assert(a.theTestThatCalled) // SlowAsMolasses is included, one test should be excluded val b = new Spec { var theTestThisCalled = false var theTestThatCalled = false it("test this", mytags.SlowAsMolasses) { theTestThisCalled = true } it("test that") { theTestThatCalled = true } } val repB = new TestIgnoredTrackingReporter b.run(None, repB, new Stopper {}, Filter(Some(Set("org.scalatest.SlowAsMolasses")), Set()), Map(), None, new Tracker) assert(!repB.testIgnoredReceived) assert(b.theTestThisCalled) assert(!b.theTestThatCalled) // SlowAsMolasses is included, and both tests should be included val c = new Spec { var theTestThisCalled = false var theTestThatCalled = false it("test this", mytags.SlowAsMolasses) { theTestThisCalled = true } it("test that", mytags.SlowAsMolasses) { theTestThatCalled = true } } val repC = new TestIgnoredTrackingReporter c.run(None, repB, new Stopper {}, Filter(Some(Set("org.scalatest.SlowAsMolasses")), Set()), Map(), None, new Tracker) assert(!repC.testIgnoredReceived) assert(c.theTestThisCalled) assert(c.theTestThatCalled) // SlowAsMolasses is included. both tests should be included but one ignored val d = new Spec { var theTestThisCalled = false var theTestThatCalled = false ignore("test this", mytags.SlowAsMolasses) { theTestThisCalled = true } it("test that", mytags.SlowAsMolasses) { theTestThatCalled = true } } val repD = new TestIgnoredTrackingReporter d.run(None, repD, new Stopper {}, Filter(Some(Set("org.scalatest.SlowAsMolasses")), Set("org.scalatest.Ignore")), Map(), None, new Tracker) assert(repD.testIgnoredReceived) assert(!d.theTestThisCalled) assert(d.theTestThatCalled) // SlowAsMolasses included, FastAsLight excluded val e = new Spec { var theTestThisCalled = false var theTestThatCalled = false var theTestTheOtherCalled = false it("test this", mytags.SlowAsMolasses, mytags.FastAsLight) { theTestThisCalled = true } it("test that", mytags.SlowAsMolasses) { theTestThatCalled = true } it("test the other") { theTestTheOtherCalled = true } } val repE = new TestIgnoredTrackingReporter e.run(None, repE, new Stopper {}, Filter(Some(Set("org.scalatest.SlowAsMolasses")), Set("org.scalatest.FastAsLight")), Map(), None, new Tracker) assert(!repE.testIgnoredReceived) assert(!e.theTestThisCalled) assert(e.theTestThatCalled) assert(!e.theTestTheOtherCalled) // An Ignored test that was both included and excluded should not generate a TestIgnored event val f = new Spec { var theTestThisCalled = false var theTestThatCalled = false var theTestTheOtherCalled = false ignore("test this", mytags.SlowAsMolasses, mytags.FastAsLight) { theTestThisCalled = true } it("test that", mytags.SlowAsMolasses) { theTestThatCalled = true } it("test the other") { theTestTheOtherCalled = true } } val repF = new TestIgnoredTrackingReporter f.run(None, repF, new Stopper {}, Filter(Some(Set("org.scalatest.SlowAsMolasses")), Set("org.scalatest.FastAsLight")), Map(), None, new Tracker) assert(!repF.testIgnoredReceived) assert(!f.theTestThisCalled) assert(f.theTestThatCalled) assert(!f.theTestTheOtherCalled) // An Ignored test that was not included should not generate a TestIgnored event val g = new Spec { var theTestThisCalled = false var theTestThatCalled = false var theTestTheOtherCalled = false it("test this", mytags.SlowAsMolasses, mytags.FastAsLight) { theTestThisCalled = true } it("test that", mytags.SlowAsMolasses) { theTestThatCalled = true } ignore("test the other") { theTestTheOtherCalled = true } } val repG = new TestIgnoredTrackingReporter g.run(None, repG, new Stopper {}, Filter(Some(Set("org.scalatest.SlowAsMolasses")), Set("org.scalatest.FastAsLight")), Map(), None, new Tracker) assert(!repG.testIgnoredReceived) assert(!g.theTestThisCalled) assert(g.theTestThatCalled) assert(!g.theTestTheOtherCalled) // No tagsToInclude set, FastAsLight excluded val h = new Spec { var theTestThisCalled = false var theTestThatCalled = false var theTestTheOtherCalled = false it("test this", mytags.SlowAsMolasses, mytags.FastAsLight) { theTestThisCalled = true } it("test that", mytags.SlowAsMolasses) { theTestThatCalled = true } it("test the other") { theTestTheOtherCalled = true } } val repH = new TestIgnoredTrackingReporter h.run(None, repH, new Stopper {}, Filter(None, Set("org.scalatest.FastAsLight")), Map(), None, new Tracker) assert(!repH.testIgnoredReceived) assert(!h.theTestThisCalled) assert(h.theTestThatCalled) assert(h.theTestTheOtherCalled) // No tagsToInclude set, mytags.SlowAsMolasses excluded val i = new Spec { var theTestThisCalled = false var theTestThatCalled = false var theTestTheOtherCalled = false it("test this", mytags.SlowAsMolasses, mytags.FastAsLight) { theTestThisCalled = true } it("test that", mytags.SlowAsMolasses) { theTestThatCalled = true } it("test the other") { theTestTheOtherCalled = true } } val repI = new TestIgnoredTrackingReporter i.run(None, repI, new Stopper {}, Filter(None, Set("org.scalatest.SlowAsMolasses")), Map(), None, new Tracker) assert(!repI.testIgnoredReceived) assert(!i.theTestThisCalled) assert(!i.theTestThatCalled) assert(i.theTestTheOtherCalled) // No tagsToInclude set, mytags.SlowAsMolasses excluded, TestIgnored should not be received on excluded ones val j = new Spec { var theTestThisCalled = false var theTestThatCalled = false var theTestTheOtherCalled = false ignore("test this", mytags.SlowAsMolasses, mytags.FastAsLight) { theTestThisCalled = true } ignore("test that", mytags.SlowAsMolasses) { theTestThatCalled = true } it("test the other") { theTestTheOtherCalled = true } } val repJ = new TestIgnoredTrackingReporter j.run(None, repJ, new Stopper {}, Filter(None, Set("org.scalatest.SlowAsMolasses")), Map(), None, new Tracker) assert(!repI.testIgnoredReceived) assert(!j.theTestThisCalled) assert(!j.theTestThatCalled) assert(j.theTestTheOtherCalled) // Same as previous, except Ignore specifically mentioned in excludes set val k = new Spec { var theTestThisCalled = false var theTestThatCalled = false var theTestTheOtherCalled = false ignore("test this", mytags.SlowAsMolasses, mytags.FastAsLight) { theTestThisCalled = true } ignore("test that", mytags.SlowAsMolasses) { theTestThatCalled = true } ignore("test the other") { theTestTheOtherCalled = true } } val repK = new TestIgnoredTrackingReporter k.run(None, repK, new Stopper {}, Filter(None, Set("org.scalatest.SlowAsMolasses", "org.scalatest.Ignore")), Map(), None, new Tracker) assert(repK.testIgnoredReceived) assert(!k.theTestThisCalled) assert(!k.theTestThatCalled) assert(!k.theTestTheOtherCalled) } it("should return the correct test count from its expectedTestCount method") { val a = new Spec { it("test this") {} it("test that") {} } assert(a.expectedTestCount(Filter()) === 2) val b = new Spec { ignore("test this") {} it("test that") {} } assert(b.expectedTestCount(Filter()) === 1) val c = new Spec { it("test this", mytags.FastAsLight) {} it("test that") {} } assert(c.expectedTestCount(Filter(Some(Set("org.scalatest.FastAsLight")), Set())) === 1) assert(c.expectedTestCount(Filter(None, Set("org.scalatest.FastAsLight"))) === 1) val d = new Spec { it("test this", mytags.FastAsLight, mytags.SlowAsMolasses) {} it("test that", mytags.SlowAsMolasses) {} it("test the other thing") {} } assert(d.expectedTestCount(Filter(Some(Set("org.scalatest.FastAsLight")), Set())) === 1) assert(d.expectedTestCount(Filter(Some(Set("org.scalatest.SlowAsMolasses")), Set("org.scalatest.FastAsLight"))) === 1) assert(d.expectedTestCount(Filter(None, Set("org.scalatest.SlowAsMolasses"))) === 1) assert(d.expectedTestCount(Filter()) === 3) val e = new Spec { it("test this", mytags.FastAsLight, mytags.SlowAsMolasses) {} it("test that", mytags.SlowAsMolasses) {} ignore("test the other thing") {} } assert(e.expectedTestCount(Filter(Some(Set("org.scalatest.FastAsLight")), Set())) === 1) assert(e.expectedTestCount(Filter(Some(Set("org.scalatest.SlowAsMolasses")), Set("org.scalatest.FastAsLight"))) === 1) assert(e.expectedTestCount(Filter(None, Set("org.scalatest.SlowAsMolasses"))) === 0) assert(e.expectedTestCount(Filter()) === 2) val f = new Suites(a, b, c, d, e) assert(f.expectedTestCount(Filter()) === 10) } it("should generate a TestPending message when the test body is (pending)") { val a = new Spec { it("should do this") (pending) it("should do that") { assert(2 + 2 === 4) } it("should do something else") { assert(2 + 2 === 4) pending } } val rep = new EventRecordingReporter a.run(None, rep, new Stopper {}, Filter(), Map(), None, new Tracker()) val tp = rep.testPendingEventsReceived assert(tp.size === 2) } it("should generate a test failure if a Throwable, or an Error other than direct Error subtypes " + "known in JDK 1.5, excluding AssertionError") { val a = new Spec { it("throws AssertionError") { throw new AssertionError } it("throws plain old Error") { throw new Error } it("throws Throwable") { throw new Throwable } } val rep = new EventRecordingReporter a.run(None, rep, new Stopper {}, Filter(), Map(), None, new Tracker()) val tf = rep.testFailedEventsReceived assert(tf.size === 3) } it("should propagate out Errors that are direct subtypes of Error in JDK 1.5, other than " + "AssertionError, causing Suites and Runs to abort.") { val a = new Spec { it("throws AssertionError") { throw new OutOfMemoryError } } intercept[OutOfMemoryError] { a.run(None, SilentReporter, new Stopper {}, Filter(), Map(), None, new Tracker()) } } it("should send InfoProvided events with aboutAPendingTest set to true for info " + "calls made from a test that is pending") { val a = new Spec with GivenWhenThen { it("should do something else") { given("two integers") when("one is subracted from the other") then("the result is the difference between the two numbers") pending } } val rep = new EventRecordingReporter a.run(None, rep, new Stopper {}, Filter(), Map(), None, new Tracker()) val ip = rep.infoProvidedEventsReceived assert(ip.size === 3) for (event <- ip) { assert(event.aboutAPendingTest.isDefined && event.aboutAPendingTest.get) } } it("should send InfoProvided events with aboutAPendingTest set to false for info " + "calls made from a test that is not pending") { val a = new Spec with GivenWhenThen { it("should do something else") { given("two integers") when("one is subracted from the other") then("the result is the difference between the two numbers") assert(1 + 1 === 2) } } val rep = new EventRecordingReporter a.run(None, rep, new Stopper {}, Filter(), Map(), None, new Tracker()) val ip = rep.infoProvidedEventsReceived assert(ip.size === 3) for (event <- ip) { assert(event.aboutAPendingTest.isDefined && !event.aboutAPendingTest.get) } } } }
yyuu/scalatest
src/test/scala/org/scalatest/SpecSpec.scala
Scala
apache-2.0
29,294
package persistence.entities import utils.Profile case class Supplier(id: Option[Int],name: String,desc: String) case class SimpleSupplier(name: String,desc: String) trait Suppliers extends Profile{ import profile.api._ class Suppliers(tag: Tag) extends Table[Supplier](tag, "SUPPLIERS") { def id = column[Int]("id", O.PrimaryKey, O.AutoInc) def name = column[String]("userID") def desc = column[String]("last_name") def * = (id.?, name, desc) <> (Supplier.tupled, Supplier.unapply) } val suppliers = TableQuery[Suppliers] }
edvorkin/simple-docker-scala-app
src/main/scala/persistence/entities/Suppliers.scala
Scala
apache-2.0
556
/* ************************************************************************************* * Copyright 2011 Normation SAS ************************************************************************************* * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * In accordance with the terms of section 7 (7. Additional Terms.) of * the GNU Affero GPL v3, the copyright holders add the following * Additional permissions: * Notwithstanding to the terms of section 5 (5. Conveying Modified Source * Versions) and 6 (6. Conveying Non-Source Forms.) of the GNU Affero GPL v3 * licence, when you create a Related Module, this Related Module is * not considered as a part of the work and may be distributed under the * license agreement of your choice. * A "Related Module" means a set of sources files including their * documentation that, without modification of the Source Code, enables * supplementary functions or services in addition to those offered by * the Software. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see <http://www.gnu.org/licenses/agpl.html>. * ************************************************************************************* */ package com.normation.rudder.services.eventlog import scala.xml.{Node => XNode, _} import net.liftweb.common._ import net.liftweb.common.Box._ import net.liftweb.util.Helpers.tryo import com.normation.cfclerk.domain.TechniqueVersion import com.normation.cfclerk.domain.TechniqueName import com.normation.utils.Control.sequence import com.normation.rudder.domain.policies._ import com.normation.rudder.domain.nodes._ import com.normation.rudder.services.queries.CmdbQueryParser import com.normation.rudder.domain.queries.Query import com.normation.inventory.domain.NodeId import org.joda.time.format.ISODateTimeFormat import com.normation.rudder.services.marshalling._ import com.normation.rudder.batch.SuccessStatus import com.normation.rudder.batch.ErrorStatus import com.normation.rudder.domain.servers.NodeConfiguration import com.normation.rudder.services.marshalling.DeploymentStatusUnserialisation import com.normation.rudder.batch.CurrentDeploymentStatus import com.normation.inventory.domain.AgentType import com.normation.rudder.domain.eventlog._ import com.normation.cfclerk.domain.TechniqueId import com.normation.rudder.repository.GitPath import com.normation.rudder.repository.GitCommitId import com.normation.rudder.repository.GitArchiveId import org.eclipse.jgit.lib.PersonIdent import com.normation.rudder.domain.Constants import com.normation.rudder.services.marshalling.TestFileFormat import com.normation.eventlog.EventLog import org.joda.time.DateTime import com.normation.rudder.domain.workflows.ConfigurationChangeRequest import com.normation.rudder.domain.workflows.ConfigurationChangeRequest import com.normation.rudder.domain.workflows.ChangeRequestId import com.normation.rudder.domain.workflows.ChangeRequestInfo import com.normation.rudder.domain.workflows.WorkflowStepChange import com.normation.rudder.domain.workflows.WorkflowNodeId import com.normation.rudder.domain.workflows.WorkflowStepChange import com.normation.eventlog.ModificationId /** * A service that helps mapping event log details to there structured data model. * Details should always be in the format: <entry>{more details here}</entry> */ trait EventLogDetailsService { /** * From a given nodeSeq, retrieve the real details, that should be in a <entry/> tag. * The result, if Full, is trimed so that pattern matching can be made without * taking care of empty texts. */ def getEntryContent(xml:NodeSeq) : Box[Elem] ///// rule ///// def getRuleAddDetails(xml:NodeSeq) : Box[AddRuleDiff] def getRuleDeleteDetails(xml:NodeSeq) : Box[DeleteRuleDiff] def getRuleModifyDetails(xml:NodeSeq) : Box[ModifyRuleDiff] ///// directive ///// def getDirectiveAddDetails(xml:NodeSeq) : Box[(AddDirectiveDiff, SectionVal)] def getDirectiveDeleteDetails(xml:NodeSeq) : Box[(DeleteDirectiveDiff, SectionVal)] def getDirectiveModifyDetails(xml:NodeSeq) : Box[ModifyDirectiveDiff] ///// node group ///// def getNodeGroupAddDetails(xml:NodeSeq) : Box[AddNodeGroupDiff] def getNodeGroupDeleteDetails(xml:NodeSeq) : Box[DeleteNodeGroupDiff] def getNodeGroupModifyDetails(xml:NodeSeq) : Box[ModifyNodeGroupDiff] ///// node ///// def getAcceptNodeLogDetails(xml:NodeSeq) : Box[InventoryLogDetails] def getRefuseNodeLogDetails(xml:NodeSeq) : Box[InventoryLogDetails] def getDeleteNodeLogDetails(xml:NodeSeq) : Box[InventoryLogDetails] ///// other ///// def getDeploymentStatusDetails(xml:NodeSeq) : Box[CurrentDeploymentStatus] def getUpdatePolicyServerDetails(xml:NodeSeq) : Box[AuthorizedNetworkModification] def getTechniqueLibraryReloadDetails(xml:NodeSeq) : Box[Seq[TechniqueId]] def getTechniqueModifyDetails(xml: NodeSeq): Box[ModifyTechniqueDiff] def getTechniqueDeleteDetails(xml:NodeSeq) : Box[DeleteTechniqueDiff] ///// archiving & restoration ///// def getNewArchiveDetails[T <: ExportEventLog](xml:NodeSeq, archive:T) : Box[GitArchiveId] def getRestoreArchiveDetails[T <: ImportEventLog](xml:NodeSeq, archive:T) : Box[GitCommitId] def getRollbackDetails(xml:NodeSeq) : Box[RollbackInfo] def getChangeRequestDetails(xml:NodeSeq) : Box[ChangeRequestDiff] def getWorkflotStepChange(xml:NodeSeq) : Box[WorkflowStepChange] } /** * Details should always be in the format: <entry>{more details here}</entry> */ class EventLogDetailsServiceImpl( cmdbQueryParser : CmdbQueryParser , piUnserialiser : DirectiveUnserialisation , groupUnserialiser : NodeGroupUnserialisation , crUnserialiser : RuleUnserialisation , techniqueUnserialiser : ActiveTechniqueUnserialisation , deploymentStatusUnserialisation : DeploymentStatusUnserialisation ) extends EventLogDetailsService { /** * An utility method that is able the parse a <X<from>....</from><to>...</to></X> * attribute and extract it into a SimpleDiff class. */ private[this] def getFromTo[T](opt:Option[NodeSeq], f:NodeSeq => Box[T] ) : Box[Option[SimpleDiff[T]]] = { opt match { case None => Full(None) case Some(x) => for { fromS <- (x \ "from").headOption ?~! ("Missing required tag 'from'") toS <- (x \ "to").headOption ?~! ("Missing required tag 'to'") from <- f(fromS) to <- f(toS) } yield { Some(SimpleDiff(from, to)) } } } /** * Special case of getFromTo for strings. */ private[this] def getFromToString(opt:Option[NodeSeq]) = getFromTo[String](opt,(s:NodeSeq) => Full(s.text)) def getEntryContent(xml:NodeSeq) : Box[Elem] = { if(xml.size == 1) { val node = Utility.trim(xml.head) node match { case e:Elem => Full(e) case _ => Failure("Given node is not an XML element: " + node.toString) } } else { Failure("Bad details format. We were expected an unique node <entry/>, and we get: " + xml.toString) } } /** * Version 2: <rule changeType="add" fileFormat="2"> <id>{rule.id.value}</id> <name>{rule.name}</name> <serial>{rule.serial}</serial> <target>{ rule.target.map( _.target).getOrElse("") }</target> <directiveIds>{ rule.directiveIds.map { id => <id>{id.value}</id> } }</directiveIds> <shortDescription>{rule.shortDescription}</shortDescription> <longDescription>{rule.longDescription}</longDescription> <isEnabled>{rule.isEnabledStatus}</isEnabled> <isSystem>{rule.isSystem}</isSystem> </rule> */ override def getRuleAddDetails(xml:NodeSeq) : Box[AddRuleDiff] = { getRuleFromXML(xml, "add").map { rule => AddRuleDiff(rule) } } /** * Version 2: <rule changeType="delete" fileFormat="2"> <id>{rule.id.value}</id> <name>{rule.name}</name> <serial>{rule.serial}</serial> <target>{ rule.target.map( _.target).getOrElse("") }</target> <directiveIds>{ rule.directiveIds.map { id => <id>{id.value}</id> } }</directiveIds> <shortDescription>{rule.shortDescription}</shortDescription> <longDescription>{rule.longDescription}</longDescription> <isEnabled>{rule.isEnabledStatus}</isEnabled> <isSystem>{rule.isSystem}</isSystem> </rule> */ override def getRuleDeleteDetails(xml:NodeSeq) : Box[DeleteRuleDiff] = { getRuleFromXML(xml, "delete").map { rule => DeleteRuleDiff(rule) } } /** * <rule changeType="modify"> <id>012f3064-d392-43a3-bec9-b0f75950a7ea</id> <displayName>cr1</displayName> <name><from>cr1</from><to>cr1-x</to></name> <target><from>....</from><to>....</to></target> <directiveIds><from><id>...</id><id>...</id></from><to><id>...</id></to></directiveIds> <shortDescription><from>...</from><to>...</to></shortDescription> <longDescription><from>...</from><to>...</to></longDescription> </rule> */ override def getRuleModifyDetails(xml:NodeSeq) : Box[ModifyRuleDiff] = { for { entry <- getEntryContent(xml) rule <- (entry \ "rule").headOption ?~! ("Entry type is not rule : " + entry) changeTypeAddOk <- { if(rule.attribute("changeType").map( _.text ) == Some("modify")) Full("OK") else Failure("Rule attribute does not have changeType=modify: " + entry) } fileFormatOk <- TestFileFormat(rule) id <- (rule \ "id").headOption.map( _.text ) ?~! ("Missing attribute 'id' in entry type rule : " + entry) displayName <- (rule \ "displayName").headOption.map( _.text ) ?~! ("Missing attribute 'displayName' in entry type rule : " + entry) name <- getFromToString((rule \ "name").headOption) serial <- getFromTo[Int]((rule \ "serial").headOption, { x => tryo(x.text.toInt) } ) targets <- getFromTo[Set[RuleTarget]]((rule \ "targets").headOption, { x:NodeSeq => Full((x \ "target").toSet.flatMap{ y: NodeSeq => RuleTarget.unser(y.text )}) }) shortDescription <- getFromToString((rule \ "shortDescription").headOption) longDescription <- getFromToString((rule \ "longDescription").headOption) isEnabled <- getFromTo[Boolean]((rule \ "isEnabled").headOption, { s => tryo { s.text.toBoolean } } ) isSystem <- getFromTo[Boolean]((rule \ "isSystem").headOption, { s => tryo { s.text.toBoolean } } ) directiveIds <- getFromTo[Set[DirectiveId]]((rule \ "directiveIds").headOption, { x:NodeSeq => Full((x \ "id").toSet.map( (y:NodeSeq) => DirectiveId( y.text ))) } ) } yield { ModifyRuleDiff( id = RuleId(id) , name = displayName , modName = name , modSerial = serial , modTarget = targets , modDirectiveIds = directiveIds , modShortDescription = shortDescription , modLongDescription = longDescription , modIsActivatedStatus = isEnabled , modIsSystem = isSystem ) } } /** * Map XML into a rule */ private[this] def getRuleFromXML(xml:NodeSeq, changeType:String) : Box[Rule] = { for { entry <- getEntryContent(xml) crXml <- (entry \ "rule").headOption ?~! ("Entry type is not a rule: " + entry) changeTypeAddOk <- { if(crXml.attribute("changeType").map( _.text ) == Some(changeType)) Full("OK") else Failure("Rule attribute does not have changeType=%s: ".format(changeType) + entry) } rule <- crUnserialiser.unserialise(crXml) } yield { rule } } ///// directives ///// /** * Map XML into a directive */ private[this] def getDirectiveFromXML(xml:NodeSeq, changeType:String) : Box[(TechniqueName, Directive, SectionVal)] = { for { entry <- getEntryContent(xml) piXml <- (entry \ "directive").headOption ?~! ("Entry type is not a directive: " + entry) changeTypeAddOk <- { if(piXml.attribute("changeType").map( _.text ) == Some(changeType)) Full("OK") else Failure("Directive attribute does not have changeType=%s: ".format(changeType) + entry) } ptPiSectionVals <- piUnserialiser.unserialise(piXml) } yield { ptPiSectionVals } } def getDirectiveAddDetails(xml:NodeSeq) : Box[(AddDirectiveDiff, SectionVal)] = { getDirectiveFromXML(xml, "add").map { case (ptName, directive,sectionVal) => (AddDirectiveDiff(ptName, directive),sectionVal) } } def getDirectiveDeleteDetails(xml:NodeSeq) : Box[(DeleteDirectiveDiff, SectionVal)] = { getDirectiveFromXML(xml, "delete").map { case(ptName, directive,sectionVal) => (DeleteDirectiveDiff(ptName, directive),sectionVal) } } def getDirectiveModifyDetails(xml:NodeSeq) : Box[ModifyDirectiveDiff] = { for { entry <- getEntryContent(xml) directive <- (entry \ "directive").headOption ?~! ("Entry type is not directive : " + entry) changeTypeAddOk <- { if(directive.attribute("changeType").map( _.text ) == Some("modify")) Full("OK") else Failure("Directive attribute does not have changeType=modify: " + entry) } fileFormatOk <- TestFileFormat(directive) id <- (directive \ "id").headOption.map( _.text ) ?~! ("Missing attribute 'id' in entry type directive : " + entry) ptName <- (directive \ "techniqueName").headOption.map( _.text ) ?~! ("Missing attribute 'techniqueName' in entry type directive : " + entry) displayName <- (directive \ "displayName").headOption.map( _.text ) ?~! ("Missing attribute 'displayName' in entry type directive : " + entry) name <- getFromToString((directive \ "name").headOption) techniqueVersion <- getFromTo[TechniqueVersion]((directive \ "techniqueVersion").headOption, {v => tryo(TechniqueVersion(v.text)) } ) parameters <- getFromTo[SectionVal]((directive \ "parameters").headOption, {parameter => piUnserialiser.parseSectionVal(parameter) }) shortDescription <- getFromToString((directive \ "shortDescription").headOption) longDescription <- getFromToString((directive \ "longDescription").headOption) priority <- getFromTo[Int]((directive \ "priority").headOption, { x => tryo(x.text.toInt) } ) isEnabled <- getFromTo[Boolean]((directive \ "isEnabled").headOption, { s => tryo { s.text.toBoolean } } ) isSystem <- getFromTo[Boolean]((directive \ "isSystem").headOption, { s => tryo { s.text.toBoolean } } ) } yield { ModifyDirectiveDiff( techniqueName = TechniqueName(ptName) , id = DirectiveId(id) , name = displayName , modName = name , modTechniqueVersion = techniqueVersion , modParameters = parameters , modShortDescription = shortDescription , modLongDescription = longDescription , modPriority = priority , modIsActivated = isEnabled , modIsSystem = isSystem ) } } ///// node group ///// override def getNodeGroupAddDetails(xml:NodeSeq) : Box[AddNodeGroupDiff] = { getNodeGroupFromXML(xml, "add").map { group => AddNodeGroupDiff(group) } } override def getNodeGroupDeleteDetails(xml:NodeSeq) : Box[DeleteNodeGroupDiff] = { getNodeGroupFromXML(xml, "delete").map { group => DeleteNodeGroupDiff(group) } } override def getNodeGroupModifyDetails(xml:NodeSeq) : Box[ModifyNodeGroupDiff] = { for { entry <- getEntryContent(xml) group <- (entry \ "nodeGroup").headOption ?~! ("Entry type is not nodeGroup : " + entry) changeTypeAddOk <- { if(group.attribute("changeType").map( _.text ) == Some("modify")) Full("OK") else Failure("NodeGroup attribute does not have changeType=modify: " + entry) } fileFormatOk <- TestFileFormat(group) id <- (group \ "id").headOption.map( _.text ) ?~! ("Missing attribute 'id' in entry type nodeGroup : " + entry) displayName <- (group \ "displayName").headOption.map( _.text ) ?~! ("Missing attribute 'displayName' in entry type nodeGroup : " + entry) name <- getFromToString((group \ "name").headOption) description <- getFromToString((group \ "description").headOption) query <- getFromTo[Option[Query]]((group \ "query").headOption, {s => //check for <from><none></none></from> or the same with <to>, <none/>, etc if( (s \ "none").isEmpty) cmdbQueryParser(s.text).map( Some(_) ) else Full(None) } ) isDynamic <- getFromTo[Boolean]((group \ "isDynamic").headOption, { s => tryo { s.text.toBoolean } } ) serverList <- getFromTo[Set[NodeId]]((group \ "nodeIds").headOption, { x:NodeSeq => Full((x \ "id").toSet.map( (y:NodeSeq) => NodeId( y.text ) )) } ) isEnabled <- getFromTo[Boolean]((group \ "isEnabled").headOption, { s => tryo { s.text.toBoolean } } ) isSystem <- getFromTo[Boolean]((group \ "isSystem").headOption, { s => tryo { s.text.toBoolean } } ) } yield { ModifyNodeGroupDiff( id = NodeGroupId(id) , name = displayName , modName = name , modDescription = description , modQuery = query , modIsDynamic = isDynamic , modNodeList = serverList , modIsActivated = isEnabled , modIsSystem = isSystem ) } } /** * Map XML into a node group */ private[this] def getNodeGroupFromXML(xml:NodeSeq, changeType:String) : Box[NodeGroup] = { for { entry <- getEntryContent(xml) groupXml <- (entry \ "nodeGroup").headOption ?~! ("Entry type is not a nodeGroup: " + entry) changeTypeAddOk <- { if(groupXml.attribute("changeType").map( _.text ) == Some(changeType)) Full("OK") else Failure("nodeGroup attribute does not have changeType=%s: ".format(changeType) + entry) } group <- groupUnserialiser.unserialise(groupXml) } yield { group } } def getAcceptNodeLogDetails(xml:NodeSeq) : Box[InventoryLogDetails] = { getInventoryLogDetails(xml, "accept") } def getRefuseNodeLogDetails(xml:NodeSeq) : Box[InventoryLogDetails] = { getInventoryLogDetails(xml, "refuse") } /** * Get inventory details */ private[this] def getInventoryLogDetails(xml:NodeSeq, action:String) : Box[InventoryLogDetails] = { for { entry <- getEntryContent(xml) details <- (entry \ "node").headOption ?~! ("Entry type is not a node: " + entry) actionOk <- { if(details.attribute("action").map( _.text ) == Some(action)) Full("OK") else Failure("node attribute does not have action=%s: ".format(action) + entry) } fileFormatOk <- TestFileFormat(details) nodeId <- (details \ "id").headOption.map( _.text ) ?~! ("Missing attribute 'id' in entry type node: " + entry) version <- (details \ "inventoryVersion").headOption.map( _.text ) ?~! ("Missing attribute 'inventoryVersion' in entry type node : " + entry) hostname <- (details \ "hostname").headOption.map( _.text ) ?~! ("Missing attribute 'hostname' in entry type node : " + entry) os <- (details \ "fullOsName").headOption.map( _.text ) ?~! ("Missing attribute 'fullOsName' in entry type node : " + entry) actorIp <- (details \ "actorIp").headOption.map( _.text ) ?~! ("Missing attribute 'actorIp' in entry type node : " + entry) } yield { InventoryLogDetails( nodeId = NodeId(nodeId) , inventoryVersion = ISODateTimeFormat.dateTimeParser.parseDateTime(version) , hostname = hostname , fullOsName = os , actorIp = actorIp ) } } def getDeleteNodeLogDetails(xml:NodeSeq) : Box[InventoryLogDetails] = { getInventoryLogDetails(xml, "delete") } /** * Get node details */ private[this] def getNodeLogDetails(xml:NodeSeq, action:String) : Box[NodeLogDetails] = { for { entry <- getEntryContent(xml) details <- (entry \ "node").headOption ?~! ("Entry type is not a node: " + entry) actionOk <- { if(details.attribute("action").map( _.text ) == Some(action)) Full("OK") else Failure("node attribute does not have action=%s: ".format(action) + entry) } fileFormatOk <- TestFileFormat(details) nodeId <- (details \ "id").headOption.map( _.text ) ?~! ("Missing attribute 'id' in entry type node: " + entry) name <- (details \ "name").headOption.map( _.text ) ?~! ("Missing attribute 'name' in entry type node : " + entry) hostname <- (details \ "hostname").headOption.map( _.text ) ?~! ("Missing attribute 'hostname' in entry type node : " + entry) description <- (details \ "description").headOption.map( _.text ) ?~! ("Missing attribute 'description' in entry type node : " + entry) ips <- (details \ "ips").headOption.map { case x:NodeSeq => (x \ "ip").toSeq.map( (y:NodeSeq) => y.text ) }?~! ("Missing attribute 'ips' in entry type node : " + entry) machineType <- (details \ "machineType").headOption.map( _.text ) ?~! ("Missing attribute 'machineType' in entry type node : " + entry) os <- (details \ "os").headOption.map( _.text ) ?~! ("Missing attribute 'os' in entry type node : " + entry) osVersion <- (details \ "osVersion").headOption.map( _.text ) ?~! ("Missing attribute 'os' in entry type node : " + entry) servicePack = (details \ "os").headOption.map( _.text ) boxedAgentsName<- (details \ "agentsName").headOption.map { case x:NodeSeq => (x \ "agentName").toSeq.map( (y:NodeSeq) => AgentType.fromValue(y.text) ) } ?~! ("Missing attribute 'agentsName' in entry type node : " + entry) inventoryDate <- (details \ "inventoryDate").headOption.map( _.text ) ?~! ("Missing attribute 'inventoryDate' in entry type node : " + entry) publicKey <- (details \ "publicKey").headOption.map( _.text ) ?~! ("Missing attribute 'publicKey' in entry type node : " + entry) policyServerId <- (details \ "policyServerId").headOption.map( _.text ) ?~! ("Missing attribute 'policyServerId' in entry type node : " + entry) localAdministratorAccountName <- (details \ "localAdministratorAccountName").headOption.map( _.text ) ?~! ("Missing attribute 'localAdministratorAccountName' in entry type node : " + entry) creationDate <- (details \ "creationDate").headOption.map( _.text ) ?~! ("Missing attribute 'creationDate' in entry type node : " + entry) isBroken <- (details \ "isBroken").headOption.map(_.text.toBoolean ) isSystem <- (details \ "isSystem").headOption.map(_.text.toBoolean ) isPolicyServer <- (details \ "isPolicyServer").headOption.map(_.text.toBoolean ) } yield { val agentsNames = com.normation.utils.Control.boxSequence[AgentType](boxedAgentsName) NodeLogDetails(node = NodeInfo( id = NodeId(nodeId) , name = name , description = description , hostname = hostname , machineType , os , osVersion , servicePack , ips = ips.toList , inventoryDate = ISODateTimeFormat.dateTimeParser.parseDateTime(inventoryDate) , publicKey = publicKey , agentsName = agentsNames.openOr(Seq()) , policyServerId = NodeId(policyServerId) , localAdministratorAccountName = localAdministratorAccountName , creationDate = ISODateTimeFormat.dateTimeParser.parseDateTime(creationDate) , isBroken = isBroken , isSystem = isSystem , isPolicyServer = isPolicyServer )) } } def getDeploymentStatusDetails(xml:NodeSeq) : Box[CurrentDeploymentStatus] = { for { entry <- getEntryContent(xml) details <- (entry \ "deploymentStatus").headOption ?~! ("Entry type is not a deploymentStatus: " + entry) deploymentStatus <- deploymentStatusUnserialisation.unserialise(details) } yield { deploymentStatus } } /** * <changeAuthorizedNetworks fileFormat="2"> * <oldAuthorizedNetworks> <net>XXXXX</net> <net>SSSSS</net> </oldAuthorizedNetworks> <newAuthorizedNetworks> <net>XXXXX</net> <net>SSSSS</net> <net>PPPPP</net> </newAuthorizedNetworks> </changeAuthorizedNetworks> */ def getUpdatePolicyServerDetails(xml:NodeSeq) : Box[AuthorizedNetworkModification] = { for { entry <- getEntryContent(xml) details <- (entry \ "changeAuthorizedNetworks").headOption ?~! ("Entry type is not a changeAuthorizedNetworks: " + entry) fileFormatOk <- TestFileFormat(details) oldsXml <- (entry \\ "oldAuthorizedNetworks").headOption ?~! ("Missing attribute 'oldAuthorizedNetworks' in entry: " + entry) newsXml <- (entry \\ "newAuthorizedNetworks").headOption ?~! ("Missing attribute 'newAuthorizedNetworks' in entry: " + entry) } yield { AuthorizedNetworkModification( oldNetworks = (oldsXml \ "net").map( _.text ) , newNetworks = (newsXml \ "net").map( _.text ) ) } } /** * <techniqueReloaded fileFormat="2"> <modifiedTechnique> <name>{name.value}</name> <version>{version.toString}</version> </modifiedTechnique> <modifiedTechnique> <name>{name.value}</name> <version>{version.toString}</version> </modifiedTechnique> .... </techniqueReloaded> */ def getTechniqueLibraryReloadDetails(xml:NodeSeq) : Box[Seq[TechniqueId]] = { for { entry <- getEntryContent(xml) details <- (entry \ "reloadTechniqueLibrary").headOption ?~! ("Entry type is not a techniqueReloaded: " + entry) fileFormatOk <- TestFileFormat(details) activeTechniqueIds <- sequence((details \ "modifiedTechnique")) { technique => for { name <- (technique \ "name").headOption.map( _.text ) ?~! ("Missing attribute 'name' in entry type techniqueReloaded : " + entry) version <- (technique \ "version").headOption.map( _.text ) ?~! ("Missing attribute 'version' in entry type techniqueReloaded : " + entry) v <- tryo { TechniqueVersion(version) } } yield { TechniqueId(TechniqueName(name),v) } } } yield { activeTechniqueIds } } def getTechniqueModifyDetails(xml: NodeSeq): Box[ModifyTechniqueDiff] = { for { entry <- getEntryContent(xml) technique <- (entry \ "activeTechnique").headOption ?~! ("Entry type is not a technique: " + entry) id <- (technique \ "id").headOption.map( _.text ) ?~! ("Missing attribute 'id' in entry type technique : " + entry) displayName <- (technique \ "techniqueName").headOption.map( _.text ) ?~! ("Missing attribute 'displayName' in entry type rule : " + entry) isEnabled <- getFromTo[Boolean]((technique \ "isEnabled").headOption, { s => tryo { s.text.toBoolean } } ) fileFormatOk <- TestFileFormat(technique) } yield { ModifyTechniqueDiff( id = ActiveTechniqueId(id) , name = TechniqueName(displayName) , modIsEnabled = isEnabled ) } } override def getTechniqueDeleteDetails(xml:NodeSeq) : Box[DeleteTechniqueDiff] = { getTechniqueFromXML(xml, "delete").map { technique => DeleteTechniqueDiff(technique) } } /** * Map XML into a technique */ private[this] def getTechniqueFromXML(xml:NodeSeq, changeType:String) : Box[ActiveTechnique] = { for { entry <- getEntryContent(xml) techniqueXml <- (entry \ "activeTechnique").headOption ?~! ("Entry type is not a technique: " + entry) changeTypeAddOk <- if(techniqueXml.attribute("changeType").map( _.text ) == Some(changeType)) Full("OK") else Failure("Technique attribute does not have changeType=%s: ".format(changeType) + entry) technique <- techniqueUnserialiser.unserialise(techniqueXml) } yield { technique } } def getNewArchiveDetails[T <: ExportEventLog](xml:NodeSeq, archive:T) : Box[GitArchiveId] = { def getCommitInfo(xml:NodeSeq, tagName:String) = { for { entry <- getEntryContent(xml) details <- (entry \ tagName).headOption ?~! ("Entry type is not a '%s': %s".format(tagName, entry)) fileFormatOk <- TestFileFormat(details) path <- (details \ "path").headOption.map( _.text ) ?~! ("Missing attribute 'path' in entry: " + xml) commitId <- (details \ "commit").headOption.map( _.text ) ?~! ("Missing attribute 'commit' in entry: " + xml) name <- (details \ "commiterName").headOption.map( _.text ) ?~! ("Missing attribute 'commiterName' in entry: " + xml) email <- (details \ "commiterEmail").headOption.map( _.text ) ?~! ("Missing attribute 'commiterEmail' in entry: " + xml) } yield { GitArchiveId(GitPath(path), GitCommitId(commitId), new PersonIdent(name, email)) } } archive match { case x:ExportGroupsArchive => getCommitInfo(xml, ExportGroupsArchive.tagName) case x:ExportTechniqueLibraryArchive => getCommitInfo(xml, ExportTechniqueLibraryArchive.tagName) case x:ExportRulesArchive => getCommitInfo(xml, ExportRulesArchive.tagName) case x:ExportFullArchive => getCommitInfo(xml, ExportFullArchive.tagName) } } def getRestoreArchiveDetails[T <: ImportEventLog](xml:NodeSeq, archive:T) : Box[GitCommitId] = { def getCommitInfo(xml:NodeSeq, tagName:String) = { for { entry <- getEntryContent(xml) details <- (entry \ tagName).headOption ?~! ("Entry type is not a '%s': %s".format(tagName, entry)) fileFormatOk <- TestFileFormat(details) commitId <- (details \ "commit").headOption.map( _.text ) ?~! ("Missing attribute 'commit' in entry: " + xml) } yield { GitCommitId(commitId) } } archive match { case x:ImportGroupsArchive => getCommitInfo(xml, ImportGroupsArchive.tagName) case x:ImportTechniqueLibraryArchive => getCommitInfo(xml, ImportTechniqueLibraryArchive.tagName) case x:ImportRulesArchive => getCommitInfo(xml, ImportRulesArchive.tagName) case x:ImportFullArchive => getCommitInfo(xml, ImportFullArchive.tagName) } } def getChangeRequestDetails(xml:NodeSeq) : Box[ChangeRequestDiff] = { for { entry <- getEntryContent(xml) changeRequest <- (entry \ "changeRequest").headOption ?~! s"Entry type is not a 'changeRequest': ${entry}" kind <- (changeRequest \ "@changeType").headOption.map(_.text) ?~! s"diff is not a valid changeRequest diff: ${changeRequest}" crId <- (changeRequest \ "id").headOption.map(id => ChangeRequestId(id.text.toInt)) ?~! s"change request does not have any Id: ${changeRequest}" modId = (changeRequest \ "modId").headOption.map(modId => ModificationId(modId.text)) name <- (changeRequest \ "name").headOption.map(_.text) ?~! s"change request does not have any name: ${changeRequest}" description <- (changeRequest \ "description").headOption.map(_.text) ?~! s"change request does not have any description: ${changeRequest}" diffName <- getFromToString((changeRequest \ "diffName").headOption) diffDesc <- getFromToString((changeRequest \ "diffDescription").headOption) } yield { val changeRequest = ConfigurationChangeRequest(crId,modId,ChangeRequestInfo(name,description),Map(),Map(),Map()) kind match { case "add" => AddChangeRequestDiff(changeRequest) case "delete" => DeleteChangeRequestDiff(changeRequest) case "modify" => ModifyToChangeRequestDiff(changeRequest,diffName,diffDesc) } } } def getWorkflotStepChange(xml:NodeSeq) : Box[WorkflowStepChange] = { for { entry <- getEntryContent(xml) workflowStep <- (entry \ "workflowStep").headOption ?~! s"Entry type is not a 'changeRequest': ${entry}" crId <- (workflowStep \ "changeRequestId").headOption.map(id => ChangeRequestId(id.text.toInt)) ?~! s"Workflow event does not target any change request: ${workflowStep}" from <- (workflowStep \ "from").headOption.map(from => WorkflowNodeId(from.text)) ?~! s"Workflow event does not have any from step: ${workflowStep}" to <- (workflowStep \ "to").headOption.map(to => WorkflowNodeId(to.text)) ?~! s"workflow step does not have any to step: ${workflowStep}" } yield { WorkflowStepChange(crId,from,to) } } def getRollbackDetails(xml:NodeSeq) : Box[RollbackInfo] = { def getEvents(xml:NodeSeq)= { for{ event <- xml eventlogs <- event.child entry <- eventlogs \ "rollbackedEvent" id <- (entry \ "id").headOption.map(_.text.toInt) ?~! ("Entry type is not a 'rollback': %s".format(entry)) evtType <-(entry \ "type").headOption.map(_.text) ?~! ("Entry type is not a 'rollback': %s".format(entry)) author <-(entry \ "author").headOption.map(_.text) ?~! ("Entry type is not a 'rollback': %s".format(entry)) date <-(entry \ "date").headOption.map(_.text) ?~! ("Entry type is not a 'rollback': %s".format(entry)) } yield { RollbackedEvent(id,date,evtType,author) } } val rollbackInfo = for{ event <- xml eventlogs <- event.child entry <- (eventlogs \ "main").headOption id <- (entry \ "id").headOption.map(_.text.toInt) ?~! ("Entry type is not a 'rollback': %s".format(entry)) evtType <-(entry \ "type").headOption.map(_.text) ?~! ("Entry type is not a 'rollback': %s".format(entry)) author <-(entry \ "author").headOption.map(_.text) ?~! ("Entry type is not a 'rollback': %s".format(entry)) date <-(entry \ "date").headOption.map(_.text) ?~! ("Entry type is not a 'rollback': %s".format(entry)) rollbackType <-(entry \ "rollbackType").headOption.map(_.text) ?~! ("Entry type is not a 'rollback': %s".format(entry)) } yield { val target = RollbackedEvent(id,date,evtType,author) RollbackInfo(target,rollbackType,getEvents(xml)) } rollbackInfo.headOption } } case class RollbackInfo( target : RollbackedEvent , rollbackType : String , rollbacked : Seq[RollbackedEvent] ) case class RollbackedEvent( id : Int , date : String , eventType : String , author : String )
jooooooon/rudder
rudder-core/src/main/scala/com/normation/rudder/services/eventlog/EventLogDetailsService.scala
Scala
agpl-3.0
37,377
/* * Scala (https://www.scala-lang.org) * * Copyright EPFL and Lightbend, Inc. * * Licensed under Apache License 2.0 * (http://www.apache.org/licenses/LICENSE-2.0). * * See the NOTICE file distributed with this work for * additional information regarding copyright ownership. */ package scala package reflect package internal import scala.annotation.switch trait Constants extends api.Constants { self: SymbolTable => import definitions._ final val NoTag = 0 final val UnitTag = 1 final val BooleanTag = 2 final val ByteTag = 3 final val ShortTag = 4 final val CharTag = 5 final val IntTag = 6 final val LongTag = 7 final val FloatTag = 8 final val DoubleTag = 9 final val StringTag = 10 final val NullTag = 11 final val ClazzTag = 12 // For supporting java enumerations inside java annotations (see ClassfileParser) final val EnumTag = 13 case class Constant(value: Any) extends ConstantApi { import java.lang.Double.doubleToRawLongBits import java.lang.Float.floatToRawIntBits val tag: Int = value match { case null => NullTag case x: Unit => UnitTag case x: Boolean => BooleanTag case x: Byte => ByteTag case x: Short => ShortTag case x: Int => IntTag case x: Long => LongTag case x: Float => FloatTag case x: Double => DoubleTag case x: String => StringTag case x: Char => CharTag case x: Type => ClazzTag case x: Symbol => EnumTag case _ => throw new Error("bad constant value: " + value + " of class " + value.getClass) } def isByteRange: Boolean = isIntRange && Byte.MinValue <= intValue && intValue <= Byte.MaxValue def isShortRange: Boolean = isIntRange && Short.MinValue <= intValue && intValue <= Short.MaxValue def isCharRange: Boolean = isIntRange && Char.MinValue <= intValue && intValue <= Char.MaxValue def isIntRange: Boolean = ByteTag <= tag && tag <= IntTag def isLongRange: Boolean = ByteTag <= tag && tag <= LongTag def isFloatRange: Boolean = ByteTag <= tag && tag <= FloatTag def isNumeric: Boolean = ByteTag <= tag && tag <= DoubleTag def isNonUnitAnyVal = BooleanTag <= tag && tag <= DoubleTag def isSuitableLiteralType = BooleanTag <= tag && tag <= NullTag def isAnyVal = UnitTag <= tag && tag <= DoubleTag def tpe: Type = tag match { case UnitTag => UnitTpe case BooleanTag => BooleanTpe case ByteTag => ByteTpe case ShortTag => ShortTpe case CharTag => CharTpe case IntTag => IntTpe case LongTag => LongTpe case FloatTag => FloatTpe case DoubleTag => DoubleTpe case StringTag => StringTpe case NullTag => NullTpe case ClazzTag => ClassType(typeValue) case EnumTag => EnumType(symbolValue) } /** We need the equals method to take account of tags as well as values. */ // !!! In what circumstance could `equalHashValue == that.equalHashValue && tag != that.tag` be true? override def equals(other: Any): Boolean = other match { case that: Constant => this.tag == that.tag && { // // Consider two `NaN`s to be identical, despite non-equality // Consider -0d to be distinct from 0d, despite equality // // We use the raw versions (i.e. `floatToRawIntBits` rather than `floatToIntBits`) // to avoid treating different encodings of `NaN` as the same constant. // You probably can't express different `NaN` varieties as compile time // constants in regular Scala code, but it is conceivable that you could // conjure them with a macro. // this.tag match { case NullTag => true case FloatTag => floatToRawIntBits(value.asInstanceOf[Float]) == floatToRawIntBits(that.value.asInstanceOf[Float]) case DoubleTag => doubleToRawLongBits(value.asInstanceOf[Double]) == doubleToRawLongBits(that.value.asInstanceOf[Double]) case _ => this.value.equals(that.value) } } case _ => false } def isNaN = value match { case f: Float => java.lang.Float.isNaN(f) case d: Double => java.lang.Double.isNaN(d) case _ => false } def booleanValue: Boolean = if (tag == BooleanTag) value.asInstanceOf[Boolean] else throw new Error("value " + value + " is not a boolean") def byteValue: Byte = tag match { case ByteTag => value.asInstanceOf[Byte] case ShortTag => value.asInstanceOf[Short].toByte case CharTag => value.asInstanceOf[Char].toByte case IntTag => value.asInstanceOf[Int].toByte case LongTag => value.asInstanceOf[Long].toByte case FloatTag => value.asInstanceOf[Float].toByte case DoubleTag => value.asInstanceOf[Double].toByte case _ => throw new Error("value " + value + " is not a Byte") } def shortValue: Short = tag match { case ByteTag => value.asInstanceOf[Byte].toShort case ShortTag => value.asInstanceOf[Short] case CharTag => value.asInstanceOf[Char].toShort case IntTag => value.asInstanceOf[Int].toShort case LongTag => value.asInstanceOf[Long].toShort case FloatTag => value.asInstanceOf[Float].toShort case DoubleTag => value.asInstanceOf[Double].toShort case _ => throw new Error("value " + value + " is not a Short") } def charValue: Char = tag match { case ByteTag => value.asInstanceOf[Byte].toChar case ShortTag => value.asInstanceOf[Short].toChar case CharTag => value.asInstanceOf[Char] case IntTag => value.asInstanceOf[Int].toChar case LongTag => value.asInstanceOf[Long].toChar case FloatTag => value.asInstanceOf[Float].toChar case DoubleTag => value.asInstanceOf[Double].toChar case _ => throw new Error("value " + value + " is not a Char") } def intValue: Int = tag match { case ByteTag => value.asInstanceOf[Byte].toInt case ShortTag => value.asInstanceOf[Short].toInt case CharTag => value.asInstanceOf[Char].toInt case IntTag => value.asInstanceOf[Int] case LongTag => value.asInstanceOf[Long].toInt case FloatTag => value.asInstanceOf[Float].toInt case DoubleTag => value.asInstanceOf[Double].toInt case _ => throw new Error("value " + value + " is not an Int") } def longValue: Long = tag match { case ByteTag => value.asInstanceOf[Byte].toLong case ShortTag => value.asInstanceOf[Short].toLong case CharTag => value.asInstanceOf[Char].toLong case IntTag => value.asInstanceOf[Int].toLong case LongTag => value.asInstanceOf[Long] case FloatTag => value.asInstanceOf[Float].toLong case DoubleTag => value.asInstanceOf[Double].toLong case _ => throw new Error("value " + value + " is not a Long") } def floatValue: Float = tag match { case ByteTag => value.asInstanceOf[Byte].toFloat case ShortTag => value.asInstanceOf[Short].toFloat case CharTag => value.asInstanceOf[Char].toFloat case IntTag => value.asInstanceOf[Int].toFloat case LongTag => value.asInstanceOf[Long].toFloat case FloatTag => value.asInstanceOf[Float] case DoubleTag => value.asInstanceOf[Double].toFloat case _ => throw new Error("value " + value + " is not a Float") } def doubleValue: Double = tag match { case ByteTag => value.asInstanceOf[Byte].toDouble case ShortTag => value.asInstanceOf[Short].toDouble case CharTag => value.asInstanceOf[Char].toDouble case IntTag => value.asInstanceOf[Int].toDouble case LongTag => value.asInstanceOf[Long].toDouble case FloatTag => value.asInstanceOf[Float].toDouble case DoubleTag => value.asInstanceOf[Double] case _ => throw new Error("value " + value + " is not a Double") } /** Convert constant value to conform to given type. */ def convertTo(pt: Type): Constant = { val target = pt.typeSymbol if (target == tpe.typeSymbol) this else if (target == ByteClass && isByteRange) Constant(byteValue) else if (target == ShortClass && isShortRange) Constant(shortValue) else if (target == CharClass && isCharRange) Constant(charValue) else if (target == IntClass && isIntRange) Constant(intValue) else if (target == LongClass && isLongRange) Constant(longValue) else if (target == FloatClass && isFloatRange) Constant(floatValue) else if (target == DoubleClass && isNumeric) Constant(doubleValue) else null } def stringValue: String = if (value == null) "null" else if (tag == ClazzTag) signature(typeValue) else value.toString() def escapedChar(ch: Char): String = (ch: @switch) match { case '\\b' => "\\\\b" case '\\t' => "\\\\t" case '\\n' => "\\\\n" case '\\f' => "\\\\f" case '\\r' => "\\\\r" case '"' => "\\\\\\"" case '\\'' => "\\\\\\'" case '\\\\' => "\\\\\\\\" case _ => if (ch.isControl) "\\\\u%04X".format(ch.toInt) else String.valueOf(ch) } def escapedStringValue: String = { def escape(text: String): String = text flatMap escapedChar tag match { case NullTag => "null" case StringTag => "\\"" + escape(stringValue) + "\\"" case ClazzTag => def show(tpe: Type) = "classOf[" + signature(tpe) + "]" typeValue match { case ErasedValueType(clazz, underlying) => // A note on tpe_* usage here: // // We've intentionally erased the type arguments to the value class so that different // instantiations of a particular value class that erase to the same underlying type // don't result in spurious bridges (e.g. run/t6385.scala). I don't think that matters; // printing trees of `classOf[ValueClass[String]]` shows `classOf[ValueClass]` at phase // erasure both before and after the use of `tpe_*` here. show(clazz.tpe_*) case _ => show(typeValue) } case CharTag => "'" + escapedChar(charValue) + "'" case LongTag => longValue.toString() + "L" case EnumTag => symbolValue.name.toString() case _ => String.valueOf(value) } } def typeValue: Type = value.asInstanceOf[Type] def symbolValue: Symbol = value.asInstanceOf[Symbol] override def hashCode: Int = { import scala.util.hashing.MurmurHash3._ val seed = 17 var h = seed h = mix(h, tag.##) // include tag in the hash, otherwise 0, 0d, 0L, 0f collide. val valueHash = tag match { case NullTag => 0 // We could just use value.hashCode here, at the cost of a collition between different NaNs case FloatTag => java.lang.Integer.hashCode(floatToRawIntBits(value.asInstanceOf[Float])) case DoubleTag => java.lang.Long.hashCode(doubleToRawLongBits(value.asInstanceOf[Double])) case _ => value.hashCode() } h = mix(h, valueHash) finalizeHash(h, length = 2) } } object Constant extends ConstantExtractor implicit val ConstantTag = ClassTag[Constant](classOf[Constant]) }
martijnhoekstra/scala
src/reflect/scala/reflect/internal/Constants.scala
Scala
apache-2.0
11,655
/* * Copyright 2021 HM Revenue & Customs * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package config import com.google.inject.Inject import play.api.Configuration import uk.gov.hmrc.http.cache.client.SessionCache import uk.gov.hmrc.play.bootstrap.config.ServicesConfig import uk.gov.hmrc.http.HttpClient class AmlsSessionCache @Inject()(val configuration: Configuration, val httpClient: HttpClient) extends ServicesConfig(configuration) with SessionCache { override def http = httpClient override def defaultSource = getConfString("amls-frontend.cache", "amls-frontend") override def baseUri = baseUrl("cachable.session-cache") override def domain = getConfString("cachable.session-cache.domain", throw new Exception(s"Could not find config 'cachable.session-cache.domain'")) } class BusinessCustomerSessionCache @Inject()(val configuration: Configuration, val httpClient: HttpClient) extends ServicesConfig(configuration) with SessionCache { override def http = httpClient override def defaultSource: String = getConfString("cachable.session-cache.review-details.cache","business-customer-frontend") override def baseUri = baseUrl("cachable.session-cache") override def domain = getConfString("cachable.session-cache.domain", throw new Exception(s"Could not find config 'cachable.session-cache.domain'")) }
hmrc/amls-frontend
app/config/SessionCache.scala
Scala
apache-2.0
1,927
package io.udash.testing import org.scalatest.BeforeAndAfterAll import org.scalatest.matchers.should.Matchers import org.scalatest.wordspec.AnyWordSpec trait UdashSharedTest extends AnyWordSpec with Matchers with BeforeAndAfterAll { }
UdashFramework/udash-core
utils/src/test/scala/io/udash/testing/UdashSharedTest.scala
Scala
apache-2.0
237
package rssreader.core import java.time.LocalDateTime import scala.io.Source import rssreader.utils.tests.TestSpec class FeedSpec extends TestSpec { behavior of "Parsing valid RSS" it should "correctly parse fields" in { val result = Feed.parse(fileExampleFeed) result shouldBe 'good result.get should have( 'title ("Example Feed"), 'link ("http://www.example.com"), 'description ("The latest stories from ..."), 'items (List(FeedItem("Item 1", "Link 1", "Description 1", None, None, None, None))), 'pubDate (Some(LocalDateTime.of(2015, 7, 1, 15, 0))), 'image (Some(FeedImage("http://example.com/foobar.png", "Title Here", "http://example.com/foo", None, None))) ) } it should "ignore optional fields when empty" in { val result = Feed.parse(fileMinimalFeed) result shouldBe 'good result.get should have( 'title ("Minimal Feed"), 'link ("http://www.example.com"), 'description ("The latest stories from ..."), 'items (Nil), 'pubDate (None), 'image (None) ) } it should "create from url pointing to xml" in { Feed.parse(fileExampleFeed) shouldBe 'good } it should "create from xml string" in { val str = Source.fromURL(fileExampleFeed).mkString Feed.parse(str) shouldBe 'good } it should "parse all child items" in { val result = Feed.parse(fileMultipleItemFeed) result.get.items should have size 2 } behavior of "Parsing invalid RSS" it should "fail when empty title field" in { val str = """ |<rss> | <channel> | <title></title> | <link>http://www.example.com</link> | <description>The latest stories from ...</description> | </channel> |</rss> """.stripMargin Feed.parse(str) shouldBe 'bad } it should "fail when empty link field" in { val str = """ |<rss> | <channel> | <title>Example Feed</title> | <link></link> | <description>The latest stories from ...</description> | </channel> |</rss> """.stripMargin Feed.parse(str) shouldBe 'bad } it should "fail when empty description field" in { val str = """ |<rss> | <channel> | <title>Example Feed</title> | <link>http://www.example.com</link> | <description></description> | </channel> |</rss> """.stripMargin Feed.parse(str) shouldBe 'bad } it should "fail when an item cannot be parsed" in { val str = """ |<rss> | <channel> | <title>Example Feed</title> | <link>http://www.example.com</link> | <description>The latest stories from ...</description> | <item> | <title>Item with no link or description</title> | </item> | </channel> |</rss> """.stripMargin val result = Feed.parse(str) result shouldBe 'bad result.fold( good => fail(), bad => bad should have size 2 ) } it should "accumulate errors when validating" in { val str = """ |<rss> | <channel> | <title></title> | <link></link> | <description></description> | </channel> |</rss> """.stripMargin val result = Feed.parse(str) result shouldBe 'bad result.fold( good => fail(), bad => bad should have size 3 ) } }
Dev25/RSSReader
src/test/scala/rssreader/core/FeedSpec.scala
Scala
mit
3,528
package gh.test.gh2011b.payload import gh2011b.models.GistEventPayload import net.liftweb.json._ import org.scalatest.{Matchers, FlatSpec} class GistEventPayloadTest extends FlatSpec with Matchers { "A valid GistEvent payload" must "be correctly parsed" in { val json = parse( """ | { | "desc":"", | "name":"gist: 991643", | "id":991643, | "url":"https://gist.github.com/991643", | "action":"update" | |} """.stripMargin) GistEventPayload(json) shouldBe 'defined } }
mgoeminne/github_etl
src/test/scala/gh/test/gh2011b/payload/GistEventPayloadTest.scala
Scala
mit
609
/** * Created on 2011/04/16 * Copyright (c) 2010-2011, Wei-ju Wu. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * Neither the name of Wei-ju Wu nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ package org.zmpp.tads.html import org.scalatest.FlatSpec import org.scalatest.matchers.ShouldMatchers import org.junit.runner.RunWith import org.scalatest.junit.JUnitRunner import java.io._ @RunWith(classOf[JUnitRunner]) class TokenizerSpec extends FlatSpec with ShouldMatchers { "Tokenizer" should "emit start tokens" in { val reader = new StringReader("<html><body onload=\\"bla\\">") val tokenizer = new Tokenizer(reader) tokenizer.nextToken should be (StartTag("html", Map())) tokenizer.nextToken should be (StartTag("body", Map("onload" -> "bla"))) } "Tokenizer" should "emit end tokens" in { val reader = new StringReader("</body></html>") val tokenizer = new Tokenizer(reader) tokenizer.nextToken should be (EndTag("body")) tokenizer.nextToken should be (EndTag("html")) } "Tokenizer" should "emit PCData" in { val reader = new StringReader("some text") val tokenizer = new Tokenizer(reader) tokenizer.nextToken should be (PCData("some text")) tokenizer.nextToken should be (EOF) } "Tokenizer" should "emit EOF" in { val reader = new StringReader("") val tokenizer = new Tokenizer(reader) tokenizer.nextToken should be (EOF) } }
logicmoo/zmpp2
zmpp-htmltads/src/test/scala/org/zmpp/tads/html/TokenizerTest.scala
Scala
bsd-3-clause
2,784
package com.github.jackcviers import akka.actor.{Actor, ActorSystem, Props} class BadShakespearean extends Actor { def receive = { case "Good Morning" β‡’ println("Him: Forsooth 'tis the 'morn, but mourneth for thou doest I do!") case "You're terrible" β‡’ println("Him: Yup") } } class Wood extends Actor { def receive = { case _ β‡’ throw new Exception("Wood cannot hear you.") } } class Printing extends Actor { def receive = { case msg β‡’ println(msg) } } class Mine extends Actor { def receive = { case "Hello" β‡’ println("Him: Hi") case 42 β‡’ println("Him: I don't know the question. Go ask the Earth Mark II.") case s: String β‡’ println(s"Him: You sent me a string: $s.") case Alpha(Beta(b1, Gamma(g1)), Beta(b2, Gamma(g2))) β‡’ println(s"Him: beta1: $b1, beta2: $b2, gamma1: $g1, gamma2: $g2") case _ β‡’ println("Him: Huh?") } } object BadShakespeareanMain { val system = ActorSystem("BadShakespearean") val actor = system.actorOf(Props[BadShakespearean], "Shake") val wood = system.actorOf(Props[Wood], "Wood") val printing = system.actorOf(Props[Printing], "Printing") val mine = system.actorOf(Props[Mine], "Mine") def send(msg: String) { println(s"Me: $msg") actor ! msg Thread.sleep(100) } def sendWood(msg: String) { println(s"Me: $msg") wood ! msg } def sendPrint() { for (a ← 1 to 10) { printing ! a } } def sendMine() { println("Me: Hello") mine ! "Hello" Thread.sleep(100) println("Me: 42") mine ! 42 Thread.sleep(100) println("Me: Alpha!") mine ! Alpha(b1 = Beta(b = "A", g = Gamma(g = "Z")), b2 = Beta(b = "B", g = Gamma(g = "Y"))) Thread.sleep(100) println("Me: Gamma(How much wood could a woodchuck chuck if a woodchuck could chuck wood.)") mine ! Gamma(g = "How much wood could a woodchuck chuck if a woodchuck could chuck wood.") } def main(args: Array[String]) { send("Good Morning") sendPrint() send("You're terrible") sendWood("If a tree falls in a forest, does it make a sound?") sendMine() system.shutdown() } }
jackcviers/learning-akka
src/main/scala/com/github/jackcviers/actors.scala
Scala
apache-2.0
2,138
package io.scalac.frees.math object Formulas { import freestyle._ import freestyle.implicits._ def `(a+b)^2`[F[_]](a: Int, b: Int) (implicit A: AllTheMath[F]): FreeS[F, Int] = { import A._ for { s <- basic.add(a, b) r <- high.power(s, 2) } yield r } def `a^2+2ab+b^2`[F[_]](a: Int, b: Int)(implicit A: AllTheMath[F]) = { import A._ for { aa <- high.power(a, 2) ab <- basic.multiply(a, b) ab2 <- basic.multiply(2, ab) bb <- high.power(b, 2) r1 <- basic.add(aa, ab2) r <- basic.add(r1, bb) } yield r } }
LGLO/freestyle-login
src/main/scala/io/scalac/frees/math/Formulas.scala
Scala
apache-2.0
594
package stealthnet.scala.network.protocol.exceptions import stealthnet.scala.util.log.LoggingContext /** * Protocol exception. */ class ProtocolException( // scalastyle:off null msg: String = null, cause: Throwable = null, // scalastyle:on null override val loggerContext: LoggingContext#LogContext = Nil ) extends Exception(msg, cause) with LoggingContext
suiryc/StealthNet
core/src/main/scala/stealthnet/scala/network/protocol/exceptions/ProtocolException.scala
Scala
gpl-3.0
373
/**************************************************************************** * * * (C) Copyright 2014 by Peter L Jones * * [email protected] * * * * This file is part of jTrapKATEditor. * * * * jTrapKATEditor is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 3 of the License, or * * (at your option) any later version. * * * * jTrapKATEditor is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with jTrapKATEditor. If not, see http://www.gnu.org/licenses/ * * * * ************************************************************************ * * ** ** * * ** Additionally, this file is also released under the same terms as ** * * ** the Scala Swing library and it may bw included in that software ** * * ** rather than jTrapKATEditor. ** * * ** ** * * ************************************************************************ * * * ****************************************************************************/ package info.drealm.scala.spinner import swing._ import javax.swing.{ JSpinner, SpinnerModel } class Spinner(_model: SpinnerModel, _name: String = "", _tip: String = null, _label: scala.swing.Label = null) extends Component with Publisher { def this(_model: SpinnerModel, _name: String, label: scala.swing.Label) = this(_model, _name, _label = label) override lazy val peer = new javax.swing.JSpinner(_model) with SuperMixin name = _name if (_tip != null) tooltip = _tip if (_label != null) { // Uhhhhh, right... _label.peer.setLabelFor(peer.asInstanceOf[java.awt.Component]) if (_label.tooltip == null) _label.tooltip = tooltip } def value: Any = peer.getValue def value_=(o: Any) { peer.setValue(o) } def model: SpinnerModel = peer.getModel() def model_=(m: SpinnerModel) { peer.setModel(m) } peer.addChangeListener(Swing.ChangeListener { e => publish(new event.ValueChanged(this)) }) }
pljones/jTrapKATEditor
src/main/scala/info/drealm/scala/spinner/Spinner.scala
Scala
gpl-3.0
3,302
package se.uu.farmbio.sg.exceptions class ParseSmilesException (message: String = null, cause: Throwable = null) extends RuntimeException(message, cause) { }
mcapuccini/spark-cheminformatics
sg/src/main/scala/se/uu/farmbio/sg/exceptions/ParseSmilesException.scala
Scala
apache-2.0
161
package org.moe.interpreter.guts import org.moe.runtime._ import org.moe.ast._ trait Utils { def getCurrentPackage (env: MoeEnvironment): MoePackage = env.getCurrentPackage.getOrElse( throw new MoeErrors.PackageNotFound("__PACKAGE__") ) def getCurrentClass (env: MoeEnvironment): MoeClass = env.getCurrentClass.getOrElse( throw new MoeErrors.ClassNotFound("__CLASS__") ) def callMethod(invocant: MoeObject, method: String, args: List[MoeObject], klass: String = null) = invocant.callMethod( invocant.getAssociatedClass.getOrElse( throw new MoeErrors.ClassNotFound(Option(klass).getOrElse(invocant.getClassName)) ).getMethod(method).getOrElse( throw new MoeErrors.MethodNotFound("method " + method + "> missing in class " + Option(klass).getOrElse(invocant.getClassName)) ), args ) def zipVars (r: MoeRuntime, names: List[String], expressions: List[MoeObject], f: ((String, MoeObject)) => Unit): Unit = { if (expressions.isEmpty) { names.foreach(f(_, r.NativeObjects.getUndef)) } else if (names.isEmpty) { () } else { f(names.head, expressions.headOption.getOrElse(r.NativeObjects.getUndef)) zipVars(r, names.tail, expressions.tail, f) } } // Throw an exception if a variable isn't closed over at declaration time // This is to prevent variables in the same env but after declaration getting // sucked into the closure and causing unexpected behavior. def throwForUndeclaredVars(env: MoeEnvironment, signature: MoeSignature, body: StatementsNode): Unit = { var declared: Set[String] = signature.getParams.map(_.getName).toSet walkAST( body, { ast: AST => ast match { case VariableDeclarationNode(varname, _) => declared += varname case VariableAccessNode(varname) => if (!env.has(varname) && !declared(varname) && !env.isSpecialMarker(varname)) { throw new MoeErrors.VariableNotFound(varname) } case _ => Unit } } ) } // XXX - this no longer captures all the AST nodes anymore def walkAST(ast: AST, callback: (AST) => Unit): Unit = { callback(ast) ast match { case CompilationUnitNode(body) => walkAST(body, callback) case ScopeNode(body) => walkAST(body, callback) case StatementsNode(nodes) => nodes.foreach(walkAST(_, callback)) case PairLiteralNode(key, value) => { walkAST(key, callback) walkAST(value, callback) } case ArrayLiteralNode(values) => values.foreach(walkAST(_, callback)) case HashLiteralNode(map) => map.foreach(walkAST(_, callback)) case PrefixUnaryOpNode(receiver, _) => walkAST(receiver, callback) case PostfixUnaryOpNode(receiver, _) => walkAST(receiver, callback) case BinaryOpNode(lhs, _, rhs) => { walkAST(lhs, callback) walkAST(rhs, callback) } case ClassDeclarationNode(name, superclass, body, _, _) => walkAST(body, callback) case PackageDeclarationNode(_, body, _, _) => walkAST(body, callback) case SubMethodDeclarationNode(_, _, body) => walkAST(body, callback) case MethodDeclarationNode(_, _, body) => walkAST(body, callback) case SubroutineDeclarationNode(_, _, body, _) => walkAST(body, callback) case AttributeAssignmentNode(name, expression) => walkAST(expression, callback) case AttributeDeclarationNode(name, expression) => walkAST(expression, callback) case VariableAssignmentNode(name, expression) => walkAST(expression, callback) case VariableDeclarationNode(name, expression) => walkAST(expression, callback) case HashElementAccessNode(hashName, keys) => keys.foreach(walkAST(_, callback)) case ArrayElementAccessNode(arrayName, indices) => indices.foreach(walkAST(_, callback)) // ^ Maybe we need to walk VariableAccessNode(arrayName)? Not sure. case MethodCallNode(invocant, method_name, args) => { walkAST(invocant, callback) args.foreach(walkAST(_, callback)) } case SubroutineCallNode(method_name, args) => { args.foreach(walkAST(_, callback)) } case IfNode(if_node) => { walkAST(if_node, callback) } case UnlessNode(unless_node) => { walkAST(unless_node, callback) } case TryNode(body, catch_nodes, finally_nodes) => { walkAST(body, callback) catch_nodes.foreach(walkAST(_, callback)) finally_nodes.foreach(walkAST(_, callback)) } case CatchNode(_, _, body) => { walkAST(body, callback) } case FinallyNode(body) => walkAST(body, callback) case WhileNode(condition, body) => { walkAST(condition, callback) walkAST(body, callback) } case DoWhileNode(condition, body) => { walkAST(body, callback) walkAST(condition, callback) } case ForeachNode(topic, list, body) => { walkAST(topic, callback) walkAST(list, callback) walkAST(body, callback) } case ForNode(init, condition, update, body) => { walkAST(init, callback) walkAST(condition, callback) walkAST(update, callback) walkAST(body, callback) } case _ => return } } }
MoeOrganization/moe
src/main/scala/org/moe/interpreter/guts/Utils.scala
Scala
mit
5,381