code
stringlengths
5
1M
repo_name
stringlengths
5
109
path
stringlengths
6
208
language
stringclasses
1 value
license
stringclasses
15 values
size
int64
5
1M
package breeze.linalg.operators /* Copyright 2012 David Hall Licensed under the Apache License, Version 2.0 (the "License") you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ import breeze.generic.{MMRegistry2, Multiproc2} /** * This is the capability trait for operations of the form a += b, a -= b, etc. * These traits are usually implemented in (a supertype of) the companion object of * one of the operands. * @tparam A * @tparam B * @tparam Op */ trait BinaryUpdateOp[A, B, Op<:OpType] { def apply(a: A, b: B) } object BinaryUpdateOp { /** Just a magic type lambda to make registries happy. */ type Bind[Op <:OpType] = { type Sig[A, B] = BinaryUpdateOp[A, B, Op]} } /** * This is a special kind of BinaryUpdateOp that supports registration * of specialized implementations for a given operation. * @author dlwh */ // This trait could reuse code from Multimethod2, but not doing so allows us to reduce code size a lot // because we don't need BinaryOp's to inherit from Function2, which has a lot of @specialzied cruft. trait BinaryUpdateRegistry[A<:AnyRef, B, Op<:OpType] extends BinaryUpdateOp[A, B, Op] with MMRegistry2[BinaryUpdateOp[_ <: A, _ <: B, Op]] { protected def bindingMissing(a: A, b: B):Unit = throw new UnsupportedOperationException("Types not found!" + a + b + " " + ops) protected def multipleOptions(a: A, b: B, m: Map[(Class[_],Class[_]),BinaryUpdateOp[_ <: A, _ <: B, Op]]):Unit = { throw new RuntimeException("Multiple bindings for method: " + m) } def apply(a: A, b: B) { val ac = a.asInstanceOf[AnyRef].getClass val bc = b.asInstanceOf[AnyRef].getClass val cached = cache.get(ac -> bc) if(cached != null) { cached match { case None => bindingMissing(a, b) case Some(m) => m.asInstanceOf[BinaryUpdateOp[A, B, Op]].apply(a, b) } } else { val options = resolve(ac, bc.asInstanceOf[Class[_<:B]]) options.size match { case 0 => cache.put(ac -> bc, None) bindingMissing(a, b) case 1 => val method = options.values.head cache.put(ac -> bc, Some(method)) method.asInstanceOf[BinaryUpdateOp[A, B, Op]].apply(a, b) case _ => val selected = selectBestOption(options) if(selected.size != 1) multipleOptions(a, b, options) else { val method = selected.values.head cache.put(ac -> bc, Some(method)) method.asInstanceOf[BinaryUpdateOp[A, B, Op]].apply(a, b) } } } } def register[AA<:A, BB<:B](op: BinaryUpdateOp[AA, BB, Op])(implicit manA: Manifest[AA], manB: Manifest[BB]) { super.register(manA.runtimeClass, manB.runtimeClass, op) } }
ktakagaki/breeze
src/main/scala/breeze/linalg/operators/BinaryUpdateOp.scala
Scala
apache-2.0
3,160
package com.github.mrpowers.spark.daria.sql.types import org.apache.spark.sql.types.StructField object StructFieldHelpers { def customEquals(s1: StructField, s2: StructField, ignoreNullable: Boolean = false): Boolean = { if (ignoreNullable) { s1.name == s2.name && s1.dataType == s2.dataType } else { s1.name == s2.name && s1.dataType == s2.dataType && s1.nullable == s2.nullable } } def prettyFormat(sf: StructField): String = { s"""StructField("${sf.name}", ${sf.dataType}, ${sf.nullable})""" } }
MrPowers/spark-daria
src/main/scala/com/github/mrpowers/spark/daria/sql/types/StructFieldHelpers.scala
Scala
mit
558
package forms import com.google.inject.Inject import models.LoginInfo import play.api.data.Forms._ import play.api.data._ import services.hash.PasswordHasher import services.user.UserDAO class LoginForm @Inject()(userDAO: UserDAO, passwordHasher: PasswordHasher) { val form = Form( mapping( "username" -> text, "password" -> text )(LoginInfo.apply)(LoginInfo.unapply) verifying("Wrong username or password", fields => fields match { case loginInfo => verifyLoginInfo(loginInfo) }) ) def verifyLoginInfo(loginInfo: LoginInfo): Boolean = { userDAO.retrieveByName(loginInfo.username) match { case None => false case Some(user) => passwordHasher.check(user.password, loginInfo.password) } } }
GMadorell/play-jwt
app/forms/LoginForm.scala
Scala
mit
777
/* * Copyright 2015 - 2016 Red Bull Media House GmbH <http://www.redbullmediahouse.com> - all rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.rbmhtechnology.eventuate import scala.collection.immutable.SortedMap import com.rbmhtechnology.eventuate.EventsourcedView.Handler import scala.util._ private[eventuate] object PersistOnEvent { /** * Records a `persistOnEvent` invocation. */ case class PersistOnEventInvocation(event: Any, customDestinationAggregateIds: Set[String]) /** * A request sent by [[PersistOnEvent]] instances to `self` in order to persist events recorded by `invocations`. * @param persistOnEventSequenceNr the sequence number of the event that caused this request. * @param persistOnEventId [[EventId]] of the event that caused this request. This is optional for backwards * compatibility, as old snapshots might contain `PersistOnEventRequest`s * without this field being defined. */ case class PersistOnEventRequest(persistOnEventSequenceNr: Long, persistOnEventId: Option[EventId], invocations: Vector[PersistOnEventInvocation], instanceId: Int) /** * Default `persist` handler to use when processing [[PersistOnEventRequest]]s in [[EventsourcedActor]]. */ val DefaultHandler: Handler[Any] = { case Success(_) => case Failure(e) => throw new PersistOnEventException(e) } } /** * Thrown to indicate that an asynchronous `persisOnEvent` operation failed. */ class PersistOnEventException(cause: Throwable) extends RuntimeException(cause) /** * Can be mixed into [[EventsourcedActor]] for writing new events within the `onEvent` handler. New events are * written with the asynchronous [[persistOnEvent]] method. In contrast to [[EventsourcedActor.persist persist]], * one can '''not''' prevent command processing from running concurrently to [[persistOnEvent]] by setting * [[EventsourcedActor.stateSync stateSync]] to `true`. * * A `persistOnEvent` operation is reliable and idempotent. Once the event has been successfully written, a repeated * `persistOnEvent` call for that event during event replay has no effect. A failed `persistOnEvent` operation will * restart the actor by throwing a [[PersistOnEventException]]. After restart, failed `persistOnEvent` operations * are automatically re-tried. */ trait PersistOnEvent extends EventsourcedActor { import PersistOnEvent._ private var invocations: Vector[PersistOnEventInvocation] = Vector.empty /** * [[PersistOnEventRequest]] by sequence number of the event that caused the persist on event request. * * This map keeps the requests in the order they were submitted. */ private var requestsBySequenceNr: SortedMap[Long, PersistOnEventRequest] = SortedMap.empty /** * [[PersistOnEventRequest]] by [[EventId]] of the event that caused the persist on event request. * * This map ensures that requests can be confirmed properly even if the sequence number of the event * that caused the request changed its local sequence number due to a disaster recovery. * * @see https://github.com/RBMHTechnology/eventuate/issues/385 */ private var requestsByEventId: Map[EventId, PersistOnEventRequest] = Map.empty /** * Asynchronously persists the given `event`. Applications that want to handle the persisted event should define * the event handler at that event. By default, the event is routed to event-sourced destinations with an undefined * `aggregateId`. If this actor's `aggregateId` is defined it is additionally routed to all actors with the same * `aggregateId`. Further routing destinations can be defined with the `customDestinationAggregateIds` parameter. */ final def persistOnEvent[A](event: A, customDestinationAggregateIds: Set[String] = Set()): Unit = invocations = invocations :+ PersistOnEventInvocation(event, customDestinationAggregateIds) /** * Internal API. */ override private[eventuate] def receiveEvent(event: DurableEvent): Unit = { super.receiveEvent(event) if (event.emitterId == id) findPersistOnEventRequest(event).foreach(confirmRequest) if (invocations.nonEmpty) { deliverRequest(PersistOnEventRequest(lastSequenceNr, Some(lastHandledEvent.id), invocations, instanceId)) invocations = Vector.empty } } /** * Internal API. */ override private[eventuate] def snapshotCaptured(snapshot: Snapshot): Snapshot = { requestsBySequenceNr.values.foldLeft(super.snapshotCaptured(snapshot)) { case (s, pr) => s.addPersistOnEventRequest(pr) } } /** * Internal API. */ override private[eventuate] def snapshotLoaded(snapshot: Snapshot): Unit = { super.snapshotLoaded(snapshot) snapshot.persistOnEventRequests.foreach { pr => val requestWithUpdatedInstanceId = pr.copy(instanceId = instanceId) requestsBySequenceNr += (pr.persistOnEventSequenceNr -> requestWithUpdatedInstanceId) pr.persistOnEventId.foreach(requestsByEventId += _ -> requestWithUpdatedInstanceId) } } /** * Internal API. */ private[eventuate] override def recovered(): Unit = { super.recovered() redeliverUnconfirmedRequests() } /** * Internal API. */ private[eventuate] def unconfirmedRequests: Set[Long] = requestsBySequenceNr.keySet private def deliverRequest(request: PersistOnEventRequest): Unit = { requestsBySequenceNr += request.persistOnEventSequenceNr -> request request.persistOnEventId.foreach(requestsByEventId += _ -> request) if (!recovering) self ! request } private def confirmRequest(request: PersistOnEventRequest): Unit = { request.persistOnEventId.foreach(requestsByEventId -= _) requestsBySequenceNr -= request.persistOnEventSequenceNr } private def findPersistOnEventRequest(event: DurableEvent) = event .persistOnEventId.flatMap(requestsByEventId.get) // Fallback for old events that have no persistOnEventId .orElse(event.persistOnEventSequenceNr.flatMap(requestsBySequenceNr.get)) private def redeliverUnconfirmedRequests(): Unit = requestsBySequenceNr.foreach { case (_, request) => self ! request } }
RBMHTechnology/eventuate
eventuate-core/src/main/scala/com/rbmhtechnology/eventuate/PersistOnEvent.scala
Scala
apache-2.0
6,724
package actorthread.v2 import akka.actor.ActorLogging import akka.actor.Actor import akka.actor.ActorRef object Forwarder { case class Ping(id: Int, origin: ActorRef) } class Forwarder(returner: ActorRef) extends Actor with ActorLogging { import Forwarder._ def receive: Receive = { case p: Ping => log.info(s"Received $p") returner ! Returner.Pang(p.id, p.origin) } }
sebastian-dasse/uni-scala
ScalaKurs(Knabe)_S_sbt/src/main/scala/actorthread/v2/Forwarder.scala
Scala
mit
403
package breeze.linalg.functions import breeze.linalg.{DenseVector, SparseVector, argsort, argtopk} import org.scalacheck.Prop import org.scalatest.FunSuite import org.scalatest.prop.Checkers /** * Created by dlwh on 9/18/15. */ class argsortTest extends FunSuite with Checkers { test("argsort dv") { check(Prop.forAll{ (array: Array[Double]) => val ax = argsort(new DenseVector(array)) ax.toIndexedSeq.map(array) == array.sorted.toIndexedSeq }) } } class argtopkTest extends FunSuite { test("argtopk vector") { val dv = DenseVector(2, 0, 3, 2, -1) assert(argtopk(dv, 0) === Seq.empty) assert(argtopk(dv, 1) === Seq(2)) assert(argtopk(dv, 3).toSet === Set(0, 2, 3)) assert(argtopk(dv, 5).toSet === Set(0, 1, 2, 3, 4)) val sv = SparseVector(5)(0 -> 2, 2-> 3, 3-> 2) assert(argtopk(sv, 0) === Seq.empty) assert(argtopk(sv, 1) === Seq(2)) assert(argtopk(sv, 3).toSet === Set(0, 2, 3)) assert(argtopk(sv, 5).toSet === Set(0, 1, 2, 3, 4)) } }
crealytics/breeze
math/src/test/scala/breeze/linalg/functions/argsortTest.scala
Scala
apache-2.0
1,013
package edu.gemini.model.p1.targetio import api._ import uk.ac.starlink.table.{TableBuilder, StarTableWriter} import uk.ac.starlink.fits.{FitsTableBuilder, FitsTableWriter} import uk.ac.starlink.table.formats._ import uk.ac.starlink.votable.{VOTableBuilder, VOTableWriter} import edu.gemini.model.p1.targetio.api.FileType._ package object table { def stilWriter(ftype: FileType): StarTableWriter = ftype match { case Csv => new CsvTableWriter() case Fits => new FitsTableWriter() case Tst => new TstTableWriter() case Vo => new VOTableWriter() } def stilBuilder(ftype: FileType): TableBuilder = ftype match { case Csv => new CsvTableBuilder() case Fits => new FitsTableBuilder() case Tst => new TstTableBuilder() case Vo => new VOTableBuilder() } }
arturog8m/ocs
bundle/edu.gemini.model.p1.targetio/src/main/scala/edu/gemini/model/p1/targetio/table/package.scala
Scala
bsd-3-clause
836
/* Copyright 2017-19, Emmanouil Antonios Platanios. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); you may not * use this file except in compliance with the License. You may obtain a copy of * the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. */ package org.platanios.tensorflow.api.io.events import org.platanios.tensorflow.proto.Event import org.junit.{Rule, Test} import org.junit.rules.TemporaryFolder import org.scalatestplus.junit.JUnitSuite import java.nio.file.{Files, Path, StandardOpenOption} /** * @author Emmanouil Antonios Platanios */ class EventFileReaderSuite extends JUnitSuite { private[this] val record: Array[Byte] = Array( 0x18, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xa3, 0x7f, 0x4b, 0x22, 0x09, 0x00, 0x00, 0xc0, 0x25, 0xdd, 0x75, 0xd5, 0x41, 0x1a, 0x0d, 0x62, 0x72, 0x61, 0x69, 0x6e, 0x2e, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x3a, 0x31, 0xec, 0xf3, 0x32, 0x8d).map(_.toByte) private[this] val _tempFolder: TemporaryFolder = new TemporaryFolder @Rule def tempFolder: TemporaryFolder = _tempFolder private[this] def writeToFile(filePath: Path, data: Array[Byte]): Unit = { Files.write(filePath, data, StandardOpenOption.APPEND) } @Test def testEmptyEventFile(): Unit = { val filePath = tempFolder.newFile().toPath writeToFile(filePath, Array.empty[Byte]) val reader = EventFileReader(filePath) assert(reader.load().toSeq === Seq.empty[Event]) } @Test def testSingleWrite(): Unit = { val filePath = tempFolder.newFile().toPath writeToFile(filePath, record) val reader = EventFileReader(filePath) val events = reader.load().toSeq assert(events.size === 1) assert(events.head.getWallTime === 1440183447.0) } @Test def testMultipleWrites(): Unit = { val filePath = tempFolder.newFile().toPath writeToFile(filePath, record) val reader = EventFileReader(filePath) assert(reader.load().toSeq.size === 1) writeToFile(filePath, record) assert(reader.load().toSeq.size === 1) } @Test def testMultipleLoads(): Unit = { val filePath = tempFolder.newFile().toPath writeToFile(filePath, record) val reader = EventFileReader(filePath) reader.load() reader.load() assert(reader.load().toSeq.size === 1) } @Test def testMultipleWritesAtOnce(): Unit = { val filePath = tempFolder.newFile().toPath writeToFile(filePath, record) writeToFile(filePath, record) val reader = EventFileReader(filePath) assert(reader.load().toSeq.size === 2) } @Test def testMultipleWritesWithBadWrite(): Unit = { val filePath = tempFolder.newFile().toPath writeToFile(filePath, record) writeToFile(filePath, record) // Test that we ignore partial record writes at the end of the file. writeToFile(filePath, Array(1, 2, 3).map(_.toByte)) val reader = EventFileReader(filePath) assert(reader.load().toSeq.size === 2) } }
eaplatanios/tensorflow_scala
modules/api/src/test/scala/org/platanios/tensorflow/api/io/events/EventFileReaderSuite.scala
Scala
apache-2.0
3,300
/** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package kafka.integration import org.apache.kafka.common.config.ConfigException import org.junit.{After, Before, Ignore, Test} import scala.util.Random import org.apache.log4j.{Level, Logger} import java.util.Properties import java.util.concurrent.ExecutionException import kafka.consumer.{Consumer, ConsumerConfig} import kafka.serializer.StringDecoder import kafka.server.{KafkaConfig, KafkaServer} import kafka.utils.CoreUtils import kafka.utils.TestUtils._ import kafka.zk.ZooKeeperTestHarness import org.apache.kafka.common.errors.TimeoutException import org.junit.Assert._ class UncleanLeaderElectionTest extends ZooKeeperTestHarness { val brokerId1 = 0 val brokerId2 = 1 // controlled shutdown is needed for these tests, but we can trim the retry count and backoff interval to // reduce test execution time val enableControlledShutdown = true var configProps1: Properties = null var configProps2: Properties = null var configs: Seq[KafkaConfig] = Seq.empty[KafkaConfig] var servers: Seq[KafkaServer] = Seq.empty[KafkaServer] val random = new Random() val topic = "topic" + random.nextLong val partitionId = 0 val kafkaApisLogger = Logger.getLogger(classOf[kafka.server.KafkaApis]) val networkProcessorLogger = Logger.getLogger(classOf[kafka.network.Processor]) val syncProducerLogger = Logger.getLogger(classOf[kafka.producer.SyncProducer]) val eventHandlerLogger = Logger.getLogger(classOf[kafka.producer.async.DefaultEventHandler[Object, Object]]) @Before override def setUp() { super.setUp() configProps1 = createBrokerConfig(brokerId1, zkConnect) configProps2 = createBrokerConfig(brokerId2, zkConnect) for (configProps <- List(configProps1, configProps2)) { configProps.put("controlled.shutdown.enable", enableControlledShutdown.toString) configProps.put("controlled.shutdown.max.retries", "1") configProps.put("controlled.shutdown.retry.backoff.ms", "1000") } // temporarily set loggers to a higher level so that tests run quietly kafkaApisLogger.setLevel(Level.FATAL) networkProcessorLogger.setLevel(Level.FATAL) syncProducerLogger.setLevel(Level.FATAL) eventHandlerLogger.setLevel(Level.FATAL) } @After override def tearDown() { servers.foreach(server => shutdownServer(server)) servers.foreach(server => CoreUtils.delete(server.config.logDirs)) // restore log levels kafkaApisLogger.setLevel(Level.ERROR) networkProcessorLogger.setLevel(Level.ERROR) syncProducerLogger.setLevel(Level.ERROR) eventHandlerLogger.setLevel(Level.ERROR) super.tearDown() } private def startBrokers(cluster: Seq[Properties]) { for (props <- cluster) { val config = KafkaConfig.fromProps(props) val server = createServer(config) configs ++= List(config) servers ++= List(server) } } @Test def testUncleanLeaderElectionEnabled(): Unit = { // enable unclean leader election configProps1.put("unclean.leader.election.enable", "true") configProps2.put("unclean.leader.election.enable", "true") startBrokers(Seq(configProps1, configProps2)) // create topic with 1 partition, 2 replicas, one on each broker adminZkClient.createOrUpdateTopicPartitionAssignmentPathInZK(topic, Map(partitionId -> Seq(brokerId1, brokerId2))) verifyUncleanLeaderElectionEnabled } @Test @Ignore // Should be re-enabled after KAFKA-3096 is fixed def testUncleanLeaderElectionDisabled(): Unit = { // unclean leader election is disabled by default startBrokers(Seq(configProps1, configProps2)) // create topic with 1 partition, 2 replicas, one on each broker adminZkClient.createOrUpdateTopicPartitionAssignmentPathInZK(topic, Map(partitionId -> Seq(brokerId1, brokerId2))) verifyUncleanLeaderElectionDisabled } @Test def testUncleanLeaderElectionEnabledByTopicOverride(): Unit = { // disable unclean leader election globally, but enable for our specific test topic configProps1.put("unclean.leader.election.enable", "false") configProps2.put("unclean.leader.election.enable", "false") startBrokers(Seq(configProps1, configProps2)) // create topic with 1 partition, 2 replicas, one on each broker, and unclean leader election enabled val topicProps = new Properties() topicProps.put("unclean.leader.election.enable", "true") adminZkClient.createOrUpdateTopicPartitionAssignmentPathInZK(topic, Map(partitionId -> Seq(brokerId1, brokerId2)), topicProps) verifyUncleanLeaderElectionEnabled } @Test @Ignore // Should be re-enabled after KAFKA-3096 is fixed def testCleanLeaderElectionDisabledByTopicOverride(): Unit = { // enable unclean leader election globally, but disable for our specific test topic configProps1.put("unclean.leader.election.enable", "true") configProps2.put("unclean.leader.election.enable", "true") startBrokers(Seq(configProps1, configProps2)) // create topic with 1 partition, 2 replicas, one on each broker, and unclean leader election disabled val topicProps = new Properties() topicProps.put("unclean.leader.election.enable", "false") adminZkClient.createOrUpdateTopicPartitionAssignmentPathInZK(topic, Map(partitionId -> Seq(brokerId1, brokerId2)), topicProps) verifyUncleanLeaderElectionDisabled } @Test def testUncleanLeaderElectionInvalidTopicOverride(): Unit = { startBrokers(Seq(configProps1)) // create topic with an invalid value for unclean leader election val topicProps = new Properties() topicProps.put("unclean.leader.election.enable", "invalid") intercept[ConfigException] { adminZkClient.createOrUpdateTopicPartitionAssignmentPathInZK(topic, Map(partitionId -> Seq(brokerId1)), topicProps) } } def verifyUncleanLeaderElectionEnabled(): Unit = { // wait until leader is elected val leaderId = waitUntilLeaderIsElectedOrChanged(zkClient, topic, partitionId) debug("Leader for " + topic + " is elected to be: %s".format(leaderId)) assertTrue("Leader id is set to expected value for topic: " + topic, leaderId == brokerId1 || leaderId == brokerId2) // the non-leader broker is the follower val followerId = if (leaderId == brokerId1) brokerId2 else brokerId1 debug("Follower for " + topic + " is: %s".format(followerId)) produceMessage(servers, topic, "first") waitUntilMetadataIsPropagated(servers, topic, partitionId) assertEquals(List("first"), consumeAllMessages(topic)) // shutdown follower server servers.filter(server => server.config.brokerId == followerId).map(server => shutdownServer(server)) produceMessage(servers, topic, "second") assertEquals(List("first", "second"), consumeAllMessages(topic)) //remove any previous unclean election metric servers.map(server => server.kafkaController.controllerContext.stats.removeMetric("UncleanLeaderElectionsPerSec")) // shutdown leader and then restart follower servers.filter(server => server.config.brokerId == leaderId).map(server => shutdownServer(server)) val followerServer = servers.find(_.config.brokerId == followerId).get followerServer.startup() // wait until new leader is (uncleanly) elected waitUntilLeaderIsElectedOrChanged(zkClient, topic, partitionId, newLeaderOpt = Some(followerId)) assertEquals(1, followerServer.kafkaController.controllerContext.stats.uncleanLeaderElectionRate.count()) produceMessage(servers, topic, "third") // second message was lost due to unclean election assertEquals(List("first", "third"), consumeAllMessages(topic)) } def verifyUncleanLeaderElectionDisabled(): Unit = { // wait until leader is elected val leaderId = waitUntilLeaderIsElectedOrChanged(zkClient, topic, partitionId) debug("Leader for " + topic + " is elected to be: %s".format(leaderId)) assertTrue("Leader id is set to expected value for topic: " + topic, leaderId == brokerId1 || leaderId == brokerId2) // the non-leader broker is the follower val followerId = if (leaderId == brokerId1) brokerId2 else brokerId1 debug("Follower for " + topic + " is: %s".format(followerId)) produceMessage(servers, topic, "first") waitUntilMetadataIsPropagated(servers, topic, partitionId) assertEquals(List("first"), consumeAllMessages(topic)) // shutdown follower server servers.filter(server => server.config.brokerId == followerId).map(server => shutdownServer(server)) produceMessage(servers, topic, "second") assertEquals(List("first", "second"), consumeAllMessages(topic)) //remove any previous unclean election metric servers.map(server => server.kafkaController.controllerContext.stats.removeMetric("UncleanLeaderElectionsPerSec")) // shutdown leader and then restart follower servers.filter(server => server.config.brokerId == leaderId).map(server => shutdownServer(server)) val followerServer = servers.find(_.config.brokerId == followerId).get followerServer.startup() // verify that unclean election to non-ISR follower does not occur waitUntilLeaderIsElectedOrChanged(zkClient, topic, partitionId, newLeaderOpt = Some(-1)) assertEquals(0, followerServer.kafkaController.controllerContext.stats.uncleanLeaderElectionRate.count()) // message production and consumption should both fail while leader is down try { produceMessage(servers, topic, "third") fail("Message produced while leader is down should fail, but it succeeded") } catch { case e: ExecutionException if e.getCause.isInstanceOf[TimeoutException] => // expected } assertEquals(List.empty[String], consumeAllMessages(topic)) // restart leader temporarily to send a successfully replicated message servers.filter(server => server.config.brokerId == leaderId).map(server => server.startup()) waitUntilLeaderIsElectedOrChanged(zkClient, topic, partitionId, newLeaderOpt = Some(leaderId)) produceMessage(servers, topic, "third") waitUntilMetadataIsPropagated(servers, topic, partitionId) servers.filter(server => server.config.brokerId == leaderId).map(server => shutdownServer(server)) // verify clean leader transition to ISR follower waitUntilLeaderIsElectedOrChanged(zkClient, topic, partitionId, newLeaderOpt = Some(followerId)) // verify messages can be consumed from ISR follower that was just promoted to leader assertEquals(List("first", "second", "third"), consumeAllMessages(topic)) } private def shutdownServer(server: KafkaServer) = { server.shutdown() server.awaitShutdown() } private def consumeAllMessages(topic: String) : List[String] = { // use a fresh consumer group every time so that we don't need to mess with disabling auto-commit or // resetting the ZK offset val consumerProps = createConsumerProperties(zkConnect, "group" + random.nextLong, "id", 1000) val consumerConnector = Consumer.create(new ConsumerConfig(consumerProps)) val messageStream = consumerConnector.createMessageStreams(Map(topic -> 1), new StringDecoder(), new StringDecoder()) val messages = getMessages(messageStream) consumerConnector.shutdown messages } }
sebadiaz/kafka
core/src/test/scala/unit/kafka/integration/UncleanLeaderElectionTest.scala
Scala
apache-2.0
12,036
package scalarank.datapoint import org.nd4j.linalg.api.ndarray.INDArray /** * A data point, this is typically a feature vector containing query-document features */ abstract class Datapoint { /** * The features as a dense vector */ val features: INDArray } /** * For labeling data points with relevance */ trait Relevance { /** * The relevance of the data point. Typically higher means more relevant. */ val relevance: Double }
rjagerman/scalarank
src/main/scala/scalarank/datapoint/Datapoint.scala
Scala
mit
468
package org.bitcoins.explorer.model import org.bitcoins.crypto.SchnorrPublicKey case class Oracle(pubkey: SchnorrPublicKey, oracleName: String)
bitcoin-s/bitcoin-s
oracle-explorer-client/src/main/scala/org/bitcoins/explorer/model/Oracle.scala
Scala
mit
146
/* * Copyright 2014 DataGenerator Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.finra.datagenerator.common.SocialNetwork_Example.scala import org.finra.datagenerator.common.Graph.Node import org.finra.datagenerator.common.Helpers.RandomHelper import org.finra.datagenerator.common.NodeData._ import scala.beans.BeanProperty import scala.collection.mutable.ListBuffer /** * Description: Defines all user state and transition probability information. * Each type is defined and mapped to a set of predicates determining the allowable parent and child types and whether or not to create them, * as well as the actual methods and business logic to create the parent/child states for each allowable state transition (edge/link). */ class UserTypes extends NodeDataTypes[User, UserStub, UserType.UserType, UserTypes] { def allInitialDataTypes: collection.immutable.HashSet[UserType.UserType] = { collection.immutable.HashSet[UserType.UserType](UserType.Admin) } def allDataTypes: collection.immutable.HashSet[UserType.UserType] = { collection.immutable.HashSet[UserType.UserType](UserType.Admin, UserType.SocialNetworkEmployee, UserType.PublicUser) } def dataTransitions: UserTransitions.type = UserTransitions } import NodeDataType.NodeDataType object UserType { abstract class UserType extends NodeDataType[User, UserStub, UserTypes, UserType] { @BeanProperty def nodeDataTypes: UserTypes = new UserTypes() def asStub: UserStub = new UserStub(this) // We don't have any engines that use these two methods yet, but it might be useful at some point. override def probabilisticallyLinkToExistingParentDataNode(dataNode: Node[User]): Unit = {} override def probabilisticallyLinkToExistingParentStubNode(stubNode: Node[UserStub]): Unit = {} } // Admin can friend request Admin, SocialNetworkEmployee, and PublicUser // SocialNetworkEmployee can friend request SocialNetworkEmployee and PublicUser // PublicUser can friend request PublicUser case object Admin extends UserType { override def dataType: NodeDataType[User, UserStub, UserTypes, UserType] = UserType.Admin override val name = "Admin" override def getAllowableChildTypes(nodeOfThisType: Node[UserStub]): Seq[UserType.UserType] = { nodeDataTypes.allDataTypes.toSeq } override def getAllowableParentTypes(nodeOfThisType: Node[UserStub]): Seq[UserType.UserType] = { Seq[UserType.UserType](UserType.Admin) } override def childStateTransitionPredicates[T_DisplayableData <: DisplayableData]( node: Node[T_DisplayableData], maxToGenerate: Int, probabilityMultiplier: Int) : ListBuffer[(UserType.UserType, (Node[T_DisplayableData] => Boolean))] = { ListBuffer[(UserType.UserType, (Node[T_DisplayableData] => Boolean))]( (UserType.Admin, (sourceEventNode: Node[T_DisplayableData]) => RandomHelper.evaluateProbability(probabilityMultiplier*0.07)), (UserType.SocialNetworkEmployee, (sourceEventNode: Node[T_DisplayableData]) => RandomHelper.evaluateProbability(probabilityMultiplier*0.1)), (UserType.PublicUser, (sourceEventNode: Node[T_DisplayableData]) => RandomHelper.evaluateProbability(probabilityMultiplier*0.15)) ) } override def parentStateTransitionPredicates[T_DisplayableData <: DisplayableData]( node: Node[T_DisplayableData], maxToGenerate: Int, probabilityMultiplier: Int) : ListBuffer[(UserType.UserType, (Node[T_DisplayableData] => Boolean))] = { ListBuffer[(UserType.UserType, (Node[T_DisplayableData] => Boolean))]( (UserType.Admin, (sourceEventNode: Node[T_DisplayableData]) => RandomHelper.evaluateProbability(probabilityMultiplier * 0.07)) ) } } case object SocialNetworkEmployee extends UserType { override def dataType: NodeDataType[User, UserStub, UserTypes, UserType] = UserType.Admin override val name = "SocialNetworkEmployee" override def getAllowableChildTypes(nodeOfThisType: Node[UserStub]): Seq[UserType.UserType] = { Seq[UserType.UserType](UserType.SocialNetworkEmployee, UserType.PublicUser) } override def getAllowableParentTypes(nodeOfThisType: Node[UserStub]): Seq[UserType.UserType] = { Seq[UserType.UserType](UserType.Admin, UserType.SocialNetworkEmployee) } override def childStateTransitionPredicates[T_DisplayableData <: DisplayableData]( node: Node[T_DisplayableData], maxToGenerate: Int, probabilityMultiplier: Int) : ListBuffer[(UserType.UserType, (Node[T_DisplayableData] => Boolean))] = { ListBuffer[(UserType.UserType, (Node[T_DisplayableData] => Boolean))]( (UserType.SocialNetworkEmployee, (sourceEventNode: Node[T_DisplayableData]) => RandomHelper.evaluateProbability(probabilityMultiplier*0.25)), (UserType.PublicUser, (sourceEventNode: Node[T_DisplayableData]) => RandomHelper.evaluateProbability(probabilityMultiplier*0.30)) ) } override def parentStateTransitionPredicates[T_DisplayableData <: DisplayableData]( node: Node[T_DisplayableData], maxToGenerate: Int, probabilityMultiplier: Int) : ListBuffer[(UserType.UserType, (Node[T_DisplayableData] => Boolean))] = { ListBuffer[(UserType.UserType, (Node[T_DisplayableData] => Boolean))]( (UserType.Admin, (sourceEventNode: Node[T_DisplayableData]) => RandomHelper.evaluateProbability(probabilityMultiplier*0.03)), (UserType.SocialNetworkEmployee, (sourceEventNode: Node[T_DisplayableData]) => RandomHelper.evaluateProbability(probabilityMultiplier*0.25)) ) } } case object PublicUser extends UserType { override def dataType: NodeDataType[User, UserStub, UserTypes, UserType] = UserType.Admin override val name = "PublicUser" override def getAllowableChildTypes(nodeOfThisType: Node[UserStub]): Seq[UserType.UserType] = { Seq[UserType.UserType](UserType.PublicUser) } override def getAllowableParentTypes(nodeOfThisType: Node[UserStub]): Seq[UserType.UserType] = { nodeDataTypes.allDataTypes.toSeq } override def childStateTransitionPredicates[T_DisplayableData <: DisplayableData]( node: Node[T_DisplayableData], maxToGenerate: Int, probabilityMultiplier: Int) : ListBuffer[(UserType.UserType, (Node[T_DisplayableData] => Boolean))] = { ListBuffer[(UserType.UserType, (Node[T_DisplayableData] => Boolean))]( (UserType.PublicUser, (sourceEventNode: Node[T_DisplayableData]) => RandomHelper.evaluateProbability(probabilityMultiplier*0.35)) ) } override def parentStateTransitionPredicates[T_DisplayableData <: DisplayableData]( node: Node[T_DisplayableData], maxToGenerate: Int, probabilityMultiplier: Int) : ListBuffer[(UserType.UserType, (Node[T_DisplayableData] => Boolean))]= { ListBuffer[(UserType.UserType, (Node[T_DisplayableData] => Boolean))]( (UserType.Admin, (sourceEventNode: Node[T_DisplayableData]) => RandomHelper.evaluateProbability(probabilityMultiplier*0.01)), (UserType.SocialNetworkEmployee, (sourceEventNode: Node[T_DisplayableData]) => RandomHelper.evaluateProbability(probabilityMultiplier*0.02)), (UserType.PublicUser, (sourceEventNode: Node[T_DisplayableData]) => RandomHelper.evaluateProbability(probabilityMultiplier*0.35)) ) } } }
Brijeshrpatel9/SingleThreaderProcessingDG
dg-common/src/main/code/org/finra/datagenerator/common/SocialNetwork_Example/scala/UserType.scala
Scala
apache-2.0
7,966
package breeze.stats.distributions; /* Copyright 2009 David Hall, Daniel Ramage Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ import org.scalatest._; import org.scalatest.junit._; import org.scalatest.prop._; import org.scalacheck._; import org.junit.runner.RunWith import breeze.stats.DescriptiveStats._; import breeze.linalg.{DenseVector, DenseMatrix, norm} @RunWith(classOf[JUnitRunner]) class BetaTest extends FunSuite with Checkers with MomentsTestBase[Double] /*with ExpFamTest[Beta,Double]*/ { val expFam = Beta import Arbitrary.arbitrary; def arbParameter = Arbitrary{ for( mean <- arbitrary[Double].map{x => math.abs(x) % 100.0 + 1E-4}; std <- arbitrary[Double].map{x => math.abs(x) % 100 + 1E-4} ) yield (mean,std) } def paramsClose(p: (Double,Double), b: (Double,Double)) = { val y1 = (p._1 - b._1).abs / (p._1.abs / 2 + b._1.abs / 2+ 1) < 1E-1 val y2 = (p._2 - b._2).abs / (p._2.abs / 2 + b._2.abs / 2+ 1) < 1E-1 y1 && y2 } import Arbitrary.arbitrary; def asDouble(x: Double) = x def fromDouble(x: Double) = x implicit def arbDistr = Arbitrary { for(a <- arbitrary[Double].map{x => math.abs(x) % 10000.0 + 1.1}; b <- arbitrary[Double].map {x => math.abs(x) % 8.0 + 1.1}) yield new Beta(a,b); } test("#15 test 1: Small a and b") { val a = 0.0014364182264741652 val b = 0.0024709345620239687 val n = 1000000 val samples = new Beta(a,b).sample(n) val mean = samples.sum / n val true_mean = a / (a+b) assert(math.abs(mean - true_mean) < 1e-2, (mean, true_mean)) } test("#15 test 2: Smaller a and b") { val a = 7.672385302336129E-4 val b = 0.5028709732819038 val n = 100000 val samples = new Beta(a,b).sample(n) val mean = samples.sum / n val true_mean = a / (a+b) assert(math.abs(mean - true_mean) < 1e-2, (mean, true_mean)) } test("endpoints work") { val dist = new Beta(1,2) assert(dist.pdf(0) == 2) assert(dist.pdf(1) == 0) } test("Beta.pdf works as a ufunc") { val M = 100 val x = DenseVector.zeros[Double](M) val expectedResult = DenseVector.zeros[Double](M) var i=0 while (i < M) { x(i) = (1.0/M)*i expectedResult(i) = 2.0 - 2.0*x(i) i += 1 } val d = new Beta(1,2) assert(norm(d.pdf(x) - expectedResult) < 1e-8) } }
wavelets/breeze
src/test/scala/breeze/stats/distributions/Beta.scala
Scala
apache-2.0
2,831
package com.airbnb.common.ml.xgboost.data import org.apache.spark.sql.Row trait ScoringModelData extends Serializable { def parseRowToXgboostLabeledPointAndData(row: Row): ScoringLabeledPoint }
airbnb/aerosolve
airlearner/airlearner-xgboost/src/main/scala/com/airbnb/common/ml/xgboost/data/ScoringModelData.scala
Scala
apache-2.0
199
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.carbondata.spark.rdd import java.util import java.util.List import scala.collection.JavaConverters._ import org.apache.hadoop.conf.Configuration import org.apache.hadoop.mapred.JobConf import org.apache.hadoop.mapreduce.Job import org.apache.spark.{Partition, SparkContext} import org.apache.spark.sql.execution.command.CarbonMergerMapping import org.apache.carbondata.core.datastore.block.{Distributable, TableBlockInfo} import org.apache.carbondata.core.metadata.{AbsoluteTableIdentifier, CarbonTableIdentifier} import org.apache.carbondata.hadoop.{CarbonInputSplit, CarbonMultiBlockSplit} import org.apache.carbondata.hadoop.api.CarbonTableInputFormat import org.apache.carbondata.hadoop.util.CarbonInputFormatUtil import org.apache.carbondata.processing.merger.CarbonDataMergerUtil import org.apache.carbondata.processing.model.CarbonLoadModel import org.apache.carbondata.spark.MergeResult /** * IUD carbon merger RDD * */ class CarbonIUDMergerRDD[K, V]( sc: SparkContext, result: MergeResult[K, V], carbonLoadModel: CarbonLoadModel, carbonMergerMapping: CarbonMergerMapping, confExecutorsTemp: String) extends CarbonMergerRDD[K, V](sc, result, carbonLoadModel, carbonMergerMapping, confExecutorsTemp) { override def getPartitions: Array[Partition] = { val startTime = System.currentTimeMillis() val absoluteTableIdentifier: AbsoluteTableIdentifier = new AbsoluteTableIdentifier( hdfsStoreLocation, new CarbonTableIdentifier(databaseName, factTableName, tableId) ) val jobConf: JobConf = new JobConf(new Configuration) val job: Job = new Job(jobConf) val format = CarbonInputFormatUtil.createCarbonInputFormat(absoluteTableIdentifier, job) var defaultParallelism = sparkContext.defaultParallelism val result = new util.ArrayList[Partition](defaultParallelism) // mapping of the node and block list. var nodeMapping: util.Map[String, util.List[Distributable]] = new util.HashMap[String, util.List[Distributable]] var noOfBlocks = 0 val taskInfoList = new util.ArrayList[Distributable] var blocksOfLastSegment: List[TableBlockInfo] = null CarbonTableInputFormat.setSegmentsToAccess( job.getConfiguration, carbonMergerMapping.validSegments.toList.asJava) // get splits val splits = format.getSplits(job) val carbonInputSplits = splits.asScala.map(_.asInstanceOf[CarbonInputSplit]) // group blocks by segment. val splitsGroupedMySegment = carbonInputSplits.groupBy(_.getSegmentId) var i = -1 // No need to get a new SegmentUpdateStatus Manager as the Object is passed // in CarbonLoadModel. // val manager = new SegmentUpdateStatusManager(absoluteTableIdentifier) val updateStatusManager = carbonLoadModel.getSegmentUpdateStatusManager // make one spark partition for one segment val resultSplits = splitsGroupedMySegment.map(entry => { val (segName, splits) = (entry._1, entry._2) val invalidBlocks = updateStatusManager.getInvalidBlockList(segName) val validSplits = splits.filter( inputSplit => CarbonDataMergerUtil .checkUpdateDeltaMatchBlock(segName, inputSplit.getBlockPath, updateStatusManager) ) if (!validSplits.isEmpty) { val locations = validSplits(0).getLocations i += 1 new CarbonSparkPartition(id, i, new CarbonMultiBlockSplit(absoluteTableIdentifier, validSplits.asJava, locations)) } else { null } } ).filter( _ != null) // max segment cardinality is calculated in executor for each segment carbonMergerMapping.maxSegmentColCardinality = null carbonMergerMapping.maxSegmentColumnSchemaList = null // Log the distribution val noOfTasks = resultSplits.size logInfo(s"Identified no.of.Blocks: $noOfBlocks," + s"parallelism: $defaultParallelism , no.of.nodes: unknown, no.of.tasks: $noOfTasks" ) logInfo("Time taken to identify Blocks to scan : " + (System .currentTimeMillis() - startTime) ) resultSplits.foreach { partition => val cp = partition.asInstanceOf[CarbonSparkPartition] logInfo(s"Node : " + cp.multiBlockSplit.getLocations.toSeq.mkString(",") + ", No.Of Blocks : " + cp.multiBlockSplit.getLength ) } resultSplits.toArray } }
aniketadnaik/carbondataStreamIngest
integration/spark-common/src/main/scala/org/apache/carbondata/spark/rdd/CarbonIUDMergerRDD.scala
Scala
apache-2.0
5,227
/* * Copyright 2011-2022 GatlingCorp (https://gatling.io) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package io.gatling.core.controller.inject.open import scala.concurrent.duration._ import io.gatling.commons.util.PushbackIterator private object UserStreamBatchResult { val Empty = UserStreamBatchResult(0, continue = false) } private final case class UserStreamBatchResult(count: Long, continue: Boolean) private object UserStream { def apply(steps: Iterable[OpenInjectionStep]): UserStream = { val users = steps.foldRight(Iterator.empty: Iterator[FiniteDuration]) { (step, iterator) => step.chain(iterator) } new UserStream(users) } } private class UserStream(users: Iterator[FiniteDuration]) { private val stream: PushbackIterator[FiniteDuration] = new PushbackIterator(users) def withStream(batchWindow: FiniteDuration, injectTime: Long, startTime: Long)(f: FiniteDuration => Unit): UserStreamBatchResult = if (stream.hasNext) { val batchTimeOffset = (injectTime - startTime).millis val nextBatchTimeOffset = batchTimeOffset + batchWindow var continue = true var streamNonEmpty = true var count = 0L while (streamNonEmpty && continue) { val startingTime = stream.next() streamNonEmpty = stream.hasNext val delay = startingTime - batchTimeOffset continue = startingTime < nextBatchTimeOffset if (continue) { count += 1 f(delay) } else { streamNonEmpty = true stream.pushback(startingTime) } } UserStreamBatchResult(count, streamNonEmpty) } else { UserStreamBatchResult.Empty } }
gatling/gatling
gatling-core/src/main/scala/io/gatling/core/controller/inject/open/UserStream.scala
Scala
apache-2.0
2,202
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.network import java.nio.ByteBuffer import org.apache.spark.SparkConf private[spark] object ReceiverTest { def main(args: Array[String]) { val manager = new ConnectionManager(9999, new SparkConf) println("Started connection manager with id = " + manager.id) manager.onReceiveMessage((msg: Message, id: ConnectionManagerId) => { /*println("Received [" + msg + "] from [" + id + "] at " + System.currentTimeMillis)*/ val buffer = ByteBuffer.wrap("response".getBytes) Some(Message.createBufferMessage(buffer, msg.id)) }) Thread.currentThread.join() } }
sryza/spark
core/src/main/scala/org/apache/spark/network/ReceiverTest.scala
Scala
apache-2.0
1,423
/** * Copyright (C) 2015 DANS - Data Archiving and Networked Services ([email protected]) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package nl.knaw.dans.easy.solr import java.net.URL import java.nio.charset.StandardCharsets import scalaj.http.BaseHttp import scala.util.{ Failure, Success, Try } case class SolrProviderImpl(solrUrl: URL, userAgent: String) extends SolrProvider { object Http extends BaseHttp(userAgent = userAgent) override def update(doc: String): Try[Unit] = Try { val result = Http(solrUrl.toString) .header("Content-Type", "application/xml; charset=utf-8") .param("commit", "true") .postData(doc.getBytes(StandardCharsets.UTF_8)) .timeout(5000, 60000) .asString if (result.isError) Failure(new RuntimeException(s"${ result.statusLine }, details: ${ result.body }")) else Success(()) }.flatten }
DANS-KNAW/easy-update-solr-index
lib/src/main/scala/nl.knaw.dans.easy.solr/SolrProviderImpl.scala
Scala
apache-2.0
1,394
/** * Copyright 2015 Thomson Reuters * * Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on * an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * * See the License for the specific language governing permissions and * limitations under the License. */ package cmwell.dc.stream import akka.NotUsed import akka.actor.ActorSystem import akka.http.scaladsl.Http import akka.http.scaladsl.model.headers.{HttpEncodings, `Accept-Encoding`} import akka.http.scaladsl.model.{HttpRequest, HttpResponse} import akka.http.scaladsl.settings.ConnectionPoolSettings import akka.stream.{ActorAttributes, KillSwitch, KillSwitches, Materializer} import akka.stream.Supervision.Decider import akka.stream.contrib.{Retry, SourceGen} import akka.stream.scaladsl.{Flow, Framing, Keep, Sink, Source} import akka.util.ByteString import cmwell.dc.{LazyLogging, Settings} import cmwell.dc.Settings._ import cmwell.dc.stream.MessagesTypesAndExceptions._ import cmwell.dc.stream.akkautils.DebugStage import cmwell.util.akka.http.HttpZipDecoder import com.typesafe.config.ConfigFactory import scala.collection.parallel.immutable import scala.util.{Failure, Success, Try} import scala.concurrent.ExecutionContext.Implicits.global import scala.concurrent.Future import scala.concurrent.duration._ /** * Created by eli on 19/07/16. */ object TsvRetriever extends LazyLogging { val gzipAcceptEncoding = `Accept-Encoding`(HttpEncodings.gzip) val maxTsvLineLength = { val slashHttpsDotPossiblePrefix = "/https.".length val maxUrlLength = 2083 val dateLength = 25 val uuidLength = 32 val indexTimeLength = 13 val tabs = 3 slashHttpsDotPossiblePrefix + maxUrlLength + dateLength + uuidLength + indexTimeLength + indexTimeLength + 1 } def parseTSVAndCreateInfotonDataFromIt(tsv: ByteString) = { val tabAfterPath = tsv.indexOfSlice(tab) val tabAfterLast = tsv.indexOfSlice(tab, tabAfterPath + 1) val tabAfterUuid = tsv.indexOfSlice(tab, tabAfterLast + 1) val path = tsv.take(tabAfterPath).utf8String val uuid = tsv.slice(tabAfterLast + 1, tabAfterUuid) val idxt = tsv.drop(tabAfterUuid).utf8String.trim.toLong logger.trace( s"parseTSVAndCreateInfotonDataFromIt: [path='$path',uuid='${uuid.utf8String}',idxt='$idxt']" ) InfotonData(InfotonMeta(path, uuid, idxt), empty) } sealed trait ConsumeType object BulkConsume extends ConsumeType { override def toString = "BulkConsume" } object Consume extends ConsumeType { override def toString = "Consume" } case class TsvFlowOutput(tsvs: List[InfotonData], nextPositionKey: String, isNoContent: Boolean = false) case class ConsumeState(op: ConsumeType, startTime: Long) case class TsvFlowState(tsvRetrieveInput: TsvRetrieveInput, retriesLeft: Int, lastException: Option[Throwable], consumeState: ConsumeState) type TsvRetrieveInput = String type TsvRetrieveOutput = TsvFlowOutput type TsvRetrieveState = TsvFlowState def apply(dcInfo: DcInfo, decider: Decider)( implicit mat: Materializer, system: ActorSystem ): Source[List[InfotonData], (KillSwitch, Future[Seq[Option[String]]])] = { SourceGen.unfoldFlowWith( Future.successful(dcInfo.positionKey.get), retrieveTsvsWithRetryAndLastPositionKey(dcInfo, decider) ) { case Success(TsvFlowOutput(tsvs, nextPositionKey, isNoContent)) if !isNoContent => { Some(Future.successful(nextPositionKey), tsvs) } case Success(TsvFlowOutput(tsvs, nextPositionKey, isNoContent)) => { logger.info( s"Data Center ID ${dcInfo.id} from ${dcInfo.location}. Got 204 no content. Will close the stream. It will be opened on the next scheduled check." ) /* - cancelled due to errors in akka stream. the stream will be closed and opened again for each 204 val f = akka.pattern.after(Settings.delayInSecondsBetweenNoContentRetries.seconds, system.scheduler)(Future.successful(nextPositionKey)) logger.info(s"The type of 204 Future is $f") f.onComplete(pos => logger.info(s"204 next position key future finished with $f")) //val f = cmwell.util.concurrent.delayedTask(Settings.delayInSecondsBetweenNoContentRetries.seconds)(nextPositionKey)(system.dispatcher) Some(f, List()) */ None } case Failure(ex) => { logger.error(s"Data Center ID ${dcInfo.id}: Retrieve of TSVs from ${dcInfo.location} failed. " + s"Completing the stream (current got TSVs should be ok unless another exception is caught later). The exception is:",ex) None } } } def retrieveTsvsWithRetryAndLastPositionKey( dcInfo: DcInfo, decider: Decider )(implicit mat: Materializer, system: ActorSystem): Flow[Future[String], Try[ TsvRetrieveOutput ], (KillSwitch, Future[Seq[Option[String]]])] = { //another sink to keep the last position got //the reason for sliding(2) is that the last element can be None (a stream can finish with an error) and then the element before should be taken val positionKeySink = Flow .fromFunction[Try[TsvRetrieveOutput], Option[String]] { case Success(TsvFlowOutput(tsvs, nextPositionKey, isNoContent)) => Some(nextPositionKey) case _ => None } .sliding(2) .toMat(Sink.last)(Keep.right) retrieveTsvsWithRetry(dcInfo, decider).alsoToMat(positionKeySink)(Keep.both) } def retrieveTsvsWithRetry(dcInfo: DcInfo, decider: Decider)( implicit mat: Materializer, system: ActorSystem ): Flow[Future[String], Try[TsvRetrieveOutput], KillSwitch] = Flow[Future[String]] .mapAsync(1)(identity) .viaMat(KillSwitches.single)(Keep.right) .map( positionKey => Future.successful(positionKey) -> TsvFlowState( positionKey, Settings.initialTsvRetryCount, None, ConsumeState(BulkConsume, System.currentTimeMillis) ) ) .via( Retry(retrieveTsvFlow(dcInfo, decider))( retryDecider(dcInfo.id, dcInfo.location) ) ) .map(_._1) private def stayInThisState(stateStartTime: Long): Boolean = System.currentTimeMillis - stateStartTime < Settings.consumeFallbackDuration private def extractPrefixes(state: ConsumeState) = state match { case ConsumeState(BulkConsume, _) => "bulk-" case ConsumeState(Consume, _) => "" } private def getNewState(elementState: TsvRetrieveState, lastUsedState: ConsumeState) = // If there were an error before - take the state as it came from the retry decider. // else change from lower consume type to a better one only after the time interval. if (elementState.lastException.isDefined) elementState.consumeState else lastUsedState match { case state @ ConsumeState(BulkConsume, _) => state case state @ ConsumeState(Consume, start) => if (stayInThisState(start)) state else ConsumeState(BulkConsume, System.currentTimeMillis) } def retrieveTsvFlow(dcInfo: DcInfo, decider: Decider)( implicit mat: Materializer, system: ActorSystem ): Flow[(Future[TsvRetrieveInput], TsvRetrieveState), (Try[TsvRetrieveOutput], TsvRetrieveState), NotUsed] = { val startTime = System.currentTimeMillis val hostPort = dcInfo.location.split(":") val (host, port) = hostPort.head -> hostPort.tail.headOption .getOrElse("80") .toInt val tsvPoolConfig = ConfigFactory .parseString("akka.http.host-connection-pool.max-connections=1") .withFallback(config) val tsvConnPool = Http() .newHostConnectionPool[TsvRetrieveState]( host, port, ConnectionPoolSettings(tsvPoolConfig) ) Flow[(Future[TsvRetrieveInput], TsvRetrieveState)] .mapAsync(1) { case (input, state) => input.map(_ -> state) } .statefulMapConcat { () => var currentState = ConsumeState(BulkConsume, System.currentTimeMillis); { case (positionKey, state) => currentState = getNewState(state, currentState) val bulkPrefix = extractPrefixes(currentState) val request = HttpRequest( uri = s"http://${dcInfo.location}/?op=${bulkPrefix}consume&format=tsv&position=$positionKey", headers = scala.collection.immutable.Seq(gzipAcceptEncoding) ) logger.info( s"Data Center ID ${dcInfo.id}: Sending ${currentState.op} request to ${dcInfo.location} using position key $positionKey." ) scala.collection.immutable.Seq( request -> state.copy(consumeState = currentState) ) } } .via(tsvConnPool) .map { case (tryResponse, state) => tryResponse.map(HttpZipDecoder.decodeResponse) -> state } .flatMapConcat { case (Success(res @ HttpResponse(s, h, entity, _)), state) if s.isSuccess() && h.exists(_.name == "X-CM-WELL-POSITION") => { val nextPositionKey = res.getHeader("X-CM-WELL-POSITION").get.value() entity.dataBytes .via( Framing .delimiter(endln, maximumFrameLength = maxTsvLineLength * 2) ) .fold(List[InfotonData]())( (total, bs) => parseTSVAndCreateInfotonDataFromIt(bs) :: total ) .map { data => val sortedData = data.sortBy(_.meta.indexTime) if (state.retriesLeft < Settings.initialTsvRetryCount) { val consumeCount = Settings.initialTsvRetryCount - state.retriesLeft + 1 yellowlog.info( s"TSV (bulk)consume succeeded only after $consumeCount (bulk)consumes. token: ${state.tsvRetrieveInput}." ) } Success( TsvFlowOutput(sortedData, nextPositionKey, s.intValue == 204) ) -> state.copy(lastException = None) } .withAttributes(ActorAttributes.supervisionStrategy(decider)) .recover { case e => val ex = RetrieveTsvException( s"Retrieve TSVs using ${state.consumeState.op} failed. Data center ID ${dcInfo.id}, using remote location ${dcInfo.location}", e ) logger.warn("Retrieve TSVs failed.", ex) Failure[TsvRetrieveOutput](ex) -> state.copy( lastException = Some(ex) ) } } case (res @ Success(HttpResponse(s, h, entity, _)), state) => { val errorID = res.## val e = new Exception( s"Error ![$errorID]. Cm-Well returned bad response: status: ${s.intValue} headers: ${Util .headersString(h)} reason: ${s.reason}" ) val bodyFut = entity.dataBytes.runFold(empty)(_ ++ _).map(_.utf8String) val ex = RetrieveTsvBadResponseException( s"Retrieve TSVs using ${state.consumeState.op} failed. Data center ID ${dcInfo.id}, using remote location ${dcInfo.location}.", bodyFut, e ) logger.warn(s"${ex.getMessage} ${ex.getCause.getMessage}") Util.warnPrintFuturedBodyException(ex) Source.single( Failure[TsvRetrieveOutput](ex) -> state .copy(lastException = Some(ex)) ) } case (Failure(e), state) => { val ex = RetrieveTsvException( s"Retrieve TSVs using ${state.consumeState.op} failed. Data center ID ${dcInfo.id}, using remote location ${dcInfo.location}", e ) logger.warn("Retrieve TSVs failed.", ex) Source.single( Failure[TsvRetrieveOutput](ex) -> state .copy(lastException = Some(ex)) ) } } .statefulMapConcat { () => var infotonsGot: Long = 0; { case output @ ( Success(TsvFlowOutput(tsvs, nextPositionKey, _)), state ) => infotonsGot += tsvs.size val rate = infotonsGot / ((System.currentTimeMillis - startTime) / 1000D) val d = dcInfo.id val s = tsvs.size val o = state.consumeState.op val r = rate.formatted("%.2f") logger.info(s"Data Center ID $d: Got TSVs stream source. The next position key to consume is $nextPositionKey. " + s"Got $s TSVs using $o. Total TSVs got $infotonsGot. Read rate: $r TSVs/second") scala.collection.immutable.Seq(output) case output => scala.collection.immutable.Seq(output) } } } private def retryDecider( dataCenterId: String, location: String )(implicit mat: Materializer, system: ActorSystem) = (state: TsvRetrieveState) => state match { case TsvFlowState(_, 0, _, _) => // scalastyle:off logger.error(s"Data Center ID $dataCenterId: Retrieve of TSVs from $location failed. No more reties will be done. The sync will be closed now (no more new TSV will be got) and restarted again automatically.") // scalastyle:on None case TsvFlowState(positionKey, retriesLeft, ex, consumeState) => val waitSeconds = ex match { case Some(_: RetrieveTsvBadResponseException) => 1 // due to what seems to be a bug in akka http if there were an error during the retrieve of the body // (e.g. connection reset by peer) and another request is sent // the akka-http is stuck. To overcome this issue a wait of 40 seconds is added to allow the connection pool // to be properly closed before sending another request case Some(_) => 40 case None => ??? // Shouldn't get here. The retry decider is called only when there is an exception and the ex should be in the state } val newConsumeOp = consumeState.op match { case BulkConsume if Settings.initialTsvRetryCount - retriesLeft < Settings.bulkTsvRetryCount => BulkConsume case _ => Consume } logger.warn( s"Data Center ID $dataCenterId: Retrieve of TSVs from $location failed. Retries left $retriesLeft. Will try again in $waitSeconds seconds." ) Some( akka.pattern.after(waitSeconds.seconds, system.scheduler)( Future.successful(positionKey) ) -> TsvFlowState( positionKey, retriesLeft - 1, ex, ConsumeState(newConsumeOp, System.currentTimeMillis) ) ) } }
bryaakov/CM-Well
server/cmwell-dc/src/main/scala/cmwell/dc/stream/TsvRetriever.scala
Scala
apache-2.0
15,385
package model import skinny.DBSettings import skinny.test._ import org.scalatest.fixture.FlatSpec import org.scalatest._ import scalikejdbc._ import scalikejdbc.scalatest._ import org.joda.time._ class GoogleUsersSpec extends FlatSpec with Matchers with DBSettings with AutoRollback { }
yoshitakes/skinny-task-example
src/test/scala/model/GoogleUsersSpec.scala
Scala
mit
289
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.execution.datasources.oap.io import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs.Path import org.apache.orc.mapred.OrcStruct import org.apache.parquet.filter2.predicate.FilterPredicate import org.apache.spark.TaskContext import org.apache.spark.internal.Logging import org.apache.spark.sql.catalyst.InternalRow import org.apache.spark.sql.catalyst.expressions.{Ascending, JoinedRow} import org.apache.spark.sql.catalyst.expressions.codegen.GenerateUnsafeProjection import org.apache.spark.sql.execution.datasources.PartitionedFile import org.apache.spark.sql.execution.datasources.oap._ import org.apache.spark.sql.execution.datasources.oap.index._ import org.apache.spark.sql.execution.datasources.oap.utils.FilterHelper import org.apache.spark.sql.execution.datasources.orc.OrcDeserializer import org.apache.spark.sql.sources.Filter import org.apache.spark.sql.types._ private[oap] class OapDataReaderV1( pathStr: String, meta: DataSourceMeta, partitionSchema: StructType, requiredSchema: StructType, filterScanners: Option[IndexScanners], requiredIds: Array[Int], pushed: Option[FilterPredicate], metrics: OapMetricsManager, conf: Configuration, enableVectorizedReader: Boolean = false, options: Map[String, String] = Map.empty, filters: Seq[Filter] = Seq.empty, context: Option[DataFileContext] = None, file: PartitionedFile = null) extends OapDataReader with Logging { import org.apache.spark.sql.execution.datasources.oap.INDEX_STAT._ private var _rowsReadWhenHitIndex: Option[Long] = None private var _indexStat = MISS_INDEX override def rowsReadByIndex: Option[Long] = _rowsReadWhenHitIndex override def indexStat: INDEX_STAT = _indexStat def totalRows(): Long = _totalRows private var _totalRows: Long = 0 private val path = new Path(pathStr) private val dataFileClassName = meta.dataReaderClassName def initialize(): OapCompletionIterator[Any] = { logDebug("Initializing OapDataReader...") // TODO how to save the additional FS operation to get the Split size val fileScanner = DataFile(pathStr, meta.schema, dataFileClassName, conf) if (meta.dataReaderClassName.equals(OapFileFormat.PARQUET_DATA_FILE_CLASSNAME)) { fileScanner.asInstanceOf[ParquetDataFile].setParquetVectorizedContext( context.asInstanceOf[Option[ParquetVectorizedContext]]) fileScanner.asInstanceOf[ParquetDataFile].setPartitionedFile(file) } else if (meta.dataReaderClassName.equals(OapFileFormat.ORC_DATA_FILE_CLASSNAME)) { // For orc, the context will be used by both vectorization and non vectorization. fileScanner.asInstanceOf[OrcDataFile].setOrcDataFileContext( context.get.asInstanceOf[OrcDataFileContext]) } def fullScan: OapCompletionIterator[Any] = { val start = if (log.isDebugEnabled) System.currentTimeMillis else 0 val iter = fileScanner.iterator(requiredIds, filters) val end = if (log.isDebugEnabled) System.currentTimeMillis else 0 _totalRows = fileScanner.totalRows() logDebug("Construct File Iterator: " + (end - start) + " ms") iter } filterScanners match { case Some(indexScanners) if indexScanners.isIndexFileBeneficial(path, conf) => def getRowIds(options: Map[String, String]): Array[Int] = { indexScanners.initialize(path, conf) _totalRows = indexScanners.totalRows() // total Row count can be get from the index scanner val limit = options.getOrElse(OapFileFormat.OAP_QUERY_LIMIT_OPTION_KEY, "0").toInt val rowIds = if (limit > 0) { // Order limit scan options val isAscending = options.getOrElse( OapFileFormat.OAP_QUERY_ORDER_OPTION_KEY, "true").toBoolean val sameOrder = !((indexScanners.order == Ascending) ^ isAscending) if (sameOrder) { indexScanners.take(limit).toArray } else { indexScanners.toArray.reverse.take(limit) } } else { indexScanners.toArray } // Parquet reader does not support backward scan, so rowIds must be sorted. // Actually Orc readers support the backward scan, thus no need to sort row Ids. // But with the sorted row Ids, the adjacment rows will be scanned in the same batch. // This will reduce IO cost. if (meta.dataReaderClassName.equals(OapFileFormat.PARQUET_DATA_FILE_CLASSNAME) || meta.dataReaderClassName.equals(OapFileFormat.ORC_DATA_FILE_CLASSNAME)) { rowIds.sorted } else { rowIds } } val start = if (log.isDebugEnabled) System.currentTimeMillis else 0 val rows = getRowIds(options) val iter = fileScanner.iteratorWithRowIds(requiredIds, rows, filters) val end = if (log.isDebugEnabled) System.currentTimeMillis else 0 _indexStat = HIT_INDEX _rowsReadWhenHitIndex = Some(rows.length) logDebug("Construct File Iterator: " + (end - start) + "ms") iter case Some(_) => _indexStat = IGNORE_INDEX fullScan case _ => fullScan } } override def read(file: PartitionedFile): Iterator[InternalRow] = { FilterHelper.setFilterIfExist(conf, pushed) val iter = initialize() Option(TaskContext.get()).foreach(_.addTaskCompletionListener[Unit](_ => iter.close())) val tot = totalRows() metrics.updateTotalRows(tot) metrics.updateIndexAndRowRead(this, tot) // if enableVectorizedReader == true , return iter directly because of partitionValues // already filled by VectorizedReader, else use original branch as Parquet or Orc. if (enableVectorizedReader) { iter.asInstanceOf[Iterator[InternalRow]] } else { // Parquet and Oap are the same if the vectorization is off. val fullSchema = requiredSchema.toAttributes ++ partitionSchema.toAttributes val joinedRow = new JoinedRow() val appendPartitionColumns = GenerateUnsafeProjection.generate(fullSchema, fullSchema) meta.dataReaderClassName match { case dataReader if dataReader.equals(OapFileFormat.PARQUET_DATA_FILE_CLASSNAME) => iter.asInstanceOf[Iterator[InternalRow]].map(d => { appendPartitionColumns(joinedRow(d, file.partitionValues)) }) case dataReader if dataReader.equals(OapFileFormat.ORC_DATA_FILE_CLASSNAME) => val orcDataFileContext = context.get.asInstanceOf[OrcDataFileContext] val deserializer = new OrcDeserializer(orcDataFileContext.dataSchema, requiredSchema, orcDataFileContext.requestedColIds) iter.asInstanceOf[Iterator[OrcStruct]].map(value => { appendPartitionColumns(joinedRow(deserializer.deserialize(value), file.partitionValues))}) } } } }
Intel-bigdata/OAP
oap-cache/oap/src/main/scala/org/apache/spark/sql/execution/datasources/oap/io/OapDataReaderWriter.scala
Scala
apache-2.0
7,752
/* * Copyright 2016 The BigDL Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.intel.analytics.bigdl.tensor object DenseTensorApply { /** * Iterate through tensor1, and apply func to the elements, * set function result to tensor 2 * * @param tensor1 the tensor1 * @param tensor2 the result tensor * @param func (tensor1Data, tensor1Offset, tensor2Data, * tensor2Offset) */ def apply1[A, B](tensor1: Tensor[A], tensor2: Tensor[B], func: TensorDiffTypeFunc4[A, B]): Unit = { if (tensor1.isEmpty) { return } // shortcut for scalar if (tensor1.isScalar && tensor2.isScalar) { val data1 = tensor1.storage().array() val index1 = tensor1.storageOffset() - 1 val data2 = tensor2.storage().array() val index2 = tensor2.storageOffset() - 1 func(data1, index1, data2, index2) return } val stride1 = getStride(tensor1) val stride2 = getStride(tensor2) val (largestDim1, largestSize1) = getLargestContiguousSize(tensor1) val (largestDim2, largestSize2) = getLargestContiguousSize(tensor2) val counter1 = getCounter(largestDim1) val counter2 = getCounter(largestDim2) val data1 = tensor1.storage().array() val data2 = tensor2.storage().array() var offset1 = tensor1.storageOffset() - 1 var offset2 = tensor2.storageOffset() - 1 var hasFinished1 = false var hasFinished2 = false var i1 = 0 var i2 = 0 while (!hasFinished1 && !hasFinished2) { while (i1 < largestSize1 && i2 < largestSize2) { val index1 = offset1 + i1 * stride1 val index2 = offset2 + i2 * stride2 func(data1, index1, data2, index2) i1 += 1 i2 += 1 } val r1 = updateCounter(tensor1, counter1, offset1, largestDim1) val r2 = updateCounter(tensor2, counter2, offset2, largestDim2) hasFinished1 = r1._1 hasFinished2 = r2._1 offset1 = r1._2 offset2 = r2._2 i1 = 0 i2 = 0 } } /** * Iterate through tensor1, tensor2, and apply func to the elements * * @param tensor * @param func (tensor1Data, tensor1Offset) */ def apply1[@specialized(Float, Double) T]( tensor: Tensor[T], func: TensorFunc2[T]): Unit = { if (tensor.isEmpty) { return } // shortcut for scalar if (tensor.isScalar) { val data = tensor.storage().array() val index = tensor.storageOffset() - 1 func(data, index) return } val stride = getStride(tensor) val (largestDim, largestSize) = getLargestContiguousSize(tensor) val counter = getCounter(largestDim) val data = tensor.storage().array() var offset = tensor.storageOffset() - 1 var hasFinished = false var i = 0 while (!hasFinished) { while (i < largestSize) { val index = offset + i * stride func(data, index) i += 1 } val r = updateCounter(tensor, counter, offset, largestDim) hasFinished = r._1 offset = r._2 i = 0 } } /** * Iterate through tensor1, tensor2, and apply func to the elements * * @param tensor1 the tensor * @param tensor2 the tensor * @param func (tensor1Data, tensor1Offset, tensor2Data, tensor2Offset) */ def apply2[T](tensor1: Tensor[T], tensor2: Tensor[T], func: TensorFunc4[T]): Unit = { require(tensor1.nElement() == tensor2.nElement(), s"inconsistent tensor size: ${tensor1.nElement()} == ${tensor2.nElement()}") if (tensor1.isEmpty) { return } // shortcut for scalar if (tensor1.isScalar && tensor2.isScalar) { val tensor1Data = tensor1.storage().array() val tensor2Data = tensor2.storage().array() val tensor1Index = tensor1.storageOffset() - 1 val tensor2Index = tensor2.storageOffset() - 1 func(tensor1Data, tensor1Index, tensor2Data, tensor2Index) return } val tensor1Data = tensor1.storage().array() var tensor1Offset = tensor1.storageOffset() - 1 val tensor2Data = tensor2.storage().array() var tensor2Offset = tensor2.storageOffset() - 1 var adjacent = false if (tensor1.nDimension == 1 && tensor2.nDimension == 1 && tensor1.stride(1) == 1 && tensor2.stride(1) == 1) { adjacent = true } if (tensor1.nDimension == 2 && tensor2.nDimension == 2) { if (tensor1.stride(2) == 1 && tensor2.stride(2) == 1 && tensor1.stride(1) == tensor1.size(2) && tensor2.stride(1) == tensor2.size(2)) { adjacent = true } if (tensor1.stride(1) == 1 && tensor2.stride(1) == 1 && tensor1.stride(2) == tensor1.size(1) && tensor2.stride(2) == tensor2.size(1)) { adjacent = true } } if (adjacent) { var i = 0 while (i < tensor1.nElement()) { func(tensor1Data, tensor1Offset + i, tensor2Data, tensor2Offset + i) i += 1 } return } val tensor1Stride = getStride(tensor1) val (largestDim1, largestSize1) = getLargestContiguousSize(tensor1) val counter1 = getCounter(largestDim1) val tensor2Stride = getStride(tensor2) val (largestDim2, largestSize2) = getLargestContiguousSize(tensor2) val counter2 = getCounter(largestDim2) var hasFinished = false var i1 = 0 var i2 = 0 while (!hasFinished) { while (i1 < largestSize1 && i2 < largestSize2) { func(tensor1Data, tensor1Offset + i1 * tensor1Stride, tensor2Data, tensor2Offset + i2 * tensor2Stride) i1 = i1 + 1 i2 = i2 + 1 } if (i1 == largestSize1) { val r = updateCounter(tensor1, counter1, tensor1Offset, largestDim1) hasFinished = r._1 tensor1Offset = r._2 i1 = 0 } if (i2 == largestSize2) { val r = updateCounter(tensor2, counter2, tensor2Offset, largestDim2) hasFinished = r._1 tensor2Offset = r._2 i2 = 0 } } } /** * Iterate through tensor1, tensor2, tensor3, and apply func to the elements * * @param tensor1 the tensor * @param tensor2 the tensor * @param tensor3 the tensor * @param func (tensor1Data, tensor1Offset, tensor2Data, tensor2Offset, tensor3Data, * tensor3Offset) */ private[bigdl] def apply3[@specialized(Float, Double) T](tensor1: Tensor[T], tensor2: Tensor[T], tensor3: Tensor[T], func: TensorFunc6[T]): Unit = { require(tensor1.nElement() == tensor2.nElement() && tensor2.nElement() == tensor3.nElement(), "inconsistent tensor size") if (tensor1.isEmpty) { return } // shortcut for scalar if (tensor1.isScalar && tensor2.isScalar && tensor3.isScalar) { val tensor1Data = tensor1.storage().array() val tensor2Data = tensor2.storage().array() val tensor3Data = tensor3.storage().array() val tensor1Index = tensor1.storageOffset() - 1 val tensor2Index = tensor2.storageOffset() - 1 val tensor3Index = tensor3.storageOffset() - 1 func(tensor1Data, tensor1Index, tensor2Data, tensor2Index, tensor3Data, tensor3Index) return } val tensor1Data = tensor1.storage().array() var tensor1Offset = tensor1.storageOffset() - 1 val tensor1Stride = getStride(tensor1) val (tensor1Dim, tensor1Size) = getLargestContiguousSize(tensor1) val tensor1Counter = getCounter(tensor1Dim) val tensor2Data = tensor2.storage().array() var tensor2Offset = tensor2.storageOffset() - 1 val tensor2Stride = getStride(tensor2) val (tensor2Dim, tensor2Size) = getLargestContiguousSize(tensor2) val tensor2Counter = getCounter(tensor2Dim) val tensor3Data = tensor3.storage().array() var tensor3Offset = tensor3.storageOffset() - 1 val tensor3Stride = getStride(tensor3) val (tensor3Dim, tensor3Size) = getLargestContiguousSize(tensor3) val tensor3Counter = getCounter(tensor3Dim) var hasFinished = false var i1 = 0 var i2 = 0 var i3 = 0 while (!hasFinished) { while (i1 < tensor1Size && i2 < tensor2Size && i3 < tensor3Size) { func(tensor1Data, tensor1Offset + i1 * tensor1Stride, tensor2Data, tensor2Offset + i2 * tensor2Stride, tensor3Data, tensor3Offset + i3 * tensor3Stride) i1 += 1 i2 += 1 i3 += 1 } if (i1 == tensor1Size) { val r = updateCounter(tensor1, tensor1Counter, tensor1Offset, tensor1Dim) hasFinished = r._1 tensor1Offset = r._2 i1 = 0 } if (i2 == tensor2Size) { val r = updateCounter(tensor2, tensor2Counter, tensor2Offset, tensor2Dim) hasFinished = r._1 tensor2Offset = r._2 i2 = 0 } if (i3 == tensor3Size) { val r = updateCounter(tensor3, tensor3Counter, tensor3Offset, tensor3Dim) hasFinished = r._1 tensor3Offset = r._2 i3 = 0 } } } /** * Get the stride discard dimensions with size 1 * * @param tensor tensor * @return */ def getStride[T](tensor: Tensor[T]): Int = { var d = tensor.nDimension() while (d > 0) { if (tensor.size(d) != 1) { return tensor.stride(d) } d -= 1 } 0 } def getLargestContiguousSize[T](tensor: Tensor[T]): (Int, Int) = { var largestSize = 1 var largestDim = tensor.nDimension() while (largestDim > 0) { if (tensor.size(largestDim) != 1) { if (tensor.stride(largestDim) == largestSize) { largestSize = largestSize * tensor.size(largestDim) } else { return (largestDim, largestSize) } } largestDim -= 1 } (largestDim, largestSize) } def getCounter(largestDim: Int): Array[Int] = { val counter = new Array[Int](largestDim) var d = 0 while (d < largestDim) { counter(d) = 0 d += 1 } counter } def updateCounter[T](tensor: Tensor[T], counter: Array[Int], offset: Int, dim: Int): (Boolean, Int) = { if (dim == 0) { return (true, offset) } var _offset = offset var i = dim while (i > 0) { counter(i - 1) += 1 _offset += tensor.stride(i) if (counter(i - 1) == tensor.size(i)) { if (i == 1) { return (true, _offset) } else { _offset -= counter(i - 1) * tensor.stride(i) counter(i - 1) = 0 } } else { return (false, _offset) } i -= 1 } (false, _offset) } /** * Iterate through tensor1, tensor2, and apply func to the elements, * set function result to tensor 3 * * @param tensor1 the tensor1 * @param tensor2 the tensor2 * @param tensor3 the result tensor * @param func (tensor1Data, tensor1Offset, tensor2Data, * tensor2Offset, tensor3Data, tensor3Offset) */ def apply2[A, B, C](tensor1: Tensor[A], tensor2: Tensor[B], tensor3: Tensor[C], func: TensorDiffTypeFunc6[A, B, C]) : Unit = { require(tensor1.nElement() == tensor2.nElement(), s"inconsistent tensor size: ${tensor1.nElement()} == ${tensor2.nElement()}") if (tensor1.isEmpty) { return } // shortcut for scalar if (tensor1.isScalar && tensor2.isScalar) { val tensor1Data = tensor1.storage().array() val tensor2Data = tensor2.storage().array() val tensor3Data = tensor3.storage().array() val tensor1Index = tensor1.storageOffset() - 1 val tensor2Index = tensor2.storageOffset() - 1 val tensor3Index = tensor3.storageOffset() - 1 func(tensor1Data, tensor1Index, tensor2Data, tensor2Index, tensor3Data, tensor3Index) return } val tensor1Data = tensor1.storage().array() var tensor1Offset = tensor1.storageOffset() - 1 val tensor2Data = tensor2.storage().array() var tensor2Offset = tensor2.storageOffset() - 1 val tensor3Data = tensor3.storage().array() val tensor3Offset = tensor3.storageOffset() - 1 var adjacent = false if (tensor1.nDimension == 1 && tensor2.nDimension == 1 && tensor1.stride(1) == 1 && tensor2.stride(1) == 1) { adjacent = true } if (tensor1.nDimension == 2 && tensor2.nDimension == 2) { if (tensor1.stride(2) == 1 && tensor2.stride(2) == 1 && tensor1.stride(1) == tensor1.size(2) && tensor2.stride(1) == tensor2.size(2)) { adjacent = true } if (tensor1.stride(1) == 1 && tensor2.stride(1) == 1 && tensor1.stride(2) == tensor1.size(1) && tensor2.stride(2) == tensor2.size(1)) { adjacent = true } } if (adjacent) { var i = 0 while (i < tensor1.nElement()) { func( tensor1Data, tensor1Offset + i, tensor2Data, tensor2Offset + i, tensor3Data, tensor3Offset + i) i += 1 } return } val tensor1Stride = getStride(tensor1) val (largestDim1, largestSize1) = getLargestContiguousSize(tensor1) val counter1 = getCounter(largestDim1) val tensor2Stride = getStride(tensor2) val (largestDim2, largestSize2) = getLargestContiguousSize(tensor2) val counter2 = getCounter(largestDim2) val tensor3Stride = getStride(tensor3) val (largestDim3, largestSize3) = getLargestContiguousSize(tensor3) val counter3 = getCounter(largestDim3) var hasFinished = false var i1 = 0 var i2 = 0 var i3 = 0 while (!hasFinished) { while (i1 < largestSize1 && i2 < largestSize2) { func( tensor1Data, tensor1Offset + i1 * tensor1Stride, tensor2Data, tensor2Offset + i2 * tensor2Stride, tensor3Data, tensor3Offset + i3 * tensor3Stride ) i1 = i1 + 1 i2 = i2 + 1 i3 = i3 + 1 } if (i1 == largestSize1) { val r = updateCounter(tensor1, counter1, tensor1Offset, largestDim1) hasFinished = r._1 tensor1Offset = r._2 i1 = 0 } if (i2 == largestSize2) { val r = updateCounter(tensor2, counter2, tensor2Offset, largestDim2) hasFinished = r._1 tensor2Offset = r._2 i2 = 0 } if (i3 == largestSize3) { val r = updateCounter(tensor3, counter3, tensor3Offset, largestDim3) hasFinished = r._1 tensor2Offset = r._2 i3 = 0 } } } }
yiheng/BigDL
spark/dl/src/main/scala/com/intel/analytics/bigdl/tensor/DenseTensorApply.scala
Scala
apache-2.0
14,797
package spire package std import spire.algebra.{Eq, EuclideanRing, IsIntegral, NRoot, Order, Signed, TruncatedDivisionCRing} import spire.math.BitString import spire.util.Opt import java.lang.Math trait LongIsEuclideanRing extends EuclideanRing[Long] { override def minus(a:Long, b:Long): Long = a - b def negate(a:Long): Long = -a def one: Long = 1L def plus(a:Long, b:Long): Long = a + b override def pow(a: Long, b:Int): Long = spire.math.pow(a, b) override def times(a:Long, b:Long): Long = a * b def zero: Long = 0L override def fromInt(n: Int): Long = n def euclideanFunction(a:Long): BigInt = BigInt(a).abs override def equotmod(a: Long, b: Long): (Long, Long) = spire.math.equotmod(a, b) def equot(a: Long, b: Long): Long = spire.math.equot(a, b) def emod(a: Long, b: Long): Long = spire.math.emod(a, b) def gcd(a:Long, b:Long)(implicit ev: Eq[Long]): Long = spire.math.gcd(a, b) def lcm(a:Long, b:Long)(implicit ev: Eq[Long]): Long = spire.math.lcm(a, b) } // Not included in Instances trait! trait LongIsNRoot extends NRoot[Long] { def nroot(x: Long, n: Int): Long = { def findnroot(prev: Long, add: Long): Long = { val next = prev | add val e = spire.math.pow(next, n) if (e == x || add == 0) { next } else if (e <= 0 || e > x) { findnroot(prev, add >> 1) } else { findnroot(next, add >> 1) } } if (n < 1) throw new IllegalArgumentException(s"nroot($n)") else if (n == 1) x else findnroot(0, 1L << ((65 - n) / n)) } def log(a:Long): Long = Math.log(a.toDouble).toLong def fpow(a:Long, b:Long): Long = spire.math.pow(a, b) // xyz } trait LongOrder extends Order[Long] { override def eqv(x:Long, y:Long): Boolean = x == y override def neqv(x:Long, y:Long): Boolean = x != y override def gt(x: Long, y: Long): Boolean = x > y override def gteqv(x: Long, y: Long): Boolean = x >= y override def lt(x: Long, y: Long): Boolean = x < y override def lteqv(x: Long, y: Long): Boolean = x <= y def compare(x: Long, y: Long): Int = if (x < y) -1 else if (x == y) 0 else 1 } trait LongSigned extends Signed[Long] with LongOrder { override def signum(a: Long): Int = java.lang.Long.signum(a) override def abs(a: Long): Long = if (a < 0L) -a else a } trait LongTruncatedDivision extends TruncatedDivisionCRing[Long] with LongSigned { def toBigIntOpt(x: Long): Opt[BigInt] = Opt(BigInt(x)) def tquot(x: Long, y: Long): Long = x / y def tmod(x: Long, y: Long): Long = x % y } trait LongIsReal extends IsIntegral[Long] with LongTruncatedDivision { def toDouble(n: Long): Double = n.toDouble def toBigInt(n: Long): BigInt = BigInt(n) } @SerialVersionUID(0L) class LongIsBitString extends BitString[Long] with Serializable { def one: Long = -1L def zero: Long = 0L def and(a: Long, b: Long): Long = a & b def or(a: Long, b: Long): Long = a | b def complement(a: Long): Long = ~a override def xor(a: Long, b: Long): Long = a ^ b def signed: Boolean = true def width: Int = 64 def toHexString(n: Long): String = java.lang.Long.toHexString(n) def bitCount(n: Long): Int = java.lang.Long.bitCount(n) def highestOneBit(n: Long): Long = java.lang.Long.highestOneBit(n) def lowestOneBit(n: Long): Long = java.lang.Long.lowestOneBit(n) def numberOfLeadingZeros(n: Long): Int = java.lang.Long.numberOfLeadingZeros(n) def numberOfTrailingZeros(n: Long): Int = java.lang.Long.numberOfTrailingZeros(n) def leftShift(n: Long, i: Int): Long = n << i def rightShift(n: Long, i: Int): Long = n >> i def signedRightShift(n: Long, i: Int): Long = n >>> i def rotateLeft(n: Long, i: Int): Long = java.lang.Long.rotateLeft(n, i) def rotateRight(n: Long, i: Int): Long = java.lang.Long.rotateRight(n, i) } @SerialVersionUID(0L) class LongAlgebra extends LongIsEuclideanRing with LongIsNRoot with LongIsReal with Serializable trait LongInstances { implicit final val LongBitString = new LongIsBitString implicit final val LongAlgebra = new LongAlgebra import spire.math.NumberTag._ implicit final val LongTag = new BuiltinIntTag[Long](0L, Long.MinValue, Long.MaxValue) }
adampingel/spire
core/src/main/scala/spire/std/long.scala
Scala
mit
4,149
/* * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package wvlet.airframe.rx.html import scala.language.experimental.macros import scala.reflect.macros.{blackbox => sm} /** */ private[html] object RxHtmlMacros { def code(c: sm.Context)(rxElements: c.Tree*): c.Tree = { import c.universe._ val codes = for (rxElement <- rxElements) yield { val pos = rxElement.pos val src = pos.source val lineBlocks = src.content .slice(pos.start, pos.`end`) .mkString .replaceAll("^\\\\{\\\\n", "") .replaceAll("\\\\}$", "") val lines = lineBlocks.split("\\n") val columnOffsetInLine = lines.headOption .map { firstLine => firstLine.size - firstLine.stripLeading().size } .getOrElse(0) val trimmedSource = lines .map { line => line.replaceFirst(s"^\\\\s{0,${columnOffsetInLine}}", "") } .mkString("\\n") (rxElement, trimmedSource) } val elems = codes.map(_._1) val source = codes.map(_._2).mkString("\\n") q"wvlet.airframe.rx.html.RxCode(Seq(..${elems}), ${source})" } }
wvlet/airframe
airframe-rx-html/src/main/scala/wvlet/airframe/rx/html/RxHtmlMacros.scala
Scala
apache-2.0
1,633
package org.orbeon.oxf.xml import javax.xml.transform.{Result, Source} import org.orbeon.saxon.event._ import org.orbeon.saxon.trans.XPathException import org.orbeon.saxon.{Configuration, Controller} import org.xml.sax.SAXParseException // Custom version of Saxon's IdentityTransformer which hooks up a `ComplexContentOutputter` class IdentityTransformerWithFixup(config: Configuration) extends Controller(config) { override def transform(source: Source, result: Result): Unit = try { val pipelineConfig = makePipelineConfiguration val receiver = getConfiguration.getSerializerFactory.getReceiver(result, pipelineConfig, getOutputProperties) // To remove duplicate namespace declarations val reducer = new NamespaceReducer reducer.setUnderlyingReceiver(receiver) reducer.setPipelineConfiguration(pipelineConfig) // To fixup namespaces val cco = new ComplexContentOutputter cco.setHostLanguage(pipelineConfig.getHostLanguage) cco.setPipelineConfiguration(pipelineConfig) cco.setReceiver(reducer) new Sender(pipelineConfig).send(source, cco, true) } catch { case xpe: XPathException ⇒ xpe.getException match { case spe: SAXParseException if ! spe.getException.isInstanceOf[RuntimeException] ⇒ // NOP case _ ⇒ reportFatalError(xpe) } throw xpe } } // // The contents of this file are subject to the Mozilla Public License Version 1.0 (the "License"); // you may not use this file except in compliance with the License. You may obtain a copy of the // License at http://www.mozilla.org/MPL/ // // Software distributed under the License is distributed on an "AS IS" basis, // WITHOUT WARRANTY OF ANY KIND, either express or implied. // See the License for the specific language governing rights and limitations under the License. // // The Original Code is: all this file. // // The Initial Developer of the Original Code is Michael H. Kay // // Portions created by (your name) are Copyright (C) (your legal entity). All Rights Reserved. // // Contributor(s): None //
brunobuzzi/orbeon-forms
src/main/scala/org/orbeon/oxf/xml/IdentityTransformerWithFixup.scala
Scala
lgpl-2.1
2,122
package mavigator.uav package mock import scala.util.Random import org.mavlink.Mavlink import org.mavlink.enums._ import org.mavlink.messages._ class RandomFlightPlan { private var time: Double = 0 //current time in seconds private def millis = (time * 1000).toInt private def micros = (time * 1E6).toInt // an oscilliating function private def osc[A](min: A, max: A, period: Double, offset: Double = 0)(implicit n: Numeric[A]): A = { val amplitude = (n.toDouble(max) - n.toDouble(min)) / 2 val base = (n.toDouble(max) + n.toDouble(min)) / 2 val factor = math.sin(2 * math.Pi * (time + offset) / period) n.fromInt((base + amplitude * factor).toInt) } private var x: Double = 0.0 private var y: Double = 0.0 private var vX: Double = 0.0 private var vY: Double = 0.0 def tick(delta: Double) { val aX = Random.nextDouble() * 5 val aY = Random.nextDouble() * 5 x += vX * delta y += vY * delta vX += aX * delta vY += aY * delta time += delta } private final val EarthRadius = 6000000 //m private final val StartLat = 46.518513 //deg N private final val StartLon = 6.566923 //deg E def position = GlobalPositionInt( millis, (StartLat + x / EarthRadius).toInt, (StartLon + y / EarthRadius).toInt, 0, 0, (vX * 100).toShort, (vY * 100).toShort, 0, 0 ) def attitude = Attitude( millis, (math.sin(2 * math.Pi * time / 12) * math.Pi / 8).toFloat, (math.sin(2 * math.Pi * time / 18) * math.Pi / 9).toFloat, (2 * math.Pi * time / 6).toFloat, 0, 0, 0 ) def heartbeat = Heartbeat( MavType.MavTypeGeneric.toByte, MavAutopilot.MavAutopilotGeneric.toByte, (MavModeFlag.MavModeFlagSafetyArmed | MavModeFlag.MavModeFlagManualInputEnabled).toByte, 0, //no custom mode MavState.MavStateActive.toByte, Mavlink.MavlinkVersion ) private final val DistanceMin: Short = 10 private final val DistanceMax: Short = 500 def distance = DistanceSensor( timeBootMs = millis, minDistance = DistanceMin, maxDistance = DistanceMax, currentDistance = osc(DistanceMin, DistanceMax, 6), `type` = MavDistanceSensor.MavDistanceSensorUltrasound.toByte, id = 0: Byte, orientation = -1: Byte, covariance = 3: Byte) private final val MotorsMax: Short = 2000 //usec, ppm signal => 100% private final val MotorsMin: Short = 1000 //usec, ppm signal => 0% def motors = ServoOutputRaw( timeUsec = micros, port = 0: Byte, servo1Raw = osc(MotorsMin, MotorsMax, 6, 0), servo2Raw = osc(MotorsMin, MotorsMax, 6, 5), servo3Raw = osc(MotorsMin, MotorsMax, 6, 2), servo4Raw = osc(MotorsMin, MotorsMax, 6, 4), servo5Raw = 0, servo6Raw = 0, servo7Raw = 0, servo8Raw = 0 ) }
project-condor/mavigator
mavigator-uav/src/main/scala/mavigator/uav/mock/RandomFlightPlan.scala
Scala
gpl-3.0
2,790
package provingground.induction import provingground._, HoTT._ import shapeless._ object SubstInstances { implicit def indConsShape[S <: HList, H <: Term with Subs[H], Fb <: Term with Subs[Fb], ConstructorType <: Term with Subs[ConstructorType], Index <: HList: TermList] : Subst[IndexedConstructorShape[S, H, Fb, ConstructorType, Index]] = new Subst[IndexedConstructorShape[S, H, Fb, ConstructorType, Index]] { def subst(a: IndexedConstructorShape[S, H, Fb, ConstructorType, Index])( x: Term, y: Term) = a.subs(x, y) } implicit def consShape[S <: HList, H <: Term with Subs[H], ConstructorType <: Term with Subs[ConstructorType]] : Subst[ConstructorShape[S, H, ConstructorType]] = new Subst[ConstructorShape[S, H, ConstructorType]] { def subst(a: ConstructorShape[S, H, ConstructorType])( x: Term, y: Term ) = a.subs(x, y) } implicit def typFmaily[H <: Term with Subs[H], F <: Term with Subs[F], Index <: HList: TermList] : Subst[TypFamilyPtn[H, F, Index]] = new Subst[TypFamilyPtn[H, F, Index]] { def subst(a: TypFamilyPtn[H, F, Index])( x: Term, y: Term ) = a.subs(x, y) } implicit def iterFunc[O <: Term with Subs[O], F <: Term with Subs[F]] : Subst[IterFuncShape[O, F]] = new Subst[IterFuncShape[O, F]] { def subst(a: IterFuncShape[O, F])(x: Term, y: Term) = a.subs(x, y) } implicit def indexedIterFunc[H <: Term with Subs[H], F <: Term with Subs[F], Fb <: Term with Subs[Fb], Index <: HList: TermList] : Subst[IndexedIterFuncShape[H, F, Fb, Index]] = new Subst[IndexedIterFuncShape[H, F, Fb, Index]] { def subst(a: IndexedIterFuncShape[H, F, Fb, Index])( x: Term, y: Term ) = a.subs(x, y) } }
siddhartha-gadgil/ProvingGround
core/src/main/scala/provingground/induction/SubstInstances.scala
Scala
mit
2,103
package gh2013.payloads import gh2013.models.User import net.liftweb.json.JsonAST.JValue case class MemberEventPayload(action: String, member: User) object MemberEventPayload { def apply(json: JValue): Option[MemberEventPayload] = { val n2s = gh3.node2String(json)(_) val action = n2s("action") val member = User(json \\ "member") val params = Seq(action, member) if(params.forall(_.isDefined)) Some(MemberEventPayload(action.get, member.get)) else None } }
mgoeminne/github_etl
src/main/scala/gh2013/payloads/MemberEventPayload.scala
Scala
mit
517
package org.scalajs.testsuite.javalib.time import java.time._ import java.time.chrono.{IsoEra, IsoChronology} import java.time.format.DateTimeParseException import java.time.temporal._ import org.junit.Test import org.junit.Assert._ import org.scalajs.testsuite.utils.AssertThrows._ class LocalDateTest extends TemporalTest[LocalDate] { import DateTimeTestUtil._ import LocalDate._ import ChronoField._ import ChronoUnit._ val someDate = of(2011, 2, 28) val leapDate = of(2012, 2, 29) val samples = Seq(MIN, ofEpochDay(-1), ofEpochDay(0), ofEpochDay(1), someDate, leapDate, MAX) def isSupported(unit: ChronoUnit): Boolean = unit.isDateBased def isSupported(field: ChronoField): Boolean = field.isDateBased override def expectedRangeFor(accessor: LocalDate, field: TemporalField): ValueRange = { field match { case DAY_OF_MONTH => ValueRange.of(1, accessor.lengthOfMonth) case DAY_OF_YEAR => ValueRange.of(1, accessor.lengthOfYear) case ALIGNED_WEEK_OF_MONTH => ValueRange.of(1, if (accessor.lengthOfMonth > 28) 5 else 4) case YEAR_OF_ERA => val maxYear = if (accessor.getEra == IsoEra.CE) 999999999 else 1000000000 ValueRange.of(1, maxYear) case _ => super.expectedRangeFor(accessor, field) } } @Test def test_getLong(): Unit = { for (d <- samples) { assertEquals(d.getDayOfWeek.getValue.toLong, d.getLong(DAY_OF_WEEK)) assertEquals(d.getDayOfMonth.toLong, d.getLong(DAY_OF_MONTH)) assertEquals(d.getDayOfYear.toLong, d.getLong(DAY_OF_YEAR)) assertEquals(d.toEpochDay, d.getLong(EPOCH_DAY)) assertEquals(d.getMonthValue.toLong, d.getLong(MONTH_OF_YEAR)) assertEquals(d.getYear.toLong, d.getLong(YEAR)) assertEquals(d.getEra.getValue.toLong, d.getLong(ERA)) } assertEquals(1L, MIN.getLong(ALIGNED_DAY_OF_WEEK_IN_MONTH)) assertEquals(1L, MIN.getLong(ALIGNED_DAY_OF_WEEK_IN_YEAR)) assertEquals(1L, MIN.getLong(ALIGNED_WEEK_OF_MONTH)) assertEquals(1L, MIN.getLong(ALIGNED_WEEK_OF_YEAR)) assertEquals(-11999999988L, MIN.getLong(PROLEPTIC_MONTH)) assertEquals(1000000000L, MIN.getLong(YEAR_OF_ERA)) assertEquals(7L, someDate.getLong(ALIGNED_DAY_OF_WEEK_IN_MONTH)) assertEquals(3L, someDate.getLong(ALIGNED_DAY_OF_WEEK_IN_YEAR)) assertEquals(4L, someDate.getLong(ALIGNED_WEEK_OF_MONTH)) assertEquals(9L, someDate.getLong(ALIGNED_WEEK_OF_YEAR)) assertEquals(24133L, someDate.getLong(PROLEPTIC_MONTH)) assertEquals(2011L, someDate.getLong(YEAR_OF_ERA)) assertEquals(1L, leapDate.getLong(ALIGNED_DAY_OF_WEEK_IN_MONTH)) assertEquals(4L, leapDate.getLong(ALIGNED_DAY_OF_WEEK_IN_YEAR)) assertEquals(5L, leapDate.getLong(ALIGNED_WEEK_OF_MONTH)) assertEquals(9L, leapDate.getLong(ALIGNED_WEEK_OF_YEAR)) assertEquals(24145L, leapDate.getLong(PROLEPTIC_MONTH)) assertEquals(2012L, leapDate.getLong(YEAR_OF_ERA)) assertEquals(3L, MAX.getLong(ALIGNED_DAY_OF_WEEK_IN_MONTH)) assertEquals(1L, MAX.getLong(ALIGNED_DAY_OF_WEEK_IN_YEAR)) assertEquals(5L, MAX.getLong(ALIGNED_WEEK_OF_MONTH)) assertEquals(53L, MAX.getLong(ALIGNED_WEEK_OF_YEAR)) assertEquals(11999999999L, MAX.getLong(PROLEPTIC_MONTH)) assertEquals(999999999L, MAX.getLong(YEAR_OF_ERA)) } @Test def test_getChronology(): Unit = { for (d <- samples) assertEquals(IsoChronology.INSTANCE, d.getChronology) } @Test def test_getEra(): Unit = { assertEquals(IsoEra.BCE, MIN.getEra) assertEquals(IsoEra.CE, someDate.getEra) assertEquals(IsoEra.CE, leapDate.getEra) assertEquals(IsoEra.CE, MAX.getEra) } @Test def test_getYear(): Unit = { assertEquals(-999999999, MIN.getYear) assertEquals(2011, someDate.getYear) assertEquals(2012, leapDate.getYear) assertEquals(999999999, MAX.getYear) } @Test def test_getMonthValue(): Unit = { for (d <- samples) assertEquals(d.getMonth.getValue, d.getMonthValue) } @Test def test_getMonth(): Unit = { assertEquals(Month.JANUARY, MIN.getMonth) assertEquals(Month.FEBRUARY, someDate.getMonth) assertEquals(Month.FEBRUARY, leapDate.getMonth) assertEquals(Month.DECEMBER, MAX.getMonth) } @Test def test_getDayOfMonth(): Unit = { assertEquals(1, MIN.getDayOfMonth) assertEquals(28, someDate.getDayOfMonth) assertEquals(29, leapDate.getDayOfMonth) assertEquals(31, MAX.getDayOfMonth) } @Test def test_getDayOfYear(): Unit = { assertEquals(1, MIN.getDayOfYear) assertEquals(59, someDate.getDayOfYear) assertEquals(60, leapDate.getDayOfYear) assertEquals(366, of(2012, 12, 31).getDayOfYear) assertEquals(365, MAX.getDayOfYear) } @Test def test_getDayOfWeek(): Unit = { assertEquals(DayOfWeek.MONDAY, MIN.getDayOfWeek) assertEquals(DayOfWeek.MONDAY, someDate.getDayOfWeek) assertEquals(DayOfWeek.WEDNESDAY, leapDate.getDayOfWeek) assertEquals(DayOfWeek.FRIDAY, MAX.getDayOfWeek) } @Test def test_isLeapYear(): Unit = { assertFalse(MIN.isLeapYear) assertTrue(of(-400, 6, 30).isLeapYear) assertFalse(of(-100, 3, 1).isLeapYear) assertTrue(of(0, 1, 1).isLeapYear) assertFalse(of(1900, 9, 30).isLeapYear) assertTrue(of(2000, 1, 1).isLeapYear) assertFalse(someDate.isLeapYear) assertTrue(leapDate.isLeapYear) assertFalse(MAX.isLeapYear) } @Test def test_lengthOfMonth(): Unit = { for (d <- samples ++ Seq(of(2001, 2, 1), of(2012, 9, 30))) assertEquals(d.getMonth.length(d.isLeapYear), d.lengthOfMonth) } @Test def test_lengthOfYear(): Unit = { for (d <- samples) assertEquals(if (d.isLeapYear) 366 else 365, d.lengthOfYear) } @Test def test_with(): Unit = { testDateTime(MAX.`with`(DAY_OF_WEEK, 1))(of(999999999, 12, 27)) testDateTime(MAX.`with`(DAY_OF_WEEK, 5))(MAX) testDateTime(MIN.`with`(DAY_OF_WEEK, 1))(MIN) testDateTime(MIN.`with`(DAY_OF_WEEK, 7))(of(-999999999, 1, 7)) testDateTime(someDate.`with`(DAY_OF_WEEK, 1))(someDate) testDateTime(someDate.`with`(DAY_OF_WEEK, 7))(of(2011, 3, 6)) testDateTime(leapDate.`with`(DAY_OF_WEEK, 1))(of(2012, 2, 27)) testDateTime(leapDate.`with`(DAY_OF_WEEK, 7))(of(2012, 3, 4)) testDateTime(MAX.`with`(ALIGNED_DAY_OF_WEEK_IN_MONTH, 1))(of(999999999, 12, 29)) testDateTime(MAX.`with`(ALIGNED_DAY_OF_WEEK_IN_MONTH, 3))(MAX) testDateTime(MIN.`with`(ALIGNED_DAY_OF_WEEK_IN_MONTH, 1))(MIN) testDateTime(MIN.`with`(ALIGNED_DAY_OF_WEEK_IN_MONTH, 7))(of(-999999999, 1, 7)) testDateTime(someDate.`with`(ALIGNED_DAY_OF_WEEK_IN_MONTH, 1))(of(2011, 2, 22)) testDateTime(someDate.`with`(ALIGNED_DAY_OF_WEEK_IN_MONTH, 7))(someDate) testDateTime(leapDate.`with`(ALIGNED_DAY_OF_WEEK_IN_MONTH, 1))(leapDate) testDateTime(leapDate.`with`(ALIGNED_DAY_OF_WEEK_IN_MONTH, 7))(of(2012, 3, 6)) testDateTime(MAX.`with`(ALIGNED_DAY_OF_WEEK_IN_YEAR, 1))(MAX) testDateTime(MIN.`with`(ALIGNED_DAY_OF_WEEK_IN_YEAR, 1))(MIN) testDateTime(MIN.`with`(ALIGNED_DAY_OF_WEEK_IN_YEAR, 7))(of(-999999999, 1, 7)) testDateTime(someDate.`with`(ALIGNED_DAY_OF_WEEK_IN_YEAR, 1))(of(2011, 2, 26)) testDateTime(someDate.`with`(ALIGNED_DAY_OF_WEEK_IN_YEAR, 7))(of(2011, 3, 4)) testDateTime(leapDate.`with`(ALIGNED_DAY_OF_WEEK_IN_YEAR, 1))(of(2012, 2, 26)) testDateTime(leapDate.`with`(ALIGNED_DAY_OF_WEEK_IN_YEAR, 7))(of(2012, 3, 3)) testDateTime(someDate.`with`(DAY_OF_MONTH, 1))(of(2011, 2, 1)) testDateTime(leapDate.`with`(DAY_OF_MONTH, 28))(of(2012, 2, 28)) testDateTime(someDate.`with`(DAY_OF_YEAR, 1))(of(2011, 1, 1)) testDateTime(someDate.`with`(DAY_OF_YEAR, 365))(of(2011, 12, 31)) testDateTime(leapDate.`with`(DAY_OF_YEAR, 366))(of(2012, 12, 31)) for { d1 <- samples d2 <- samples } { testDateTime(d1.`with`(EPOCH_DAY, d2.toEpochDay))(d2) } testDateTime(MAX.`with`(ALIGNED_WEEK_OF_MONTH, 1))(of(999999999, 12, 3)) testDateTime(MAX.`with`(ALIGNED_WEEK_OF_MONTH, 5))(MAX) testDateTime(MIN.`with`(ALIGNED_WEEK_OF_MONTH, 1))(MIN) testDateTime(MIN.`with`(ALIGNED_WEEK_OF_MONTH, 5))(of(-999999999, 1, 29)) testDateTime(someDate.`with`(ALIGNED_WEEK_OF_MONTH, 1))(of(2011, 2, 7)) testDateTime(someDate.`with`(ALIGNED_WEEK_OF_MONTH, 5))(of(2011, 3, 7)) testDateTime(leapDate.`with`(ALIGNED_WEEK_OF_MONTH, 1))(of(2012, 2, 1)) testDateTime(leapDate.`with`(ALIGNED_WEEK_OF_MONTH, 5))(leapDate) testDateTime(MAX.`with`(ALIGNED_WEEK_OF_YEAR, 1))(of(999999999, 1, 1)) testDateTime(MAX.`with`(ALIGNED_WEEK_OF_YEAR, 53))(MAX) testDateTime(MIN.`with`(ALIGNED_WEEK_OF_YEAR, 1))(MIN) testDateTime(MIN.`with`(ALIGNED_WEEK_OF_YEAR, 53))(of(-999999999, 12, 31)) testDateTime(someDate.`with`(ALIGNED_WEEK_OF_YEAR, 1))(of(2011, 1, 3)) testDateTime(someDate.`with`(ALIGNED_WEEK_OF_YEAR, 53))(of(2012, 1, 2)) testDateTime(leapDate.`with`(ALIGNED_WEEK_OF_YEAR, 1))(of(2012, 1, 4)) testDateTime(leapDate.`with`(ALIGNED_WEEK_OF_YEAR, 53))(of(2013, 1, 2)) testDateTime(MAX.`with`(MONTH_OF_YEAR, 2))(of(999999999, 2, 28)) testDateTime(MAX.`with`(MONTH_OF_YEAR, 11))(of(999999999, 11, 30)) testDateTime(someDate.`with`(MONTH_OF_YEAR, 1))(of(2011, 1, 28)) testDateTime(leapDate.`with`(MONTH_OF_YEAR, 2))(leapDate) testDateTime(MAX.`with`(PROLEPTIC_MONTH, 1))(of(0, 2, 29)) testDateTime(MIN.`with`(PROLEPTIC_MONTH, -1))(of(-1, 12, 1)) testDateTime(someDate.`with`(PROLEPTIC_MONTH, -11999999988L))(of(-999999999, 1, 28)) testDateTime(leapDate.`with`(PROLEPTIC_MONTH, 11999999999L))(of(999999999, 12, 29)) testDateTime(MIN.`with`(YEAR_OF_ERA, 1000000000))(MIN) testDateTime(MIN.`with`(YEAR_OF_ERA, 1))(of(0, 1, 1)) testDateTime(MAX.`with`(YEAR_OF_ERA, 999999999))(MAX) testDateTime(MAX.`with`(YEAR_OF_ERA, 1))(of(1, 12, 31)) testDateTime(leapDate.`with`(YEAR_OF_ERA, 2011))(someDate) testDateTime(MIN.`with`(YEAR, -999999999))(MIN) testDateTime(MIN.`with`(YEAR, 999999999))(of(999999999, 1, 1)) testDateTime(MAX.`with`(YEAR, -999999999))(of(-999999999, 12, 31)) testDateTime(MAX.`with`(YEAR, 999999999))(MAX) testDateTime(leapDate.`with`(YEAR, 2011))(someDate) testDateTime(MIN.`with`(ERA, 0))(MIN) testDateTime(MAX.`with`(ERA, 0))(of(-999999998, 12, 31)) testDateTime(MAX.`with`(ERA, 1))(MAX) testDateTime(someDate.`with`(ERA, 1))(someDate) testDateTime(leapDate.`with`(ERA, 0))(of(-2011, 2, 28)) expectThrows(classOf[DateTimeException], MAX.`with`(DAY_OF_WEEK, 6)) expectThrows(classOf[DateTimeException], MAX.`with`(ALIGNED_DAY_OF_WEEK_IN_MONTH, 4)) expectThrows(classOf[DateTimeException], MAX.`with`(ALIGNED_DAY_OF_WEEK_IN_YEAR, 2)) expectThrows(classOf[DateTimeException], someDate.`with`(DAY_OF_MONTH, 29)) expectThrows(classOf[DateTimeException], leapDate.`with`(DAY_OF_MONTH, 30)) expectThrows(classOf[DateTimeException], someDate.`with`(DAY_OF_YEAR, 366)) expectThrows(classOf[DateTimeException], someDate.`with`(YEAR_OF_ERA, 1000000000)) expectThrows(classOf[DateTimeException], MIN.`with`(ERA, 1)) for (d <- samples) { for (n <- Seq(Long.MinValue, 0L, 8L, Long.MaxValue)) { expectThrows(classOf[DateTimeException], d.`with`(DAY_OF_WEEK, n)) expectThrows(classOf[DateTimeException], d.`with`(ALIGNED_DAY_OF_WEEK_IN_MONTH, n)) expectThrows(classOf[DateTimeException], d.`with`(ALIGNED_DAY_OF_WEEK_IN_YEAR, n)) } for (n <- Seq(Long.MinValue, 0L, 32L, Long.MaxValue)) expectThrows(classOf[DateTimeException], d.`with`(DAY_OF_MONTH, n)) for (n <- Seq(Long.MinValue, 0L, 367L, Long.MaxValue)) expectThrows(classOf[DateTimeException], d.`with`(DAY_OF_YEAR, n)) for (n <- Seq(Long.MinValue, -365243219163L, 365241780472L, Long.MaxValue)) expectThrows(classOf[DateTimeException], d.`with`(EPOCH_DAY, n)) for (n <- Seq(Long.MinValue, 0L, 6L, Long.MaxValue)) { expectThrows(classOf[DateTimeException], d.`with`(ALIGNED_WEEK_OF_MONTH, n)) } for (n <- Seq(Long.MinValue, 0L, 54L, Long.MaxValue)) { expectThrows(classOf[DateTimeException], d.`with`(ALIGNED_WEEK_OF_YEAR, n)) } for (n <- Seq(Long.MinValue, 0L, 13L, Long.MaxValue)) expectThrows(classOf[DateTimeException], d.`with`(MONTH_OF_YEAR, n)) for (n <- Seq(Long.MinValue, -11999999989L, 12000000000L, Long.MaxValue)) expectThrows(classOf[DateTimeException], d.`with`(PROLEPTIC_MONTH, n)) for (n <- Seq(Long.MinValue, 0L, 1000000001L, Long.MaxValue)) expectThrows(classOf[DateTimeException], d.`with`(YEAR_OF_ERA, n)) for (n <- Seq(Long.MinValue, -1000000000L, 1000000000L, Long.MaxValue)) expectThrows(classOf[DateTimeException], d.`with`(YEAR, n)) for (n <- Seq(Long.MinValue, -1L, 2L, Long.MaxValue)) expectThrows(classOf[DateTimeException], d.`with`(ERA, n)) } } @Test def test_withYear(): Unit = { testDateTime(MIN.withYear(-999999999))(MIN) testDateTime(MIN.withYear(999999999))(of(999999999, 1, 1)) testDateTime(MAX.withYear(-999999999))(of(-999999999, 12, 31)) testDateTime(MAX.withYear(999999999))(MAX) val years = Seq(Int.MinValue, -1000000000, 1000000000, Int.MaxValue) for { d <- samples n <- years } { expectThrows(classOf[DateTimeException], d.withYear(n)) } } @Test def test_withMonth(): Unit = { testDateTime(MAX.withMonth(2))(of(999999999, 2, 28)) testDateTime(MAX.withMonth(11))(of(999999999, 11, 30)) testDateTime(someDate.withMonth(1))(of(2011, 1, 28)) testDateTime(leapDate.withMonth(2))(leapDate) val months = Seq(Int.MinValue, 0, 13, Int.MaxValue) for { d <- samples n <- months } { expectThrows(classOf[DateTimeException], d.withMonth(n)) } } @Test def test_withDayOfMonth(): Unit = { testDateTime(someDate.withDayOfMonth(1))(of(2011, 2, 1)) testDateTime(leapDate.withDayOfMonth(28))(of(2012, 2, 28)) expectThrows(classOf[DateTimeException], someDate.withDayOfMonth(29)) expectThrows(classOf[DateTimeException], leapDate.withDayOfMonth(30)) expectThrows(classOf[DateTimeException], of(0, 4, 30).withDayOfMonth(31)) val days = Seq(Int.MinValue, 0, 32, Int.MaxValue) for { d <- samples n <- days } { expectThrows(classOf[DateTimeException], d.withDayOfMonth(n)) } } @Test def test_withDayOfYear(): Unit = { testDateTime(someDate.withDayOfYear(1))(of(2011, 1, 1)) testDateTime(someDate.withDayOfYear(365))(of(2011, 12, 31)) testDateTime(leapDate.withDayOfYear(366))(of(2012, 12, 31)) expectThrows(classOf[DateTimeException], someDate.withDayOfYear(366)) val days = Seq(Int.MinValue, 0, 367, Int.MaxValue) for { d <- samples n <- days } { expectThrows(classOf[DateTimeException], d.withDayOfMonth(n)) } } @Test def test_plus(): Unit = { val values = Seq(Long.MinValue, Int.MinValue.toLong, -1000L, -366L, -365L, -100L, -12L, -10L, -7L, -1L, 0L, 1L, 7L, 10L, 12L, 100L, 365L, 366L, 1000L, Int.MaxValue.toLong, Long.MaxValue) for { d <- samples n <- values } { testDateTime(d.plus(n, DAYS))(d.plusDays(n)) testDateTime(d.plus(n, WEEKS))(d.plusWeeks(n)) testDateTime(d.plus(n, MONTHS))(d.plusMonths(n)) testDateTime(d.plus(n, YEARS))(d.plusYears(n)) testDateTime(d.plus(n, DECADES))(d.plusYears(Math.multiplyExact(n, 10))) testDateTime(d.plus(n, CENTURIES))(d.plusYears(Math.multiplyExact(n, 100))) testDateTime(d.plus(n, MILLENNIA))(d.plusYears(Math.multiplyExact(n, 1000))) testDateTime(d.plus(n, ERAS))(d.`with`(ERA, Math.addExact(n, d.get(ERA)))) } } @Test def test_plusYears(): Unit = { for (d <- samples) testDateTime(d.plusYears(0))(d) testDateTime(someDate.plusYears(-2))(of(2009, 2, 28)) testDateTime(someDate.plusYears(-1))(of(2010, 2, 28)) testDateTime(someDate.plusYears(1))(of(2012, 2, 28)) testDateTime(someDate.plusYears(2))(of(2013, 2, 28)) testDateTime(leapDate.plusYears(-2))(of(2010, 2, 28)) testDateTime(leapDate.plusYears(-1))(someDate) testDateTime(leapDate.plusYears(1))(of(2013, 2, 28)) testDateTime(leapDate.plusYears(2))(of(2014, 2, 28)) testDateTime(MIN.plusYears(1999999998))(of(999999999, 1, 1)) testDateTime(MAX.plusYears(-1999999998))(of(-999999999, 12, 31)) expectThrows(classOf[DateTimeException], MIN.plusYears(-1)) expectThrows(classOf[DateTimeException], MIN.plusYears(1999999999)) expectThrows(classOf[DateTimeException], MAX.plusYears(-1999999999)) expectThrows(classOf[DateTimeException], MAX.plusYears(1)) expectThrows(classOf[DateTimeException], MIN.plusYears(Long.MinValue)) expectThrows(classOf[DateTimeException], MAX.plusYears(Long.MaxValue)) } @Test def test_plusMonths(): Unit = { for (d <- samples) testDateTime(d.plusMonths(0))(d) testDateTime(someDate.plusMonths(-12))(of(2010, 2, 28)) testDateTime(someDate.plusMonths(-1))(of(2011, 1, 28)) testDateTime(someDate.plusMonths(1))(of(2011, 3, 28)) testDateTime(someDate.plusMonths(12))(of(2012, 2, 28)) testDateTime(leapDate.plusMonths(-12))(someDate) testDateTime(leapDate.plusMonths(-1))(of(2012, 1, 29)) testDateTime(leapDate.plusMonths(1))(of(2012, 3, 29)) testDateTime(leapDate.plusMonths(12))(of(2013, 2, 28)) testDateTime(of(2011, 1, 31).plusMonths(1))(someDate) testDateTime(of(2011, 3, 31).plusMonths(-1))(someDate) testDateTime(of(2011, 3, 31).plusMonths(1))(of(2011, 4, 30)) testDateTime(of(2012, 1, 31).plusMonths(1))(leapDate) testDateTime(of(2012, 3, 31).plusMonths(-1))(leapDate) testDateTime(of(2012, 3, 31).plusMonths(1))(of(2012, 4, 30)) testDateTime(MIN.plusMonths(23999999987L))(of(999999999, 12, 1)) testDateTime(MAX.plusMonths(-23999999987L))(of(-999999999, 1, 31)) expectThrows(classOf[DateTimeException], MIN.plusMonths(-1)) expectThrows(classOf[DateTimeException], MIN.plusMonths(23999999988L)) expectThrows(classOf[DateTimeException], MAX.plusMonths(-23999999988L)) expectThrows(classOf[DateTimeException], MAX.plusMonths(1)) expectThrows(classOf[DateTimeException], MIN.plusMonths(Long.MinValue)) expectThrows(classOf[DateTimeException], MAX.plusMonths(Long.MaxValue)) } @Test def test_plusWeeks(): Unit = { for (d <- samples) testDateTime(d.plusWeeks(0))(d) testDateTime(someDate.plusWeeks(-53))(of(2010, 2, 22)) testDateTime(someDate.plusWeeks(-52))(of(2010, 3, 1)) testDateTime(someDate.plusWeeks(-1))(of(2011, 2, 21)) testDateTime(someDate.plusWeeks(1))(of(2011, 3, 7)) testDateTime(someDate.plusWeeks(52))(of(2012, 2, 27)) testDateTime(someDate.plusWeeks(53))(of(2012, 3, 5)) testDateTime(leapDate.plusWeeks(-53))(of(2011, 2, 23)) testDateTime(leapDate.plusWeeks(-52))(of(2011, 3, 2)) testDateTime(leapDate.plusWeeks(-1))(of(2012, 2, 22)) testDateTime(leapDate.plusWeeks(1))(of(2012, 3, 7)) testDateTime(leapDate.plusWeeks(52))(of(2013, 2, 27)) testDateTime(leapDate.plusWeeks(53))(of(2013, 3, 6)) testDateTime(MIN.plusWeeks(104354999947L))(of(999999999, 12, 27)) testDateTime(MAX.plusWeeks(-104354999947L))(of(-999999999, 1, 5)) expectThrows(classOf[DateTimeException], MIN.plusWeeks(-1)) expectThrows(classOf[DateTimeException], MIN.plusWeeks(104354999948L)) expectThrows(classOf[DateTimeException], MAX.plusWeeks(-1043549999478L)) expectThrows(classOf[DateTimeException], MAX.plusWeeks(1)) expectThrows(classOf[ArithmeticException], MIN.plusWeeks(Long.MinValue)) expectThrows(classOf[ArithmeticException], MAX.plusWeeks(Long.MaxValue)) } @Test def test_plusDays(): Unit = { for (d <- samples) testDateTime(d.plusDays(0))(d) testDateTime(someDate.plusDays(-365))(of(2010, 2, 28)) testDateTime(someDate.plusDays(-1))(of(2011, 2, 27)) testDateTime(someDate.plusDays(1))(of(2011, 3, 1)) testDateTime(someDate.plusDays(365))(of(2012, 2, 28)) testDateTime(someDate.plusDays(366))(leapDate) testDateTime(leapDate.plusDays(-366))(someDate) testDateTime(leapDate.plusDays(-365))(of(2011, 3, 1)) testDateTime(leapDate.plusDays(-1))(of(2012, 2, 28)) testDateTime(leapDate.plusDays(1))(of(2012, 3, 1)) testDateTime(leapDate.plusDays(365))(of(2013, 2, 28)) testDateTime(leapDate.plusDays(366))(of(2013, 3, 1)) testDateTime(MIN.plusDays(730484999633L))(MAX) testDateTime(MAX.plusDays(-730484999633L))(MIN) expectThrows(classOf[DateTimeException], MIN.plusDays(-1)) expectThrows(classOf[DateTimeException], MIN.plusDays(730484999634L)) expectThrows(classOf[DateTimeException], MAX.plusDays(-730484999634L)) expectThrows(classOf[DateTimeException], MAX.plusDays(1)) expectThrows(classOf[ArithmeticException], ofEpochDay(-1).plusDays(Long.MinValue)) expectThrows(classOf[DateTimeException], ofEpochDay(0).plusDays(Long.MinValue)) expectThrows(classOf[DateTimeException], ofEpochDay(0).plusDays(Long.MaxValue)) expectThrows(classOf[ArithmeticException], ofEpochDay(1).plusDays(Long.MaxValue)) } @Test def test_minusYears(): Unit = { for (d <- samples) testDateTime(d.minusYears(0))(d) testDateTime(someDate.minusYears(2))(of(2009, 2, 28)) testDateTime(someDate.minusYears(1))(of(2010, 2, 28)) testDateTime(someDate.minusYears(-1))(of(2012, 2, 28)) testDateTime(someDate.minusYears(-2))(of(2013, 2, 28)) testDateTime(leapDate.minusYears(2))(of(2010, 2, 28)) testDateTime(leapDate.minusYears(1))(someDate) testDateTime(leapDate.minusYears(-1))(of(2013, 2, 28)) testDateTime(leapDate.minusYears(-2))(of(2014, 2, 28)) testDateTime(MIN.minusYears(-1999999998))(of(999999999, 1, 1)) testDateTime(MAX.minusYears(1999999998))(of(-999999999, 12, 31)) expectThrows(classOf[DateTimeException], MIN.minusYears(1)) expectThrows(classOf[DateTimeException], MIN.minusYears(-1999999999)) expectThrows(classOf[DateTimeException], MAX.minusYears(1999999999)) expectThrows(classOf[DateTimeException], MAX.minusYears(-1)) expectThrows(classOf[DateTimeException], MIN.minusYears(Long.MaxValue)) expectThrows(classOf[DateTimeException], MAX.minusYears(Long.MinValue)) } @Test def test_minusMonths(): Unit = { for (d <- samples) testDateTime(d.minusMonths(0))(d) testDateTime(someDate.minusMonths(12))(of(2010, 2, 28)) testDateTime(someDate.minusMonths(1))(of(2011, 1, 28)) testDateTime(someDate.minusMonths(-1))(of(2011, 3, 28)) testDateTime(someDate.minusMonths(-12))(of(2012, 2, 28)) testDateTime(leapDate.minusMonths(12))(someDate) testDateTime(leapDate.minusMonths(1))(of(2012, 1, 29)) testDateTime(leapDate.minusMonths(-1))(of(2012, 3, 29)) testDateTime(leapDate.minusMonths(-12))(of(2013, 2, 28)) testDateTime(of(2011, 1, 31).minusMonths(-1))(someDate) testDateTime(of(2011, 3, 31).minusMonths(1))(someDate) testDateTime(of(2011, 3, 31).minusMonths(-1))(of(2011, 4, 30)) testDateTime(of(2012, 1, 31).minusMonths(-1))(leapDate) testDateTime(of(2012, 3, 31).minusMonths(1))(leapDate) testDateTime(of(2012, 3, 31).minusMonths(-1))(of(2012, 4, 30)) testDateTime(MIN.minusMonths(-23999999987L))(of(999999999, 12, 1)) testDateTime(MAX.minusMonths(23999999987L))(of(-999999999, 1, 31)) expectThrows(classOf[DateTimeException], MIN.minusMonths(1)) expectThrows(classOf[DateTimeException], MIN.minusMonths(-23999999988L)) expectThrows(classOf[DateTimeException], MAX.minusMonths(23999999988L)) expectThrows(classOf[DateTimeException], MAX.minusMonths(-1)) expectThrows(classOf[DateTimeException], MIN.minusMonths(Long.MaxValue)) expectThrows(classOf[DateTimeException], MAX.minusMonths(Long.MinValue)) } @Test def test_minusWeeks(): Unit = { for (d <- samples) testDateTime(d.minusWeeks(0))(d) testDateTime(someDate.minusWeeks(53))(of(2010, 2, 22)) testDateTime(someDate.minusWeeks(52))(of(2010, 3, 1)) testDateTime(someDate.minusWeeks(1))(of(2011, 2, 21)) testDateTime(someDate.minusWeeks(-1))(of(2011, 3, 7)) testDateTime(someDate.minusWeeks(-52))(of(2012, 2, 27)) testDateTime(someDate.minusWeeks(-53))(of(2012, 3, 5)) testDateTime(leapDate.minusWeeks(53))(of(2011, 2, 23)) testDateTime(leapDate.minusWeeks(52))(of(2011, 3, 2)) testDateTime(leapDate.minusWeeks(1))(of(2012, 2, 22)) testDateTime(leapDate.minusWeeks(-1))(of(2012, 3, 7)) testDateTime(leapDate.minusWeeks(-52))(of(2013, 2, 27)) testDateTime(leapDate.minusWeeks(-53))(of(2013, 3, 6)) testDateTime(MIN.minusWeeks(-104354999947L))(of(999999999, 12, 27)) testDateTime(MAX.minusWeeks(104354999947L))(of(-999999999, 1, 5)) expectThrows(classOf[DateTimeException], MIN.minusWeeks(1)) expectThrows(classOf[DateTimeException], MIN.minusWeeks(-104354999948L)) expectThrows(classOf[DateTimeException], MAX.minusWeeks(1043549999478L)) expectThrows(classOf[DateTimeException], MAX.minusWeeks(-1)) expectThrows(classOf[ArithmeticException], MIN.minusWeeks(Long.MaxValue)) expectThrows(classOf[ArithmeticException], MAX.minusWeeks(Long.MinValue)) } @Test def test_minusDays(): Unit = { for (d <- samples) testDateTime(d.minusDays(0))(d) testDateTime(someDate.minusDays(365))(of(2010, 2, 28)) testDateTime(someDate.minusDays(1))(of(2011, 2, 27)) testDateTime(someDate.minusDays(-1))(of(2011, 3, 1)) testDateTime(someDate.minusDays(-365))(of(2012, 2, 28)) testDateTime(someDate.minusDays(-366))(leapDate) testDateTime(leapDate.minusDays(366))(someDate) testDateTime(leapDate.minusDays(365))(of(2011, 3, 1)) testDateTime(leapDate.minusDays(1))(of(2012, 2, 28)) testDateTime(leapDate.minusDays(-1))(of(2012, 3, 1)) testDateTime(leapDate.minusDays(-365))(of(2013, 2, 28)) testDateTime(leapDate.minusDays(-366))(of(2013, 3, 1)) testDateTime(MIN.minusDays(-730484999633L))(MAX) testDateTime(MAX.minusDays(730484999633L))(MIN) expectThrows(classOf[DateTimeException], MIN.minusDays(1)) expectThrows(classOf[DateTimeException], MIN.minusDays(-730484999634L)) expectThrows(classOf[DateTimeException], MAX.minusDays(730484999634L)) expectThrows(classOf[DateTimeException], MAX.minusDays(-1)) expectThrows(classOf[ArithmeticException], ofEpochDay(-2).minusDays(Long.MaxValue)) expectThrows(classOf[ArithmeticException], ofEpochDay(1).minusDays(Long.MinValue)) } @Test def test_adjustInto(): Unit = { for { d1 <- samples d2 <- samples } { testDateTime(d1.adjustInto(d2))(d1) } val ts = Seq(LocalTime.MIN, LocalTime.MAX) for { d <- samples t <- ts } { expectThrows(classOf[DateTimeException], d.adjustInto(t)) } } @Test def test_until(): Unit = { val samples1 = samples ++ Seq(of(2012, 1, 29), of(2012, 1, 30), of(2012, 2, 28), of(2013, 2, 28), of(2013, 3, 1), of(0, 12, 31), of(1, 1, 1)) for { d <- samples1 u <- dateBasedUnits } { assertEquals(0L, d.until(d, u)) } assertEquals(730484999633L, MIN.until(MAX, DAYS)) assertEquals(366L, someDate.until(leapDate, DAYS)) assertEquals(28L, leapDate.until(of(2012, 3, 28), DAYS)) assertEquals(104354999947L, MIN.until(MAX, WEEKS)) assertEquals(12L, someDate.until(leapDate, MONTHS)) assertEquals(1L, of(2012, 1, 29).until(leapDate, MONTHS)) assertEquals(0L, of(2012, 1, 30).until(leapDate, MONTHS)) assertEquals(1999999998L, MIN.until(MAX, YEARS)) assertEquals(1L, someDate.until(of(2012, 2, 28), YEARS)) assertEquals(0L, leapDate.until(of(2013, 2, 28), YEARS)) assertEquals(199999999L, MIN.until(MAX, DECADES)) assertEquals(19999999L, MIN.until(MAX, CENTURIES)) assertEquals(1999999L, MIN.until(MAX, MILLENNIA)) assertEquals(1L, MIN.until(MAX, ERAS)) assertEquals(1L, of(0, 12, 31).until(of(1, 1, 1), ERAS)) for { d1 <- samples1 d2 <- samples1 if d2.isAfter(d1) u <- dateBasedUnits } { assertEquals(-d1.until(d2, u), d2.until(d1, u)) } for (d <- samples1) assertEquals(Period.ZERO, d.until(d)) for { d1 <- samples1 d2 <- samples1 u <- timeBasedUnits } { expectThrows(classOf[UnsupportedTemporalTypeException], d1.until(d2, u)) } assertEquals(Period.of(1999999998, 11, 30), MIN.until(MAX)) assertEquals(Period.of(-1999999998, -11, -30), MAX.until(MIN)) assertEquals(Period.of(1, 0, 1), someDate.until(leapDate)) assertEquals(Period.of(-1, 0, -1), leapDate.until(someDate)) assertEquals(Period.of(0, 11, 30), leapDate.until(of(2013, 2, 28))) assertEquals(Period.of(0, -11, -28), of(2013, 2, 28).until(leapDate)) assertEquals(Period.of(1, 0, 1), leapDate.until(of(2013, 3, 1))) assertEquals(Period.of(-1, 0, -1), of(2013, 3, 1).until(leapDate)) assertEquals(Period.of(0, 1, 1), of(2013, 3, 30).until(of(2013, 5, 1))) assertEquals(Period.of(0, -1, -2), of(2013, 5, 1).until(of(2013, 3, 30))) assertEquals(Period.of(0, 1, 1), of(2013, 3, 31).until(of(2013, 5, 1))) assertEquals(Period.of(0, -1, -1), of(2013, 5, 1).until(of(2013, 3, 31))) } @Test def test_toEpochDay(): Unit = { assertEquals(-365243219162L, MIN.toEpochDay) assertEquals(-1L, of(1969, 12, 31).toEpochDay) assertEquals(0L, of(1970, 1, 1).toEpochDay) assertEquals(15033L, someDate.toEpochDay) assertEquals(15399L, leapDate.toEpochDay) assertEquals(365241780471L, MAX.toEpochDay) } @Test def test_compareTo(): Unit = { assertEquals(0, MIN.compareTo(MIN)) assertTrue(MIN.compareTo(someDate) < 0) assertTrue(MIN.compareTo(MAX) < 0) assertTrue(someDate.compareTo(MIN) > 0) assertEquals(0, someDate.compareTo(someDate)) assertTrue(someDate.compareTo(MAX) < 0) assertTrue(MAX.compareTo(MIN) > 0) assertTrue(MAX.compareTo(someDate) > 0) assertEquals(0, MAX.compareTo(MAX)) } @Test def test_isAfter(): Unit = { assertFalse(MIN.isAfter(MIN)) assertFalse(MIN.isAfter(someDate)) assertFalse(MIN.isAfter(MAX)) assertTrue(someDate.isAfter(MIN)) assertFalse(someDate.isAfter(someDate)) assertFalse(someDate.isAfter(MAX)) assertTrue(MAX.isAfter(MIN)) assertTrue(MAX.isAfter(someDate)) assertFalse(MAX.isAfter(MAX)) } @Test def test_isBefore(): Unit = { assertFalse(MIN.isBefore(MIN)) assertTrue(MIN.isBefore(someDate)) assertTrue(MIN.isBefore(MAX)) assertFalse(someDate.isBefore(MIN)) assertFalse(someDate.isBefore(someDate)) assertTrue(someDate.isBefore(MAX)) assertFalse(MAX.isBefore(MIN)) assertFalse(MAX.isBefore(someDate)) assertFalse(MAX.isBefore(MAX)) } @Test def test_toString(): Unit = { assertEquals("-999999999-01-01", MIN.toString) assertEquals("-0001-12-31", of(-1, 12, 31).toString) assertEquals("0000-01-01", of(0, 1, 1).toString) assertEquals("2011-02-28", someDate.toString) assertEquals("2012-02-29", leapDate.toString) assertEquals("9999-12-31", of(9999, 12, 31).toString) assertEquals("+10000-01-01", of(10000, 1, 1).toString) assertEquals("+999999999-12-31", MAX.toString) } @Test def test_now(): Unit = { assertEquals(IsoEra.CE, now().getEra) } @Test def test_of(): Unit = { val years = Seq(Int.MinValue, -1000000000, -999999999, 0, 999999999, 1000000000, Int.MaxValue) val days = Seq(Int.MinValue, 0, 1, 28, 29, 30, 31, 32, Int.MaxValue) for { year <- years month <- Month.values day <- days } { testDateTime(of(year, month, day))(of(year, month.getValue, day)) } expectThrows(classOf[DateTimeException], of(Int.MinValue, 1, 1)) expectThrows(classOf[DateTimeException], of(-1000000000, 1, 1)) expectThrows(classOf[DateTimeException], of(2011, Int.MinValue, 1)) expectThrows(classOf[DateTimeException], of(2011, 0, 1)) expectThrows(classOf[DateTimeException], of(2011, 13, 1)) expectThrows(classOf[DateTimeException], of(2011, Int.MaxValue, 1)) for (month <- Month.values) { val m = month.getValue expectThrows(classOf[DateTimeException], of(2011, m, Int.MinValue)) expectThrows(classOf[DateTimeException], of(2011, m, 0)) expectThrows(classOf[DateTimeException], of(2011, m, month.length(false) + 1)) expectThrows(classOf[DateTimeException], of(2012, m, month.length(true) + 1)) expectThrows(classOf[DateTimeException], of(2011, m, Int.MaxValue)) } } @Test def test_ofYearDay(): Unit = { testDateTime(ofYearDay(2011, 1))(of(2011, 1, 1)) testDateTime(ofYearDay(2011, 31))(of(2011, 1, 31)) testDateTime(ofYearDay(2011, 32))(of(2011, 2, 1)) testDateTime(ofYearDay(2011, 59))(of(2011, 2, 28)) testDateTime(ofYearDay(2011, 60))(of(2011, 3, 1)) testDateTime(ofYearDay(2011, 90))(of(2011, 3, 31)) testDateTime(ofYearDay(2011, 91))(of(2011, 4, 1)) testDateTime(ofYearDay(2011, 120))(of(2011, 4, 30)) testDateTime(ofYearDay(2011, 121))(of(2011, 5, 1)) testDateTime(ofYearDay(2011, 151))(of(2011, 5, 31)) testDateTime(ofYearDay(2011, 152))(of(2011, 6, 1)) testDateTime(ofYearDay(2011, 181))(of(2011, 6, 30)) testDateTime(ofYearDay(2011, 182))(of(2011, 7, 1)) testDateTime(ofYearDay(2011, 212))(of(2011, 7, 31)) testDateTime(ofYearDay(2011, 213))(of(2011, 8, 1)) testDateTime(ofYearDay(2011, 243))(of(2011, 8, 31)) testDateTime(ofYearDay(2011, 244))(of(2011, 9, 1)) testDateTime(ofYearDay(2011, 273))(of(2011, 9, 30)) testDateTime(ofYearDay(2011, 274))(of(2011, 10, 1)) testDateTime(ofYearDay(2011, 304))(of(2011, 10, 31)) testDateTime(ofYearDay(2011, 305))(of(2011, 11, 1)) testDateTime(ofYearDay(2011, 334))(of(2011, 11, 30)) testDateTime(ofYearDay(2011, 335))(of(2011, 12, 1)) testDateTime(ofYearDay(2011, 365))(of(2011, 12, 31)) testDateTime(ofYearDay(2012, 1))(of(2012, 1, 1)) testDateTime(ofYearDay(2012, 31))(of(2012, 1, 31)) testDateTime(ofYearDay(2012, 32))(of(2012, 2, 1)) testDateTime(ofYearDay(2012, 60))(of(2012, 2, 29)) testDateTime(ofYearDay(2012, 61))(of(2012, 3, 1)) testDateTime(ofYearDay(2012, 91))(of(2012, 3, 31)) testDateTime(ofYearDay(2012, 92))(of(2012, 4, 1)) testDateTime(ofYearDay(2012, 121))(of(2012, 4, 30)) testDateTime(ofYearDay(2012, 122))(of(2012, 5, 1)) testDateTime(ofYearDay(2012, 152))(of(2012, 5, 31)) testDateTime(ofYearDay(2012, 153))(of(2012, 6, 1)) testDateTime(ofYearDay(2012, 182))(of(2012, 6, 30)) testDateTime(ofYearDay(2012, 183))(of(2012, 7, 1)) testDateTime(ofYearDay(2012, 213))(of(2012, 7, 31)) testDateTime(ofYearDay(2012, 214))(of(2012, 8, 1)) testDateTime(ofYearDay(2012, 244))(of(2012, 8, 31)) testDateTime(ofYearDay(2012, 245))(of(2012, 9, 1)) testDateTime(ofYearDay(2012, 274))(of(2012, 9, 30)) testDateTime(ofYearDay(2012, 275))(of(2012, 10, 1)) testDateTime(ofYearDay(2012, 305))(of(2012, 10, 31)) testDateTime(ofYearDay(2012, 306))(of(2012, 11, 1)) testDateTime(ofYearDay(2012, 335))(of(2012, 11, 30)) testDateTime(ofYearDay(2012, 336))(of(2012, 12, 1)) testDateTime(ofYearDay(2012, 366))(of(2012, 12, 31)) expectThrows(classOf[DateTimeException], ofYearDay(Int.MinValue, 1)) expectThrows(classOf[DateTimeException], ofYearDay(-1000000000, 1)) expectThrows(classOf[DateTimeException], ofYearDay(1000000000, 1)) expectThrows(classOf[DateTimeException], ofYearDay(Int.MaxValue, 1)) expectThrows(classOf[DateTimeException], ofYearDay(2011, Int.MinValue)) expectThrows(classOf[DateTimeException], ofYearDay(2011, 0)) expectThrows(classOf[DateTimeException], ofYearDay(2011, 366)) expectThrows(classOf[DateTimeException], ofYearDay(2012, 367)) expectThrows(classOf[DateTimeException], ofYearDay(2011, Int.MaxValue)) } @Test def test_ofEpochDay(): Unit = { testDateTime(ofEpochDay(-365243219162L))(MIN) testDateTime(ofEpochDay(-1))(of(1969, 12, 31)) testDateTime(ofEpochDay(0))(of(1970, 1, 1)) testDateTime(ofEpochDay(1))(of(1970, 1, 2)) testDateTime(ofEpochDay(365241780471L))(MAX) expectThrows(classOf[DateTimeException], ofEpochDay(Long.MinValue)) expectThrows(classOf[DateTimeException], ofEpochDay(-365243219163L)) expectThrows(classOf[DateTimeException], ofEpochDay(365241780472L)) expectThrows(classOf[DateTimeException], ofEpochDay(Long.MaxValue)) } @Test def test_from(): Unit = { for (d <- samples) testDateTime(from(d))(d) for (t <- Seq(LocalTime.MIN, LocalTime.NOON, LocalTime.MAX)) expectThrows(classOf[DateTimeException], from(t)) } @Test def test_parse(): Unit = { assertEquals(parse("-999999999-01-01"), MIN) assertEquals(parse("-0001-12-31"), of(-1, 12, 31)) assertEquals(parse("0000-01-01"), of(0, 1, 1)) assertEquals(parse("2011-02-28"), someDate) assertEquals(parse("2012-02-29"), leapDate) assertEquals(parse("9999-12-31"), of(9999, 12, 31)) assertEquals(parse("+10000-01-01"), of(10000, 1, 1)) assertEquals(parse("+999999999-12-31"), MAX) expectThrows(classOf[DateTimeParseException], parse("0000-01-99")) expectThrows(classOf[DateTimeParseException], parse("0000-01-900")) expectThrows(classOf[DateTimeParseException], parse("aaaa-01-30")) expectThrows(classOf[DateTimeParseException], parse("2012-13-30")) expectThrows(classOf[DateTimeParseException], parse("2012-01-34")) expectThrows(classOf[DateTimeParseException], parse("2005-02-29")) } }
sjrd/scala-js-java-time
testSuite/shared/src/test/scala/org/scalajs/testsuite/javalib/time/LocalDateTest.scala
Scala
bsd-3-clause
37,688
import sbt._ import Keys._ import play.Project._ object ApplicationBuild extends Build { val appName = "shorty" val appVersion = "1.0-SNAPSHOT" val appDependencies = Seq( // Add your project dependencies here, "postgresql" % "postgresql" % "9.1-901.jdbc4", jdbc, anorm, "org.scalatest" % "scalatest_2.10" % "1.9.1" % "test", "junit" % "junit" % "4.8.1" % "test" ) val main = play.Project(appName, appVersion, appDependencies).settings( // Add your own project settings here resolvers ++= Seq( DefaultMavenRepository, Resolver.url("Play", url("http://download.playframework.org/ivy-releases/"))(Resolver.ivyStylePatterns), "Typesafe Repository" at "http://repo.typesafe.com/typesave/releases/" )) }
Tigermelville/laughing-octo-nemesis
project/Build.scala
Scala
mit
783
/* * Copyright 2016 The BigDL Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.intel.analytics.bigdl.dllib.nn import org.scalatest.FlatSpec import com.intel.analytics.bigdl.dllib.tensor.Tensor import com.intel.analytics.bigdl.dllib.utils.LayerException import com.intel.analytics.bigdl.dllib.utils.serializer.ModuleSerializationTest import scala.util.Random @com.intel.analytics.bigdl.tags.Parallel class ReshapeSpec extends FlatSpec { "A Reshape Module " should "generate correct output and grad" in { val module = new Reshape[Double](Array(3, 2)) for (batchSize <- 1 to 4) { val input = Tensor[Double](batchSize, 1, 6) input.rand() val inputOrg = input.clone() val output = module.forward(input) val gradOutput = Tensor[Double](batchSize, 3, 2) gradOutput.rand() val gradOutputOrg = gradOutput.clone() val gradInput = module.backward(input, gradOutput) assert(output.nDimension() == 3) assert(output.size(1) == batchSize) assert(output.size(2) == 3) assert(output.size(3) == 2) assert(gradInput.isSameSizeAs(input)) for (i <- 1 to batchSize) { for (j <- 0 to 5) { assert(input(Array(i, 1, j + 1)) == output(Array(i, j / 2 + 1, j % 2 + 1))) assert(gradInput(Array(i, 1, j + 1)) == gradOutput(Array(i, j / 2 + 1, j % 2 + 1))) } } assert(input == inputOrg) assert(gradOutput == gradOutputOrg) } intercept[LayerException] { module.forward(Tensor[Double](2, 2)) } intercept[LayerException] { module.forward(Tensor[Double](3, 2, 2)) } } "A Reshape Module default batch" should "generate correct output and grad" in { val module = new Reshape[Double](Array(3, 2)) val input = Tensor[Double](2, 3) input.rand() val inputOrg = input.clone() val output = module.forward(input) val gradOutput = Tensor[Double](3, 2) gradOutput.rand() val gradOutputOrg = gradOutput.clone() val gradInput = module.backward(input, gradOutput) assert(output.nDimension() == 2) assert(output.size(1) == 3) assert(output.size(2) == 2) for (j <- 0 to 5) { assert(input(Array(j / 3 + 1, j % 3 + 1)) == output(Array(j / 2 + 1, j % 2 + 1))) assert(gradInput(Array(j / 3 + 1, j % 3 + 1)) == gradOutput(Array(j / 2 + 1, j % 2 + 1))) } assert(input == inputOrg) assert(gradOutput == gradOutputOrg) } "A Reshape Module disable batch" should "generate correct output and grad" in { val module = new Reshape[Double](Array(3, 2), Some(false)) val input = Tensor[Double](1, 2, 3) input.rand() val inputOrg = input.clone() val output = module.forward(input) val gradOutput = Tensor[Double](3, 2) gradOutput.rand() val gradOutputOrg = gradOutput.clone() val gradInput = module.backward(input, gradOutput) assert(output.nDimension() == 2) assert(output.size(1) == 3) assert(output.size(2) == 2) for (j <- 0 to 5) { assert(input(Array(1, j / 3 + 1, j % 3 + 1)) == output(Array(j / 2 + 1, j % 2 + 1))) assert(gradInput(Array(1, j / 3 + 1, j % 3 + 1)) == gradOutput(Array(j / 2 + 1, j % 2 + 1))) } assert(input == inputOrg) assert(gradOutput == gradOutputOrg) intercept[LayerException] { module.forward(Tensor[Double](2, 3, 2)) } } "A Reshape Module enable batch" should "generate correct output and grad" in { val module = new Reshape[Double](Array(3, 2), Some(true)) for (batchSize <- 1 to 4) { val input = Tensor[Double](batchSize, 1, 6) input.rand() val inputOrg = input.clone() val output = module.forward(input) val gradOutput = Tensor[Double](batchSize, 3, 2) gradOutput.rand() val gradOutputOrg = gradOutput.clone() val gradInput = module.backward(input, gradOutput) assert(output.nDimension() == 3) assert(output.size(1) == batchSize) assert(output.size(2) == 3) assert(output.size(3) == 2) assert(gradInput.isSameSizeAs(input)) for (i <- 1 to batchSize) { for (j <- 0 to 5) { assert(input(Array(i, 1, j + 1)) == output(Array(i, j / 2 + 1, j % 2 + 1))) assert(gradInput(Array(i, 1, j + 1)) == gradOutput(Array(i, j / 2 + 1, j % 2 + 1))) } } assert(input == inputOrg) assert(gradOutput == gradOutputOrg) } intercept[LayerException] { module.forward(Tensor[Double](3, 2)) } } } class ReshapeSerialTest extends ModuleSerializationTest { override def test(): Unit = { val reshape = Reshape[Float](Array(1, 4, 5)).setName("reshape") val input = Tensor[Float](2, 2, 5).apply1( _ => Random.nextFloat()) runSerializationTest(reshape, input) } }
intel-analytics/BigDL
scala/dllib/src/test/scala/com/intel/analytics/bigdl/dllib/nn/ReshapeSpec.scala
Scala
apache-2.0
5,284
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.execution.vectorized import java.nio.ByteBuffer import java.nio.ByteOrder import java.nio.charset.StandardCharsets import scala.collection.JavaConverters._ import scala.collection.mutable import scala.util.Random import org.apache.arrow.vector.IntVector import org.apache.spark.SparkFunSuite import org.apache.spark.memory.MemoryMode import org.apache.spark.sql.{RandomDataGenerator, Row} import org.apache.spark.sql.catalyst.InternalRow import org.apache.spark.sql.types._ import org.apache.spark.sql.util.ArrowUtils import org.apache.spark.sql.vectorized.{ArrowColumnVector, ColumnarBatch} import org.apache.spark.unsafe.Platform import org.apache.spark.unsafe.types.CalendarInterval class ColumnarBatchSuite extends SparkFunSuite { private def allocate(capacity: Int, dt: DataType, memMode: MemoryMode): WritableColumnVector = { if (memMode == MemoryMode.OFF_HEAP) { new OffHeapColumnVector(capacity, dt) } else { new OnHeapColumnVector(capacity, dt) } } private def testVector( name: String, size: Int, dt: DataType)( block: WritableColumnVector => Unit): Unit = { test(name) { Seq(MemoryMode.ON_HEAP, MemoryMode.OFF_HEAP).foreach { mode => val vector = allocate(size, dt, mode) try block(vector) finally { vector.close() } } } } testVector("Null APIs", 1024, IntegerType) { column => val reference = mutable.ArrayBuffer.empty[Boolean] var idx = 0 assert(!column.hasNull) assert(column.numNulls() == 0) column.appendNotNull() reference += false assert(!column.hasNull) assert(column.numNulls() == 0) column.appendNotNulls(3) (1 to 3).foreach(_ => reference += false) assert(!column.hasNull) assert(column.numNulls() == 0) column.appendNull() reference += true assert(column.hasNull) assert(column.numNulls() == 1) column.appendNulls(3) (1 to 3).foreach(_ => reference += true) assert(column.hasNull) assert(column.numNulls() == 4) idx = column.elementsAppended column.putNotNull(idx) reference += false idx += 1 assert(column.hasNull) assert(column.numNulls() == 4) column.putNull(idx) reference += true idx += 1 assert(column.hasNull) assert(column.numNulls() == 5) column.putNulls(idx, 3) reference += true reference += true reference += true idx += 3 assert(column.hasNull) assert(column.numNulls() == 8) column.putNotNulls(idx, 4) reference += false reference += false reference += false reference += false idx += 4 assert(column.hasNull) assert(column.numNulls() == 8) reference.zipWithIndex.foreach { v => assert(v._1 == column.isNullAt(v._2)) } } testVector("Byte APIs", 1024, ByteType) { column => val reference = mutable.ArrayBuffer.empty[Byte] var values = (10 :: 20 :: 30 :: 40 :: 50 :: Nil).map(_.toByte).toArray column.appendBytes(2, values, 0) reference += 10.toByte reference += 20.toByte column.appendBytes(3, values, 2) reference += 30.toByte reference += 40.toByte reference += 50.toByte column.appendBytes(6, 60.toByte) (1 to 6).foreach(_ => reference += 60.toByte) column.appendByte(70.toByte) reference += 70.toByte var idx = column.elementsAppended values = (1 :: 2 :: 3 :: 4 :: 5 :: Nil).map(_.toByte).toArray column.putBytes(idx, 2, values, 0) reference += 1 reference += 2 idx += 2 column.putBytes(idx, 3, values, 2) reference += 3 reference += 4 reference += 5 idx += 3 column.putByte(idx, 9) reference += 9 idx += 1 column.putBytes(idx, 3, 4) reference += 4 reference += 4 reference += 4 idx += 3 reference.zipWithIndex.foreach { v => assert(v._1 == column.getByte(v._2), "VectorType=" + column.getClass.getSimpleName) } } testVector("Short APIs", 1024, ShortType) { column => val seed = System.currentTimeMillis() val random = new Random(seed) val reference = mutable.ArrayBuffer.empty[Short] var values = (10 :: 20 :: 30 :: 40 :: 50 :: Nil).map(_.toShort).toArray column.appendShorts(2, values, 0) reference += 10.toShort reference += 20.toShort column.appendShorts(3, values, 2) reference += 30.toShort reference += 40.toShort reference += 50.toShort column.appendShorts(6, 60.toShort) (1 to 6).foreach(_ => reference += 60.toShort) column.appendShort(70.toShort) reference += 70.toShort var idx = column.elementsAppended values = (1 :: 2 :: 3 :: 4 :: 5 :: Nil).map(_.toShort).toArray column.putShorts(idx, 2, values, 0) reference += 1 reference += 2 idx += 2 column.putShorts(idx, 3, values, 2) reference += 3 reference += 4 reference += 5 idx += 3 column.putShort(idx, 9) reference += 9 idx += 1 column.putShorts(idx, 3, 4) reference += 4 reference += 4 reference += 4 idx += 3 while (idx < column.capacity) { val single = random.nextBoolean() if (single) { val v = random.nextInt().toShort column.putShort(idx, v) reference += v idx += 1 } else { val n = math.min(random.nextInt(column.capacity / 20), column.capacity - idx) val v = (n + 1).toShort column.putShorts(idx, n, v) var i = 0 while (i < n) { reference += v i += 1 } idx += n } } reference.zipWithIndex.foreach { v => assert(v._1 == column.getShort(v._2), "Seed = " + seed + " VectorType=" + column.getClass.getSimpleName) } } testVector("Int APIs", 1024, IntegerType) { column => val seed = System.currentTimeMillis() val random = new Random(seed) val reference = mutable.ArrayBuffer.empty[Int] var values = (10 :: 20 :: 30 :: 40 :: 50 :: Nil).toArray column.appendInts(2, values, 0) reference += 10 reference += 20 column.appendInts(3, values, 2) reference += 30 reference += 40 reference += 50 column.appendInts(6, 60) (1 to 6).foreach(_ => reference += 60) column.appendInt(70) reference += 70 var idx = column.elementsAppended values = (1 :: 2 :: 3 :: 4 :: 5 :: Nil).toArray column.putInts(idx, 2, values, 0) reference += 1 reference += 2 idx += 2 column.putInts(idx, 3, values, 2) reference += 3 reference += 4 reference += 5 idx += 3 val littleEndian = new Array[Byte](8) littleEndian(0) = 7 littleEndian(1) = 1 littleEndian(4) = 6 littleEndian(6) = 1 column.putIntsLittleEndian(idx, 1, littleEndian, 4) column.putIntsLittleEndian(idx + 1, 1, littleEndian, 0) reference += 6 + (1 << 16) reference += 7 + (1 << 8) idx += 2 column.putIntsLittleEndian(idx, 2, littleEndian, 0) reference += 7 + (1 << 8) reference += 6 + (1 << 16) idx += 2 while (idx < column.capacity) { val single = random.nextBoolean() if (single) { val v = random.nextInt() column.putInt(idx, v) reference += v idx += 1 } else { val n = math.min(random.nextInt(column.capacity / 20), column.capacity - idx) column.putInts(idx, n, n + 1) var i = 0 while (i < n) { reference += (n + 1) i += 1 } idx += n } } reference.zipWithIndex.foreach { v => assert(v._1 == column.getInt(v._2), "Seed = " + seed + " VectorType=" + column.getClass.getSimpleName) } } testVector("Long APIs", 1024, LongType) { column => val seed = System.currentTimeMillis() val random = new Random(seed) val reference = mutable.ArrayBuffer.empty[Long] var values = (10L :: 20L :: 30L :: 40L :: 50L :: Nil).toArray column.appendLongs(2, values, 0) reference += 10L reference += 20L column.appendLongs(3, values, 2) reference += 30L reference += 40L reference += 50L column.appendLongs(6, 60L) (1 to 6).foreach(_ => reference += 60L) column.appendLong(70L) reference += 70L var idx = column.elementsAppended values = (1L :: 2L :: 3L :: 4L :: 5L :: Nil).toArray column.putLongs(idx, 2, values, 0) reference += 1 reference += 2 idx += 2 column.putLongs(idx, 3, values, 2) reference += 3 reference += 4 reference += 5 idx += 3 val littleEndian = new Array[Byte](16) littleEndian(0) = 7 littleEndian(1) = 1 littleEndian(8) = 6 littleEndian(10) = 1 column.putLongsLittleEndian(idx, 1, littleEndian, 8) column.putLongsLittleEndian(idx + 1, 1, littleEndian, 0) reference += 6 + (1 << 16) reference += 7 + (1 << 8) idx += 2 column.putLongsLittleEndian(idx, 2, littleEndian, 0) reference += 7 + (1 << 8) reference += 6 + (1 << 16) idx += 2 while (idx < column.capacity) { val single = random.nextBoolean() if (single) { val v = random.nextLong() column.putLong(idx, v) reference += v idx += 1 } else { val n = math.min(random.nextInt(column.capacity / 20), column.capacity - idx) column.putLongs(idx, n, n + 1) var i = 0 while (i < n) { reference += (n + 1) i += 1 } idx += n } } reference.zipWithIndex.foreach { v => assert(v._1 == column.getLong(v._2), "idx=" + v._2 + " Seed = " + seed + " VectorType=" + column.getClass.getSimpleName) } } testVector("Float APIs", 1024, FloatType) { column => val seed = System.currentTimeMillis() val random = new Random(seed) val reference = mutable.ArrayBuffer.empty[Float] var values = (.1f :: .2f :: .3f :: .4f :: .5f :: Nil).toArray column.appendFloats(2, values, 0) reference += .1f reference += .2f column.appendFloats(3, values, 2) reference += .3f reference += .4f reference += .5f column.appendFloats(6, .6f) (1 to 6).foreach(_ => reference += .6f) column.appendFloat(.7f) reference += .7f var idx = column.elementsAppended values = (1.0f :: 2.0f :: 3.0f :: 4.0f :: 5.0f :: Nil).toArray column.putFloats(idx, 2, values, 0) reference += 1.0f reference += 2.0f idx += 2 column.putFloats(idx, 3, values, 2) reference += 3.0f reference += 4.0f reference += 5.0f idx += 3 val buffer = new Array[Byte](8) Platform.putFloat(buffer, Platform.BYTE_ARRAY_OFFSET, 2.234f) Platform.putFloat(buffer, Platform.BYTE_ARRAY_OFFSET + 4, 1.123f) if (ByteOrder.nativeOrder().equals(ByteOrder.BIG_ENDIAN)) { // Ensure array contains Little Endian floats val bb = ByteBuffer.wrap(buffer).order(ByteOrder.LITTLE_ENDIAN) Platform.putFloat(buffer, Platform.BYTE_ARRAY_OFFSET, bb.getFloat(0)) Platform.putFloat(buffer, Platform.BYTE_ARRAY_OFFSET + 4, bb.getFloat(4)) } column.putFloats(idx, 1, buffer, 4) column.putFloats(idx + 1, 1, buffer, 0) reference += 1.123f reference += 2.234f idx += 2 column.putFloats(idx, 2, buffer, 0) reference += 2.234f reference += 1.123f idx += 2 while (idx < column.capacity) { val single = random.nextBoolean() if (single) { val v = random.nextFloat() column.putFloat(idx, v) reference += v idx += 1 } else { val n = math.min(random.nextInt(column.capacity / 20), column.capacity - idx) val v = random.nextFloat() column.putFloats(idx, n, v) var i = 0 while (i < n) { reference += v i += 1 } idx += n } } reference.zipWithIndex.foreach { v => assert(v._1 == column.getFloat(v._2), "Seed = " + seed + " VectorType=" + column.getClass.getSimpleName) } } testVector("Double APIs", 1024, DoubleType) { column => val seed = System.currentTimeMillis() val random = new Random(seed) val reference = mutable.ArrayBuffer.empty[Double] var values = (.1 :: .2 :: .3 :: .4 :: .5 :: Nil).toArray column.appendDoubles(2, values, 0) reference += .1 reference += .2 column.appendDoubles(3, values, 2) reference += .3 reference += .4 reference += .5 column.appendDoubles(6, .6) (1 to 6).foreach(_ => reference += .6) column.appendDouble(.7) reference += .7 var idx = column.elementsAppended values = (1.0 :: 2.0 :: 3.0 :: 4.0 :: 5.0 :: Nil).toArray column.putDoubles(idx, 2, values, 0) reference += 1.0 reference += 2.0 idx += 2 column.putDoubles(idx, 3, values, 2) reference += 3.0 reference += 4.0 reference += 5.0 idx += 3 val buffer = new Array[Byte](16) Platform.putDouble(buffer, Platform.BYTE_ARRAY_OFFSET, 2.234) Platform.putDouble(buffer, Platform.BYTE_ARRAY_OFFSET + 8, 1.123) if (ByteOrder.nativeOrder().equals(ByteOrder.BIG_ENDIAN)) { // Ensure array contains Little Endian doubles val bb = ByteBuffer.wrap(buffer).order(ByteOrder.LITTLE_ENDIAN) Platform.putDouble(buffer, Platform.BYTE_ARRAY_OFFSET, bb.getDouble(0)) Platform.putDouble(buffer, Platform.BYTE_ARRAY_OFFSET + 8, bb.getDouble(8)) } column.putDoubles(idx, 1, buffer, 8) column.putDoubles(idx + 1, 1, buffer, 0) reference += 1.123 reference += 2.234 idx += 2 column.putDoubles(idx, 2, buffer, 0) reference += 2.234 reference += 1.123 idx += 2 while (idx < column.capacity) { val single = random.nextBoolean() if (single) { val v = random.nextDouble() column.putDouble(idx, v) reference += v idx += 1 } else { val n = math.min(random.nextInt(column.capacity / 20), column.capacity - idx) val v = random.nextDouble() column.putDoubles(idx, n, v) var i = 0 while (i < n) { reference += v i += 1 } idx += n } } reference.zipWithIndex.foreach { v => assert(v._1 == column.getDouble(v._2), "Seed = " + seed + " VectorType=" + column.getClass.getSimpleName) } } testVector("String APIs", 7, StringType) { column => val reference = mutable.ArrayBuffer.empty[String] assert(column.arrayData().elementsAppended == 0) val str = "string" column.appendByteArray(str.getBytes(StandardCharsets.UTF_8), 0, str.getBytes(StandardCharsets.UTF_8).length) reference += str assert(column.arrayData().elementsAppended == 6) var idx = column.elementsAppended val values = ("Hello" :: "abc" :: Nil).toArray column.putByteArray(idx, values(0).getBytes(StandardCharsets.UTF_8), 0, values(0).getBytes(StandardCharsets.UTF_8).length) reference += values(0) idx += 1 assert(column.arrayData().elementsAppended == 11) column.putByteArray(idx, values(1).getBytes(StandardCharsets.UTF_8), 0, values(1).getBytes(StandardCharsets.UTF_8).length) reference += values(1) idx += 1 assert(column.arrayData().elementsAppended == 14) // Just put llo val offset = column.putByteArray(idx, values(0).getBytes(StandardCharsets.UTF_8), 2, values(0).getBytes(StandardCharsets.UTF_8).length - 2) reference += "llo" idx += 1 assert(column.arrayData().elementsAppended == 17) // Put the same "ll" at offset. This should not allocate more memory in the column. column.putArray(idx, offset, 2) reference += "ll" idx += 1 assert(column.arrayData().elementsAppended == 17) // Put a long string val s = "abcdefghijklmnopqrstuvwxyz" column.putByteArray(idx, (s + s).getBytes(StandardCharsets.UTF_8)) reference += (s + s) idx += 1 assert(column.arrayData().elementsAppended == 17 + (s + s).length) column.putNull(idx) assert(column.getUTF8String(idx) == null) idx += 1 reference.zipWithIndex.foreach { v => val errMsg = "VectorType=" + column.getClass.getSimpleName assert(v._1.length == column.getArrayLength(v._2), errMsg) assert(v._1 == column.getUTF8String(v._2).toString, errMsg) } column.reset() assert(column.arrayData().elementsAppended == 0) } testVector("CalendarInterval APIs", 4, CalendarIntervalType) { column => val reference = mutable.ArrayBuffer.empty[CalendarInterval] val months = column.getChild(0) val microseconds = column.getChild(1) assert(months.dataType() == IntegerType) assert(microseconds.dataType() == LongType) months.putInt(0, 1) microseconds.putLong(0, 100) reference += new CalendarInterval(1, 100) months.putInt(1, 0) microseconds.putLong(1, 2000) reference += new CalendarInterval(0, 2000) column.putNull(2) assert(column.getInterval(2) == null) reference += null months.putInt(3, 20) microseconds.putLong(3, 0) reference += new CalendarInterval(20, 0) reference.zipWithIndex.foreach { case (v, i) => val errMsg = "VectorType=" + column.getClass.getSimpleName assert(v == column.getInterval(i), errMsg) if (v == null) assert(column.isNullAt(i), errMsg) } column.close() } testVector("Int Array", 10, new ArrayType(IntegerType, true)) { column => // Fill the underlying data with all the arrays back to back. val data = column.arrayData() var i = 0 while (i < 6) { data.putInt(i, i) i += 1 } // Populate it with arrays [0], [1, 2], null, [], [3, 4, 5] column.putArray(0, 0, 1) column.putArray(1, 1, 2) column.putNull(2) column.putArray(3, 3, 0) column.putArray(4, 3, 3) assert(column.getArray(0).numElements == 1) assert(column.getArray(1).numElements == 2) assert(column.isNullAt(2)) assert(column.getArray(2) == null) assert(column.getArray(3).numElements == 0) assert(column.getArray(4).numElements == 3) val a1 = ColumnVectorUtils.toJavaIntArray(column.getArray(0)) val a2 = ColumnVectorUtils.toJavaIntArray(column.getArray(1)) val a3 = ColumnVectorUtils.toJavaIntArray(column.getArray(3)) val a4 = ColumnVectorUtils.toJavaIntArray(column.getArray(4)) assert(a1 === Array(0)) assert(a2 === Array(1, 2)) assert(a3 === Array.empty[Int]) assert(a4 === Array(3, 4, 5)) // Verify the ArrayData get APIs assert(column.getArray(0).getInt(0) == 0) assert(column.getArray(1).getInt(0) == 1) assert(column.getArray(1).getInt(1) == 2) assert(column.getArray(4).getInt(0) == 3) assert(column.getArray(4).getInt(1) == 4) assert(column.getArray(4).getInt(2) == 5) // Add a longer array which requires resizing column.reset() val array = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) assert(data.capacity == 10) data.reserve(array.length) assert(data.capacity == array.length * 2) data.putInts(0, array.length, array, 0) column.putArray(0, 0, array.length) assert(ColumnVectorUtils.toJavaIntArray(column.getArray(0)) === array) } test("toArray for primitive types") { (MemoryMode.ON_HEAP :: MemoryMode.OFF_HEAP :: Nil).foreach { memMode => val len = 4 val columnBool = allocate(len, new ArrayType(BooleanType, false), memMode) val boolArray = Array(false, true, false, true) boolArray.zipWithIndex.foreach { case (v, i) => columnBool.arrayData.putBoolean(i, v) } columnBool.putArray(0, 0, len) assert(columnBool.getArray(0).toBooleanArray === boolArray) columnBool.close() val columnByte = allocate(len, new ArrayType(ByteType, false), memMode) val byteArray = Array[Byte](0, 1, 2, 3) byteArray.zipWithIndex.foreach { case (v, i) => columnByte.arrayData.putByte(i, v) } columnByte.putArray(0, 0, len) assert(columnByte.getArray(0).toByteArray === byteArray) columnByte.close() val columnShort = allocate(len, new ArrayType(ShortType, false), memMode) val shortArray = Array[Short](0, 1, 2, 3) shortArray.zipWithIndex.foreach { case (v, i) => columnShort.arrayData.putShort(i, v) } columnShort.putArray(0, 0, len) assert(columnShort.getArray(0).toShortArray === shortArray) columnShort.close() val columnInt = allocate(len, new ArrayType(IntegerType, false), memMode) val intArray = Array(0, 1, 2, 3) intArray.zipWithIndex.foreach { case (v, i) => columnInt.arrayData.putInt(i, v) } columnInt.putArray(0, 0, len) assert(columnInt.getArray(0).toIntArray === intArray) columnInt.close() val columnLong = allocate(len, new ArrayType(LongType, false), memMode) val longArray = Array[Long](0, 1, 2, 3) longArray.zipWithIndex.foreach { case (v, i) => columnLong.arrayData.putLong(i, v) } columnLong.putArray(0, 0, len) assert(columnLong.getArray(0).toLongArray === longArray) columnLong.close() val columnFloat = allocate(len, new ArrayType(FloatType, false), memMode) val floatArray = Array(0.0F, 1.1F, 2.2F, 3.3F) floatArray.zipWithIndex.foreach { case (v, i) => columnFloat.arrayData.putFloat(i, v) } columnFloat.putArray(0, 0, len) assert(columnFloat.getArray(0).toFloatArray === floatArray) columnFloat.close() val columnDouble = allocate(len, new ArrayType(DoubleType, false), memMode) val doubleArray = Array(0.0, 1.1, 2.2, 3.3) doubleArray.zipWithIndex.foreach { case (v, i) => columnDouble.arrayData.putDouble(i, v) } columnDouble.putArray(0, 0, len) assert(columnDouble.getArray(0).toDoubleArray === doubleArray) columnDouble.close() } } test("Int Map") { (MemoryMode.ON_HEAP :: MemoryMode.OFF_HEAP :: Nil).foreach { memMode => val column = allocate(10, new MapType(IntegerType, IntegerType, false), memMode) (0 to 1).foreach { colIndex => val data = column.getChild(colIndex) (0 to 5).foreach {i => data.putInt(i, i * (colIndex + 1)) } } // Populate it with maps [0->0], [1->2, 2->4], null, [], [3->6, 4->8, 5->10] column.putArray(0, 0, 1) column.putArray(1, 1, 2) column.putNull(2) assert(column.getMap(2) == null) column.putArray(3, 3, 0) column.putArray(4, 3, 3) assert(column.getMap(0).numElements == 1) assert(column.getMap(1).numElements == 2) assert(column.isNullAt(2)) assert(column.getMap(3).numElements == 0) assert(column.getMap(4).numElements == 3) val a1 = ColumnVectorUtils.toJavaIntMap(column.getMap(0)) val a2 = ColumnVectorUtils.toJavaIntMap(column.getMap(1)) val a4 = ColumnVectorUtils.toJavaIntMap(column.getMap(3)) val a5 = ColumnVectorUtils.toJavaIntMap(column.getMap(4)) assert(a1.asScala == Map(0 -> 0)) assert(a2.asScala == Map(1 -> 2, 2 -> 4)) assert(a4.asScala == Map()) assert(a5.asScala == Map(3 -> 6, 4 -> 8, 5 -> 10)) column.close() } } testVector( "Struct Column", 10, new StructType().add("int", IntegerType).add("double", DoubleType)) { column => val c1 = column.getChild(0) val c2 = column.getChild(1) assert(c1.dataType() == IntegerType) assert(c2.dataType() == DoubleType) c1.putInt(0, 123) c2.putDouble(0, 3.45) column.putNull(1) assert(column.getStruct(1) == null) c1.putInt(2, 456) c2.putDouble(2, 5.67) val s = column.getStruct(0) assert(s.getInt(0) == 123) assert(s.getDouble(1) == 3.45) assert(column.isNullAt(1)) assert(column.getStruct(1) == null) val s2 = column.getStruct(2) assert(s2.getInt(0) == 456) assert(s2.getDouble(1) == 5.67) } testVector("Nest Array in Array", 10, new ArrayType(new ArrayType(IntegerType, true), true)) { column => val childColumn = column.arrayData() val data = column.arrayData().arrayData() (0 until 6).foreach { case 3 => data.putNull(3) case i => data.putInt(i, i) } // Arrays in child column: [0], [1, 2], [], [null, 4, 5] childColumn.putArray(0, 0, 1) childColumn.putArray(1, 1, 2) childColumn.putArray(2, 2, 0) childColumn.putArray(3, 3, 3) // Arrays in column: [[0]], [[1, 2], []], [[], [null, 4, 5]], null column.putArray(0, 0, 1) column.putArray(1, 1, 2) column.putArray(2, 2, 2) column.putNull(3) assert(column.getArray(0).getArray(0).toIntArray() === Array(0)) assert(column.getArray(1).getArray(0).toIntArray() === Array(1, 2)) assert(column.getArray(1).getArray(1).toIntArray() === Array()) assert(column.getArray(2).getArray(0).toIntArray() === Array()) assert(column.getArray(2).getArray(1).isNullAt(0)) assert(column.getArray(2).getArray(1).getInt(1) === 4) assert(column.getArray(2).getArray(1).getInt(2) === 5) assert(column.isNullAt(3)) } private val structType: StructType = new StructType().add("i", IntegerType).add("l", LongType) testVector( "Nest Struct in Array", 10, new ArrayType(structType, true)) { column => val data = column.arrayData() val c0 = data.getChild(0) val c1 = data.getChild(1) // Structs in child column: (0, 0), (1, 10), (2, 20), (3, 30), (4, 40), (5, 50) (0 until 6).foreach { i => c0.putInt(i, i) c1.putLong(i, i * 10) } // Arrays in column: [(0, 0), (1, 10)], [(1, 10), (2, 20), (3, 30)], // [(4, 40), (5, 50)] column.putArray(0, 0, 2) column.putArray(1, 1, 3) column.putArray(2, 4, 2) assert(column.getArray(0).getStruct(0, 2).toSeq(structType) === Seq(0, 0)) assert(column.getArray(0).getStruct(1, 2).toSeq(structType) === Seq(1, 10)) assert(column.getArray(1).getStruct(0, 2).toSeq(structType) === Seq(1, 10)) assert(column.getArray(1).getStruct(1, 2).toSeq(structType) === Seq(2, 20)) assert(column.getArray(1).getStruct(2, 2).toSeq(structType) === Seq(3, 30)) assert(column.getArray(2).getStruct(0, 2).toSeq(structType) === Seq(4, 40)) assert(column.getArray(2).getStruct(1, 2).toSeq(structType) === Seq(5, 50)) } testVector( "Nest Array in Struct", 10, new StructType() .add("int", IntegerType) .add("array", new ArrayType(IntegerType, true))) { column => val c0 = column.getChild(0) val c1 = column.getChild(1) c0.putInt(0, 0) c0.putInt(1, 1) c0.putInt(2, 2) val c1Child = c1.arrayData() (0 until 6).foreach { i => c1Child.putInt(i, i) } // Arrays in c1: [0, 1], [2], [3, 4, 5] c1.putArray(0, 0, 2) c1.putArray(1, 2, 1) c1.putArray(2, 3, 3) assert(column.getStruct(0).getInt(0) === 0) assert(column.getStruct(0).getArray(1).toIntArray() === Array(0, 1)) assert(column.getStruct(1).getInt(0) === 1) assert(column.getStruct(1).getArray(1).toIntArray() === Array(2)) assert(column.getStruct(2).getInt(0) === 2) assert(column.getStruct(2).getArray(1).toIntArray() === Array(3, 4, 5)) } private val subSchema: StructType = new StructType() .add("int", IntegerType) .add("int", IntegerType) testVector( "Nest Struct in Struct", 10, new StructType().add("int", IntegerType).add("struct", subSchema)) { column => val c0 = column.getChild(0) val c1 = column.getChild(1) c0.putInt(0, 0) c0.putInt(1, 1) c0.putInt(2, 2) val c1c0 = c1.getChild(0) val c1c1 = c1.getChild(1) // Structs in c1: (7, 70), (8, 80), (9, 90) c1c0.putInt(0, 7) c1c0.putInt(1, 8) c1c0.putInt(2, 9) c1c1.putInt(0, 70) c1c1.putInt(1, 80) c1c1.putInt(2, 90) assert(column.getStruct(0).getInt(0) === 0) assert(column.getStruct(0).getStruct(1, 2).toSeq(subSchema) === Seq(7, 70)) assert(column.getStruct(1).getInt(0) === 1) assert(column.getStruct(1).getStruct(1, 2).toSeq(subSchema) === Seq(8, 80)) assert(column.getStruct(2).getInt(0) === 2) assert(column.getStruct(2).getStruct(1, 2).toSeq(subSchema) === Seq(9, 90)) } test("ColumnarBatch basic") { (MemoryMode.ON_HEAP :: MemoryMode.OFF_HEAP :: Nil).foreach { memMode => { val schema = new StructType() .add("intCol", IntegerType) .add("doubleCol", DoubleType) .add("intCol2", IntegerType) .add("string", BinaryType) val capacity = 4 * 1024 val columns = schema.fields.map { field => allocate(capacity, field.dataType, memMode) } val batch = new ColumnarBatch(columns.toArray) assert(batch.numCols() == 4) assert(batch.numRows() == 0) assert(batch.rowIterator().hasNext == false) // Add a row [1, 1.1, NULL] columns(0).putInt(0, 1) columns(1).putDouble(0, 1.1) columns(2).putNull(0) columns(3).putByteArray(0, "Hello".getBytes(StandardCharsets.UTF_8)) batch.setNumRows(1) // Verify the results of the row. assert(batch.numCols() == 4) assert(batch.numRows() == 1) assert(batch.rowIterator().hasNext) assert(batch.rowIterator().hasNext) assert(columns(0).getInt(0) == 1) assert(columns(0).isNullAt(0) == false) assert(columns(1).getDouble(0) == 1.1) assert(columns(1).isNullAt(0) == false) assert(columns(2).isNullAt(0)) assert(columns(3).getUTF8String(0).toString == "Hello") // Verify the iterator works correctly. val it = batch.rowIterator() assert(it.hasNext()) val row = it.next() assert(row.getInt(0) == 1) assert(row.isNullAt(0) == false) assert(row.getDouble(1) == 1.1) assert(row.isNullAt(1) == false) assert(row.isNullAt(2)) assert(columns(3).getUTF8String(0).toString == "Hello") assert(it.hasNext == false) assert(it.hasNext == false) // Reset and add 3 rows columns.foreach(_.reset()) // Add rows [NULL, 2.2, 2, "abc"], [3, NULL, 3, ""], [4, 4.4, 4, "world] columns(0).putNull(0) columns(1).putDouble(0, 2.2) columns(2).putInt(0, 2) columns(3).putByteArray(0, "abc".getBytes(StandardCharsets.UTF_8)) columns(0).putInt(1, 3) columns(1).putNull(1) columns(2).putInt(1, 3) columns(3).putByteArray(1, "".getBytes(StandardCharsets.UTF_8)) columns(0).putInt(2, 4) columns(1).putDouble(2, 4.4) columns(2).putInt(2, 4) columns(3).putByteArray(2, "world".getBytes(StandardCharsets.UTF_8)) batch.setNumRows(3) def rowEquals(x: InternalRow, y: Row): Unit = { assert(x.isNullAt(0) == y.isNullAt(0)) if (!x.isNullAt(0)) assert(x.getInt(0) == y.getInt(0)) assert(x.isNullAt(1) == y.isNullAt(1)) if (!x.isNullAt(1)) assert(x.getDouble(1) == y.getDouble(1)) assert(x.isNullAt(2) == y.isNullAt(2)) if (!x.isNullAt(2)) assert(x.getInt(2) == y.getInt(2)) assert(x.isNullAt(3) == y.isNullAt(3)) if (!x.isNullAt(3)) assert(x.getString(3) == y.getString(3)) } // Verify assert(batch.numRows() == 3) val it2 = batch.rowIterator() rowEquals(it2.next(), Row(null, 2.2, 2, "abc")) rowEquals(it2.next(), Row(3, null, 3, "")) rowEquals(it2.next(), Row(4, 4.4, 4, "world")) assert(!it.hasNext) batch.close() }} } private def doubleEquals(d1: Double, d2: Double): Boolean = { if (d1.isNaN && d2.isNaN) { true } else { d1 == d2 } } private def compareStruct(fields: Seq[StructField], r1: InternalRow, r2: Row, seed: Long) { fields.zipWithIndex.foreach { case (field: StructField, ordinal: Int) => assert(r1.isNullAt(ordinal) == r2.isNullAt(ordinal), "Seed = " + seed) if (!r1.isNullAt(ordinal)) { field.dataType match { case BooleanType => assert(r1.getBoolean(ordinal) == r2.getBoolean(ordinal), "Seed = " + seed) case ByteType => assert(r1.getByte(ordinal) == r2.getByte(ordinal), "Seed = " + seed) case ShortType => assert(r1.getShort(ordinal) == r2.getShort(ordinal), "Seed = " + seed) case IntegerType => assert(r1.getInt(ordinal) == r2.getInt(ordinal), "Seed = " + seed) case LongType => assert(r1.getLong(ordinal) == r2.getLong(ordinal), "Seed = " + seed) case FloatType => assert(doubleEquals(r1.getFloat(ordinal), r2.getFloat(ordinal)), "Seed = " + seed) case DoubleType => assert(doubleEquals(r1.getDouble(ordinal), r2.getDouble(ordinal)), "Seed = " + seed) case t: DecimalType => val d1 = r1.getDecimal(ordinal, t.precision, t.scale).toBigDecimal val d2 = r2.getDecimal(ordinal) assert(d1.compare(d2) == 0, "Seed = " + seed) case StringType => assert(r1.getString(ordinal) == r2.getString(ordinal), "Seed = " + seed) case CalendarIntervalType => assert(r1.getInterval(ordinal) === r2.get(ordinal).asInstanceOf[CalendarInterval]) case ArrayType(childType, n) => val a1 = r1.getArray(ordinal).array val a2 = r2.getList(ordinal).toArray assert(a1.length == a2.length, "Seed = " + seed) childType match { case DoubleType => var i = 0 while (i < a1.length) { assert(doubleEquals(a1(i).asInstanceOf[Double], a2(i).asInstanceOf[Double]), "Seed = " + seed) i += 1 } case FloatType => var i = 0 while (i < a1.length) { assert(doubleEquals(a1(i).asInstanceOf[Float], a2(i).asInstanceOf[Float]), "Seed = " + seed) i += 1 } case t: DecimalType => var i = 0 while (i < a1.length) { assert((a1(i) == null) == (a2(i) == null), "Seed = " + seed) if (a1(i) != null) { val d1 = a1(i).asInstanceOf[Decimal].toBigDecimal val d2 = a2(i).asInstanceOf[java.math.BigDecimal] assert(d1.compare(d2) == 0, "Seed = " + seed) } i += 1 } case _ => assert(a1 === a2, "Seed = " + seed) } case StructType(childFields) => compareStruct(childFields, r1.getStruct(ordinal, fields.length), r2.getStruct(ordinal), seed) case _ => throw new UnsupportedOperationException("Not implemented " + field.dataType) } } } } test("Convert rows") { (MemoryMode.ON_HEAP :: MemoryMode.OFF_HEAP :: Nil).foreach { memMode => { val rows = Row(1, 2L, "a", 1.2, 'b'.toByte) :: Row(4, 5L, "cd", 2.3, 'a'.toByte) :: Nil val schema = new StructType() .add("i1", IntegerType) .add("l2", LongType) .add("string", StringType) .add("d", DoubleType) .add("b", ByteType) val batch = ColumnVectorUtils.toBatch(schema, memMode, rows.iterator.asJava) assert(batch.numRows() == 2) assert(batch.numCols() == 5) val it = batch.rowIterator() val referenceIt = rows.iterator while (it.hasNext) { compareStruct(schema, it.next(), referenceIt.next(), 0) } batch.close() } }} /** * This test generates a random schema data, serializes it to column batches and verifies the * results. */ def testRandomRows(flatSchema: Boolean, numFields: Int) { // TODO: Figure out why StringType doesn't work on jenkins. val types = Array( BooleanType, ByteType, FloatType, DoubleType, IntegerType, LongType, ShortType, DecimalType.ShortDecimal, DecimalType.IntDecimal, DecimalType.ByteDecimal, DecimalType.FloatDecimal, DecimalType.LongDecimal, new DecimalType(5, 2), new DecimalType(12, 2), new DecimalType(30, 10), CalendarIntervalType) val seed = System.nanoTime() val NUM_ROWS = 200 val NUM_ITERS = 1000 val random = new Random(seed) var i = 0 while (i < NUM_ITERS) { val schema = if (flatSchema) { RandomDataGenerator.randomSchema(random, numFields, types) } else { RandomDataGenerator.randomNestedSchema(random, numFields, types) } val rows = mutable.ArrayBuffer.empty[Row] var j = 0 while (j < NUM_ROWS) { val row = RandomDataGenerator.randomRow(random, schema) rows += row j += 1 } (MemoryMode.ON_HEAP :: MemoryMode.OFF_HEAP :: Nil).foreach { memMode => { val batch = ColumnVectorUtils.toBatch(schema, memMode, rows.iterator.asJava) assert(batch.numRows() == NUM_ROWS) val it = batch.rowIterator() val referenceIt = rows.iterator var k = 0 while (it.hasNext) { compareStruct(schema, it.next(), referenceIt.next(), seed) k += 1 } batch.close() }} i += 1 } } test("Random flat schema") { testRandomRows(true, 15) } test("Random nested schema") { testRandomRows(false, 30) } test("exceeding maximum capacity should throw an error") { (MemoryMode.ON_HEAP :: MemoryMode.OFF_HEAP :: Nil).foreach { memMode => val column = allocate(1, ByteType, memMode) column.MAX_CAPACITY = 15 column.appendBytes(5, 0.toByte) // Successfully allocate twice the requested capacity assert(column.capacity == 10) column.appendBytes(10, 0.toByte) // Allocated capacity doesn't exceed MAX_CAPACITY assert(column.capacity == 15) val ex = intercept[RuntimeException] { // Over-allocating beyond MAX_CAPACITY throws an exception column.appendBytes(10, 0.toByte) } assert(ex.getMessage.contains(s"Cannot reserve additional contiguous bytes in the " + s"vectorized reader")) } } test("create columnar batch from Arrow column vectors") { val allocator = ArrowUtils.rootAllocator.newChildAllocator("int", 0, Long.MaxValue) val vector1 = ArrowUtils.toArrowField("int1", IntegerType, nullable = true, null) .createVector(allocator).asInstanceOf[IntVector] vector1.allocateNew() val vector2 = ArrowUtils.toArrowField("int2", IntegerType, nullable = true, null) .createVector(allocator).asInstanceOf[IntVector] vector2.allocateNew() (0 until 10).foreach { i => vector1.setSafe(i, i) vector2.setSafe(i + 1, i) } vector1.setNull(10) vector1.setValueCount(11) vector2.setNull(0) vector2.setValueCount(11) val columnVectors = Seq(new ArrowColumnVector(vector1), new ArrowColumnVector(vector2)) val schema = StructType(Seq(StructField("int1", IntegerType), StructField("int2", IntegerType))) val batch = new ColumnarBatch(columnVectors.toArray) batch.setNumRows(11) assert(batch.numCols() == 2) assert(batch.numRows() == 11) val rowIter = batch.rowIterator().asScala rowIter.zipWithIndex.foreach { case (row, i) => if (i == 10) { assert(row.isNullAt(0)) } else { assert(row.getInt(0) == i) } if (i == 0) { assert(row.isNullAt(1)) } else { assert(row.getInt(1) == i - 1) } } batch.close() allocator.close() } testVector("Decimal API", 4, DecimalType.IntDecimal) { column => val reference = mutable.ArrayBuffer.empty[Decimal] var idx = 0 column.putDecimal(idx, new Decimal().set(10), 10) reference += new Decimal().set(10) idx += 1 column.putDecimal(idx, new Decimal().set(20), 10) reference += new Decimal().set(20) idx += 1 column.putNull(idx) assert(column.getDecimal(idx, 10, 0) == null) reference += null idx += 1 column.putDecimal(idx, new Decimal().set(30), 10) reference += new Decimal().set(30) reference.zipWithIndex.foreach { case (v, i) => val errMsg = "VectorType=" + column.getClass.getSimpleName assert(v == column.getDecimal(i, 10, 0), errMsg) if (v == null) assert(column.isNullAt(i), errMsg) } column.close() } testVector("Binary APIs", 4, BinaryType) { column => val reference = mutable.ArrayBuffer.empty[String] var idx = 0 column.putByteArray(idx, "Hello".getBytes(StandardCharsets.UTF_8)) reference += "Hello" idx += 1 column.putByteArray(idx, "World".getBytes(StandardCharsets.UTF_8)) reference += "World" idx += 1 column.putNull(idx) reference += null idx += 1 column.putByteArray(idx, "abc".getBytes(StandardCharsets.UTF_8)) reference += "abc" reference.zipWithIndex.foreach { case (v, i) => val errMsg = "VectorType=" + column.getClass.getSimpleName if (v != null) { assert(v == new String(column.getBinary(i)), errMsg) } else { assert(column.isNullAt(i), errMsg) assert(column.getBinary(i) == null, errMsg) } } column.close() } testVector("WritableColumnVector.reserve(): requested capacity is negative", 1024, ByteType) { column => val ex = intercept[RuntimeException] { column.reserve(-1) } assert(ex.getMessage.contains( "Cannot reserve additional contiguous bytes in the vectorized reader (integer overflow)")) } }
aosagie/spark
sql/core/src/test/scala/org/apache/spark/sql/execution/vectorized/ColumnarBatchSuite.scala
Scala
apache-2.0
43,456
package com.twitter.finagle.buoyant.h2 package netty4 import com.twitter.logging.Logger import io.netty.buffer.ByteBuf import io.netty.channel._ import io.netty.handler.codec.http.{HttpServerCodec, HttpServerUpgradeHandler} import io.netty.handler.codec.http2._ import io.netty.util.AsciiString object ServerUpgradeHandler { private val log = Logger.get("h2") private val PrefaceBuf = Http2CodecUtil.connectionPrefaceBuf private val PrefaceLen = PrefaceBuf.readableBytes private def isPreface(bb: ByteBuf) = (bb.readableBytes >= PrefaceLen && bb.slice(0, PrefaceLen).equals(PrefaceBuf)) private def isH2C(proto: CharSequence): Boolean = AsciiString.contentEquals(Http2CodecUtil.HTTP_UPGRADE_PROTOCOL_NAME, proto) } /** * Accept either H2C requests (beginning with a Connection preface) * or HTTP requests with h2c protocol upgrading. */ class ServerUpgradeHandler(h2Framer: H2FrameCodec) extends ChannelDuplexHandler { import ServerUpgradeHandler._ // Parses HTTP/1 objects. private[this] val h1Codec = new HttpServerCodec // Intercepts HTTP/1 requests with the HTTP2-Settings headers and // initiate protocol upgrade. private[this] val upgrader = new HttpServerUpgradeHandler(h1Codec, new HttpServerUpgradeHandler.UpgradeCodecFactory { override def newUpgradeCodec(proto: CharSequence): HttpServerUpgradeHandler.UpgradeCodec = if (isH2C(proto)) new Http2FrameCodecServerUpgrader(h2Framer) else null }) /** * Detect the HTTP2 connection preface to support Prior Knowledge * HTTP2 (i.e. gRPC). If that doesn't exist try to upgrade from HTTP/1. */ override def channelRead(ctx: ChannelHandlerContext, obj: Any): Unit = { obj match { case bb: ByteBuf if isPreface(bb) => // If the connection starts with the magical prior-knowledge // preface, just assume we're speaking plain h2c. ctx.pipeline.addAfter(ctx.name, "h2 framer", h2Framer) case bb: ByteBuf => // Otherwise, Upgrade from h1 to h2 ctx.pipeline.addAfter(ctx.name, "h1 codec", h1Codec) ctx.pipeline.addAfter("h1 codec", "h1 upgrade h2", upgrader) // TODO silently translate native h1 to h2 case _ => // Fall through and pass on the read. } // Stop trying to upgrade the protocol. ctx.pipeline.remove(this) log.debug("h2 server pipeline: installing framer: %s", ctx.pipeline) // Pass it on. ctx.fireChannelRead(obj); () } }
linkerd/linkerd
finagle/h2/src/main/scala/com/twitter/finagle/buoyant/h2/netty4/ServerUpgradeHandler.scala
Scala
apache-2.0
2,476
package edu.utsa.tl13 import edu.utsa.tl13._ import UnitTest._ import ParseTests._ import ScanTests._ /** All compiler unit tests */ object CompilerTests extends App { val tests = TestGroup("Compiler", ParseTests.tests, ScanTests.tests) simpleReport(tests.run) }
jwtouron/tl13
src/edu/utsa/tl13/CompilerTests.scala
Scala
mit
304
/* * Skylark * http://skylark.io * * Copyright 2012-2017 Quantarray, LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.quantarray.skylark.measure /** * Any measure converter. * * @author Araik Grigoryan */ trait AnyMeasureConverter extends SameTypeConverter[AnyMeasure] { protected override def convert(from: AnyMeasure, to: AnyMeasure): Option[Double] = { if (from == to) { Some(1.0) } else { (from.ultimateBase, to.ultimateBase) match { case (Some(f), Some(t)) if from.system == to.system && f._1 == t._1 => Some(f._2 / t._2) case _ => super.convert(from, to) } } } }
quantarray/skylark
skylark-measure/src/main/scala/com/quantarray/skylark/measure/AnyMeasureConverter.scala
Scala
apache-2.0
1,183
package physical.flow class FlowPolygonContainer(polygon: FlowPolygon, index: Int) { }
shawes/zissou
src/main/scala/physical/flow/FlowPolygonContainer.scala
Scala
mit
89
/* * Copyright 2001-2013 Artima, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.scalatest import org.scalactic.Equality import org.scalactic.Uniformity import org.scalactic.Entry import org.scalactic.StringNormalizations._ import SharedHelpers._ import FailureMessages.decorateToStringValue import Matchers._ import exceptions.TestFailedException class ListShouldContainAllOfLogicalOrSpec extends Spec { val invertedStringEquality = new Equality[String] { def areEqual(a: String, b: Any): Boolean = a != b } val invertedListOfStringEquality = new Equality[List[String]] { def areEqual(a: List[String], b: Any): Boolean = a != b } private def upperCase(value: Any): Any = value match { case l: List[_] => l.map(upperCase(_)) case s: String => s.toUpperCase case c: Char => c.toString.toUpperCase.charAt(0) case (s1: String, s2: String) => (s1.toUpperCase, s2.toUpperCase) case e: java.util.Map.Entry[_, _] => (e.getKey, e.getValue) match { case (k: String, v: String) => Entry(k.toUpperCase, v.toUpperCase) case _ => value } case _ => value } val upperCaseStringEquality = new Equality[String] { def areEqual(a: String, b: Any): Boolean = upperCase(a) == upperCase(b) } //ADDITIONAL// val fileName: String = "ListShouldContainAllOfLogicalOrSpec.scala" object `a List` { val fumList: List[String] = List("fex", "fum", "foe", "fie", "fee") val toList: List[String] = List("too", "you", "to", "birthday", "happy") object `when used with (contain allOf (..) or contain allOf (..))` { def `should do nothing if valid, else throw a TFE with an appropriate error message` { fumList should (contain allOf ("fee", "fie", "foe", "fum") or contain allOf ("fie", "fee", "fum", "foe")) fumList should (contain allOf ("fee", "fie", "foe", "fam") or contain allOf ("fie", "fee", "fum", "foe")) fumList should (contain allOf ("fee", "fie", "foe", "fum") or contain allOf ("fie", "fee", "fam", "foe")) val e1 = intercept[TestFailedException] { fumList should (contain allOf ("fee", "fie", "foe", "fam") or contain allOf ("happy", "birthday", "to", "you")) } checkMessageStackDepth(e1, Resources.didNotContainAllOfElements(decorateToStringValue(fumList), "\"fee\", \"fie\", \"foe\", \"fam\"") + ", and " + Resources.didNotContainAllOfElements(decorateToStringValue(fumList), "\"happy\", \"birthday\", \"to\", \"you\""), fileName, thisLineNumber - 2) } def `should use the implicit Equality in scope` { implicit val ise = upperCaseStringEquality fumList should (contain allOf ("FEE", "FIE", "FOE", "FUM") or contain allOf ("FIE", "FEE", "FUM", "FOE")) fumList should (contain allOf ("FEE", "FIE", "FOE", "FAM") or contain allOf ("FIE", "FEE", "FUM", "FOE")) fumList should (contain allOf ("FEE", "FIE", "FOE", "FUM") or contain allOf ("FIE", "FEE", "FAM", "FOE")) val e1 = intercept[TestFailedException] { fumList should (contain allOf ("FEE", "FIE", "FOE", "FAM") or (contain allOf ("FIE", "FEE", "FAM", "FOE"))) } checkMessageStackDepth(e1, Resources.didNotContainAllOfElements(decorateToStringValue(fumList), "\"FEE\", \"FIE\", \"FOE\", \"FAM\"") + ", and " + Resources.didNotContainAllOfElements(decorateToStringValue(fumList), "\"FIE\", \"FEE\", \"FAM\", \"FOE\""), fileName, thisLineNumber - 2) } def `should use an explicitly provided Equality` { (fumList should (contain allOf ("FEE", "FIE", "FOE", "FUM") or contain allOf ("FIE", "FEE", "FUM", "FOE"))) (decided by upperCaseStringEquality, decided by upperCaseStringEquality) (fumList should (contain allOf ("FEE", "FIE", "FOE", "FAM") or contain allOf ("FIE", "FEE", "FUM", "FOE"))) (decided by upperCaseStringEquality, decided by upperCaseStringEquality) (fumList should (contain allOf ("FEE", "FIE", "FOE", "FUM") or contain allOf ("FIE", "FEE", "FAM", "FOE"))) (decided by upperCaseStringEquality, decided by upperCaseStringEquality) val e1 = intercept[TestFailedException] { (fumList should (contain allOf ("FEE", "FIE", "FOE", "FAM") or contain allOf ("FIE", "FEE", "FAM", "FOE"))) (decided by upperCaseStringEquality, decided by upperCaseStringEquality) } checkMessageStackDepth(e1, Resources.didNotContainAllOfElements(decorateToStringValue(fumList), "\"FEE\", \"FIE\", \"FOE\", \"FAM\"") + ", and " + Resources.didNotContainAllOfElements(decorateToStringValue(fumList), "\"FIE\", \"FEE\", \"FAM\", \"FOE\""), fileName, thisLineNumber - 2) (fumList should (contain allOf (" FEE ", " FIE ", " FOE ", " FUM ") or contain allOf (" FEE ", " FIE ", " FOE ", " FUM "))) (after being lowerCased and trimmed, after being lowerCased and trimmed) } def `should throw NotAllowedException with correct stack depth and message when RHS contain duplicated value` { val e1 = intercept[exceptions.NotAllowedException] { fumList should (contain allOf ("fee", "fie", "foe", "fie", "fum") or contain allOf ("fie", "fee", "fum", "foe")) } e1.failedCodeFileName.get should be (fileName) e1.failedCodeLineNumber.get should be (thisLineNumber - 3) e1.message should be (Some(Resources.allOfDuplicate)) val e2 = intercept[exceptions.NotAllowedException] { fumList should (contain allOf ("fie", "fee", "fum", "foe") or contain allOf ("fee", "fie", "foe", "fie", "fum")) } e2.failedCodeFileName.get should be (fileName) e2.failedCodeLineNumber.get should be (thisLineNumber - 3) e2.message should be (Some(Resources.allOfDuplicate)) } } object `when used with (equal (..) and contain allOf (..))` { def `should do nothing if valid, else throw a TFE with an appropriate error message` { fumList should (equal (fumList) or contain allOf ("fie", "fee", "fum", "foe")) fumList should (equal (toList) or contain allOf ("fie", "fee", "fum", "foe")) fumList should (equal (fumList) or contain allOf ("fie", "fee", "fam", "foe")) val e1 = intercept[TestFailedException] { fumList should (equal (toList) or contain allOf ("happy", "birthday", "to", "you")) } checkMessageStackDepth(e1, Resources.didNotEqual(decorateToStringValue(fumList), decorateToStringValue(toList)) + ", and " + Resources.didNotContainAllOfElements(decorateToStringValue(fumList), "\"happy\", \"birthday\", \"to\", \"you\""), fileName, thisLineNumber - 2) } def `should use the implicit Equality in scope` { implicit val ise = upperCaseStringEquality fumList should (equal (fumList) or contain allOf ("FIE", "FEE", "FUM", "FOE")) fumList should (equal (toList) or contain allOf ("FIE", "FEE", "FUM", "FOE")) fumList should (equal (fumList) or contain allOf ("FIE", "FEE", "FAM", "FOE")) val e1 = intercept[TestFailedException] { fumList should (equal (toList) or (contain allOf ("FIE", "FEE", "FAM", "FOE"))) } checkMessageStackDepth(e1, Resources.didNotEqual(decorateToStringValue(fumList), decorateToStringValue(toList)) + ", and " + Resources.didNotContainAllOfElements(decorateToStringValue(fumList), "\"FIE\", \"FEE\", \"FAM\", \"FOE\""), fileName, thisLineNumber - 2) } def `should use an explicitly provided Equality` { (fumList should (equal (toList) or contain allOf ("FIE", "FEE", "FUM", "FOE"))) (decided by invertedListOfStringEquality, decided by upperCaseStringEquality) (fumList should (equal (fumList) or contain allOf ("FIE", "FEE", "FUM", "FOE"))) (decided by invertedListOfStringEquality, decided by upperCaseStringEquality) (fumList should (equal (toList) or contain allOf ("FIE", "FEE", "FAM", "FOE"))) (decided by invertedListOfStringEquality, decided by upperCaseStringEquality) val e1 = intercept[TestFailedException] { (fumList should (equal (fumList) or contain allOf ("FIE", "FEE", "FAM", "FOE"))) (decided by invertedListOfStringEquality, decided by upperCaseStringEquality) } checkMessageStackDepth(e1, Resources.didNotEqual(decorateToStringValue(fumList), decorateToStringValue(fumList)) + ", and " + Resources.didNotContainAllOfElements(decorateToStringValue(fumList), "\"FIE\", \"FEE\", \"FAM\", \"FOE\""), fileName, thisLineNumber - 2) (fumList should (equal (toList) or contain allOf (" FEE ", " FIE ", " FOE ", " FUM "))) (decided by invertedListOfStringEquality, after being lowerCased and trimmed) } def `should throw NotAllowedException with correct stack depth and message when RHS contain duplicated value` { val e1 = intercept[exceptions.NotAllowedException] { fumList should (equal (fumList) or contain allOf ("fee", "fie", "foe", "fie", "fum")) } e1.failedCodeFileName.get should be (fileName) e1.failedCodeLineNumber.get should be (thisLineNumber - 3) e1.message should be (Some(Resources.allOfDuplicate)) } } object `when used with (be (..) and contain allOf (..))` { def `should do nothing if valid, else throw a TFE with an appropriate error message` { fumList should (be_== (fumList) or contain allOf ("fie", "fee", "fum", "foe")) fumList should (be_== (toList) or contain allOf ("fie", "fee", "fum", "foe")) fumList should (be_== (fumList) or contain allOf ("fie", "fee", "fam", "foe")) val e1 = intercept[TestFailedException] { fumList should (be_== (toList) or contain allOf ("fie", "fee", "fam", "foe")) } checkMessageStackDepth(e1, Resources.wasNotEqualTo(decorateToStringValue(fumList), decorateToStringValue(toList)) + ", and " + Resources.didNotContainAllOfElements(decorateToStringValue(fumList), "\"fie\", \"fee\", \"fam\", \"foe\""), fileName, thisLineNumber - 2) } def `should use the implicit Equality in scope` { implicit val ise = upperCaseStringEquality fumList should (be_== (fumList) or contain allOf ("FIE", "FEE", "FUM", "FOE")) fumList should (be_== (toList) or contain allOf ("FIE", "FEE", "FUM", "FOE")) fumList should (be_== (fumList) or contain allOf ("FIE", "FEE", "FAM", "FOE")) val e1 = intercept[TestFailedException] { fumList should (be_== (toList) or (contain allOf ("FIE", "FEE", "FAM", "FOE"))) } checkMessageStackDepth(e1, Resources.wasNotEqualTo(decorateToStringValue(fumList), decorateToStringValue(toList)) + ", and " + Resources.didNotContainAllOfElements(decorateToStringValue(fumList), "\"FIE\", \"FEE\", \"FAM\", \"FOE\""), fileName, thisLineNumber - 2) } def `should use an explicitly provided Equality` { (fumList should (be_== (fumList) or contain allOf ("FIE", "FEE", "FUM", "FOE"))) (decided by upperCaseStringEquality) (fumList should (be_== (toList) or contain allOf ("FIE", "FEE", "FUM", "FOE"))) (decided by upperCaseStringEquality) (fumList should (be_== (fumList) or contain allOf ("FIE", "FEE", "FAM", "FOE"))) (decided by upperCaseStringEquality) val e1 = intercept[TestFailedException] { (fumList should (be_== (toList) or contain allOf ("FIE", "FEE", "FAM", "FOE"))) (decided by upperCaseStringEquality) } checkMessageStackDepth(e1, Resources.wasNotEqualTo(decorateToStringValue(fumList), decorateToStringValue(toList)) + ", and " + Resources.didNotContainAllOfElements(decorateToStringValue(fumList), "\"FIE\", \"FEE\", \"FAM\", \"FOE\""), fileName, thisLineNumber - 2) (fumList should (be_== (fumList) or contain allOf (" FEE ", " FIE ", " FOE ", " FUM "))) (after being lowerCased and trimmed) } def `should throw NotAllowedException with correct stack depth and message when RHS contain duplicated value` { val e1 = intercept[exceptions.NotAllowedException] { fumList should (be_== (fumList) or contain allOf ("fee", "fie", "foe", "fie", "fum")) } e1.failedCodeFileName.get should be (fileName) e1.failedCodeLineNumber.get should be (thisLineNumber - 3) e1.message should be (Some(Resources.allOfDuplicate)) } } object `when used with (contain allOf (..) and be (..))` { def `should do nothing if valid, else throw a TFE with an appropriate error message` { fumList should (contain allOf ("fie", "fee", "fum", "foe") or be_== (fumList)) fumList should (contain allOf ("fie", "fee", "fam", "foe") or be_== (fumList)) fumList should (contain allOf ("fie", "fee", "fum", "foe") or be_== (toList)) val e1 = intercept[TestFailedException] { fumList should (contain allOf ("fee", "fie", "foe", "fam") or be_== (toList)) } checkMessageStackDepth(e1, Resources.didNotContainAllOfElements(decorateToStringValue(fumList), "\"fee\", \"fie\", \"foe\", \"fam\"") + ", and " + Resources.wasNotEqualTo(decorateToStringValue(fumList), decorateToStringValue(toList)), fileName, thisLineNumber - 2) } def `should use the implicit Equality in scope` { implicit val ise = upperCaseStringEquality fumList should (contain allOf ("FIE", "FEE", "FUM", "FOE") or be_== (fumList)) fumList should (contain allOf ("FIE", "FEE", "FAM", "FOE") or be_== (fumList)) fumList should (contain allOf ("FIE", "FEE", "FUM", "FOE") or be_== (toList)) val e1 = intercept[TestFailedException] { fumList should (contain allOf ("FEE", "FIE", "FOE", "FAM") or be_== (toList)) } checkMessageStackDepth(e1, Resources.didNotContainAllOfElements(decorateToStringValue(fumList), "\"FEE\", \"FIE\", \"FOE\", \"FAM\"") + ", and " + Resources.wasNotEqualTo(decorateToStringValue(fumList), decorateToStringValue(toList)), fileName, thisLineNumber - 2) } def `should use an explicitly provided Equality` { (fumList should (contain allOf ("FIE", "FEE", "FUM", "FOE") or be_== (fumList))) (decided by upperCaseStringEquality) (fumList should (contain allOf ("FIE", "FEE", "FAM", "FOE") or be_== (fumList))) (decided by upperCaseStringEquality) (fumList should (contain allOf ("FIE", "FEE", "FUM", "FOE") or be_== (toList))) (decided by upperCaseStringEquality) val e1 = intercept[TestFailedException] { (fumList should (contain allOf ("FEE", "FIE", "FOE", "FAM") or be_== (toList))) (decided by upperCaseStringEquality) } checkMessageStackDepth(e1, Resources.didNotContainAllOfElements(decorateToStringValue(fumList), "\"FEE\", \"FIE\", \"FOE\", \"FAM\"") + ", and " + Resources.wasNotEqualTo(decorateToStringValue(fumList), decorateToStringValue(toList)), fileName, thisLineNumber - 2) (fumList should (contain allOf (" FEE ", " FIE ", " FOE ", " FUM ") or be_== (fumList))) (after being lowerCased and trimmed) } def `should throw NotAllowedException with correct stack depth and message when RHS contain duplicated value` { val e1 = intercept[exceptions.NotAllowedException] { fumList should (contain allOf ("fee", "fie", "foe", "fie", "fum") or be_== (fumList)) } e1.failedCodeFileName.get should be (fileName) e1.failedCodeLineNumber.get should be (thisLineNumber - 3) e1.message should be (Some(Resources.allOfDuplicate)) } } object `when used with (not contain allOf (..) and not contain allOf (..))` { def `should do nothing if valid, else throw a TFE with an appropriate error message` { fumList should (not contain allOf ("fee", "fie", "foe", "fuu") or not contain allOf ("fie", "fee", "fuu", "foe")) fumList should (not contain allOf ("fee", "fie", "foe", "fum") or not contain allOf ("fie", "fee", "fuu", "foe")) fumList should (not contain allOf ("fee", "fie", "foe", "fuu") or not contain allOf ("fie", "fee", "fum", "foe")) val e1 = intercept[TestFailedException] { fumList should (not contain allOf ("fee", "fie", "foe", "fum") or not contain allOf ("fie", "fee", "fum", "foe")) } checkMessageStackDepth(e1, Resources.containedAllOfElements(decorateToStringValue(fumList), "\"fee\", \"fie\", \"foe\", \"fum\"") + ", and " + Resources.containedAllOfElements(decorateToStringValue(fumList), "\"fie\", \"fee\", \"fum\", \"foe\""), fileName, thisLineNumber - 2) } def `should use the implicit Equality in scope` { implicit val ise = upperCaseStringEquality fumList should (not contain allOf ("FEE", "FIE", "FOE", "FUU") or not contain allOf ("FIE", "FEE", "FUU", "FOE")) fumList should (not contain allOf ("FEE", "FIE", "FOE", "FUM") or not contain allOf ("FIE", "FEE", "FUU", "FOE")) fumList should (not contain allOf ("FEE", "FIE", "FOE", "FUU") or not contain allOf ("FIE", "FEE", "FUM", "FOE")) val e1 = intercept[TestFailedException] { fumList should (not contain allOf ("FEE", "FIE", "FOE", "FUM") or not contain allOf ("FIE", "FEE", "FUM", "FOE")) } checkMessageStackDepth(e1, Resources.containedAllOfElements(decorateToStringValue(fumList), "\"FEE\", \"FIE\", \"FOE\", \"FUM\"") + ", and " + Resources.containedAllOfElements(decorateToStringValue(fumList), "\"FIE\", \"FEE\", \"FUM\", \"FOE\""), fileName, thisLineNumber - 2) } def `should use an explicitly provided Equality` { (fumList should (not contain allOf ("FEE", "FIE", "FOE", "FUU") or not contain allOf ("FIE", "FEE", "FUU", "FOE"))) (decided by upperCaseStringEquality, decided by upperCaseStringEquality) (fumList should (not contain allOf ("FEE", "FIE", "FOE", "FUM") or not contain allOf ("FIE", "FEE", "FUU", "FOE"))) (decided by upperCaseStringEquality, decided by upperCaseStringEquality) (fumList should (not contain allOf ("FEE", "FIE", "FOE", "FUU") or not contain allOf ("FIE", "FEE", "FUM", "FOE"))) (decided by upperCaseStringEquality, decided by upperCaseStringEquality) val e1 = intercept[TestFailedException] { (fumList should (not contain allOf ("FEE", "FIE", "FOE", "FUM") or not contain allOf ("FIE", "FEE", "FUM", "FOE"))) (decided by upperCaseStringEquality, decided by upperCaseStringEquality) } checkMessageStackDepth(e1, Resources.containedAllOfElements(decorateToStringValue(fumList), "\"FEE\", \"FIE\", \"FOE\", \"FUM\"") + ", and " + Resources.containedAllOfElements(decorateToStringValue(fumList), "\"FIE\", \"FEE\", \"FUM\", \"FOE\""), fileName, thisLineNumber - 2) (fumList should (contain allOf (" FEE ", " FIE ", " FOE ", " FUM ") or contain allOf (" FEE ", " FIE ", " FOE ", " FUM "))) (after being lowerCased and trimmed, after being lowerCased and trimmed) } def `should throw NotAllowedException with correct stack depth and message when RHS contain duplicated value` { val e1 = intercept[exceptions.NotAllowedException] { fumList should (not contain allOf ("fee", "fie", "foe", "fie", "fum") or not contain allOf ("fie", "fee", "fuu", "foe")) } e1.failedCodeFileName.get should be (fileName) e1.failedCodeLineNumber.get should be (thisLineNumber - 3) e1.message should be (Some(Resources.allOfDuplicate)) val e2 = intercept[exceptions.NotAllowedException] { fumList should (not contain allOf ("fie", "fee", "fuu", "foe") or not contain allOf ("fee", "fie", "foe", "fie", "fum")) } e2.failedCodeFileName.get should be (fileName) e2.failedCodeLineNumber.get should be (thisLineNumber - 3) e2.message should be (Some(Resources.allOfDuplicate)) } } object `when used with (not equal (..) and not contain allOf (..))` { def `should do nothing if valid, else throw a TFE with an appropriate error message` { fumList should (not equal (toList) or not contain allOf ("fie", "fee", "fuu", "foe")) fumList should (not equal (fumList) or not contain allOf ("fie", "fee", "fuu", "foe")) fumList should (not equal (toList) or not contain allOf ("fie", "fee", "fum", "foe")) val e1 = intercept[TestFailedException] { fumList should (not equal (fumList) or not contain allOf ("fee", "fie", "foe", "fum")) } checkMessageStackDepth(e1, Resources.equaled(decorateToStringValue(fumList), decorateToStringValue(fumList)) + ", and " + Resources.containedAllOfElements(decorateToStringValue(fumList), "\"fee\", \"fie\", \"foe\", \"fum\""), fileName, thisLineNumber - 2) } def `should use the implicit Equality in scope` { implicit val ise = upperCaseStringEquality fumList should (not equal (toList) or not contain allOf ("FIE", "FEE", "FUU", "FOE")) fumList should (not equal (fumList) or not contain allOf ("FIE", "FEE", "FUU", "FOE")) fumList should (not equal (toList) or not contain allOf ("FIE", "FEE", "FUM", "FOE")) val e2 = intercept[TestFailedException] { fumList should (not equal (fumList) or (not contain allOf ("FEE", "FIE", "FOE", "FUM"))) } checkMessageStackDepth(e2, Resources.equaled(decorateToStringValue(fumList), decorateToStringValue(fumList)) + ", and " + Resources.containedAllOfElements(decorateToStringValue(fumList), "\"FEE\", \"FIE\", \"FOE\", \"FUM\""), fileName, thisLineNumber - 2) } def `should use an explicitly provided Equality` { (fumList should (not equal (fumList) or not contain allOf ("FIE", "FEE", "FUU", "FOE"))) (decided by invertedListOfStringEquality, decided by upperCaseStringEquality) (fumList should (not equal (toList) or not contain allOf ("FIE", "FEE", "FUU", "FOE"))) (decided by invertedListOfStringEquality, decided by upperCaseStringEquality) (fumList should (not equal (fumList) or not contain allOf ("FIE", "FEE", "FUM", "FOE"))) (decided by invertedListOfStringEquality, decided by upperCaseStringEquality) val e1 = intercept[TestFailedException] { (fumList should (not equal (toList) or not contain allOf ("FIE", "FEE", "FUM", "FOE"))) (decided by invertedListOfStringEquality, decided by upperCaseStringEquality) } checkMessageStackDepth(e1, Resources.equaled(decorateToStringValue(fumList), decorateToStringValue(toList)) + ", and " + Resources.containedAllOfElements(decorateToStringValue(fumList), "\"FIE\", \"FEE\", \"FUM\", \"FOE\""), fileName, thisLineNumber - 2) (fumList should (not contain allOf (" FEE ", " FIE ", " FOE ", " FUU ") or not contain allOf (" FEE ", " FIE ", " FOE ", " FUU "))) (after being lowerCased and trimmed, after being lowerCased and trimmed) } def `should throw NotAllowedException with correct stack depth and message when RHS contain duplicated value` { val e1 = intercept[exceptions.NotAllowedException] { fumList should (not equal (toList) or not contain allOf ("fee", "fie", "foe", "fie", "fum")) } e1.failedCodeFileName.get should be (fileName) e1.failedCodeLineNumber.get should be (thisLineNumber - 3) e1.message should be (Some(Resources.allOfDuplicate)) } } object `when used with (not be (..) and not contain allOf (..))` { def `should do nothing if valid, else throw a TFE with an appropriate error message` { fumList should (not be_== (toList) or not contain allOf ("fie", "fee", "fuu", "foe")) fumList should (not be_== (fumList) or not contain allOf ("fie", "fee", "fuu", "foe")) fumList should (not be_== (toList) or not contain allOf ("fee", "fie", "foe", "fum")) val e1 = intercept[TestFailedException] { fumList should (not be_== (fumList) or not contain allOf ("fee", "fie", "foe", "fum")) } checkMessageStackDepth(e1, Resources.wasEqualTo(decorateToStringValue(fumList), decorateToStringValue(fumList)) + ", and " + Resources.containedAllOfElements(decorateToStringValue(fumList), "\"fee\", \"fie\", \"foe\", \"fum\""), fileName, thisLineNumber - 2) } def `should use the implicit Equality in scope` { implicit val ise = upperCaseStringEquality fumList should (not be_== (toList) or not contain allOf ("FIE", "FEE", "FUU", "FOE")) fumList should (not be_== (fumList) or not contain allOf ("FIE", "FEE", "FUU", "FOE")) fumList should (not be_== (toList) or not contain allOf ("FEE", "FIE", "FOE", "FUM")) val e1 = intercept[TestFailedException] { fumList should (not be_== (fumList) or (not contain allOf ("FEE", "FIE", "FOE", "FUM"))) } checkMessageStackDepth(e1, Resources.wasEqualTo(decorateToStringValue(fumList), decorateToStringValue(fumList)) + ", and " + Resources.containedAllOfElements(decorateToStringValue(fumList), "\"FEE\", \"FIE\", \"FOE\", \"FUM\""), fileName, thisLineNumber - 2) } def `should use an explicitly provided Equality` { (fumList should (not be_== (toList) or not contain allOf ("FIE", "FEE", "FUU", "FOE"))) (decided by upperCaseStringEquality) (fumList should (not be_== (fumList) or not contain allOf ("FIE", "FEE", "FUU", "FOE"))) (decided by upperCaseStringEquality) (fumList should (not be_== (toList) or not contain allOf ("FEE", "FIE", "FOE", "FUM"))) (decided by upperCaseStringEquality) val e1 = intercept[TestFailedException] { (fumList should (not be_== (fumList) or not contain allOf ("FEE", "FIE", "FOE", "FUM"))) (decided by upperCaseStringEquality) } checkMessageStackDepth(e1, Resources.wasEqualTo(decorateToStringValue(fumList), decorateToStringValue(fumList)) + ", and " + Resources.containedAllOfElements(decorateToStringValue(fumList), "\"FEE\", \"FIE\", \"FOE\", \"FUM\""), fileName, thisLineNumber - 2) (fumList should (not contain allOf (" FEE ", " FIE ", " FOE ", " FUU ") or not contain allOf (" FEE ", " FIE ", " FOE ", " FUU "))) (after being lowerCased and trimmed, after being lowerCased and trimmed) } def `should throw NotAllowedException with correct stack depth and message when RHS contain duplicated value` { val e1 = intercept[exceptions.NotAllowedException] { fumList should (not be_== (toList) or not contain allOf ("fee", "fie", "foe", "fie", "fum")) } e1.failedCodeFileName.get should be (fileName) e1.failedCodeLineNumber.get should be (thisLineNumber - 3) e1.message should be (Some(Resources.allOfDuplicate)) } } } object `collection of Lists` { val list1s: Vector[List[Int]] = Vector(List(3, 2, 1, 0), List(3, 2, 1, 0), List(3, 2, 1, 0)) val lists: Vector[List[Int]] = Vector(List(3, 2, 1, 0), List(3, 2, 1, 0), List(8, 4, 3, 2)) val nils: Vector[List[Int]] = Vector(Nil, Nil, Nil) val listsNil: Vector[List[Int]] = Vector(List(3, 2, 1, 0), List(3, 2, 1, 0), Nil) val hiLists: Vector[List[String]] = Vector(List("howdy", "hi", "hello"), List("howdy", "hi", "hello"), List("howdy", "hi", "hello")) val toLists: Vector[List[String]] = Vector(List("nice", "you", "to"), List("nice", "you", "to"), List("nice", "you", "to")) def allErrMsg(index: Int, message: String, lineNumber: Int, left: Any): String = "'all' inspection failed, because: \n" + " at index " + index + ", " + message + " (" + fileName + ":" + (lineNumber) + ") \n" + "in " + decorateToStringValue(left) object `when used with (contain allOf (..) and contain allOf (..))` { def `should do nothing if valid, else throw a TFE with an appropriate error message` { all (list1s) should (contain allOf (3, 2, 1) or contain allOf (1, 3, 2)) all (list1s) should (contain allOf (3, 2, 5) or contain allOf (1, 3, 2)) all (list1s) should (contain allOf (3, 2, 1) or contain allOf (2, 3, 4)) atLeast (2, lists) should (contain allOf (3, 1, 2) or contain allOf (1, 2, 3)) atLeast (2, lists) should (contain allOf (3, 6, 5) or contain allOf (1, 3, 2)) atLeast (2, lists) should (contain allOf (3, 1, 2) or contain allOf (8, 3, 4)) val e1 = intercept[TestFailedException] { all (lists) should (contain allOf (3, 1, 2) or contain allOf (1, 3, 2)) } checkMessageStackDepth(e1, allErrMsg(2, decorateToStringValue(List(8, 4, 3, 2)) + " did not contain all of " + "(3, 1, 2)" + ", and " + decorateToStringValue(List(8, 4, 3, 2)) + " did not contain all of " + "(1, 3, 2)", thisLineNumber - 2, lists), fileName, thisLineNumber - 2) } def `should use the implicit Equality in scope` { implicit val ise = upperCaseStringEquality all (hiLists) should (contain allOf ("HELLO", "HI") or contain allOf ("hello", "hi")) all (hiLists) should (contain allOf ("HELLO", "HO") or contain allOf ("hello", "hi")) all (hiLists) should (contain allOf ("HELLO", "HI") or contain allOf ("hello", "ho")) val e1 = intercept[TestFailedException] { all (hiLists) should (contain allOf ("HELLO", "HO") or contain allOf ("hello", "ho")) } checkMessageStackDepth(e1, allErrMsg(0, decorateToStringValue(List("howdy", "hi", "hello")) + " did not contain all of " + "(\"HELLO\", \"HO\")" + ", and " + decorateToStringValue(List("howdy", "hi", "hello")) + " did not contain all of " + "(\"hello\", \"ho\")", thisLineNumber - 2, hiLists), fileName, thisLineNumber - 2) } def `should use an explicitly provided Equality` { (all (hiLists) should (contain allOf ("HELLO", "HI") or contain allOf ("hello", "hi"))) (decided by upperCaseStringEquality, decided by upperCaseStringEquality) (all (hiLists) should (contain allOf ("HELLO", "HO") or contain allOf ("hello", "hi"))) (decided by upperCaseStringEquality, decided by upperCaseStringEquality) (all (hiLists) should (contain allOf ("HELLO", "HI") or contain allOf ("hello", "ho"))) (decided by upperCaseStringEquality, decided by upperCaseStringEquality) val e1 = intercept[TestFailedException] { (all (hiLists) should (contain allOf ("HELLO", "HO") or contain allOf ("hello", "ho"))) (decided by upperCaseStringEquality, decided by upperCaseStringEquality) } checkMessageStackDepth(e1, allErrMsg(0, decorateToStringValue(List("howdy", "hi", "hello")) + " did not contain all of " + "(\"HELLO\", \"HO\")" + ", and " + decorateToStringValue(List("howdy", "hi", "hello")) + " did not contain all of " + "(\"hello\", \"ho\")", thisLineNumber - 2, hiLists), fileName, thisLineNumber - 2) } def `should throw NotAllowedException with correct stack depth and message when RHS contain duplicated value` { val e1 = intercept[exceptions.NotAllowedException] { all (list1s) should (contain allOf (3, 2, 2, 1) or contain allOf (1, 3, 2)) } e1.failedCodeFileName.get should be (fileName) e1.failedCodeLineNumber.get should be (thisLineNumber - 3) e1.message should be (Some(Resources.allOfDuplicate)) val e2 = intercept[exceptions.NotAllowedException] { all (list1s) should (contain allOf (1, 3, 2) or contain allOf (3, 2, 2, 1)) } e2.failedCodeFileName.get should be (fileName) e2.failedCodeLineNumber.get should be (thisLineNumber - 3) e2.message should be (Some(Resources.allOfDuplicate)) } } object `when used with (be (..) and contain allOf (..))` { def `should do nothing if valid, else throw a TFE with an appropriate error message` { all (list1s) should (be_== (List(3, 2, 1, 0)) or contain allOf (1, 2, 3)) all (list1s) should (be_== (List(2, 3, 4)) or contain allOf (1, 2, 3)) all (list1s) should (be_== (List(3, 2, 1, 0)) or contain allOf (2, 3, 4)) val e1 = intercept[TestFailedException] { all (list1s) should (be_== (List(2, 3, 4)) or contain allOf (2, 3, 4)) } checkMessageStackDepth(e1, allErrMsg(0, decorateToStringValue(List(3, 2, 1, 0)) + " was not equal to " + decorateToStringValue(List(2, 3, 4)) + ", and " + decorateToStringValue(List(3, 2, 1, 0)) + " did not contain all of " + "(2, 3, 4)", thisLineNumber - 2, list1s), fileName, thisLineNumber - 2) } def `should use the implicit Equality in scope` { implicit val ise = upperCaseStringEquality all (hiLists) should (be_== (List("howdy", "hi", "hello")) or contain allOf ("HELLO", "HI")) all (hiLists) should (be_== (List("ho", "hello")) or contain allOf ("HELLO", "HI")) all (hiLists) should (be_== (List("howdy", "hi", "hello")) or contain allOf ("HELLO", "HO")) val e1 = intercept[TestFailedException] { all (hiLists) should (be_== (List("ho", "hello")) or contain allOf ("HELLO", "HO")) } checkMessageStackDepth(e1, allErrMsg(0, decorateToStringValue(List("howdy", "hi", "hello")) + " was not equal to " + decorateToStringValue(List("ho", "hello")) + ", and " + decorateToStringValue(List("howdy", "hi", "hello")) + " did not contain all of " + "(\"HELLO\", \"HO\")", thisLineNumber - 2, hiLists), fileName, thisLineNumber - 2) } def `should use an explicitly provided Equality` { (all (hiLists) should (be_== (List("howdy", "hi", "hello")) or contain allOf ("HELLO", "HI"))) (decided by upperCaseStringEquality) (all (hiLists) should (be_== (List("ho", "hello")) or contain allOf ("HELLO", "HI"))) (decided by upperCaseStringEquality) (all (hiLists) should (be_== (List("howdy", "hi", "hello")) or contain allOf ("HELLO", "HO"))) (decided by upperCaseStringEquality) val e1 = intercept[TestFailedException] { (all (hiLists) should (be_== (List("ho", "hello")) or contain allOf ("HELLO", "HO"))) (decided by upperCaseStringEquality) } checkMessageStackDepth(e1, allErrMsg(0, decorateToStringValue(List("howdy", "hi", "hello")) + " was not equal to " + decorateToStringValue(List("ho", "hello")) + ", and " + decorateToStringValue(List("howdy", "hi", "hello")) + " did not contain all of " + "(\"HELLO\", \"HO\")", thisLineNumber - 2, hiLists), fileName, thisLineNumber - 2) } def `should throw NotAllowedException with correct stack depth and message when RHS contain duplicated value` { val e1 = intercept[exceptions.NotAllowedException] { all (list1s) should (be_== (List(3, 2, 1, 0)) or contain allOf (1, 2, 2, 3)) } e1.failedCodeFileName.get should be (fileName) e1.failedCodeLineNumber.get should be (thisLineNumber - 3) e1.message should be (Some(Resources.allOfDuplicate)) } } object `when used with (not contain allOf xx and not contain allOf xx)` { def `should do nothing if valid, else throw a TFE with an appropriate error message` { all (list1s) should (not contain allOf (3, 2, 8) or not contain allOf (8, 3, 4)) all (list1s) should (not contain allOf (1, 2, 3) or not contain allOf (8, 3, 4)) all (list1s) should (not contain allOf (3, 2, 8) or not contain allOf (2, 3, 1)) val e1 = intercept[TestFailedException] { all (lists) should (not contain allOf (4, 2, 3) or not contain allOf (2, 3, 4)) } checkMessageStackDepth(e1, allErrMsg(2, decorateToStringValue(List(8, 4, 3, 2)) + " contained all of " + "(4, 2, 3)" + ", and " + decorateToStringValue(List(8, 4, 3, 2)) + " contained all of " + "(2, 3, 4)", thisLineNumber - 2, lists), fileName, thisLineNumber - 2) } def `should use the implicit Equality in scope` { implicit val ise = upperCaseStringEquality all (hiLists) should (not contain allOf ("HELLO", "HO") or not contain allOf ("hello", "ho")) all (hiLists) should (not contain allOf ("HELLO", "HI") or not contain allOf ("hello", "ho")) all (hiLists) should (not contain allOf ("HELLO", "HO") or not contain allOf ("hello", "hi")) val e1 = intercept[TestFailedException] { all (hiLists) should (not contain allOf ("HELLO", "HI") or not contain allOf ("hello", "hi")) } checkMessageStackDepth(e1, allErrMsg(0, decorateToStringValue(List("howdy", "hi", "hello")) + " contained all of " + "(\"HELLO\", \"HI\")" + ", and " + decorateToStringValue(List("howdy", "hi", "hello")) + " contained all of " + "(\"hello\", \"hi\")", thisLineNumber - 2, hiLists), fileName, thisLineNumber - 2) } def `should use an explicitly provided Equality` { (all (hiLists) should (not contain allOf ("HELLO", "HO") or not contain allOf ("hello", "ho"))) (decided by upperCaseStringEquality, decided by upperCaseStringEquality) (all (hiLists) should (not contain allOf ("HELLO", "HI") or not contain allOf ("hello", "ho"))) (decided by upperCaseStringEquality, decided by upperCaseStringEquality) (all (hiLists) should (not contain allOf ("HELLO", "HO") or not contain allOf ("hello", "hi"))) (decided by upperCaseStringEquality, decided by upperCaseStringEquality) val e1 = intercept[TestFailedException] { (all (hiLists) should (not contain allOf ("HELLO", "HI") or not contain allOf ("hello", "hi"))) (decided by upperCaseStringEquality, decided by upperCaseStringEquality) } checkMessageStackDepth(e1, allErrMsg(0, decorateToStringValue(List("howdy", "hi", "hello")) + " contained all of " + "(\"HELLO\", \"HI\")" + ", and " + decorateToStringValue(List("howdy", "hi", "hello")) + " contained all of " + "(\"hello\", \"hi\")", thisLineNumber - 2, hiLists), fileName, thisLineNumber - 2) } def `should throw NotAllowedException with correct stack depth and message when RHS contain duplicated value` { val e1 = intercept[exceptions.NotAllowedException] { all (list1s) should (not contain allOf (1, 2, 2, 3) or not contain allOf (8, 3, 4)) } e1.failedCodeFileName.get should be (fileName) e1.failedCodeLineNumber.get should be (thisLineNumber - 3) e1.message should be (Some(Resources.allOfDuplicate)) val e2 = intercept[exceptions.NotAllowedException] { all (list1s) should (not contain allOf (8, 3, 4) or not contain allOf (1, 2, 2, 3)) } e2.failedCodeFileName.get should be (fileName) e2.failedCodeLineNumber.get should be (thisLineNumber - 3) e2.message should be (Some(Resources.allOfDuplicate)) } } object `when used with (not be (...) and not contain allOf (...))` { def `should do nothing if valid, else throw a TFE with an appropriate error message` { all (list1s) should (not be_== (List(2)) or not contain allOf (8, 3, 4)) all (list1s) should (not be_== (List(3, 2, 1, 0)) or not contain allOf (8, 3, 4)) all (list1s) should (not be_== (List(2)) or not contain allOf (1, 2, 3)) val e1 = intercept[TestFailedException] { all (list1s) should (not be_== (List(3, 2, 1, 0)) or not contain allOf (2, 3, 1)) } checkMessageStackDepth(e1, allErrMsg(0, decorateToStringValue(List(3, 2, 1, 0)) + " was equal to " + decorateToStringValue(List(3, 2, 1, 0)) + ", and " + decorateToStringValue(List(3, 2, 1, 0)) + " contained all of " + "(2, 3, 1)", thisLineNumber - 2, list1s), fileName, thisLineNumber - 2) } def `should use the implicit Equality in scope` { implicit val ise = upperCaseStringEquality all (hiLists) should (not be_== (List("hello", "ho")) or not contain allOf ("HELLO", "HO")) all (hiLists) should (not be_== (List("howdy", "hello", "hi")) or not contain allOf ("HELLO", "HO")) all (hiLists) should (not be_== (List("hello", "ho")) or not contain allOf ("HELLO", "HI")) val e1 = intercept[TestFailedException] { all (hiLists) should (not be_== (List("howdy", "hi", "hello")) or not contain allOf ("HELLO", "HI")) } checkMessageStackDepth(e1, allErrMsg(0, decorateToStringValue(List("howdy", "hi", "hello")) + " was equal to " + decorateToStringValue(List("howdy", "hi", "hello")) + ", and " + decorateToStringValue(List("howdy", "hi", "hello")) + " contained all of " + "(\"HELLO\", \"HI\")", thisLineNumber - 2, hiLists), fileName, thisLineNumber - 2) } def `should use an explicitly provided Equality` { (all (hiLists) should (not be_== (List("hello", "ho")) or not contain allOf ("HELLO", "HO"))) (decided by upperCaseStringEquality) (all (hiLists) should (not be_== (List("howdy", "hello", "hi")) or not contain allOf ("HELLO", "HO"))) (decided by upperCaseStringEquality) (all (hiLists) should (not be_== (List("hello", "ho")) or not contain allOf ("HELLO", "HI"))) (decided by upperCaseStringEquality) val e1 = intercept[TestFailedException] { (all (hiLists) should (not be_== (List("howdy", "hi", "hello")) or not contain allOf ("HELLO", "HI"))) (decided by upperCaseStringEquality) } checkMessageStackDepth(e1, allErrMsg(0, decorateToStringValue(List("howdy", "hi", "hello")) + " was equal to " + decorateToStringValue(List("howdy", "hi", "hello")) + ", and " + decorateToStringValue(List("howdy", "hi", "hello")) + " contained all of " + "(\"HELLO\", \"HI\")", thisLineNumber - 2, hiLists), fileName, thisLineNumber - 2) } def `should throw NotAllowedException with correct stack depth and message when RHS contain duplicated value` { val e1 = intercept[exceptions.NotAllowedException] { all (list1s) should (not be_== (List(2)) or not contain allOf (1, 2, 2, 3)) } e1.failedCodeFileName.get should be (fileName) e1.failedCodeLineNumber.get should be (thisLineNumber - 3) e1.message should be (Some(Resources.allOfDuplicate)) } } } }
SRGOM/scalatest
scalatest-test/src/test/scala/org/scalatest/ListShouldContainAllOfLogicalOrSpec.scala
Scala
apache-2.0
42,860
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.mllib.pmml.export import org.dmg.pmml.ClusteringModel import org.apache.spark.SparkFunSuite import org.apache.spark.mllib.clustering.KMeansModel import org.apache.spark.mllib.linalg.Vectors /** * 预言模型标记语言是一种基于xml语言,它能够定义和共享应用程序之间的预测模型 */ class KMeansPMMLModelExportSuite extends SparkFunSuite { test("KMeansPMMLModelExport generate PMML format") { val clusterCenters = Array( Vectors.dense(1.0, 2.0, 6.0), Vectors.dense(1.0, 3.0, 0.0), Vectors.dense(1.0, 4.0, 6.0)) val kmeansModel = new KMeansModel(clusterCenters) val modelExport = PMMLModelExportFactory.createPMMLModelExport(kmeansModel) // assert that the PMML format is as expected assert(modelExport.isInstanceOf[PMMLModelExport]) val pmml = modelExport.asInstanceOf[PMMLModelExport].getPmml assert(pmml.getHeader.getDescription === "k-means clustering") // check that the number of fields match the single vector size //clusterCenters聚类中心点 assert(pmml.getDataDictionary.getNumberOfFields === clusterCenters(0).size) // This verify that there is a model attached to the pmml object and the model is a clustering // one. It also verifies that the pmml model has the same number of clusters of the spark model. val pmmlClusteringModel = pmml.getModels.get(0).asInstanceOf[ClusteringModel] assert(pmmlClusteringModel.getNumberOfClusters === clusterCenters.length) } }
tophua/spark1.52
mllib/src/test/scala/org/apache/spark/mllib/pmml/export/KMeansPMMLModelExportSuite.scala
Scala
apache-2.0
2,314
/* * Copyright (c) 2014-2020 by The Monix Project Developers. * See the project homepage at: https://monix.io * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package monix.reactive.internal.operators import monix.execution.Ack import monix.execution.Ack.Continue import monix.reactive.{Observable, Observer} import scala.concurrent.duration._ import scala.concurrent.duration.Duration.Zero object MergeManySuite extends BaseOperatorSuite { def createObservable(sourceCount: Int) = Some { val o = Observable .range(0L, sourceCount.toLong) .mergeMap(i => Observable.fromIterable(Seq(i, i, i, i))) Sample(o, count(sourceCount), sum(sourceCount), Zero, Zero) } def count(sourceCount: Int) = 4 * sourceCount def observableInError(sourceCount: Int, ex: Throwable) = { val o = Observable.range(0L, sourceCount.toLong).mergeMap(_ => Observable.raiseError(ex)) Some(Sample(o, 0, 0, Zero, Zero)) } def sum(sourceCount: Int) = { 4L * sourceCount * (sourceCount - 1) / 2 } def brokenUserCodeObservable(sourceCount: Int, ex: Throwable) = Some { val o = Observable.range(0L, sourceCount.toLong).mergeMap(x => throw ex) Sample(o, 0, 0, Zero, Zero) } override def cancelableObservables(): Seq[Sample] = { val sample1 = Observable .range(1, 100) .mergeMap(x => Observable.range(0, 100).delayExecution(2.second)) val sample2 = Observable .range(0, 100) .delayOnNext(1.second) .mergeMap(x => Observable.range(0, 100).delayExecution(2.second)) Seq( Sample(sample1, 0, 0, 0.seconds, 0.seconds), Sample(sample1, 0, 0, 1.seconds, 0.seconds), Sample(sample2, 0, 0, 0.seconds, 0.seconds), Sample(sample2, 0, 0, 1.seconds, 0.seconds) ) } test("mergeMap should be cancelable after main stream has finished") { implicit s => val source = Observable.now(1L).concatMap { x => Observable.intervalWithFixedDelay(1.second, 1.second).map(_ + x) } var total = 0L val subscription = source.unsafeSubscribeFn(new Observer.Sync[Long] { def onNext(elem: Long): Ack = { total += elem Continue } def onError(ex: Throwable): Unit = throw ex def onComplete(): Unit = () }) s.tick(10.seconds) assertEquals(total, 5 * 11L) subscription.cancel() s.tick() assertEquals(total, 5 * 11L) assert(s.state.tasks.isEmpty, "tasks.isEmpty") } }
alexandru/monifu
monix-reactive/shared/src/test/scala/monix/reactive/internal/operators/MergeManySuite.scala
Scala
apache-2.0
2,949
/* * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package wvlet.airframe.control import wvlet.airframe.control.ResultClass.Failed import wvlet.log.LogSupport import scala.util.{Failure, Random, Success, Try} /** * Retry logic implementation helper */ object Retry extends LogSupport { def retryableFailure(e: Throwable) = Failed(isRetryable = true, e) def nonRetryableFailure(e: Throwable) = Failed(isRetryable = false, e) def withBackOff( maxRetry: Int = 3, initialIntervalMillis: Int = 100, maxIntervalMillis: Int = 15000, multiplier: Double = 1.5 ): RetryContext = { defaultRetryContext.withMaxRetry(maxRetry).withBackOff(initialIntervalMillis, maxIntervalMillis, multiplier) } def withBoundedBackoff( initialIntervalMillis: Int = 100, maxTotalWaitMillis: Int = 180000, multiplier: Double = 1.5 ): RetryContext = { require(initialIntervalMillis > 0, s"initialWaitMillis must be > 0: ${initialIntervalMillis}") // S = totalWaitMillis = w * r^0 + w * r^1 + w * r^2 + ... + w * r^n // S = w * (1-r^n) / (1-r) // r^n = 1 - S * (1-r)/w // n * log(r) = log(1 - S * (1-r) / w) val N = math.log(1 - (maxTotalWaitMillis * (1 - multiplier) / initialIntervalMillis)) / math.log(multiplier) def total(n: Int) = initialIntervalMillis * (1 - math.pow(multiplier, n)) / (1 - multiplier) var maxRetry = N.ceil.toInt while (maxRetry > 0 && total(maxRetry) > maxTotalWaitMillis) { maxRetry -= 1 } var maxIntervalMillis = initialIntervalMillis * math.pow(multiplier, N).toInt withBackOff( maxRetry = maxRetry.max(0), initialIntervalMillis = initialIntervalMillis, maxIntervalMillis = maxIntervalMillis, multiplier = multiplier ) } def withJitter( maxRetry: Int = 3, initialIntervalMillis: Int = 100, maxIntervalMillis: Int = 15000, multiplier: Double = 1.5 ): RetryContext = { defaultRetryContext.withMaxRetry(maxRetry).withJitter(initialIntervalMillis, maxIntervalMillis, multiplier) } private val defaultRetryContext: RetryContext = { val retryConfig = RetryPolicyConfig() RetryContext( context = None, lastError = NOT_STARTED, retryCount = 0, maxRetry = 3, retryWaitStrategy = new ExponentialBackOff(retryConfig), nextWaitMillis = retryConfig.initialIntervalMillis, baseWaitMillis = retryConfig.initialIntervalMillis, extraWaitMillis = 0 ) } case class MaxRetryException(retryContext: RetryContext) extends Exception( s"Reached the max retry count ${retryContext.retryCount}/${retryContext.maxRetry}: ${retryContext.lastError.getMessage}", retryContext.lastError ) // Throw this to force retry the execution case class RetryableFailure(e: Throwable) extends Exception(e) case object NOT_STARTED extends Exception("Code is not executed") private def REPORT_RETRY_COUNT: RetryContext => Unit = { (ctx: RetryContext) => warn( f"[${ctx.retryCount}/${ctx.maxRetry}] Execution failed: ${ctx.lastError.getMessage}. Retrying in ${ctx.nextWaitMillis / 1000.0}%.2f sec." ) } private def RETHROW_ALL: Throwable => ResultClass.Failed = { (e: Throwable) => throw e } private[control] val noExtraWait = ExtraWait() case class ExtraWait(maxExtraWaitMillis: Int = 0, factor: Double = 0.0) { require(maxExtraWaitMillis >= 0) require(factor >= 0) def hasNoWait: Boolean = { maxExtraWaitMillis == 0 && factor == 0.0 } // Compute the extra wait millis based on the next wait millis def extraWaitMillis(nextWaitMillis: Int): Int = { if (maxExtraWaitMillis == 0) { if (factor == 0.0) { 0 } else { (nextWaitMillis * factor).toInt } } else { if (factor == 0.0) { maxExtraWaitMillis } else { (nextWaitMillis * factor).toInt.min(maxExtraWaitMillis) } } } } case class RetryContext( context: Option[Any], lastError: Throwable, retryCount: Int, maxRetry: Int, retryWaitStrategy: RetryPolicy, nextWaitMillis: Int, baseWaitMillis: Int, extraWaitMillis: Int, resultClassifier: Any => ResultClass = ResultClass.ALWAYS_SUCCEED, errorClassifier: Throwable => ResultClass.Failed = ResultClass.ALWAYS_RETRY, beforeRetryAction: RetryContext => Any = REPORT_RETRY_COUNT ) { def init(context: Option[Any] = None): RetryContext = { this.copy( context = context, lastError = NOT_STARTED, retryCount = 0, nextWaitMillis = retryWaitStrategy.retryPolicyConfig.initialIntervalMillis, baseWaitMillis = retryWaitStrategy.retryPolicyConfig.initialIntervalMillis, extraWaitMillis = 0 ) } def canContinue: Boolean = { retryCount < maxRetry } /** * Update the retry context, including retry count, last error, next wait time, etc. * * @param retryReason * @return * the next retry context */ def nextRetry(retryReason: Throwable): RetryContext = { val nextRetryCtx = this.copy( lastError = retryReason, retryCount = retryCount + 1, nextWaitMillis = retryWaitStrategy.nextWait(baseWaitMillis) + extraWaitMillis, baseWaitMillis = retryWaitStrategy.updateBaseWait(baseWaitMillis), extraWaitMillis = 0 ) beforeRetryAction(nextRetryCtx) nextRetryCtx } def withExtraWait(extraWait: ExtraWait): RetryContext = { if (extraWait.hasNoWait && this.extraWaitMillis == 0) { this } else { this.copy(extraWaitMillis = extraWait.extraWaitMillis(nextWaitMillis)) } } def withRetryWaitStrategy(newRetryWaitStrategy: RetryPolicy): RetryContext = { this.copy(retryWaitStrategy = newRetryWaitStrategy) } def withMaxRetry(newMaxRetry: Int): RetryContext = { this.copy(maxRetry = newMaxRetry) } def noRetry: RetryContext = { this.copy(maxRetry = 0) } def withBackOff( initialIntervalMillis: Int = 100, maxIntervalMillis: Int = 15000, multiplier: Double = 1.5 ): RetryContext = { val config = RetryPolicyConfig(initialIntervalMillis, maxIntervalMillis, multiplier) this.copy(retryWaitStrategy = new ExponentialBackOff(config)) } def withJitter( initialIntervalMillis: Int = 100, maxIntervalMillis: Int = 15000, multiplier: Double = 1.5 ): RetryContext = { val config = RetryPolicyConfig(initialIntervalMillis, maxIntervalMillis, multiplier) this.copy(retryWaitStrategy = new Jitter(config)) } def withResultClassifier[U](newResultClassifier: U => ResultClass): RetryContext = { this.copy(resultClassifier = newResultClassifier.asInstanceOf[Any => ResultClass]) } /** * Set a detailed error handler upon Exception. If the given exception is not retryable, just rethrow the * exception. Otherwise, consume the exception. */ def withErrorClassifier(errorClassifier: Throwable => ResultClass.Failed): RetryContext = { this.copy(errorClassifier = errorClassifier) } def beforeRetry[U](handler: RetryContext => U): RetryContext = { this.copy(beforeRetryAction = handler) } /** * Clear the default beforeRetry action */ def noRetryLogging: RetryContext = { this.copy(beforeRetryAction = { (x: RetryContext) => }) } /** * Add a partial function that accepts exceptions that need to be retried. * * @param errorClassifier * @return */ def retryOn(errorClassifier: PartialFunction[Throwable, ResultClass.Failed]): RetryContext = { this.copy(errorClassifier = { (e: Throwable) => errorClassifier.applyOrElse(e, RETHROW_ALL) }) } def run[A](body: => A): A = { runInternal(None)(body) } def runWithContext[A](context: Any)(body: => A): A = { runInternal(Option(context))(body) } protected def runInternal[A](context: Option[Any])(body: => A): A = { var result: Option[A] = None var retryContext: RetryContext = init(context) var isFirst: Boolean = true while (isFirst || (result.isEmpty && retryContext.canContinue)) { isFirst = false val ret = Try(body) val resultClass = ret match { case Success(x) => // Test whether the code block execution is succeeded or failed resultClassifier(x) case Failure(RetryableFailure(e)) => ResultClass.retryableFailure(e) case Failure(e) => errorClassifier(e) } resultClass match { case ResultClass.Succeeded => // OK. Exit the loop result = Some(ret.get) case ResultClass.Failed(isRetryable, cause, extraWait) if isRetryable => // Retryable error retryContext = retryContext.withExtraWait(extraWait).nextRetry(cause) // Wait until the next retry Compat.sleep(retryContext.nextWaitMillis) case ResultClass.Failed(_, cause, _) => // Non-retryable error. Exit the loop by throwing the exception throw cause } } result match { case Some(a) => a case None => throw MaxRetryException(retryContext) } } } case class RetryPolicyConfig( initialIntervalMillis: Int = 100, maxIntervalMillis: Int = 15000, multiplier: Double = 1.5 ) { require(initialIntervalMillis >= 0) require(maxIntervalMillis >= 0) require(multiplier >= 0) } trait RetryPolicy { def retryPolicyConfig: RetryPolicyConfig def updateBaseWait(waitMillis: Int): Int = { math.round(waitMillis * retryPolicyConfig.multiplier).toInt.min(retryPolicyConfig.maxIntervalMillis) } def nextWait(baseWaitMillis: Int): Int } class ExponentialBackOff(val retryPolicyConfig: RetryPolicyConfig) extends RetryPolicy { override def nextWait(baseWaitMillis: Int): Int = { baseWaitMillis } } class Jitter(val retryPolicyConfig: RetryPolicyConfig, rand: Random = new Random()) extends RetryPolicy { override def nextWait(baseWaitMillis: Int): Int = { (baseWaitMillis.toDouble * rand.nextDouble()).round.toInt } } }
wvlet/airframe
airframe-control/src/main/scala/wvlet/airframe/control/Retry.scala
Scala
apache-2.0
10,955
package com.lysdev.transperthcached.livetimes; import org.joda.time.DateTime; class TimesForStation( station_name: String, last_updated: DateTime, trips: List[Trip]) { def getTrips() = this.trips def getLastUpdated() = this.last_updated def getStationName() = this.station_name override def toString() = f"<TimesForStation $getStationName - $getLastUpdated - ${getTrips.size} trips>" }
Mause/TransperthCached
src/com/lysdev/transperthcached/livetimes/TimesForStation.scala
Scala
apache-2.0
437
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.deploy.security import scala.reflect.runtime.universe import scala.util.control.NonFatal import org.apache.hadoop.conf.Configuration import org.apache.hadoop.security.Credentials import org.apache.hadoop.security.token.{Token, TokenIdentifier} import org.apache.spark.internal.Logging import org.apache.spark.util.Utils private[security] class HBaseDelegationTokenProvider extends HadoopDelegationTokenProvider with Logging { override def serviceName: String = "hbase" override def obtainDelegationTokens( hadoopConf: Configuration, creds: Credentials): Option[Long] = { try { val mirror = universe.runtimeMirror(Utils.getContextOrSparkClassLoader) val obtainToken = mirror.classLoader. loadClass("org.apache.hadoop.hbase.security.token.TokenUtil"). getMethod("obtainToken", classOf[Configuration]) logDebug("Attempting to fetch HBase security token.") val token = obtainToken.invoke(null, hbaseConf(hadoopConf)) .asInstanceOf[Token[_ <: TokenIdentifier]] logInfo(s"Get token from HBase: ${token.toString}") creds.addToken(token.getService, token) } catch { case NonFatal(e) => logDebug(s"Failed to get token from service $serviceName", e) } None } override def delegationTokensRequired(hadoopConf: Configuration): Boolean = { hbaseConf(hadoopConf).get("hbase.security.authentication") == "kerberos" } private def hbaseConf(conf: Configuration): Configuration = { try { val mirror = universe.runtimeMirror(Utils.getContextOrSparkClassLoader) val confCreate = mirror.classLoader. loadClass("org.apache.hadoop.hbase.HBaseConfiguration"). getMethod("create", classOf[Configuration]) confCreate.invoke(null, conf).asInstanceOf[Configuration] } catch { case NonFatal(e) => logDebug("Fail to invoke HBaseConfiguration", e) conf } } }
aokolnychyi/spark
core/src/main/scala/org/apache/spark/deploy/security/HBaseDelegationTokenProvider.scala
Scala
apache-2.0
2,755
package rxscala.subscriptions import org.junit.Assert._ import org.junit.Test import org.scalatest.junit.JUnitSuite import rxscala.Subscription class SubscriptionTests extends JUnitSuite { @Test def anonymousSubscriptionCreate() { val subscription = Subscription{} assertNotNull(subscription) } @Test def anonymousSubscriptionDispose() { var unsubscribed = false val subscription = Subscription{ unsubscribed = true } assertFalse(unsubscribed) subscription.unsubscribe() assertTrue(unsubscribed) } @Test def emptySubscription() { val subscription = Subscription(()) subscription.unsubscribe() } @Test def booleanSubscription() { val subscription = BooleanSubscription() assertFalse(subscription.isUnsubscribed) subscription.unsubscribe() assertTrue(subscription.isUnsubscribed) subscription.unsubscribe() assertTrue(subscription.isUnsubscribed) } @Test def compositeSubscriptionAdd() { var u0 = false val s0 = BooleanSubscription{ u0 = true } var u1 = false val s1 = Subscription{ u1 = true } val composite = CompositeSubscription() assertFalse(composite.isUnsubscribed) composite += s0 composite += s1 composite.unsubscribe() assertTrue(composite.isUnsubscribed) assertTrue(s0.isUnsubscribed) assertTrue(u0) assertTrue(u1) val s2 = BooleanSubscription() assertFalse(s2.isUnsubscribed) composite += s2 assertTrue(s2.isUnsubscribed) } @Test def compositeSubscriptionRemove() { val s0 = BooleanSubscription() val composite = CompositeSubscription() composite += s0 assertFalse(s0.isUnsubscribed) composite -= s0 assertTrue(s0.isUnsubscribed) composite.unsubscribe() assertTrue(composite.isUnsubscribed) } @Test def multiAssignmentSubscriptionAdd() { val s0 = BooleanSubscription() val s1 = BooleanSubscription() val multiple = MultipleAssignmentSubscription() assertFalse(multiple.isUnsubscribed) multiple.subscription = s0 assertEquals(s0.asJavaSubscription, multiple.subscription.asJavaSubscription) multiple.subscription = s1 assertEquals(s1.asJavaSubscription, multiple.subscription.asJavaSubscription) assertFalse(s0.isUnsubscribed) assertFalse(s1.isUnsubscribed) multiple.unsubscribe() assertTrue(multiple.isUnsubscribed) assertFalse(s0.isUnsubscribed) assertTrue(s1.isUnsubscribed) val s2 = BooleanSubscription() assertFalse(s2.isUnsubscribed) multiple.subscription = s2 assertTrue(s2.isUnsubscribed) } }
kevinwright/RxScala
src/test/scala/rxscala/subscriptions/SubscriptionTests.scala
Scala
apache-2.0
2,652
package system.cell.sensormanagement.sensors import org.scalatest.{FlatSpec, Matchers} import system.ontologies.sensor.SensorCategories /** * Created by Matteo Gabellini on 31/07/2017. */ class SmokeSensorTest extends FlatSpec with Matchers { val sensorName = "smokeSensor" val minValue = 0.0 val maxValue = 50.0 val thresholdValue = 50 val sThreshold = new SmokeThreshold(thresholdValue) var sSensor = new SmokeSensor(sensorName, 0, minValue, maxValue, sThreshold) "A Smoke Sensor" should "have the same name assigned during the creation" in { sSensor.name should be(sensorName) } "A Smoke Sensor" should "have the category smoke" in { sSensor.category should be(SensorCategories.Smoke) } "A Smoke Sensor" should "measure the carbon monoxide value" in { sSensor.gasMeasured should be(Gas.carbonMonoxide) } "A Smoke Sensor" should "have the same minimum value assigned in the creation" in { sSensor.minValue should be(minValue) } "A SmokeSensor" should "have the same maximum value assigned in the creation" in { sSensor.maxValue should be(maxValue) } "A Smoke Threshold checking method" should "return true if the smoke value is over the threshold" in { sThreshold.hasBeenExceeded(thresholdValue + 1) should be(true) } "A Smoke Sensor" should "have the same threshold assigned in the creation" in { sSensor.threshold should be(sThreshold) } val refreshRate = 1000 val changeStep = 0.15 var simulatedSmokeSensor = new SimulatedGasSensor(sSensor, refreshRate, SimulationStrategies.LinearDoubleSimulation(changeStep)) var oGSensor: ObservableGasSensor = new ObservableGasSensor(simulatedSmokeSensor) "A Simulated Smoke Sensor" should "have a same gas measured of the decorated smoke sensor" in { simulatedSmokeSensor.gasMeasured should be(sSensor.gasMeasured) } "A Simulated Smoke Sensor" should "have a same threshold of the decorated smoke sensor" in { simulatedSmokeSensor.threshold should be(sSensor.threshold) } "A Observable Smoke Sensor" should "have a same gas measured of the decorated smoke sensor" in { oGSensor.gasMeasured should be(simulatedSmokeSensor.gasMeasured) } "A Observable Smoke Sensor" should "have a same threshold of the decorated smoke sensor" in { oGSensor.threshold should be(simulatedSmokeSensor.threshold) } }
albertogiunta/arianna
src/test/scala/system/cell/sensormanagement/sensors/SmokeSensorTest.scala
Scala
gpl-3.0
2,477
/* * Copyright (C) 2012 reuillon * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package org.openmole.plugin.environment.egi import org.openmole.core.batch.storage.{ RemoteStorage, SimpleStorage } import org.openmole.core.tools.io.FileUtil import org.openmole.core.workspace.Workspace import FileUtil._ import fr.iscpif.gridscale.storage.{ Storage ⇒ GSStorage } import java.io.File import java.net.URI import scala.sys.process._ class RemoteGliteStorage(val host: String, val port: Int, val voName: String) extends RemoteStorage with LCGCp { s ⇒ val timeout = Workspace.preferenceAsDuration(EGIEnvironment.RemoteTimeout).toSeconds @transient lazy val url = new URI("srm", null, host, port, null, null, null) protected def run(cmd: String) = { val output = new StringBuilder val error = new StringBuilder val logger = ProcessLogger( (o: String) ⇒ output.append("\\n" + o), (e: String) ⇒ error.append("\\n" + e) ) val exit = Process(cmd) ! logger if (exit != 0) throw new RuntimeException(s"Command $cmd had a non 0 return value.\\n Output: ${output.toString}. Error: ${error.toString}") output.toString } override def child(parent: String, child: String): String = GSStorage.child(parent, child) override def downloadGZ(src: String, dest: File): Unit = Workspace.withTmpFile { tmpFile ⇒ download(src, tmpFile) tmpFile.copyUncompressFile(dest) } override def download(src: String, dest: File): Unit = run(lcgCpCmd(url.resolve(src), dest.getAbsolutePath)) override def uploadGZ(src: File, dest: String): Unit = Workspace.withTmpFile { tmpFile ⇒ src.copyCompressFile(tmpFile) upload(tmpFile, dest) } override def upload(src: File, dest: String): Unit = run(lcgCpCmd(src.getAbsolutePath, url.resolve(dest))) }
ISCPIF/PSEExperiments
openmole-src/openmole/plugins/org.openmole.plugin.environment.egi/src/main/scala/org/openmole/plugin/environment/egi/RemoteGliteStorage.scala
Scala
agpl-3.0
2,423
/* Copyright The MITRE Corporation 2009-2010. All rights reserved. */ package org.mitre.jcarafe.posttagger import org.mitre.jcarafe.tagger.TaggerTask import org.mitre.jcarafe.crf.FactoredTrainer import org.mitre.jcarafe.crf.FactoredDecoder import org.mitre.jcarafe.crf.TrainingSeqGen import org.mitre.jcarafe.crf.FactoredDecodingSeqGen import org.mitre.jcarafe.crf.TextSeqGen import org.mitre.jcarafe.crf.SeqGenScorer import org.mitre.jcarafe.crf.TrainingFactoredFeatureRep import org.mitre.jcarafe.crf.DecodingFactoredFeatureRep import org.mitre.jcarafe.crf.FeatureManagerBuilder import org.mitre.jcarafe.crf.SeqGenScorer import org.mitre.jcarafe.crf.StandardSerializer import org.mitre.jcarafe.util._ class SummaryTagger(argv: Array[String]) extends TaggerTask[Array[String]](argv) { import StandardSerializer._ lazy val trainer = new FactoredTrainer[Array[String]](opts) { val fspecStr = FeatureManagerBuilder.getFeatureSpecString(opts.featureSpec.get) val builder = new PostFeatureManagerBuilder(fspecStr) //FeatureManager.setWordProperties(opts, mgr) //FeatureManager.setLexicon(opts,mgr) val mgr = builder.getFeatureManager val fr = new TrainingFactoredFeatureRep[Array[String]](mgr, opts) val sGen : TrSeqGen = new TrainingSeqGen[Array[String]] (fr, opts) with SummarizationTextSeqGen } lazy val decoder = new FactoredDecoder[Array[String]](opts) { val model = readModel(opts.model.get) val builder = new PostFeatureManagerBuilder(model.fspec) //mgr.lex_=(model.lex) val mgr = builder.getFeatureManager val fr = new DecodingFactoredFeatureRep[Array[String]](mgr, opts, model, false) opts.priorAdjust match {case Some(v) => model.adjustParameter(org.mitre.jcarafe.crf.IncrementalMurmurHash.hash(":U:",0),Label("Post",Map("summary" -> "no")),v) case None => } val sGen : FactoredDecodingSeqGen[Array[String]] = new FactoredDecodingSeqGen[Array[String]] (fr, model,opts) with SummarizationTextSeqGen with SeqGenScorer[Array[String]] setDecoder(true) } } object SummaryTaggerMain { def printUsage = println(" Usage: ") def main(iargv: Array[String]) : Unit = { val tagger = new SummaryTagger(iargv) tagger.process()} }
wellner/jcarafe
jcarafe-ext/src/main/scala/org/mitre/jcarafe/posttagger/SummaryTagger.scala
Scala
bsd-3-clause
2,237
package dbtarzan.config.util import org.scalatest.flatspec.AnyFlatSpec class ByteArrayHexTest extends AnyFlatSpec { "converting to hex and back" should "give the original value" in { val original = "F263575E7B00A977A8E9A37E08B9C215FEB9BFB2F992B2B8F11E" val bytes = ByteArrayHex.fromHex(original) println(bytes) val hex = ByteArrayHex.toHex(bytes) assert(hex === original) } }
aferrandi/dbtarzan
src/test/scala/dbtarzan/config/util/ByteArrayHexTest.scala
Scala
apache-2.0
397
/*********************************************************************** * Copyright (c) 2013-2017 Commonwealth Computer Research, Inc. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Apache License, Version 2.0 * which accompanies this distribution and is available at * http://www.opensource.org/licenses/apache2.0.php. ***********************************************************************/ package org.locationtech.geomesa.features.serialization import com.typesafe.scalalogging.LazyLogging import org.geotools.factory.Hints // noinspection LanguageFeature trait GenericMapSerialization[T <: PrimitiveWriter, V <: PrimitiveReader] extends LazyLogging { def serialize(out: T, map: java.util.Map[AnyRef, AnyRef]): Unit def deserialize(in: V): java.util.Map[AnyRef, AnyRef] def deserialize(in: V, map: java.util.Map[AnyRef, AnyRef]): Unit protected def write(out: T, value: AnyRef) = value match { case v: String => out.writeString(v) case v: java.lang.Integer => out.writeInt(v) case v: java.lang.Long => out.writeLong(v) case v: java.lang.Float => out.writeFloat(v) case v: java.lang.Double => out.writeDouble(v) case v: java.lang.Boolean => out.writeBoolean(v) case v: java.util.Date => out.writeLong(v.getTime) case v: Hints.Key => out.writeString(HintKeySerialization.keyToId(v)) case _ => throw new IllegalArgumentException(s"Unsupported value: $value (${value.getClass})") } protected def read(in: V, clas: Class[_]): AnyRef = clas match { case c if classOf[java.lang.String].isAssignableFrom(c) => in.readString() case c if classOf[java.lang.Integer].isAssignableFrom(c) => Int.box(in.readInt()) case c if classOf[java.lang.Long].isAssignableFrom(c) => Long.box(in.readLong()) case c if classOf[java.lang.Float].isAssignableFrom(c) => Float.box(in.readFloat()) case c if classOf[java.lang.Double].isAssignableFrom(c) => Double.box(in.readDouble()) case c if classOf[java.lang.Boolean].isAssignableFrom(c) => Boolean.box(in.readBoolean()) case c if classOf[java.util.Date].isAssignableFrom(c) => new java.util.Date(in.readLong()) case c if classOf[Hints.Key].isAssignableFrom(c) => HintKeySerialization.idToKey(in.readString()) case _ => throw new IllegalArgumentException(s"Unsupported value class: $clas") } protected def canSerialize(obj: AnyRef): Boolean = obj match { case key: Hints.Key => HintKeySerialization.canSerialize(key) case _ => true } }
ronq/geomesa
geomesa-features/geomesa-feature-common/src/main/scala/org/locationtech/geomesa/features/serialization/GenericMapSerialization.scala
Scala
apache-2.0
2,588
package com.cave.metrics.data.influxdb import org.joda.time.DateTime import org.joda.time.format.ISODateTimeFormat import org.scalatest.mockito.MockitoSugar import org.scalatest.{FlatSpec, Matchers} import scala.concurrent.duration._ class InfluxClientSpec extends FlatSpec with Matchers with MockitoSugar { val SomeData = """ |[ | { | "name": "orders", | "columns": [ "time", "sequence_number", "value" ], | "points": [ | [ 1404086940, 54800001, 0], | [ 1404086880, 54820001, 0], | [ 1404086820, 54850001, 0], | [ 1404086760, 54860001, 0], | [ 1404086700, 54890001, 0], | [ 1404086640, 54900001, 0], | [ 1404086580, 54930001, 0], | [ 1404086520, 54940001, 0], | [ 1404086460, 54960001, 0] | ] | } |] """.stripMargin val mockConfig = mock[InfluxClusterConfig] val influxClient = new InfluxClient(mockConfig) "createResponse" should "return a proper map of data points" in { val data = influxClient.createResponse(SomeData) data.metrics.size should be(9) data.metrics.find(_.time == new DateTime(1404086940000L)).map(_.value) should be(Some(0)) } "Influx Client" should "generate valid Continuous Queries" in { influxClient.createSQL("METRIC", Map("tag_name1" -> "tag_val1", "tag_name2" -> "tag_val2"), "AGGREGATOR", 5.seconds , "QUERY_NAME") should be ( """select AGGREGATOR as value from "METRIC" where tag_name1='tag_val1' and tag_name2='tag_val2' group by time(5s) into "QUERY_NAME"""") influxClient.createSQL("METRIC", Map(), "AGGREGATOR", 5.hours , "QUERY_NAME") should be ( """select AGGREGATOR as value from "METRIC" group by time(18000s) into "QUERY_NAME"""") } val StartDateString = "2014-09-24 09:43:00" val StartDate = ISODateTimeFormat.dateTimeNoMillis().parseDateTime("2014-09-24T09:43:00Z") val EndDateString = "2014-09-25 09:43:00" val EndDate = ISODateTimeFormat.dateTimeNoMillis().parseDateTime("2014-09-25T09:43:00Z") it should "create valid queries for GetMetricData" in { influxClient.buildQuery("orders", Map.empty[String, String], None, None, None) should be( """select value from "orders" limit 1440""") influxClient.buildQuery("orders", Map.empty[String, String], None, None, Some(1)) should be( """select value from "orders" limit 1""") influxClient.buildQuery("orders", Map("shipTo" -> "US"), None, None, None) should be( """select value from "orders" where shipTo='US' limit 1440""") influxClient.buildQuery("orders", Map("shipTo" -> "US"), Some(StartDate), None, None) should be( s"""select value from "orders" where shipTo='US' and time > '$StartDateString' limit 1440""") influxClient.buildQuery("orders", Map("shipTo" -> "US"), None, Some(EndDate), None) should be( s"""select value from "orders" where shipTo='US' and time < '$EndDateString' limit 1440""") influxClient.buildQuery("orders", Map("shipTo" -> "US"), Some(StartDate), Some(EndDate), None) should be( s"""select value from "orders" where shipTo='US' and time > '$StartDateString' and time < '$EndDateString' limit 1440""") influxClient.buildQuery("orders", Map("shipTo" -> "US"), Some(StartDate), Some(EndDate), Some(2000)) should be( s"""select value from "orders" where shipTo='US' and time > '$StartDateString' and time < '$EndDateString' limit 1440""") influxClient.buildQuery("orders", Map("shipTo" -> "US"), Some(StartDate), Some(EndDate), Some(2)) should be( s"""select value from "orders" where shipTo='US' and time > '$StartDateString' and time < '$EndDateString' limit 2""") } it should "create valid queries for aggregated metrics" in { influxClient.buildAggregatedQuery("sum(value)", 5.minutes, "orders", Map.empty[String, String], None, None, None) should be( """select sum(value) from "orders" group by time(300s) limit 1440""") influxClient.buildAggregatedQuery("sum(value)", 5.minutes, "orders", Map.empty[String, String], None, None, Some(1)) should be( """select sum(value) from "orders" group by time(300s) limit 1""") influxClient.buildAggregatedQuery("sum(value)", 5.minutes, "orders", Map("shipTo" -> "US"), None, None, None) should be( """select sum(value) from "orders" where shipTo='US' group by time(300s) limit 1440""") influxClient.buildAggregatedQuery("sum(value)", 5.minutes, "orders", Map("shipTo" -> "US"), Some(StartDate), None, None) should be( s"""select sum(value) from "orders" where shipTo='US' and time > '$StartDateString' group by time(300s) limit 1440""") influxClient.buildAggregatedQuery("sum(value)", 5.minutes, "orders", Map("shipTo" -> "US"), None, Some(EndDate), None) should be( s"""select sum(value) from "orders" where shipTo='US' and time < '$EndDateString' group by time(300s) limit 1440""") influxClient.buildAggregatedQuery("sum(value)", 5.minutes, "orders", Map("shipTo" -> "US"), Some(StartDate), Some(EndDate), None) should be( s"""select sum(value) from "orders" where shipTo='US' and time > '$StartDateString' and time < '$EndDateString' group by time(300s) limit 1440""") influxClient.buildAggregatedQuery("sum(value)", 5.minutes, "orders", Map("shipTo" -> "US"), Some(StartDate), Some(EndDate), Some(2000)) should be( s"""select sum(value) from "orders" where shipTo='US' and time > '$StartDateString' and time < '$EndDateString' group by time(300s) limit 1440""") influxClient.buildAggregatedQuery("sum(value)", 5.minutes, "orders", Map("shipTo" -> "US"), Some(StartDate), Some(EndDate), Some(2)) should be( s"""select sum(value) from "orders" where shipTo='US' and time > '$StartDateString' and time < '$EndDateString' group by time(300s) limit 2""") } val SomeMetrics = """ |[ | { | "points": [ [ 1410878579000, 1226770002, 1, "29" ] ], | "columns": [ "time", "sequence_number", "value", "alert" ], | "name": "alertsHistory" | }, | { | "points": [ [ 1413890367000, 2576490001, 1, "stage57", "svc-sku-pricing", "stage" ] ], | "columns": [ "time", "sequence_number", "value", "host", "service", "environment" ], | "name": "svc-sku-pricing-publisher" | } |] """.stripMargin "createMetricInfoResponse" should "return a list of MetricInfo objects" in { val data = influxClient.createMetricInfoResponse(SomeMetrics) data.size should be(2) val skuData = data.find(_.name == "svc-sku-pricing-publisher").get skuData.tags.size should be(3) skuData.tags.contains("environment") should be(true) skuData.tags.contains("service") should be(true) skuData.tags.contains("host") should be(true) val alertsHistory = data.find(_.name == "alertsHistory").get alertsHistory.tags.size should be(1) alertsHistory.tags.contains("alert") should be(true) } }
gilt/cave
core/src/test/scala/com/cave/metrics/data/influxdb/InfluxClientSpec.scala
Scala
mit
6,975
package jauter import org.scalatest._ class RoutingSpec extends FlatSpec with Matchers { import StringMethodRouter.router "A router" should "ignore slashes at both ends" in { router.route(Method.GET, "articles").target should be ("index") router.route(Method.GET, "/articles").target should be ("index") router.route(Method.GET, "//articles").target should be ("index") router.route(Method.GET, "articles/").target should be ("index") router.route(Method.GET, "articles//").target should be ("index") router.route(Method.GET, "/articles/").target should be ("index") router.route(Method.GET, "//articles//").target should be ("index") } "A router" should "handle empty params" in { val routed = router.route(Method.GET, "/articles") routed.target should be ("index") routed.params.size should be (0) } "A router" should "handle params" in { val routed = router.route(Method.GET, "/articles/123") routed.target should be ("show") routed.params.size should be (1) routed.params.get("id") should be ("123") } "A router" should "handle none" in { val router = (new MethodlessRouter[String]).pattern("/articles", "index") val routed = router.route("/noexist") (routed == null) should be (true) } "A router" should "handle splat (wildcard)" in { val routed = router.route(Method.GET, "/download/foo/bar.png") routed.target should be ("download") routed.params.size should be (1) routed.params.get("*") should be ("foo/bar.png") } "A router" should "handle subclasses" in { trait Action class Index extends Action class Show extends Action val router = new MethodlessRouter[Class[_ <: Action]] router.pattern("/articles", classOf[Index]) router.pattern("/articles/:id", classOf[Show]) val routed1 = router.route("/articles") val routed2 = router.route("/articles/123") routed1.target should be (classOf[Index]) routed2.target should be (classOf[Show]) } "A router" should "handle order" in { val routed1 = router.route(Method.GET, "/articles/new") routed1.target should be ("new") routed1.params.size should be (0) val routed2 = router.route(Method.GET, "/articles/123") routed2.target should be ("show") routed2.params.size should be (1) routed2.params.get("id") should be ("123") val routed3 = router.route(Method.GET, "/notfound") routed3.target should be ("404") routed3.params.size should be (0) } "A router" should "handle any method" in { val routed1 = router.route(Method.GET, "/any") routed1.target should be ("any") routed1.params.size should be (0) val routed2 = router.route(Method.POST, "/any") routed2.target should be ("any") routed2.params.size should be (0) } "A router" should "handle remove by target" in { val router = (new MethodlessRouter[String]).pattern("/articles", "index") router.removeTarget("index") val routed = router.route("/articles") (routed == null) should be (true) } "A router" should "handle remove by path" in { val router = (new MethodlessRouter[String]).pattern("/articles", "index") router.removePath("/articles") val routed = router.route("/articles") (routed == null) should be (true) } }
sinetja/jauter
src/test/scala/jauter/RoutingSpec.scala
Scala
mit
3,390
package coltfred.jsongenerator import scalaz.effect.IO import scalaz._, Scalaz._ import com.nicta.rng.Rng object Main extends scalaz.effect.SafeApp { //implicit vals to allow closing of Source and the output stream. implicit val resource = new scalaz.effect.Resource[scala.io.BufferedSource] { def close(b: scala.io.BufferedSource): IO[Unit] = IO(b.close) } implicit val resource2 = new scalaz.effect.Resource[java.io.OutputStreamWriter] { def close(b: java.io.OutputStreamWriter): IO[Unit] = IO(b.close) } private[this] final val Utf8Encoding = "utf-8" private[this] val recordGenerator = new RngOutputRecordGenerator() override def runl(args: List[String]): IO[Unit] = { if (args.length != 3) { IO.putStrLn("Usage: Main <input json> <output dir> <# of records>") } else { val inputFilename = args(0) val outputFilename = args(1) val numRecords = \\/.fromTryCatch(args(2).toInt).leftMap(ex => ParseError(ex.getMessage)) val eitherT = for { recordCount <- EitherT(numRecords.point[IO]) input <- readFile(inputFilename) //The values don't matter as long as they parse. //Could be changed if we want to be more strict. graph <- EitherT(Graph.fromJson[argonaut.Json](input).point[IO]) randomRecords = recordGenerator.generateValues[argonaut.Json](graph).fill(recordCount).run outputs <- EitherT.right(randomRecords) _ <- writeFile(outputFilename, outputs) } yield () eitherT.run.flatMap(_.fold(printErrorAndExit, _.point[IO])) } } def printErrorAndExit(error: Error): IO[Unit] = for { _ <- IO.putStrLn(error.toString) _ <- IO(sys.exit(1)) } yield () def readFile(filename: String): EitherT[IO, Error, String] = EitherT { import scala.io.BufferedSource IO(scala.io.Source.fromFile(filename, Utf8Encoding)).using { source: BufferedSource => IO(source.getLines.mkString("\\n")) }.catchLeft.map(_.leftMap(FileReadError(_))) } def writeFile[A: argonaut.EncodeJson](outputFilename: String, actions: List[OutputRecord[A]]): EitherT[IO, Error, Unit] = EitherT { import java.io._ import argonaut._, Argonaut._ def initFile(fileName: String, append: Boolean = false): OutputStreamWriter = new OutputStreamWriter(new FileOutputStream(fileName, append), Utf8Encoding) IO(initFile(outputFilename)).using { writer: OutputStreamWriter => IO(writer.write(actions.asJson.spaces2)) }.catchLeft.map(_.leftMap(FileWriteError(_))) } }
coltfred/jsongenerator
src/main/scala/coltfred/jsongenerator/Main.scala
Scala
apache-2.0
2,520
package basics object PartialApplication { val add = (x: Int, y: Int) => x + y val addPartial = add(2, _: Int) def doAddPartial(x:Int) = addPartial(x) }
szaqal/KitchenSink
Scala/01/src/main/scala/basics/PartialApplication.scala
Scala
gpl-3.0
167
package team16.euler /** * 10001st prime * Problem 7 * By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. * * What is the 10,001st prime number? */ import Stream._ object Problem007 extends App { def isPrime(primes: List[Long], x: Long) = primes.find(p => x % p == 0L) == None def addIfPrime(primes: List[Long], x: Long) = { if(isPrime(primes, x)) primes :+ x else primes } def addNextPrime(primes: List[Long], from: Long) = { primes :+ ( iterate(from) { i => i + 1 } find(i => isPrime(primes, i)) get) } val n = 10001 var primes = List[Long](2) while(primes.length < n) { primes = addNextPrime(primes, primes.last) } println(primes last) }
gatesy/euler-scala
src/team16/euler/Problem007.scala
Scala
gpl-2.0
789
/** * Copyright 2013-2015 PayPal * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.paypal.cascade.http.tests.matchers import akka.actor.Actor import org.specs2.matcher.{MatchResult, Expectable, Matcher} import com.paypal.cascade.http.tests.actor.RefAndProbe import scala.util.Try /** * this trait has specs2 matcher functionality for the [[com.paypal.cascade.http.tests.actor.RefAndProbe]] class. Mix it into your [[org.specs2.Specification]] (or trait/class inside your specification). * * Example usage: * * {{{ * class MySpec extends Specification { override def is = s2""" * MySpec1 ${spec1} * """ * * implicit system = ActorSystem("hello-world") * * def mySpec1 = { * val r = RefAndProbe(TestActorRef(new MyActor)) * //... * system.stop(r.ref) * r must beStopped * } * } * }}} * */ trait RefAndProbeMatchers { /** * the matcher for testing whether the [[akka.testkit.TestActorRef]] inside the [[com.paypal.cascade.http.tests.actor.RefAndProbe]] is stopped * @tparam T the [[akka.actor.Actor]] that the [[akka.testkit.TestActorRef]] contains */ class RefAndProbeIsStopped[T <: Actor]() extends Matcher[RefAndProbe[T]] { override def apply[S <: RefAndProbe[T]](r: Expectable[S]): MatchResult[S] = { val refAndProbe = r.value val res = Try(refAndProbe.probe.expectTerminated(refAndProbe.ref)) result(res.isSuccess, s"${refAndProbe.ref} has stopped", s"${refAndProbe.ref} is not stopped", r) } } /** * the matcher function to test whether the [[akka.testkit.TestActorRef]] inside a [[com.paypal.cascade.http.tests.actor.RefAndProbe]] is stopped * * Example usage: * * {{{ * val refAndProbe = RefAndProbe(TestActorRef(new MyActor)) * //do stuff with refAndProbe.ref * ... * //shut down refAndProbe.ref * refAndProbe must beStopped * }}} * @tparam T the [[akka.actor.Actor]] that the [[akka.testkit.TestActorRef]] contains * @return the new matcher. */ def beStopped[T <: Actor] = { new RefAndProbeIsStopped[T] } }
2rs2ts/cascade
http/src/test/scala/com/paypal/cascade/http/tests/matchers/RefAndProbeMatchers.scala
Scala
apache-2.0
2,601
package net.batyuk.akkahttp.examples.api import akka.http.marshallers.xml.ScalaXmlSupport import akka.http.server.directives.AuthenticationDirectives._ import com.typesafe.config.{ ConfigFactory, Config } import akka.actor.ActorSystem import akka.pattern._ import scala.concurrent.duration._ import akka.util.Timeout import akka.stream.FlowMaterializer import akka.http.Http import akka.http.server._ import net.batyuk.akkahttp.examples.core.PongActor import scala.concurrent.duration.Duration object TestServer extends App { val testConf: Config = ConfigFactory.parseString(""" akka.loglevel = INFO akka.log-dead-letters = off""") implicit val system = ActorSystem("ServerTest", testConf) import system.dispatcher implicit val materializer = FlowMaterializer() implicit val timeout = Timeout(5 seconds) import ScalaXmlSupport._ import Directives._ def auth = HttpBasicAuthenticator.provideUserName { case p @ UserCredentials.Provided(name) ⇒ p.verifySecret(name + "-password") case _ ⇒ false } val binding = Http().bind(interface = "localhost", port = 8080) val materializedMap = binding startHandlingWith { get { path("") { complete(index) } ~ pathPrefix("static") { getFromResourceDirectory("static/") } ~ path("secure") { HttpBasicAuthentication("My very secure site")(auth) { user ⇒ complete(<html><body>Hello <b>{ user }</b>. Access has been granted!</body></html>) } } ~ path("ping") { complete("PONG!") } ~ path("coreping") { complete((system.actorOf(PongActor.props) ? "ping").mapTo[String]) } ~ path("crash") { complete(sys.error("BOOM!")) } ~ path("shutdown") { shutdown complete("SHUTDOWN") } } } def shutdown(): Unit = binding.unbind(materializedMap).onComplete(_ ⇒ system.shutdown()) lazy val index = <html> <body> <h1>Say hello to <i>akka-http-core</i>!</h1> <p>Defined resources:</p> <ul> <li><a href="/ping">/ping</a></li> <li><a href="/coreping">/coreping</a> - ping from actor in another project</li> <li><a href="/static/index.html">/static/index.html</a> - serving static content from the src/main/resources</li> <li><a href="/secure">/secure</a> Use any username and '&lt;username&gt;-password' as credentials</li> <li><a href="/crash">/crash</a></li> <li><a href="/shutdown">/shutdown</a> - never do this in production :-)</li> </ul> </body> </html> }
abatyuk/akka-http-examples
multiProject/api/src/main/scala/net/batyuk/akkahttp/examples/api/TestServer.scala
Scala
apache-2.0
2,699
/* * Copyright 2006-2010 WorldWide Conferencing, LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package net.liftweb { package mapper { import _root_.java.sql.{Connection,PreparedStatement,ResultSet,Statement} import _root_.net.liftweb.common._ /** * JDBC Driver Abstraction base class. New driver types should extend this base * class. New drivers should "register" in the companion object * DriverType.calcDriver method. */ abstract class DriverType(val name : String) { def binaryColumnType: String def clobColumnType: String def varcharColumnType(len : Int) : String = "VARCHAR(%d)".format(len) def booleanColumnType: String def dateTimeColumnType: String def dateColumnType: String def timeColumnType: String def integerColumnType: String def integerIndexColumnType: String def enumColumnType: String def longForeignKeyColumnType: String def longIndexColumnType: String def enumListColumnType: String def longColumnType: String def doubleColumnType: String def supportsForeignKeys_? : Boolean = false def createTablePostpend: String = "" /** * Whether this database supports LIMIT clause in SELECTs. */ def brokenLimit_? : Boolean = false /** * Whether the primary key has been defined by the index column. */ def pkDefinedByIndexColumn_? : Boolean = false /** * Maximum value of the LIMIT clause in SELECT. */ def maxSelectLimit : String = _root_.java.lang.Long.MAX_VALUE.toString /** * Performs an insert and optionally returns the ResultSet of the generated keys that were inserted. If no keys are * specified, return the number of rows updated. * * @param conn A connection that the method can optionally use if it needs to execute ancillary statements * @param query The prepared query string to use for the insert * @param setter A function that will set the parameters on the prepared statement * @param pkName Zero or more generated column names that need to be returned */ def performInsert [T](conn : SuperConnection, query : String, setter : PreparedStatement => Unit, tableName : String, genKeyNames : List[String])(handler : Either[ResultSet,Int] => T) : T = genKeyNames match { case Nil => DB.prepareStatement(query, conn) { stmt => setter(stmt) handler(Right(stmt.executeUpdate)) } case pk => performInsertWithGenKeys(conn, query, setter, tableName, pk, handler) } /* * Subclasses should override this method if they don't have proper getGeneratedKey support (JDBC3) */ protected def performInsertWithGenKeys [T](conn : SuperConnection, query : String, setter : PreparedStatement => Unit, tableName : String, genKeyNames : List[String], handler : Either[ResultSet,Int] => T) : T = DB.prepareStatement(query, Statement.RETURN_GENERATED_KEYS, conn) { stmt => setter(stmt) stmt.executeUpdate handler(Left(stmt.getGeneratedKeys)) } /** * Name of the default db schema. If not set, then the schema is assumed to * equal the db user name. */ def defaultSchemaName : Box[String] = Empty type TypeMapFunc = PartialFunction[Int,Int] /** * Allow the driver to do specific remapping of column types for cases * where not all types are supported. Classes that want to do custom type * mapping for columns should override the customColumnTypeMap method. */ def columnTypeMap : TypeMapFunc = customColumnTypeMap orElse { case x => x } /** * Allows the Vendor-specific Driver to do custom type mapping for a particular * column type. */ protected def customColumnTypeMap : TypeMapFunc = new TypeMapFunc { def apply (in : Int) = -1 def isDefinedAt (in : Int) = false } /** * This method can be overriden by DriverType impls to allow for custom setup * of Primary Key Columns (creating sequeneces or special indices, for example). * The List of commands will be executed in order. */ def primaryKeySetup(tableName : String, columnName : String) : List[String] = { List("ALTER TABLE "+tableName+" ADD CONSTRAINT "+tableName+"_PK PRIMARY KEY("+columnName+")") } /** This defines the syntax for adding a column in an alter. This is * used because some DBs (Oracle, for one) use slightly different syntax. */ def alterAddColumn = "ADD COLUMN" } object DriverType { var calcDriver: Connection => DriverType = conn => { val meta = conn.getMetaData (meta.getDatabaseProductName,meta.getDatabaseMajorVersion,meta.getDatabaseMinorVersion) match { case (DerbyDriver.name,_,_) => DerbyDriver case (MySqlDriver.name,_,_) => MySqlDriver case (PostgreSqlDriver.name, major, minor) if ((major == 8 && minor >= 2) || major > 8) => PostgreSqlDriver case (PostgreSqlDriver.name, _, _) => PostgreSqlOldDriver case (H2Driver.name,_,_) => H2Driver case (SqlServerDriver.name,major,_) if major >= 9 => SqlServerDriver case (SqlServerDriver.name,_,_) => SqlServerPre2005Driver case (OracleDriver.name,_,_) => OracleDriver case (MaxDbDriver.name,_,_) => MaxDbDriver case x => throw new Exception( "Lift mapper does not support JDBC driver %s.\n".format(x) + "See http://wiki.liftweb.net/index.php/Category:Database for a list of supported databases.") } } } object DerbyDriver extends DriverType("Apache Derby") { def binaryColumnType = "LONG VARCHAR FOR BIT DATA" def booleanColumnType = "SMALLINT" def clobColumnType = "LONG VARCHAR" def dateTimeColumnType = "TIMESTAMP" def dateColumnType = "DATE" def timeColumnType = "TIME" def integerColumnType = "INTEGER" def integerIndexColumnType = "INTEGER NOT NULL GENERATED BY DEFAULT AS IDENTITY" def enumColumnType = "BIGINT" def longForeignKeyColumnType = "BIGINT" def longIndexColumnType = "BIGINT NOT NULL GENERATED BY DEFAULT AS IDENTITY" def enumListColumnType = "BIGINT" def longColumnType = "BIGINT" def doubleColumnType = "DOUBLE" override def brokenLimit_? : Boolean = true } object MySqlDriver extends DriverType("MySQL") { def binaryColumnType = "MEDIUMBLOB" def clobColumnType = "LONGTEXT" def booleanColumnType = "BOOLEAN" def dateTimeColumnType = "DATETIME" def dateColumnType = "DATE" def timeColumnType = "TIME" def integerColumnType = "INTEGER" def integerIndexColumnType = "INTEGER NOT NULL AUTO_INCREMENT UNIQUE" def enumColumnType = "BIGINT" def longForeignKeyColumnType = "BIGINT UNSIGNED" def longIndexColumnType = "BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE KEY" def enumListColumnType = "BIGINT" def longColumnType = "BIGINT" def doubleColumnType = "DOUBLE" override def createTablePostpend: String = " ENGINE = InnoDB " } object H2Driver extends DriverType("H2") { def binaryColumnType = "BINARY" def clobColumnType = "LONGVARCHAR" def booleanColumnType = "BOOLEAN" def dateTimeColumnType = "TIMESTAMP" def dateColumnType = "DATE" def timeColumnType = "TIME" def integerColumnType = "INTEGER" def integerIndexColumnType = "INTEGER NOT NULL AUTO_INCREMENT" def enumColumnType = "BIGINT" def longForeignKeyColumnType = "BIGINT" def longIndexColumnType = "BIGINT NOT NULL AUTO_INCREMENT" def enumListColumnType = "BIGINT" def longColumnType = "BIGINT" def doubleColumnType = "DOUBLE" /** * Whether the primary key has been defined by the index column. * H2 creates primary key for a table, when AUTO_INCREMENT type * is used. <--- NOT TRUE * I went into the H2 console, created a table with auto_increment * and was able to insert duplicate ids. Then I created it with * AUTO_INCREMENT PRIMARY KEY and it did not allow it. */ override def pkDefinedByIndexColumn_? : Boolean = false //changed to false by nafg override def maxSelectLimit = "0"; override def defaultSchemaName : Box[String] = Full("PUBLIC") } /** * Provides some base definitions for PostgreSql databases. */ abstract class BasePostgreSQLDriver extends DriverType("PostgreSQL") { def binaryColumnType = "BYTEA" def clobColumnType = "TEXT" def booleanColumnType = "BOOLEAN" def dateTimeColumnType = "TIMESTAMP" def dateColumnType = "DATE" def timeColumnType = "TIME" def integerColumnType = "INTEGER" def integerIndexColumnType = "SERIAL" def enumColumnType = "BIGINT" def longForeignKeyColumnType = "BIGINT" def longIndexColumnType = "BIGSERIAL" def enumListColumnType = "BIGINT" def longColumnType = "BIGINT" def doubleColumnType = "DOUBLE PRECISION" override def maxSelectLimit = "ALL" /** * "$user" schema is searched before "public", but it does not exist by default, * so "public" is our default choice. */ override def defaultSchemaName : Box[String] = Full("public") } /** * PostgreSql driver for versions 8.2 and up. Tested with: * * <ul> * <li>8.3</li> * </ul> */ object PostgreSqlDriver extends BasePostgreSQLDriver { /* PostgreSQL doesn't support generated keys via the JDBC driver. Instead, we use the RETURNING clause on the insert. * From: http://www.postgresql.org/docs/8.2/static/sql-insert.html */ override def performInsertWithGenKeys [T](conn : SuperConnection, query : String, setter : PreparedStatement => Unit, tableName : String, genKeyNames : List[String], handler : Either[ResultSet,Int] => T) : T = DB.prepareStatement(query + " RETURNING " + genKeyNames.mkString(","), conn) { stmt => setter(stmt) handler(Left(stmt.executeQuery)) } } /** * PostgreSql driver for versions 8.1 and earlier. Tested with * * <ul> * <li>8.1</li> * <li>8.0</li> * </ul> * * Successfuly use of earlier versions should be reported to [email protected]. */ object PostgreSqlOldDriver extends BasePostgreSQLDriver { /* PostgreSQL doesn't support generated keys via the JDBC driver. * Instead, we use the lastval() function to get the last inserted * key from the DB. */ override def performInsertWithGenKeys [T](conn : SuperConnection, query : String, setter : PreparedStatement => Unit, tableName : String, genKeyNames : List[String], handler : Either[ResultSet,Int] => T) : T = { DB.prepareStatement(query, conn) { stmt => setter(stmt) stmt.executeUpdate } val pkValueQuery = genKeyNames.map(String.format("currval('%s_%s_seq')", tableName, _)).mkString(", ") DB.statement(conn) { stmt => handler(Left(stmt.executeQuery("SELECT " + pkValueQuery))) } } } abstract class SqlServerBaseDriver extends DriverType("Microsoft SQL Server") { def binaryColumnType = "IMAGE" def booleanColumnType = "BIT" override def varcharColumnType(len : Int) : String = "NVARCHAR(%d)".format(len) def clobColumnType = "NTEXT" def dateTimeColumnType = "DATETIME" def dateColumnType = "DATE" def timeColumnType = "TIME" def integerColumnType = "INT" def integerIndexColumnType = "INT IDENTITY NOT NULL" def enumColumnType = "BIGINT" def longForeignKeyColumnType = "BIGINT" def longIndexColumnType = "BIGINT IDENTITY NOT NULL" def enumListColumnType = "BIGINT" def longColumnType = "BIGINT" def doubleColumnType = "FLOAT" override def defaultSchemaName : Box[String] = Full("dbo") // Microsoft doesn't use "COLUMN" syntax when adding a column to a table override def alterAddColumn = "ADD" } /** * Microsoft SQL Server driver for versions 2000 and below */ object SqlServerPre2005Driver extends SqlServerBaseDriver object SqlServerDriver extends SqlServerBaseDriver { override def binaryColumnType = "VARBINARY(MAX)" override def clobColumnType = "NVARCHAR(MAX)" } /** * Driver for Oracle databases. Tested with: * * <ul> * <li>Oracle XE 10.2.0.1</li> * </ul> * * Other working install versions should be reported to [email protected]. */ object OracleDriver extends DriverType("Oracle") { def binaryColumnType = "LONG RAW" def booleanColumnType = "NUMBER" def clobColumnType = "CLOB" def dateTimeColumnType = "TIMESTAMP" /* * It's unclear whether DATE would suffice here. The PL/SQL ref at * http://download.oracle.com/docs/cd/B19306_01/java.102/b14355/apxref.htm * seems to indicate that DATE and TIMESTAMP can both be used * for java.sql.Date and java.sql.Time representations. */ def dateColumnType = "TIMESTAMP" def timeColumnType = "TIMESTAMP" def integerColumnType = "NUMBER" def integerIndexColumnType = "NUMBER NOT NULL" def enumColumnType = "NUMBER" def longForeignKeyColumnType = "NUMBER" def longIndexColumnType = "NUMBER NOT NULL" def enumListColumnType = "NUMBER" def longColumnType = "NUMBER" def doubleColumnType = "NUMBER" /** * Whether this database supports LIMIT clause in SELECTs. */ override def brokenLimit_? : Boolean = true import _root_.java.sql.Types override def customColumnTypeMap = { case Types.BOOLEAN => Types.INTEGER } override def primaryKeySetup(tableName : String, columnName : String) : List[String] = { /* * This trigger and sequence setup is taken from http://www.databaseanswers.org/sql_scripts/ora_sequence.htm */ super.primaryKeySetup(tableName, columnName) ::: List("CREATE SEQUENCE " + tableName + "_sequence START WITH 1 INCREMENT BY 1", "CREATE OR REPLACE TRIGGER " + tableName + "_trigger BEFORE INSERT ON " + tableName + " " + "FOR EACH ROW " + "WHEN (new." + columnName + " is null) " + "BEGIN " + "SELECT " + tableName + "_sequence.nextval INTO :new." + columnName + " FROM DUAL; " + "END;") } // Oracle supports returning generated keys only if we specify the names of the column(s) to return. override def performInsertWithGenKeys [T](conn : SuperConnection, query : String, setter : PreparedStatement => Unit, tableName : String , genKeyNames : List[String], handler : Either[ResultSet,Int] => T) : T = DB.prepareStatement(query, genKeyNames.toArray, conn) { stmt => setter(stmt) stmt.executeUpdate handler(Left(stmt.getGeneratedKeys)) } // Oracle doesn't use "COLUMN" syntax when adding a column to a table override def alterAddColumn = "ADD" } object MaxDbDriver extends DriverType("MaxDB") { def binaryColumnType = "BLOB" def booleanColumnType = "BOOLEAN" def clobColumnType = "CLOB" def dateTimeColumnType = "TIMESTAMP" def dateColumnType = "DATE" def timeColumnType = "TIME" def integerColumnType = "INTEGER" def integerIndexColumnType = "FIXED(10) DEFAULT SERIAL" def enumColumnType = "FIXED(38)" def longForeignKeyColumnType = "FIXED(38)" def longIndexColumnType = "FIXED(38) DEFAULT SERIAL" def enumListColumnType = "FIXED(38)" def longColumnType = "FIXED(38)" def doubleColumnType = "FLOAT(38)" } } }
jeppenejsum/liftweb
framework/lift-persistence/lift-mapper/src/main/scala/net/liftweb/mapper/Driver.scala
Scala
apache-2.0
15,343
/* ************************************************************************************* * Copyright 2011 Normation SAS ************************************************************************************* * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * In accordance with the terms of section 7 (7. Additional Terms.) of * the GNU Affero GPL v3, the copyright holders add the following * Additional permissions: * Notwithstanding to the terms of section 5 (5. Conveying Modified Source * Versions) and 6 (6. Conveying Non-Source Forms.) of the GNU Affero GPL v3 * licence, when you create a Related Module, this Related Module is * not considered as a part of the work and may be distributed under the * license agreement of your choice. * A "Related Module" means a set of sources files including their * documentation that, without modification of the Source Code, enables * supplementary functions or services in addition to those offered by * the Software. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see <http://www.gnu.org/licenses/agpl.html>. * ************************************************************************************* */ package com.normation.rudder.web.components import scala.xml.NodeSeq import scala.xml.Text import com.normation.inventory.domain.NodeId import com.normation.plugins.SnippetExtensionKey import com.normation.plugins.SpringExtendableSnippet import com.normation.rudder.authorization.Edit import com.normation.rudder.authorization.Read import com.normation.rudder.domain.nodes.NodeGroupId import com.normation.rudder.domain.policies.DirectiveId import com.normation.rudder.domain.policies.FullRuleTargetInfo import com.normation.rudder.domain.policies.GroupTarget import com.normation.rudder.domain.policies.Rule import com.normation.rudder.domain.policies.RuleTarget import com.normation.rudder.domain.policies.TargetUnion import com.normation.rudder.domain.policies.TargetExclusion import com.normation.rudder.domain.reports._ import com.normation.rudder.domain.workflows.ChangeRequestId import com.normation.rudder.repository.FullActiveTechniqueCategory import com.normation.rudder.repository.FullNodeGroupCategory import com.normation.rudder.web.components.popup.RuleModificationValidationPopup import com.normation.rudder.web.model.CurrentUser import com.normation.rudder.web.model.FormTracker import com.normation.rudder.web.model.WBTextAreaField import com.normation.rudder.web.model.WBTextField import com.normation.rudder.web.services.DisplayDirectiveTree import com.normation.rudder.web.services.DisplayNodeGroupTree import bootstrap.liftweb.RudderConfig import net.liftweb.common._ import net.liftweb.http.DispatchSnippet import net.liftweb.http.S import net.liftweb.http.SHtml import net.liftweb.http.SHtml.BasicElemAttr import net.liftweb.http.SHtml.ElemAttr.pairToBasic import net.liftweb.http.Templates import net.liftweb.http.js.JE._ import net.liftweb.http.js.JsCmd import net.liftweb.http.js.JsCmds._ import net.liftweb.json._ import net.liftweb.util.ClearClearable import net.liftweb.util.Helpers import net.liftweb.util.Helpers._ import com.normation.rudder.domain.nodes.NodeInfo import org.joda.time.DateTime import com.normation.rudder.web.model.WBSelectField import com.normation.rudder.rule.category.RuleCategoryId import com.normation.rudder.domain.policies.TargetExclusion import com.normation.rudder.domain.policies.TargetComposition import com.normation.rudder.web.services.CategoryHierarchyDisplayer import com.normation.rudder.rule.category.RoRuleCategoryRepository import com.normation.rudder.rule.category.RuleCategoryId import com.normation.rudder.web.model.JsInitContextLinkUtil object RuleEditForm { /** * This is part of component static initialization. * Any page which contains (or may contains after an ajax request) * that component have to add the result of that method in it. */ def staticInit:NodeSeq = (for { xml <- Templates("templates-hidden" :: "components" :: "ComponentRuleEditForm" :: Nil) } yield { chooseTemplate("component", "staticInit", xml) }) openOr Nil private def body = (for { xml <- Templates("templates-hidden" :: "components" :: "ComponentRuleEditForm" :: Nil) } yield { chooseTemplate("component", "body", xml) }) openOr Nil private def crForm = (for { xml <- Templates("templates-hidden" :: "components" :: "ComponentRuleEditForm" :: Nil) } yield { chooseTemplate("component", "form", xml) }) openOr Nil val htmlId_groupTree = "groupTree" val htmlId_activeTechniquesTree = "userPiTree" } /** * The form that handles Rule edition * (not creation) * - update name, description, etc * - update parameters * * It handle save itself (TODO: see how to interact with the component parent) * * Parameters can not be null. * * Injection should not be used in components * ( WHY ? I will try to see...) * */ class RuleEditForm( htmlId_rule : String //HTML id for the div around the form , var rule : Rule //the Rule to edit , workflowEnabled : Boolean , changeMsgEnabled : Boolean , onSuccessCallback : (Rule) => JsCmd = { (r : Rule) => Noop } //JS to execute on form success (update UI parts) //there are call by name to have the context matching their execution when called, , onFailureCallback : () => JsCmd = { () => Noop } , onCloneCallback : (Rule) => JsCmd = { (r:Rule) => Noop } ) extends DispatchSnippet with SpringExtendableSnippet[RuleEditForm] with Loggable { import RuleEditForm._ private[this] val htmlId_save = htmlId_rule + "Save" private[this] val htmlId_EditZone = "editRuleZone" private[this] val roRuleRepository = RudderConfig.roRuleRepository private[this] val roCategoryRepository = RudderConfig.roRuleCategoryRepository private[this] val userPropertyService = RudderConfig.userPropertyService private[this] val categoryService = RudderConfig.ruleCategoryService private[this] val roChangeRequestRepo = RudderConfig.roChangeRequestRepository private[this] val categoryHierarchyDisplayer = RudderConfig.categoryHierarchyDisplayer private[this] var ruleTarget = RuleTarget.merge(rule.targets) private[this] var selectedDirectiveIds = rule.directiveIds private[this] val getFullNodeGroupLib = RudderConfig.roNodeGroupRepository.getFullGroupLibrary _ private[this] val getFullDirectiveLib = RudderConfig.roDirectiveRepository.getFullDirectiveLibrary _ private[this] val getAllNodeInfos = RudderConfig.nodeInfoService.getAll _ private[this] val usedDirectiveIds = roRuleRepository.getAll().getOrElse(Seq()).flatMap { case r => r.directiveIds.map( id => (id -> r.id)) }.groupBy( _._1 ).mapValues( _.size).toSeq //////////////////////////// public methods //////////////////////////// val extendsAt = SnippetExtensionKey(classOf[RuleEditForm].getSimpleName) def mainDispatch = Map( "showForm" -> { _:NodeSeq => showForm() }, "showEditForm" -> { _:NodeSeq => showForm(1)} ) private[this] def showForm(tab :Int = 0) : NodeSeq = { (getFullNodeGroupLib(), getFullDirectiveLib(), getAllNodeInfos()) match { case (Full(groupLib), Full(directiveLib), Full(nodeInfos)) => val form = { if(CurrentUser.checkRights(Read("rule"))) { val formContent = if (CurrentUser.checkRights(Edit("rule"))) { showCrForm(groupLib, directiveLib) } else { <div>You have no rights to see rules details, please contact your administrator</div> } ( s"#${htmlId_EditZone} *" #> { (n:NodeSeq) => SHtml.ajaxForm(n) } andThen ClearClearable & "#ruleForm" #> formContent & "#details" #> new RuleCompliance(rule,directiveLib, nodeInfos).display & actionButtons() ).apply(body) } else { <div>You have no rights to see rules details, please contact your administrator</div> } } def updateCompliance() = { roRuleRepository.get(rule.id) match { case Full(updatedrule) => new RuleCompliance(updatedrule,directiveLib, nodeInfos).display case eb:EmptyBox => logger.error("could not get updated version of the Rule") <div>Could not get updated version of the Rule, please </div> } } val ruleComplianceTabAjax = SHtml.ajaxCall(JsRaw("'"+rule.id.value+"'"), (v:String) => Replace("details",updateCompliance()))._2.toJsCmd form ++ Script( OnLoad(JsRaw( s"""$$( "#editRuleZone" ).tabs(); $$( "#editRuleZone" ).tabs('select', ${tab});""" )) & JsRaw(s""" | $$("#editRuleZone").bind( "show", function(event, ui) { | if(ui.panel.id== 'ruleComplianceTab') { ${ruleComplianceTabAjax}; } | }); """.stripMargin('|') ) ) case (a, b, c) => List(a,b,c).collect{ case eb: EmptyBox => val e = eb ?~! "An error happens when trying to get the node group library" logger.error(e.messageChain) <div class="error">{e.msg}</div> } } } private[this] def actionButtons () = { "#removeAction *" #> { SHtml.ajaxButton("Delete", () => onSubmitDelete(),("class","dangerButton")) } & "#desactivateAction *" #> { val status = rule.isEnabledStatus ? "disable" | "enable" SHtml.ajaxButton(status.capitalize, () => onSubmitDisable(status)) } & "#clone" #> SHtml.ajaxButton( { Text("Clone") } , { () => onCloneCallback(rule) } , ("type", "button") ) & "#save" #> saveButton } private[this] def showCrForm(groupLib: FullNodeGroupCategory, directiveLib: FullActiveTechniqueCategory) : NodeSeq = { val maptarget = groupLib.allTargets.map{ case (gt,fg) => s" ${encJs(gt.target)} : ${encJs(fg.name)}" }.toList.mkString("{",",","}") val included = ruleTarget.includedTarget.targets val excluded = ruleTarget.excludedTarget.targets ( "#pendingChangeRequestNotification" #> { xml:NodeSeq => PendingChangeRequestDisplayer.checkByRule(xml, rule.id, workflowEnabled) } & //activation button: show disactivate if activated "#disactivateButtonLabel" #> { if(rule.isEnabledStatus) "Disable" else "Enable" } & "#nameField" #> crName.toForm_! & "#categoryField" #> category.toForm_! & "#shortDescriptionField" #> crShortDescription.toForm_! & "#longDescriptionField" #> crLongDescription.toForm_! & "#selectPiField" #> { <div id={htmlId_activeTechniquesTree}>{ <ul>{ DisplayDirectiveTree.displayTree( directiveLib = directiveLib , usedDirectiveIds = usedDirectiveIds , onClickCategory = None , onClickTechnique = None , onClickDirective = None //filter techniques without directives, and categories without technique , keepCategory = category => category.allDirectives.nonEmpty , keepTechnique = technique => technique.directives.nonEmpty , addEditLink = true ) }</ul> }</div> } & "#selectGroupField" #> { <div id={htmlId_groupTree}> <ul>{DisplayNodeGroupTree.displayTree( groupLib , None , Some( ( (_,target) => targetClick (target))) , Map( "include" -> includeRuleTarget _ , "exclude" -> excludeRuleTarget _ ) , included , excluded )}</ul> </div> } & "#notifications" #> updateAndDisplayNotifications )(crForm) ++ Script(OnLoad(JsRaw(""" correctButtons(); """)))++ Script( //a function to update the list of currently selected Directives in the tree //and put the json string of ids in the hidden field. JsCrVar("updateSelectedPis", AnonFunc(JsRaw(""" $('#selectedPis').val(JSON.stringify( $.jstree._reference('#%s').get_selected().map(function(){ return this.id; }).get()));""".format(htmlId_activeTechniquesTree) ))) & OnLoad( // Initialize angular part of page and group tree JsRaw(s""" angular.bootstrap('#groupManagement', ['groupManagement']); var scope = angular.element($$("#GroupCtrl")).scope(); scope.$$apply(function(){ scope.init(${ruleTarget.toString()},${maptarget}); } ); buildGroupTree('#${htmlId_groupTree}','${S.contextPath}', [], 'on');""" ) & //function to update list of PIs before submiting form JsRaw(s"buildDirectiveTree('#${htmlId_activeTechniquesTree}', ${serializedirectiveIds(selectedDirectiveIds.toSeq)},'${S.contextPath}', -1);") & After(TimeSpan(50), JsRaw("""createTooltip();""")) ) ) } /* * from a list of PI ids, get a string. * the format is a JSON array: [ "id1", "id2", ...] */ private[this] def serializedirectiveIds(ids:Seq[DirectiveId]) : String = { implicit val formats = Serialization.formats(NoTypeHints) Serialization.write(ids.map( "jsTree-" + _.value )) } private[this] def serializeTargets(targets:Seq[RuleTarget]) : String = { implicit val formats = Serialization.formats(NoTypeHints) Serialization.write( targets.map { target => target match { case GroupTarget(g) => "jsTree-" + g.value case _ => "jsTree-" + target.target } } ) } private[this] def serializeTarget(target:RuleTarget) : String = { target.toString() } /* * from a JSON array: [ "id1", "id2", ...], get the list of * Directive Ids. * Never fails, but returned an empty list. */ private[this] def unserializedirectiveIds(ids:String) : Seq[DirectiveId] = { implicit val formats = DefaultFormats parse(ids).extract[List[String]].map( x => DirectiveId(x.replace("jsTree-","")) ) } private[this] def unserializeTarget(target:String) = { RuleTarget.unser(target).map { case exclusionTarget : TargetExclusion => exclusionTarget case t => RuleTarget.merge(Set(t))}.getOrElse(RuleTarget.merge(Set())) } ////////////// Callbacks ////////////// private[this] def updateFormClientSide() : JsCmd = { Replace(htmlId_EditZone, this.showForm(1) ) } private[this] def onSuccess() : JsCmd = { //MUST BE THIS WAY, because the parent may change some reference to JsNode //and so, our AJAX could be broken onSuccessCallback(rule) & updateFormClientSide() & //show success popup successPopup } private[this] def onFailure() : JsCmd = { onFailureCallback() & updateFormClientSide() & JsRaw("""scrollToElement("notifications");""") } private[this] def onNothingToDo() : JsCmd = { formTracker.addFormError(error("There are no modifications to save.")) onFailure() } /* * Create the ajax save button */ private[this] def saveButton : NodeSeq = { // add an hidden field to hold the list of selected directives val save = SHtml.ajaxSubmit("Save", onSubmit _) % ("id" -> htmlId_save) // update onclick to get the list of directives and groups in the hidden // fields before submitting val newOnclick = "updateSelectedPis(); " + save.attributes.asAttrMap("onclick") SHtml.hidden( { ids => selectedDirectiveIds = unserializedirectiveIds(ids).toSet }, serializedirectiveIds(selectedDirectiveIds.toSeq) ) % ( "id" -> "selectedPis") ++ SHtml.hidden( { target => ruleTarget = unserializeTarget(target) }, ruleTarget.target ) % ( "id" -> "selectedTargets") ++ save % ( "onclick" -> newOnclick) } private[this] def targetClick(targetInfo: FullRuleTargetInfo) : JsCmd = { val target = targetInfo.target.target.target JsRaw(s"""onClickTarget("${target}");""") } private[this] def includeRuleTarget(targetInfo: FullRuleTargetInfo) : JsCmd = { val target = targetInfo.target.target.target JsRaw(s"""includeTarget("${target}");""") } private[this] def excludeRuleTarget(targetInfo: FullRuleTargetInfo) : JsCmd = { val target = targetInfo.target.target.target JsRaw(s"""excludeTarget("${target}");""") } ///////////////////////////////////////////////////////////////////////// /////////////////////////////// Edit form /////////////////////////////// ///////////////////////////////////////////////////////////////////////// ///////////// fields for Rule settings /////////////////// private[this] val crName = new WBTextField("Name", rule.name) { override def setFilter = notNull _ :: trim _ :: Nil override def className = "twoCol" override def validations = valMinLen(3, "The name must have at least 3 characters") _ :: Nil } private[this] val crShortDescription = { new WBTextField("Short description", rule.shortDescription) { override def className = "twoCol" override def setFilter = notNull _ :: trim _ :: Nil override val maxLen = 255 override def validations = Nil } } private[this] val crLongDescription = { new WBTextAreaField("Description", rule.longDescription.toString) { override def setFilter = notNull _ :: trim _ :: Nil override def className = "twoCol" } } private[this] val categories = categoryHierarchyDisplayer.getRuleCategoryHierarchy(roCategoryRepository.getRootCategory.get, None) private[this] val category = new WBSelectField( "Rule category" , categories.map { case (id, name) => (id.value -> name)} , rule.categoryId.value ) { override def className = "twoCol" } private[this] val formTracker = new FormTracker(List(crName, crShortDescription, crLongDescription)) private[this] def error(msg:String) = <span class="error">{msg}</span> private[this] def onSubmit() : JsCmd = { if(formTracker.hasErrors) { onFailure } else { //try to save the rule val newCr = rule.copy( name = crName.is , shortDescription = crShortDescription.is , longDescription = crLongDescription.is , targets = Set(ruleTarget) , directiveIds = selectedDirectiveIds , isEnabledStatus = rule.isEnabledStatus , categoryId = RuleCategoryId(category.is) ) if (newCr == rule) { onNothingToDo() } else { displayConfirmationPopup("save", newCr) } } } //action must be 'enable' or 'disable' private[this] def onSubmitDisable(action:String): JsCmd = { displayConfirmationPopup( action , rule.copy(isEnabledStatus = action == "enable") ) } private[this] def onSubmitDelete(): JsCmd = { displayConfirmationPopup( "delete" , rule ) } // Create the popup for workflow private[this] def displayConfirmationPopup( action : String , newRule : Rule ) : JsCmd = { // for the moment, we don't have creation from here val optOriginal = Some(rule) val popup = new RuleModificationValidationPopup( newRule , optOriginal , action , workflowEnabled , cr => workflowCallBack(action)(cr) , () => JsRaw("$.modal.close();") & onFailure , parentFormTracker = Some(formTracker) ) if((!changeMsgEnabled) && (!workflowEnabled)) { popup.onSubmit } else { SetHtml("confirmUpdateActionDialog", popup.popupContent) & JsRaw("""createPopup("confirmUpdateActionDialog")""") } } private[this] def workflowCallBack(action:String)(returns : Either[Rule,ChangeRequestId]) : JsCmd = { if ((!workflowEnabled) & (action == "delete")) { JsRaw("$.modal.close();") & onSuccessCallback(rule) & SetHtml("editRuleZone", <div id={htmlId_rule}>Rule '{rule.name}' successfully deleted</div> ) } else { returns match { case Left(rule) => // ok, we've received a rule, do as before this.rule = rule JsRaw("$.modal.close();") & onSuccess case Right(changeRequestId) => // oh, we have a change request, go to it JsInitContextLinkUtil.redirectToChangeRequestLink(changeRequestId) } } } private[this] def updateAndDisplayNotifications : NodeSeq = { val notifications = formTracker.formErrors formTracker.cleanErrors if(notifications.isEmpty) { <div id="notifications" /> } else { val html = <div id="notifications" class="notify"> <ul class="field_errors">{notifications.map( n => <li>{n}</li>) }</ul> </div> html } } ///////////// success pop-up /////////////// private[this] def successPopup : JsCmd = { def warning(warn : String) : NodeSeq = { <div style="padding-top: 15px; clear:both"> <img src="/images/icWarn.png" alt="Warning!" height="25" width="25" class="warnicon"/> <h4 style="float:left">{warn} No configuration policy will be deployed.</h4> </div> } val content = if ( ruleTarget.excludedTarget.targets.size + ruleTarget.includedTarget.targets.size== 0 ) { if ( selectedDirectiveIds.size == 0 ) { warning("This Rule is not applied to any Groups and does not have any Directives to apply.") } else { warning("This Rule is not applied to any Groups.") } } else { if ( selectedDirectiveIds.size == 0 ) { warning("This Rule does not have any Directives to apply.") } else { NodeSeq.Empty } } SetHtml("successDialogContent",content) & JsRaw(""" callPopupWithTimeout(200, "successConfirmationDialog")""") } }
Kegeruneku/rudder
rudder-web/src/main/scala/com/normation/rudder/web/components/RuleEditForm.scala
Scala
agpl-3.0
22,572
package org.scalafmt.rewrite import org.scalafmt.rewrite.TokenPatch.{Add, Remove} import scala.meta._ import scala.meta.tokens.Token sealed abstract class Patch abstract class TreePatch extends Patch abstract class TokenPatch(val tok: Token, val newTok: String) extends TreePatch object TokenPatch { case class Remove(override val tok: Token) extends TokenPatch(tok, "") def AddRight(tok: Token, toAdd: String, keepTok: Boolean = false): TokenPatch = Add(tok, "", toAdd, keepTok) def AddLeft(tok: Token, toAdd: String, keepTok: Boolean = false): TokenPatch = Add(tok, toAdd, "", keepTok) case class Add(override val tok: Token, addLeft: String, addRight: String, keepTok: Boolean) extends TokenPatch(tok, s"""$addLeft${if (keepTok) tok else ""}$addRight""") } object Patch { def merge(a: TokenPatch, b: TokenPatch): TokenPatch = (a, b) match { case (add1: Add, add2: Add) => Add(add1.tok, add1.addLeft + add2.addLeft, add1.addRight + add2.addRight, add1.keepTok && add2.keepTok) case (_: Remove, add: Add) => add.copy(keepTok = false) case (add: Add, _: Remove) => add.copy(keepTok = false) case (rem: Remove, _: Remove) => rem case _ => sys.error(s"""Can't merge token patches: |1. $a |2. $b""".stripMargin) } def apply(ast: Tree, patches: Seq[Patch])(implicit ctx: RewriteCtx): String = { val input = ast.tokens val tokenPatches = patches.collect { case e: TokenPatch => e } val patchMap: Map[(Int, Int), String] = (tokenPatches) .groupBy(t => t.tok.start -> t.tok.end) .mapValues(_.reduce(merge).newTok) input.toIterator .map(x => patchMap.getOrElse(x.start -> x.end, x.syntax)) .mkString } }
Daxten/scalafmt
core/src/main/scala/org/scalafmt/rewrite/Patch.scala
Scala
apache-2.0
1,917
package com.microsoft.awt.components import com.microsoft.awt.models.Group import org.scalajs.angularjs.Service import org.scalajs.angularjs.http.Http import scala.concurrent.ExecutionContext import scala.scalajs.js /** * Groups Service * @author [email protected] */ class GroupService($http: Http) extends Service { /** * Creates a new group * @param group the given [[Group group]] * @return the newly created group */ def createGroup(group: Group) = $http.post[Group]("/api/group") /** * Retrieves a group by ID * @param groupID the given group ID * @return a promise of a [[com.microsoft.awt.models.Group group]] */ def getGroupByID(groupID: String) = $http.get[Group](s"/api/group/$groupID") /** * Retrieves all groups * @param maxResults the maximum number of results to return * @return a promise of an array of [[com.microsoft.awt.models.Group groups]] */ def getGroups(maxResults: Int = 20) = $http.get[js.Array[Group]](s"/api/groups?maxResults=$maxResults") /** * Retrieves all groups that do not contain a specific user * @param userID the given member (user) ID * @param maxResults the maximum number of results to return * @return a promise of an array of [[com.microsoft.awt.models.Group groups]] */ def getGroupsExcludingUser(userID: String, maxResults: Int = 20) = { $http.get[js.Array[Group]](s"/api/groups/user/$userID/nin?maxResults=$maxResults") } /** * Retrieves all groups that are owned by or include a specific user * @param userID the given member (user) ID * @param maxResults the maximum number of results to return * @return a promise of an array of [[com.microsoft.awt.models.Group groups]] */ def getGroupsIncludingOrOwnedByUser(userID: String, maxResults: Int = 20)(implicit ec: ExecutionContext) = { $http.get[js.Array[Group]](s"/api/groups/user/$userID/all?maxResults=$maxResults") } /** * Retrieves all groups that include a specific user * @param userID the given member (user) ID * @param maxResults the maximum number of results to return * @return a promise of an array of [[com.microsoft.awt.models.Group groups]] */ def getGroupsIncludingUser(userID: String, maxResults: Int = 20) = { $http.get[js.Array[Group]](s"/api/groups/user/$userID/in?maxResults=$maxResults") } /** * Updates an existing group * @param group the given [[Group group]] * @return the updated group */ def updateGroup(group: Group) = $http.put[Group](s"/api/group/${group._id}") }
ldaniels528/awt
app-angularjs/src/main/scala/com/microsoft/awt/components/GroupService.scala
Scala
apache-2.0
2,601
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.carbondata.cluster.sdv.generated import org.apache.spark.sql.Row import org.apache.spark.sql.common.util._ import org.scalatest.BeforeAndAfterAll import org.apache.carbondata.core.constants.{CarbonCommonConstants, CarbonV3DataFormatConstants} import org.apache.carbondata.core.util.CarbonProperties /** * Test Class for V3offheapvectorTestCase to verify all scenerios */ class V3offheapvectorTestCase extends QueryTest with BeforeAndAfterAll { //Check query reponse for select * query with no filters test("V3_01_Query_01_033", Include) { dropTable("3lakh_uniqdata") sql(s"""CREATE TABLE 3lakh_uniqdata (CUST_ID int,CUST_NAME String,ACTIVE_EMUI_VERSION string, DOB timestamp, DOJ timestamp, BIGINT_COLUMN1 bigint,BIGINT_COLUMN2 bigint,DECIMAL_COLUMN1 decimal(30,10), DECIMAL_COLUMN2 decimal(36,10),Double_COLUMN1 double, Double_COLUMN2 double,INTEGER_COLUMN1 int) STORED BY 'carbondata' TBLPROPERTIES('table_blocksize'='128','include_dictionary'='BIGINT_COLUMN1,BIGINT_COLUMN2,DECIMAL_COLUMN1,DECIMAL_COLUMN2,Double_COLUMN1,Double_COLUMN2,INTEGER_COLUMN1,CUST_ID')""").collect sql(s"""LOAD DATA INPATH '$resourcesPath/Data/3Lakh.csv' into table 3lakh_uniqdata OPTIONS('DELIMITER'=',' , 'QUOTECHAR'='"','BAD_RECORDS_ACTION'='FORCE','FILEHEADER'='CUST_ID,CUST_NAME,ACTIVE_EMUI_VERSION,DOB,DOJ,BIGINT_COLUMN1,BIGINT_COLUMN2,DECIMAL_COLUMN1,DECIMAL_COLUMN2,Double_COLUMN1,Double_COLUMN2,INTEGER_COLUMN1')""").collect checkAnswer(s"""select count(*) from 3lakh_uniqdata""", Seq(Row(300635)), "V3offheapvectorTestCase_V3_01_Query_01_033") } //Check query reponse where table is having > 10 columns as dimensions and all the columns are selected in the query test("V3_01_Query_01_034", Include) { checkAnswer(s"""select count(*) from (select CUST_ID,CUST_NAME,ACTIVE_EMUI_VERSION,DOB,DOJ,BIGINT_COLUMN1,BIGINT_COLUMN2,DECIMAL_COLUMN1,DECIMAL_COLUMN2,Double_COLUMN1,Double_COLUMN2,INTEGER_COLUMN1 from 3lakh_uniqdata)c""", Seq(Row(300635)), "V3offheapvectorTestCase_V3_01_Query_01_034") } //Check query reponse when filter is having eq condition on 1st column and data is selected within a page test("V3_01_Query_01_035", Include) { checkAnswer(s"""select CUST_ID from 3lakh_uniqdata where cust_id = 35000""", Seq(Row(35000)), "V3offheapvectorTestCase_V3_01_Query_01_035") } //Check query reponse when filter is having in condition on 1st column and data is selected within a page test("V3_01_Query_01_036", Include) { checkAnswer(s"""select CUST_ID from 3lakh_uniqdata where cust_id in (30000, 35000 ,37000)""", Seq(Row(30000),Row(35000),Row(37000)), "V3offheapvectorTestCase_V3_01_Query_01_036") } //Check query reponse when filter is having range condition on 1st column and data is selected within a page test("V3_01_Query_01_037", Include) { checkAnswer(s"""select count(*) from (select CUST_ID from 3lakh_uniqdata where cust_id between 59000 and 60000)c""", Seq(Row(1001)), "V3offheapvectorTestCase_V3_01_Query_01_037") } //Check query reponse when filter is having range condition on 1st coluumn and data is selected within a pages - values just in the boundary of the page upper llimit - with offheap sort and vector reader test("V3_01_Query_01_041", Include) { checkAnswer(s"""select count(*) from (select CUST_ID from 3lakh_uniqdata where cust_id between 59000 and 61000)c""", Seq(Row(2001)), "V3offheapvectorTestCase_V3_01_Query_01_041") } //Check query reponse when filter is having in condition 1st column and data is selected across multiple pages - with no offheap sort and vector reader test("V3_01_Query_01_042", Include) { checkAnswer(s"""select CUST_ID from 3lakh_uniqdata where cust_id in (30000, 35000 ,37000, 69000,101000,133000,165000,197000,229000,261000,293000, 329622)""", Seq(Row(133000),Row(165000),Row(197000),Row(30000),Row(229000),Row(261000),Row(35000),Row(37000),Row(293000),Row(329622),Row(69000),Row(101000)), "V3offheapvectorTestCase_V3_01_Query_01_042") } //Check query reponse when filter is having not between condition 1st column and data is selected across all pages - with offheap sort and vector reader test("V3_01_Query_01_043", Include) { checkAnswer(s"""select count(*) from (select CUST_ID from 3lakh_uniqdata where cust_id not between 29001 and 329621)c""", Seq(Row(3)), "V3offheapvectorTestCase_V3_01_Query_01_043") } //Check query reponse when filter is applied on on the 2nd column and data is selected across all pages -with no offheap sort and vector reader test("V3_01_Query_01_044", Include) { checkAnswer(s"""select count(*) from (select CUST_ID from 3lakh_uniqdata where cust_name like 'CUST_NAME_2%')c""", Seq(Row(110000)), "V3offheapvectorTestCase_V3_01_Query_01_044") } //Check query reponse when filter is having not like condition set on the 2nd columns and data is selected across all pages test("V3_01_Query_01_045", Include) { checkAnswer(s"""select count(*) from (select CUST_ID from 3lakh_uniqdata where cust_name not like 'CUST_NAME_2%')c""", Seq(Row(190635)), "V3offheapvectorTestCase_V3_01_Query_01_045") } //Check query reponse when filter is having > operator set on the 10th columns and data is selected within a page test("V3_01_Query_01_046", Include) { checkAnswer(s"""select count(*) from (select CUST_ID from 3lakh_uniqdata where Double_COLUMN1 > 42000)b""", Seq(Row(300624)), "V3offheapvectorTestCase_V3_01_Query_01_046") } //Check query reponse when filter is having like operator set on the 3rd columns and data is selected across all pages - with no offheap sort and vector reader test("V3_01_Query_01_047", Include) { checkAnswer(s"""select count(*) from (select ACTIVE_EMUI_VERSION from 3lakh_uniqdata where ACTIVE_EMUI_VERSION like 'ACTIVE_EMUI_VERSION_20%')c""", Seq(Row(11000)), "V3offheapvectorTestCase_V3_01_Query_01_047") } //Check query reponse when filter condtion is put on all collumns connected through and operator and data is selected across from 1 page test("V3_01_Query_01_048", Include) { checkAnswer(s"""select count(*) from (select * from 3lakh_uniqdata where CUST_ID = 29000 and CUST_NAME = 'CUST_NAME_20000' and ACTIVE_EMUI_VERSION = 'ACTIVE_EMUI_VERSION_20000' and DOB = '04-10-2010 01:00' and DOJ = '04-10-2012 02:00' and BIGINT_COLUMN1 = 1.23372E+11 and BIGINT_COLUMN2 = -2.23E+11 and DECIMAL_COLUMN1 = 12345698901 and DECIMAL_COLUMN2 = 22345698901 and Double_COLUMN1 = 11234567490 and Double_COLUMN2 = -11234567490 and INTEGER_COLUMN1 = 20001)c""", Seq(Row(0)), "V3offheapvectorTestCase_V3_01_Query_01_048") } //Check query reponse when filter condtion is put on all collumns connected through and and grouping operator and data is selected across from 1 page test("V3_01_Query_01_050", Include) { checkAnswer(s"""select count(*) from (select * from 3lakh_uniqdata where CUST_ID = 29000 and CUST_NAME = 'CUST_NAME_20000' and (ACTIVE_EMUI_VERSION = 'ACTIVE_EMUI_VERSION_20001' or DOB = '04-10-2010 01:00') and DOJ = '04-10-2012 02:00' and BIGINT_COLUMN1 = 1.23372E+11 and BIGINT_COLUMN2 = -2.23E+11 and DECIMAL_COLUMN1 = 12345698901 and DECIMAL_COLUMN2 = 22345698901 or Double_COLUMN1 = 11234567490 and ( Double_COLUMN2 = -11234567490 or INTEGER_COLUMN1 = 20003))c""", Seq(Row(300623)), "V3offheapvectorTestCase_V3_01_Query_01_050") } //Check query reponse when filter condtion is 1st column and connected through OR condition and data is selected across multiple pages test("V3_01_Query_01_051", Include) { checkAnswer(s"""select CUST_NAME from 3lakh_uniqdata where CUST_ID = 29000 or CUST_ID = 60000 or CUST_ID = 100000 or CUST_ID = 130000""", Seq(Row("CUST_NAME_121000"),Row("CUST_NAME_20000"),Row("CUST_NAME_51000"),Row("CUST_NAME_91000")), "V3offheapvectorTestCase_V3_01_Query_01_051") } //Check query reponse when filter condtion is put on all collumns connected through and/or operator and range is used and data is selected across multiple pages test("V3_01_Query_01_052", Include) { checkAnswer(s"""select count(*) from (select * from 3lakh_uniqdata where (CUST_ID >= 29000 and CUST_ID <= 60000) and CUST_NAME like 'CUST_NAME_20%' and ACTIVE_EMUI_VERSION = 'ACTIVE_EMUI_VERSION_20000' and DOB = '04-10-2010 01:00' and DOJ = '04-10-2012 02:00' and BIGINT_COLUMN1 = 1.23372E+11 and BIGINT_COLUMN2 = -2.23E+11 and DECIMAL_COLUMN1 = 12345698901 or DECIMAL_COLUMN2 = 22345698901 and Double_COLUMN1 = 11234567490 and (Double_COLUMN2 = -11234567490 or INTEGER_COLUMN1 = 20001))c""", Seq(Row(1)), "V3offheapvectorTestCase_V3_01_Query_01_052") } //Check query reponse when 1st column select ed nd filter is applied and data is selected from 1 page test("V3_01_Query_01_054", Include) { checkAnswer(s"""select CUST_ID from 3lakh_uniqdata limit 10""", Seq(Row(8999),Row(null),Row(null),Row(null),Row(null),Row(null),Row(null),Row(null),Row(null),Row(null)), "V3offheapvectorTestCase_V3_01_Query_01_054") } //Check query reponse when 2nd column select ed nd filter is applied and data is selected from 1 page test("V3_01_Query_01_055", Include) { checkAnswer(s"""select count(*) from (select CUST_NAME from 3lakh_uniqdata limit 30000)c""", Seq(Row(30000)), "V3offheapvectorTestCase_V3_01_Query_01_055") } //Check query reponse when 4th column select ed nd filter is applied and data is selected from 1 page test("V3_01_Query_01_056", Include) { checkAnswer(s"""select count(*) from (select DOB from 3lakh_uniqdata limit 30000)c""", Seq(Row(30000)), "V3offheapvectorTestCase_V3_01_Query_01_056") } //Check query reponse when 1st column select ed nd filter is applied and data is selected from 2 page test("V3_01_Query_01_057", Include) { checkAnswer(s"""select count(*) from (select CUST_ID from 3lakh_uniqdata limit 60000)c""", Seq(Row(60000)), "V3offheapvectorTestCase_V3_01_Query_01_057") } //Check query reponse when 2nd column select ed nd filter is applied and data is selected from 2 page test("V3_01_Query_01_058", Include) { checkAnswer(s"""select count(*) from (select CUST_NAME from 3lakh_uniqdata limit 60000)c""", Seq(Row(60000)), "V3offheapvectorTestCase_V3_01_Query_01_058") } //Check query reponse when 4th column selected nd filter is applied and data is selected from 2 page test("V3_01_Query_01_059", Include) { checkAnswer(s"""select count(*) from (select DOB from 3lakh_uniqdata limit 60000)c""", Seq(Row(60000)), "V3offheapvectorTestCase_V3_01_Query_01_059") } //Check query reponse when 2nd column select ed nd with order by and data is selected from 1 page test("V3_01_Query_01_060", Include) { checkAnswer(s"""select cust_id from 3lakh_uniqdata order by CUST_NAME desc limit 10""", Seq(Row(108999),Row(108998),Row(108997),Row(108996),Row(108995),Row(108994),Row(108993),Row(108992),Row(108991),Row(108990)), "V3offheapvectorTestCase_V3_01_Query_01_060") } //Check query reponse when temp table is used and multiple pages are scanned test("V3_01_Query_01_061", Include) { checkAnswer(s"""select count(*) from ( select a.cust_id from 3lakh_uniqdata a where a.cust_id in (select c.cust_id from 3lakh_uniqdata c where c.cust_name like 'CUST_NAME_2000%') and a.cust_id between 29000 and 60000)d""", Seq(Row(10)), "V3offheapvectorTestCase_V3_01_Query_01_061") } //Check query reponse when aggregate table is used and multiple pages are scanned test("V3_01_Query_01_062", Include) { checkAnswer(s"""select substring(CUST_NAME,1,11),count(*) from 3lakh_uniqdata group by substring(CUST_NAME,1,11) having count(*) > 1""", Seq(Row("CUST_NAME_4",10000),Row("CUST_NAME_1",100000),Row("CUST_NAME_8",10000),Row("CUST_NAME_6",10000),Row("CUST_NAME_2",110000),Row("CUST_NAME_5",10000),Row("CUST_NAME_7",10000),Row("CUST_NAME_9",10000),Row("",11),Row("CUST_NAME_3",30623)), "V3offheapvectorTestCase_V3_01_Query_01_062") } //Check query reponse when aggregate table is used along with filter condition and multiple pages are scanned test("V3_01_Query_01_063", Include) { checkAnswer(s"""select substring(CUST_NAME,1,11),count(*) from 3lakh_uniqdata where cust_id between 59000 and 160000 group by substring(CUST_NAME,1,11) having count(*) > 1""", Seq(Row("CUST_NAME_1",51001),Row("CUST_NAME_8",10000),Row("CUST_NAME_6",10000),Row("CUST_NAME_5",10000),Row("CUST_NAME_7",10000),Row("CUST_NAME_9",10000)), "V3offheapvectorTestCase_V3_01_Query_01_063") } //Check query when table is having single column so that the records count per blocklet is > 120000, where query scan is done on single page test("V3_01_Param_01_007", Include) { sql(s"""CREATE TABLE 3lakh_uniqdata1 (CUST_NAME String) STORED BY 'carbondata' TBLPROPERTIES('table_blocksize'='128')""").collect sql(s"""insert into 3lakh_uniqdata1 select cust_name from 3lakh_uniqdata""").collect checkAnswer(s"""select count(*) from (select CUST_NAME from 3lakh_uniqdata where cust_name like 'CUST_NAME_2000%')c""", Seq(Row(110)), "V3offheapvectorTestCase_V3_01_Param_01_007") } //Check query when table is having single column so that the records count per blocklet is > 120000, where query scan is done across the pages in the blocklet test("V3_01_Param_01_008", Include) { checkAnswer(s"""select count(*) from (select CUST_NAME from 3lakh_uniqdata where cust_name like 'CUST_NAME_20%')c""", Seq(Row(11000)), "V3offheapvectorTestCase_V3_01_Param_01_008") } //Check impact on load and query reading when larger value (1 lakh length) present in the column ignore("V3_01_Stress_01_008", Include) { sql(s"""create table t_carbn1c (name string) stored by 'carbondata' TBLPROPERTIES('table_blocksize'='128','include_dictionary'='name')""").collect sql(s"""LOAD DATA INPATH '$resourcesPath/Data/1lakh.csv' into table t_carbn1c OPTIONS('DELIMITER'=',' , 'QUOTECHAR'='"','BAD_RECORDS_ACTION'='FORCE','FILEHEADER'='name')""").collect checkAnswer(s"""select count(*) from t_carbn1c""", Seq(Row(1)), "V3offheapvectorTestCase_V3_01_Stress_01_008") } //Check impact on load and query reading when larger value (1 lakh length) present in the column when the column is measure ignore("V3_01_Stress_01_009", Include) { checkAnswer(s"""select substring(name,1,10) from t_carbn1c""", Seq(Row("hellohowar")), "V3offheapvectorTestCase_V3_01_Stress_01_009") } //Check join query when the table is having v3 format test("V3_01_Query_01_064", Include) { dropTable("3lakh_uniqdata2") sql(s"""CREATE TABLE 3lakh_uniqdata2 (CUST_ID int,CUST_NAME String,ACTIVE_EMUI_VERSION string, DOB timestamp, DOJ timestamp, BIGINT_COLUMN1 bigint,BIGINT_COLUMN2 bigint,DECIMAL_COLUMN1 decimal(30,10), DECIMAL_COLUMN2 decimal(36,10),Double_COLUMN1 double, Double_COLUMN2 double,INTEGER_COLUMN1 int) STORED BY 'carbondata' TBLPROPERTIES('table_blocksize'='128','include_dictionary'='BIGINT_COLUMN1,BIGINT_COLUMN2,DECIMAL_COLUMN1,DECIMAL_COLUMN2,Double_COLUMN1,Double_COLUMN2,INTEGER_COLUMN1,CUST_ID')""").collect sql(s"""LOAD DATA INPATH '$resourcesPath/Data/3Lakh.csv' into table 3lakh_uniqdata2 OPTIONS('DELIMITER'=',' , 'QUOTECHAR'='"','BAD_RECORDS_ACTION'='FORCE','FILEHEADER'='CUST_ID,CUST_NAME,ACTIVE_EMUI_VERSION,DOB,DOJ,BIGINT_COLUMN1,BIGINT_COLUMN2,DECIMAL_COLUMN1,DECIMAL_COLUMN2,Double_COLUMN1,Double_COLUMN2,INTEGER_COLUMN1')""").collect checkAnswer(s"""select a.cust_id, b.cust_name from 3lakh_uniqdata a, 3lakh_uniqdata2 b where a.cust_id = b.cust_id and a.cust_name = b.cust_name and a.cust_id in (29000, 59000, 69000,15000,250000, 310000)""", Seq(Row(29000,"CUST_NAME_20000"),Row(250000,"CUST_NAME_241000"),Row(310000,"CUST_NAME_301000"),Row(59000,"CUST_NAME_50000"),Row(69000,"CUST_NAME_60000")), "V3offheapvectorTestCase_V3_01_Query_01_064") sql(s"""drop table 3lakh_uniqdata""").collect sql(s"""drop table if exists 3lakh_uniqdata2""").collect sql(s"""drop table if exists t_carbn1c""").collect sql(s"""drop table if exists 3lakh_uniqdata1""").collect } val prop = CarbonProperties.getInstance() val p1 = prop.getProperty("carbon.blockletgroup.size.in.mb", CarbonV3DataFormatConstants.BLOCKLET_SIZE_IN_MB_DEFAULT_VALUE) val p2 = prop.getProperty("enable.offheap.sort", CarbonCommonConstants.ENABLE_OFFHEAP_SORT_DEFAULT) val p3 = prop.getProperty("carbon.enable.vector.reader", CarbonCommonConstants.ENABLE_VECTOR_READER_DEFAULT) val p4 = prop.getProperty("carbon.data.file.version", CarbonCommonConstants.CARBON_DATA_FILE_DEFAULT_VERSION) val p5 = prop.getProperty("carbon.enable.auto.load.merge", CarbonCommonConstants.DEFAULT_ENABLE_AUTO_LOAD_MERGE) val p6 = prop.getProperty("carbon.compaction.level.threshold", CarbonCommonConstants.DEFAULT_SEGMENT_LEVEL_THRESHOLD) override protected def beforeAll() { // Adding new properties prop.addProperty("carbon.blockletgroup.size.in.mb", "16") prop.addProperty("enable.offheap.sort", "true") prop.addProperty("carbon.enable.vector.reader", "true") prop.addProperty("carbon.data.file.version", "V3") prop.addProperty("carbon.enable.auto.load.merge", "false") prop.addProperty("carbon.compaction.level.threshold", "(2,2)") } override def afterAll: Unit = { //Reverting to old prop.addProperty("carbon.blockletgroup.size.in.mb", p1) prop.addProperty("enable.offheap.sort", p2) prop.addProperty("carbon.enable.vector.reader", p3) prop.addProperty("carbon.data.file.version", p4) prop.addProperty("carbon.enable.auto.load.merge", p5) prop.addProperty("carbon.compaction.level.threshold", p6) } }
aniketadnaik/carbondataStreamIngest
integration/spark-common-cluster-test/src/test/scala/org/apache/carbondata/cluster/sdv/generated/V3offheapvectorTestCase.scala
Scala
apache-2.0
18,580
package io.koff.lenses import io.koff.model.{GeneralInfo, ProblemExample, User} /** * Example of usage of quicklens */ object QuickLensExample { def main(args: Array[String]) { /** * Use of scalaz.Lens is quite difficult * but if we are not afraid to use macros in a project we might use `quicklens` instead. * * You have already seen a simple example for `quicklens` so let's go deeper and see what else `quicklens` can do */ /** * `Quicklens` has support of chain modifications which can be helpful if you want to change several fields at the same time */ { import com.softwaremill.quicklens._ val user = ProblemExample.user val updatedUser = user .modify(_.generalInfo.siteInfo.userRating).using(_ + 1) .modify(_.billInfo.addresses.each.isConfirmed).using(_ => true) println(updatedUser.generalInfo.siteInfo.userRating) println(updatedUser.billInfo.addresses) } /** * It is also possible to create reusable lens as well as in scalaz.Lens */ { import com.softwaremill.quicklens._ val userRatingLens = modify(_:User)(_.generalInfo.siteInfo.userRating).using _ val user = ProblemExample.user val updatedUser1 = userRatingLens(user)(_ + 10) val updatedUser2 = userRatingLens(user)(_ + 12) println(updatedUser1.generalInfo.siteInfo.userRating) println(updatedUser2.generalInfo.siteInfo.userRating) } /** * Of course lens composition is also possible. */ { import com.softwaremill.quicklens._ //create lens val generalInfoLens = modify(_:User)(_.generalInfo) val emailConfirmedLens = modify(_:GeneralInfo)(_.isEmailConfirmed) val phoneConfirmedLens = modify(_:GeneralInfo)(_.isPhoneConfirmed) //compose the lens val confirmEmail = generalInfoLens.andThenModify(emailConfirmedLens)(_:User).using(_ => true) val confirmPhone = generalInfoLens.andThenModify(phoneConfirmedLens)(_:User).using(_ => true) val user = ProblemExample.user //compose the functions in order to make both changes at once val updatedUser = confirmEmail.andThen(confirmPhone)(user) println(updatedUser.generalInfo.isEmailConfirmed) println(updatedUser.generalInfo.isPhoneConfirmed) } } }
coffius/koffio-lenses
src/main/scala/io/koff/lenses/QuickLensExample.scala
Scala
mit
2,335
package som trait CustomHash { def customHash(): Int }
cedricviaccoz/scala-native
benchmarks/src/main/scala/som/CustomHash.scala
Scala
bsd-3-clause
58
package com.bigchange.mllib import breeze.linalg.SparseVector import org.apache.log4j.{Logger, Level} import org.apache.spark.mllib.evaluation.{RankingMetrics, RegressionMetrics} import org.apache.spark.rdd.RDD import org.apache.spark.{SparkContext, SparkConf} import org.apache.spark.mllib.linalg.{SparseVector => SV} import breeze.linalg._ import org.apache.spark.mllib.recommendation.{MatrixFactorizationModel, ALS, Rating} import org.jblas.DoubleMatrix /** * Created by C.J.YOU on 2016/3/21. */ object MoviesLensALS { case class Params( ratingsData: String = "J:\\\\github\\\\dataSet\\\\ml-1m\\\\ml-1m\\\\ratings.dat", moviesData:String = "J:\\\\github\\\\dataSet\\\\ml-1m\\\\ml-1m\\\\movies.dat", kryo: Boolean = false, numIterations: Int = 10, var lambda: Double = 0.1, rank: Int = 20, numUserBlocks: Int = -1, numProductBlocks: Int = -1, implicitPrefs: Boolean = false) extends AbstractParams[Params] /** Compute RMSE (Root Mean Squared Error). */ def computeRmse(model: MatrixFactorizationModel, data: RDD[Rating], implicitPrefs: Boolean): Double = { def mapPredictedRating(r: Double): Double = { if (implicitPrefs) math.max(math.min(r, 1.0), 0.0) else r } val predictions: RDD[Rating] = model.predict(data.map(x => (x.user, x.product))) val predictionsAndRatings = predictions.map{ x => ((x.user, x.product), mapPredictedRating(x.rating)) }.join(data.map(x => ((x.user, x.product), x.rating))).values math.sqrt(predictionsAndRatings.map(x => (x._1 - x._2) * (x._1 - x._2)).mean()) } def main(args: Array[String]) { val conf = new SparkConf () .setAppName (s"MovieLensALS with") .setMaster("local") val params = Params() if (params.kryo) { conf.registerKryoClasses (Array (classOf [scala.collection.mutable.BitSet], classOf [Rating])) .set ("spark.kryoserializer.buffer", "8m") } val sc = new SparkContext (conf) Logger.getRootLogger.setLevel (Level.WARN) val implicitPrefs = params.implicitPrefs /* * MovieLens ratings are on a scale of 1-5: * 5: Must see * 4: Will enjoy * 3: It's okay * 2: Fairly bad * 1: Awful * So we should not recommend a movie if the predicted rating is less than 3. * To map ratings to confidence scores, we use * 5 -> 2.5, 4 -> 1.5, 3 -> 0.5, 2 -> -0.5, 1 -> -1.5. This mappings means unobserved * entries are generally between It's okay and Fairly bad. * The semantics of 0 in this expanded world of non-positive weights * are "the same as never having interacted at all". */ val ratings = sc.textFile (params.ratingsData).map { line => val fields = line.split ("::") if (implicitPrefs) { Rating (fields (0).toInt, fields (1).toInt, fields (2).toDouble - 2.5) } else { Rating (fields (0).toInt, fields (1).toInt, fields (2).toDouble) } }.cache () val moviesMap = sc.textFile(params.moviesData).map{ line => val fields = line.split("::") (fields(0).toInt,fields(1)) }.collectAsMap() val numRatings = ratings.count () val numUsers = ratings.map (_.user).distinct ().count () val numMovies = ratings.map (_.product).distinct ().count () println (s"Got $numRatings ratings from $numUsers users on $numMovies movies.") val splits = ratings.randomSplit (Array (0.8, 0.2)) val training = splits (0).cache () val test = if (params.implicitPrefs) { /* * 0 means "don't know" and positive values mean "confident that the prediction should be 1". * Negative values means "confident that the prediction should be 0". * We have in this case used some kind of weighted RMSE. The weight is the absolute value of * the confidence. The error is the difference between prediction and either 1 or 0, * depending on whether r is positive or negative. */ splits (1).map (x => Rating (x.user, x.product, if (x.rating > 0) 1.0 else 0.0)) } else { splits (1) }.cache () val numTraining = training.count () val numTest = test.count () println (s"Training: $numTraining, test: $numTest.") ratings.unpersist (blocking = false) var minRmse = 100.0 var bestLamda = 0.01 // for(i <- 1 to 10){ params.lambda = 0.1 // * i // ALS model val model = new ALS() .setRank (params.rank) // 因子的个数,低阶近似矩阵中隐含特征的个数。合理取值(10-200) .setIterations (params.numIterations) // 10次左右的迭代基本收敛 .setLambda (params.lambda) // 正则化参数,控制模型出现过拟合,参数应该让通过非样本的测试数据进行交叉验证来调整 .setImplicitPrefs (params.implicitPrefs) .setUserBlocks (params.numUserBlocks) // .setProductBlocks (params.numProductBlocks) // .run (training) //.save(sc,"F:\\\\datatest\\\\ai\\\\ALSModel") // recommendation item for user (allow recommend item for user and user for item ) val userId = 22 val topK = 10 val topKItems = model.recommendProducts(userId,topK) val topProduct = model.recommendProductsForUsers(10) val topUser = model.recommendUsersForProducts(10) // 用户和物品的因子向量 val userFeatures = model.userFeatures val productFeatures = model.productFeatures // check recommend item for user val userRatingMoviesSize = ratings.keyBy(_.user).lookup(userId).size // userId 22 rated movies // list recommend movies for userId println(topK+" movies for user:"+userId) topKItems.map(ratings => (moviesMap(ratings.product),ratings.rating)).foreach(println) // evaluation RMSE val rmse = computeRmse (model, test, params.implicitPrefs) // println (s"$i -> Test RMSE = $rmse.") if(rmse < minRmse) { minRmse = rmse // bestLamda = i } // } println(s"the best model of lamda:$bestLamda,RMSE:$minRmse") // 计算k值平均准确率 // 物品因子矩阵: 广播出去用于后续计算 val itemFactors = model.productFeatures.map{ case (id,factor) => factor }.collect() val itemMatrix = new DoubleMatrix(itemFactors) val imBroadcast = sc.broadcast(itemMatrix) // 计算每个用户的推荐 val allRecs = model.userFeatures.map{ case(userID,array) => val userVector = new DoubleMatrix(array) val scores = imBroadcast.value.mmul(userVector) val sortedWithId = scores.data.zipWithIndex.sortBy(-_._1) val recommendedIds = sortedWithId.map(_._2 + 1).toSeq // 物品id + 1 由于物品因子矩阵的编号为0开始 (userID,recommendedIds) } val userMovies = ratings.map{ case Rating(user,product,rating) => (user,product)}.groupBy(_._1) val K = 10 val MAPK = allRecs.join(userMovies).map{ case(userID,(predicted,actualWithIds)) => val actual = actualWithIds.map(_._2).toSeq avgPrecisionK(actual,predicted,K) }.reduce(_+_) / allRecs.count // MAPK: 整个数据集上的平均准确率 println(s"Mean Average Precision at K =" + MAPK) // MLlib 内置的评估函数 使用(RegressionMetrics,RankingMetrics) val predictionAndActual = training.map{ x => val predicted = model.predict(x.user,x.product) (predicted,x.rating) } val regressionMetrics = new RegressionMetrics(predictionAndActual) println("Mean Squared Error = " + regressionMetrics.meanSquaredError) println("Root Mean Squared Error = "+ regressionMetrics.rootMeanSquaredError) // MAP (Mean Average Precision ) equal K 值比较大 val predictionAndActualForRanking = allRecs.join(userMovies).map{ case(userID,(predicted,actualWithIds)) => val actual = actualWithIds.map(_._2) (predicted.toArray,actual.toArray) } val rankingMetrics = new RankingMetrics(predictionAndActualForRanking) println(s"Mean Average Precision =" + rankingMetrics.meanAveragePrecision) // almost same while K = 实际物品的总数 // item to item // 创建向量对象 jblas.DoubleMatrix val itemId = 567 val itemFactor = model.productFeatures.lookup(itemId).head val itemVector = new DoubleMatrix(itemFactor) cosineSimilarity(itemVector,itemVector) // 1.0 : 自己与自己的相似度为1.0 totally same // cal cosineSimilarity // using DoubleMatrix val sims = productFeatures.map{ case(id,factor) => val factorVector = new DoubleMatrix(factor) val sim = cosineSimilarity(itemVector,factorVector) (id,sim) } // using SparseVector to cal cosineSimilarity val itemVector2 = Vector.apply(itemFactor) val sv1 = itemVector2.asInstanceOf[SV] val itemSparseVector = new SparseVector[Double](sv1.indices,sv1.values,sv1.size) // cosineSimilarity cal method val sims2 = productFeatures.map{ case (id,factor) => val factorVector = Vector.apply(factor) val sv1 = factorVector.asInstanceOf[SV] val factorSparseVector = new SparseVector[Double](sv1.indices,sv1.values,sv1.size) val sim = itemSparseVector.dot(factorSparseVector) / (norm(itemSparseVector) * norm(factorSparseVector)) (id,sim) } val sortedSims = sims.top(topK)(Ordering.by[(Int,Double),Double]{ case (id,similarity) => similarity }) println(s"$itemId -> $topK simlarity movies:") sortedSims.take(topK).map{ case (id,similarity) =>(moviesMap(id),similarity) } .foreach(println) sc.stop () } // 相似度的衡量方法:皮尔森相关系数,实数向量的余弦相似度,二元向量的杰卡德相似系数,这里介绍余弦相似度 // 余弦相似度取值(-1 ~ 1):向量的点积与向量范数 或长度(L2-范数)的乘积的商 def cosineSimilarity(vector1:DoubleMatrix,vector2:DoubleMatrix):Double = { vector1.dot(vector2) / (vector1.norm2 * vector2.norm2) } // 计算K值平均准确率:衡量查询所返回的前k个文档的平均相关性,实际与预测的比较 def avgPrecisionK(actual:Seq[Int],predicted:Seq[Int],k:Int):Double={ val predK = predicted.take(k) var score = 0.0 var numHits = 0.0 for((p,i) <- predK.zipWithIndex){ if(actual.contains(p)){ numHits += 1.0 score += numHits / (i.toDouble + 1.0) } } if(actual.isEmpty){ 1.0 }else { score / scala.math.min(actual.size,k).toDouble } } }
bigchange/AI
src/main/scala/com/bigchange/mllib/MoviesLensALS.scala
Scala
apache-2.0
10,652
package skinny.http /** * Request body from a text value. */ case class TextInput(textBody: String, charset: String = HTTP.DEFAULT_CHARSET) /** * No text input */ object NoTextInput extends TextInput(null, null)
BlackPrincess/skinny-framework
http-client/src/main/scala/skinny/http/TextInput.scala
Scala
mit
218
/** * Copyright (c) 2014, MoonGene. All rights reserved. * * This source code is licensed under the GPL license found in the * LICENSE_GPL file in the root directory of this source tree. An alternative * commercial license is also available upon request. */ package com.moongene.models.track import org.joda.time.DateTime object ExitObj { case class Exit( deviceId: String, //User's device ID as string deviceBinId: Option[Array[Byte]], //User's device ID as byte array version: String, //User defined application version sessionLength: Long, //Session length in seconds timestamp: DateTime, //User's timestamp in UTC auth: Common.SysAuth, //App authorization information ip: Option[String], //User's IP address geoData: Option[Common.IPGeoData]) //User's geo data based on IP }
MoonGene/Analytics
src/gene/src/main/scala/com/moongene/models/track/ExitObj.scala
Scala
gpl-3.0
1,015
package org.apache.spark.ml.classification import org.apache.spark.SparkException import org.apache.spark.ml.knn.KNN.{RowWithVector, VectorWithNorm} import org.apache.spark.ml.knn.{DistanceMetric, EuclideanDistanceMetric, KNNModel, KNNParams} import org.apache.spark.ml.param.ParamMap import org.apache.spark.ml.util.{Identifiable, SchemaUtils} import org.apache.spark.ml.{Model, Predictor} import org.apache.spark.ml.linalg._ import org.apache.spark.ml.feature.LabeledPoint import org.apache.spark.rdd.RDD import org.apache.spark.sql.types.{ArrayType, DoubleType, StructType} import org.apache.spark.sql.{DataFrame, Dataset, Row} import org.apache.spark.storage.StorageLevel import org.apache.spark.mllib.rdd.MLPairRDDFunctions._ import scala.collection.mutable.ArrayBuffer /** * Brute-force kNN with k = 1 */ class NaiveKNNClassifier(override val uid: String, val distanceMetric: DistanceMetric) extends Predictor[Vector, NaiveKNNClassifier, NaiveKNNClassifierModel] { def this() = this(Identifiable.randomUID("naiveknnc"), EuclideanDistanceMetric) override def copy(extra: ParamMap): NaiveKNNClassifier = defaultCopy(extra) override protected def train(dataset: Dataset[_]): NaiveKNNClassifierModel = { // Extract columns from data. If dataset is persisted, do not persist oldDataset. val instances = extractLabeledPoints(dataset).map { case LabeledPoint(label: Double, features: Vector) => (label, features) } val handlePersistence = dataset.rdd.getStorageLevel == StorageLevel.NONE if (handlePersistence) instances.persist(StorageLevel.MEMORY_AND_DISK) val labelSummarizer = instances.treeAggregate(new MultiClassSummarizer)( seqOp = (c, v) => (c, v) match { case (labelSummarizer: MultiClassSummarizer, (label: Double, features: Vector)) => labelSummarizer.add(label) }, combOp = (c1, c2) => (c1, c2) match { case (classSummarizer1: MultiClassSummarizer, classSummarizer2: MultiClassSummarizer) => classSummarizer1.merge(classSummarizer2) }) val histogram = labelSummarizer.histogram val numInvalid = labelSummarizer.countInvalid val numClasses = histogram.length if (numInvalid != 0) { val msg = s"Classification labels should be in {0 to ${numClasses - 1} " + s"Found $numInvalid invalid labels." logError(msg) throw new SparkException(msg) } val points = instances.map{ case (label, features) => (label, new VectorWithNorm(features)) } new NaiveKNNClassifierModel(uid, points, numClasses, distanceMetric) } } class NaiveKNNClassifierModel( override val uid: String, val points: RDD[(Double, VectorWithNorm)], val _numClasses: Int, val distanceMetric: DistanceMetric) extends ProbabilisticClassificationModel[Vector, NaiveKNNClassifierModel] { override def numClasses: Int = _numClasses override def transform(dataset: Dataset[_]): DataFrame = { import dataset.sparkSession.implicits._ val features = dataset.select($(featuresCol)) .map(r => new VectorWithNorm(r.getAs[Vector](0))) val merged = features.rdd.zipWithUniqueId() .cartesian(points) .map { case ((u, i), (label, v)) => val dist = distanceMetric.fastSquaredDistance(u, v) (i, (dist, label)) } .topByKey(1)(Ordering.by(e => -e._1)) .map{ case (id, labels) => val vector = new Array[Double](numClasses) var i = 0 while (i < labels.length) { vector(labels(i)._2.toInt) += 1 i += 1 } val rawPrediction = Vectors.dense(vector) lazy val probability = raw2probability(rawPrediction) lazy val prediction = probability2prediction(probability) val values = new ArrayBuffer[Any] if ($(rawPredictionCol).nonEmpty) { values.append(rawPrediction) } if ($(probabilityCol).nonEmpty) { values.append(probability) } if ($(predictionCol).nonEmpty) { values.append(prediction) } (id, values.toSeq) } dataset.sqlContext.createDataFrame( dataset.toDF().rdd.zipWithUniqueId().map { case (row, i) => (i, row) } .leftOuterJoin(merged) //make sure we don't lose any observations .map { case (i, (row, values)) => Row.fromSeq(row.toSeq ++ values.get) }, transformSchema(dataset.schema) ) } override def transformSchema(schema: StructType): StructType = { var transformed = schema if ($(rawPredictionCol).nonEmpty) { transformed = SchemaUtils.appendColumn(transformed, $(rawPredictionCol), new VectorUDT) } if ($(probabilityCol).nonEmpty) { transformed = SchemaUtils.appendColumn(transformed, $(probabilityCol), new VectorUDT) } if ($(predictionCol).nonEmpty) { transformed = SchemaUtils.appendColumn(transformed, $(predictionCol), DoubleType) } transformed } override def copy(extra: ParamMap): NaiveKNNClassifierModel = { val copied = new NaiveKNNClassifierModel(uid, points, numClasses, distanceMetric) copyValues(copied, extra).setParent(parent) } override protected def raw2probabilityInPlace(rawPrediction: Vector): Vector = { rawPrediction match { case dv: DenseVector => var i = 0 val size = dv.size var sum = 0.0 while (i < size) { sum += dv.values(i) i += 1 } i = 0 while (i < size) { dv.values(i) /= sum i += 1 } dv case sv: SparseVector => throw new RuntimeException("Unexpected error in KNNClassificationModel:" + " raw2probabilitiesInPlace encountered SparseVector") } } override def predictRaw(features: Vector): Vector = { throw new SparkException("predictRaw function should not be called directly since kNN prediction is done in distributed fashion. Use transform instead.") } }
saurfang/spark-knn
spark-knn-examples/src/main/scala/org/apache/spark/ml/classification/NaiveKNN.scala
Scala
apache-2.0
6,144
package linter.linters import java.io.File import linter.{Language, OutputGenerator} import json_parser.Error import scala.collection.mutable import scala.io.Source /** * A linter that checks if a line goes over 80 characters * <p> Inherits everything from BaseLinter </p> */ class LengthCheckerLinter(path: File, language: Language.Value) extends BaseLinter(path, language) { private val mistakes = new mutable.MutableList[Error] /** * For every file given, checks whether any line is bigger than 80 characters * * @return The list of mistakes found in the file(s) */ override def parseFiles: Seq[Error] = { fileList.filterNot(_.isDirectory).foreach(scanFile) mistakes } private def scanFile(f: File): Unit = { for ((line, index) <- Source.fromFile(f).getLines().zipWithIndex) { if (line.length >= 80) { OutputGenerator.addScore(0.1d) mistakes += new Error("Line is over 80 characters", f.toString, index + 1, 0, "style") } } } }
ke00n/alabno
backend/linter/src/main/scala/linter/linters/LengthCheckerLinter.scala
Scala
mit
1,014
package org.apache.spark.examples.mllib import org.apache.spark.SparkConf import org.apache.spark.SparkContext import org.apache.spark.mllib.linalg.Matrices import org.apache.spark.mllib.linalg.Matrix import org.apache.spark.mllib.linalg.Vector import org.apache.spark.mllib.linalg.Vectors import org.apache.spark.mllib.linalg.distributed.IndexedRow import org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix import org.apache.spark.mllib.linalg.distributed.RowMatrix import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.mllib.util.MLUtils import org.apache.spark.rdd.RDD import org.apache.spark.mllib.linalg.distributed.CoordinateMatrix import org.apache.spark.mllib.linalg.distributed.MatrixEntry import org.apache.spark.mllib.linalg.distributed.BlockMatrix /** * 数据类型测试 */ object DataTypes { /** * 稀疏矩阵:在矩阵中,若数值为0的元素数目远远多于非0元素的数目时,则称该矩阵为稀疏矩阵 * 密集矩阵:在矩阵中,若非0元素数目占大多数时,则称该矩阵为密集矩阵 */ def main(args: Array[String]) { val sparkConf = new SparkConf().setMaster("local[2]").setAppName("SparkHdfsLR") val sc = new SparkContext(sparkConf) /**创建本地向量**/ //本地向量(Local Vector)存储在单台机器上,索引采用0开始的整型表示,值采用Double类型的值表示 // Create a dense vector (1.0, 0.0, 3.0). //密度矩阵,零值也存储 val dv: Vector = Vectors.dense(1.0, 0.0, 3.0) // Create a sparse vector (1.0, 0.0, 3.0) by specifying its indices and values corresponding to nonzero entries. //创建稀疏矩阵,指定元素的个数、索引及非零值,数组方式 val sv1: Vector = Vectors.sparse(3, Array(0, 2), Array(1.0, 3.0)) // Create a sparse vector (1.0, 0.0, 3.0) by specifying its nonzero entries. // 创建稀疏矩阵,指定元素的个数、索引及非零值,采用序列方式 val sv2: Vector = Vectors.sparse(3, Seq((0, 1.0), (2, 3.0))) /**含标签点**/ // Create a labeled point with a positive label and a dense feature vector. //创建带有正标签和稠密特征向量的标记点 val pos = LabeledPoint(1.0, Vectors.dense(1.0, 0.0, 3.0)) // Create a labeled point with a negative label and a sparse feature vector. //LabeledPoint标记点是局部向量,向量可以是密集型或者稀疏型,每个向量会关联了一个标签(label) val neg = LabeledPoint(0.0, Vectors.sparse(3, Array(0, 2), Array(1.0, 3.0))) //稀疏数据,MLlib可以读取以LibSVM格式存储的训练实例,每行代表一个含类标签的稀疏特征向量 //索引从1开始并且递增,加载被转换为从0开始 /** * libSVM的数据格式 * <label> <index1>:<value1> <index2>:<value2> ... * 其中<label>是训练数据集的目标值,对于分类,它是标识某类的整数(支持多个类);对于回归,是任意实数 * <index>是以1开始的整数,可以是不连续 * <value>为实数,也就是我们常说的自变量 */ val examples: RDD[LabeledPoint] = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") /**本地密集矩阵***/ // Create a dense matrix ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0)) val dm: Matrix = Matrices.dense(3, 2, Array(1.0, 3.0, 5.0, 2.0, 4.0, 6.0)) /**本地稀疏矩阵***/ /**下列矩阵 1.0 0.0 4.0 0.0 3.0 5.0 2.0 0.0 6.0 如果采用稀疏矩阵存储的话,其存储信息包括按列的形式: 实际存储值: [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]`, 矩阵元素对应的行索引:rowIndices=[0, 2, 1, 0, 1, 2]` 列起始位置索引: `colPointers=[0, 2, 3, 6]**/ // Create a sparse matrix ((9.0, 0.0), (0.0, 8.0), (0.0, 6.0)) val sm: Matrix = Matrices.sparse(3, 2, Array(0, 1, 3), Array(0, 2, 1), Array(9, 6, 8)) /**分布式矩阵**/ val rows: RDD[Vector] = null // an RDD of local vectors // Create a RowMatrix from an RDD[Vector]. //行矩阵(RowMatrix)按行分布式存储,无行索引,底层支撑结构是多行数据组成的RDD,每行是一个局部向量 val mat: RowMatrix = new RowMatrix(rows) // Get its size. val m = mat.numRows() val n = mat.numCols() // QR decomposition val qrResult = mat.tallSkinnyQR(true) /**索引行分布式矩阵**/ //包涵行索引数据集信息 val rowsIndex: RDD[IndexedRow] = null // an RDD of indexed rows 索引行的RDD // Create an IndexedRowMatrix from an RDD[IndexedRow]. //索引行矩阵(IndexedRowMatrix)按行分布式存储,有行索引,其底层支撑结构是索引的行组成的RDD,所以每行可以通过索引(long)和局部向量表示 val matIndex: IndexedRowMatrix = new IndexedRowMatrix(rowsIndex) // Get its size. 得到它的大小 val mIndex = matIndex.numRows() val nIndex = matIndex.numCols() // Drop its row indices. 下降行索引 val rowMat: RowMatrix = matIndex.toRowMatrix() /***三元组矩阵*/ val entries: RDD[MatrixEntry] = null // an RDD of matrix entries 矩阵元素的RDD // Create a CoordinateMatrix from an RDD[MatrixEntry]. //CoordinateMatrix常用于稀疏性比较高的计算中,MatrixEntry是一个 Tuple类型的元素,其中包含行、列和元素值 val matCoordinate: CoordinateMatrix = new CoordinateMatrix(entries) // Get its size. //得到它的大小 val mCoordinate = mat.numRows() val nCoordinate = mat.numCols() // Convert it to an IndexRowMatrix whose rows are sparse vectors. //索引行矩阵(IndexedRowMatrix)按行分布式存储,有行索引,其底层支撑结构是索引的行组成的RDD,所以每行可以通过索引(long)和局部向量表示 val indexedRowMatrix = matCoordinate.toIndexedRowMatrix() /**BlockMatrix块矩阵**/ val coordMat: CoordinateMatrix = new CoordinateMatrix(entries) val matA: BlockMatrix = coordMat.toBlockMatrix().cache() // Validate whether the BlockMatrix is set up properly. Throws an Exception when it is not valid. //验证是否正确设置属性,当它无效时抛出一个异常 // Nothing happens if it is valid.如果它是有效的,什么都不会发生 matA.validate() // Calculate A^T A. val ata = matA.transpose.multiply(matA) } }
tophua/spark1.52
examples/src/main/scala/org/apache/spark/examples/mllib/DataTypes.scala
Scala
apache-2.0
6,365
package dk.gp.cogp.testutils import breeze.linalg.DenseMatrix import breeze.linalg.DenseVector import breeze.linalg._ import dk.gp.cogp.model.Task object loadToyModelDataIncomplete { def apply(): Array[Task] = { val y0Filter = (x: Double) => (x < -7 || x > -3) val y1Filter = (x: Double) => (x < 4 || x > 8) val data = loadToyModelData(n = Int.MaxValue, y0Filter, y1Filter) data } }
danielkorzekwa/bayes-scala-gp
src/test/scala/dk/gp/cogp/testutils/loadToyModelDataIncomplete.scala
Scala
bsd-2-clause
407
package endpoints.testsuite import endpoints.algebra trait JsonFromCodecTestApi extends algebra.Endpoints with algebra.JsonEntitiesFromCodec { implicit def userCodec: JsonCodec[User] implicit def addressCodec: JsonCodec[Address] val jsonCodecEndpoint = endpoint( post(path / "user-json-codec", jsonRequest[User]), jsonResponse[Address] ) } trait JsonFromCirceCodecTestApi extends JsonFromCodecTestApi with algebra.circe.JsonEntitiesFromCodec { def userCodec = implicitly[JsonCodec[User]] def addressCodec = implicitly[JsonCodec[Address]] } trait JsonFromPlayJsonCodecTestApi extends JsonFromCodecTestApi with algebra.playjson.JsonEntitiesFromCodec { def userCodec = implicitly[JsonCodec[User]] def addressCodec = implicitly[JsonCodec[Address]] }
Krever/endpoints
testsuite/testsuite/src/main/scala/endpoints/testsuite/JsonFromCodecTestApi.scala
Scala
mit
799
/* * Copyright (c) 2015-16 Miles Sabin * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package shapeless import scala.language.existentials import scala.language.experimental.macros import scala.annotation.{ StaticAnnotation, tailrec } import scala.reflect.api.Universe import scala.reflect.macros.{ blackbox, whitebox } import ops.{ hlist, coproduct } trait Generic1[F[_], FR[_[_]]] extends Serializable { type R[t] lazy val fr: FR[R] = mkFrr def to[T](ft: F[T]): R[T] def from[T](rt: R[T]): F[T] def mkFrr: FR[R] } object Generic1 extends Generic10 { type Aux[F[_], FR[_[_]], R0[_]] = Generic1[F, FR] { type R[t] = R0[t] } implicit def apply[T[_], FR[_[_]]]: Generic1[T, FR] = macro Generic1Macros.mkGeneric1Impl[T, FR] } trait Generic10 { implicit def mkGeneric10[T[_], U[_], FR[_[_], _[_]]]: Generic1[T, ({ type λ[t[_]] = FR[t, U] })#λ] = macro Generic1Macros.mkGeneric1Impl[T, ({ type λ[t[_]] = FR[t, U] })#λ] implicit def mkGeneric11[T[_], U[_], FR[_[_], _[_]]]: Generic1[T, ({ type λ[t[_]] = FR[U, t] })#λ] = macro Generic1Macros.mkGeneric1Impl[T, ({ type λ[t[_]] = FR[U, t] })#λ] } trait IsHCons1[L[_], FH[_[_]], FT[_[_]]] extends Serializable { type H[_] type T[_] <: HList lazy val fh: FH[H] = mkFhh lazy val ft: FT[T] = mkFtt def pack[A](u: (H[A], T[A])): L[A] def unpack[A](p: L[A]): (H[A], T[A]) def mkFhh: FH[H] def mkFtt: FT[T] } object IsHCons1 extends IsHCons10 { type Aux[L[_], FH[_[_]], FT[_[_]], H0[_], T0[_] <: HList] = IsHCons1[L, FH, FT] { type H[t] = H0[t] ; type T[t] = T0[t] } implicit def apply[L[_], FH[_[_]], FT[_[_]]]: IsHCons1[L, FH, FT] = macro IsHCons1Macros.mkIsHCons1Impl[L, FH, FT] } trait IsHCons10 { implicit def mkIsHCons10[L[_], FH[_[_], _[_]], U[_], FT[_[_]]]: IsHCons1[L, ({ type λ[t[_]] = FH[t, U] })#λ, FT] = macro IsHCons1Macros.mkIsHCons1Impl[L, ({ type λ[t[_]] = FH[t, U] })#λ, FT] implicit def mkIsHCons11[L[_], FH[_[_], _[_]], U[_], FT[_[_]]]: IsHCons1[L, ({ type λ[t[_]] = FH[U, t] })#λ, FT] = macro IsHCons1Macros.mkIsHCons1Impl[L, ({ type λ[t[_]] = FH[U, t] })#λ, FT] implicit def mkIsHCons12[L[_], FH[_[_]], FT[_[_], _[_]], U[_]]: IsHCons1[L, FH, ({ type λ[t[_]] = FT[t, U] })#λ] = macro IsHCons1Macros.mkIsHCons1Impl[L, FH, ({ type λ[t[_]] = FT[t, U] })#λ] implicit def mkIsHCons13[L[_], FH[_[_]], FT[_[_], _[_]], U[_]]: IsHCons1[L, FH, ({ type λ[t[_]] = FT[U, t] })#λ] = macro IsHCons1Macros.mkIsHCons1Impl[L, FH, ({ type λ[t[_]] = FT[U, t] })#λ] } trait IsCCons1[L[_], FH[_[_]], FT[_[_]]] extends Serializable { type H[_] type T[_] <: Coproduct lazy val fh: FH[H] = mkFhh lazy val ft: FT[T] = mkFtt def pack[A](u: Either[H[A], T[A]]): L[A] def unpack[A](p: L[A]): Either[H[A], T[A]] def mkFhh: FH[H] def mkFtt: FT[T] } object IsCCons1 extends IsCCons10 { type Aux[L[_], FH[_[_]], FT[_[_]], H0[_], T0[_] <: Coproduct] = IsCCons1[L, FH, FT] { type H[t] = H0[t] ; type T[t] = T0[t] } implicit def apply[L[_], FH[_[_]], FT[_[_]]]: IsCCons1[L, FH, FT] = macro IsCCons1Macros.mkIsCCons1Impl[L, FH, FT] } trait IsCCons10 { implicit def mkIsCCons10[L[_], FH[_[_], _[_]], U[_], FT[_[_]]]: IsCCons1[L, ({ type λ[t[_]] = FH[t, U] })#λ, FT] = macro IsCCons1Macros.mkIsCCons1Impl[L, ({ type λ[t[_]] = FH[t, U] })#λ, FT] implicit def mkIsCCons11[L[_], FH[_[_], _[_]], U[_], FT[_[_]]]: IsCCons1[L, ({ type λ[t[_]] = FH[U, t] })#λ, FT] = macro IsCCons1Macros.mkIsCCons1Impl[L, ({ type λ[t[_]] = FH[U, t] })#λ, FT] implicit def mkIsCCons12[L[_], FH[_[_]], FT[_[_], _[_]], U[_]]: IsCCons1[L, FH, ({ type λ[t[_]] = FT[t, U] })#λ] = macro IsCCons1Macros.mkIsCCons1Impl[L, FH, ({ type λ[t[_]] = FT[t, U] })#λ] implicit def mkIsCCons13[L[_], FH[_[_]], FT[_[_], _[_]], U[_]]: IsCCons1[L, FH, ({ type λ[t[_]] = FT[U, t] })#λ] = macro IsCCons1Macros.mkIsCCons1Impl[L, FH, ({ type λ[t[_]] = FT[U, t] })#λ] } trait Split1[L[_], FO[_[_]], FI[_[_]]] extends Serializable { type O[_] type I[_] lazy val fo: FO[O] = mkFoo lazy val fi: FI[I] = mkFii def pack[T](u: O[I[T]]): L[T] def unpack[T](p: L[T]): O[I[T]] def mkFoo: FO[O] def mkFii: FI[I] } object Split1 extends Split10 { type Aux[L[_], FO[_[_]], FI[_[_]], O0[_], I0[_]] = Split1[L, FO, FI] { type O[T] = O0[T] ; type I[T] = I0[T] } implicit def apply[L[_], FO[_[_]], FI[_[_]]]: Split1[L, FO, FI] = macro Split1Macros.mkSplit1Impl[L, FO, FI] } trait Split10 { implicit def mkSplit10[L[_], FO[_[_], _[_]], U[_], FI[_[_]]]: Split1[L, ({ type λ[t[_]] = FO[t, U] })#λ, FI] = macro Split1Macros.mkSplit1Impl[L, ({ type λ[t[_]] = FO[t, U] })#λ, FI] implicit def mkSplit11[L[_], FO[_[_], _[_]], U[_], FI[_[_]]]: Split1[L, ({ type λ[t[_]] = FO[U, t] })#λ, FI] = macro Split1Macros.mkSplit1Impl[L, ({ type λ[t[_]] = FO[U, t] })#λ, FI] implicit def mkSplit12[L[_], FO[_[_]], FI[_[_], _[_]], U[_]]: Split1[L, FO, ({ type λ[t[_]] = FI[t, U] })#λ] = macro Split1Macros.mkSplit1Impl[L, FO, ({ type λ[t[_]] = FI[t, U] })#λ] implicit def mkSplit13[L[_], FO[_[_]], FI[_[_], _[_]], U[_]]: Split1[L, FO, ({ type λ[t[_]] = FI[U, t] })#λ] = macro Split1Macros.mkSplit1Impl[L, FO, ({ type λ[t[_]] = FI[U, t] })#λ] } @macrocompat.bundle class Generic1Macros(val c: whitebox.Context) extends CaseClassMacros { import c.ImplicitCandidate import c.universe._ import internal.constantType import Flag._ def mkGeneric1Impl[T[_], FR[_[_]]](implicit tTag: WeakTypeTag[T[_]], frTag: WeakTypeTag[FR[Any]]): Tree = { val tpe = tTag.tpe val frTpe = c.openImplicits.headOption match { case Some(ImplicitCandidate(_, _, TypeRef(_, _, List(_, tpe)), _)) => tpe case other => frTag.tpe.typeConstructor } if(isReprType1(tpe)) abort("No Generic1 instance available for HList or Coproduct") if(isProduct1(tpe)) mkProductGeneric1(tpe, frTpe) else mkCoproductGeneric1(tpe, frTpe) } def mkProductGeneric1(tpe: Type, frTpe: Type): Tree = { val ctorDtor = CtorDtor(tpe) val (p, ts) = ctorDtor.binding val to = cq""" $p => ${mkHListValue(ts)} """ val (rp, rts) = ctorDtor.reprBinding val from = cq""" $rp => ${ctorDtor.construct(rts)} """ val nme = TypeName(c.freshName) val reprTpt = reprTypTree1(tpe, nme) val rnme = TypeName(c.freshName) val clsName = TypeName(c.freshName("anon$")) q""" type Apply0[F[_], T] = F[T] type Apply1[F[_[_]], T[_]] = F[T] final class $clsName extends _root_.shapeless.Generic1[$tpe, $frTpe] { type R[$nme] = $reprTpt def mkFrr: Apply1[$frTpe, R] = _root_.shapeless.lazily[Apply1[$frTpe, R]] def to[$nme](ft: Apply0[$tpe, $nme]): R[$nme] = (ft match { case $to }).asInstanceOf[R[$nme]] def from[$nme](rt: R[$nme]): Apply0[$tpe, $nme] = rt match { case $from } } type $rnme[$nme] = $reprTpt new $clsName(): _root_.shapeless.Generic1.Aux[$tpe, $frTpe, $rnme] """ } def mkCoproductGeneric1(tpe: Type, frTpe: Type): Tree = { def mkCoproductCases(tpe: Type, index: Int): CaseDef = { val name = TermName(c.freshName("pat")) val tc = tpe.typeConstructor val params = tc.typeParams.map { _ => Bind(typeNames.WILDCARD, EmptyTree) } val tpeTpt = AppliedTypeTree(mkAttributedRef(tc), params) cq"$name: $tpeTpt => $index" } val nme = TypeName(c.freshName) val reprTpt = reprTypTree1(tpe, nme) val rnme = TypeName(c.freshName) val to = { val toCases = ctorsOf1(tpe) zip (Stream from 0) map (mkCoproductCases _).tupled q"""_root_.shapeless.Coproduct.unsafeMkCoproduct((ft: Any) match { case ..$toCases }, ft).asInstanceOf[R[$nme]]""" } val clsName = TypeName(c.freshName("anon$")) q""" type Apply0[F[_], T] = F[T] type Apply1[F[_[_]], T[_]] = F[T] final class $clsName extends _root_.shapeless.Generic1[$tpe, $frTpe] { type R[$nme] = $reprTpt def mkFrr: Apply1[$frTpe, R] = _root_.shapeless.lazily[Apply1[$frTpe, R]] def to[$nme](ft: Apply0[$tpe, $nme]): R[$nme] = $to def from[$nme](rt: R[$nme]): Apply0[$tpe, $nme] = _root_.shapeless.Coproduct.unsafeGet(rt).asInstanceOf[Apply0[$tpe, $nme]] } type $rnme[$nme] = $reprTpt new $clsName(): _root_.shapeless.Generic1.Aux[$tpe, $frTpe, $rnme] """ } } @macrocompat.bundle class IsHCons1Macros(val c: whitebox.Context) extends IsCons1Macros { import c.universe._ def mkIsHCons1Impl[L[_], FH[_[_]], FT[_[_]]] (implicit lTag: WeakTypeTag[L[_]], fhTag: WeakTypeTag[FH[Any]], ftTag: WeakTypeTag[FT[Any]]): Tree = mkIsCons1(lTag.tpe, fhTag.tpe.typeConstructor, ftTag.tpe.typeConstructor) val isCons1TC: Tree = tq"_root_.shapeless.IsHCons1" val consTpe: Type = hconsTpe def mkPackUnpack(nme: TypeName, lTpt: Tree, hdTpt: Tree, tlTpt: Tree): (Tree, Tree) = ( q""" def pack[$nme](u: ($hdTpt, $tlTpt)): $lTpt = _root_.shapeless.::(u._1, u._2) """, q""" def unpack[$nme](p: $lTpt): ($hdTpt, $tlTpt) = (p.head, p.tail) """ ) } @macrocompat.bundle class IsCCons1Macros(val c: whitebox.Context) extends IsCons1Macros { import c.universe._ def mkIsCCons1Impl[L[_], FH[_[_]], FT[_[_]]] (implicit lTag: WeakTypeTag[L[_]], fhTag: WeakTypeTag[FH[Any]], ftTag: WeakTypeTag[FT[Any]]): Tree = mkIsCons1(lTag.tpe, fhTag.tpe.typeConstructor, ftTag.tpe.typeConstructor) val isCons1TC: Tree = tq"_root_.shapeless.IsCCons1" val consTpe: Type = cconsTpe def mkPackUnpack(nme: TypeName, lTpt: Tree, hdTpt: Tree, tlTpt: Tree): (Tree, Tree) = ( q""" def pack[$nme](u: _root_.scala.Either[$hdTpt, $tlTpt]): $lTpt = u match { case _root_.scala.Left(hd) => _root_.shapeless.Inl[$hdTpt, $tlTpt](hd) case _root_.scala.Right(tl) => _root_.shapeless.Inr[$hdTpt, $tlTpt](tl) } """, q""" def unpack[$nme](p: $lTpt): _root_.scala.Either[$hdTpt, $tlTpt] = p match { case _root_.shapeless.Inl(hd) => _root_.scala.Left[$hdTpt, $tlTpt](hd) case _root_.shapeless.Inr(tl) => _root_.scala.Right[$hdTpt, $tlTpt](tl) } """ ) } @macrocompat.bundle trait IsCons1Macros extends CaseClassMacros { import c.ImplicitCandidate import c.universe._ val isCons1TC: Tree val consTpe: Type def mkPackUnpack(nme: TypeName, lTpt: Tree, hdTpt: Tree, tlTpt: Tree): (Tree, Tree) def mkIsCons1(lTpe: Type, fhTpe0: Type, ftTpe0: Type): Tree = { val lParam = lTpe.typeParams.head val lParamTpe = lParam.asType.toType val lDealiasedTpe = appliedType(lTpe, lParamTpe).dealias val (fhTpe, ftTpe) = c.openImplicits.headOption match { case Some(ImplicitCandidate(_, _, TypeRef(_, _, List(_, fh, ft)), _)) => (fh, ft) case other => (fhTpe0, ftTpe0) } if(!(lDealiasedTpe.typeConstructor =:= consTpe)) abort("Not H/CCons") val TypeRef(_, _, List(hd, tl)) = lDealiasedTpe val lPoly = c.internal.polyType(List(lParam), lDealiasedTpe) val hdPoly = c.internal.polyType(List(lParam), hd) val tlPoly = c.internal.polyType(List(lParam), tl) val nme = TypeName(c.freshName) val lTpt = appliedTypTree1(lPoly, lParamTpe, nme) val hdTpt = appliedTypTree1(hdPoly, lParamTpe, nme) val tlTpt = appliedTypTree1(tlPoly, lParamTpe, nme) val (pack, unpack) = mkPackUnpack(nme, lTpt, hdTpt, tlTpt) q""" type Apply0[F[_], T] = F[T] type Apply1[F[_[_]], T[_]] = F[T] new $isCons1TC[$lTpe, $fhTpe, $ftTpe] { type H[$nme] = $hdTpt type T[$nme] = $tlTpt def mkFhh: Apply1[$fhTpe, H] = _root_.shapeless.lazily[Apply1[$fhTpe, H]] def mkFtt: Apply1[$ftTpe, T] = _root_.shapeless.lazily[Apply1[$ftTpe, T]] $pack $unpack } """ } } @macrocompat.bundle class Split1Macros(val c: whitebox.Context) extends CaseClassMacros { import c.ImplicitCandidate import c.universe._ def mkSplit1Impl[L[_], FO[_[_]], FI[_[_]]] (implicit lTag: WeakTypeTag[L[_]], foTag: WeakTypeTag[FO[Any]], fiTag: WeakTypeTag[FI[Any]]): Tree = { val lTpe = lTag.tpe val (foTpe, fiTpe) = c.openImplicits.headOption match { case Some(ImplicitCandidate(_, _, TypeRef(_, _, List(_, fo, fi)), _)) => (fo, fi) case other => (foTag.tpe.typeConstructor, fiTag.tpe.typeConstructor) } if(isReprType1(lTpe)) abort("No Split1 instance available for HList or Coproduct") val lParam = lTpe.typeParams.head val lParamTpe = lParam.asType.toType val lDealiasedTpe = appliedType(lTpe, lParamTpe).dealias val nme = TypeName(c.freshName) def balanced(args: List[Type]): Boolean = args.find(_.contains(lParam)).map { pivot => !(pivot =:= lParamTpe) && args.forall { arg => arg =:= pivot || !arg.contains(lParam) } }.getOrElse(false) val (oTpt, iTpt) = lDealiasedTpe match { case tpe @ TypeRef(pre, sym, args) if balanced(args) => val Some(pivot) = args.find(_.contains(lParam)) val oPoly = c.internal.polyType(List(lParam), appliedType(tpe.typeConstructor, args.map { arg => if(arg =:= pivot) lParamTpe else arg })) val oTpt = appliedTypTree1(oPoly, lParamTpe, nme) val iPoly = c.internal.polyType(List(lParam), pivot) val iTpt = appliedTypTree1(iPoly, lParamTpe, nme) (oTpt, iTpt) case other => c.abort(c.enclosingPosition, s"Can't split $other into a non-trivial outer and inner type constructor") } val lPoly = c.internal.polyType(List(lParam), lDealiasedTpe) val lTpt = appliedTypTree1(lPoly, lParamTpe, nme) q""" type Apply0[F[_], T] = F[T] type Apply1[F[_[_]], T[_]] = F[T] new _root_.shapeless.Split1[$lTpe, $foTpe, $fiTpe] { type O[$nme] = $oTpt type I[$nme] = $iTpt def mkFoo: Apply1[$foTpe, O] = _root_.shapeless.lazily[Apply1[$foTpe, O]] def mkFii: Apply1[$fiTpe, I] = _root_.shapeless.lazily[Apply1[$fiTpe, I]] def pack[$nme](u: O[I[$nme]]): $lTpt = u def unpack[$nme](p: $lTpt): O[I[$nme]] = p } """ } }
rorygraves/perf_tester
corpus/shapeless/src/main/scala/shapeless/generic1.scala
Scala
apache-2.0
14,718
package me.archdev.restapi.utils.db import com.zaxxer.hikari.{ HikariConfig, HikariDataSource } class DatabaseConnector(jdbcUrl: String, dbUser: String, dbPassword: String) { private val hikariDataSource = { val hikariConfig = new HikariConfig() hikariConfig.setJdbcUrl(jdbcUrl) hikariConfig.setUsername(dbUser) hikariConfig.setPassword(dbPassword) new HikariDataSource(hikariConfig) } val profile = slick.jdbc.PostgresProfile import profile.api._ val db = Database.forDataSource(hikariDataSource, None) db.createSession() }
ArchDev/akka-http-rest
src/main/scala/me/archdev/restapi/utils/db/DatabaseConnector.scala
Scala
mit
564
/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ package cqrs.command /** * A marker trait for commands handled by the aggregates on the write side. */ trait DomainCommand
cqrs-endeavour/cqrs-endeavour
cqrs-framework/src/main/scala/cqrs/command/DomainCommand.scala
Scala
mpl-2.0
331
/** * Copyright (C) 2016 Verizon. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.verizon.bda.trapezium.dal.core.cassandra import com.datastax.driver.core.{ResultSet, Cluster} import com.datastax.driver.core.querybuilder.QueryBuilder import com.verizon.bda.trapezium.dal.core.cassandra.utils.CassandraDAOUtils import org.apache.spark.{SparkContext, SparkConf} import org.apache.spark.sql.SQLContext import org.scalatest.{BeforeAndAfterAll, FunSuite} import org.slf4j.LoggerFactory import scala.collection.mutable.ListBuffer import org.cassandraunit.utils.EmbeddedCassandraServerHelper import scala.collection.JavaConverters._ /** * Created by Faraz on 2/29/16. * These are unit tests which uses embeded dummy Cassandra. * The table used here like iprepuattion or ipreputation are just for testing * and should not be confused * with tables in netintel keyspace. * extends SparkFunSuite with LocalSparkContext * @deprecated */ class CassandraDAOUnitTest extends CassandraTestSuiteBase { }
Verizon/trapezium
cassandra-dao/src/test/scala/com/verizon/bda/trapezium/dal/core/cassandra/CassandraDAOUnitTest.scala
Scala
apache-2.0
1,540
package core.shapes.dim1 import core.main._, core.pieces._, core.shapes.dim0._, core.shapes.dim1._, core.shapes.dim2._, core.shapes.forces._ class LineSegmentImpl(p_start: Point, val p_end: Point, override val rawDir: Vector2) extends RayImpl(p_start,rawDir) with LineSegment { override lazy val dir = rawDir.unit lazy val length = p.distTo(p_end) }
radiotech/FlatLand
src/core/shapes/dim1/LineSegmentImpl.scala
Scala
mit
355
package lila.app package templating import lila.bookmark.Env.{ current => bookmarkEnv } import lila.game.Game import lila.user.User trait BookmarkHelper { def isBookmarked(game: Game, user: User): Boolean = bookmarkEnv.api.bookmarked(game, user) }
r0k3/lila
app/templating/BookmarkHelper.scala
Scala
mit
259
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.streaming import org.apache.spark.streaming.dstream.{InputDStream, ForEachDStream} import org.apache.spark.streaming.util.ManualClock import scala.collection.mutable.ArrayBuffer import scala.collection.mutable.SynchronizedBuffer import scala.reflect.ClassTag import java.io.{ObjectInputStream, IOException} import org.scalatest.{BeforeAndAfter, FunSuite} import org.apache.spark.Logging import org.apache.spark.rdd.RDD /** * This is a input stream just for the testsuites. This is equivalent to a checkpointable, * replayable, reliable message queue like Kafka. It requires a sequence as input, and * returns the i_th element at the i_th batch unde manual clock. */ class TestInputStream[T: ClassTag](ssc_ : StreamingContext, input: Seq[Seq[T]], numPartitions: Int) extends InputDStream[T](ssc_) { def start() {} def stop() {} def compute(validTime: Time): Option[RDD[T]] = { logInfo("Computing RDD for time " + validTime) val index = ((validTime - zeroTime) / slideDuration - 1).toInt val selectedInput = if (index < input.size) input(index) else Seq[T]() // lets us test cases where RDDs are not created if (selectedInput == null) return None val rdd = ssc.sc.makeRDD(selectedInput, numPartitions) logInfo("Created RDD " + rdd.id + " with " + selectedInput) Some(rdd) } } /** * This is a output stream just for the testsuites. All the output is collected into a * ArrayBuffer. This buffer is wiped clean on being restored from checkpoint. * * The buffer contains a sequence of RDD's, each containing a sequence of items */ class TestOutputStream[T: ClassTag](parent: DStream[T], val output: ArrayBuffer[Seq[T]] = ArrayBuffer[Seq[T]]()) extends ForEachDStream[T](parent, (rdd: RDD[T], t: Time) => { val collected = rdd.collect() output += collected }) { // This is to clear the output buffer every it is read from a checkpoint @throws(classOf[IOException]) private def readObject(ois: ObjectInputStream) { ois.defaultReadObject() output.clear() } } /** * This is a output stream just for the testsuites. All the output is collected into a * ArrayBuffer. This buffer is wiped clean on being restored from checkpoint. * * The buffer contains a sequence of RDD's, each containing a sequence of partitions, each * containing a sequence of items. */ class TestOutputStreamWithPartitions[T: ClassTag](parent: DStream[T], val output: ArrayBuffer[Seq[Seq[T]]] = ArrayBuffer[Seq[Seq[T]]]()) extends ForEachDStream[T](parent, (rdd: RDD[T], t: Time) => { val collected = rdd.glom().collect().map(_.toSeq) output += collected }) { // This is to clear the output buffer every it is read from a checkpoint @throws(classOf[IOException]) private def readObject(ois: ObjectInputStream) { ois.defaultReadObject() output.clear() } def toTestOutputStream = new TestOutputStream[T](this.parent, this.output.map(_.flatten)) } /** * This is the base trait for Spark Streaming testsuites. This provides basic functionality * to run user-defined set of input on user-defined stream operations, and verify the output. */ trait TestSuiteBase extends FunSuite with BeforeAndAfter with Logging { // Name of the framework for Spark context def framework = "TestSuiteBase" // Master for Spark context def master = "local[2]" // Batch duration def batchDuration = Seconds(1) // Directory where the checkpoint data will be saved def checkpointDir = "checkpoint" // Number of partitions of the input parallel collections created for testing def numInputPartitions = 2 // Maximum time to wait before the test times out def maxWaitTimeMillis = 10000 // Whether to actually wait in real time before changing manual clock def actuallyWait = false /** * Set up required DStreams to test the DStream operation using the two sequences * of input collections. */ def setupStreams[U: ClassTag, V: ClassTag]( input: Seq[Seq[U]], operation: DStream[U] => DStream[V], numPartitions: Int = numInputPartitions ): StreamingContext = { // Create StreamingContext val ssc = new StreamingContext(master, framework, batchDuration) if (checkpointDir != null) { ssc.checkpoint(checkpointDir) } // Setup the stream computation val inputStream = new TestInputStream(ssc, input, numPartitions) val operatedStream = operation(inputStream) val outputStream = new TestOutputStreamWithPartitions(operatedStream, new ArrayBuffer[Seq[Seq[V]]] with SynchronizedBuffer[Seq[Seq[V]]]) ssc.registerInputStream(inputStream) ssc.registerOutputStream(outputStream) ssc } /** * Set up required DStreams to test the binary operation using the sequence * of input collections. */ def setupStreams[U: ClassTag, V: ClassTag, W: ClassTag]( input1: Seq[Seq[U]], input2: Seq[Seq[V]], operation: (DStream[U], DStream[V]) => DStream[W] ): StreamingContext = { // Create StreamingContext val ssc = new StreamingContext(master, framework, batchDuration) if (checkpointDir != null) { ssc.checkpoint(checkpointDir) } // Setup the stream computation val inputStream1 = new TestInputStream(ssc, input1, numInputPartitions) val inputStream2 = new TestInputStream(ssc, input2, numInputPartitions) val operatedStream = operation(inputStream1, inputStream2) val outputStream = new TestOutputStreamWithPartitions(operatedStream, new ArrayBuffer[Seq[Seq[W]]] with SynchronizedBuffer[Seq[Seq[W]]]) ssc.registerInputStream(inputStream1) ssc.registerInputStream(inputStream2) ssc.registerOutputStream(outputStream) ssc } /** * Runs the streams set up in `ssc` on manual clock for `numBatches` batches and * returns the collected output. It will wait until `numExpectedOutput` number of * output data has been collected or timeout (set by `maxWaitTimeMillis`) is reached. * * Returns a sequence of items for each RDD. */ def runStreams[V: ClassTag]( ssc: StreamingContext, numBatches: Int, numExpectedOutput: Int ): Seq[Seq[V]] = { // Flatten each RDD into a single Seq runStreamsWithPartitions(ssc, numBatches, numExpectedOutput).map(_.flatten.toSeq) } /** * Runs the streams set up in `ssc` on manual clock for `numBatches` batches and * returns the collected output. It will wait until `numExpectedOutput` number of * output data has been collected or timeout (set by `maxWaitTimeMillis`) is reached. * * Returns a sequence of RDD's. Each RDD is represented as several sequences of items, each * representing one partition. */ def runStreamsWithPartitions[V: ClassTag]( ssc: StreamingContext, numBatches: Int, numExpectedOutput: Int ): Seq[Seq[Seq[V]]] = { assert(numBatches > 0, "Number of batches to run stream computation is zero") assert(numExpectedOutput > 0, "Number of expected outputs after " + numBatches + " is zero") logInfo("numBatches = " + numBatches + ", numExpectedOutput = " + numExpectedOutput) // Get the output buffer val outputStream = ssc.graph.getOutputStreams.head.asInstanceOf[TestOutputStreamWithPartitions[V]] val output = outputStream.output try { // Start computation ssc.start() // Advance manual clock val clock = ssc.scheduler.clock.asInstanceOf[ManualClock] logInfo("Manual clock before advancing = " + clock.time) if (actuallyWait) { for (i <- 1 to numBatches) { logInfo("Actually waiting for " + batchDuration) clock.addToTime(batchDuration.milliseconds) Thread.sleep(batchDuration.milliseconds) } } else { clock.addToTime(numBatches * batchDuration.milliseconds) } logInfo("Manual clock after advancing = " + clock.time) // Wait until expected number of output items have been generated val startTime = System.currentTimeMillis() while (output.size < numExpectedOutput && System.currentTimeMillis() - startTime < maxWaitTimeMillis) { logInfo("output.size = " + output.size + ", numExpectedOutput = " + numExpectedOutput) Thread.sleep(100) } val timeTaken = System.currentTimeMillis() - startTime assert(timeTaken < maxWaitTimeMillis, "Operation timed out after " + timeTaken + " ms") assert(output.size === numExpectedOutput, "Unexpected number of outputs generated") Thread.sleep(500) // Give some time for the forgetting old RDDs to complete } catch { case e: Exception => {e.printStackTrace(); throw e} } finally { ssc.stop() } output } /** * Verify whether the output values after running a DStream operation * is same as the expected output values, by comparing the output * collections either as lists (order matters) or sets (order does not matter) */ def verifyOutput[V: ClassTag]( output: Seq[Seq[V]], expectedOutput: Seq[Seq[V]], useSet: Boolean ) { logInfo("--------------------------------") logInfo("output.size = " + output.size) logInfo("output") output.foreach(x => logInfo("[" + x.mkString(",") + "]")) logInfo("expected output.size = " + expectedOutput.size) logInfo("expected output") expectedOutput.foreach(x => logInfo("[" + x.mkString(",") + "]")) logInfo("--------------------------------") // Match the output with the expected output assert(output.size === expectedOutput.size, "Number of outputs do not match") for (i <- 0 until output.size) { if (useSet) { assert(output(i).toSet === expectedOutput(i).toSet) } else { assert(output(i).toList === expectedOutput(i).toList) } } logInfo("Output verified successfully") } /** * Test unary DStream operation with a list of inputs, with number of * batches to run same as the number of expected output values */ def testOperation[U: ClassTag, V: ClassTag]( input: Seq[Seq[U]], operation: DStream[U] => DStream[V], expectedOutput: Seq[Seq[V]], useSet: Boolean = false ) { testOperation[U, V](input, operation, expectedOutput, -1, useSet) } /** * Test unary DStream operation with a list of inputs * @param input Sequence of input collections * @param operation Binary DStream operation to be applied to the 2 inputs * @param expectedOutput Sequence of expected output collections * @param numBatches Number of batches to run the operation for * @param useSet Compare the output values with the expected output values * as sets (order matters) or as lists (order does not matter) */ def testOperation[U: ClassTag, V: ClassTag]( input: Seq[Seq[U]], operation: DStream[U] => DStream[V], expectedOutput: Seq[Seq[V]], numBatches: Int, useSet: Boolean ) { val numBatches_ = if (numBatches > 0) numBatches else expectedOutput.size val ssc = setupStreams[U, V](input, operation) val output = runStreams[V](ssc, numBatches_, expectedOutput.size) verifyOutput[V](output, expectedOutput, useSet) } /** * Test binary DStream operation with two lists of inputs, with number of * batches to run same as the number of expected output values */ def testOperation[U: ClassTag, V: ClassTag, W: ClassTag]( input1: Seq[Seq[U]], input2: Seq[Seq[V]], operation: (DStream[U], DStream[V]) => DStream[W], expectedOutput: Seq[Seq[W]], useSet: Boolean ) { testOperation[U, V, W](input1, input2, operation, expectedOutput, -1, useSet) } /** * Test binary DStream operation with two lists of inputs * @param input1 First sequence of input collections * @param input2 Second sequence of input collections * @param operation Binary DStream operation to be applied to the 2 inputs * @param expectedOutput Sequence of expected output collections * @param numBatches Number of batches to run the operation for * @param useSet Compare the output values with the expected output values * as sets (order matters) or as lists (order does not matter) */ def testOperation[U: ClassTag, V: ClassTag, W: ClassTag]( input1: Seq[Seq[U]], input2: Seq[Seq[V]], operation: (DStream[U], DStream[V]) => DStream[W], expectedOutput: Seq[Seq[W]], numBatches: Int, useSet: Boolean ) { val numBatches_ = if (numBatches > 0) numBatches else expectedOutput.size val ssc = setupStreams[U, V, W](input1, input2, operation) val output = runStreams[W](ssc, numBatches_, expectedOutput.size) verifyOutput[W](output, expectedOutput, useSet) } }
mkolod/incubator-spark
streaming/src/test/scala/org/apache/spark/streaming/TestSuiteBase.scala
Scala
apache-2.0
13,605
/* * ____ ____ _____ ____ ___ ____ * | _ \\ | _ \\ | ____| / ___| / _/ / ___| Precog (R) * | |_) | | |_) | | _| | | | | /| | | _ Advanced Analytics Engine for NoSQL Data * | __/ | _ < | |___ | |___ |/ _| | | |_| | Copyright (C) 2010 - 2013 SlamData, Inc. * |_| |_| \\_\\ |_____| \\____| /__/ \\____| All Rights Reserved. * * This program is free software: you can redistribute it and/or modify it under the terms of the * GNU Affero General Public License as published by the Free Software Foundation, either version * 3 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See * the GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License along with this * program. If not, see <http://www.gnu.org/licenses/>. * */ package com.precog package ragnarok package test object ArrayObjectSuite extends PerfTestSuite { "array joining" := { query(""" medals' := //summer_games/london_medals medals'' := new medals' medals'' ~ medals' [medals', medals'', medals'] where medals'.Total = medals''.Total""") } "object joining" := { query(""" medals' := //summer_games/london_medals medals'' := new medals' medals'' ~ medals' { a: medals', b: medals'', c: medals' } where medals'.Total = medals''.Total""") } }
precog/platform
ragnarok/src/main/scala/com/precog/ragnarok/test/ArrayObjectSuite.scala
Scala
agpl-3.0
1,631
package org.lanyard.dist.disc import org.scalatest.FunSpec import org.scalatest.Matchers import org.scalatest.prop.GeneratorDrivenPropertyChecks class DiscreteTest extends FunSpec with Matchers with GeneratorDrivenPropertyChecks { describe( "The class for discrete types" ) { sealed trait DNA case object A extends DNA case object C extends DNA case object G extends DNA case object T extends DNA val dna = Discrete( A, C, G, T ) it( "can be constructed with variable size." ) { dna.size should be( 4 ) } it( "can be used to convert to integer." ) { dna.asInt( A ) should be( 0 ) dna.asInt( C ) should be( 1 ) dna.asInt( G ) should be( 2 ) dna.asInt( T ) should be( 3 ) } it( "can be used to convert from integer." ) { dna.fromInt( 0 ) should be ( A ) dna.fromInt( 1 ) should be ( C ) dna.fromInt( 2 ) should be ( G ) dna.fromInt( 3 ) should be ( T ) } } }
perian/Lanyard
src/test/scala/org/lanyard/dist/disc/DiscreteTest.scala
Scala
gpl-2.0
970
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.catalyst.catalog import java.net.URI import java.util.Locale import java.util.concurrent.Callable import javax.annotation.concurrent.GuardedBy import scala.collection.mutable import scala.util.{Failure, Success, Try} import com.google.common.cache.{Cache, CacheBuilder} import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs.Path import org.apache.spark.internal.Logging import org.apache.spark.sql.AnalysisException import org.apache.spark.sql.catalyst._ import org.apache.spark.sql.catalyst.analysis._ import org.apache.spark.sql.catalyst.analysis.FunctionRegistry.FunctionBuilder import org.apache.spark.sql.catalyst.expressions.{Expression, ExpressionInfo, ImplicitCastInputTypes} import org.apache.spark.sql.catalyst.parser.{CatalystSqlParser, ParserInterface} import org.apache.spark.sql.catalyst.plans.logical.{LogicalPlan, SubqueryAlias, View} import org.apache.spark.sql.catalyst.util.StringUtils import org.apache.spark.sql.internal.SQLConf import org.apache.spark.sql.internal.StaticSQLConf.GLOBAL_TEMP_DATABASE import org.apache.spark.sql.types.StructType import org.apache.spark.util.Utils object SessionCatalog { val DEFAULT_DATABASE = "default" } /** * An internal catalog that is used by a Spark Session. This internal catalog serves as a * proxy to the underlying metastore (e.g. Hive Metastore) and it also manages temporary * views and functions of the Spark Session that it belongs to. * * This class must be thread-safe. */ class SessionCatalog( externalCatalogBuilder: () => ExternalCatalog, globalTempViewManagerBuilder: () => GlobalTempViewManager, functionRegistry: FunctionRegistry, conf: SQLConf, hadoopConf: Configuration, parser: ParserInterface, functionResourceLoader: FunctionResourceLoader) extends Logging { import SessionCatalog._ import CatalogTypes.TablePartitionSpec // For testing only. def this( externalCatalog: ExternalCatalog, functionRegistry: FunctionRegistry, conf: SQLConf) { this( () => externalCatalog, () => new GlobalTempViewManager(conf.getConf(GLOBAL_TEMP_DATABASE)), functionRegistry, conf, new Configuration(), new CatalystSqlParser(conf), DummyFunctionResourceLoader) } // For testing only. def this(externalCatalog: ExternalCatalog) { this( externalCatalog, new SimpleFunctionRegistry, new SQLConf().copy(SQLConf.CASE_SENSITIVE -> true)) } lazy val externalCatalog = externalCatalogBuilder() lazy val globalTempViewManager = globalTempViewManagerBuilder() /** List of temporary views, mapping from table name to their logical plan. */ @GuardedBy("this") protected val tempViews = new mutable.HashMap[String, LogicalPlan] // Note: we track current database here because certain operations do not explicitly // specify the database (e.g. DROP TABLE my_table). In these cases we must first // check whether the temporary view or function exists, then, if not, operate on // the corresponding item in the current database. @GuardedBy("this") protected var currentDb: String = formatDatabaseName(DEFAULT_DATABASE) private val validNameFormat = "([\\\\w_]+)".r /** * Checks if the given name conforms the Hive standard ("[a-zA-Z_0-9]+"), * i.e. if this name only contains characters, numbers, and _. * * This method is intended to have the same behavior of * org.apache.hadoop.hive.metastore.MetaStoreUtils.validateName. */ private def validateName(name: String): Unit = { if (!validNameFormat.pattern.matcher(name).matches()) { throw new AnalysisException(s"`$name` is not a valid name for tables/databases. " + "Valid names only contain alphabet characters, numbers and _.") } } /** * Format table name, taking into account case sensitivity. */ protected[this] def formatTableName(name: String): String = { if (conf.caseSensitiveAnalysis) name else name.toLowerCase(Locale.ROOT) } /** * Format database name, taking into account case sensitivity. */ protected[this] def formatDatabaseName(name: String): String = { if (conf.caseSensitiveAnalysis) name else name.toLowerCase(Locale.ROOT) } private val tableRelationCache: Cache[QualifiedTableName, LogicalPlan] = { val cacheSize = conf.tableRelationCacheSize CacheBuilder.newBuilder().maximumSize(cacheSize).build[QualifiedTableName, LogicalPlan]() } /** This method provides a way to get a cached plan. */ def getCachedPlan(t: QualifiedTableName, c: Callable[LogicalPlan]): LogicalPlan = { tableRelationCache.get(t, c) } /** This method provides a way to get a cached plan if the key exists. */ def getCachedTable(key: QualifiedTableName): LogicalPlan = { tableRelationCache.getIfPresent(key) } /** This method provides a way to cache a plan. */ def cacheTable(t: QualifiedTableName, l: LogicalPlan): Unit = { tableRelationCache.put(t, l) } /** This method provides a way to invalidate a cached plan. */ def invalidateCachedTable(key: QualifiedTableName): Unit = { tableRelationCache.invalidate(key) } /** This method provides a way to invalidate all the cached plans. */ def invalidateAllCachedTables(): Unit = { tableRelationCache.invalidateAll() } /** * This method is used to make the given path qualified before we * store this path in the underlying external catalog. So, when a path * does not contain a scheme, this path will not be changed after the default * FileSystem is changed. */ private def makeQualifiedPath(path: URI): URI = { val hadoopPath = new Path(path) val fs = hadoopPath.getFileSystem(hadoopConf) fs.makeQualified(hadoopPath).toUri } private def requireDbExists(db: String): Unit = { if (!databaseExists(db)) { throw new NoSuchDatabaseException(db) } } private def requireTableExists(name: TableIdentifier): Unit = { if (!tableExists(name)) { val db = name.database.getOrElse(currentDb) throw new NoSuchTableException(db = db, table = name.table) } } private def requireTableNotExists(name: TableIdentifier): Unit = { if (tableExists(name)) { val db = name.database.getOrElse(currentDb) throw new TableAlreadyExistsException(db = db, table = name.table) } } // ---------------------------------------------------------------------------- // Databases // ---------------------------------------------------------------------------- // All methods in this category interact directly with the underlying catalog. // ---------------------------------------------------------------------------- def createDatabase(dbDefinition: CatalogDatabase, ignoreIfExists: Boolean): Unit = { val dbName = formatDatabaseName(dbDefinition.name) if (dbName == globalTempViewManager.database) { throw new AnalysisException( s"${globalTempViewManager.database} is a system preserved database, " + "you cannot create a database with this name.") } validateName(dbName) val qualifiedPath = makeQualifiedPath(dbDefinition.locationUri) externalCatalog.createDatabase( dbDefinition.copy(name = dbName, locationUri = qualifiedPath), ignoreIfExists) } def dropDatabase(db: String, ignoreIfNotExists: Boolean, cascade: Boolean): Unit = { val dbName = formatDatabaseName(db) if (dbName == DEFAULT_DATABASE) { throw new AnalysisException(s"Can not drop default database") } if (cascade && databaseExists(dbName)) { listTables(dbName).foreach { t => invalidateCachedTable(QualifiedTableName(dbName, t.table)) } } externalCatalog.dropDatabase(dbName, ignoreIfNotExists, cascade) } def alterDatabase(dbDefinition: CatalogDatabase): Unit = { val dbName = formatDatabaseName(dbDefinition.name) requireDbExists(dbName) externalCatalog.alterDatabase(dbDefinition.copy(name = dbName)) } def getDatabaseMetadata(db: String): CatalogDatabase = { val dbName = formatDatabaseName(db) requireDbExists(dbName) externalCatalog.getDatabase(dbName) } def databaseExists(db: String): Boolean = { val dbName = formatDatabaseName(db) externalCatalog.databaseExists(dbName) } def listDatabases(): Seq[String] = { externalCatalog.listDatabases() } def listDatabases(pattern: String): Seq[String] = { externalCatalog.listDatabases(pattern) } def getCurrentDatabase: String = synchronized { currentDb } def setCurrentDatabase(db: String): Unit = { val dbName = formatDatabaseName(db) if (dbName == globalTempViewManager.database) { throw new AnalysisException( s"${globalTempViewManager.database} is a system preserved database, " + "you cannot use it as current database. To access global temporary views, you should " + "use qualified name with the GLOBAL_TEMP_DATABASE, e.g. SELECT * FROM " + s"${globalTempViewManager.database}.viewName.") } requireDbExists(dbName) synchronized { currentDb = dbName } } /** * Get the path for creating a non-default database when database location is not provided * by users. */ def getDefaultDBPath(db: String): URI = { val database = formatDatabaseName(db) new Path(new Path(conf.warehousePath), database + ".db").toUri } // ---------------------------------------------------------------------------- // Tables // ---------------------------------------------------------------------------- // There are two kinds of tables, temporary views and metastore tables. // Temporary views are isolated across sessions and do not belong to any // particular database. Metastore tables can be used across multiple // sessions as their metadata is persisted in the underlying catalog. // ---------------------------------------------------------------------------- // ---------------------------------------------------- // | Methods that interact with metastore tables only | // ---------------------------------------------------- /** * Create a metastore table in the database specified in `tableDefinition`. * If no such database is specified, create it in the current database. */ def createTable( tableDefinition: CatalogTable, ignoreIfExists: Boolean, validateLocation: Boolean = true): Unit = { val db = formatDatabaseName(tableDefinition.identifier.database.getOrElse(getCurrentDatabase)) val table = formatTableName(tableDefinition.identifier.table) val tableIdentifier = TableIdentifier(table, Some(db)) validateName(table) val newTableDefinition = if (tableDefinition.storage.locationUri.isDefined && !tableDefinition.storage.locationUri.get.isAbsolute) { // make the location of the table qualified. val qualifiedTableLocation = makeQualifiedPath(tableDefinition.storage.locationUri.get) tableDefinition.copy( storage = tableDefinition.storage.copy(locationUri = Some(qualifiedTableLocation)), identifier = tableIdentifier) } else { tableDefinition.copy(identifier = tableIdentifier) } requireDbExists(db) if (tableExists(newTableDefinition.identifier)) { if (!ignoreIfExists) { throw new TableAlreadyExistsException(db = db, table = table) } } else if (validateLocation) { validateTableLocation(newTableDefinition) } externalCatalog.createTable(newTableDefinition, ignoreIfExists) } def validateTableLocation(table: CatalogTable): Unit = { // SPARK-19724: the default location of a managed table should be non-existent or empty. if (table.tableType == CatalogTableType.MANAGED && !conf.allowCreatingManagedTableUsingNonemptyLocation) { val tableLocation = new Path(table.storage.locationUri.getOrElse(defaultTablePath(table.identifier))) val fs = tableLocation.getFileSystem(hadoopConf) if (fs.exists(tableLocation) && fs.listStatus(tableLocation).nonEmpty) { throw new AnalysisException(s"Can not create the managed table('${table.identifier}')" + s". The associated location('${tableLocation.toString}') already exists.") } } } /** * Alter the metadata of an existing metastore table identified by `tableDefinition`. * * If no database is specified in `tableDefinition`, assume the table is in the * current database. * * Note: If the underlying implementation does not support altering a certain field, * this becomes a no-op. */ def alterTable(tableDefinition: CatalogTable): Unit = { val db = formatDatabaseName(tableDefinition.identifier.database.getOrElse(getCurrentDatabase)) val table = formatTableName(tableDefinition.identifier.table) val tableIdentifier = TableIdentifier(table, Some(db)) val newTableDefinition = tableDefinition.copy(identifier = tableIdentifier) requireDbExists(db) requireTableExists(tableIdentifier) externalCatalog.alterTable(newTableDefinition) } /** * Alter the data schema of a table identified by the provided table identifier. The new data * schema should not have conflict column names with the existing partition columns, and should * still contain all the existing data columns. * * @param identifier TableIdentifier * @param newDataSchema Updated data schema to be used for the table */ def alterTableDataSchema( identifier: TableIdentifier, newDataSchema: StructType): Unit = { val db = formatDatabaseName(identifier.database.getOrElse(getCurrentDatabase)) val table = formatTableName(identifier.table) val tableIdentifier = TableIdentifier(table, Some(db)) requireDbExists(db) requireTableExists(tableIdentifier) val catalogTable = externalCatalog.getTable(db, table) val oldDataSchema = catalogTable.dataSchema // not supporting dropping columns yet val nonExistentColumnNames = oldDataSchema.map(_.name).filterNot(columnNameResolved(newDataSchema, _)) if (nonExistentColumnNames.nonEmpty) { throw new AnalysisException( s""" |Some existing schema fields (${nonExistentColumnNames.mkString("[", ",", "]")}) are |not present in the new schema. We don't support dropping columns yet. """.stripMargin) } externalCatalog.alterTableDataSchema(db, table, newDataSchema) } private def columnNameResolved(schema: StructType, colName: String): Boolean = { schema.fields.map(_.name).exists(conf.resolver(_, colName)) } /** * Alter Spark's statistics of an existing metastore table identified by the provided table * identifier. */ def alterTableStats(identifier: TableIdentifier, newStats: Option[CatalogStatistics]): Unit = { val db = formatDatabaseName(identifier.database.getOrElse(getCurrentDatabase)) val table = formatTableName(identifier.table) val tableIdentifier = TableIdentifier(table, Some(db)) requireDbExists(db) requireTableExists(tableIdentifier) externalCatalog.alterTableStats(db, table, newStats) // Invalidate the table relation cache refreshTable(identifier) } /** * Return whether a table/view with the specified name exists. If no database is specified, check * with current database. */ def tableExists(name: TableIdentifier): Boolean = synchronized { val db = formatDatabaseName(name.database.getOrElse(currentDb)) val table = formatTableName(name.table) externalCatalog.tableExists(db, table) } /** * Retrieve the metadata of an existing permanent table/view. If no database is specified, * assume the table/view is in the current database. */ @throws[NoSuchDatabaseException] @throws[NoSuchTableException] def getTableMetadata(name: TableIdentifier): CatalogTable = { val db = formatDatabaseName(name.database.getOrElse(getCurrentDatabase)) val table = formatTableName(name.table) requireDbExists(db) requireTableExists(TableIdentifier(table, Some(db))) externalCatalog.getTable(db, table) } /** * Retrieve all metadata of existing permanent tables/views. If no database is specified, * assume the table/view is in the current database. * Only the tables/views belong to the same database that can be retrieved are returned. * For example, if none of the requested tables could be retrieved, an empty list is returned. * There is no guarantee of ordering of the returned tables. */ @throws[NoSuchDatabaseException] def getTablesByName(names: Seq[TableIdentifier]): Seq[CatalogTable] = { if (names.nonEmpty) { val dbs = names.map(_.database.getOrElse(getCurrentDatabase)) if (dbs.distinct.size != 1) { val tables = names.map(name => formatTableName(name.table)) val qualifiedTableNames = dbs.zip(tables).map { case (d, t) => QualifiedTableName(d, t)} throw new AnalysisException( s"Only the tables/views belong to the same database can be retrieved. Querying " + s"tables/views are $qualifiedTableNames" ) } val db = formatDatabaseName(dbs.head) requireDbExists(db) val tables = names.map(name => formatTableName(name.table)) externalCatalog.getTablesByName(db, tables) } else { Seq.empty } } /** * Load files stored in given path into an existing metastore table. * If no database is specified, assume the table is in the current database. * If the specified table is not found in the database then a [[NoSuchTableException]] is thrown. */ def loadTable( name: TableIdentifier, loadPath: String, isOverwrite: Boolean, isSrcLocal: Boolean): Unit = { val db = formatDatabaseName(name.database.getOrElse(getCurrentDatabase)) val table = formatTableName(name.table) requireDbExists(db) requireTableExists(TableIdentifier(table, Some(db))) externalCatalog.loadTable(db, table, loadPath, isOverwrite, isSrcLocal) } /** * Load files stored in given path into the partition of an existing metastore table. * If no database is specified, assume the table is in the current database. * If the specified table is not found in the database then a [[NoSuchTableException]] is thrown. */ def loadPartition( name: TableIdentifier, loadPath: String, spec: TablePartitionSpec, isOverwrite: Boolean, inheritTableSpecs: Boolean, isSrcLocal: Boolean): Unit = { val db = formatDatabaseName(name.database.getOrElse(getCurrentDatabase)) val table = formatTableName(name.table) requireDbExists(db) requireTableExists(TableIdentifier(table, Some(db))) requireNonEmptyValueInPartitionSpec(Seq(spec)) externalCatalog.loadPartition( db, table, loadPath, spec, isOverwrite, inheritTableSpecs, isSrcLocal) } def defaultTablePath(tableIdent: TableIdentifier): URI = { val dbName = formatDatabaseName(tableIdent.database.getOrElse(getCurrentDatabase)) val dbLocation = getDatabaseMetadata(dbName).locationUri new Path(new Path(dbLocation), formatTableName(tableIdent.table)).toUri } // ---------------------------------------------- // | Methods that interact with temp views only | // ---------------------------------------------- /** * Create a local temporary view. */ def createTempView( name: String, tableDefinition: LogicalPlan, overrideIfExists: Boolean): Unit = synchronized { val table = formatTableName(name) if (tempViews.contains(table) && !overrideIfExists) { throw new TempTableAlreadyExistsException(name) } tempViews.put(table, tableDefinition) } /** * Create a global temporary view. */ def createGlobalTempView( name: String, viewDefinition: LogicalPlan, overrideIfExists: Boolean): Unit = { globalTempViewManager.create(formatTableName(name), viewDefinition, overrideIfExists) } /** * Alter the definition of a local/global temp view matching the given name, returns true if a * temp view is matched and altered, false otherwise. */ def alterTempViewDefinition( name: TableIdentifier, viewDefinition: LogicalPlan): Boolean = synchronized { val viewName = formatTableName(name.table) if (name.database.isEmpty) { if (tempViews.contains(viewName)) { createTempView(viewName, viewDefinition, overrideIfExists = true) true } else { false } } else if (formatDatabaseName(name.database.get) == globalTempViewManager.database) { globalTempViewManager.update(viewName, viewDefinition) } else { false } } /** * Return a local temporary view exactly as it was stored. */ def getTempView(name: String): Option[LogicalPlan] = synchronized { tempViews.get(formatTableName(name)) } /** * Return a global temporary view exactly as it was stored. */ def getGlobalTempView(name: String): Option[LogicalPlan] = { globalTempViewManager.get(formatTableName(name)) } /** * Drop a local temporary view. * * Returns true if this view is dropped successfully, false otherwise. */ def dropTempView(name: String): Boolean = synchronized { tempViews.remove(formatTableName(name)).isDefined } /** * Drop a global temporary view. * * Returns true if this view is dropped successfully, false otherwise. */ def dropGlobalTempView(name: String): Boolean = { globalTempViewManager.remove(formatTableName(name)) } // ------------------------------------------------------------- // | Methods that interact with temporary and metastore tables | // ------------------------------------------------------------- /** * Retrieve the metadata of an existing temporary view or permanent table/view. * * If a database is specified in `name`, this will return the metadata of table/view in that * database. * If no database is specified, this will first attempt to get the metadata of a temporary view * with the same name, then, if that does not exist, return the metadata of table/view in the * current database. */ def getTempViewOrPermanentTableMetadata(name: TableIdentifier): CatalogTable = synchronized { val table = formatTableName(name.table) if (name.database.isEmpty) { getTempView(table).map { plan => CatalogTable( identifier = TableIdentifier(table), tableType = CatalogTableType.VIEW, storage = CatalogStorageFormat.empty, schema = plan.output.toStructType) }.getOrElse(getTableMetadata(name)) } else if (formatDatabaseName(name.database.get) == globalTempViewManager.database) { globalTempViewManager.get(table).map { plan => CatalogTable( identifier = TableIdentifier(table, Some(globalTempViewManager.database)), tableType = CatalogTableType.VIEW, storage = CatalogStorageFormat.empty, schema = plan.output.toStructType) }.getOrElse(throw new NoSuchTableException(globalTempViewManager.database, table)) } else { getTableMetadata(name) } } /** * Rename a table. * * If a database is specified in `oldName`, this will rename the table in that database. * If no database is specified, this will first attempt to rename a temporary view with * the same name, then, if that does not exist, rename the table in the current database. * * This assumes the database specified in `newName` matches the one in `oldName`. */ def renameTable(oldName: TableIdentifier, newName: TableIdentifier): Unit = synchronized { val db = formatDatabaseName(oldName.database.getOrElse(currentDb)) newName.database.map(formatDatabaseName).foreach { newDb => if (db != newDb) { throw new AnalysisException( s"RENAME TABLE source and destination databases do not match: '$db' != '$newDb'") } } val oldTableName = formatTableName(oldName.table) val newTableName = formatTableName(newName.table) if (db == globalTempViewManager.database) { globalTempViewManager.rename(oldTableName, newTableName) } else { requireDbExists(db) if (oldName.database.isDefined || !tempViews.contains(oldTableName)) { requireTableExists(TableIdentifier(oldTableName, Some(db))) requireTableNotExists(TableIdentifier(newTableName, Some(db))) validateName(newTableName) validateNewLocationOfRename(oldName, newName) externalCatalog.renameTable(db, oldTableName, newTableName) } else { if (newName.database.isDefined) { throw new AnalysisException( s"RENAME TEMPORARY VIEW from '$oldName' to '$newName': cannot specify database " + s"name '${newName.database.get}' in the destination table") } if (tempViews.contains(newTableName)) { throw new AnalysisException(s"RENAME TEMPORARY VIEW from '$oldName' to '$newName': " + "destination table already exists") } val table = tempViews(oldTableName) tempViews.remove(oldTableName) tempViews.put(newTableName, table) } } } /** * Drop a table. * * If a database is specified in `name`, this will drop the table from that database. * If no database is specified, this will first attempt to drop a temporary view with * the same name, then, if that does not exist, drop the table from the current database. */ def dropTable( name: TableIdentifier, ignoreIfNotExists: Boolean, purge: Boolean): Unit = synchronized { val db = formatDatabaseName(name.database.getOrElse(currentDb)) val table = formatTableName(name.table) if (db == globalTempViewManager.database) { val viewExists = globalTempViewManager.remove(table) if (!viewExists && !ignoreIfNotExists) { throw new NoSuchTableException(globalTempViewManager.database, table) } } else { if (name.database.isDefined || !tempViews.contains(table)) { requireDbExists(db) // When ignoreIfNotExists is false, no exception is issued when the table does not exist. // Instead, log it as an error message. if (tableExists(TableIdentifier(table, Option(db)))) { externalCatalog.dropTable(db, table, ignoreIfNotExists = true, purge = purge) } else if (!ignoreIfNotExists) { throw new NoSuchTableException(db = db, table = table) } } else { tempViews.remove(table) } } } /** * Return a [[LogicalPlan]] that represents the given table or view. * * If a database is specified in `name`, this will return the table/view from that database. * If no database is specified, this will first attempt to return a temporary view with * the same name, then, if that does not exist, return the table/view from the current database. * * Note that, the global temp view database is also valid here, this will return the global temp * view matching the given name. * * If the relation is a view, we generate a [[View]] operator from the view description, and * wrap the logical plan in a [[SubqueryAlias]] which will track the name of the view. * [[SubqueryAlias]] will also keep track of the name and database(optional) of the table/view * * @param name The name of the table/view that we look up. */ def lookupRelation(name: TableIdentifier): LogicalPlan = { synchronized { val db = formatDatabaseName(name.database.getOrElse(currentDb)) val table = formatTableName(name.table) if (db == globalTempViewManager.database) { globalTempViewManager.get(table).map { viewDef => SubqueryAlias(table, db, viewDef) }.getOrElse(throw new NoSuchTableException(db, table)) } else if (name.database.isDefined || !tempViews.contains(table)) { val metadata = externalCatalog.getTable(db, table) if (metadata.tableType == CatalogTableType.VIEW) { val viewText = metadata.viewText.getOrElse(sys.error("Invalid view without text.")) logDebug(s"'$viewText' will be used for the view($table).") // The relation is a view, so we wrap the relation by: // 1. Add a [[View]] operator over the relation to keep track of the view desc; // 2. Wrap the logical plan in a [[SubqueryAlias]] which tracks the name of the view. val child = View( desc = metadata, output = metadata.schema.toAttributes, child = parser.parsePlan(viewText)) SubqueryAlias(table, db, child) } else { SubqueryAlias(table, db, UnresolvedCatalogRelation(metadata)) } } else { SubqueryAlias(table, tempViews(table)) } } } /** * Return whether a table with the specified name is a temporary view. * * Note: The temporary view cache is checked only when database is not * explicitly specified. */ def isTemporaryTable(name: TableIdentifier): Boolean = synchronized { val table = formatTableName(name.table) if (name.database.isEmpty) { tempViews.contains(table) } else if (formatDatabaseName(name.database.get) == globalTempViewManager.database) { globalTempViewManager.get(table).isDefined } else { false } } /** * List all tables in the specified database, including local temporary views. * * Note that, if the specified database is global temporary view database, we will list global * temporary views. */ def listTables(db: String): Seq[TableIdentifier] = listTables(db, "*") /** * List all matching tables in the specified database, including local temporary views. * * Note that, if the specified database is global temporary view database, we will list global * temporary views. */ def listTables(db: String, pattern: String): Seq[TableIdentifier] = listTables(db, pattern, true) /** * List all matching tables in the specified database, including local temporary views * if includeLocalTempViews is enabled. * * Note that, if the specified database is global temporary view database, we will list global * temporary views. */ def listTables( db: String, pattern: String, includeLocalTempViews: Boolean): Seq[TableIdentifier] = { val dbName = formatDatabaseName(db) val dbTables = if (dbName == globalTempViewManager.database) { globalTempViewManager.listViewNames(pattern).map { name => TableIdentifier(name, Some(globalTempViewManager.database)) } } else { requireDbExists(dbName) externalCatalog.listTables(dbName, pattern).map { name => TableIdentifier(name, Some(dbName)) } } if (includeLocalTempViews) { dbTables ++ listLocalTempViews(pattern) } else { dbTables } } /** * List all matching local temporary views. */ def listLocalTempViews(pattern: String): Seq[TableIdentifier] = { synchronized { StringUtils.filterPattern(tempViews.keys.toSeq, pattern).map { name => TableIdentifier(name) } } } /** * Refresh the cache entry for a metastore table, if any. */ def refreshTable(name: TableIdentifier): Unit = synchronized { val dbName = formatDatabaseName(name.database.getOrElse(currentDb)) val tableName = formatTableName(name.table) // Go through temporary views and invalidate them. // If the database is defined, this may be a global temporary view. // If the database is not defined, there is a good chance this is a temp view. if (name.database.isEmpty) { tempViews.get(tableName).foreach(_.refresh()) } else if (dbName == globalTempViewManager.database) { globalTempViewManager.get(tableName).foreach(_.refresh()) } // Also invalidate the table relation cache. val qualifiedTableName = QualifiedTableName(dbName, tableName) tableRelationCache.invalidate(qualifiedTableName) } /** * Drop all existing temporary views. * For testing only. */ def clearTempTables(): Unit = synchronized { tempViews.clear() } // ---------------------------------------------------------------------------- // Partitions // ---------------------------------------------------------------------------- // All methods in this category interact directly with the underlying catalog. // These methods are concerned with only metastore tables. // ---------------------------------------------------------------------------- // TODO: We need to figure out how these methods interact with our data source // tables. For such tables, we do not store values of partitioning columns in // the metastore. For now, partition values of a data source table will be // automatically discovered when we load the table. /** * Create partitions in an existing table, assuming it exists. * If no database is specified, assume the table is in the current database. */ def createPartitions( tableName: TableIdentifier, parts: Seq[CatalogTablePartition], ignoreIfExists: Boolean): Unit = { val db = formatDatabaseName(tableName.database.getOrElse(getCurrentDatabase)) val table = formatTableName(tableName.table) requireDbExists(db) requireTableExists(TableIdentifier(table, Option(db))) requireExactMatchedPartitionSpec(parts.map(_.spec), getTableMetadata(tableName)) requireNonEmptyValueInPartitionSpec(parts.map(_.spec)) externalCatalog.createPartitions(db, table, parts, ignoreIfExists) } /** * Drop partitions from a table, assuming they exist. * If no database is specified, assume the table is in the current database. */ def dropPartitions( tableName: TableIdentifier, specs: Seq[TablePartitionSpec], ignoreIfNotExists: Boolean, purge: Boolean, retainData: Boolean): Unit = { val db = formatDatabaseName(tableName.database.getOrElse(getCurrentDatabase)) val table = formatTableName(tableName.table) requireDbExists(db) requireTableExists(TableIdentifier(table, Option(db))) requirePartialMatchedPartitionSpec(specs, getTableMetadata(tableName)) requireNonEmptyValueInPartitionSpec(specs) externalCatalog.dropPartitions(db, table, specs, ignoreIfNotExists, purge, retainData) } /** * Override the specs of one or many existing table partitions, assuming they exist. * * This assumes index i of `specs` corresponds to index i of `newSpecs`. * If no database is specified, assume the table is in the current database. */ def renamePartitions( tableName: TableIdentifier, specs: Seq[TablePartitionSpec], newSpecs: Seq[TablePartitionSpec]): Unit = { val tableMetadata = getTableMetadata(tableName) val db = formatDatabaseName(tableName.database.getOrElse(getCurrentDatabase)) val table = formatTableName(tableName.table) requireDbExists(db) requireTableExists(TableIdentifier(table, Option(db))) requireExactMatchedPartitionSpec(specs, tableMetadata) requireExactMatchedPartitionSpec(newSpecs, tableMetadata) requireNonEmptyValueInPartitionSpec(specs) requireNonEmptyValueInPartitionSpec(newSpecs) externalCatalog.renamePartitions(db, table, specs, newSpecs) } /** * Alter one or many table partitions whose specs that match those specified in `parts`, * assuming the partitions exist. * * If no database is specified, assume the table is in the current database. * * Note: If the underlying implementation does not support altering a certain field, * this becomes a no-op. */ def alterPartitions(tableName: TableIdentifier, parts: Seq[CatalogTablePartition]): Unit = { val db = formatDatabaseName(tableName.database.getOrElse(getCurrentDatabase)) val table = formatTableName(tableName.table) requireDbExists(db) requireTableExists(TableIdentifier(table, Option(db))) requireExactMatchedPartitionSpec(parts.map(_.spec), getTableMetadata(tableName)) requireNonEmptyValueInPartitionSpec(parts.map(_.spec)) externalCatalog.alterPartitions(db, table, parts) } /** * Retrieve the metadata of a table partition, assuming it exists. * If no database is specified, assume the table is in the current database. */ def getPartition(tableName: TableIdentifier, spec: TablePartitionSpec): CatalogTablePartition = { val db = formatDatabaseName(tableName.database.getOrElse(getCurrentDatabase)) val table = formatTableName(tableName.table) requireDbExists(db) requireTableExists(TableIdentifier(table, Option(db))) requireExactMatchedPartitionSpec(Seq(spec), getTableMetadata(tableName)) requireNonEmptyValueInPartitionSpec(Seq(spec)) externalCatalog.getPartition(db, table, spec) } /** * List the names of all partitions that belong to the specified table, assuming it exists. * * A partial partition spec may optionally be provided to filter the partitions returned. * For instance, if there exist partitions (a='1', b='2'), (a='1', b='3') and (a='2', b='4'), * then a partial spec of (a='1') will return the first two only. */ def listPartitionNames( tableName: TableIdentifier, partialSpec: Option[TablePartitionSpec] = None): Seq[String] = { val db = formatDatabaseName(tableName.database.getOrElse(getCurrentDatabase)) val table = formatTableName(tableName.table) requireDbExists(db) requireTableExists(TableIdentifier(table, Option(db))) partialSpec.foreach { spec => requirePartialMatchedPartitionSpec(Seq(spec), getTableMetadata(tableName)) requireNonEmptyValueInPartitionSpec(Seq(spec)) } externalCatalog.listPartitionNames(db, table, partialSpec) } /** * List the metadata of all partitions that belong to the specified table, assuming it exists. * * A partial partition spec may optionally be provided to filter the partitions returned. * For instance, if there exist partitions (a='1', b='2'), (a='1', b='3') and (a='2', b='4'), * then a partial spec of (a='1') will return the first two only. */ def listPartitions( tableName: TableIdentifier, partialSpec: Option[TablePartitionSpec] = None): Seq[CatalogTablePartition] = { val db = formatDatabaseName(tableName.database.getOrElse(getCurrentDatabase)) val table = formatTableName(tableName.table) requireDbExists(db) requireTableExists(TableIdentifier(table, Option(db))) partialSpec.foreach { spec => requirePartialMatchedPartitionSpec(Seq(spec), getTableMetadata(tableName)) requireNonEmptyValueInPartitionSpec(Seq(spec)) } externalCatalog.listPartitions(db, table, partialSpec) } /** * List the metadata of partitions that belong to the specified table, assuming it exists, that * satisfy the given partition-pruning predicate expressions. */ def listPartitionsByFilter( tableName: TableIdentifier, predicates: Seq[Expression]): Seq[CatalogTablePartition] = { val db = formatDatabaseName(tableName.database.getOrElse(getCurrentDatabase)) val table = formatTableName(tableName.table) requireDbExists(db) requireTableExists(TableIdentifier(table, Option(db))) externalCatalog.listPartitionsByFilter(db, table, predicates, conf.sessionLocalTimeZone) } /** * Verify if the input partition spec has any empty value. */ private def requireNonEmptyValueInPartitionSpec(specs: Seq[TablePartitionSpec]): Unit = { specs.foreach { s => if (s.values.exists(_.isEmpty)) { val spec = s.map(p => p._1 + "=" + p._2).mkString("[", ", ", "]") throw new AnalysisException( s"Partition spec is invalid. The spec ($spec) contains an empty partition column value") } } } /** * Verify if the input partition spec exactly matches the existing defined partition spec * The columns must be the same but the orders could be different. */ private def requireExactMatchedPartitionSpec( specs: Seq[TablePartitionSpec], table: CatalogTable): Unit = { val defined = table.partitionColumnNames.sorted specs.foreach { s => if (s.keys.toSeq.sorted != defined) { throw new AnalysisException( s"Partition spec is invalid. The spec (${s.keys.mkString(", ")}) must match " + s"the partition spec (${table.partitionColumnNames.mkString(", ")}) defined in " + s"table '${table.identifier}'") } } } /** * Verify if the input partition spec partially matches the existing defined partition spec * That is, the columns of partition spec should be part of the defined partition spec. */ private def requirePartialMatchedPartitionSpec( specs: Seq[TablePartitionSpec], table: CatalogTable): Unit = { val defined = table.partitionColumnNames specs.foreach { s => if (!s.keys.forall(defined.contains)) { throw new AnalysisException( s"Partition spec is invalid. The spec (${s.keys.mkString(", ")}) must be contained " + s"within the partition spec (${table.partitionColumnNames.mkString(", ")}) defined " + s"in table '${table.identifier}'") } } } // ---------------------------------------------------------------------------- // Functions // ---------------------------------------------------------------------------- // There are two kinds of functions, temporary functions and metastore // functions (permanent UDFs). Temporary functions are isolated across // sessions. Metastore functions can be used across multiple sessions as // their metadata is persisted in the underlying catalog. // ---------------------------------------------------------------------------- // ------------------------------------------------------- // | Methods that interact with metastore functions only | // ------------------------------------------------------- /** * Create a function in the database specified in `funcDefinition`. * If no such database is specified, create it in the current database. * * @param ignoreIfExists: When true, ignore if the function with the specified name exists * in the specified database. */ def createFunction(funcDefinition: CatalogFunction, ignoreIfExists: Boolean): Unit = { val db = formatDatabaseName(funcDefinition.identifier.database.getOrElse(getCurrentDatabase)) requireDbExists(db) val identifier = FunctionIdentifier(funcDefinition.identifier.funcName, Some(db)) val newFuncDefinition = funcDefinition.copy(identifier = identifier) if (!functionExists(identifier)) { externalCatalog.createFunction(db, newFuncDefinition) } else if (!ignoreIfExists) { throw new FunctionAlreadyExistsException(db = db, func = identifier.toString) } } /** * Drop a metastore function. * If no database is specified, assume the function is in the current database. */ def dropFunction(name: FunctionIdentifier, ignoreIfNotExists: Boolean): Unit = { val db = formatDatabaseName(name.database.getOrElse(getCurrentDatabase)) requireDbExists(db) val identifier = name.copy(database = Some(db)) if (functionExists(identifier)) { if (functionRegistry.functionExists(identifier)) { // If we have loaded this function into the FunctionRegistry, // also drop it from there. // For a permanent function, because we loaded it to the FunctionRegistry // when it's first used, we also need to drop it from the FunctionRegistry. functionRegistry.dropFunction(identifier) } externalCatalog.dropFunction(db, name.funcName) } else if (!ignoreIfNotExists) { throw new NoSuchPermanentFunctionException(db = db, func = identifier.toString) } } /** * overwrite a metastore function in the database specified in `funcDefinition`.. * If no database is specified, assume the function is in the current database. */ def alterFunction(funcDefinition: CatalogFunction): Unit = { val db = formatDatabaseName(funcDefinition.identifier.database.getOrElse(getCurrentDatabase)) requireDbExists(db) val identifier = FunctionIdentifier(funcDefinition.identifier.funcName, Some(db)) val newFuncDefinition = funcDefinition.copy(identifier = identifier) if (functionExists(identifier)) { if (functionRegistry.functionExists(identifier)) { // If we have loaded this function into the FunctionRegistry, // also drop it from there. // For a permanent function, because we loaded it to the FunctionRegistry // when it's first used, we also need to drop it from the FunctionRegistry. functionRegistry.dropFunction(identifier) } externalCatalog.alterFunction(db, newFuncDefinition) } else { throw new NoSuchPermanentFunctionException(db = db, func = identifier.toString) } } /** * Retrieve the metadata of a metastore function. * * If a database is specified in `name`, this will return the function in that database. * If no database is specified, this will return the function in the current database. */ def getFunctionMetadata(name: FunctionIdentifier): CatalogFunction = { val db = formatDatabaseName(name.database.getOrElse(getCurrentDatabase)) requireDbExists(db) externalCatalog.getFunction(db, name.funcName) } /** * Check if the function with the specified name exists */ def functionExists(name: FunctionIdentifier): Boolean = { functionRegistry.functionExists(name) || { val db = formatDatabaseName(name.database.getOrElse(getCurrentDatabase)) requireDbExists(db) externalCatalog.functionExists(db, name.funcName) } } // ---------------------------------------------------------------- // | Methods that interact with temporary and metastore functions | // ---------------------------------------------------------------- /** * Constructs a [[FunctionBuilder]] based on the provided class that represents a function. */ private def makeFunctionBuilder(name: String, functionClassName: String): FunctionBuilder = { val clazz = Utils.classForName(functionClassName) (input: Seq[Expression]) => makeFunctionExpression(name, clazz, input) } /** * Constructs a [[Expression]] based on the provided class that represents a function. * * This performs reflection to decide what type of [[Expression]] to return in the builder. */ protected def makeFunctionExpression( name: String, clazz: Class[_], input: Seq[Expression]): Expression = { // Unfortunately we need to use reflection here because UserDefinedAggregateFunction // and ScalaUDAF are defined in sql/core module. val clsForUDAF = Utils.classForName("org.apache.spark.sql.expressions.UserDefinedAggregateFunction") if (clsForUDAF.isAssignableFrom(clazz)) { val cls = Utils.classForName("org.apache.spark.sql.execution.aggregate.ScalaUDAF") val e = cls.getConstructor(classOf[Seq[Expression]], clsForUDAF, classOf[Int], classOf[Int]) .newInstance(input, clazz.getConstructor().newInstance().asInstanceOf[Object], Int.box(1), Int.box(1)) .asInstanceOf[ImplicitCastInputTypes] // Check input argument size if (e.inputTypes.size != input.size) { throw new AnalysisException(s"Invalid number of arguments for function $name. " + s"Expected: ${e.inputTypes.size}; Found: ${input.size}") } e } else { throw new AnalysisException(s"No handler for UDAF '${clazz.getCanonicalName}'. " + s"Use sparkSession.udf.register(...) instead.") } } /** * Loads resources such as JARs and Files for a function. Every resource is represented * by a tuple (resource type, resource uri). */ def loadFunctionResources(resources: Seq[FunctionResource]): Unit = { resources.foreach(functionResourceLoader.loadResource) } /** * Registers a temporary or permanent function into a session-specific [[FunctionRegistry]] */ def registerFunction( funcDefinition: CatalogFunction, overrideIfExists: Boolean, functionBuilder: Option[FunctionBuilder] = None): Unit = { val func = funcDefinition.identifier if (functionRegistry.functionExists(func) && !overrideIfExists) { throw new AnalysisException(s"Function $func already exists") } val info = new ExpressionInfo(funcDefinition.className, func.database.orNull, func.funcName) val builder = functionBuilder.getOrElse { val className = funcDefinition.className if (!Utils.classIsLoadable(className)) { throw new AnalysisException(s"Can not load class '$className' when registering " + s"the function '$func', please make sure it is on the classpath") } makeFunctionBuilder(func.unquotedString, className) } functionRegistry.registerFunction(func, info, builder) } /** * Drop a temporary function. */ def dropTempFunction(name: String, ignoreIfNotExists: Boolean): Unit = { if (!functionRegistry.dropFunction(FunctionIdentifier(name)) && !ignoreIfNotExists) { throw new NoSuchTempFunctionException(name) } } /** * Returns whether it is a temporary function. If not existed, returns false. */ def isTemporaryFunction(name: FunctionIdentifier): Boolean = { // copied from HiveSessionCatalog val hiveFunctions = Seq("histogram_numeric") // A temporary function is a function that has been registered in functionRegistry // without a database name, and is neither a built-in function nor a Hive function name.database.isEmpty && functionRegistry.functionExists(name) && !FunctionRegistry.builtin.functionExists(name) && !hiveFunctions.contains(name.funcName.toLowerCase(Locale.ROOT)) } /** * Return whether this function has been registered in the function registry of the current * session. If not existed, return false. */ def isRegisteredFunction(name: FunctionIdentifier): Boolean = { functionRegistry.functionExists(name) } /** * Returns whether it is a persistent function. If not existed, returns false. */ def isPersistentFunction(name: FunctionIdentifier): Boolean = { val db = formatDatabaseName(name.database.getOrElse(getCurrentDatabase)) databaseExists(db) && externalCatalog.functionExists(db, name.funcName) } protected[sql] def failFunctionLookup( name: FunctionIdentifier, cause: Option[Throwable] = None): Nothing = { throw new NoSuchFunctionException( db = name.database.getOrElse(getCurrentDatabase), func = name.funcName, cause) } /** * Look up the [[ExpressionInfo]] associated with the specified function, assuming it exists. */ def lookupFunctionInfo(name: FunctionIdentifier): ExpressionInfo = synchronized { // TODO: just make function registry take in FunctionIdentifier instead of duplicating this val database = name.database.orElse(Some(currentDb)).map(formatDatabaseName) val qualifiedName = name.copy(database = database) functionRegistry.lookupFunction(name) .orElse(functionRegistry.lookupFunction(qualifiedName)) .getOrElse { val db = qualifiedName.database.get requireDbExists(db) if (externalCatalog.functionExists(db, name.funcName)) { val metadata = externalCatalog.getFunction(db, name.funcName) new ExpressionInfo( metadata.className, qualifiedName.database.orNull, qualifiedName.identifier) } else { failFunctionLookup(name) } } } /** * Return an [[Expression]] that represents the specified function, assuming it exists. * * For a temporary function or a permanent function that has been loaded, * this method will simply lookup the function through the * FunctionRegistry and create an expression based on the builder. * * For a permanent function that has not been loaded, we will first fetch its metadata * from the underlying external catalog. Then, we will load all resources associated * with this function (i.e. jars and files). Finally, we create a function builder * based on the function class and put the builder into the FunctionRegistry. * The name of this function in the FunctionRegistry will be `databaseName.functionName`. */ def lookupFunction( name: FunctionIdentifier, children: Seq[Expression]): Expression = synchronized { // Note: the implementation of this function is a little bit convoluted. // We probably shouldn't use a single FunctionRegistry to register all three kinds of functions // (built-in, temp, and external). if (name.database.isEmpty && functionRegistry.functionExists(name)) { // This function has been already loaded into the function registry. return functionRegistry.lookupFunction(name, children) } // If the name itself is not qualified, add the current database to it. val database = formatDatabaseName(name.database.getOrElse(getCurrentDatabase)) val qualifiedName = name.copy(database = Some(database)) if (functionRegistry.functionExists(qualifiedName)) { // This function has been already loaded into the function registry. // Unlike the above block, we find this function by using the qualified name. return functionRegistry.lookupFunction(qualifiedName, children) } // The function has not been loaded to the function registry, which means // that the function is a permanent function (if it actually has been registered // in the metastore). We need to first put the function in the FunctionRegistry. // TODO: why not just check whether the function exists first? val catalogFunction = try { externalCatalog.getFunction(database, name.funcName) } catch { case _: AnalysisException => failFunctionLookup(name) case _: NoSuchPermanentFunctionException => failFunctionLookup(name) } loadFunctionResources(catalogFunction.resources) // Please note that qualifiedName is provided by the user. However, // catalogFunction.identifier.unquotedString is returned by the underlying // catalog. So, it is possible that qualifiedName is not exactly the same as // catalogFunction.identifier.unquotedString (difference is on case-sensitivity). // At here, we preserve the input from the user. registerFunction(catalogFunction.copy(identifier = qualifiedName), overrideIfExists = false) // Now, we need to create the Expression. functionRegistry.lookupFunction(qualifiedName, children) } /** * List all functions in the specified database, including temporary functions. This * returns the function identifier and the scope in which it was defined (system or user * defined). */ def listFunctions(db: String): Seq[(FunctionIdentifier, String)] = listFunctions(db, "*") /** * List all matching functions in the specified database, including temporary functions. This * returns the function identifier and the scope in which it was defined (system or user * defined). */ def listFunctions(db: String, pattern: String): Seq[(FunctionIdentifier, String)] = { val dbName = formatDatabaseName(db) requireDbExists(dbName) val dbFunctions = externalCatalog.listFunctions(dbName, pattern).map { f => FunctionIdentifier(f, Some(dbName)) } val loadedFunctions = StringUtils .filterPattern(functionRegistry.listFunction().map(_.unquotedString), pattern).map { f => // In functionRegistry, function names are stored as an unquoted format. Try(parser.parseFunctionIdentifier(f)) match { case Success(e) => e case Failure(_) => // The names of some built-in functions are not parsable by our parser, e.g., % FunctionIdentifier(f) } } val functions = dbFunctions ++ loadedFunctions // The session catalog caches some persistent functions in the FunctionRegistry // so there can be duplicates. functions.map { case f if FunctionRegistry.functionSet.contains(f) => (f, "SYSTEM") case f => (f, "USER") }.distinct } // ----------------- // | Other methods | // ----------------- /** * Drop all existing databases (except "default"), tables, partitions and functions, * and set the current database to "default". * * This is mainly used for tests. */ def reset(): Unit = synchronized { setCurrentDatabase(DEFAULT_DATABASE) externalCatalog.setCurrentDatabase(DEFAULT_DATABASE) listDatabases().filter(_ != DEFAULT_DATABASE).foreach { db => dropDatabase(db, ignoreIfNotExists = false, cascade = true) } listTables(DEFAULT_DATABASE).foreach { table => dropTable(table, ignoreIfNotExists = false, purge = false) } listFunctions(DEFAULT_DATABASE).map(_._1).foreach { func => if (func.database.isDefined) { dropFunction(func, ignoreIfNotExists = false) } else { dropTempFunction(func.funcName, ignoreIfNotExists = false) } } clearTempTables() globalTempViewManager.clear() functionRegistry.clear() tableRelationCache.invalidateAll() // restore built-in functions FunctionRegistry.builtin.listFunction().foreach { f => val expressionInfo = FunctionRegistry.builtin.lookupFunction(f) val functionBuilder = FunctionRegistry.builtin.lookupFunctionBuilder(f) require(expressionInfo.isDefined, s"built-in function '$f' is missing expression info") require(functionBuilder.isDefined, s"built-in function '$f' is missing function builder") functionRegistry.registerFunction(f, expressionInfo.get, functionBuilder.get) } } /** * Copy the current state of the catalog to another catalog. * * This function is synchronized on this [[SessionCatalog]] (the source) to make sure the copied * state is consistent. The target [[SessionCatalog]] is not synchronized, and should not be * because the target [[SessionCatalog]] should not be published at this point. The caller must * synchronize on the target if this assumption does not hold. */ private[sql] def copyStateTo(target: SessionCatalog): Unit = synchronized { target.currentDb = currentDb // copy over temporary views tempViews.foreach(kv => target.tempViews.put(kv._1, kv._2)) } /** * Validate the new locatoin before renaming a managed table, which should be non-existent. */ private def validateNewLocationOfRename( oldName: TableIdentifier, newName: TableIdentifier): Unit = { val oldTable = getTableMetadata(oldName) if (oldTable.tableType == CatalogTableType.MANAGED) { val databaseLocation = externalCatalog.getDatabase(oldName.database.getOrElse(currentDb)).locationUri val newTableLocation = new Path(new Path(databaseLocation), formatTableName(newName.table)) val fs = newTableLocation.getFileSystem(hadoopConf) if (fs.exists(newTableLocation)) { throw new AnalysisException(s"Can not rename the managed table('$oldName')" + s". The associated location('$newTableLocation') already exists.") } } } }
kiszk/spark
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/catalog/SessionCatalog.scala
Scala
apache-2.0
60,257
package com.esri.dbscan import com.esri.dbscan.Status.Status import scala.collection.mutable /** * Density Based Clusterer. * * @param minPoints the min number of points in a cluster. * @param nnSearch a reference to a NNSearch implementation. */ class DBSCAN[T <: DBSCANPoint](minPoints: Int, nnSearch: NNSearch[T]) extends Serializable { private case class State(status: Status = Status.UNK, clusterID: Int = -1) private val stateMap = mutable.Map.empty[Long, State].withDefaultValue(State()) private def _expand(elem: T, neighbors: Seq[T], clusterID: Int ): Int = { stateMap(elem.id) = State(Status.CLUSTERED, clusterID) /* val queue = new mutable.Queue[T]() queue ++= neighbors while (queue.nonEmpty) { val neighbor = queue.dequeue val status = stateMap(neighbor.id).status if (status == Status.NOISE) { stateMap(neighbor.id) = State(Status.CORE, clusterID) } else if (status == Status.UNK) { stateMap(neighbor.id) = State(Status.CORE, clusterID) val neighborNeighbors = nnSearch.neighborsOf(neighbor) if (neighborNeighbors.size >= minPoints) { queue ++= neighborNeighbors } } } */ val queue = mutable.Queue[Seq[T]](neighbors) while (queue.nonEmpty) { queue.dequeue().foreach(neighbor => { val status = stateMap(neighbor.id).status status match { case Status.CLUSTERED => // Do nothing if core case _ => stateMap(neighbor.id) = State(Status.CLUSTERED, clusterID) val neighbors = nnSearch.neighborsOf(neighbor) if (neighbors.size >= minPoints) { queue.enqueue(neighbors) } } }) } clusterID + 1 } private def _dbscan(iter: Iterable[T]): Iterable[T] = { var clusterID = 0 iter.map(elem => { val status = stateMap(elem.id).status if (status == Status.UNK) { val neighbors = nnSearch.neighborsOf(elem) if (neighbors.size < minPoints) { stateMap(elem.id) = State(Status.NOISE) } else { clusterID = _expand(elem, neighbors, clusterID) } } elem }) } /** * Cluster the input points. * * @param iter the points to cluster. * @return iterable of points to cluster id tuple. */ def dbscan(iter: Iterable[T]): Iterable[(T, Int)] = { _dbscan(iter) .map(elem => (elem, stateMap(elem.id).clusterID)) } /** * Cluster the input points. * * @param iter the points to cluster. * @return iterable of Cluster instance. */ def cluster(iter: Iterable[T]): Iterable[Cluster[T]] = { _dbscan(iter) .map(elem => stateMap(elem.id).clusterID -> elem) .groupBy(_._1) .map { case (clusterID, iter) => Cluster(clusterID, iter.map(_._2)) } } /** * Cluster the input points, but do not return noise points. * * @param iter the points to cluster. * @return iterable of Cluster instance. */ def clusters(iter: Iterable[T]): Iterable[Cluster[T]] = { _dbscan(iter) .map(elem => stateMap(elem.id).clusterID -> elem) .filterNot(_._1 == -1) .groupBy(_._1) .map { case (clusterID, iter) => Cluster(clusterID, iter.map(_._2)) } } } /** * Companion object. */ object DBSCAN extends Serializable { /** * Create a DBSCAN instance. * * @param minPoints the min number of points in the search distance to start or append to a cluster. * @param nnSearch Implementation of NNSearch trait. * @return a DBSCAN instance. */ def apply[T <: DBSCANPoint](minPoints: Int, nnSearch: NNSearch[T]): DBSCAN[T] = { new DBSCAN[T](minPoints, nnSearch) } }
mraad/dbscan-scala
src/main/scala/com/esri/dbscan/DBSCAN.scala
Scala
apache-2.0
3,810
package com.xah.chat.comms import android.content.{Context, ServiceConnection, ComponentName} import android.os.IBinder import android.util.Log class XServiceConnection extends ServiceConnection { val TAG = "XServiceConnection" var mService: XService = _ var mBound: Boolean = false override def onServiceConnected(className: ComponentName, service: IBinder) = { mService = service.asInstanceOf[XBinder].getService() mBound = true Log.d(TAG, "Service Connected") } override def onServiceDisconnected(className: ComponentName) = { mService = null mBound = false Log.d(TAG, "Service Disconnected") } def isBound = mBound def getService = mService }
lemonxah/xaHChat
src/main/scala/com/xah/chat/comms/XServiceConnection.scala
Scala
mit
695
import org.scalatest.{Matchers, FunSuite} /** @version 1.1.0 */ class MinesweeperTest extends FunSuite with Matchers { test("no rows") { Minesweeper.annotate(List()) should be(List()) } test("no columns") { pending Minesweeper.annotate(List("")) should be(List("")) } test("no mines") { pending Minesweeper.annotate(List(" ", " ", " ")) should be( List(" ", " ", " ")) } test("minefield with only mines") { pending Minesweeper.annotate(List("***", "***", "***")) should be( List("***", "***", "***")) } test("mine surrounded by spaces") { pending Minesweeper.annotate(List(" ", " * ", " ")) should be( List("111", "1*1", "111")) } test("space surrounded by mines") { pending Minesweeper.annotate(List("***", "* *", "***")) should be( List("***", "*8*", "***")) } test("horizontal line") { pending Minesweeper.annotate(List(" * * ")) should be(List("1*2*1")) } test("horizontal line, mines at edges") { pending Minesweeper.annotate(List("* *")) should be(List("*1 1*")) } test("vertical line") { pending Minesweeper.annotate(List(" ", "*", " ", "*", " ")) should be( List("1", "*", "2", "*", "1")) } test("vertical line, mines at edges") { pending Minesweeper.annotate(List("*", " ", " ", " ", "*")) should be( List("*", "1", " ", "1", "*")) } test("cross") { pending Minesweeper.annotate(List(" * ", " * ", "*****", " * ", " * ")) should be( List(" 2*2 ", "25*52", "*****", "25*52", " 2*2 ")) } test("large minefield") { pending Minesweeper.annotate(List(" * * ", " * ", " * ", " * *", " * * ", " ")) should be( List("1*22*1", "12*322", " 123*2", "112*4*", "1*22*2", "111111")) } }
exercism/xscala
exercises/practice/minesweeper/src/test/scala/MinesweeperTest.scala
Scala
mit
2,849
package com.roundeights.skene.response import scala.io.Codec import scala.actors.Actor import scala.collection.mutable.MutableList import java.util.concurrent.atomic.AtomicReference import java.util.zip.GZIPOutputStream import javax.servlet.http.{HttpServletResponse, HttpServletRequest} import javax.servlet.AsyncContext import com.roundeights.skene.{Response, Renderable, Recover, Cookie, Logger} /** * A response that wraps a servlet */ class ServletResponse ( async: AsyncContext, request: HttpServletRequest, response: HttpServletResponse, logger: Logger, requestID: Long ) extends ActorResponse { /** The status code being sent back */ private val responseCode = new AtomicReference[Response.Code]( Response.Code.OK ) /** Whether this request supports gzip encoding */ private lazy val gzip = request.getHeader("Accept-Encoding") match { case null => false case accept => accept.toLowerCase.contains("gzip") } /** The output stream for this response */ private lazy val stream = gzip match { case true => { response.setHeader("Content-Encoding", "gzip") new GZIPOutputStream( response.getOutputStream ) } case false => response.getOutputStream } /** An actor this is used to communicate with the Servlet Response */ protected val actor: Actor = Actor.actor { val data = MutableList[Renderable]() def flush(): Unit = { if ( data.length > 0 ) { data.map( _.render( stream, Codec.UTF8 ) ) data.clear() stream.flush() } } Actor.loop { Actor.react { case Response.Header( field, value ) => response.setHeader( field.toString, value ) case code: Response.Code => { response.setStatus( code.code ) responseCode.set( code ) } case content: Renderable if request.getMethod != "HEAD" => data += content case cookie: Cookie => response.addCookie(cookie.toJavaCookie) case _: Response.Flush => flush() case _: Response.Done => { flush() stream.close() async.complete() logger.response( requestID, responseCode.get ) Actor.exit() } } } } }
Nycto/Skene
src/main/scala/skene/response/Servlet.scala
Scala
mit
2,534
package com.github.novamage.svalidator.validation.simple.internals class ConditionedGroupValidationRuleBuilderWrapper[A](conditionalExpression: A => Boolean, ruleBuilders: List[RuleBuilder[A]]) extends RuleBuilder[A] { protected[validation] def buildRules(instance: A): RuleStreamCollection[A] = { if (conditionalExpression(instance)) { val ruleStreamCollections = ruleBuilders.map(_.buildRules(instance)) RuleStreamCollection(ruleStreamCollections.flatMap(_.chains)) } else { RuleStreamCollection.Empty } } }
NovaMage/SValidator
src/main/scala/com/github/novamage/svalidator/validation/simple/internals/ConditionedGroupValidationRuleBuilderWrapper.scala
Scala
mit
547
package slinky.native import slinky.core.ExternalComponent import slinky.core.annotations.react import scala.scalajs.js import scala.scalajs.js.annotation.JSImport import scala.scalajs.js.| @react object Picker extends ExternalComponent { case class Props( onValueChange: js.UndefOr[(String | Int, Int) => Unit] = js.undefined, selectedValue: js.UndefOr[String | Int] = js.undefined, style: js.UndefOr[js.Object] = js.undefined, testID: js.UndefOr[String] = js.undefined, enabled: js.UndefOr[Boolean] = js.undefined, mode: js.UndefOr[String] = js.undefined, prompt: js.UndefOr[String] = js.undefined, itemStyle: js.UndefOr[js.Object] = js.undefined ) @js.native @JSImport("react-native", "Picker") object Component extends js.Object { val Item: js.Object = js.native } override val component = Component @react object Item extends ExternalComponent { case class Props(label: String, value: String | Int) override val component = Component.Item } }
shadaj/slinky
native/src/main/scala/slinky/native/Picker.scala
Scala
mit
1,017
package nars.logic.entity import nars.io.Symbols import TruthValue._ //remove if not needed import scala.collection.JavaConversions._ object TruthValue { /** The charactor that marks the two ends of a truth value */ private val DELIMITER = Symbols.TRUTH_VALUE_MARK /** The charactor that separates the factors in a truth value */ private val SEPARATOR = Symbols.VALUE_SEPARATOR } /** * Frequency and confidence. */ class TruthValue(f: Float, c: Float) extends Cloneable { /** The frequency factor of the truth value */ private var frequency: ShortFloat = new ShortFloat(f) /** The confidence factor of the truth value */ private var confidence: ShortFloat = if ((c < 1)) new ShortFloat(c) else new ShortFloat(0.9999f) /** * Constructor with a TruthValue to clone * @param v The truth value to be cloned */ def this(v: TruthValue) { this( (v.getFrequency), v.getConfidence ) } /** * Get the frequency value * @return The frequency value */ def getFrequency(): Float = frequency.getValue /** * Get the confidence value * @return The confidence value */ def getConfidence(): Float = confidence.getValue /** * Calculate the expectation value of the truth value * @return The expectation value */ def getExpectation(): Float = { (confidence.getValue * (frequency.getValue - 0.5) + 0.5).toFloat } /** * Calculate the absolute difference of the expectation value and that of a given truth value * @param t The given value * @return The absolute difference */ def getExpDifAbs(t: TruthValue): Float = { Math.abs(getExpectation - t.getExpectation) } /** * Check if the truth value is negative * @return True if the frequence is less than 1/2 */ def isNegative(): Boolean = getFrequency < 0.5 /** * Compare two truth values * @param that The other TruthValue * @return Whether the two are equivalent */ override def equals(that: Any): Boolean = { ((that.isInstanceOf[TruthValue]) && (getFrequency == that.asInstanceOf[TruthValue].getFrequency) && (getConfidence == that.asInstanceOf[TruthValue].getConfidence)) } /** * The hash code of a TruthValue * @return The hash code */ override def hashCode(): Int = (getExpectation * 37).toInt override def clone(): AnyRef = { new TruthValue(getFrequency, getConfidence) } /** * The String representation of a TruthValue * @return The String */ override def toString(): String = { DELIMITER + frequency.toString + SEPARATOR + confidence.toString + DELIMITER } /** * A simplified String representation of a TruthValue, where each factor is accruate to 1% * @return The String */ def toStringBrief(): String = { val s1 = DELIMITER + frequency.toStringBrief() + SEPARATOR val s2 = confidence.toStringBrief() if (s2 == "1.00") { s1 + "0.99" + DELIMITER } else { s1 + s2 + DELIMITER } } }
printedheart/opennars
nars_lab_x/nars_scala/src/main/scala/nars/entity/TruthValue.scala
Scala
agpl-3.0
3,004
/* Copyright (c) 2016, Rice University Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of Rice University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package org.apache.spark.rdd.cl import java.nio.ByteBuffer import java.nio.ByteOrder import java.lang.reflect.Constructor import org.apache.spark.mllib.linalg.DenseVector import com.amd.aparapi.internal.model.ClassModel class ObjectNativeInputBuffers[T](val N : Int, val structSize : Int, val blockingCopies : Boolean, val constructor : Constructor[_], val classModel : ClassModel, val structMemberTypes : Option[Array[Int]], val structMemberOffsets : Option[Array[Long]], val dev_ctx : Long) extends NativeInputBuffers[T] { val clBuffer : Long = OpenCLBridge.clMalloc(dev_ctx, N * structSize) val buffer : Long = OpenCLBridge.pin(dev_ctx, clBuffer) var tocopy : Int = -1 var iter : Int = 0 val bb : ByteBuffer = ByteBuffer.allocate(structSize) bb.order(ByteOrder.LITTLE_ENDIAN) override def releaseOpenCLArrays() { OpenCLBridge.clFree(clBuffer, dev_ctx) } override def copyToDevice(argnum : Int, ctx : Long, dev_ctx : Long, cacheID : CLCacheID, persistent : Boolean) : Int = { OpenCLBridge.setNativePinnedArrayArg(ctx, dev_ctx, argnum, buffer, clBuffer, tocopy * structSize) return 1 } override def next() : T = { val new_obj : T = constructor.newInstance().asInstanceOf[T] bb.clear OpenCLBridge.copyNativeArrayToJVMArray(buffer, iter * structSize, bb.array, structSize) OpenCLBridgeWrapper.readObjectFromStream(new_obj, classModel, bb, structMemberTypes.get, structMemberOffsets.get) iter += 1 new_obj } override def hasNext() : Boolean = { iter < tocopy } }
agrippa/spark-swat
swat/src/main/scala/org/apache/spark/rdd/cl/ObjectNativeInputBuffers.scala
Scala
bsd-3-clause
3,107
package skinny.mailer import org.scalatest.FlatSpec import org.scalatest.matchers.ShouldMatchers import javax.mail.Session import org.joda.time.DateTime import skinny.mailer.implicits.SkinnyMailerImplicits class SkinnyMessageSpec extends FlatSpec with ShouldMatchers with SkinnyMailerImplicits { behavior of "SkinnyMessage" val session = Session.getInstance(new java.util.Properties()) it should "properties" in { val msg = new SkinnyMessage(session) msg.sentDate = new DateTime(2013, 12, 1, 0, 0) msg.sentDate.get should be(new DateTime(2013, 12, 1, 0, 0)) msg.subject = "Subject1" msg.subject should be(Some("Subject1")) msg.subject = ("Subject2", "UTF-8") msg.subject should be(Some("Subject2")) msg.sender = "[email protected]" msg.sender.toString should be("[email protected]") msg.replyTo = "[email protected],[email protected]" msg.replyTo(0).toString should be("[email protected]") msg.replyTo(1).toString should be("[email protected]") msg.header = "header1" -> "h1" msg.header = "header2" -> "h2" msg.header = Map("header3" -> "h3", "header4" -> "h4") msg.header("header1")(0) should be("h1") msg.header("header2")(0) should be("h2") msg.header("header3")(0) should be("h3") msg.header("header4")(0) should be("h4") msg.from = "[email protected]" msg.from.map(_.toString) should be(Some("[email protected]")) msg.recipients = (javax.mail.Message.RecipientType.TO -> "[email protected],[email protected]") msg.recipients(javax.mail.Message.RecipientType.TO)(0).toString should be("[email protected]") msg.recipients(javax.mail.Message.RecipientType.TO)(1).toString should be("[email protected]") msg.filename = "filename" msg.filename should be("filename") // data handler msg.contentLanguage = Array("ja", "en") msg.contentLanguage(0) should be("ja") msg.contentLanguage(1) should be("en") msg.contentMD5 = "".hashCode.toString msg.contentMD5 should be("".hashCode.toString) msg.contentID = "contentID" msg.contentID should be("contentID") msg.to = "[email protected],[email protected]" msg.to.length should be(2) msg.to(0).toString should be("[email protected]") msg.to(1).toString should be("[email protected]") msg.cc = "[email protected],[email protected]" msg.cc.length should be(2) msg.cc(0).toString should be("[email protected]") msg.cc(1).toString should be("[email protected]") msg.cc = Seq("[email protected]", "[email protected]") msg.cc.length should be(2) msg.cc(0).toString should be("[email protected]") msg.cc(1).toString should be("[email protected]") msg.disposition = "attachment" msg.disposition should be("attachment") msg.description = "description" msg.description should be("description") msg.mimeVersion = "1.0" msg.mimeVersion should be("1.0") } }
BlackPrincess/skinny-framework
mailer/src/test/scala/skinny/mailer/SkinnyMessageSpec.scala
Scala
mit
3,104
package org.sisioh.aws4s.dynamodb.model import com.amazonaws.services.dynamodbv2.model.DeleteTableRequest import org.sisioh.aws4s.PimpedType object DeleteTableRequestFactory { def create(): DeleteTableRequest = new DeleteTableRequest() def create(tableName: String): DeleteTableRequest = new DeleteTableRequest(tableName) } class RichDeleteTableRequest(val underlying: DeleteTableRequest) extends AnyVal with PimpedType[DeleteTableRequest] { // --- def tableNameOpt: Option[String] = Option(underlying.getTableName) def tableNameOpt_=(value: Option[String]): Unit = underlying.setTableName(value.orNull) def withTableNameOpt(value: Option[String]): DeleteTableRequest = underlying.withTableName(value.orNull) // --- }
everpeace/aws4s
aws4s-dynamodb/src/main/scala/org/sisioh/aws4s/dynamodb/model/RichDeleteTableRequest.scala
Scala
mit
744
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.execution.datasources.text import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs.{FileStatus, Path} import org.apache.hadoop.io.{NullWritable, Text} import org.apache.hadoop.io.compress.GzipCodec import org.apache.hadoop.mapreduce.{Job, RecordWriter, TaskAttemptContext} import org.apache.hadoop.mapreduce.lib.output.{FileOutputFormat, TextOutputFormat} import org.apache.hadoop.util.ReflectionUtils import org.apache.spark.TaskContext import org.apache.spark.sql.{AnalysisException, Row, SparkSession} import org.apache.spark.sql.catalyst.InternalRow import org.apache.spark.sql.catalyst.expressions.UnsafeRow import org.apache.spark.sql.catalyst.expressions.codegen.{BufferHolder, UnsafeRowWriter} import org.apache.spark.sql.catalyst.util.CompressionCodecs import org.apache.spark.sql.execution.datasources._ import org.apache.spark.sql.sources._ import org.apache.spark.sql.types.{StringType, StructType} import org.apache.spark.util.SerializableConfiguration /** * A data source for reading text files. */ class TextFileFormat extends TextBasedFileFormat with DataSourceRegister { override def shortName(): String = "text" override def toString: String = "Text" private def verifySchema(schema: StructType): Unit = { if (schema.size != 1) { throw new AnalysisException( s"Text data source supports only a single column, and you have ${schema.size} columns.") } val tpe = schema(0).dataType if (tpe != StringType) { throw new AnalysisException( s"Text data source supports only a string column, but you have ${tpe.simpleString}.") } } override def inferSchema( sparkSession: SparkSession, options: Map[String, String], files: Seq[FileStatus]): Option[StructType] = Some(new StructType().add("value", StringType)) override def prepareWrite( sparkSession: SparkSession, job: Job, options: Map[String, String], dataSchema: StructType): OutputWriterFactory = { verifySchema(dataSchema) val conf = job.getConfiguration val compressionCodec = options.get("compression").map(CompressionCodecs.getCodecClassName) compressionCodec.foreach { codec => CompressionCodecs.setCodecConfiguration(conf, codec) } new OutputWriterFactory { override def newInstance( path: String, dataSchema: StructType, context: TaskAttemptContext): OutputWriter = { new TextOutputWriter(path, dataSchema, context) } override def getFileExtension(context: TaskAttemptContext): String = { ".txt" + TextOutputWriter.getCompressionExtension(context) } } } override def buildReader( sparkSession: SparkSession, dataSchema: StructType, partitionSchema: StructType, requiredSchema: StructType, filters: Seq[Filter], options: Map[String, String], hadoopConf: Configuration): PartitionedFile => Iterator[InternalRow] = { assert( requiredSchema.length <= 1, "Text data source only produces a single data column named \\"value\\".") val broadcastedHadoopConf = sparkSession.sparkContext.broadcast(new SerializableConfiguration(hadoopConf)) (file: PartitionedFile) => { val reader = new HadoopFileLinesReader(file, broadcastedHadoopConf.value.value) Option(TaskContext.get()).foreach(_.addTaskCompletionListener(_ => reader.close())) if (requiredSchema.isEmpty) { val emptyUnsafeRow = new UnsafeRow(0) reader.map(_ => emptyUnsafeRow) } else { val unsafeRow = new UnsafeRow(1) val bufferHolder = new BufferHolder(unsafeRow) val unsafeRowWriter = new UnsafeRowWriter(bufferHolder, 1) reader.map { line => // Writes to an UnsafeRow directly bufferHolder.reset() unsafeRowWriter.write(0, line.getBytes, 0, line.getLength) unsafeRow.setTotalSize(bufferHolder.totalSize()) unsafeRow } } } } } class TextOutputWriter( path: String, dataSchema: StructType, context: TaskAttemptContext) extends OutputWriter { private[this] val buffer = new Text() private val recordWriter: RecordWriter[NullWritable, Text] = { new TextOutputFormat[NullWritable, Text]() { override def getDefaultWorkFile(context: TaskAttemptContext, extension: String): Path = { new Path(path) } }.getRecordWriter(context) } override def write(row: Row): Unit = throw new UnsupportedOperationException("call writeInternal") override protected[sql] def writeInternal(row: InternalRow): Unit = { val utf8string = row.getUTF8String(0) buffer.set(utf8string.getBytes) recordWriter.write(NullWritable.get(), buffer) } override def close(): Unit = { recordWriter.close(context) } } object TextOutputWriter { /** Returns the compression codec extension to be used in a file name, e.g. ".gzip"). */ def getCompressionExtension(context: TaskAttemptContext): String = { // Set the compression extension, similar to code in TextOutputFormat.getDefaultWorkFile if (FileOutputFormat.getCompressOutput(context)) { val codecClass = FileOutputFormat.getOutputCompressorClass(context, classOf[GzipCodec]) ReflectionUtils.newInstance(codecClass, context.getConfiguration).getDefaultExtension } else { "" } } }
spark0001/spark2.1.1
sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/text/TextFileFormat.scala
Scala
apache-2.0
6,220
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.execution.datasources.jdbc import java.sql.{Connection, Driver, DriverManager, JDBCType, PreparedStatement, ResultSet, ResultSetMetaData, SQLException, SQLFeatureNotSupportedException} import java.util.Locale import scala.collection.JavaConverters._ import scala.util.Try import scala.util.control.NonFatal import org.apache.spark.TaskContext import org.apache.spark.executor.InputMetrics import org.apache.spark.internal.Logging import org.apache.spark.sql.{AnalysisException, DataFrame, Row} import org.apache.spark.sql.catalyst.InternalRow import org.apache.spark.sql.catalyst.analysis.Resolver import org.apache.spark.sql.catalyst.encoders.RowEncoder import org.apache.spark.sql.catalyst.expressions.SpecificInternalRow import org.apache.spark.sql.catalyst.parser.CatalystSqlParser import org.apache.spark.sql.catalyst.util.{CaseInsensitiveMap, DateTimeUtils, GenericArrayData} import org.apache.spark.sql.connector.catalog.TableChange import org.apache.spark.sql.execution.datasources.jdbc.connection.ConnectionProvider import org.apache.spark.sql.jdbc.{JdbcDialect, JdbcDialects, JdbcType} import org.apache.spark.sql.types._ import org.apache.spark.sql.util.SchemaUtils import org.apache.spark.unsafe.types.UTF8String import org.apache.spark.util.NextIterator /** * Util functions for JDBC tables. */ object JdbcUtils extends Logging { /** * Returns a factory for creating connections to the given JDBC URL. * * @param options - JDBC options that contains url, table and other information. * @throws IllegalArgumentException if the driver could not open a JDBC connection. */ def createConnectionFactory(options: JDBCOptions): () => Connection = { val driverClass: String = options.driverClass () => { DriverRegistry.register(driverClass) val driver: Driver = DriverManager.getDrivers.asScala.collectFirst { case d: DriverWrapper if d.wrapped.getClass.getCanonicalName == driverClass => d case d if d.getClass.getCanonicalName == driverClass => d }.getOrElse { throw new IllegalStateException( s"Did not find registered driver with class $driverClass") } val connection = ConnectionProvider.create(driver, options).getConnection() require(connection != null, s"The driver could not open a JDBC connection. Check the URL: ${options.url}") connection } } /** * Returns true if the table already exists in the JDBC database. */ def tableExists(conn: Connection, options: JdbcOptionsInWrite): Boolean = { val dialect = JdbcDialects.get(options.url) // Somewhat hacky, but there isn't a good way to identify whether a table exists for all // SQL database systems using JDBC meta data calls, considering "table" could also include // the database name. Query used to find table exists can be overridden by the dialects. Try { val statement = conn.prepareStatement(dialect.getTableExistsQuery(options.table)) try { statement.setQueryTimeout(options.queryTimeout) statement.executeQuery() } finally { statement.close() } }.isSuccess } /** * Drops a table from the JDBC database. */ def dropTable(conn: Connection, table: String, options: JDBCOptions): Unit = { executeStatement(conn, options, s"DROP TABLE $table") } /** * Truncates a table from the JDBC database without side effects. */ def truncateTable(conn: Connection, options: JdbcOptionsInWrite): Unit = { val dialect = JdbcDialects.get(options.url) val statement = conn.createStatement try { statement.setQueryTimeout(options.queryTimeout) val truncateQuery = if (options.isCascadeTruncate.isDefined) { dialect.getTruncateQuery(options.table, options.isCascadeTruncate) } else { dialect.getTruncateQuery(options.table) } statement.executeUpdate(truncateQuery) } finally { statement.close() } } def isCascadingTruncateTable(url: String): Option[Boolean] = { JdbcDialects.get(url).isCascadingTruncateTable() } /** * Returns an Insert SQL statement for inserting a row into the target table via JDBC conn. */ def getInsertStatement( table: String, rddSchema: StructType, tableSchema: Option[StructType], isCaseSensitive: Boolean, dialect: JdbcDialect): String = { val columns = if (tableSchema.isEmpty) { rddSchema.fields.map(x => dialect.quoteIdentifier(x.name)).mkString(",") } else { val columnNameEquality = if (isCaseSensitive) { org.apache.spark.sql.catalyst.analysis.caseSensitiveResolution } else { org.apache.spark.sql.catalyst.analysis.caseInsensitiveResolution } // The generated insert statement needs to follow rddSchema's column sequence and // tableSchema's column names. When appending data into some case-sensitive DBMSs like // PostgreSQL/Oracle, we need to respect the existing case-sensitive column names instead of // RDD column names for user convenience. val tableColumnNames = tableSchema.get.fieldNames rddSchema.fields.map { col => val normalizedName = tableColumnNames.find(f => columnNameEquality(f, col.name)).getOrElse { throw new AnalysisException(s"""Column "${col.name}" not found in schema $tableSchema""") } dialect.quoteIdentifier(normalizedName) }.mkString(",") } val placeholders = rddSchema.fields.map(_ => "?").mkString(",") s"INSERT INTO $table ($columns) VALUES ($placeholders)" } /** * Retrieve standard jdbc types. * * @param dt The datatype (e.g. [[org.apache.spark.sql.types.StringType]]) * @return The default JdbcType for this DataType */ def getCommonJDBCType(dt: DataType): Option[JdbcType] = { dt match { case IntegerType => Option(JdbcType("INTEGER", java.sql.Types.INTEGER)) case LongType => Option(JdbcType("BIGINT", java.sql.Types.BIGINT)) case DoubleType => Option(JdbcType("DOUBLE PRECISION", java.sql.Types.DOUBLE)) case FloatType => Option(JdbcType("REAL", java.sql.Types.FLOAT)) case ShortType => Option(JdbcType("INTEGER", java.sql.Types.SMALLINT)) case ByteType => Option(JdbcType("BYTE", java.sql.Types.TINYINT)) case BooleanType => Option(JdbcType("BIT(1)", java.sql.Types.BIT)) case StringType => Option(JdbcType("TEXT", java.sql.Types.CLOB)) case BinaryType => Option(JdbcType("BLOB", java.sql.Types.BLOB)) case TimestampType => Option(JdbcType("TIMESTAMP", java.sql.Types.TIMESTAMP)) case DateType => Option(JdbcType("DATE", java.sql.Types.DATE)) case t: DecimalType => Option( JdbcType(s"DECIMAL(${t.precision},${t.scale})", java.sql.Types.DECIMAL)) case _ => None } } def getJdbcType(dt: DataType, dialect: JdbcDialect): JdbcType = { dialect.getJDBCType(dt).orElse(getCommonJDBCType(dt)).getOrElse( throw new IllegalArgumentException(s"Can't get JDBC type for ${dt.catalogString}")) } /** * Maps a JDBC type to a Catalyst type. This function is called only when * the JdbcDialect class corresponding to your database driver returns null. * * @param sqlType - A field of java.sql.Types * @return The Catalyst type corresponding to sqlType. */ private def getCatalystType( sqlType: Int, precision: Int, scale: Int, signed: Boolean): DataType = { val answer = sqlType match { // scalastyle:off case java.sql.Types.ARRAY => null case java.sql.Types.BIGINT => if (signed) { LongType } else { DecimalType(20,0) } case java.sql.Types.BINARY => BinaryType case java.sql.Types.BIT => BooleanType // @see JdbcDialect for quirks case java.sql.Types.BLOB => BinaryType case java.sql.Types.BOOLEAN => BooleanType case java.sql.Types.CHAR => StringType case java.sql.Types.CLOB => StringType case java.sql.Types.DATALINK => null case java.sql.Types.DATE => DateType case java.sql.Types.DECIMAL if precision != 0 || scale != 0 => DecimalType.bounded(precision, scale) case java.sql.Types.DECIMAL => DecimalType.SYSTEM_DEFAULT case java.sql.Types.DISTINCT => null case java.sql.Types.DOUBLE => DoubleType case java.sql.Types.FLOAT => FloatType case java.sql.Types.INTEGER => if (signed) { IntegerType } else { LongType } case java.sql.Types.JAVA_OBJECT => null case java.sql.Types.LONGNVARCHAR => StringType case java.sql.Types.LONGVARBINARY => BinaryType case java.sql.Types.LONGVARCHAR => StringType case java.sql.Types.NCHAR => StringType case java.sql.Types.NCLOB => StringType case java.sql.Types.NULL => null case java.sql.Types.NUMERIC if precision != 0 || scale != 0 => DecimalType.bounded(precision, scale) case java.sql.Types.NUMERIC => DecimalType.SYSTEM_DEFAULT case java.sql.Types.NVARCHAR => StringType case java.sql.Types.OTHER => null case java.sql.Types.REAL => DoubleType case java.sql.Types.REF => StringType case java.sql.Types.REF_CURSOR => null case java.sql.Types.ROWID => LongType case java.sql.Types.SMALLINT => IntegerType case java.sql.Types.SQLXML => StringType case java.sql.Types.STRUCT => StringType case java.sql.Types.TIME => TimestampType case java.sql.Types.TIME_WITH_TIMEZONE => null case java.sql.Types.TIMESTAMP => TimestampType case java.sql.Types.TIMESTAMP_WITH_TIMEZONE => null case java.sql.Types.TINYINT => IntegerType case java.sql.Types.VARBINARY => BinaryType case java.sql.Types.VARCHAR => StringType case _ => throw new SQLException("Unrecognized SQL type " + sqlType) // scalastyle:on } if (answer == null) { throw new SQLException("Unsupported type " + JDBCType.valueOf(sqlType).getName) } answer } /** * Returns the schema if the table already exists in the JDBC database. */ def getSchemaOption(conn: Connection, options: JDBCOptions): Option[StructType] = { val dialect = JdbcDialects.get(options.url) try { val statement = conn.prepareStatement(dialect.getSchemaQuery(options.tableOrQuery)) try { statement.setQueryTimeout(options.queryTimeout) Some(getSchema(statement.executeQuery(), dialect)) } catch { case _: SQLException => None } finally { statement.close() } } catch { case _: SQLException => None } } /** * Takes a [[ResultSet]] and returns its Catalyst schema. * * @param alwaysNullable If true, all the columns are nullable. * @return A [[StructType]] giving the Catalyst schema. * @throws SQLException if the schema contains an unsupported type. */ def getSchema( resultSet: ResultSet, dialect: JdbcDialect, alwaysNullable: Boolean = false): StructType = { val rsmd = resultSet.getMetaData val ncols = rsmd.getColumnCount val fields = new Array[StructField](ncols) var i = 0 while (i < ncols) { val columnName = rsmd.getColumnLabel(i + 1) val dataType = rsmd.getColumnType(i + 1) val typeName = rsmd.getColumnTypeName(i + 1) val fieldSize = rsmd.getPrecision(i + 1) val fieldScale = rsmd.getScale(i + 1) val isSigned = { try { rsmd.isSigned(i + 1) } catch { // Workaround for HIVE-14684: case e: SQLException if e.getMessage == "Method not supported" && rsmd.getClass.getName == "org.apache.hive.jdbc.HiveResultSetMetaData" => true } } val nullable = if (alwaysNullable) { true } else { rsmd.isNullable(i + 1) != ResultSetMetaData.columnNoNulls } val metadata = new MetadataBuilder().putLong("scale", fieldScale) val columnType = dialect.getCatalystType(dataType, typeName, fieldSize, metadata).getOrElse( getCatalystType(dataType, fieldSize, fieldScale, isSigned)) fields(i) = StructField(columnName, columnType, nullable) i = i + 1 } new StructType(fields) } /** * Convert a [[ResultSet]] into an iterator of Catalyst Rows. */ def resultSetToRows(resultSet: ResultSet, schema: StructType): Iterator[Row] = { val inputMetrics = Option(TaskContext.get()).map(_.taskMetrics().inputMetrics).getOrElse(new InputMetrics) val fromRow = RowEncoder(schema).resolveAndBind().createDeserializer() val internalRows = resultSetToSparkInternalRows(resultSet, schema, inputMetrics) internalRows.map(fromRow) } private[spark] def resultSetToSparkInternalRows( resultSet: ResultSet, schema: StructType, inputMetrics: InputMetrics): Iterator[InternalRow] = { new NextIterator[InternalRow] { private[this] val rs = resultSet private[this] val getters: Array[JDBCValueGetter] = makeGetters(schema) private[this] val mutableRow = new SpecificInternalRow(schema.fields.map(x => x.dataType)) override protected def close(): Unit = { try { rs.close() } catch { case e: Exception => logWarning("Exception closing resultset", e) } } override protected def getNext(): InternalRow = { if (rs.next()) { inputMetrics.incRecordsRead(1) var i = 0 while (i < getters.length) { getters(i).apply(rs, mutableRow, i) if (rs.wasNull) mutableRow.setNullAt(i) i = i + 1 } mutableRow } else { finished = true null.asInstanceOf[InternalRow] } } } } // A `JDBCValueGetter` is responsible for getting a value from `ResultSet` into a field // for `MutableRow`. The last argument `Int` means the index for the value to be set in // the row and also used for the value in `ResultSet`. private type JDBCValueGetter = (ResultSet, InternalRow, Int) => Unit /** * Creates `JDBCValueGetter`s according to [[StructType]], which can set * each value from `ResultSet` to each field of [[InternalRow]] correctly. */ private def makeGetters(schema: StructType): Array[JDBCValueGetter] = schema.fields.map(sf => makeGetter(sf.dataType, sf.metadata)) private def makeGetter(dt: DataType, metadata: Metadata): JDBCValueGetter = dt match { case BooleanType => (rs: ResultSet, row: InternalRow, pos: Int) => row.setBoolean(pos, rs.getBoolean(pos + 1)) case DateType => (rs: ResultSet, row: InternalRow, pos: Int) => // DateTimeUtils.fromJavaDate does not handle null value, so we need to check it. val dateVal = rs.getDate(pos + 1) if (dateVal != null) { row.setInt(pos, DateTimeUtils.fromJavaDate(dateVal)) } else { row.update(pos, null) } // When connecting with Oracle DB through JDBC, the precision and scale of BigDecimal // object returned by ResultSet.getBigDecimal is not correctly matched to the table // schema reported by ResultSetMetaData.getPrecision and ResultSetMetaData.getScale. // If inserting values like 19999 into a column with NUMBER(12, 2) type, you get through // a BigDecimal object with scale as 0. But the dataframe schema has correct type as // DecimalType(12, 2). Thus, after saving the dataframe into parquet file and then // retrieve it, you will get wrong result 199.99. // So it is needed to set precision and scale for Decimal based on JDBC metadata. case DecimalType.Fixed(p, s) => (rs: ResultSet, row: InternalRow, pos: Int) => val decimal = nullSafeConvert[java.math.BigDecimal](rs.getBigDecimal(pos + 1), d => Decimal(d, p, s)) row.update(pos, decimal) case DoubleType => (rs: ResultSet, row: InternalRow, pos: Int) => row.setDouble(pos, rs.getDouble(pos + 1)) case FloatType => (rs: ResultSet, row: InternalRow, pos: Int) => row.setFloat(pos, rs.getFloat(pos + 1)) case IntegerType => (rs: ResultSet, row: InternalRow, pos: Int) => row.setInt(pos, rs.getInt(pos + 1)) case LongType if metadata.contains("binarylong") => (rs: ResultSet, row: InternalRow, pos: Int) => val bytes = rs.getBytes(pos + 1) var ans = 0L var j = 0 while (j < bytes.length) { ans = 256 * ans + (255 & bytes(j)) j = j + 1 } row.setLong(pos, ans) case LongType => (rs: ResultSet, row: InternalRow, pos: Int) => row.setLong(pos, rs.getLong(pos + 1)) case ShortType => (rs: ResultSet, row: InternalRow, pos: Int) => row.setShort(pos, rs.getShort(pos + 1)) case ByteType => (rs: ResultSet, row: InternalRow, pos: Int) => row.setByte(pos, rs.getByte(pos + 1)) case StringType => (rs: ResultSet, row: InternalRow, pos: Int) => // TODO(davies): use getBytes for better performance, if the encoding is UTF-8 row.update(pos, UTF8String.fromString(rs.getString(pos + 1))) case TimestampType => (rs: ResultSet, row: InternalRow, pos: Int) => val t = rs.getTimestamp(pos + 1) if (t != null) { row.setLong(pos, DateTimeUtils.fromJavaTimestamp(t)) } else { row.update(pos, null) } case BinaryType => (rs: ResultSet, row: InternalRow, pos: Int) => row.update(pos, rs.getBytes(pos + 1)) case ArrayType(et, _) => val elementConversion = et match { case TimestampType => (array: Object) => array.asInstanceOf[Array[java.sql.Timestamp]].map { timestamp => nullSafeConvert(timestamp, DateTimeUtils.fromJavaTimestamp) } case StringType => (array: Object) => // some underling types are not String such as uuid, inet, cidr, etc. array.asInstanceOf[Array[java.lang.Object]] .map(obj => if (obj == null) null else UTF8String.fromString(obj.toString)) case DateType => (array: Object) => array.asInstanceOf[Array[java.sql.Date]].map { date => nullSafeConvert(date, DateTimeUtils.fromJavaDate) } case dt: DecimalType => (array: Object) => array.asInstanceOf[Array[java.math.BigDecimal]].map { decimal => nullSafeConvert[java.math.BigDecimal]( decimal, d => Decimal(d, dt.precision, dt.scale)) } case LongType if metadata.contains("binarylong") => throw new IllegalArgumentException(s"Unsupported array element " + s"type ${dt.catalogString} based on binary") case ArrayType(_, _) => throw new IllegalArgumentException("Nested arrays unsupported") case _ => (array: Object) => array.asInstanceOf[Array[Any]] } (rs: ResultSet, row: InternalRow, pos: Int) => val array = nullSafeConvert[java.sql.Array]( input = rs.getArray(pos + 1), array => new GenericArrayData(elementConversion.apply(array.getArray))) row.update(pos, array) case _ => throw new IllegalArgumentException(s"Unsupported type ${dt.catalogString}") } private def nullSafeConvert[T](input: T, f: T => Any): Any = { if (input == null) { null } else { f(input) } } // A `JDBCValueSetter` is responsible for setting a value from `Row` into a field for // `PreparedStatement`. The last argument `Int` means the index for the value to be set // in the SQL statement and also used for the value in `Row`. private type JDBCValueSetter = (PreparedStatement, Row, Int) => Unit private def makeSetter( conn: Connection, dialect: JdbcDialect, dataType: DataType): JDBCValueSetter = dataType match { case IntegerType => (stmt: PreparedStatement, row: Row, pos: Int) => stmt.setInt(pos + 1, row.getInt(pos)) case LongType => (stmt: PreparedStatement, row: Row, pos: Int) => stmt.setLong(pos + 1, row.getLong(pos)) case DoubleType => (stmt: PreparedStatement, row: Row, pos: Int) => stmt.setDouble(pos + 1, row.getDouble(pos)) case FloatType => (stmt: PreparedStatement, row: Row, pos: Int) => stmt.setFloat(pos + 1, row.getFloat(pos)) case ShortType => (stmt: PreparedStatement, row: Row, pos: Int) => stmt.setInt(pos + 1, row.getShort(pos)) case ByteType => (stmt: PreparedStatement, row: Row, pos: Int) => stmt.setInt(pos + 1, row.getByte(pos)) case BooleanType => (stmt: PreparedStatement, row: Row, pos: Int) => stmt.setBoolean(pos + 1, row.getBoolean(pos)) case StringType => (stmt: PreparedStatement, row: Row, pos: Int) => stmt.setString(pos + 1, row.getString(pos)) case BinaryType => (stmt: PreparedStatement, row: Row, pos: Int) => stmt.setBytes(pos + 1, row.getAs[Array[Byte]](pos)) case TimestampType => (stmt: PreparedStatement, row: Row, pos: Int) => stmt.setTimestamp(pos + 1, row.getAs[java.sql.Timestamp](pos)) case DateType => (stmt: PreparedStatement, row: Row, pos: Int) => stmt.setDate(pos + 1, row.getAs[java.sql.Date](pos)) case t: DecimalType => (stmt: PreparedStatement, row: Row, pos: Int) => stmt.setBigDecimal(pos + 1, row.getDecimal(pos)) case ArrayType(et, _) => // remove type length parameters from end of type name val typeName = getJdbcType(et, dialect).databaseTypeDefinition .toLowerCase(Locale.ROOT).split("\\\\(")(0) (stmt: PreparedStatement, row: Row, pos: Int) => val array = conn.createArrayOf( typeName, row.getSeq[AnyRef](pos).toArray) stmt.setArray(pos + 1, array) case _ => (_: PreparedStatement, _: Row, pos: Int) => throw new IllegalArgumentException( s"Can't translate non-null value for field $pos") } /** * Saves a partition of a DataFrame to the JDBC database. This is done in * a single database transaction (unless isolation level is "NONE") * in order to avoid repeatedly inserting data as much as possible. * * It is still theoretically possible for rows in a DataFrame to be * inserted into the database more than once if a stage somehow fails after * the commit occurs but before the stage can return successfully. * * This is not a closure inside saveTable() because apparently cosmetic * implementation changes elsewhere might easily render such a closure * non-Serializable. Instead, we explicitly close over all variables that * are used. * * Note that this method records task output metrics. It assumes the method is * running in a task. For now, we only records the number of rows being written * because there's no good way to measure the total bytes being written. Only * effective outputs are taken into account: for example, metric will not be updated * if it supports transaction and transaction is rolled back, but metric will be * updated even with error if it doesn't support transaction, as there're dirty outputs. */ def savePartition( getConnection: () => Connection, table: String, iterator: Iterator[Row], rddSchema: StructType, insertStmt: String, batchSize: Int, dialect: JdbcDialect, isolationLevel: Int, options: JDBCOptions): Unit = { val outMetrics = TaskContext.get().taskMetrics().outputMetrics val conn = getConnection() var committed = false var finalIsolationLevel = Connection.TRANSACTION_NONE if (isolationLevel != Connection.TRANSACTION_NONE) { try { val metadata = conn.getMetaData if (metadata.supportsTransactions()) { // Update to at least use the default isolation, if any transaction level // has been chosen and transactions are supported val defaultIsolation = metadata.getDefaultTransactionIsolation finalIsolationLevel = defaultIsolation if (metadata.supportsTransactionIsolationLevel(isolationLevel)) { // Finally update to actually requested level if possible finalIsolationLevel = isolationLevel } else { logWarning(s"Requested isolation level $isolationLevel is not supported; " + s"falling back to default isolation level $defaultIsolation") } } else { logWarning(s"Requested isolation level $isolationLevel, but transactions are unsupported") } } catch { case NonFatal(e) => logWarning("Exception while detecting transaction support", e) } } val supportsTransactions = finalIsolationLevel != Connection.TRANSACTION_NONE var totalRowCount = 0L try { if (supportsTransactions) { conn.setAutoCommit(false) // Everything in the same db transaction. conn.setTransactionIsolation(finalIsolationLevel) } val stmt = conn.prepareStatement(insertStmt) val setters = rddSchema.fields.map(f => makeSetter(conn, dialect, f.dataType)) val nullTypes = rddSchema.fields.map(f => getJdbcType(f.dataType, dialect).jdbcNullType) val numFields = rddSchema.fields.length try { var rowCount = 0 stmt.setQueryTimeout(options.queryTimeout) while (iterator.hasNext) { val row = iterator.next() var i = 0 while (i < numFields) { if (row.isNullAt(i)) { stmt.setNull(i + 1, nullTypes(i)) } else { setters(i).apply(stmt, row, i) } i = i + 1 } stmt.addBatch() rowCount += 1 totalRowCount += 1 if (rowCount % batchSize == 0) { stmt.executeBatch() rowCount = 0 } } if (rowCount > 0) { stmt.executeBatch() } } finally { stmt.close() } if (supportsTransactions) { conn.commit() } committed = true } catch { case e: SQLException => val cause = e.getNextException if (cause != null && e.getCause != cause) { // If there is no cause already, set 'next exception' as cause. If cause is null, // it *may* be because no cause was set yet if (e.getCause == null) { try { e.initCause(cause) } catch { // Or it may be null because the cause *was* explicitly initialized, to *null*, // in which case this fails. There is no other way to detect it. // addSuppressed in this case as well. case _: IllegalStateException => e.addSuppressed(cause) } } else { e.addSuppressed(cause) } } throw e } finally { if (!committed) { // The stage must fail. We got here through an exception path, so // let the exception through unless rollback() or close() want to // tell the user about another problem. if (supportsTransactions) { conn.rollback() } else { outMetrics.setRecordsWritten(totalRowCount) } conn.close() } else { outMetrics.setRecordsWritten(totalRowCount) // The stage must succeed. We cannot propagate any exception close() might throw. try { conn.close() } catch { case e: Exception => logWarning("Transaction succeeded, but closing failed", e) } } } } /** * Compute the schema string for this RDD. */ def schemaString( schema: StructType, caseSensitive: Boolean, url: String, createTableColumnTypes: Option[String] = None): String = { val sb = new StringBuilder() val dialect = JdbcDialects.get(url) val userSpecifiedColTypesMap = createTableColumnTypes .map(parseUserSpecifiedCreateTableColumnTypes(schema, caseSensitive, _)) .getOrElse(Map.empty[String, String]) schema.fields.foreach { field => val name = dialect.quoteIdentifier(field.name) val typ = userSpecifiedColTypesMap .getOrElse(field.name, getJdbcType(field.dataType, dialect).databaseTypeDefinition) val nullable = if (field.nullable) "" else "NOT NULL" sb.append(s", $name $typ $nullable") } if (sb.length < 2) "" else sb.substring(2) } /** * Parses the user specified createTableColumnTypes option value string specified in the same * format as create table ddl column types, and returns Map of field name and the data type to * use in-place of the default data type. */ private def parseUserSpecifiedCreateTableColumnTypes( schema: StructType, caseSensitive: Boolean, createTableColumnTypes: String): Map[String, String] = { def typeName(f: StructField): String = { // char/varchar gets translated to string type. Real data type specified by the user // is available in the field metadata as HIVE_TYPE_STRING if (f.metadata.contains(HIVE_TYPE_STRING)) { f.metadata.getString(HIVE_TYPE_STRING) } else { f.dataType.catalogString } } val userSchema = CatalystSqlParser.parseTableSchema(createTableColumnTypes) val nameEquality = if (caseSensitive) { org.apache.spark.sql.catalyst.analysis.caseSensitiveResolution } else { org.apache.spark.sql.catalyst.analysis.caseInsensitiveResolution } // checks duplicate columns in the user specified column types. SchemaUtils.checkColumnNameDuplication( userSchema.map(_.name), "in the createTableColumnTypes option value", nameEquality) // checks if user specified column names exist in the DataFrame schema userSchema.fieldNames.foreach { col => schema.find(f => nameEquality(f.name, col)).getOrElse { throw new AnalysisException( s"createTableColumnTypes option column $col not found in schema " + schema.catalogString) } } val userSchemaMap = userSchema.fields.map(f => f.name -> typeName(f)).toMap if (caseSensitive) userSchemaMap else CaseInsensitiveMap(userSchemaMap) } /** * Parses the user specified customSchema option value to DataFrame schema, and * returns a schema that is replaced by the custom schema's dataType if column name is matched. */ def getCustomSchema( tableSchema: StructType, customSchema: String, nameEquality: Resolver): StructType = { if (null != customSchema && customSchema.nonEmpty) { val userSchema = CatalystSqlParser.parseTableSchema(customSchema) SchemaUtils.checkSchemaColumnNameDuplication( userSchema, "in the customSchema option value", nameEquality) // This is resolved by names, use the custom filed dataType to replace the default dataType. val newSchema = tableSchema.map { col => userSchema.find(f => nameEquality(f.name, col.name)) match { case Some(c) => col.copy(dataType = c.dataType) case None => col } } StructType(newSchema) } else { tableSchema } } /** * Saves the RDD to the database in a single transaction. */ def saveTable( df: DataFrame, tableSchema: Option[StructType], isCaseSensitive: Boolean, options: JdbcOptionsInWrite): Unit = { val url = options.url val table = options.table val dialect = JdbcDialects.get(url) val rddSchema = df.schema val getConnection: () => Connection = createConnectionFactory(options) val batchSize = options.batchSize val isolationLevel = options.isolationLevel val insertStmt = getInsertStatement(table, rddSchema, tableSchema, isCaseSensitive, dialect) val repartitionedDF = options.numPartitions match { case Some(n) if n <= 0 => throw new IllegalArgumentException( s"Invalid value `$n` for parameter `${JDBCOptions.JDBC_NUM_PARTITIONS}` in table writing " + "via JDBC. The minimum value is 1.") case Some(n) if n < df.rdd.getNumPartitions => df.coalesce(n) case _ => df } repartitionedDF.rdd.foreachPartition { iterator => savePartition( getConnection, table, iterator, rddSchema, insertStmt, batchSize, dialect, isolationLevel, options) } } /** * Creates a table with a given schema. */ def createTable( conn: Connection, tableName: String, schema: StructType, caseSensitive: Boolean, options: JdbcOptionsInWrite): Unit = { val strSchema = schemaString( schema, caseSensitive, options.url, options.createTableColumnTypes) val createTableOptions = options.createTableOptions // Create the table if the table does not exist. // To allow certain options to append when create a new table, which can be // table_options or partition_options. // E.g., "CREATE TABLE t (name string) ENGINE=InnoDB DEFAULT CHARSET=utf8" val sql = s"CREATE TABLE $tableName ($strSchema) $createTableOptions" executeStatement(conn, options, sql) } /** * Rename a table from the JDBC database. */ def renameTable( conn: Connection, oldTable: String, newTable: String, options: JDBCOptions): Unit = { val dialect = JdbcDialects.get(options.url) executeStatement(conn, options, dialect.renameTable(oldTable, newTable)) } /** * Update a table from the JDBC database. */ def alterTable( conn: Connection, tableName: String, changes: Seq[TableChange], options: JDBCOptions): Unit = { val dialect = JdbcDialects.get(options.url) if (changes.length == 1) { executeStatement(conn, options, dialect.alterTable(tableName, changes)(0)) } else { val metadata = conn.getMetaData if (!metadata.supportsTransactions) { throw new SQLFeatureNotSupportedException("The target JDBC server does not support " + "transaction and can only support ALTER TABLE with a single action.") } else { conn.setAutoCommit(false) val statement = conn.createStatement try { statement.setQueryTimeout(options.queryTimeout) for (sql <- dialect.alterTable(tableName, changes)) { statement.executeUpdate(sql) } conn.commit() } catch { case e: Exception => if (conn != null) conn.rollback() throw e } finally { statement.close() conn.setAutoCommit(true) } } } } private def executeStatement(conn: Connection, options: JDBCOptions, sql: String): Unit = { val statement = conn.createStatement try { statement.setQueryTimeout(options.queryTimeout) statement.executeUpdate(sql) } finally { statement.close() } } }
rednaxelafx/apache-spark
sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/jdbc/JdbcUtils.scala
Scala
apache-2.0
36,209
/* * ParticleBeliefPropagation.scala * Trait to TBD * * Created By: Brian Ruttenberg ([email protected]) * Creation Date: Oct 20, 2014 * * Copyright 2014 Avrom J. Pfeffer and Charles River Analytics, Inc. * See http://www.cra.com or email [email protected] for information. * * See http://www.github.com/p2t2/figaro for a copy of the software license. */ package com.cra.figaro.experimental.particlebp import com.cra.figaro.language._ import com.cra.figaro.algorithm.factored.FactoredAlgorithm import com.cra.figaro.algorithm.factored.factors.{ Factory, DivideableSemiRing, Factor, LogSumProductSemiring, Variable } import com.cra.figaro.algorithm.lazyfactored.LazyValues import com.cra.figaro.algorithm.OneTime import com.cra.figaro.algorithm.Anytime import com.cra.figaro.algorithm.ProbQueryAlgorithm import com.cra.figaro.algorithm.OneTimeProbQuery import scala.collection.immutable.Set import scala.collection.mutable.Map import com.cra.figaro.algorithm.factored.beliefpropagation.InnerBPHandler import com.cra.figaro.algorithm.factored.beliefpropagation.OneTimeInnerBPHandler import com.cra.figaro.algorithm.factored.beliefpropagation.VariableNode import com.cra.figaro.algorithm.factored.ParticleGenerator import com.cra.figaro.algorithm.factored.DensityEstimator import com.cra.figaro.algorithm.AnytimeProbQuery import com.cra.figaro.algorithm.factored.beliefpropagation.AnytimeInnerBPHandler import com.cra.figaro.algorithm.factored.beliefpropagation.FactorNode import com.cra.figaro.algorithm.factored.beliefpropagation.Node import breeze.linalg.normalize import com.cra.figaro.algorithm.UnsupportedAlgorithmException import com.cra.figaro.algorithm.sampling.ProbEvidenceSampler /** * Trait for performing particle belief propagation. * * Only supports Double factors at the moment (i.e., no support for utilities or sufficient statistics) */ trait ParticleBeliefPropagation extends FactoredAlgorithm[Double] with InnerBPHandler { /** * By default, implementations that inherit this trait have no debug information. * Override this if you want a debugging option. */ val debug: Boolean = false /** * The universe on which this belief propagation algorithm should be applied. */ val universe: Universe /** * Target elements that should not be eliminated but should be available for querying. */ val targetElements: List[Element[_]] /** * Since BP uses division to compute messages, the semiring has to have a division function defined */ override val semiring: DivideableSemiRing[Double] /** * The density estimator that will estimate the density of a particle. used for resampling. */ val densityEstimator: DensityEstimator /** * A particle generator to generate particles and do resampling. */ val pbpSampler: ParticleGenerator /** * Elements towards which queries are directed. By default, these are the target elements. */ def starterElements: List[Element[_]] = targetElements /** * A list of universes that depend on this universe such that evidence on those universes should be taken into * account in this universe. */ val dependentUniverses: List[(Universe, List[NamedEvidence[_]])] /** * The algorithm to compute probability of specified evidence in a dependent universe. * We use () => Double to represent this algorithm instead of an instance of ProbEvidenceAlgorithm. * Typical usage is to return the result of ProbEvidenceAlgorithm.computeProbEvidence when invoked. */ val dependentAlgorithm: (Universe, List[NamedEvidence[_]]) => () => Double /* * Runs the inner loop of PBP. * */ private[figaro] def runInnerLoop(elemsWithPosteriors: Set[Element[_]], dependentElems: Set[Element[_]]) = { currentUniverse = universe // Remove factors on all elements that can possibly change during resampluing dependentElems.foreach(Factory.removeFactors(_)) // Clear the variable and values caches Variable.clearCache LazyValues.clear(universe) // Create BP. createBP(targetElements, dependentUniverses, dependentAlgorithm) // run BP runBP() } /* * The resample function. All sampled elements are resampled. For each element that is resampled, * we record the dependent elements on those elemens since that portion the factor graph will * have to be removed (since resampling can change the structure). */ private[figaro] def resample(): (Set[Element[_]], Set[Element[_]]) = { val needsToBeResampled = pbpSampler.sampledElements.filter(e => bp.factorGraph.contains(VariableNode(Variable(e)))) val dependentElems = needsToBeResampled.flatMap { elem => elem match { case a: Atomic[_] => case _ => throw new UnsupportedAlgorithmException(elem) } // get the beliefs for the element as computed by BP val oldBeliefs = bp.getBeliefsForElement(elem) // get the last messages to the node that will be used to compute the density of new samples val factors = getLastMessagesToNode(elem) val factorBeliefs = factors.map(bp.factorToBeliefs(_)) // estimate the bandwidth of the proposal using the old belieds val bw = proposalEstimator(oldBeliefs) // generate new samples val newSamples = pbpSampler.resample(elem, oldBeliefs, factorBeliefs, bw) // return the set of dependent elements (and the element itself) that factors will need ot be wipted universe.usedBy(elem) + elem } (needsToBeResampled, dependentElems) } /* For purposes of resampling, we want to find the belief of the element WITHOUT * the original factor. That is, we will incorporate that information using the exact * density of the element, we don't need to estimate it from a factor. * * So this function will return all of the last messages to the element node and divide out * the original factor * */ private[figaro] def getLastMessagesToNode(elem: Element[_]): List[Factor[Double]] = { // find the node in the graph corresponding to the element val elemNode = bp.findNodeForElement(elem) val neighbors = bp.factorGraph.getNeighbors(elemNode).toList // get the last messages sent to the node val lastMessages = neighbors.map(n => (n, bp.factorGraph.getLastMessage(n, elemNode))) // find the single variable factor for this node ( val singleFactorIndex = lastMessages.indexWhere(e => e._1.asInstanceOf[FactorNode].variables.size == 1) val singleFactor = if (singleFactorIndex >= 0) lastMessages(singleFactorIndex) else throw new UnsupportedAlgorithmException(elem) // Get the original factor for this element val originalFactor = Factory.makeNonConstraintFactors(elem) if (originalFactor.size > 1) throw new UnsupportedAlgorithmException(elem) // Take the single factor, and divide out the original factor. We do this since the single factor in the graph // can have evidence multiplied in, so we only want to remove the original factor for it. We will use the original // density instead of the factor to estimate densities during resampling val factors = lastMessages.patch(singleFactorIndex, Nil, 1).map(_._2) :+ singleFactor._2.combination(bp.makeLogarithmic(originalFactor(0)), bp.semiring.divide) factors } /* * Runs the outer loop of PBP. */ private[figaro] def runOuterLoop() = { val (needsToBeResampled, dependentElems): (Set[Element[_]], Set[Element[_]]) = if (bp != null) resample() else (Set(), Set()) val elemsWithPosteriors: Set[Element[_]] = if (bp != null) bp.neededElements.toSet -- dependentElems -- needsToBeResampled else Set() runInnerLoop(elemsWithPosteriors, dependentElems) } /* * Estimates the proposal distribution using the variance of the samples */ private def proposalEstimator(beliefs: List[(Double, _)]): Double = { val percentOfStd = .1 beliefs.head._2 match { case i: Int => 1.0 case d: Double => { val bd = beliefs.asInstanceOf[List[(Double, Double)]] val mean = (0.0 /: bd)((c: Double, n: (Double, Double)) => c + n._1 * n._2) val std = math.sqrt((0.0 /: bd)((c: Double, n: (Double, Double)) => c + (n._2 - mean) * (n._2 - mean) * n._1)) std * .1 } } } /** * Runs this particle belief propagation algorithm for one iteration. An iteration here is * one iteration of the outer loop. This means that the inner BP loop may run several iterations. */ def runStep() { runOuterLoop() } } /** * Trait for One time PBP algorithms */ trait OneTimeParticleBeliefPropagation extends ParticleBeliefPropagation with OneTime with OneTimeInnerBPHandler { val outerIterations: Int def run() = { for { i <- 1 to outerIterations } { runStep() } } } /** * Trait for Anytime PBP algorithms */ trait AnytimeParticleBeliefPropagation extends ParticleBeliefPropagation with Anytime with AnytimeInnerBPHandler { override def cleanUp() = if (bp != null) bp.kill } /** * Class to implement a probability query BP algorithm */ abstract class ProbQueryParticleBeliefPropagation(numArgSamples: Int, numTotalSamples: Int, override val universe: Universe, targets: Element[_]*)( val dependentUniverses: List[(Universe, List[NamedEvidence[_]])], val dependentAlgorithm: (Universe, List[NamedEvidence[_]]) => () => Double, depth: Int = Int.MaxValue, upperBounds: Boolean = false) extends ProbQueryAlgorithm with ParticleBeliefPropagation { //with ProbEvidenceBeliefPropagation { val targetElements = targets.toList val queryTargets = targetElements val semiring = LogSumProductSemiring() val densityEstimator = new AutomaticDensityEstimator val pbpSampler = ParticleGenerator(universe, densityEstimator, numArgSamples, numTotalSamples) /** * Getting factors for PBP returns an empty list, since all of the factor creation is handled inside of * the BP instances */ def getFactors(neededElements: List[Element[_]], targetElements: List[Element[_]], upperBounds: Boolean = false): List[Factor[Double]] = List() def computeDistribution[T](target: Element[T]): Stream[(Double, T)] = bp.getBeliefsForElement(target).toStream def computeExpectation[T](target: Element[T], function: T => Double): Double = { computeDistribution(target).map((pair: (Double, T)) => pair._1 * function(pair._2)).sum } } object ParticleBeliefPropagation { /** * Creates a One Time belief propagation computer in the current default universe. */ def apply(myOuterIterations: Int, myInnerIterations: Int, targets: Element[_]*)(implicit universe: Universe) = new ProbQueryParticleBeliefPropagation(ParticleGenerator.defaultArgSamples, ParticleGenerator.defaultTotalSamples, universe, targets: _*)(List(), (u: Universe, e: List[NamedEvidence[_]]) => () => ProbEvidenceSampler.computeProbEvidence(10000, e)(u)) with OneTimeParticleBeliefPropagation with OneTimeProbQuery { val outerIterations = myOuterIterations val innerIterations = myInnerIterations } /** * Creates a One Time belief propagation computer in the current default universe. Use the dependent universe and algorithm to compute prob of evidence in dependent universe */ def apply(dependentUniverses: List[(Universe, List[NamedEvidence[_]])], dependentAlgorithm: (Universe, List[NamedEvidence[_]]) => () => Double, myOuterIterations: Int, myInnerIterations: Int, targets: Element[_]*)(implicit universe: Universe) = new ProbQueryParticleBeliefPropagation(ParticleGenerator.defaultArgSamples, ParticleGenerator.defaultTotalSamples, universe, targets: _*)(dependentUniverses, dependentAlgorithm) with OneTimeParticleBeliefPropagation with OneTimeProbQuery { val outerIterations = myOuterIterations val innerIterations = myInnerIterations } /** * Creates a One Time belief propagation computer in the current default universe that specifies the number of samples to take for each element. */ def apply(myOuterIterations: Int, myInnerIterations: Int, argSamples: Int, totalSamples: Int, targets: Element[_]*)(implicit universe: Universe) = new ProbQueryParticleBeliefPropagation(argSamples, totalSamples, universe, targets: _*)(List(), (u: Universe, e: List[NamedEvidence[_]]) => () => ProbEvidenceSampler.computeProbEvidence(10000, e)(u)) with OneTimeParticleBeliefPropagation with OneTimeProbQuery { val outerIterations = myOuterIterations val innerIterations = myInnerIterations } /** * Creates a One Time belief propagation computer in the current default universe that specifies the number of samples to take for each element. * Use the dependent universe and algorithm to compute prob of evidence in dependent universe */ def apply(dependentUniverses: List[(Universe, List[NamedEvidence[_]])], dependentAlgorithm: (Universe, List[NamedEvidence[_]]) => () => Double, myOuterIterations: Int, myInnerIterations: Int, argSamples: Int, totalSamples: Int, targets: Element[_]*)(implicit universe: Universe) = new ProbQueryParticleBeliefPropagation(argSamples, totalSamples, universe, targets: _*)(dependentUniverses, dependentAlgorithm) with OneTimeParticleBeliefPropagation with OneTimeProbQuery { val outerIterations = myOuterIterations val innerIterations = myInnerIterations } /** * Creates a Anytime belief propagation computer in the current default universe. */ def apply(stepTimeMillis: Long, targets: Element[_]*)(implicit universe: Universe) = new ProbQueryParticleBeliefPropagation(ParticleGenerator.defaultArgSamples, ParticleGenerator.defaultTotalSamples, universe, targets: _*)(List(), (u: Universe, e: List[NamedEvidence[_]]) => () => ProbEvidenceSampler.computeProbEvidence(10000, e)(u)) with AnytimeParticleBeliefPropagation with AnytimeProbQuery { val myStepTimeMillis = stepTimeMillis } /** * Creates a Anytime belief propagation computer in the current default universe. Use the dependent universe and algorithm to compute prob of evidence in dependent universe */ def apply(dependentUniverses: List[(Universe, List[NamedEvidence[_]])], dependentAlgorithm: (Universe, List[NamedEvidence[_]]) => () => Double, stepTimeMillis: Long, targets: Element[_]*)(implicit universe: Universe) = new ProbQueryParticleBeliefPropagation(ParticleGenerator.defaultArgSamples, ParticleGenerator.defaultTotalSamples, universe, targets: _*)(dependentUniverses, dependentAlgorithm) with AnytimeParticleBeliefPropagation with AnytimeProbQuery { val myStepTimeMillis = stepTimeMillis } /** * Creates a Anytime belief propagation computer in the current default universe that specifies the number of samples to take for each element. */ def apply(stepTimeMillis: Long, argSamples: Int, totalSamples: Int, targets: Element[_]*)(implicit universe: Universe) = new ProbQueryParticleBeliefPropagation(argSamples, totalSamples, universe, targets: _*)(List(), (u: Universe, e: List[NamedEvidence[_]]) => () => ProbEvidenceSampler.computeProbEvidence(10000, e)(u)) with AnytimeParticleBeliefPropagation with AnytimeProbQuery { val myStepTimeMillis = stepTimeMillis } /** * Creates a Anytime belief propagation computer in the current default universe that specifies the number of samples to take for each element. * Use the dependent universe and algorithm to compute prob of evidence in dependent universe */ def apply(dependentUniverses: List[(Universe, List[NamedEvidence[_]])], dependentAlgorithm: (Universe, List[NamedEvidence[_]]) => () => Double, stepTimeMillis: Long, argSamples: Int, totalSamples: Int, targets: Element[_]*)(implicit universe: Universe) = new ProbQueryParticleBeliefPropagation(argSamples, totalSamples, universe, targets: _*)(dependentUniverses, dependentAlgorithm) with AnytimeParticleBeliefPropagation with AnytimeProbQuery { val myStepTimeMillis = stepTimeMillis } }
agarbuno/figaro
Figaro/src/main/scala/com/cra/figaro/experimental/particlebp/ParticleBeliefPropagation.scala
Scala
bsd-3-clause
16,059
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.rdd import java.util.Random import scala.collection.Map import scala.collection.JavaConversions.mapAsScalaMap import scala.collection.mutable.ArrayBuffer import scala.reflect.{classTag, ClassTag} import org.apache.hadoop.io.BytesWritable import org.apache.hadoop.io.compress.CompressionCodec import org.apache.hadoop.io.NullWritable import org.apache.hadoop.io.Text import org.apache.hadoop.mapred.TextOutputFormat import it.unimi.dsi.fastutil.objects.{Object2LongOpenHashMap => OLMap} import com.clearspring.analytics.stream.cardinality.HyperLogLog import org.apache.spark.Partitioner._ import org.apache.spark.api.java.JavaRDD import org.apache.spark.partial.BoundedDouble import org.apache.spark.partial.CountEvaluator import org.apache.spark.partial.GroupedCountEvaluator import org.apache.spark.partial.PartialResult import org.apache.spark.storage.StorageLevel import org.apache.spark.util.{Utils, BoundedPriorityQueue, SerializableHyperLogLog} import org.apache.spark.SparkContext._ import org.apache.spark._ /** * A Resilient Distributed Dataset (RDD), the basic abstraction in Spark. Represents an immutable, * partitioned collection of elements that can be operated on in parallel. This class contains the * basic operations available on all RDDs, such as `map`, `filter`, and `persist`. In addition, * [[org.apache.spark.rdd.PairRDDFunctions]] contains operations available only on RDDs of key-value * pairs, such as `groupByKey` and `join`; * [[org.apache.spark.rdd.DoubleRDDFunctions]] contains operations available only on RDDs of * Doubles; and * [[org.apache.spark.rdd.SequenceFileRDDFunctions]] contains operations available on RDDs that * can be saved as SequenceFiles. * These operations are automatically available on any RDD of the right type (e.g. RDD[(Int, Int)] * through implicit conversions when you `import org.apache.spark.SparkContext._`. * * Internally, each RDD is characterized by five main properties: * * - A list of partitions * - A function for computing each split * - A list of dependencies on other RDDs * - Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned) * - Optionally, a list of preferred locations to compute each split on (e.g. block locations for * an HDFS file) * * All of the scheduling and execution in Spark is done based on these methods, allowing each RDD * to implement its own way of computing itself. Indeed, users can implement custom RDDs (e.g. for * reading data from a new storage system) by overriding these functions. Please refer to the * [[http://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf Spark paper]] for more details * on RDD internals. */ abstract class RDD[T: ClassTag]( @transient private var sc: SparkContext, @transient private var deps: Seq[Dependency[_]] ) extends Serializable with Logging { /** Construct an RDD with just a one-to-one dependency on one parent */ def this(@transient oneParent: RDD[_]) = this(oneParent.context , List(new OneToOneDependency(oneParent))) private[spark] def conf = sc.conf // ======================================================================= // Methods that should be implemented by subclasses of RDD // ======================================================================= /** Implemented by subclasses to compute a given partition. */ def compute(split: Partition, context: TaskContext): Iterator[T] /** * Implemented by subclasses to return the set of partitions in this RDD. This method will only * be called once, so it is safe to implement a time-consuming computation in it. */ protected def getPartitions: Array[Partition] /** * Implemented by subclasses to return how this RDD depends on parent RDDs. This method will only * be called once, so it is safe to implement a time-consuming computation in it. */ protected def getDependencies: Seq[Dependency[_]] = deps /** Optionally overridden by subclasses to specify placement preferences. */ protected def getPreferredLocations(split: Partition): Seq[String] = Nil /** Optionally overridden by subclasses to specify how they are partitioned. */ @transient val partitioner: Option[Partitioner] = None // ======================================================================= // Methods and fields available on all RDDs // ======================================================================= /** The SparkContext that created this RDD. */ def sparkContext: SparkContext = sc /** A unique ID for this RDD (within its SparkContext). */ val id: Int = sc.newRddId() /** A friendly name for this RDD */ @transient var name: String = null /** Assign a name to this RDD */ def setName(_name: String) = { name = _name this } /** User-defined generator of this RDD*/ @transient var generator = Utils.getCallSiteInfo.firstUserClass /** Reset generator*/ def setGenerator(_generator: String) = { generator = _generator } /** * Set this RDD's storage level to persist its values across operations after the first time * it is computed. This can only be used to assign a new storage level if the RDD does not * have a storage level set yet.. */ def persist(newLevel: StorageLevel): RDD[T] = { // TODO: Handle changes of StorageLevel if (storageLevel != StorageLevel.NONE && newLevel != storageLevel) { throw new UnsupportedOperationException( "Cannot change storage level of an RDD after it was already assigned a level") } storageLevel = newLevel // Register the RDD with the SparkContext sc.persistentRdds(id) = this this } /** Persist this RDD with the default storage level (`MEMORY_ONLY`). */ def persist(): RDD[T] = persist(StorageLevel.MEMORY_ONLY) /** Persist this RDD with the default storage level (`MEMORY_ONLY`). */ def cache(): RDD[T] = persist() /** * Mark the RDD as non-persistent, and remove all blocks for it from memory and disk. * * @param blocking Whether to block until all blocks are deleted. * @return This RDD. */ def unpersist(blocking: Boolean = true): RDD[T] = { logInfo("Removing RDD " + id + " from persistence list") sc.env.blockManager.master.removeRdd(id, blocking) sc.persistentRdds.remove(id) storageLevel = StorageLevel.NONE this } /** Get the RDD's current storage level, or StorageLevel.NONE if none is set. */ def getStorageLevel = storageLevel // Our dependencies and partitions will be gotten by calling subclass's methods below, and will // be overwritten when we're checkpointed private var dependencies_ : Seq[Dependency[_]] = null @transient private var partitions_ : Array[Partition] = null /** An Option holding our checkpoint RDD, if we are checkpointed */ private def checkpointRDD: Option[RDD[T]] = checkpointData.flatMap(_.checkpointRDD) /** * Get the list of dependencies of this RDD, taking into account whether the * RDD is checkpointed or not. */ final def dependencies: Seq[Dependency[_]] = { checkpointRDD.map(r => List(new OneToOneDependency(r))).getOrElse { if (dependencies_ == null) { dependencies_ = getDependencies } dependencies_ } } /** * Get the array of partitions of this RDD, taking into account whether the * RDD is checkpointed or not. */ final def partitions: Array[Partition] = { checkpointRDD.map(_.partitions).getOrElse { if (partitions_ == null) { partitions_ = getPartitions } partitions_ } } /** * Get the preferred locations of a partition (as hostnames), taking into account whether the * RDD is checkpointed. */ final def preferredLocations(split: Partition): Seq[String] = { checkpointRDD.map(_.getPreferredLocations(split)).getOrElse { getPreferredLocations(split) } } /** * Internal method to this RDD; will read from cache if applicable, or otherwise compute it. * This should ''not'' be called by users directly, but is available for implementors of custom * subclasses of RDD. */ final def iterator(split: Partition, context: TaskContext): Iterator[T] = { if (storageLevel != StorageLevel.NONE) { SparkEnv.get.cacheManager.getOrCompute(this, split, context, storageLevel) } else { computeOrReadCheckpoint(split, context) } } /** * Compute an RDD partition or read it from a checkpoint if the RDD is checkpointing. */ private[spark] def computeOrReadCheckpoint(split: Partition, context: TaskContext): Iterator[T] = { if (isCheckpointed) firstParent[T].iterator(split, context) else compute(split, context) } // Transformations (return a new RDD) /** * Return a new RDD by applying a function to all elements of this RDD. */ def map[U: ClassTag](f: T => U): RDD[U] = new MappedRDD(this, sc.clean(f)) /** * Return a new RDD by first applying a function to all elements of this * RDD, and then flattening the results. */ def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U] = new FlatMappedRDD(this, sc.clean(f)) /** * Return a new RDD containing only the elements that satisfy a predicate. */ def filter(f: T => Boolean): RDD[T] = new FilteredRDD(this, sc.clean(f)) /** * Return a new RDD containing the distinct elements in this RDD. */ def distinct(numPartitions: Int): RDD[T] = map(x => (x, null)).reduceByKey((x, y) => x, numPartitions).map(_._1) /** * Return a new RDD containing the distinct elements in this RDD. */ def distinct(): RDD[T] = distinct(partitions.size) /** * Return a new RDD that has exactly numPartitions partitions. * * Can increase or decrease the level of parallelism in this RDD. Internally, this uses * a shuffle to redistribute data. * * If you are decreasing the number of partitions in this RDD, consider using `coalesce`, * which can avoid performing a shuffle. */ def repartition(numPartitions: Int): RDD[T] = { coalesce(numPartitions, shuffle = true) } /** * Return a new RDD that is reduced into `numPartitions` partitions. * * This results in a narrow dependency, e.g. if you go from 1000 partitions * to 100 partitions, there will not be a shuffle, instead each of the 100 * new partitions will claim 10 of the current partitions. * * However, if you're doing a drastic coalesce, e.g. to numPartitions = 1, * this may result in your computation taking place on fewer nodes than * you like (e.g. one node in the case of numPartitions = 1). To avoid this, * you can pass shuffle = true. This will add a shuffle step, but means the * current upstream partitions will be executed in parallel (per whatever * the current partitioning is). * * Note: With shuffle = true, you can actually coalesce to a larger number * of partitions. This is useful if you have a small number of partitions, * say 100, potentially with a few partitions being abnormally large. Calling * coalesce(1000, shuffle = true) will result in 1000 partitions with the * data distributed using a hash partitioner. */ def coalesce(numPartitions: Int, shuffle: Boolean = false): RDD[T] = { if (shuffle) { // include a shuffle step so that our upstream tasks are still distributed new CoalescedRDD( new ShuffledRDD[T, Null, (T, Null)](map(x => (x, null)), new HashPartitioner(numPartitions)), numPartitions).keys } else { new CoalescedRDD(this, numPartitions) } } /** * Return a sampled subset of this RDD. */ def sample(withReplacement: Boolean, fraction: Double, seed: Int): RDD[T] = { require(fraction >= 0.0, "Invalid fraction value: " + fraction) new SampledRDD(this, withReplacement, fraction, seed) } def takeSample(withReplacement: Boolean, num: Int, seed: Int): Array[T] = { var fraction = 0.0 var total = 0 val multiplier = 3.0 val initialCount = this.count() var maxSelected = 0 if (num < 0) { throw new IllegalArgumentException("Negative number of elements requested") } if (initialCount == 0) { return new Array[T](0) } if (initialCount > Integer.MAX_VALUE - 1) { maxSelected = Integer.MAX_VALUE - 1 } else { maxSelected = initialCount.toInt } if (num > initialCount && !withReplacement) { total = maxSelected fraction = multiplier * (maxSelected + 1) / initialCount } else { fraction = multiplier * (num + 1) / initialCount total = num } val rand = new Random(seed) var samples = this.sample(withReplacement, fraction, rand.nextInt()).collect() // If the first sample didn't turn out large enough, keep trying to take samples; // this shouldn't happen often because we use a big multiplier for the initial size while (samples.length < total) { samples = this.sample(withReplacement, fraction, rand.nextInt()).collect() } Utils.randomizeInPlace(samples, rand).take(total) } /** * Return the union of this RDD and another one. Any identical elements will appear multiple * times (use `.distinct()` to eliminate them). */ def union(other: RDD[T]): RDD[T] = new UnionRDD(sc, Array(this, other)) /** * Return the union of this RDD and another one. Any identical elements will appear multiple * times (use `.distinct()` to eliminate them). */ def ++(other: RDD[T]): RDD[T] = this.union(other) /** * Return an RDD created by coalescing all elements within each partition into an array. */ def glom(): RDD[Array[T]] = new GlommedRDD(this) /** * Return the Cartesian product of this RDD and another one, that is, the RDD of all pairs of * elements (a, b) where a is in `this` and b is in `other`. */ def cartesian[U: ClassTag](other: RDD[U]): RDD[(T, U)] = new CartesianRDD(sc, this, other) /** * Return an RDD of grouped items. */ def groupBy[K: ClassTag](f: T => K): RDD[(K, Seq[T])] = groupBy[K](f, defaultPartitioner(this)) /** * Return an RDD of grouped elements. Each group consists of a key and a sequence of elements * mapping to that key. */ def groupBy[K: ClassTag](f: T => K, numPartitions: Int): RDD[(K, Seq[T])] = groupBy(f, new HashPartitioner(numPartitions)) /** * Return an RDD of grouped items. */ def groupBy[K: ClassTag](f: T => K, p: Partitioner): RDD[(K, Seq[T])] = { val cleanF = sc.clean(f) this.map(t => (cleanF(t), t)).groupByKey(p) } /** * Return an RDD created by piping elements to a forked external process. */ def pipe(command: String): RDD[String] = new PipedRDD(this, command) /** * Return an RDD created by piping elements to a forked external process. */ def pipe(command: String, env: Map[String, String]): RDD[String] = new PipedRDD(this, command, env) /** * Return an RDD created by piping elements to a forked external process. * The print behavior can be customized by providing two functions. * * @param command command to run in forked process. * @param env environment variables to set. * @param printPipeContext Before piping elements, this function is called as an oppotunity * to pipe context data. Print line function (like out.println) will be * passed as printPipeContext's parameter. * @param printRDDElement Use this function to customize how to pipe elements. This function * will be called with each RDD element as the 1st parameter, and the * print line function (like out.println()) as the 2nd parameter. * An example of pipe the RDD data of groupBy() in a streaming way, * instead of constructing a huge String to concat all the elements: * def printRDDElement(record:(String, Seq[String]), f:String=>Unit) = * for (e <- record._2){f(e)} * @return the result RDD */ def pipe( command: Seq[String], env: Map[String, String] = Map(), printPipeContext: (String => Unit) => Unit = null, printRDDElement: (T, String => Unit) => Unit = null): RDD[String] = { new PipedRDD(this, command, env, if (printPipeContext ne null) sc.clean(printPipeContext) else null, if (printRDDElement ne null) sc.clean(printRDDElement) else null) } /** * Return a new RDD by applying a function to each partition of this RDD. */ def mapPartitions[U: ClassTag]( f: Iterator[T] => Iterator[U], preservesPartitioning: Boolean = false): RDD[U] = { val func = (context: TaskContext, index: Int, iter: Iterator[T]) => f(iter) new MapPartitionsRDD(this, sc.clean(func), preservesPartitioning) } /** * Return a new RDD by applying a function to each partition of this RDD, while tracking the index * of the original partition. */ def mapPartitionsWithIndex[U: ClassTag]( f: (Int, Iterator[T]) => Iterator[U], preservesPartitioning: Boolean = false): RDD[U] = { val func = (context: TaskContext, index: Int, iter: Iterator[T]) => f(index, iter) new MapPartitionsRDD(this, sc.clean(func), preservesPartitioning) } /** * Return a new RDD by applying a function to each partition of this RDD. This is a variant of * mapPartitions that also passes the TaskContext into the closure. */ def mapPartitionsWithContext[U: ClassTag]( f: (TaskContext, Iterator[T]) => Iterator[U], preservesPartitioning: Boolean = false): RDD[U] = { val func = (context: TaskContext, index: Int, iter: Iterator[T]) => f(context, iter) new MapPartitionsRDD(this, sc.clean(func), preservesPartitioning) } /** * Return a new RDD by applying a function to each partition of this RDD, while tracking the index * of the original partition. */ @deprecated("use mapPartitionsWithIndex", "0.7.0") def mapPartitionsWithSplit[U: ClassTag]( f: (Int, Iterator[T]) => Iterator[U], preservesPartitioning: Boolean = false): RDD[U] = { mapPartitionsWithIndex(f, preservesPartitioning) } /** * Maps f over this RDD, where f takes an additional parameter of type A. This * additional parameter is produced by constructA, which is called in each * partition with the index of that partition. */ def mapWith[A: ClassTag, U: ClassTag] (constructA: Int => A, preservesPartitioning: Boolean = false) (f: (T, A) => U): RDD[U] = { mapPartitionsWithIndex((index, iter) => { val a = constructA(index) iter.map(t => f(t, a)) }, preservesPartitioning) } /** * FlatMaps f over this RDD, where f takes an additional parameter of type A. This * additional parameter is produced by constructA, which is called in each * partition with the index of that partition. */ def flatMapWith[A: ClassTag, U: ClassTag] (constructA: Int => A, preservesPartitioning: Boolean = false) (f: (T, A) => Seq[U]): RDD[U] = { mapPartitionsWithIndex((index, iter) => { val a = constructA(index) iter.flatMap(t => f(t, a)) }, preservesPartitioning) } /** * Applies f to each element of this RDD, where f takes an additional parameter of type A. * This additional parameter is produced by constructA, which is called in each * partition with the index of that partition. */ def foreachWith[A: ClassTag](constructA: Int => A)(f: (T, A) => Unit) { mapPartitionsWithIndex { (index, iter) => val a = constructA(index) iter.map(t => {f(t, a); t}) }.foreach(_ => {}) } /** * Filters this RDD with p, where p takes an additional parameter of type A. This * additional parameter is produced by constructA, which is called in each * partition with the index of that partition. */ def filterWith[A: ClassTag](constructA: Int => A)(p: (T, A) => Boolean): RDD[T] = { mapPartitionsWithIndex((index, iter) => { val a = constructA(index) iter.filter(t => p(t, a)) }, preservesPartitioning = true) } /** * Zips this RDD with another one, returning key-value pairs with the first element in each RDD, * second element in each RDD, etc. Assumes that the two RDDs have the *same number of * partitions* and the *same number of elements in each partition* (e.g. one was made through * a map on the other). */ def zip[U: ClassTag](other: RDD[U]): RDD[(T, U)] = new ZippedRDD(sc, this, other) /** * Zip this RDD's partitions with one (or more) RDD(s) and return a new RDD by * applying a function to the zipped partitions. Assumes that all the RDDs have the * *same number of partitions*, but does *not* require them to have the same number * of elements in each partition. */ def zipPartitions[B: ClassTag, V: ClassTag] (rdd2: RDD[B], preservesPartitioning: Boolean) (f: (Iterator[T], Iterator[B]) => Iterator[V]): RDD[V] = new ZippedPartitionsRDD2(sc, sc.clean(f), this, rdd2, preservesPartitioning) def zipPartitions[B: ClassTag, V: ClassTag] (rdd2: RDD[B]) (f: (Iterator[T], Iterator[B]) => Iterator[V]): RDD[V] = new ZippedPartitionsRDD2(sc, sc.clean(f), this, rdd2, false) def zipPartitions[B: ClassTag, C: ClassTag, V: ClassTag] (rdd2: RDD[B], rdd3: RDD[C], preservesPartitioning: Boolean) (f: (Iterator[T], Iterator[B], Iterator[C]) => Iterator[V]): RDD[V] = new ZippedPartitionsRDD3(sc, sc.clean(f), this, rdd2, rdd3, preservesPartitioning) def zipPartitions[B: ClassTag, C: ClassTag, V: ClassTag] (rdd2: RDD[B], rdd3: RDD[C]) (f: (Iterator[T], Iterator[B], Iterator[C]) => Iterator[V]): RDD[V] = new ZippedPartitionsRDD3(sc, sc.clean(f), this, rdd2, rdd3, false) def zipPartitions[B: ClassTag, C: ClassTag, D: ClassTag, V: ClassTag] (rdd2: RDD[B], rdd3: RDD[C], rdd4: RDD[D], preservesPartitioning: Boolean) (f: (Iterator[T], Iterator[B], Iterator[C], Iterator[D]) => Iterator[V]): RDD[V] = new ZippedPartitionsRDD4(sc, sc.clean(f), this, rdd2, rdd3, rdd4, preservesPartitioning) def zipPartitions[B: ClassTag, C: ClassTag, D: ClassTag, V: ClassTag] (rdd2: RDD[B], rdd3: RDD[C], rdd4: RDD[D]) (f: (Iterator[T], Iterator[B], Iterator[C], Iterator[D]) => Iterator[V]): RDD[V] = new ZippedPartitionsRDD4(sc, sc.clean(f), this, rdd2, rdd3, rdd4, false) // Actions (launch a job to return a value to the user program) /** * Applies a function f to all elements of this RDD. */ def foreach(f: T => Unit) { sc.runJob(this, (iter: Iterator[T]) => iter.foreach(f)) } /** * Applies a function f to each partition of this RDD. */ def foreachPartition(f: Iterator[T] => Unit) { sc.runJob(this, (iter: Iterator[T]) => f(iter)) } /** * Return an array that contains all of the elements in this RDD. */ def collect(): Array[T] = { val results = sc.runJob(this, (iter: Iterator[T]) => iter.toArray) Array.concat(results: _*) } /** * Return an array that contains all of the elements in this RDD. */ def toArray(): Array[T] = collect() /** * Return an RDD that contains all matching values by applying `f`. */ def collect[U: ClassTag](f: PartialFunction[T, U]): RDD[U] = { filter(f.isDefinedAt).map(f) } /** * Return an RDD with the elements from `this` that are not in `other`. * * Uses `this` partitioner/partition size, because even if `other` is huge, the resulting * RDD will be <= us. */ def subtract(other: RDD[T]): RDD[T] = subtract(other, partitioner.getOrElse(new HashPartitioner(partitions.size))) /** * Return an RDD with the elements from `this` that are not in `other`. */ def subtract(other: RDD[T], numPartitions: Int): RDD[T] = subtract(other, new HashPartitioner(numPartitions)) /** * Return an RDD with the elements from `this` that are not in `other`. */ def subtract(other: RDD[T], p: Partitioner): RDD[T] = { if (partitioner == Some(p)) { // Our partitioner knows how to handle T (which, since we have a partitioner, is // really (K, V)) so make a new Partitioner that will de-tuple our fake tuples val p2 = new Partitioner() { override def numPartitions = p.numPartitions override def getPartition(k: Any) = p.getPartition(k.asInstanceOf[(Any, _)]._1) } // Unfortunately, since we're making a new p2, we'll get ShuffleDependencies // anyway, and when calling .keys, will not have a partitioner set, even though // the SubtractedRDD will, thanks to p2's de-tupled partitioning, already be // partitioned by the right/real keys (e.g. p). this.map(x => (x, null)).subtractByKey(other.map((_, null)), p2).keys } else { this.map(x => (x, null)).subtractByKey(other.map((_, null)), p).keys } } /** * Reduces the elements of this RDD using the specified commutative and * associative binary operator. */ def reduce(f: (T, T) => T): T = { val cleanF = sc.clean(f) val reducePartition: Iterator[T] => Option[T] = iter => { if (iter.hasNext) { Some(iter.reduceLeft(cleanF)) } else { None } } var jobResult: Option[T] = None val mergeResult = (index: Int, taskResult: Option[T]) => { if (taskResult.isDefined) { jobResult = jobResult match { case Some(value) => Some(f(value, taskResult.get)) case None => taskResult } } } sc.runJob(this, reducePartition, mergeResult) // Get the final result out of our Option, or throw an exception if the RDD was empty jobResult.getOrElse(throw new UnsupportedOperationException("empty collection")) } /** * Aggregate the elements of each partition, and then the results for all the partitions, using a * given associative function and a neutral "zero value". The function op(t1, t2) is allowed to * modify t1 and return it as its result value to avoid object allocation; however, it should not * modify t2. */ def fold(zeroValue: T)(op: (T, T) => T): T = { // Clone the zero value since we will also be serializing it as part of tasks var jobResult = Utils.clone(zeroValue, sc.env.closureSerializer.newInstance()) val cleanOp = sc.clean(op) val foldPartition = (iter: Iterator[T]) => iter.fold(zeroValue)(cleanOp) val mergeResult = (index: Int, taskResult: T) => jobResult = op(jobResult, taskResult) sc.runJob(this, foldPartition, mergeResult) jobResult } /** * Aggregate the elements of each partition, and then the results for all the partitions, using * given combine functions and a neutral "zero value". This function can return a different result * type, U, than the type of this RDD, T. Thus, we need one operation for merging a T into an U * and one operation for merging two U's, as in scala.TraversableOnce. Both of these functions are * allowed to modify and return their first argument instead of creating a new U to avoid memory * allocation. */ def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U = { // Clone the zero value since we will also be serializing it as part of tasks var jobResult = Utils.clone(zeroValue, sc.env.closureSerializer.newInstance()) val cleanSeqOp = sc.clean(seqOp) val cleanCombOp = sc.clean(combOp) val aggregatePartition = (it: Iterator[T]) => it.aggregate(zeroValue)(cleanSeqOp, cleanCombOp) val mergeResult = (index: Int, taskResult: U) => jobResult = combOp(jobResult, taskResult) sc.runJob(this, aggregatePartition, mergeResult) jobResult } /** * Return the number of elements in the RDD. */ def count(): Long = { sc.runJob(this, (iter: Iterator[T]) => { // Use a while loop to count the number of elements rather than iter.size because // iter.size uses a for loop, which is slightly slower in current version of Scala. var result = 0L while (iter.hasNext) { result += 1L iter.next() } result }).sum } /** * (Experimental) Approximate version of count() that returns a potentially incomplete result * within a timeout, even if not all tasks have finished. */ def countApprox(timeout: Long, confidence: Double = 0.95): PartialResult[BoundedDouble] = { val countElements: (TaskContext, Iterator[T]) => Long = { (ctx, iter) => var result = 0L while (iter.hasNext) { result += 1L iter.next() } result } val evaluator = new CountEvaluator(partitions.size, confidence) sc.runApproximateJob(this, countElements, evaluator, timeout) } /** * Return the count of each unique value in this RDD as a map of (value, count) pairs. The final * combine step happens locally on the master, equivalent to running a single reduce task. */ def countByValue(): Map[T, Long] = { if (elementClassTag.runtimeClass.isArray) { throw new SparkException("countByValue() does not support arrays") } // TODO: This should perhaps be distributed by default. def countPartition(iter: Iterator[T]): Iterator[OLMap[T]] = { val map = new OLMap[T] while (iter.hasNext) { val v = iter.next() map.put(v, map.getLong(v) + 1L) } Iterator(map) } def mergeMaps(m1: OLMap[T], m2: OLMap[T]): OLMap[T] = { val iter = m2.object2LongEntrySet.fastIterator() while (iter.hasNext) { val entry = iter.next() m1.put(entry.getKey, m1.getLong(entry.getKey) + entry.getLongValue) } m1 } val myResult = mapPartitions(countPartition).reduce(mergeMaps) myResult.asInstanceOf[java.util.Map[T, Long]] // Will be wrapped as a Scala mutable Map } /** * (Experimental) Approximate version of countByValue(). */ def countByValueApprox( timeout: Long, confidence: Double = 0.95 ): PartialResult[Map[T, BoundedDouble]] = { if (elementClassTag.runtimeClass.isArray) { throw new SparkException("countByValueApprox() does not support arrays") } val countPartition: (TaskContext, Iterator[T]) => OLMap[T] = { (ctx, iter) => val map = new OLMap[T] while (iter.hasNext) { val v = iter.next() map.put(v, map.getLong(v) + 1L) } map } val evaluator = new GroupedCountEvaluator[T](partitions.size, confidence) sc.runApproximateJob(this, countPartition, evaluator, timeout) } /** * Return approximate number of distinct elements in the RDD. * * The accuracy of approximation can be controlled through the relative standard deviation * (relativeSD) parameter, which also controls the amount of memory used. Lower values result in * more accurate counts but increase the memory footprint and vise versa. The default value of * relativeSD is 0.05. */ def countApproxDistinct(relativeSD: Double = 0.05): Long = { val zeroCounter = new SerializableHyperLogLog(new HyperLogLog(relativeSD)) aggregate(zeroCounter)(_.add(_), _.merge(_)).value.cardinality() } /** * Take the first num elements of the RDD. It works by first scanning one partition, and use the * results from that partition to estimate the number of additional partitions needed to satisfy * the limit. */ def take(num: Int): Array[T] = { if (num == 0) { return new Array[T](0) } val buf = new ArrayBuffer[T] val totalParts = this.partitions.length var partsScanned = 0 while (buf.size < num && partsScanned < totalParts) { // The number of partitions to try in this iteration. It is ok for this number to be // greater than totalParts because we actually cap it at totalParts in runJob. var numPartsToTry = 1 if (partsScanned > 0) { // If we didn't find any rows after the first iteration, just try all partitions next. // Otherwise, interpolate the number of partitions we need to try, but overestimate it // by 50%. if (buf.size == 0) { numPartsToTry = totalParts - 1 } else { numPartsToTry = (1.5 * num * partsScanned / buf.size).toInt } } numPartsToTry = math.max(0, numPartsToTry) // guard against negative num of partitions val left = num - buf.size val p = partsScanned until math.min(partsScanned + numPartsToTry, totalParts) val res = sc.runJob(this, (it: Iterator[T]) => it.take(left).toArray, p, allowLocal = true) res.foreach(buf ++= _.take(num - buf.size)) partsScanned += numPartsToTry } buf.toArray } /** * Return the first element in this RDD. */ def first(): T = take(1) match { case Array(t) => t case _ => throw new UnsupportedOperationException("empty collection") } /** * Returns the top K elements from this RDD as defined by * the specified implicit Ordering[T]. * @param num the number of top elements to return * @param ord the implicit ordering for T * @return an array of top elements */ def top(num: Int)(implicit ord: Ordering[T]): Array[T] = { mapPartitions { items => val queue = new BoundedPriorityQueue[T](num) queue ++= items Iterator.single(queue) }.reduce { (queue1, queue2) => queue1 ++= queue2 queue1 }.toArray.sorted(ord.reverse) } /** * Returns the first K elements from this RDD as defined by * the specified implicit Ordering[T] and maintains the * ordering. * @param num the number of top elements to return * @param ord the implicit ordering for T * @return an array of top elements */ def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T] = top(num)(ord.reverse) /** * Save this RDD as a text file, using string representations of elements. */ def saveAsTextFile(path: String) { this.map(x => (NullWritable.get(), new Text(x.toString))) .saveAsHadoopFile[TextOutputFormat[NullWritable, Text]](path) } /** * Save this RDD as a compressed text file, using string representations of elements. */ def saveAsTextFile(path: String, codec: Class[_ <: CompressionCodec]) { this.map(x => (NullWritable.get(), new Text(x.toString))) .saveAsHadoopFile[TextOutputFormat[NullWritable, Text]](path, codec) } /** * Save this RDD as a SequenceFile of serialized objects. */ def saveAsObjectFile(path: String) { this.mapPartitions(iter => iter.grouped(10).map(_.toArray)) .map(x => (NullWritable.get(), new BytesWritable(Utils.serialize(x)))) .saveAsSequenceFile(path) } /** * Creates tuples of the elements in this RDD by applying `f`. */ def keyBy[K](f: T => K): RDD[(K, T)] = { map(x => (f(x), x)) } /** A private method for tests, to look at the contents of each partition */ private[spark] def collectPartitions(): Array[Array[T]] = { sc.runJob(this, (iter: Iterator[T]) => iter.toArray) } /** * Mark this RDD for checkpointing. It will be saved to a file inside the checkpoint * directory set with SparkContext.setCheckpointDir() and all references to its parent * RDDs will be removed. This function must be called before any job has been * executed on this RDD. It is strongly recommended that this RDD is persisted in * memory, otherwise saving it on a file will require recomputation. */ def checkpoint() { if (context.checkpointDir.isEmpty) { throw new Exception("Checkpoint directory has not been set in the SparkContext") } else if (checkpointData.isEmpty) { checkpointData = Some(new RDDCheckpointData(this)) checkpointData.get.markForCheckpoint() } } /** * Return whether this RDD has been checkpointed or not */ def isCheckpointed: Boolean = { checkpointData.map(_.isCheckpointed).getOrElse(false) } /** * Gets the name of the file to which this RDD was checkpointed */ def getCheckpointFile: Option[String] = { checkpointData.flatMap(_.getCheckpointFile) } // ======================================================================= // Other internal methods and fields // ======================================================================= private var storageLevel: StorageLevel = StorageLevel.NONE /** Record user function generating this RDD. */ @transient private[spark] val origin = sc.getCallSite() private[spark] def elementClassTag: ClassTag[T] = classTag[T] private[spark] var checkpointData: Option[RDDCheckpointData[T]] = None /** Returns the first parent RDD */ protected[spark] def firstParent[U: ClassTag] = { dependencies.head.rdd.asInstanceOf[RDD[U]] } /** The [[org.apache.spark.SparkContext]] that this RDD was created on. */ def context = sc // Avoid handling doCheckpoint multiple times to prevent excessive recursion @transient private var doCheckpointCalled = false /** * Performs the checkpointing of this RDD by saving this. It is called by the DAGScheduler * after a job using this RDD has completed (therefore the RDD has been materialized and * potentially stored in memory). doCheckpoint() is called recursively on the parent RDDs. */ private[spark] def doCheckpoint() { if (!doCheckpointCalled) { doCheckpointCalled = true if (checkpointData.isDefined) { checkpointData.get.doCheckpoint() } else { dependencies.foreach(_.rdd.doCheckpoint()) } } } /** * Changes the dependencies of this RDD from its original parents to a new RDD (`newRDD`) * created from the checkpoint file, and forget its old dependencies and partitions. */ private[spark] def markCheckpointed(checkpointRDD: RDD[_]) { clearDependencies() partitions_ = null deps = null // Forget the constructor argument for dependencies too } /** * Clears the dependencies of this RDD. This method must ensure that all references * to the original parent RDDs is removed to enable the parent RDDs to be garbage * collected. Subclasses of RDD may override this method for implementing their own cleaning * logic. See [[org.apache.spark.rdd.UnionRDD]] for an example. */ protected def clearDependencies() { dependencies_ = null } /** A description of this RDD and its recursive dependencies for debugging. */ def toDebugString: String = { def debugString(rdd: RDD[_], prefix: String = ""): Seq[String] = { Seq(prefix + rdd + " (" + rdd.partitions.size + " partitions)") ++ rdd.dependencies.flatMap(d => debugString(d.rdd, prefix + " ")) } debugString(this).mkString("\\n") } override def toString: String = "%s%s[%d] at %s".format( Option(name).map(_ + " ").getOrElse(""), getClass.getSimpleName, id, origin) def toJavaRDD() : JavaRDD[T] = { new JavaRDD(this)(elementClassTag) } }
iiisthu/sparkSdn
core/src/main/scala/org/apache/spark/rdd/RDD.scala
Scala
apache-2.0
39,761
// Copyright 2017 EPFL DATA Lab (data.epfl.ch) // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package squid package feature class NestedQuoting extends MyFunSuite { import TestDSL.Predef._ test("Simple Nesting") { assert(code"42.toString * 2" =~= code"42.toString * 2") assert(code"42.toString * 2" =~= code"${ code"42.toString" } * 2") } test("Block Nesting") { assert(code"42.toString * 2" =~= code"${ val n = code"42"; code"$n.toString" } * 2") assert(code"42.toDouble.toString * 2" =~= code"${ val n = code"42.toDouble"; code"$n.toString" } * 2") } test("Double Nesting") { assert(code"42.toDouble.toString * 2" =~= code"${ val str = code"${ val n = code"42"; code"$n.toDouble" }.toString"; str } * 2") assert(code"42.toDouble.toString * 2" =~= code"${ val n = code"42"; val str = code"${ code"$n.toDouble" }.toString"; str } * 2") } }
epfldata/squid
src/test/scala/squid/feature/NestedQuoting.scala
Scala
apache-2.0
1,474
package infra.piece.text import infra.piece.core.{Piece, PieceKind} import play.api.{Mode, Plugin} import play.api.libs.json.{Json, Format} import play.api.templates.Html import scala.concurrent.{Future, ExecutionContext} import akka.actor.{PoisonPill, Props, ActorRef, Actor} import org.pegdown.{Extensions, PegDownProcessor} import play.api.libs.concurrent.Akka import akka.util.Timeout import akka.pattern.ask /** * @author alari ([email protected]) * @since 08.05.14 14:46 */ class TextKind(implicit app: play.api.Application) extends PieceKind("text") with Plugin { private var processor: ActorRef = _ override def onStart() { super.onStart() try { processor = Akka.system.actorOf(Props[MarkdownActor]) } catch { case e: IllegalStateException if app.mode == Mode.Test => play.api.Logger.info("Creating an actor while shutting akka system down", e) } } override def onStop() { super.onStop() if(processor != null) { processor ! PoisonPill processor = null } } implicit val timeout = { import scala.concurrent.duration._ Timeout(1 second) } override type P = TextPiece override def handlePiece(implicit ec: ExecutionContext): PartialFunction[Piece, Future[P]] = { case p: P if p.source.exists(_.trim.length > 0) && p.engine == "markdown" => (processor ? p.source.get).mapTo[String] .map(t => p.copy(processed = Some(t))) } override def html(piece: P): Html = infra.piece.text.html.text(piece) override val format: Format[P] = Json.format[P] } class MarkdownActor extends Actor { val Processor = new PegDownProcessor(Extensions.ALL) override def receive: Receive = { case s: String => sender ! Processor.markdownToHtml(s) } }
alari/play-content
module-code/app/infra/piece/text/TextKind.scala
Scala
mit
1,764
package com.github.akajuvonen.neuralnet_scala import scala.math.exp /** Sigmoid help tools used by NeuralNetwork class. */ object SigmoidTools { /** Sigmoid function 1 / (1 + exp(-x)). * * @param x Input parameter x. * @return Result of the sigmoid function. */ def sigmoid(x: Double): Double = 1.0 / (1 + exp(-x)) /** Sigmoid derivative function. * * @param x Sigmoid function result. * @return Derivative of the sigmoid function. */ def sigmoidDerivative(x: Double): Double = x * (1- x) }
akajuvonen/simple-neuralnet-scala
src/main/scala/SigmoidTools.scala
Scala
gpl-3.0
538
package mesosphere.util.state.mesos import mesosphere.marathon.StoreCommandFailedException import mesosphere.util.BackToTheFuture.Timeout import mesosphere.util.ThreadPoolContext import mesosphere.util.state.{ PersistentEntity, PersistentStore } import org.apache.log4j.Logger import org.apache.mesos.state.{ Variable, State } import scala.concurrent.Future import scala.concurrent.duration.Duration import scala.collection.JavaConverters._ import scala.util.control.NonFatal class MesosStateStore(state: State, timeout: Duration) extends PersistentStore { private[this] val log = Logger.getLogger(getClass) implicit val timeoutDuration = Timeout(timeout) implicit val ec = ThreadPoolContext.context import mesosphere.util.BackToTheFuture.futureToFuture override def load(key: ID): Future[Option[PersistentEntity]] = { futureToFuture(state.fetch(key)) .map(throwOnNull) .map { variable => if (entityExists(variable)) Some(MesosStateEntity(key, variable)) else None } .recover(mapException(s"Can not load entity with key $key")) } override def create(key: ID, content: IndexedSeq[Byte]): Future[PersistentEntity] = { futureToFuture(state.fetch(key)) .map(throwOnNull) .flatMap { variable => if (entityExists(variable)) throw new StoreCommandFailedException(s"Entity with id $key already exists!") else futureToFuture(state.store(variable.mutate(content.toArray))).map(MesosStateEntity(key, _)) } .recover(mapException(s"Can not create entity with key $key")) } override def update(entity: PersistentEntity): Future[PersistentEntity] = entity match { case MesosStateEntity(id, v) => futureToFuture(state.store(v)) .recover(mapException(s"Can not update entity with key ${entity.id}")) .map(throwOnNull) .map(MesosStateEntity(id, _)) case _ => throw new IllegalArgumentException("Can not handle this kind of entity") } override def delete(key: ID): Future[Boolean] = { futureToFuture(state.fetch(key)) .map(throwOnNull) .flatMap { variable => futureToFuture(state.expunge(variable)) .map{ case java.lang.Boolean.TRUE => true case java.lang.Boolean.FALSE => false } } .recover(mapException(s"Can not delete entity with key $key")) } override def allIds(): Future[Seq[ID]] = { futureToFuture(state.names()) .map(_.asScala.toSeq) .recover { case NonFatal(ex) => // TODO: Currently this code path is taken when the zookeeper path does not exist yet. It would be nice // to not log this as a warning. // // Unfortunately, this results in a NullPointerException in `throw e.getCause()` in BackToTheFuture because // the native mesos code returns an ExecutionException without cause. Therefore, we cannot robustly // differentiate between exceptions which are "normal" and exceptions which indicate real errors // and we have to log them all. log.warn(s"Exception while calling $getClass.allIds(). " + s"This problem should occur only with an empty zookeeper state. " + s"In that case, you can ignore this message", ex) Seq.empty[ID] } } private[this] def entityExists(variable: Variable): Boolean = variable.value().nonEmpty private[this] def throwOnNull[T](t: T): T = { Option(t) match { case Some(value) => value case None => throw new StoreCommandFailedException("Null returned from state store!") } } private[this] def mapException[T](message: String): PartialFunction[Throwable, T] = { case NonFatal(ex) => throw new StoreCommandFailedException(message, ex) } } case class MesosStateEntity(id: String, variable: Variable) extends PersistentEntity { override def bytes: IndexedSeq[Byte] = variable.value() override def withNewContent(bytes: IndexedSeq[Byte]): PersistentEntity = { copy(variable = variable.mutate(bytes.toArray)) } }
EasonYi/marathon
src/main/scala/mesosphere/util/state/mesos/MesosStateStore.scala
Scala
apache-2.0
4,050
package by.verkpavel.grafolnet.service import by.verkpavel.grafolnet.model.{ImageRequest, ImageResponse} import spray.json.{DefaultJsonProtocol, JsFalse, JsNumber, JsString, JsTrue, JsValue, JsonFormat} trait ServiceJsonProtocol extends DefaultJsonProtocol { implicit object AnyJsonFormat extends JsonFormat[Any] { def write(x: Any) = x match { case n: Int => JsNumber(n) case s: String => JsString(s) case b: Boolean if b == true => JsTrue case b: Boolean if b == false => JsFalse case _ => JsString("Parse error") } def read(value: JsValue) = value match { case JsNumber(n) => n.intValue() case JsString(s) => s case JsTrue => true case JsFalse => false } } implicit val publicItemFmt = jsonFormat2(ImageResponse) implicit val publicItemSummaryFmt = jsonFormat3(ImageRequest) }
VerkhovtsovPavel/BSUIR_Labs
Diploma/diploma-latex/src/fulllisting/ServiceJsonProtocol.scala
Scala
mit
864
package org.monarchinitiative.dosdp import zio.logging._ import zio.test.Assertion._ import zio.test._ object RegexTest extends DefaultRunnableSpec { def spec = suite("Missing columns and cell values")( testM("RegexSub should replace values correctly") { val definition = RegexSub("regulated_activity", "regulated_activity_munged", "(.+) activity", raw"\1") val eDefinition = ExpandedRegexSub(definition) for { a <- eDefinition.substitute("kinase activity") b <- eDefinition.substitute("foo") c <- eDefinition.substitute("activity kinase") } yield assertTrue(a == "kinase") && assertTrue(b == "foo") && assertTrue(c == "activity kinase") }, testM("RegexSub should replace multiple values correctly") { val definition = RegexSub("regulated_activity", "regulated_activity_munged", "(.+) activity (.+)", raw"\2 and then \1") val eDefinition = ExpandedRegexSub(definition) assertM(eDefinition.substitute("kinase activity promoter"))(equalTo("promoter and then kinase")) } ).provideCustomLayer(Logging.consoleErr()) }
INCATools/dosdp-tools
src/test/scala/org/monarchinitiative/dosdp/RegexTest.scala
Scala
mit
1,103