Search is not available for this dataset
identifier
stringlengths 1
155
| parameters
stringlengths 2
6.09k
| docstring
stringlengths 11
63.4k
| docstring_summary
stringlengths 0
63.4k
| function
stringlengths 29
99.8k
| function_tokens
sequence | start_point
sequence | end_point
sequence | language
stringclasses 1
value | docstring_language
stringlengths 2
7
| docstring_language_predictions
stringlengths 18
23
| is_langid_reliable
stringclasses 2
values |
---|---|---|---|---|---|---|---|---|---|---|---|
WLEDFlowHandler.async_step_zeroconf_confirm | (
self, user_input: ConfigType = None
) | Handle a flow initiated by zeroconf. | Handle a flow initiated by zeroconf. | async def async_step_zeroconf_confirm(
self, user_input: ConfigType = None
) -> Dict[str, Any]:
"""Handle a flow initiated by zeroconf."""
return await self._handle_config_flow(user_input) | [
"async",
"def",
"async_step_zeroconf_confirm",
"(",
"self",
",",
"user_input",
":",
"ConfigType",
"=",
"None",
")",
"->",
"Dict",
"[",
"str",
",",
"Any",
"]",
":",
"return",
"await",
"self",
".",
"_handle_config_flow",
"(",
"user_input",
")"
] | [
54,
4
] | [
58,
57
] | python | en | ['en', 'en', 'en'] | True |
WLEDFlowHandler._handle_config_flow | (
self, user_input: Optional[ConfigType] = None, prepare: bool = False
) | Config flow handler for WLED. | Config flow handler for WLED. | async def _handle_config_flow(
self, user_input: Optional[ConfigType] = None, prepare: bool = False
) -> Dict[str, Any]:
"""Config flow handler for WLED."""
# pylint: disable=no-member # https://github.com/PyCQA/pylint/issues/3167
source = self.context.get("source")
# Request user input, unless we are preparing discovery flow
if user_input is None and not prepare:
if source == SOURCE_ZEROCONF:
return self._show_confirm_dialog()
return self._show_setup_form()
if source == SOURCE_ZEROCONF:
# pylint: disable=no-member # https://github.com/PyCQA/pylint/issues/3167
user_input[CONF_HOST] = self.context.get(CONF_HOST)
user_input[CONF_MAC] = self.context.get(CONF_MAC)
if user_input.get(CONF_MAC) is None or not prepare:
session = async_get_clientsession(self.hass)
wled = WLED(user_input[CONF_HOST], session=session)
try:
device = await wled.update()
except WLEDConnectionError:
if source == SOURCE_ZEROCONF:
return self.async_abort(reason="cannot_connect")
return self._show_setup_form({"base": "cannot_connect"})
user_input[CONF_MAC] = device.info.mac_address
# Check if already configured
await self.async_set_unique_id(user_input[CONF_MAC])
self._abort_if_unique_id_configured(updates={CONF_HOST: user_input[CONF_HOST]})
title = user_input[CONF_HOST]
if source == SOURCE_ZEROCONF:
# pylint: disable=no-member # https://github.com/PyCQA/pylint/issues/3167
title = self.context.get(CONF_NAME)
if prepare:
return await self.async_step_zeroconf_confirm()
return self.async_create_entry(
title=title,
data={CONF_HOST: user_input[CONF_HOST], CONF_MAC: user_input[CONF_MAC]},
) | [
"async",
"def",
"_handle_config_flow",
"(",
"self",
",",
"user_input",
":",
"Optional",
"[",
"ConfigType",
"]",
"=",
"None",
",",
"prepare",
":",
"bool",
"=",
"False",
")",
"->",
"Dict",
"[",
"str",
",",
"Any",
"]",
":",
"# pylint: disable=no-member # https://github.com/PyCQA/pylint/issues/3167",
"source",
"=",
"self",
".",
"context",
".",
"get",
"(",
"\"source\"",
")",
"# Request user input, unless we are preparing discovery flow",
"if",
"user_input",
"is",
"None",
"and",
"not",
"prepare",
":",
"if",
"source",
"==",
"SOURCE_ZEROCONF",
":",
"return",
"self",
".",
"_show_confirm_dialog",
"(",
")",
"return",
"self",
".",
"_show_setup_form",
"(",
")",
"if",
"source",
"==",
"SOURCE_ZEROCONF",
":",
"# pylint: disable=no-member # https://github.com/PyCQA/pylint/issues/3167",
"user_input",
"[",
"CONF_HOST",
"]",
"=",
"self",
".",
"context",
".",
"get",
"(",
"CONF_HOST",
")",
"user_input",
"[",
"CONF_MAC",
"]",
"=",
"self",
".",
"context",
".",
"get",
"(",
"CONF_MAC",
")",
"if",
"user_input",
".",
"get",
"(",
"CONF_MAC",
")",
"is",
"None",
"or",
"not",
"prepare",
":",
"session",
"=",
"async_get_clientsession",
"(",
"self",
".",
"hass",
")",
"wled",
"=",
"WLED",
"(",
"user_input",
"[",
"CONF_HOST",
"]",
",",
"session",
"=",
"session",
")",
"try",
":",
"device",
"=",
"await",
"wled",
".",
"update",
"(",
")",
"except",
"WLEDConnectionError",
":",
"if",
"source",
"==",
"SOURCE_ZEROCONF",
":",
"return",
"self",
".",
"async_abort",
"(",
"reason",
"=",
"\"cannot_connect\"",
")",
"return",
"self",
".",
"_show_setup_form",
"(",
"{",
"\"base\"",
":",
"\"cannot_connect\"",
"}",
")",
"user_input",
"[",
"CONF_MAC",
"]",
"=",
"device",
".",
"info",
".",
"mac_address",
"# Check if already configured",
"await",
"self",
".",
"async_set_unique_id",
"(",
"user_input",
"[",
"CONF_MAC",
"]",
")",
"self",
".",
"_abort_if_unique_id_configured",
"(",
"updates",
"=",
"{",
"CONF_HOST",
":",
"user_input",
"[",
"CONF_HOST",
"]",
"}",
")",
"title",
"=",
"user_input",
"[",
"CONF_HOST",
"]",
"if",
"source",
"==",
"SOURCE_ZEROCONF",
":",
"# pylint: disable=no-member # https://github.com/PyCQA/pylint/issues/3167",
"title",
"=",
"self",
".",
"context",
".",
"get",
"(",
"CONF_NAME",
")",
"if",
"prepare",
":",
"return",
"await",
"self",
".",
"async_step_zeroconf_confirm",
"(",
")",
"return",
"self",
".",
"async_create_entry",
"(",
"title",
"=",
"title",
",",
"data",
"=",
"{",
"CONF_HOST",
":",
"user_input",
"[",
"CONF_HOST",
"]",
",",
"CONF_MAC",
":",
"user_input",
"[",
"CONF_MAC",
"]",
"}",
",",
")"
] | [
60,
4
] | [
104,
9
] | python | da | ['da', 'da', 'en'] | True |
WLEDFlowHandler._show_setup_form | (self, errors: Optional[Dict] = None) | Show the setup form to the user. | Show the setup form to the user. | def _show_setup_form(self, errors: Optional[Dict] = None) -> Dict[str, Any]:
"""Show the setup form to the user."""
return self.async_show_form(
step_id="user",
data_schema=vol.Schema({vol.Required(CONF_HOST): str}),
errors=errors or {},
) | [
"def",
"_show_setup_form",
"(",
"self",
",",
"errors",
":",
"Optional",
"[",
"Dict",
"]",
"=",
"None",
")",
"->",
"Dict",
"[",
"str",
",",
"Any",
"]",
":",
"return",
"self",
".",
"async_show_form",
"(",
"step_id",
"=",
"\"user\"",
",",
"data_schema",
"=",
"vol",
".",
"Schema",
"(",
"{",
"vol",
".",
"Required",
"(",
"CONF_HOST",
")",
":",
"str",
"}",
")",
",",
"errors",
"=",
"errors",
"or",
"{",
"}",
",",
")"
] | [
106,
4
] | [
112,
9
] | python | en | ['en', 'en', 'en'] | True |
WLEDFlowHandler._show_confirm_dialog | (self, errors: Optional[Dict] = None) | Show the confirm dialog to the user. | Show the confirm dialog to the user. | def _show_confirm_dialog(self, errors: Optional[Dict] = None) -> Dict[str, Any]:
"""Show the confirm dialog to the user."""
# pylint: disable=no-member # https://github.com/PyCQA/pylint/issues/3167
name = self.context.get(CONF_NAME)
return self.async_show_form(
step_id="zeroconf_confirm",
description_placeholders={"name": name},
errors=errors or {},
) | [
"def",
"_show_confirm_dialog",
"(",
"self",
",",
"errors",
":",
"Optional",
"[",
"Dict",
"]",
"=",
"None",
")",
"->",
"Dict",
"[",
"str",
",",
"Any",
"]",
":",
"# pylint: disable=no-member # https://github.com/PyCQA/pylint/issues/3167",
"name",
"=",
"self",
".",
"context",
".",
"get",
"(",
"CONF_NAME",
")",
"return",
"self",
".",
"async_show_form",
"(",
"step_id",
"=",
"\"zeroconf_confirm\"",
",",
"description_placeholders",
"=",
"{",
"\"name\"",
":",
"name",
"}",
",",
"errors",
"=",
"errors",
"or",
"{",
"}",
",",
")"
] | [
114,
4
] | [
122,
9
] | python | en | ['en', 'en', 'en'] | True |
AutoModel.from_config | (cls, config) | r"""
Instantiates one of the base model classes of the library from a configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use :meth:`~transformers.AutoModel.from_pretrained` to load the model weights.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
List options
Examples::
>>> from transformers import AutoConfig, AutoModel
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('bert-base-uncased')
>>> model = AutoModel.from_config(config)
| r"""
Instantiates one of the base model classes of the library from a configuration. | def from_config(cls, config):
r"""
Instantiates one of the base model classes of the library from a configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use :meth:`~transformers.AutoModel.from_pretrained` to load the model weights.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
List options
Examples::
>>> from transformers import AutoConfig, AutoModel
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('bert-base-uncased')
>>> model = AutoModel.from_config(config)
"""
if type(config) in MODEL_MAPPING.keys():
return MODEL_MAPPING[type(config)](config)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_MAPPING.keys())
)
) | [
"def",
"from_config",
"(",
"cls",
",",
"config",
")",
":",
"if",
"type",
"(",
"config",
")",
"in",
"MODEL_MAPPING",
".",
"keys",
"(",
")",
":",
"return",
"MODEL_MAPPING",
"[",
"type",
"(",
"config",
")",
"]",
"(",
"config",
")",
"raise",
"ValueError",
"(",
"\"Unrecognized configuration class {} for this kind of AutoModel: {}.\\n\"",
"\"Model type should be one of {}.\"",
".",
"format",
"(",
"config",
".",
"__class__",
",",
"cls",
".",
"__name__",
",",
"\", \"",
".",
"join",
"(",
"c",
".",
"__name__",
"for",
"c",
"in",
"MODEL_MAPPING",
".",
"keys",
"(",
")",
")",
")",
")"
] | [
751,
4
] | [
779,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
AutoModel.from_pretrained | (cls, pretrained_model_name_or_path, *model_args, **kwargs) | r"""
Examples::
>>> from transformers import AutoConfig, AutoModel
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModel.from_pretrained('bert-base-uncased')
>>> # Update configuration during loading
>>> model = AutoModel.from_pretrained('bert-base-uncased', output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
>>> model = AutoModel.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
| r""" | def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r"""
Examples::
>>> from transformers import AutoConfig, AutoModel
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModel.from_pretrained('bert-base-uncased')
>>> # Update configuration during loading
>>> model = AutoModel.from_pretrained('bert-base-uncased', output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
>>> model = AutoModel.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
config = kwargs.pop("config", None)
if not isinstance(config, PretrainedConfig):
config, kwargs = AutoConfig.from_pretrained(
pretrained_model_name_or_path, return_unused_kwargs=True, **kwargs
)
if type(config) in MODEL_MAPPING.keys():
return MODEL_MAPPING[type(config)].from_pretrained(
pretrained_model_name_or_path, *model_args, config=config, **kwargs
)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_MAPPING.keys())
)
) | [
"def",
"from_pretrained",
"(",
"cls",
",",
"pretrained_model_name_or_path",
",",
"*",
"model_args",
",",
"*",
"*",
"kwargs",
")",
":",
"config",
"=",
"kwargs",
".",
"pop",
"(",
"\"config\"",
",",
"None",
")",
"if",
"not",
"isinstance",
"(",
"config",
",",
"PretrainedConfig",
")",
":",
"config",
",",
"kwargs",
"=",
"AutoConfig",
".",
"from_pretrained",
"(",
"pretrained_model_name_or_path",
",",
"return_unused_kwargs",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
"if",
"type",
"(",
"config",
")",
"in",
"MODEL_MAPPING",
".",
"keys",
"(",
")",
":",
"return",
"MODEL_MAPPING",
"[",
"type",
"(",
"config",
")",
"]",
".",
"from_pretrained",
"(",
"pretrained_model_name_or_path",
",",
"*",
"model_args",
",",
"config",
"=",
"config",
",",
"*",
"*",
"kwargs",
")",
"raise",
"ValueError",
"(",
"\"Unrecognized configuration class {} for this kind of AutoModel: {}.\\n\"",
"\"Model type should be one of {}.\"",
".",
"format",
"(",
"config",
".",
"__class__",
",",
"cls",
".",
"__name__",
",",
"\", \"",
".",
"join",
"(",
"c",
".",
"__name__",
"for",
"c",
"in",
"MODEL_MAPPING",
".",
"keys",
"(",
")",
")",
")",
")"
] | [
787,
4
] | [
821,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
AutoModelForPreTraining.from_config | (cls, config) | r"""
Instantiates one of the model classes of the library---with the architecture used for pretraining this
model---from a configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use :meth:`~transformers.AutoModelForPreTraining.from_pretrained` to load the model
weights.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
List options
Examples::
>>> from transformers import AutoConfig, AutoModelForPreTraining
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('bert-base-uncased')
>>> model = AutoModelForPreTraining.from_config(config)
| r"""
Instantiates one of the model classes of the library---with the architecture used for pretraining this
model---from a configuration. | def from_config(cls, config):
r"""
Instantiates one of the model classes of the library---with the architecture used for pretraining this
model---from a configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use :meth:`~transformers.AutoModelForPreTraining.from_pretrained` to load the model
weights.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
List options
Examples::
>>> from transformers import AutoConfig, AutoModelForPreTraining
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('bert-base-uncased')
>>> model = AutoModelForPreTraining.from_config(config)
"""
if type(config) in MODEL_FOR_PRETRAINING_MAPPING.keys():
return MODEL_FOR_PRETRAINING_MAPPING[type(config)](config)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_FOR_PRETRAINING_MAPPING.keys())
)
) | [
"def",
"from_config",
"(",
"cls",
",",
"config",
")",
":",
"if",
"type",
"(",
"config",
")",
"in",
"MODEL_FOR_PRETRAINING_MAPPING",
".",
"keys",
"(",
")",
":",
"return",
"MODEL_FOR_PRETRAINING_MAPPING",
"[",
"type",
"(",
"config",
")",
"]",
"(",
"config",
")",
"raise",
"ValueError",
"(",
"\"Unrecognized configuration class {} for this kind of AutoModel: {}.\\n\"",
"\"Model type should be one of {}.\"",
".",
"format",
"(",
"config",
".",
"__class__",
",",
"cls",
".",
"__name__",
",",
"\", \"",
".",
"join",
"(",
"c",
".",
"__name__",
"for",
"c",
"in",
"MODEL_FOR_PRETRAINING_MAPPING",
".",
"keys",
"(",
")",
")",
")",
")"
] | [
843,
4
] | [
873,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
AutoModelForPreTraining.from_pretrained | (cls, pretrained_model_name_or_path, *model_args, **kwargs) | r"""
Examples::
>>> from transformers import AutoConfig, AutoModelForPreTraining
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForPreTraining.from_pretrained('bert-base-uncased')
>>> # Update configuration during loading
>>> model = AutoModelForPreTraining.from_pretrained('bert-base-uncased', output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
>>> model = AutoModelForPreTraining.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
| r"""
Examples:: | def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r"""
Examples::
>>> from transformers import AutoConfig, AutoModelForPreTraining
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForPreTraining.from_pretrained('bert-base-uncased')
>>> # Update configuration during loading
>>> model = AutoModelForPreTraining.from_pretrained('bert-base-uncased', output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
>>> model = AutoModelForPreTraining.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
config = kwargs.pop("config", None)
if not isinstance(config, PretrainedConfig):
config, kwargs = AutoConfig.from_pretrained(
pretrained_model_name_or_path, return_unused_kwargs=True, **kwargs
)
if type(config) in MODEL_FOR_PRETRAINING_MAPPING.keys():
return MODEL_FOR_PRETRAINING_MAPPING[type(config)].from_pretrained(
pretrained_model_name_or_path, *model_args, config=config, **kwargs
)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_FOR_PRETRAINING_MAPPING.keys())
)
) | [
"def",
"from_pretrained",
"(",
"cls",
",",
"pretrained_model_name_or_path",
",",
"*",
"model_args",
",",
"*",
"*",
"kwargs",
")",
":",
"config",
"=",
"kwargs",
".",
"pop",
"(",
"\"config\"",
",",
"None",
")",
"if",
"not",
"isinstance",
"(",
"config",
",",
"PretrainedConfig",
")",
":",
"config",
",",
"kwargs",
"=",
"AutoConfig",
".",
"from_pretrained",
"(",
"pretrained_model_name_or_path",
",",
"return_unused_kwargs",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
"if",
"type",
"(",
"config",
")",
"in",
"MODEL_FOR_PRETRAINING_MAPPING",
".",
"keys",
"(",
")",
":",
"return",
"MODEL_FOR_PRETRAINING_MAPPING",
"[",
"type",
"(",
"config",
")",
"]",
".",
"from_pretrained",
"(",
"pretrained_model_name_or_path",
",",
"*",
"model_args",
",",
"config",
"=",
"config",
",",
"*",
"*",
"kwargs",
")",
"raise",
"ValueError",
"(",
"\"Unrecognized configuration class {} for this kind of AutoModel: {}.\\n\"",
"\"Model type should be one of {}.\"",
".",
"format",
"(",
"config",
".",
"__class__",
",",
"cls",
".",
"__name__",
",",
"\", \"",
".",
"join",
"(",
"c",
".",
"__name__",
"for",
"c",
"in",
"MODEL_FOR_PRETRAINING_MAPPING",
".",
"keys",
"(",
")",
")",
")",
")"
] | [
882,
4
] | [
915,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
AutoModelWithLMHead.from_config | (cls, config) | r"""
Instantiates one of the model classes of the library---with a language modeling head---from a configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use :meth:`~transformers.AutoModelWithLMHead.from_pretrained` to load the model
weights.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
List options
Examples::
>>> from transformers import AutoConfig, AutoModelWithLMHead
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('bert-base-uncased')
>>> model = AutoModelWithLMHead.from_config(config)
| r"""
Instantiates one of the model classes of the library---with a language modeling head---from a configuration. | def from_config(cls, config):
r"""
Instantiates one of the model classes of the library---with a language modeling head---from a configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use :meth:`~transformers.AutoModelWithLMHead.from_pretrained` to load the model
weights.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
List options
Examples::
>>> from transformers import AutoConfig, AutoModelWithLMHead
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('bert-base-uncased')
>>> model = AutoModelWithLMHead.from_config(config)
"""
warnings.warn(
"The class `AutoModelWithLMHead` is deprecated and will be removed in a future version. Please use "
"`AutoModelForCausalLM` for causal language models, `AutoModelForMaskedLM` for masked language models and "
"`AutoModelForSeq2SeqLM` for encoder-decoder models.",
FutureWarning,
)
if type(config) in MODEL_WITH_LM_HEAD_MAPPING.keys():
return MODEL_WITH_LM_HEAD_MAPPING[type(config)](config)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_WITH_LM_HEAD_MAPPING.keys())
)
) | [
"def",
"from_config",
"(",
"cls",
",",
"config",
")",
":",
"warnings",
".",
"warn",
"(",
"\"The class `AutoModelWithLMHead` is deprecated and will be removed in a future version. Please use \"",
"\"`AutoModelForCausalLM` for causal language models, `AutoModelForMaskedLM` for masked language models and \"",
"\"`AutoModelForSeq2SeqLM` for encoder-decoder models.\"",
",",
"FutureWarning",
",",
")",
"if",
"type",
"(",
"config",
")",
"in",
"MODEL_WITH_LM_HEAD_MAPPING",
".",
"keys",
"(",
")",
":",
"return",
"MODEL_WITH_LM_HEAD_MAPPING",
"[",
"type",
"(",
"config",
")",
"]",
"(",
"config",
")",
"raise",
"ValueError",
"(",
"\"Unrecognized configuration class {} for this kind of AutoModel: {}.\\n\"",
"\"Model type should be one of {}.\"",
".",
"format",
"(",
"config",
".",
"__class__",
",",
"cls",
".",
"__name__",
",",
"\", \"",
".",
"join",
"(",
"c",
".",
"__name__",
"for",
"c",
"in",
"MODEL_WITH_LM_HEAD_MAPPING",
".",
"keys",
"(",
")",
")",
")",
")"
] | [
943,
4
] | [
978,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
AutoModelWithLMHead.from_pretrained | (cls, pretrained_model_name_or_path, *model_args, **kwargs) | r"""
Examples::
>>> from transformers import AutoConfig, AutoModelWithLMHead
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelWithLMHead.from_pretrained('bert-base-uncased')
>>> # Update configuration during loading
>>> model = AutoModelWithLMHead.from_pretrained('bert-base-uncased', output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
>>> model = AutoModelWithLMHead.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
| r"""
Examples:: | def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r"""
Examples::
>>> from transformers import AutoConfig, AutoModelWithLMHead
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelWithLMHead.from_pretrained('bert-base-uncased')
>>> # Update configuration during loading
>>> model = AutoModelWithLMHead.from_pretrained('bert-base-uncased', output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
>>> model = AutoModelWithLMHead.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
warnings.warn(
"The class `AutoModelWithLMHead` is deprecated and will be removed in a future version. Please use "
"`AutoModelForCausalLM` for causal language models, `AutoModelForMaskedLM` for masked language models and "
"`AutoModelForSeq2SeqLM` for encoder-decoder models.",
FutureWarning,
)
config = kwargs.pop("config", None)
if not isinstance(config, PretrainedConfig):
config, kwargs = AutoConfig.from_pretrained(
pretrained_model_name_or_path, return_unused_kwargs=True, **kwargs
)
if type(config) in MODEL_WITH_LM_HEAD_MAPPING.keys():
return MODEL_WITH_LM_HEAD_MAPPING[type(config)].from_pretrained(
pretrained_model_name_or_path, *model_args, config=config, **kwargs
)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_WITH_LM_HEAD_MAPPING.keys())
)
) | [
"def",
"from_pretrained",
"(",
"cls",
",",
"pretrained_model_name_or_path",
",",
"*",
"model_args",
",",
"*",
"*",
"kwargs",
")",
":",
"warnings",
".",
"warn",
"(",
"\"The class `AutoModelWithLMHead` is deprecated and will be removed in a future version. Please use \"",
"\"`AutoModelForCausalLM` for causal language models, `AutoModelForMaskedLM` for masked language models and \"",
"\"`AutoModelForSeq2SeqLM` for encoder-decoder models.\"",
",",
"FutureWarning",
",",
")",
"config",
"=",
"kwargs",
".",
"pop",
"(",
"\"config\"",
",",
"None",
")",
"if",
"not",
"isinstance",
"(",
"config",
",",
"PretrainedConfig",
")",
":",
"config",
",",
"kwargs",
"=",
"AutoConfig",
".",
"from_pretrained",
"(",
"pretrained_model_name_or_path",
",",
"return_unused_kwargs",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
"if",
"type",
"(",
"config",
")",
"in",
"MODEL_WITH_LM_HEAD_MAPPING",
".",
"keys",
"(",
")",
":",
"return",
"MODEL_WITH_LM_HEAD_MAPPING",
"[",
"type",
"(",
"config",
")",
"]",
".",
"from_pretrained",
"(",
"pretrained_model_name_or_path",
",",
"*",
"model_args",
",",
"config",
"=",
"config",
",",
"*",
"*",
"kwargs",
")",
"raise",
"ValueError",
"(",
"\"Unrecognized configuration class {} for this kind of AutoModel: {}.\\n\"",
"\"Model type should be one of {}.\"",
".",
"format",
"(",
"config",
".",
"__class__",
",",
"cls",
".",
"__name__",
",",
"\", \"",
".",
"join",
"(",
"c",
".",
"__name__",
"for",
"c",
"in",
"MODEL_WITH_LM_HEAD_MAPPING",
".",
"keys",
"(",
")",
")",
")",
")"
] | [
987,
4
] | [
1026,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
AutoModelForCausalLM.from_config | (cls, config) | r"""
Instantiates one of the model classes of the library---with a causal language modeling head---from a
configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use :meth:`~transformers.AutoModelForCausalLM.from_pretrained` to load the model
weights.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
List options
Examples::
>>> from transformers import AutoConfig, AutoModelForCausalLM
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('gpt2')
>>> model = AutoModelForCausalLM.from_config(config)
| r"""
Instantiates one of the model classes of the library---with a causal language modeling head---from a
configuration. | def from_config(cls, config):
r"""
Instantiates one of the model classes of the library---with a causal language modeling head---from a
configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use :meth:`~transformers.AutoModelForCausalLM.from_pretrained` to load the model
weights.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
List options
Examples::
>>> from transformers import AutoConfig, AutoModelForCausalLM
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('gpt2')
>>> model = AutoModelForCausalLM.from_config(config)
"""
if type(config) in MODEL_FOR_CAUSAL_LM_MAPPING.keys():
return MODEL_FOR_CAUSAL_LM_MAPPING[type(config)](config)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_FOR_CAUSAL_LM_MAPPING.keys())
)
) | [
"def",
"from_config",
"(",
"cls",
",",
"config",
")",
":",
"if",
"type",
"(",
"config",
")",
"in",
"MODEL_FOR_CAUSAL_LM_MAPPING",
".",
"keys",
"(",
")",
":",
"return",
"MODEL_FOR_CAUSAL_LM_MAPPING",
"[",
"type",
"(",
"config",
")",
"]",
"(",
"config",
")",
"raise",
"ValueError",
"(",
"\"Unrecognized configuration class {} for this kind of AutoModel: {}.\\n\"",
"\"Model type should be one of {}.\"",
".",
"format",
"(",
"config",
".",
"__class__",
",",
"cls",
".",
"__name__",
",",
"\", \"",
".",
"join",
"(",
"c",
".",
"__name__",
"for",
"c",
"in",
"MODEL_FOR_CAUSAL_LM_MAPPING",
".",
"keys",
"(",
")",
")",
")",
")"
] | [
1047,
4
] | [
1077,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
AutoModelForCausalLM.from_pretrained | (cls, pretrained_model_name_or_path, *model_args, **kwargs) | r"""
Examples::
>>> from transformers import AutoConfig, AutoModelForCausalLM
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForCausalLM.from_pretrained('gpt2')
>>> # Update configuration during loading
>>> model = AutoModelForCausalLM.from_pretrained('gpt2', output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/gpt2_tf_model_config.json')
>>> model = AutoModelForCausalLM.from_pretrained('./tf_model/gpt2_tf_checkpoint.ckpt.index', from_tf=True, config=config)
| r"""
Examples:: | def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r"""
Examples::
>>> from transformers import AutoConfig, AutoModelForCausalLM
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForCausalLM.from_pretrained('gpt2')
>>> # Update configuration during loading
>>> model = AutoModelForCausalLM.from_pretrained('gpt2', output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/gpt2_tf_model_config.json')
>>> model = AutoModelForCausalLM.from_pretrained('./tf_model/gpt2_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
config = kwargs.pop("config", None)
if not isinstance(config, PretrainedConfig):
config, kwargs = AutoConfig.from_pretrained(
pretrained_model_name_or_path, return_unused_kwargs=True, **kwargs
)
if type(config) in MODEL_FOR_CAUSAL_LM_MAPPING.keys():
return MODEL_FOR_CAUSAL_LM_MAPPING[type(config)].from_pretrained(
pretrained_model_name_or_path, *model_args, config=config, **kwargs
)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_FOR_CAUSAL_LM_MAPPING.keys())
)
) | [
"def",
"from_pretrained",
"(",
"cls",
",",
"pretrained_model_name_or_path",
",",
"*",
"model_args",
",",
"*",
"*",
"kwargs",
")",
":",
"config",
"=",
"kwargs",
".",
"pop",
"(",
"\"config\"",
",",
"None",
")",
"if",
"not",
"isinstance",
"(",
"config",
",",
"PretrainedConfig",
")",
":",
"config",
",",
"kwargs",
"=",
"AutoConfig",
".",
"from_pretrained",
"(",
"pretrained_model_name_or_path",
",",
"return_unused_kwargs",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
"if",
"type",
"(",
"config",
")",
"in",
"MODEL_FOR_CAUSAL_LM_MAPPING",
".",
"keys",
"(",
")",
":",
"return",
"MODEL_FOR_CAUSAL_LM_MAPPING",
"[",
"type",
"(",
"config",
")",
"]",
".",
"from_pretrained",
"(",
"pretrained_model_name_or_path",
",",
"*",
"model_args",
",",
"config",
"=",
"config",
",",
"*",
"*",
"kwargs",
")",
"raise",
"ValueError",
"(",
"\"Unrecognized configuration class {} for this kind of AutoModel: {}.\\n\"",
"\"Model type should be one of {}.\"",
".",
"format",
"(",
"config",
".",
"__class__",
",",
"cls",
".",
"__name__",
",",
"\", \"",
".",
"join",
"(",
"c",
".",
"__name__",
"for",
"c",
"in",
"MODEL_FOR_CAUSAL_LM_MAPPING",
".",
"keys",
"(",
")",
")",
")",
")"
] | [
1086,
4
] | [
1119,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
AutoModelForMaskedLM.from_config | (cls, config) | r"""
Instantiates one of the model classes of the library---with a masked language modeling head---from a
configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use :meth:`~transformers.AutoModelForMaskedLM.from_pretrained` to load the model
weights.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
List options
Examples::
>>> from transformers import AutoConfig, AutoModelForMaskedLM
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('bert-base-uncased')
>>> model = AutoModelForMaskedLM.from_config(config)
| r"""
Instantiates one of the model classes of the library---with a masked language modeling head---from a
configuration. | def from_config(cls, config):
r"""
Instantiates one of the model classes of the library---with a masked language modeling head---from a
configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use :meth:`~transformers.AutoModelForMaskedLM.from_pretrained` to load the model
weights.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
List options
Examples::
>>> from transformers import AutoConfig, AutoModelForMaskedLM
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('bert-base-uncased')
>>> model = AutoModelForMaskedLM.from_config(config)
"""
if type(config) in MODEL_FOR_MASKED_LM_MAPPING.keys():
return MODEL_FOR_MASKED_LM_MAPPING[type(config)](config)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_FOR_MASKED_LM_MAPPING.keys())
)
) | [
"def",
"from_config",
"(",
"cls",
",",
"config",
")",
":",
"if",
"type",
"(",
"config",
")",
"in",
"MODEL_FOR_MASKED_LM_MAPPING",
".",
"keys",
"(",
")",
":",
"return",
"MODEL_FOR_MASKED_LM_MAPPING",
"[",
"type",
"(",
"config",
")",
"]",
"(",
"config",
")",
"raise",
"ValueError",
"(",
"\"Unrecognized configuration class {} for this kind of AutoModel: {}.\\n\"",
"\"Model type should be one of {}.\"",
".",
"format",
"(",
"config",
".",
"__class__",
",",
"cls",
".",
"__name__",
",",
"\", \"",
".",
"join",
"(",
"c",
".",
"__name__",
"for",
"c",
"in",
"MODEL_FOR_MASKED_LM_MAPPING",
".",
"keys",
"(",
")",
")",
")",
")"
] | [
1140,
4
] | [
1170,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
AutoModelForMaskedLM.from_pretrained | (cls, pretrained_model_name_or_path, *model_args, **kwargs) | r"""
Examples::
>>> from transformers import AutoConfig, AutoModelForMaskedLM
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForMaskedLM.from_pretrained('bert-base-uncased')
>>> # Update configuration during loading
>>> model = AutoModelForMaskedLM.from_pretrained('bert-base-uncased', output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
>>> model = AutoModelForMaskedLM.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
| r"""
Examples:: | def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r"""
Examples::
>>> from transformers import AutoConfig, AutoModelForMaskedLM
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForMaskedLM.from_pretrained('bert-base-uncased')
>>> # Update configuration during loading
>>> model = AutoModelForMaskedLM.from_pretrained('bert-base-uncased', output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
>>> model = AutoModelForMaskedLM.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
config = kwargs.pop("config", None)
if not isinstance(config, PretrainedConfig):
config, kwargs = AutoConfig.from_pretrained(
pretrained_model_name_or_path, return_unused_kwargs=True, **kwargs
)
if type(config) in MODEL_FOR_MASKED_LM_MAPPING.keys():
return MODEL_FOR_MASKED_LM_MAPPING[type(config)].from_pretrained(
pretrained_model_name_or_path, *model_args, config=config, **kwargs
)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_FOR_MASKED_LM_MAPPING.keys())
)
) | [
"def",
"from_pretrained",
"(",
"cls",
",",
"pretrained_model_name_or_path",
",",
"*",
"model_args",
",",
"*",
"*",
"kwargs",
")",
":",
"config",
"=",
"kwargs",
".",
"pop",
"(",
"\"config\"",
",",
"None",
")",
"if",
"not",
"isinstance",
"(",
"config",
",",
"PretrainedConfig",
")",
":",
"config",
",",
"kwargs",
"=",
"AutoConfig",
".",
"from_pretrained",
"(",
"pretrained_model_name_or_path",
",",
"return_unused_kwargs",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
"if",
"type",
"(",
"config",
")",
"in",
"MODEL_FOR_MASKED_LM_MAPPING",
".",
"keys",
"(",
")",
":",
"return",
"MODEL_FOR_MASKED_LM_MAPPING",
"[",
"type",
"(",
"config",
")",
"]",
".",
"from_pretrained",
"(",
"pretrained_model_name_or_path",
",",
"*",
"model_args",
",",
"config",
"=",
"config",
",",
"*",
"*",
"kwargs",
")",
"raise",
"ValueError",
"(",
"\"Unrecognized configuration class {} for this kind of AutoModel: {}.\\n\"",
"\"Model type should be one of {}.\"",
".",
"format",
"(",
"config",
".",
"__class__",
",",
"cls",
".",
"__name__",
",",
"\", \"",
".",
"join",
"(",
"c",
".",
"__name__",
"for",
"c",
"in",
"MODEL_FOR_MASKED_LM_MAPPING",
".",
"keys",
"(",
")",
")",
")",
")"
] | [
1179,
4
] | [
1212,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
AutoModelForSeq2SeqLM.from_config | (cls, config) | r"""
Instantiates one of the model classes of the library---with a sequence-to-sequence language modeling
head---from a configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use :meth:`~transformers.AutoModelForSeq2SeqLM.from_pretrained` to load the model
weights.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
List options
Examples::
>>> from transformers import AutoConfig, AutoModelForSeq2SeqLM
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('t5')
>>> model = AutoModelForSeq2SeqLM.from_config(config)
| r"""
Instantiates one of the model classes of the library---with a sequence-to-sequence language modeling
head---from a configuration. | def from_config(cls, config):
r"""
Instantiates one of the model classes of the library---with a sequence-to-sequence language modeling
head---from a configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use :meth:`~transformers.AutoModelForSeq2SeqLM.from_pretrained` to load the model
weights.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
List options
Examples::
>>> from transformers import AutoConfig, AutoModelForSeq2SeqLM
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('t5')
>>> model = AutoModelForSeq2SeqLM.from_config(config)
"""
if type(config) in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.keys():
return MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING[type(config)](config)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__,
cls.__name__,
", ".join(c.__name__ for c in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.keys()),
)
) | [
"def",
"from_config",
"(",
"cls",
",",
"config",
")",
":",
"if",
"type",
"(",
"config",
")",
"in",
"MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
".",
"keys",
"(",
")",
":",
"return",
"MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
"[",
"type",
"(",
"config",
")",
"]",
"(",
"config",
")",
"raise",
"ValueError",
"(",
"\"Unrecognized configuration class {} for this kind of AutoModel: {}.\\n\"",
"\"Model type should be one of {}.\"",
".",
"format",
"(",
"config",
".",
"__class__",
",",
"cls",
".",
"__name__",
",",
"\", \"",
".",
"join",
"(",
"c",
".",
"__name__",
"for",
"c",
"in",
"MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
".",
"keys",
"(",
")",
")",
",",
")",
")"
] | [
1234,
4
] | [
1266,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
AutoModelForSeq2SeqLM.from_pretrained | (cls, pretrained_model_name_or_path, *model_args, **kwargs) | r"""
Examples::
>>> from transformers import AutoConfig, AutoModelForSeq2SeqLM
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForSeq2SeqLM.from_pretrained('t5-base')
>>> # Update configuration during loading
>>> model = AutoModelForSeq2SeqLM.from_pretrained('t5-base', output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/t5_tf_model_config.json')
>>> model = AutoModelForSeq2SeqLM.from_pretrained('./tf_model/t5_tf_checkpoint.ckpt.index', from_tf=True, config=config)
| r"""
Examples:: | def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r"""
Examples::
>>> from transformers import AutoConfig, AutoModelForSeq2SeqLM
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForSeq2SeqLM.from_pretrained('t5-base')
>>> # Update configuration during loading
>>> model = AutoModelForSeq2SeqLM.from_pretrained('t5-base', output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/t5_tf_model_config.json')
>>> model = AutoModelForSeq2SeqLM.from_pretrained('./tf_model/t5_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
config = kwargs.pop("config", None)
if not isinstance(config, PretrainedConfig):
config, kwargs = AutoConfig.from_pretrained(
pretrained_model_name_or_path, return_unused_kwargs=True, **kwargs
)
if type(config) in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.keys():
return MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING[type(config)].from_pretrained(
pretrained_model_name_or_path, *model_args, config=config, **kwargs
)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__,
cls.__name__,
", ".join(c.__name__ for c in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.keys()),
)
) | [
"def",
"from_pretrained",
"(",
"cls",
",",
"pretrained_model_name_or_path",
",",
"*",
"model_args",
",",
"*",
"*",
"kwargs",
")",
":",
"config",
"=",
"kwargs",
".",
"pop",
"(",
"\"config\"",
",",
"None",
")",
"if",
"not",
"isinstance",
"(",
"config",
",",
"PretrainedConfig",
")",
":",
"config",
",",
"kwargs",
"=",
"AutoConfig",
".",
"from_pretrained",
"(",
"pretrained_model_name_or_path",
",",
"return_unused_kwargs",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
"if",
"type",
"(",
"config",
")",
"in",
"MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
".",
"keys",
"(",
")",
":",
"return",
"MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
"[",
"type",
"(",
"config",
")",
"]",
".",
"from_pretrained",
"(",
"pretrained_model_name_or_path",
",",
"*",
"model_args",
",",
"config",
"=",
"config",
",",
"*",
"*",
"kwargs",
")",
"raise",
"ValueError",
"(",
"\"Unrecognized configuration class {} for this kind of AutoModel: {}.\\n\"",
"\"Model type should be one of {}.\"",
".",
"format",
"(",
"config",
".",
"__class__",
",",
"cls",
".",
"__name__",
",",
"\", \"",
".",
"join",
"(",
"c",
".",
"__name__",
"for",
"c",
"in",
"MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
".",
"keys",
"(",
")",
")",
",",
")",
")"
] | [
1275,
4
] | [
1310,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
AutoModelForSequenceClassification.from_config | (cls, config) | r"""
Instantiates one of the model classes of the library---with a sequence classification head---from a
configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use :meth:`~transformers.AutoModelForSequenceClassification.from_pretrained` to load
the model weights.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
List options
Examples::
>>> from transformers import AutoConfig, AutoModelForSequenceClassification
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('bert-base-uncased')
>>> model = AutoModelForSequenceClassification.from_config(config)
| r"""
Instantiates one of the model classes of the library---with a sequence classification head---from a
configuration. | def from_config(cls, config):
r"""
Instantiates one of the model classes of the library---with a sequence classification head---from a
configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use :meth:`~transformers.AutoModelForSequenceClassification.from_pretrained` to load
the model weights.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
List options
Examples::
>>> from transformers import AutoConfig, AutoModelForSequenceClassification
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('bert-base-uncased')
>>> model = AutoModelForSequenceClassification.from_config(config)
"""
if type(config) in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.keys():
return MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING[type(config)](config)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__,
cls.__name__,
", ".join(c.__name__ for c in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.keys()),
)
) | [
"def",
"from_config",
"(",
"cls",
",",
"config",
")",
":",
"if",
"type",
"(",
"config",
")",
"in",
"MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",
".",
"keys",
"(",
")",
":",
"return",
"MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",
"[",
"type",
"(",
"config",
")",
"]",
"(",
"config",
")",
"raise",
"ValueError",
"(",
"\"Unrecognized configuration class {} for this kind of AutoModel: {}.\\n\"",
"\"Model type should be one of {}.\"",
".",
"format",
"(",
"config",
".",
"__class__",
",",
"cls",
".",
"__name__",
",",
"\", \"",
".",
"join",
"(",
"c",
".",
"__name__",
"for",
"c",
"in",
"MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",
".",
"keys",
"(",
")",
")",
",",
")",
")"
] | [
1332,
4
] | [
1364,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
AutoModelForSequenceClassification.from_pretrained | (cls, pretrained_model_name_or_path, *model_args, **kwargs) | r"""
Examples::
>>> from transformers import AutoConfig, AutoModelForSequenceClassification
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased')
>>> # Update configuration during loading
>>> model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased', output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
>>> model = AutoModelForSequenceClassification.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
| r"""
Examples:: | def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r"""
Examples::
>>> from transformers import AutoConfig, AutoModelForSequenceClassification
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased')
>>> # Update configuration during loading
>>> model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased', output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
>>> model = AutoModelForSequenceClassification.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
config = kwargs.pop("config", None)
if not isinstance(config, PretrainedConfig):
config, kwargs = AutoConfig.from_pretrained(
pretrained_model_name_or_path, return_unused_kwargs=True, **kwargs
)
if type(config) in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.keys():
return MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING[type(config)].from_pretrained(
pretrained_model_name_or_path, *model_args, config=config, **kwargs
)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__,
cls.__name__,
", ".join(c.__name__ for c in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.keys()),
)
) | [
"def",
"from_pretrained",
"(",
"cls",
",",
"pretrained_model_name_or_path",
",",
"*",
"model_args",
",",
"*",
"*",
"kwargs",
")",
":",
"config",
"=",
"kwargs",
".",
"pop",
"(",
"\"config\"",
",",
"None",
")",
"if",
"not",
"isinstance",
"(",
"config",
",",
"PretrainedConfig",
")",
":",
"config",
",",
"kwargs",
"=",
"AutoConfig",
".",
"from_pretrained",
"(",
"pretrained_model_name_or_path",
",",
"return_unused_kwargs",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
"if",
"type",
"(",
"config",
")",
"in",
"MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",
".",
"keys",
"(",
")",
":",
"return",
"MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",
"[",
"type",
"(",
"config",
")",
"]",
".",
"from_pretrained",
"(",
"pretrained_model_name_or_path",
",",
"*",
"model_args",
",",
"config",
"=",
"config",
",",
"*",
"*",
"kwargs",
")",
"raise",
"ValueError",
"(",
"\"Unrecognized configuration class {} for this kind of AutoModel: {}.\\n\"",
"\"Model type should be one of {}.\"",
".",
"format",
"(",
"config",
".",
"__class__",
",",
"cls",
".",
"__name__",
",",
"\", \"",
".",
"join",
"(",
"c",
".",
"__name__",
"for",
"c",
"in",
"MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",
".",
"keys",
"(",
")",
")",
",",
")",
")"
] | [
1373,
4
] | [
1408,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
AutoModelForQuestionAnswering.from_config | (cls, config) | r"""
Instantiates one of the model classes of the library---with a question answering head---from a configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use :meth:`~transformers.AutoModelForQuestionAnswering.from_pretrained` to load the
model weights.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
List options
Examples::
>>> from transformers import AutoConfig, AutoModelForQuestionAnswering
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('bert-base-uncased')
>>> model = AutoModelForQuestionAnswering.from_config(config)
| r"""
Instantiates one of the model classes of the library---with a question answering head---from a configuration. | def from_config(cls, config):
r"""
Instantiates one of the model classes of the library---with a question answering head---from a configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use :meth:`~transformers.AutoModelForQuestionAnswering.from_pretrained` to load the
model weights.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
List options
Examples::
>>> from transformers import AutoConfig, AutoModelForQuestionAnswering
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('bert-base-uncased')
>>> model = AutoModelForQuestionAnswering.from_config(config)
"""
if type(config) in MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys():
return MODEL_FOR_QUESTION_ANSWERING_MAPPING[type(config)](config)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__,
cls.__name__,
", ".join(c.__name__ for c in MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()),
)
) | [
"def",
"from_config",
"(",
"cls",
",",
"config",
")",
":",
"if",
"type",
"(",
"config",
")",
"in",
"MODEL_FOR_QUESTION_ANSWERING_MAPPING",
".",
"keys",
"(",
")",
":",
"return",
"MODEL_FOR_QUESTION_ANSWERING_MAPPING",
"[",
"type",
"(",
"config",
")",
"]",
"(",
"config",
")",
"raise",
"ValueError",
"(",
"\"Unrecognized configuration class {} for this kind of AutoModel: {}.\\n\"",
"\"Model type should be one of {}.\"",
".",
"format",
"(",
"config",
".",
"__class__",
",",
"cls",
".",
"__name__",
",",
"\", \"",
".",
"join",
"(",
"c",
".",
"__name__",
"for",
"c",
"in",
"MODEL_FOR_QUESTION_ANSWERING_MAPPING",
".",
"keys",
"(",
")",
")",
",",
")",
")"
] | [
1429,
4
] | [
1461,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
AutoModelForQuestionAnswering.from_pretrained | (cls, pretrained_model_name_or_path, *model_args, **kwargs) | r"""
Examples::
>>> from transformers import AutoConfig, AutoModelForQuestionAnswering
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForQuestionAnswering.from_pretrained('bert-base-uncased')
>>> # Update configuration during loading
>>> model = AutoModelForQuestionAnswering.from_pretrained('bert-base-uncased', output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
>>> model = AutoModelForQuestionAnswering.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
| r"""
Examples:: | def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r"""
Examples::
>>> from transformers import AutoConfig, AutoModelForQuestionAnswering
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForQuestionAnswering.from_pretrained('bert-base-uncased')
>>> # Update configuration during loading
>>> model = AutoModelForQuestionAnswering.from_pretrained('bert-base-uncased', output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
>>> model = AutoModelForQuestionAnswering.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
config = kwargs.pop("config", None)
if not isinstance(config, PretrainedConfig):
config, kwargs = AutoConfig.from_pretrained(
pretrained_model_name_or_path, return_unused_kwargs=True, **kwargs
)
if type(config) in MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys():
return MODEL_FOR_QUESTION_ANSWERING_MAPPING[type(config)].from_pretrained(
pretrained_model_name_or_path, *model_args, config=config, **kwargs
)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__,
cls.__name__,
", ".join(c.__name__ for c in MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()),
)
) | [
"def",
"from_pretrained",
"(",
"cls",
",",
"pretrained_model_name_or_path",
",",
"*",
"model_args",
",",
"*",
"*",
"kwargs",
")",
":",
"config",
"=",
"kwargs",
".",
"pop",
"(",
"\"config\"",
",",
"None",
")",
"if",
"not",
"isinstance",
"(",
"config",
",",
"PretrainedConfig",
")",
":",
"config",
",",
"kwargs",
"=",
"AutoConfig",
".",
"from_pretrained",
"(",
"pretrained_model_name_or_path",
",",
"return_unused_kwargs",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
"if",
"type",
"(",
"config",
")",
"in",
"MODEL_FOR_QUESTION_ANSWERING_MAPPING",
".",
"keys",
"(",
")",
":",
"return",
"MODEL_FOR_QUESTION_ANSWERING_MAPPING",
"[",
"type",
"(",
"config",
")",
"]",
".",
"from_pretrained",
"(",
"pretrained_model_name_or_path",
",",
"*",
"model_args",
",",
"config",
"=",
"config",
",",
"*",
"*",
"kwargs",
")",
"raise",
"ValueError",
"(",
"\"Unrecognized configuration class {} for this kind of AutoModel: {}.\\n\"",
"\"Model type should be one of {}.\"",
".",
"format",
"(",
"config",
".",
"__class__",
",",
"cls",
".",
"__name__",
",",
"\", \"",
".",
"join",
"(",
"c",
".",
"__name__",
"for",
"c",
"in",
"MODEL_FOR_QUESTION_ANSWERING_MAPPING",
".",
"keys",
"(",
")",
")",
",",
")",
")"
] | [
1470,
4
] | [
1506,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
AutoModelForTableQuestionAnswering.from_config | (cls, config) | r"""
Instantiates one of the model classes of the library---with a table question answering head---from a
configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use :meth:`~transformers.AutoModelForTableQuestionAnswering.from_pretrained` to load
the model weights.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
List options
Examples::
>>> from transformers import AutoConfig, AutoModelForTableQuestionAnswering
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('google/tapas-base-finetuned-wtq')
>>> model = AutoModelForTableQuestionAnswering.from_config(config)
| r"""
Instantiates one of the model classes of the library---with a table question answering head---from a
configuration. | def from_config(cls, config):
r"""
Instantiates one of the model classes of the library---with a table question answering head---from a
configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use :meth:`~transformers.AutoModelForTableQuestionAnswering.from_pretrained` to load
the model weights.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
List options
Examples::
>>> from transformers import AutoConfig, AutoModelForTableQuestionAnswering
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('google/tapas-base-finetuned-wtq')
>>> model = AutoModelForTableQuestionAnswering.from_config(config)
"""
if type(config) in MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING.keys():
return MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING[type(config)](config)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__,
cls.__name__,
", ".join(c.__name__ for c in MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING.keys()),
)
) | [
"def",
"from_config",
"(",
"cls",
",",
"config",
")",
":",
"if",
"type",
"(",
"config",
")",
"in",
"MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING",
".",
"keys",
"(",
")",
":",
"return",
"MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING",
"[",
"type",
"(",
"config",
")",
"]",
"(",
"config",
")",
"raise",
"ValueError",
"(",
"\"Unrecognized configuration class {} for this kind of AutoModel: {}.\\n\"",
"\"Model type should be one of {}.\"",
".",
"format",
"(",
"config",
".",
"__class__",
",",
"cls",
".",
"__name__",
",",
"\", \"",
".",
"join",
"(",
"c",
".",
"__name__",
"for",
"c",
"in",
"MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING",
".",
"keys",
"(",
")",
")",
",",
")",
")"
] | [
1528,
4
] | [
1561,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
AutoModelForTableQuestionAnswering.from_pretrained | (cls, pretrained_model_name_or_path, *model_args, **kwargs) | r"""
Examples::
>>> from transformers import AutoConfig, AutoModelForTableQuestionAnswering
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForTableQuestionAnswering.from_pretrained('google/tapas-base-finetuned-wtq')
>>> # Update configuration during loading
>>> model = AutoModelForTableQuestionAnswering.from_pretrained('google/tapas-base-finetuned-wtq', output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/tapas_tf_checkpoint.json')
>>> model = AutoModelForQuestionAnswering.from_pretrained('./tf_model/tapas_tf_checkpoint.ckpt.index', from_tf=True, config=config)
| r"""
Examples:: | def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r"""
Examples::
>>> from transformers import AutoConfig, AutoModelForTableQuestionAnswering
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForTableQuestionAnswering.from_pretrained('google/tapas-base-finetuned-wtq')
>>> # Update configuration during loading
>>> model = AutoModelForTableQuestionAnswering.from_pretrained('google/tapas-base-finetuned-wtq', output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/tapas_tf_checkpoint.json')
>>> model = AutoModelForQuestionAnswering.from_pretrained('./tf_model/tapas_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
config = kwargs.pop("config", None)
if not isinstance(config, PretrainedConfig):
config, kwargs = AutoConfig.from_pretrained(
pretrained_model_name_or_path, return_unused_kwargs=True, **kwargs
)
if type(config) in MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING.keys():
return MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING[type(config)].from_pretrained(
pretrained_model_name_or_path, *model_args, config=config, **kwargs
)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__,
cls.__name__,
", ".join(c.__name__ for c in MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING.keys()),
)
) | [
"def",
"from_pretrained",
"(",
"cls",
",",
"pretrained_model_name_or_path",
",",
"*",
"model_args",
",",
"*",
"*",
"kwargs",
")",
":",
"config",
"=",
"kwargs",
".",
"pop",
"(",
"\"config\"",
",",
"None",
")",
"if",
"not",
"isinstance",
"(",
"config",
",",
"PretrainedConfig",
")",
":",
"config",
",",
"kwargs",
"=",
"AutoConfig",
".",
"from_pretrained",
"(",
"pretrained_model_name_or_path",
",",
"return_unused_kwargs",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
"if",
"type",
"(",
"config",
")",
"in",
"MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING",
".",
"keys",
"(",
")",
":",
"return",
"MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING",
"[",
"type",
"(",
"config",
")",
"]",
".",
"from_pretrained",
"(",
"pretrained_model_name_or_path",
",",
"*",
"model_args",
",",
"config",
"=",
"config",
",",
"*",
"*",
"kwargs",
")",
"raise",
"ValueError",
"(",
"\"Unrecognized configuration class {} for this kind of AutoModel: {}.\\n\"",
"\"Model type should be one of {}.\"",
".",
"format",
"(",
"config",
".",
"__class__",
",",
"cls",
".",
"__name__",
",",
"\", \"",
".",
"join",
"(",
"c",
".",
"__name__",
"for",
"c",
"in",
"MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING",
".",
"keys",
"(",
")",
")",
",",
")",
")"
] | [
1570,
4
] | [
1606,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
AutoModelForTokenClassification.from_config | (cls, config) | r"""
Instantiates one of the model classes of the library---with a token classification head---from a configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use :meth:`~transformers.AutoModelForTokenClassification.from_pretrained` to load
the model weights.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
List options
Examples::
>>> from transformers import AutoConfig, AutoModelForTokenClassification
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('bert-base-uncased')
>>> model = AutoModelForTokenClassification.from_config(config)
| r"""
Instantiates one of the model classes of the library---with a token classification head---from a configuration. | def from_config(cls, config):
r"""
Instantiates one of the model classes of the library---with a token classification head---from a configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use :meth:`~transformers.AutoModelForTokenClassification.from_pretrained` to load
the model weights.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
List options
Examples::
>>> from transformers import AutoConfig, AutoModelForTokenClassification
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('bert-base-uncased')
>>> model = AutoModelForTokenClassification.from_config(config)
"""
if type(config) in MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.keys():
return MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING[type(config)](config)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__,
cls.__name__,
", ".join(c.__name__ for c in MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.keys()),
)
) | [
"def",
"from_config",
"(",
"cls",
",",
"config",
")",
":",
"if",
"type",
"(",
"config",
")",
"in",
"MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
".",
"keys",
"(",
")",
":",
"return",
"MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
"[",
"type",
"(",
"config",
")",
"]",
"(",
"config",
")",
"raise",
"ValueError",
"(",
"\"Unrecognized configuration class {} for this kind of AutoModel: {}.\\n\"",
"\"Model type should be one of {}.\"",
".",
"format",
"(",
"config",
".",
"__class__",
",",
"cls",
".",
"__name__",
",",
"\", \"",
".",
"join",
"(",
"c",
".",
"__name__",
"for",
"c",
"in",
"MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
".",
"keys",
"(",
")",
")",
",",
")",
")"
] | [
1627,
4
] | [
1659,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
AutoModelForTokenClassification.from_pretrained | (cls, pretrained_model_name_or_path, *model_args, **kwargs) | r"""
Examples::
>>> from transformers import AutoConfig, AutoModelForTokenClassification
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForTokenClassification.from_pretrained('bert-base-uncased')
>>> # Update configuration during loading
>>> model = AutoModelForTokenClassification.from_pretrained('bert-base-uncased', output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
>>> model = AutoModelForTokenClassification.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
| r"""
Examples:: | def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r"""
Examples::
>>> from transformers import AutoConfig, AutoModelForTokenClassification
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForTokenClassification.from_pretrained('bert-base-uncased')
>>> # Update configuration during loading
>>> model = AutoModelForTokenClassification.from_pretrained('bert-base-uncased', output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
>>> model = AutoModelForTokenClassification.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
config = kwargs.pop("config", None)
if not isinstance(config, PretrainedConfig):
config, kwargs = AutoConfig.from_pretrained(
pretrained_model_name_or_path, return_unused_kwargs=True, **kwargs
)
if type(config) in MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.keys():
return MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING[type(config)].from_pretrained(
pretrained_model_name_or_path, *model_args, config=config, **kwargs
)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__,
cls.__name__,
", ".join(c.__name__ for c in MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.keys()),
)
) | [
"def",
"from_pretrained",
"(",
"cls",
",",
"pretrained_model_name_or_path",
",",
"*",
"model_args",
",",
"*",
"*",
"kwargs",
")",
":",
"config",
"=",
"kwargs",
".",
"pop",
"(",
"\"config\"",
",",
"None",
")",
"if",
"not",
"isinstance",
"(",
"config",
",",
"PretrainedConfig",
")",
":",
"config",
",",
"kwargs",
"=",
"AutoConfig",
".",
"from_pretrained",
"(",
"pretrained_model_name_or_path",
",",
"return_unused_kwargs",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
"if",
"type",
"(",
"config",
")",
"in",
"MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
".",
"keys",
"(",
")",
":",
"return",
"MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
"[",
"type",
"(",
"config",
")",
"]",
".",
"from_pretrained",
"(",
"pretrained_model_name_or_path",
",",
"*",
"model_args",
",",
"config",
"=",
"config",
",",
"*",
"*",
"kwargs",
")",
"raise",
"ValueError",
"(",
"\"Unrecognized configuration class {} for this kind of AutoModel: {}.\\n\"",
"\"Model type should be one of {}.\"",
".",
"format",
"(",
"config",
".",
"__class__",
",",
"cls",
".",
"__name__",
",",
"\", \"",
".",
"join",
"(",
"c",
".",
"__name__",
"for",
"c",
"in",
"MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
".",
"keys",
"(",
")",
")",
",",
")",
")"
] | [
1668,
4
] | [
1704,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
AutoModelForMultipleChoice.from_config | (cls, config) | r"""
Instantiates one of the model classes of the library---with a multiple choice classification head---from a
configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use :meth:`~transformers.AutoModelForMultipleChoice.from_pretrained` to load the
model weights.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
List options
Examples::
>>> from transformers import AutoConfig, AutoModelForMultipleChoice
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('bert-base-uncased')
>>> model = AutoModelForMultipleChoice.from_config(config)
| r"""
Instantiates one of the model classes of the library---with a multiple choice classification head---from a
configuration. | def from_config(cls, config):
r"""
Instantiates one of the model classes of the library---with a multiple choice classification head---from a
configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use :meth:`~transformers.AutoModelForMultipleChoice.from_pretrained` to load the
model weights.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
List options
Examples::
>>> from transformers import AutoConfig, AutoModelForMultipleChoice
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('bert-base-uncased')
>>> model = AutoModelForMultipleChoice.from_config(config)
"""
if type(config) in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.keys():
return MODEL_FOR_MULTIPLE_CHOICE_MAPPING[type(config)](config)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__,
cls.__name__,
", ".join(c.__name__ for c in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.keys()),
)
) | [
"def",
"from_config",
"(",
"cls",
",",
"config",
")",
":",
"if",
"type",
"(",
"config",
")",
"in",
"MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
".",
"keys",
"(",
")",
":",
"return",
"MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
"[",
"type",
"(",
"config",
")",
"]",
"(",
"config",
")",
"raise",
"ValueError",
"(",
"\"Unrecognized configuration class {} for this kind of AutoModel: {}.\\n\"",
"\"Model type should be one of {}.\"",
".",
"format",
"(",
"config",
".",
"__class__",
",",
"cls",
".",
"__name__",
",",
"\", \"",
".",
"join",
"(",
"c",
".",
"__name__",
"for",
"c",
"in",
"MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
".",
"keys",
"(",
")",
")",
",",
")",
")"
] | [
1726,
4
] | [
1759,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
AutoModelForMultipleChoice.from_pretrained | (cls, pretrained_model_name_or_path, *model_args, **kwargs) | r"""
Examples::
>>> from transformers import AutoConfig, AutoModelForMultipleChoice
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForMultipleChoice.from_pretrained('bert-base-uncased')
>>> # Update configuration during loading
>>> model = AutoModelForMultipleChoice.from_pretrained('bert-base-uncased', output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
>>> model = AutoModelForMultipleChoice.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
| r"""
Examples:: | def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r"""
Examples::
>>> from transformers import AutoConfig, AutoModelForMultipleChoice
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForMultipleChoice.from_pretrained('bert-base-uncased')
>>> # Update configuration during loading
>>> model = AutoModelForMultipleChoice.from_pretrained('bert-base-uncased', output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
>>> model = AutoModelForMultipleChoice.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
config = kwargs.pop("config", None)
if not isinstance(config, PretrainedConfig):
config, kwargs = AutoConfig.from_pretrained(
pretrained_model_name_or_path, return_unused_kwargs=True, **kwargs
)
if type(config) in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.keys():
return MODEL_FOR_MULTIPLE_CHOICE_MAPPING[type(config)].from_pretrained(
pretrained_model_name_or_path, *model_args, config=config, **kwargs
)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__,
cls.__name__,
", ".join(c.__name__ for c in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.keys()),
)
) | [
"def",
"from_pretrained",
"(",
"cls",
",",
"pretrained_model_name_or_path",
",",
"*",
"model_args",
",",
"*",
"*",
"kwargs",
")",
":",
"config",
"=",
"kwargs",
".",
"pop",
"(",
"\"config\"",
",",
"None",
")",
"if",
"not",
"isinstance",
"(",
"config",
",",
"PretrainedConfig",
")",
":",
"config",
",",
"kwargs",
"=",
"AutoConfig",
".",
"from_pretrained",
"(",
"pretrained_model_name_or_path",
",",
"return_unused_kwargs",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
"if",
"type",
"(",
"config",
")",
"in",
"MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
".",
"keys",
"(",
")",
":",
"return",
"MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
"[",
"type",
"(",
"config",
")",
"]",
".",
"from_pretrained",
"(",
"pretrained_model_name_or_path",
",",
"*",
"model_args",
",",
"config",
"=",
"config",
",",
"*",
"*",
"kwargs",
")",
"raise",
"ValueError",
"(",
"\"Unrecognized configuration class {} for this kind of AutoModel: {}.\\n\"",
"\"Model type should be one of {}.\"",
".",
"format",
"(",
"config",
".",
"__class__",
",",
"cls",
".",
"__name__",
",",
"\", \"",
".",
"join",
"(",
"c",
".",
"__name__",
"for",
"c",
"in",
"MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
".",
"keys",
"(",
")",
")",
",",
")",
")"
] | [
1768,
4
] | [
1804,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
AutoModelForNextSentencePrediction.from_config | (cls, config) | r"""
Instantiates one of the model classes of the library---with a multiple choice classification head---from a
configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use :meth:`~transformers.AutoModelForNextSentencePrediction.from_pretrained` to load
the model weights.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
List options
Examples::
>>> from transformers import AutoConfig, AutoModelForNextSentencePrediction
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('bert-base-uncased')
>>> model = AutoModelForNextSentencePrediction.from_config(config)
| r"""
Instantiates one of the model classes of the library---with a multiple choice classification head---from a
configuration. | def from_config(cls, config):
r"""
Instantiates one of the model classes of the library---with a multiple choice classification head---from a
configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use :meth:`~transformers.AutoModelForNextSentencePrediction.from_pretrained` to load
the model weights.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
List options
Examples::
>>> from transformers import AutoConfig, AutoModelForNextSentencePrediction
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('bert-base-uncased')
>>> model = AutoModelForNextSentencePrediction.from_config(config)
"""
if type(config) in MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING.keys():
return MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING[type(config)](config)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__,
cls.__name__,
", ".join(c.__name__ for c in MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING.keys()),
)
) | [
"def",
"from_config",
"(",
"cls",
",",
"config",
")",
":",
"if",
"type",
"(",
"config",
")",
"in",
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",
".",
"keys",
"(",
")",
":",
"return",
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",
"[",
"type",
"(",
"config",
")",
"]",
"(",
"config",
")",
"raise",
"ValueError",
"(",
"\"Unrecognized configuration class {} for this kind of AutoModel: {}.\\n\"",
"\"Model type should be one of {}.\"",
".",
"format",
"(",
"config",
".",
"__class__",
",",
"cls",
".",
"__name__",
",",
"\", \"",
".",
"join",
"(",
"c",
".",
"__name__",
"for",
"c",
"in",
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",
".",
"keys",
"(",
")",
")",
",",
")",
")"
] | [
1826,
4
] | [
1859,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
AutoModelForNextSentencePrediction.from_pretrained | (cls, pretrained_model_name_or_path, *model_args, **kwargs) | r"""
Examples::
>>> from transformers import AutoConfig, AutoModelForNextSentencePrediction
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForNextSentencePrediction.from_pretrained('bert-base-uncased')
>>> # Update configuration during loading
>>> model = AutoModelForNextSentencePrediction.from_pretrained('bert-base-uncased', output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
>>> model = AutoModelForNextSentencePrediction.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
| r"""
Examples:: | def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r"""
Examples::
>>> from transformers import AutoConfig, AutoModelForNextSentencePrediction
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForNextSentencePrediction.from_pretrained('bert-base-uncased')
>>> # Update configuration during loading
>>> model = AutoModelForNextSentencePrediction.from_pretrained('bert-base-uncased', output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
>>> model = AutoModelForNextSentencePrediction.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
config = kwargs.pop("config", None)
if not isinstance(config, PretrainedConfig):
config, kwargs = AutoConfig.from_pretrained(
pretrained_model_name_or_path, return_unused_kwargs=True, **kwargs
)
if type(config) in MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING.keys():
return MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING[type(config)].from_pretrained(
pretrained_model_name_or_path, *model_args, config=config, **kwargs
)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__,
cls.__name__,
", ".join(c.__name__ for c in MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING.keys()),
)
) | [
"def",
"from_pretrained",
"(",
"cls",
",",
"pretrained_model_name_or_path",
",",
"*",
"model_args",
",",
"*",
"*",
"kwargs",
")",
":",
"config",
"=",
"kwargs",
".",
"pop",
"(",
"\"config\"",
",",
"None",
")",
"if",
"not",
"isinstance",
"(",
"config",
",",
"PretrainedConfig",
")",
":",
"config",
",",
"kwargs",
"=",
"AutoConfig",
".",
"from_pretrained",
"(",
"pretrained_model_name_or_path",
",",
"return_unused_kwargs",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
"if",
"type",
"(",
"config",
")",
"in",
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",
".",
"keys",
"(",
")",
":",
"return",
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",
"[",
"type",
"(",
"config",
")",
"]",
".",
"from_pretrained",
"(",
"pretrained_model_name_or_path",
",",
"*",
"model_args",
",",
"config",
"=",
"config",
",",
"*",
"*",
"kwargs",
")",
"raise",
"ValueError",
"(",
"\"Unrecognized configuration class {} for this kind of AutoModel: {}.\\n\"",
"\"Model type should be one of {}.\"",
".",
"format",
"(",
"config",
".",
"__class__",
",",
"cls",
".",
"__name__",
",",
"\", \"",
".",
"join",
"(",
"c",
".",
"__name__",
"for",
"c",
"in",
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",
".",
"keys",
"(",
")",
")",
",",
")",
")"
] | [
1868,
4
] | [
1904,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
setup_androidtv | (hass, config) | Generate an ADB key (if needed) and load it. | Generate an ADB key (if needed) and load it. | def setup_androidtv(hass, config):
"""Generate an ADB key (if needed) and load it."""
adbkey = config.get(CONF_ADBKEY, hass.config.path(STORAGE_DIR, "androidtv_adbkey"))
if CONF_ADB_SERVER_IP not in config:
# Use "adb_shell" (Python ADB implementation)
if not os.path.isfile(adbkey):
# Generate ADB key files
keygen(adbkey)
# Load the ADB key
signer = ADBPythonSync.load_adbkey(adbkey)
adb_log = f"using Python ADB implementation with adbkey='{adbkey}'"
else:
# Use "pure-python-adb" (communicate with ADB server)
signer = None
adb_log = f"using ADB server at {config[CONF_ADB_SERVER_IP]}:{config[CONF_ADB_SERVER_PORT]}"
return adbkey, signer, adb_log | [
"def",
"setup_androidtv",
"(",
"hass",
",",
"config",
")",
":",
"adbkey",
"=",
"config",
".",
"get",
"(",
"CONF_ADBKEY",
",",
"hass",
".",
"config",
".",
"path",
"(",
"STORAGE_DIR",
",",
"\"androidtv_adbkey\"",
")",
")",
"if",
"CONF_ADB_SERVER_IP",
"not",
"in",
"config",
":",
"# Use \"adb_shell\" (Python ADB implementation)",
"if",
"not",
"os",
".",
"path",
".",
"isfile",
"(",
"adbkey",
")",
":",
"# Generate ADB key files",
"keygen",
"(",
"adbkey",
")",
"# Load the ADB key",
"signer",
"=",
"ADBPythonSync",
".",
"load_adbkey",
"(",
"adbkey",
")",
"adb_log",
"=",
"f\"using Python ADB implementation with adbkey='{adbkey}'\"",
"else",
":",
"# Use \"pure-python-adb\" (communicate with ADB server)",
"signer",
"=",
"None",
"adb_log",
"=",
"f\"using ADB server at {config[CONF_ADB_SERVER_IP]}:{config[CONF_ADB_SERVER_PORT]}\"",
"return",
"adbkey",
",",
"signer",
",",
"adb_log"
] | [
168,
0
] | [
186,
34
] | python | en | ['en', 'en', 'en'] | True |
async_setup_platform | (hass, config, async_add_entities, discovery_info=None) | Set up the Android TV / Fire TV platform. | Set up the Android TV / Fire TV platform. | async def async_setup_platform(hass, config, async_add_entities, discovery_info=None):
"""Set up the Android TV / Fire TV platform."""
hass.data.setdefault(ANDROIDTV_DOMAIN, {})
address = f"{config[CONF_HOST]}:{config[CONF_PORT]}"
if address in hass.data[ANDROIDTV_DOMAIN]:
_LOGGER.warning("Platform already setup on %s, skipping", address)
return
adbkey, signer, adb_log = await hass.async_add_executor_job(
setup_androidtv, hass, config
)
aftv = await setup(
config[CONF_HOST],
config[CONF_PORT],
adbkey,
config.get(CONF_ADB_SERVER_IP, ""),
config[CONF_ADB_SERVER_PORT],
config[CONF_STATE_DETECTION_RULES],
config[CONF_DEVICE_CLASS],
10.0,
signer,
)
if not aftv.available:
# Determine the name that will be used for the device in the log
if CONF_NAME in config:
device_name = config[CONF_NAME]
elif config[CONF_DEVICE_CLASS] == DEVICE_ANDROIDTV:
device_name = "Android TV device"
elif config[CONF_DEVICE_CLASS] == DEVICE_FIRETV:
device_name = "Fire TV device"
else:
device_name = "Android TV / Fire TV device"
_LOGGER.warning(
"Could not connect to %s at %s %s", device_name, address, adb_log
)
raise PlatformNotReady
async def _async_close(event):
"""Close the ADB socket connection when HA stops."""
await aftv.adb_close()
# Close the ADB connection when HA stops
hass.bus.async_listen_once(EVENT_HOMEASSISTANT_STOP, _async_close)
device_args = [
aftv,
config[CONF_NAME],
config[CONF_APPS],
config[CONF_GET_SOURCES],
config.get(CONF_TURN_ON_COMMAND),
config.get(CONF_TURN_OFF_COMMAND),
config[CONF_EXCLUDE_UNNAMED_APPS],
config[CONF_SCREENCAP],
]
if aftv.DEVICE_CLASS == DEVICE_ANDROIDTV:
device = AndroidTVDevice(*device_args)
device_name = config.get(CONF_NAME, "Android TV")
else:
device = FireTVDevice(*device_args)
device_name = config.get(CONF_NAME, "Fire TV")
async_add_entities([device])
_LOGGER.debug("Setup %s at %s %s", device_name, address, adb_log)
hass.data[ANDROIDTV_DOMAIN][address] = device
if hass.services.has_service(ANDROIDTV_DOMAIN, SERVICE_ADB_COMMAND):
return
platform = entity_platform.current_platform.get()
async def service_adb_command(service):
"""Dispatch service calls to target entities."""
cmd = service.data[ATTR_COMMAND]
entity_id = service.data[ATTR_ENTITY_ID]
target_devices = [
dev
for dev in hass.data[ANDROIDTV_DOMAIN].values()
if dev.entity_id in entity_id
]
for target_device in target_devices:
output = await target_device.adb_command(cmd)
# log the output, if there is any
if output:
_LOGGER.info(
"Output of command '%s' from '%s': %s",
cmd,
target_device.entity_id,
output,
)
hass.services.async_register(
ANDROIDTV_DOMAIN,
SERVICE_ADB_COMMAND,
service_adb_command,
schema=SERVICE_ADB_COMMAND_SCHEMA,
)
platform.async_register_entity_service(
SERVICE_LEARN_SENDEVENT, {}, "learn_sendevent"
)
async def service_download(service):
"""Download a file from your Android TV / Fire TV device to your Home Assistant instance."""
local_path = service.data[ATTR_LOCAL_PATH]
if not hass.config.is_allowed_path(local_path):
_LOGGER.warning("'%s' is not secure to load data from!", local_path)
return
device_path = service.data[ATTR_DEVICE_PATH]
entity_id = service.data[ATTR_ENTITY_ID]
target_device = [
dev
for dev in hass.data[ANDROIDTV_DOMAIN].values()
if dev.entity_id in entity_id
][0]
await target_device.adb_pull(local_path, device_path)
hass.services.async_register(
ANDROIDTV_DOMAIN,
SERVICE_DOWNLOAD,
service_download,
schema=SERVICE_DOWNLOAD_SCHEMA,
)
async def service_upload(service):
"""Upload a file from your Home Assistant instance to an Android TV / Fire TV device."""
local_path = service.data[ATTR_LOCAL_PATH]
if not hass.config.is_allowed_path(local_path):
_LOGGER.warning("'%s' is not secure to load data from!", local_path)
return
device_path = service.data[ATTR_DEVICE_PATH]
entity_id = service.data[ATTR_ENTITY_ID]
target_devices = [
dev
for dev in hass.data[ANDROIDTV_DOMAIN].values()
if dev.entity_id in entity_id
]
for target_device in target_devices:
await target_device.adb_push(local_path, device_path)
hass.services.async_register(
ANDROIDTV_DOMAIN, SERVICE_UPLOAD, service_upload, schema=SERVICE_UPLOAD_SCHEMA
) | [
"async",
"def",
"async_setup_platform",
"(",
"hass",
",",
"config",
",",
"async_add_entities",
",",
"discovery_info",
"=",
"None",
")",
":",
"hass",
".",
"data",
".",
"setdefault",
"(",
"ANDROIDTV_DOMAIN",
",",
"{",
"}",
")",
"address",
"=",
"f\"{config[CONF_HOST]}:{config[CONF_PORT]}\"",
"if",
"address",
"in",
"hass",
".",
"data",
"[",
"ANDROIDTV_DOMAIN",
"]",
":",
"_LOGGER",
".",
"warning",
"(",
"\"Platform already setup on %s, skipping\"",
",",
"address",
")",
"return",
"adbkey",
",",
"signer",
",",
"adb_log",
"=",
"await",
"hass",
".",
"async_add_executor_job",
"(",
"setup_androidtv",
",",
"hass",
",",
"config",
")",
"aftv",
"=",
"await",
"setup",
"(",
"config",
"[",
"CONF_HOST",
"]",
",",
"config",
"[",
"CONF_PORT",
"]",
",",
"adbkey",
",",
"config",
".",
"get",
"(",
"CONF_ADB_SERVER_IP",
",",
"\"\"",
")",
",",
"config",
"[",
"CONF_ADB_SERVER_PORT",
"]",
",",
"config",
"[",
"CONF_STATE_DETECTION_RULES",
"]",
",",
"config",
"[",
"CONF_DEVICE_CLASS",
"]",
",",
"10.0",
",",
"signer",
",",
")",
"if",
"not",
"aftv",
".",
"available",
":",
"# Determine the name that will be used for the device in the log",
"if",
"CONF_NAME",
"in",
"config",
":",
"device_name",
"=",
"config",
"[",
"CONF_NAME",
"]",
"elif",
"config",
"[",
"CONF_DEVICE_CLASS",
"]",
"==",
"DEVICE_ANDROIDTV",
":",
"device_name",
"=",
"\"Android TV device\"",
"elif",
"config",
"[",
"CONF_DEVICE_CLASS",
"]",
"==",
"DEVICE_FIRETV",
":",
"device_name",
"=",
"\"Fire TV device\"",
"else",
":",
"device_name",
"=",
"\"Android TV / Fire TV device\"",
"_LOGGER",
".",
"warning",
"(",
"\"Could not connect to %s at %s %s\"",
",",
"device_name",
",",
"address",
",",
"adb_log",
")",
"raise",
"PlatformNotReady",
"async",
"def",
"_async_close",
"(",
"event",
")",
":",
"\"\"\"Close the ADB socket connection when HA stops.\"\"\"",
"await",
"aftv",
".",
"adb_close",
"(",
")",
"# Close the ADB connection when HA stops",
"hass",
".",
"bus",
".",
"async_listen_once",
"(",
"EVENT_HOMEASSISTANT_STOP",
",",
"_async_close",
")",
"device_args",
"=",
"[",
"aftv",
",",
"config",
"[",
"CONF_NAME",
"]",
",",
"config",
"[",
"CONF_APPS",
"]",
",",
"config",
"[",
"CONF_GET_SOURCES",
"]",
",",
"config",
".",
"get",
"(",
"CONF_TURN_ON_COMMAND",
")",
",",
"config",
".",
"get",
"(",
"CONF_TURN_OFF_COMMAND",
")",
",",
"config",
"[",
"CONF_EXCLUDE_UNNAMED_APPS",
"]",
",",
"config",
"[",
"CONF_SCREENCAP",
"]",
",",
"]",
"if",
"aftv",
".",
"DEVICE_CLASS",
"==",
"DEVICE_ANDROIDTV",
":",
"device",
"=",
"AndroidTVDevice",
"(",
"*",
"device_args",
")",
"device_name",
"=",
"config",
".",
"get",
"(",
"CONF_NAME",
",",
"\"Android TV\"",
")",
"else",
":",
"device",
"=",
"FireTVDevice",
"(",
"*",
"device_args",
")",
"device_name",
"=",
"config",
".",
"get",
"(",
"CONF_NAME",
",",
"\"Fire TV\"",
")",
"async_add_entities",
"(",
"[",
"device",
"]",
")",
"_LOGGER",
".",
"debug",
"(",
"\"Setup %s at %s %s\"",
",",
"device_name",
",",
"address",
",",
"adb_log",
")",
"hass",
".",
"data",
"[",
"ANDROIDTV_DOMAIN",
"]",
"[",
"address",
"]",
"=",
"device",
"if",
"hass",
".",
"services",
".",
"has_service",
"(",
"ANDROIDTV_DOMAIN",
",",
"SERVICE_ADB_COMMAND",
")",
":",
"return",
"platform",
"=",
"entity_platform",
".",
"current_platform",
".",
"get",
"(",
")",
"async",
"def",
"service_adb_command",
"(",
"service",
")",
":",
"\"\"\"Dispatch service calls to target entities.\"\"\"",
"cmd",
"=",
"service",
".",
"data",
"[",
"ATTR_COMMAND",
"]",
"entity_id",
"=",
"service",
".",
"data",
"[",
"ATTR_ENTITY_ID",
"]",
"target_devices",
"=",
"[",
"dev",
"for",
"dev",
"in",
"hass",
".",
"data",
"[",
"ANDROIDTV_DOMAIN",
"]",
".",
"values",
"(",
")",
"if",
"dev",
".",
"entity_id",
"in",
"entity_id",
"]",
"for",
"target_device",
"in",
"target_devices",
":",
"output",
"=",
"await",
"target_device",
".",
"adb_command",
"(",
"cmd",
")",
"# log the output, if there is any",
"if",
"output",
":",
"_LOGGER",
".",
"info",
"(",
"\"Output of command '%s' from '%s': %s\"",
",",
"cmd",
",",
"target_device",
".",
"entity_id",
",",
"output",
",",
")",
"hass",
".",
"services",
".",
"async_register",
"(",
"ANDROIDTV_DOMAIN",
",",
"SERVICE_ADB_COMMAND",
",",
"service_adb_command",
",",
"schema",
"=",
"SERVICE_ADB_COMMAND_SCHEMA",
",",
")",
"platform",
".",
"async_register_entity_service",
"(",
"SERVICE_LEARN_SENDEVENT",
",",
"{",
"}",
",",
"\"learn_sendevent\"",
")",
"async",
"def",
"service_download",
"(",
"service",
")",
":",
"\"\"\"Download a file from your Android TV / Fire TV device to your Home Assistant instance.\"\"\"",
"local_path",
"=",
"service",
".",
"data",
"[",
"ATTR_LOCAL_PATH",
"]",
"if",
"not",
"hass",
".",
"config",
".",
"is_allowed_path",
"(",
"local_path",
")",
":",
"_LOGGER",
".",
"warning",
"(",
"\"'%s' is not secure to load data from!\"",
",",
"local_path",
")",
"return",
"device_path",
"=",
"service",
".",
"data",
"[",
"ATTR_DEVICE_PATH",
"]",
"entity_id",
"=",
"service",
".",
"data",
"[",
"ATTR_ENTITY_ID",
"]",
"target_device",
"=",
"[",
"dev",
"for",
"dev",
"in",
"hass",
".",
"data",
"[",
"ANDROIDTV_DOMAIN",
"]",
".",
"values",
"(",
")",
"if",
"dev",
".",
"entity_id",
"in",
"entity_id",
"]",
"[",
"0",
"]",
"await",
"target_device",
".",
"adb_pull",
"(",
"local_path",
",",
"device_path",
")",
"hass",
".",
"services",
".",
"async_register",
"(",
"ANDROIDTV_DOMAIN",
",",
"SERVICE_DOWNLOAD",
",",
"service_download",
",",
"schema",
"=",
"SERVICE_DOWNLOAD_SCHEMA",
",",
")",
"async",
"def",
"service_upload",
"(",
"service",
")",
":",
"\"\"\"Upload a file from your Home Assistant instance to an Android TV / Fire TV device.\"\"\"",
"local_path",
"=",
"service",
".",
"data",
"[",
"ATTR_LOCAL_PATH",
"]",
"if",
"not",
"hass",
".",
"config",
".",
"is_allowed_path",
"(",
"local_path",
")",
":",
"_LOGGER",
".",
"warning",
"(",
"\"'%s' is not secure to load data from!\"",
",",
"local_path",
")",
"return",
"device_path",
"=",
"service",
".",
"data",
"[",
"ATTR_DEVICE_PATH",
"]",
"entity_id",
"=",
"service",
".",
"data",
"[",
"ATTR_ENTITY_ID",
"]",
"target_devices",
"=",
"[",
"dev",
"for",
"dev",
"in",
"hass",
".",
"data",
"[",
"ANDROIDTV_DOMAIN",
"]",
".",
"values",
"(",
")",
"if",
"dev",
".",
"entity_id",
"in",
"entity_id",
"]",
"for",
"target_device",
"in",
"target_devices",
":",
"await",
"target_device",
".",
"adb_push",
"(",
"local_path",
",",
"device_path",
")",
"hass",
".",
"services",
".",
"async_register",
"(",
"ANDROIDTV_DOMAIN",
",",
"SERVICE_UPLOAD",
",",
"service_upload",
",",
"schema",
"=",
"SERVICE_UPLOAD_SCHEMA",
")"
] | [
189,
0
] | [
342,
5
] | python | en | ['en', 'en', 'en'] | True |
adb_decorator | (override_available=False) | Wrap ADB methods and catch exceptions.
Allows for overriding the available status of the ADB connection via the
`override_available` parameter.
| Wrap ADB methods and catch exceptions. | def adb_decorator(override_available=False):
"""Wrap ADB methods and catch exceptions.
Allows for overriding the available status of the ADB connection via the
`override_available` parameter.
"""
def _adb_decorator(func):
"""Wrap the provided ADB method and catch exceptions."""
@functools.wraps(func)
async def _adb_exception_catcher(self, *args, **kwargs):
"""Call an ADB-related method and catch exceptions."""
if not self.available and not override_available:
return None
try:
return await func(self, *args, **kwargs)
except LockNotAcquiredException:
# If the ADB lock could not be acquired, skip this command
_LOGGER.info(
"ADB command not executed because the connection is currently in use"
)
return
except self.exceptions as err:
_LOGGER.error(
"Failed to execute an ADB command. ADB connection re-"
"establishing attempt in the next update. Error: %s",
err,
)
await self.aftv.adb_close()
self._available = False
return None
except Exception:
# An unforeseen exception occurred. Close the ADB connection so that
# it doesn't happen over and over again, then raise the exception.
await self.aftv.adb_close()
self._available = False
raise
return _adb_exception_catcher
return _adb_decorator | [
"def",
"adb_decorator",
"(",
"override_available",
"=",
"False",
")",
":",
"def",
"_adb_decorator",
"(",
"func",
")",
":",
"\"\"\"Wrap the provided ADB method and catch exceptions.\"\"\"",
"@",
"functools",
".",
"wraps",
"(",
"func",
")",
"async",
"def",
"_adb_exception_catcher",
"(",
"self",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"\"\"\"Call an ADB-related method and catch exceptions.\"\"\"",
"if",
"not",
"self",
".",
"available",
"and",
"not",
"override_available",
":",
"return",
"None",
"try",
":",
"return",
"await",
"func",
"(",
"self",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"except",
"LockNotAcquiredException",
":",
"# If the ADB lock could not be acquired, skip this command",
"_LOGGER",
".",
"info",
"(",
"\"ADB command not executed because the connection is currently in use\"",
")",
"return",
"except",
"self",
".",
"exceptions",
"as",
"err",
":",
"_LOGGER",
".",
"error",
"(",
"\"Failed to execute an ADB command. ADB connection re-\"",
"\"establishing attempt in the next update. Error: %s\"",
",",
"err",
",",
")",
"await",
"self",
".",
"aftv",
".",
"adb_close",
"(",
")",
"self",
".",
"_available",
"=",
"False",
"return",
"None",
"except",
"Exception",
":",
"# An unforeseen exception occurred. Close the ADB connection so that",
"# it doesn't happen over and over again, then raise the exception.",
"await",
"self",
".",
"aftv",
".",
"adb_close",
"(",
")",
"self",
".",
"_available",
"=",
"False",
"raise",
"return",
"_adb_exception_catcher",
"return",
"_adb_decorator"
] | [
345,
0
] | [
387,
25
] | python | en | ['en', 'en', 'en'] | True |
ADBDevice.__init__ | (
self,
aftv,
name,
apps,
get_sources,
turn_on_command,
turn_off_command,
exclude_unnamed_apps,
screencap,
) | Initialize the Android TV / Fire TV device. | Initialize the Android TV / Fire TV device. | def __init__(
self,
aftv,
name,
apps,
get_sources,
turn_on_command,
turn_off_command,
exclude_unnamed_apps,
screencap,
):
"""Initialize the Android TV / Fire TV device."""
self.aftv = aftv
self._name = name
self._app_id_to_name = APPS.copy()
self._app_id_to_name.update(apps)
self._app_name_to_id = {
value: key for key, value in self._app_id_to_name.items() if value
}
# Make sure that apps overridden via the `apps` parameter are reflected
# in `self._app_name_to_id`
for key, value in apps.items():
self._app_name_to_id[value] = key
self._get_sources = get_sources
self._keys = KEYS
self._device_properties = self.aftv.device_properties
self._unique_id = self._device_properties.get("serialno")
self.turn_on_command = turn_on_command
self.turn_off_command = turn_off_command
self._exclude_unnamed_apps = exclude_unnamed_apps
self._screencap = screencap
# ADB exceptions to catch
if not self.aftv.adb_server_ip:
# Using "adb_shell" (Python ADB implementation)
self.exceptions = (
AdbTimeoutError,
BrokenPipeError,
ConnectionResetError,
ValueError,
InvalidChecksumError,
InvalidCommandError,
InvalidResponseError,
TcpTimeoutException,
)
else:
# Using "pure-python-adb" (communicate with ADB server)
self.exceptions = (ConnectionResetError, RuntimeError)
# Property attributes
self._adb_response = None
self._available = True
self._current_app = None
self._sources = None
self._state = None
self._hdmi_input = None | [
"def",
"__init__",
"(",
"self",
",",
"aftv",
",",
"name",
",",
"apps",
",",
"get_sources",
",",
"turn_on_command",
",",
"turn_off_command",
",",
"exclude_unnamed_apps",
",",
"screencap",
",",
")",
":",
"self",
".",
"aftv",
"=",
"aftv",
"self",
".",
"_name",
"=",
"name",
"self",
".",
"_app_id_to_name",
"=",
"APPS",
".",
"copy",
"(",
")",
"self",
".",
"_app_id_to_name",
".",
"update",
"(",
"apps",
")",
"self",
".",
"_app_name_to_id",
"=",
"{",
"value",
":",
"key",
"for",
"key",
",",
"value",
"in",
"self",
".",
"_app_id_to_name",
".",
"items",
"(",
")",
"if",
"value",
"}",
"# Make sure that apps overridden via the `apps` parameter are reflected",
"# in `self._app_name_to_id`",
"for",
"key",
",",
"value",
"in",
"apps",
".",
"items",
"(",
")",
":",
"self",
".",
"_app_name_to_id",
"[",
"value",
"]",
"=",
"key",
"self",
".",
"_get_sources",
"=",
"get_sources",
"self",
".",
"_keys",
"=",
"KEYS",
"self",
".",
"_device_properties",
"=",
"self",
".",
"aftv",
".",
"device_properties",
"self",
".",
"_unique_id",
"=",
"self",
".",
"_device_properties",
".",
"get",
"(",
"\"serialno\"",
")",
"self",
".",
"turn_on_command",
"=",
"turn_on_command",
"self",
".",
"turn_off_command",
"=",
"turn_off_command",
"self",
".",
"_exclude_unnamed_apps",
"=",
"exclude_unnamed_apps",
"self",
".",
"_screencap",
"=",
"screencap",
"# ADB exceptions to catch",
"if",
"not",
"self",
".",
"aftv",
".",
"adb_server_ip",
":",
"# Using \"adb_shell\" (Python ADB implementation)",
"self",
".",
"exceptions",
"=",
"(",
"AdbTimeoutError",
",",
"BrokenPipeError",
",",
"ConnectionResetError",
",",
"ValueError",
",",
"InvalidChecksumError",
",",
"InvalidCommandError",
",",
"InvalidResponseError",
",",
"TcpTimeoutException",
",",
")",
"else",
":",
"# Using \"pure-python-adb\" (communicate with ADB server)",
"self",
".",
"exceptions",
"=",
"(",
"ConnectionResetError",
",",
"RuntimeError",
")",
"# Property attributes",
"self",
".",
"_adb_response",
"=",
"None",
"self",
".",
"_available",
"=",
"True",
"self",
".",
"_current_app",
"=",
"None",
"self",
".",
"_sources",
"=",
"None",
"self",
".",
"_state",
"=",
"None",
"self",
".",
"_hdmi_input",
"=",
"None"
] | [
393,
4
] | [
453,
31
] | python | en | ['en', 'en', 'en'] | True |
ADBDevice.app_id | (self) | Return the current app. | Return the current app. | def app_id(self):
"""Return the current app."""
return self._current_app | [
"def",
"app_id",
"(",
"self",
")",
":",
"return",
"self",
".",
"_current_app"
] | [
456,
4
] | [
458,
32
] | python | en | ['en', 'la', 'en'] | True |
ADBDevice.app_name | (self) | Return the friendly name of the current app. | Return the friendly name of the current app. | def app_name(self):
"""Return the friendly name of the current app."""
return self._app_id_to_name.get(self._current_app, self._current_app) | [
"def",
"app_name",
"(",
"self",
")",
":",
"return",
"self",
".",
"_app_id_to_name",
".",
"get",
"(",
"self",
".",
"_current_app",
",",
"self",
".",
"_current_app",
")"
] | [
461,
4
] | [
463,
77
] | python | en | ['en', 'en', 'en'] | True |
ADBDevice.available | (self) | Return whether or not the ADB connection is valid. | Return whether or not the ADB connection is valid. | def available(self):
"""Return whether or not the ADB connection is valid."""
return self._available | [
"def",
"available",
"(",
"self",
")",
":",
"return",
"self",
".",
"_available"
] | [
466,
4
] | [
468,
30
] | python | en | ['en', 'en', 'en'] | True |
ADBDevice.device_state_attributes | (self) | Provide the last ADB command's response and the device's HDMI input as attributes. | Provide the last ADB command's response and the device's HDMI input as attributes. | def device_state_attributes(self):
"""Provide the last ADB command's response and the device's HDMI input as attributes."""
return {
"adb_response": self._adb_response,
"hdmi_input": self._hdmi_input,
} | [
"def",
"device_state_attributes",
"(",
"self",
")",
":",
"return",
"{",
"\"adb_response\"",
":",
"self",
".",
"_adb_response",
",",
"\"hdmi_input\"",
":",
"self",
".",
"_hdmi_input",
",",
"}"
] | [
471,
4
] | [
476,
9
] | python | en | ['en', 'en', 'en'] | True |
ADBDevice.media_image_hash | (self) | Hash value for media image. | Hash value for media image. | def media_image_hash(self):
"""Hash value for media image."""
return f"{datetime.now().timestamp()}" if self._screencap else None | [
"def",
"media_image_hash",
"(",
"self",
")",
":",
"return",
"f\"{datetime.now().timestamp()}\"",
"if",
"self",
".",
"_screencap",
"else",
"None"
] | [
479,
4
] | [
481,
75
] | python | en | ['en', 'en', 'en'] | True |
ADBDevice.name | (self) | Return the device name. | Return the device name. | def name(self):
"""Return the device name."""
return self._name | [
"def",
"name",
"(",
"self",
")",
":",
"return",
"self",
".",
"_name"
] | [
484,
4
] | [
486,
25
] | python | en | ['en', 'en', 'en'] | True |
ADBDevice.source | (self) | Return the current app. | Return the current app. | def source(self):
"""Return the current app."""
return self._app_id_to_name.get(self._current_app, self._current_app) | [
"def",
"source",
"(",
"self",
")",
":",
"return",
"self",
".",
"_app_id_to_name",
".",
"get",
"(",
"self",
".",
"_current_app",
",",
"self",
".",
"_current_app",
")"
] | [
489,
4
] | [
491,
77
] | python | en | ['en', 'la', 'en'] | True |
ADBDevice.source_list | (self) | Return a list of running apps. | Return a list of running apps. | def source_list(self):
"""Return a list of running apps."""
return self._sources | [
"def",
"source_list",
"(",
"self",
")",
":",
"return",
"self",
".",
"_sources"
] | [
494,
4
] | [
496,
28
] | python | en | ['en', 'lb', 'en'] | True |
ADBDevice.state | (self) | Return the state of the player. | Return the state of the player. | def state(self):
"""Return the state of the player."""
return self._state | [
"def",
"state",
"(",
"self",
")",
":",
"return",
"self",
".",
"_state"
] | [
499,
4
] | [
501,
26
] | python | en | ['en', 'en', 'en'] | True |
ADBDevice.unique_id | (self) | Return the device unique id. | Return the device unique id. | def unique_id(self):
"""Return the device unique id."""
return self._unique_id | [
"def",
"unique_id",
"(",
"self",
")",
":",
"return",
"self",
".",
"_unique_id"
] | [
504,
4
] | [
506,
30
] | python | en | ['en', 'it', 'en'] | True |
ADBDevice._adb_screencap | (self) | Take a screen capture from the device. | Take a screen capture from the device. | async def _adb_screencap(self):
"""Take a screen capture from the device."""
return await self.aftv.adb_screencap() | [
"async",
"def",
"_adb_screencap",
"(",
"self",
")",
":",
"return",
"await",
"self",
".",
"aftv",
".",
"adb_screencap",
"(",
")"
] | [
509,
4
] | [
511,
46
] | python | en | ['en', 'en', 'en'] | True |
ADBDevice.async_get_media_image | (self) | Fetch current playing image. | Fetch current playing image. | async def async_get_media_image(self):
"""Fetch current playing image."""
if not self._screencap or self.state in [STATE_OFF, None] or not self.available:
return None, None
media_data = await self._adb_screencap()
if media_data:
return media_data, "image/png"
# If an exception occurred and the device is no longer available, write the state
if not self.available:
self.async_write_ha_state()
return None, None | [
"async",
"def",
"async_get_media_image",
"(",
"self",
")",
":",
"if",
"not",
"self",
".",
"_screencap",
"or",
"self",
".",
"state",
"in",
"[",
"STATE_OFF",
",",
"None",
"]",
"or",
"not",
"self",
".",
"available",
":",
"return",
"None",
",",
"None",
"media_data",
"=",
"await",
"self",
".",
"_adb_screencap",
"(",
")",
"if",
"media_data",
":",
"return",
"media_data",
",",
"\"image/png\"",
"# If an exception occurred and the device is no longer available, write the state",
"if",
"not",
"self",
".",
"available",
":",
"self",
".",
"async_write_ha_state",
"(",
")",
"return",
"None",
",",
"None"
] | [
513,
4
] | [
526,
25
] | python | en | ['en', 'en', 'en'] | True |
ADBDevice.async_media_play | (self) | Send play command. | Send play command. | async def async_media_play(self):
"""Send play command."""
await self.aftv.media_play() | [
"async",
"def",
"async_media_play",
"(",
"self",
")",
":",
"await",
"self",
".",
"aftv",
".",
"media_play",
"(",
")"
] | [
529,
4
] | [
531,
36
] | python | en | ['en', 'en', 'en'] | True |
ADBDevice.async_media_pause | (self) | Send pause command. | Send pause command. | async def async_media_pause(self):
"""Send pause command."""
await self.aftv.media_pause() | [
"async",
"def",
"async_media_pause",
"(",
"self",
")",
":",
"await",
"self",
".",
"aftv",
".",
"media_pause",
"(",
")"
] | [
534,
4
] | [
536,
37
] | python | en | ['en', 'en', 'en'] | True |
ADBDevice.async_media_play_pause | (self) | Send play/pause command. | Send play/pause command. | async def async_media_play_pause(self):
"""Send play/pause command."""
await self.aftv.media_play_pause() | [
"async",
"def",
"async_media_play_pause",
"(",
"self",
")",
":",
"await",
"self",
".",
"aftv",
".",
"media_play_pause",
"(",
")"
] | [
539,
4
] | [
541,
42
] | python | en | ['en', 'en', 'en'] | True |
ADBDevice.async_turn_on | (self) | Turn on the device. | Turn on the device. | async def async_turn_on(self):
"""Turn on the device."""
if self.turn_on_command:
await self.aftv.adb_shell(self.turn_on_command)
else:
await self.aftv.turn_on() | [
"async",
"def",
"async_turn_on",
"(",
"self",
")",
":",
"if",
"self",
".",
"turn_on_command",
":",
"await",
"self",
".",
"aftv",
".",
"adb_shell",
"(",
"self",
".",
"turn_on_command",
")",
"else",
":",
"await",
"self",
".",
"aftv",
".",
"turn_on",
"(",
")"
] | [
544,
4
] | [
549,
37
] | python | en | ['en', 'en', 'en'] | True |
ADBDevice.async_turn_off | (self) | Turn off the device. | Turn off the device. | async def async_turn_off(self):
"""Turn off the device."""
if self.turn_off_command:
await self.aftv.adb_shell(self.turn_off_command)
else:
await self.aftv.turn_off() | [
"async",
"def",
"async_turn_off",
"(",
"self",
")",
":",
"if",
"self",
".",
"turn_off_command",
":",
"await",
"self",
".",
"aftv",
".",
"adb_shell",
"(",
"self",
".",
"turn_off_command",
")",
"else",
":",
"await",
"self",
".",
"aftv",
".",
"turn_off",
"(",
")"
] | [
552,
4
] | [
557,
38
] | python | en | ['en', 'en', 'en'] | True |
ADBDevice.async_media_previous_track | (self) | Send previous track command (results in rewind). | Send previous track command (results in rewind). | async def async_media_previous_track(self):
"""Send previous track command (results in rewind)."""
await self.aftv.media_previous_track() | [
"async",
"def",
"async_media_previous_track",
"(",
"self",
")",
":",
"await",
"self",
".",
"aftv",
".",
"media_previous_track",
"(",
")"
] | [
560,
4
] | [
562,
46
] | python | en | ['en', 'en', 'en'] | True |
ADBDevice.async_media_next_track | (self) | Send next track command (results in fast-forward). | Send next track command (results in fast-forward). | async def async_media_next_track(self):
"""Send next track command (results in fast-forward)."""
await self.aftv.media_next_track() | [
"async",
"def",
"async_media_next_track",
"(",
"self",
")",
":",
"await",
"self",
".",
"aftv",
".",
"media_next_track",
"(",
")"
] | [
565,
4
] | [
567,
42
] | python | en | ['en', 'en', 'en'] | True |
ADBDevice.async_select_source | (self, source) | Select input source.
If the source starts with a '!', then it will close the app instead of
opening it.
| Select input source. | async def async_select_source(self, source):
"""Select input source.
If the source starts with a '!', then it will close the app instead of
opening it.
"""
if isinstance(source, str):
if not source.startswith("!"):
await self.aftv.launch_app(self._app_name_to_id.get(source, source))
else:
source_ = source[1:].lstrip()
await self.aftv.stop_app(self._app_name_to_id.get(source_, source_)) | [
"async",
"def",
"async_select_source",
"(",
"self",
",",
"source",
")",
":",
"if",
"isinstance",
"(",
"source",
",",
"str",
")",
":",
"if",
"not",
"source",
".",
"startswith",
"(",
"\"!\"",
")",
":",
"await",
"self",
".",
"aftv",
".",
"launch_app",
"(",
"self",
".",
"_app_name_to_id",
".",
"get",
"(",
"source",
",",
"source",
")",
")",
"else",
":",
"source_",
"=",
"source",
"[",
"1",
":",
"]",
".",
"lstrip",
"(",
")",
"await",
"self",
".",
"aftv",
".",
"stop_app",
"(",
"self",
".",
"_app_name_to_id",
".",
"get",
"(",
"source_",
",",
"source_",
")",
")"
] | [
570,
4
] | [
581,
84
] | python | en | ['fr', 'su', 'en'] | False |
ADBDevice.adb_command | (self, cmd) | Send an ADB command to an Android TV / Fire TV device. | Send an ADB command to an Android TV / Fire TV device. | async def adb_command(self, cmd):
"""Send an ADB command to an Android TV / Fire TV device."""
key = self._keys.get(cmd)
if key:
await self.aftv.adb_shell(f"input keyevent {key}")
return
if cmd == "GET_PROPERTIES":
self._adb_response = str(await self.aftv.get_properties_dict())
self.async_write_ha_state()
return self._adb_response
try:
response = await self.aftv.adb_shell(cmd)
except UnicodeDecodeError:
return
if isinstance(response, str) and response.strip():
self._adb_response = response.strip()
self.async_write_ha_state()
return self._adb_response | [
"async",
"def",
"adb_command",
"(",
"self",
",",
"cmd",
")",
":",
"key",
"=",
"self",
".",
"_keys",
".",
"get",
"(",
"cmd",
")",
"if",
"key",
":",
"await",
"self",
".",
"aftv",
".",
"adb_shell",
"(",
"f\"input keyevent {key}\"",
")",
"return",
"if",
"cmd",
"==",
"\"GET_PROPERTIES\"",
":",
"self",
".",
"_adb_response",
"=",
"str",
"(",
"await",
"self",
".",
"aftv",
".",
"get_properties_dict",
"(",
")",
")",
"self",
".",
"async_write_ha_state",
"(",
")",
"return",
"self",
".",
"_adb_response",
"try",
":",
"response",
"=",
"await",
"self",
".",
"aftv",
".",
"adb_shell",
"(",
"cmd",
")",
"except",
"UnicodeDecodeError",
":",
"return",
"if",
"isinstance",
"(",
"response",
",",
"str",
")",
"and",
"response",
".",
"strip",
"(",
")",
":",
"self",
".",
"_adb_response",
"=",
"response",
".",
"strip",
"(",
")",
"self",
".",
"async_write_ha_state",
"(",
")",
"return",
"self",
".",
"_adb_response"
] | [
584,
4
] | [
605,
33
] | python | en | ['en', 'en', 'en'] | True |
ADBDevice.learn_sendevent | (self) | Translate a key press on a remote to ADB 'sendevent' commands. | Translate a key press on a remote to ADB 'sendevent' commands. | async def learn_sendevent(self):
"""Translate a key press on a remote to ADB 'sendevent' commands."""
output = await self.aftv.learn_sendevent()
if output:
self._adb_response = output
self.async_write_ha_state()
msg = f"Output from service '{SERVICE_LEARN_SENDEVENT}' from {self.entity_id}: '{output}'"
self.hass.components.persistent_notification.async_create(
msg,
title="Android TV",
)
_LOGGER.info("%s", msg) | [
"async",
"def",
"learn_sendevent",
"(",
"self",
")",
":",
"output",
"=",
"await",
"self",
".",
"aftv",
".",
"learn_sendevent",
"(",
")",
"if",
"output",
":",
"self",
".",
"_adb_response",
"=",
"output",
"self",
".",
"async_write_ha_state",
"(",
")",
"msg",
"=",
"f\"Output from service '{SERVICE_LEARN_SENDEVENT}' from {self.entity_id}: '{output}'\"",
"self",
".",
"hass",
".",
"components",
".",
"persistent_notification",
".",
"async_create",
"(",
"msg",
",",
"title",
"=",
"\"Android TV\"",
",",
")",
"_LOGGER",
".",
"info",
"(",
"\"%s\"",
",",
"msg",
")"
] | [
608,
4
] | [
620,
35
] | python | en | ['en', 'en', 'en'] | True |
ADBDevice.adb_pull | (self, local_path, device_path) | Download a file from your Android TV / Fire TV device to your Home Assistant instance. | Download a file from your Android TV / Fire TV device to your Home Assistant instance. | async def adb_pull(self, local_path, device_path):
"""Download a file from your Android TV / Fire TV device to your Home Assistant instance."""
await self.aftv.adb_pull(local_path, device_path) | [
"async",
"def",
"adb_pull",
"(",
"self",
",",
"local_path",
",",
"device_path",
")",
":",
"await",
"self",
".",
"aftv",
".",
"adb_pull",
"(",
"local_path",
",",
"device_path",
")"
] | [
623,
4
] | [
625,
57
] | python | en | ['en', 'en', 'en'] | True |
ADBDevice.adb_push | (self, local_path, device_path) | Upload a file from your Home Assistant instance to an Android TV / Fire TV device. | Upload a file from your Home Assistant instance to an Android TV / Fire TV device. | async def adb_push(self, local_path, device_path):
"""Upload a file from your Home Assistant instance to an Android TV / Fire TV device."""
await self.aftv.adb_push(local_path, device_path) | [
"async",
"def",
"adb_push",
"(",
"self",
",",
"local_path",
",",
"device_path",
")",
":",
"await",
"self",
".",
"aftv",
".",
"adb_push",
"(",
"local_path",
",",
"device_path",
")"
] | [
628,
4
] | [
630,
57
] | python | en | ['en', 'en', 'en'] | True |
AndroidTVDevice.__init__ | (
self,
aftv,
name,
apps,
get_sources,
turn_on_command,
turn_off_command,
exclude_unnamed_apps,
screencap,
) | Initialize the Android TV device. | Initialize the Android TV device. | def __init__(
self,
aftv,
name,
apps,
get_sources,
turn_on_command,
turn_off_command,
exclude_unnamed_apps,
screencap,
):
"""Initialize the Android TV device."""
super().__init__(
aftv,
name,
apps,
get_sources,
turn_on_command,
turn_off_command,
exclude_unnamed_apps,
screencap,
)
self._is_volume_muted = None
self._volume_level = None | [
"def",
"__init__",
"(",
"self",
",",
"aftv",
",",
"name",
",",
"apps",
",",
"get_sources",
",",
"turn_on_command",
",",
"turn_off_command",
",",
"exclude_unnamed_apps",
",",
"screencap",
",",
")",
":",
"super",
"(",
")",
".",
"__init__",
"(",
"aftv",
",",
"name",
",",
"apps",
",",
"get_sources",
",",
"turn_on_command",
",",
"turn_off_command",
",",
"exclude_unnamed_apps",
",",
"screencap",
",",
")",
"self",
".",
"_is_volume_muted",
"=",
"None",
"self",
".",
"_volume_level",
"=",
"None"
] | [
636,
4
] | [
660,
33
] | python | en | ['en', 'en', 'en'] | True |
AndroidTVDevice.async_update | (self) | Update the device state and, if necessary, re-connect. | Update the device state and, if necessary, re-connect. | async def async_update(self):
"""Update the device state and, if necessary, re-connect."""
# Check if device is disconnected.
if not self._available:
# Try to connect
self._available = await self.aftv.adb_connect(always_log_errors=False)
# If the ADB connection is not intact, don't update.
if not self._available:
return
# Get the updated state and attributes.
(
state,
self._current_app,
running_apps,
_,
self._is_volume_muted,
self._volume_level,
self._hdmi_input,
) = await self.aftv.update(self._get_sources)
self._state = ANDROIDTV_STATES.get(state)
if self._state is None:
self._available = False
if running_apps:
sources = [
self._app_id_to_name.get(
app_id, app_id if not self._exclude_unnamed_apps else None
)
for app_id in running_apps
]
self._sources = [source for source in sources if source]
else:
self._sources = None | [
"async",
"def",
"async_update",
"(",
"self",
")",
":",
"# Check if device is disconnected.",
"if",
"not",
"self",
".",
"_available",
":",
"# Try to connect",
"self",
".",
"_available",
"=",
"await",
"self",
".",
"aftv",
".",
"adb_connect",
"(",
"always_log_errors",
"=",
"False",
")",
"# If the ADB connection is not intact, don't update.",
"if",
"not",
"self",
".",
"_available",
":",
"return",
"# Get the updated state and attributes.",
"(",
"state",
",",
"self",
".",
"_current_app",
",",
"running_apps",
",",
"_",
",",
"self",
".",
"_is_volume_muted",
",",
"self",
".",
"_volume_level",
",",
"self",
".",
"_hdmi_input",
",",
")",
"=",
"await",
"self",
".",
"aftv",
".",
"update",
"(",
"self",
".",
"_get_sources",
")",
"self",
".",
"_state",
"=",
"ANDROIDTV_STATES",
".",
"get",
"(",
"state",
")",
"if",
"self",
".",
"_state",
"is",
"None",
":",
"self",
".",
"_available",
"=",
"False",
"if",
"running_apps",
":",
"sources",
"=",
"[",
"self",
".",
"_app_id_to_name",
".",
"get",
"(",
"app_id",
",",
"app_id",
"if",
"not",
"self",
".",
"_exclude_unnamed_apps",
"else",
"None",
")",
"for",
"app_id",
"in",
"running_apps",
"]",
"self",
".",
"_sources",
"=",
"[",
"source",
"for",
"source",
"in",
"sources",
"if",
"source",
"]",
"else",
":",
"self",
".",
"_sources",
"=",
"None"
] | [
663,
4
] | [
698,
32
] | python | en | ['en', 'en', 'en'] | True |
AndroidTVDevice.is_volume_muted | (self) | Boolean if volume is currently muted. | Boolean if volume is currently muted. | def is_volume_muted(self):
"""Boolean if volume is currently muted."""
return self._is_volume_muted | [
"def",
"is_volume_muted",
"(",
"self",
")",
":",
"return",
"self",
".",
"_is_volume_muted"
] | [
701,
4
] | [
703,
36
] | python | en | ['en', 'en', 'en'] | True |
AndroidTVDevice.supported_features | (self) | Flag media player features that are supported. | Flag media player features that are supported. | def supported_features(self):
"""Flag media player features that are supported."""
return SUPPORT_ANDROIDTV | [
"def",
"supported_features",
"(",
"self",
")",
":",
"return",
"SUPPORT_ANDROIDTV"
] | [
706,
4
] | [
708,
32
] | python | en | ['en', 'en', 'en'] | True |
AndroidTVDevice.volume_level | (self) | Return the volume level. | Return the volume level. | def volume_level(self):
"""Return the volume level."""
return self._volume_level | [
"def",
"volume_level",
"(",
"self",
")",
":",
"return",
"self",
".",
"_volume_level"
] | [
711,
4
] | [
713,
33
] | python | en | ['en', 'no', 'en'] | True |
AndroidTVDevice.async_media_stop | (self) | Send stop command. | Send stop command. | async def async_media_stop(self):
"""Send stop command."""
await self.aftv.media_stop() | [
"async",
"def",
"async_media_stop",
"(",
"self",
")",
":",
"await",
"self",
".",
"aftv",
".",
"media_stop",
"(",
")"
] | [
716,
4
] | [
718,
36
] | python | en | ['en', 'en', 'en'] | True |
AndroidTVDevice.async_mute_volume | (self, mute) | Mute the volume. | Mute the volume. | async def async_mute_volume(self, mute):
"""Mute the volume."""
await self.aftv.mute_volume() | [
"async",
"def",
"async_mute_volume",
"(",
"self",
",",
"mute",
")",
":",
"await",
"self",
".",
"aftv",
".",
"mute_volume",
"(",
")"
] | [
721,
4
] | [
723,
37
] | python | en | ['en', 'sn', 'en'] | True |
AndroidTVDevice.async_set_volume_level | (self, volume) | Set the volume level. | Set the volume level. | async def async_set_volume_level(self, volume):
"""Set the volume level."""
await self.aftv.set_volume_level(volume) | [
"async",
"def",
"async_set_volume_level",
"(",
"self",
",",
"volume",
")",
":",
"await",
"self",
".",
"aftv",
".",
"set_volume_level",
"(",
"volume",
")"
] | [
726,
4
] | [
728,
48
] | python | en | ['en', 'sr', 'en'] | True |
AndroidTVDevice.async_volume_down | (self) | Send volume down command. | Send volume down command. | async def async_volume_down(self):
"""Send volume down command."""
self._volume_level = await self.aftv.volume_down(self._volume_level) | [
"async",
"def",
"async_volume_down",
"(",
"self",
")",
":",
"self",
".",
"_volume_level",
"=",
"await",
"self",
".",
"aftv",
".",
"volume_down",
"(",
"self",
".",
"_volume_level",
")"
] | [
731,
4
] | [
733,
76
] | python | en | ['en', 'it', 'en'] | True |
AndroidTVDevice.async_volume_up | (self) | Send volume up command. | Send volume up command. | async def async_volume_up(self):
"""Send volume up command."""
self._volume_level = await self.aftv.volume_up(self._volume_level) | [
"async",
"def",
"async_volume_up",
"(",
"self",
")",
":",
"self",
".",
"_volume_level",
"=",
"await",
"self",
".",
"aftv",
".",
"volume_up",
"(",
"self",
".",
"_volume_level",
")"
] | [
736,
4
] | [
738,
74
] | python | en | ['en', 'en', 'en'] | True |
FireTVDevice.async_update | (self) | Update the device state and, if necessary, re-connect. | Update the device state and, if necessary, re-connect. | async def async_update(self):
"""Update the device state and, if necessary, re-connect."""
# Check if device is disconnected.
if not self._available:
# Try to connect
self._available = await self.aftv.adb_connect(always_log_errors=False)
# If the ADB connection is not intact, don't update.
if not self._available:
return
# Get the `state`, `current_app`, `running_apps` and `hdmi_input`.
(
state,
self._current_app,
running_apps,
self._hdmi_input,
) = await self.aftv.update(self._get_sources)
self._state = ANDROIDTV_STATES.get(state)
if self._state is None:
self._available = False
if running_apps:
sources = [
self._app_id_to_name.get(
app_id, app_id if not self._exclude_unnamed_apps else None
)
for app_id in running_apps
]
self._sources = [source for source in sources if source]
else:
self._sources = None | [
"async",
"def",
"async_update",
"(",
"self",
")",
":",
"# Check if device is disconnected.",
"if",
"not",
"self",
".",
"_available",
":",
"# Try to connect",
"self",
".",
"_available",
"=",
"await",
"self",
".",
"aftv",
".",
"adb_connect",
"(",
"always_log_errors",
"=",
"False",
")",
"# If the ADB connection is not intact, don't update.",
"if",
"not",
"self",
".",
"_available",
":",
"return",
"# Get the `state`, `current_app`, `running_apps` and `hdmi_input`.",
"(",
"state",
",",
"self",
".",
"_current_app",
",",
"running_apps",
",",
"self",
".",
"_hdmi_input",
",",
")",
"=",
"await",
"self",
".",
"aftv",
".",
"update",
"(",
"self",
".",
"_get_sources",
")",
"self",
".",
"_state",
"=",
"ANDROIDTV_STATES",
".",
"get",
"(",
"state",
")",
"if",
"self",
".",
"_state",
"is",
"None",
":",
"self",
".",
"_available",
"=",
"False",
"if",
"running_apps",
":",
"sources",
"=",
"[",
"self",
".",
"_app_id_to_name",
".",
"get",
"(",
"app_id",
",",
"app_id",
"if",
"not",
"self",
".",
"_exclude_unnamed_apps",
"else",
"None",
")",
"for",
"app_id",
"in",
"running_apps",
"]",
"self",
".",
"_sources",
"=",
"[",
"source",
"for",
"source",
"in",
"sources",
"if",
"source",
"]",
"else",
":",
"self",
".",
"_sources",
"=",
"None"
] | [
745,
4
] | [
777,
32
] | python | en | ['en', 'en', 'en'] | True |
FireTVDevice.supported_features | (self) | Flag media player features that are supported. | Flag media player features that are supported. | def supported_features(self):
"""Flag media player features that are supported."""
return SUPPORT_FIRETV | [
"def",
"supported_features",
"(",
"self",
")",
":",
"return",
"SUPPORT_FIRETV"
] | [
780,
4
] | [
782,
29
] | python | en | ['en', 'en', 'en'] | True |
FireTVDevice.async_media_stop | (self) | Send stop (back) command. | Send stop (back) command. | async def async_media_stop(self):
"""Send stop (back) command."""
await self.aftv.back() | [
"async",
"def",
"async_media_stop",
"(",
"self",
")",
":",
"await",
"self",
".",
"aftv",
".",
"back",
"(",
")"
] | [
785,
4
] | [
787,
30
] | python | en | ['en', 'en', 'en'] | True |
setup_platform | (hass, config, add_entities, discovery_info=None) | Set up the Wink lights. | Set up the Wink lights. | def setup_platform(hass, config, add_entities, discovery_info=None):
"""Set up the Wink lights."""
for light in pywink.get_light_bulbs():
_id = light.object_id() + light.name()
if _id not in hass.data[DOMAIN]["unique_ids"]:
add_entities([WinkLight(light, hass)])
for light in pywink.get_light_groups():
_id = light.object_id() + light.name()
if _id not in hass.data[DOMAIN]["unique_ids"]:
add_entities([WinkLight(light, hass)]) | [
"def",
"setup_platform",
"(",
"hass",
",",
"config",
",",
"add_entities",
",",
"discovery_info",
"=",
"None",
")",
":",
"for",
"light",
"in",
"pywink",
".",
"get_light_bulbs",
"(",
")",
":",
"_id",
"=",
"light",
".",
"object_id",
"(",
")",
"+",
"light",
".",
"name",
"(",
")",
"if",
"_id",
"not",
"in",
"hass",
".",
"data",
"[",
"DOMAIN",
"]",
"[",
"\"unique_ids\"",
"]",
":",
"add_entities",
"(",
"[",
"WinkLight",
"(",
"light",
",",
"hass",
")",
"]",
")",
"for",
"light",
"in",
"pywink",
".",
"get_light_groups",
"(",
")",
":",
"_id",
"=",
"light",
".",
"object_id",
"(",
")",
"+",
"light",
".",
"name",
"(",
")",
"if",
"_id",
"not",
"in",
"hass",
".",
"data",
"[",
"DOMAIN",
"]",
"[",
"\"unique_ids\"",
"]",
":",
"add_entities",
"(",
"[",
"WinkLight",
"(",
"light",
",",
"hass",
")",
"]",
")"
] | [
20,
0
] | [
30,
50
] | python | en | ['en', 'da', 'en'] | True |
WinkLight.async_added_to_hass | (self) | Call when entity is added to hass. | Call when entity is added to hass. | async def async_added_to_hass(self):
"""Call when entity is added to hass."""
self.hass.data[DOMAIN]["entities"]["light"].append(self) | [
"async",
"def",
"async_added_to_hass",
"(",
"self",
")",
":",
"self",
".",
"hass",
".",
"data",
"[",
"DOMAIN",
"]",
"[",
"\"entities\"",
"]",
"[",
"\"light\"",
"]",
".",
"append",
"(",
"self",
")"
] | [
36,
4
] | [
38,
64
] | python | en | ['en', 'en', 'en'] | True |
WinkLight.is_on | (self) | Return true if light is on. | Return true if light is on. | def is_on(self):
"""Return true if light is on."""
return self.wink.state() | [
"def",
"is_on",
"(",
"self",
")",
":",
"return",
"self",
".",
"wink",
".",
"state",
"(",
")"
] | [
41,
4
] | [
43,
32
] | python | en | ['en', 'et', 'en'] | True |
WinkLight.brightness | (self) | Return the brightness of the light. | Return the brightness of the light. | def brightness(self):
"""Return the brightness of the light."""
if self.wink.brightness() is not None:
return int(self.wink.brightness() * 255)
return None | [
"def",
"brightness",
"(",
"self",
")",
":",
"if",
"self",
".",
"wink",
".",
"brightness",
"(",
")",
"is",
"not",
"None",
":",
"return",
"int",
"(",
"self",
".",
"wink",
".",
"brightness",
"(",
")",
"*",
"255",
")",
"return",
"None"
] | [
46,
4
] | [
50,
19
] | python | en | ['en', 'no', 'en'] | True |
WinkLight.hs_color | (self) | Define current bulb color. | Define current bulb color. | def hs_color(self):
"""Define current bulb color."""
if self.wink.supports_xy_color():
return color_util.color_xy_to_hs(*self.wink.color_xy())
if self.wink.supports_hue_saturation():
hue = self.wink.color_hue()
saturation = self.wink.color_saturation()
if hue is not None and saturation is not None:
return hue * 360, saturation * 100
return None | [
"def",
"hs_color",
"(",
"self",
")",
":",
"if",
"self",
".",
"wink",
".",
"supports_xy_color",
"(",
")",
":",
"return",
"color_util",
".",
"color_xy_to_hs",
"(",
"*",
"self",
".",
"wink",
".",
"color_xy",
"(",
")",
")",
"if",
"self",
".",
"wink",
".",
"supports_hue_saturation",
"(",
")",
":",
"hue",
"=",
"self",
".",
"wink",
".",
"color_hue",
"(",
")",
"saturation",
"=",
"self",
".",
"wink",
".",
"color_saturation",
"(",
")",
"if",
"hue",
"is",
"not",
"None",
"and",
"saturation",
"is",
"not",
"None",
":",
"return",
"hue",
"*",
"360",
",",
"saturation",
"*",
"100",
"return",
"None"
] | [
53,
4
] | [
64,
19
] | python | en | ['ro', 'en', 'en'] | True |
WinkLight.color_temp | (self) | Define current bulb color in degrees Kelvin. | Define current bulb color in degrees Kelvin. | def color_temp(self):
"""Define current bulb color in degrees Kelvin."""
if not self.wink.supports_temperature():
return None
return color_util.color_temperature_kelvin_to_mired(
self.wink.color_temperature_kelvin()
) | [
"def",
"color_temp",
"(",
"self",
")",
":",
"if",
"not",
"self",
".",
"wink",
".",
"supports_temperature",
"(",
")",
":",
"return",
"None",
"return",
"color_util",
".",
"color_temperature_kelvin_to_mired",
"(",
"self",
".",
"wink",
".",
"color_temperature_kelvin",
"(",
")",
")"
] | [
67,
4
] | [
73,
9
] | python | en | ['ro', 'en', 'en'] | True |
WinkLight.supported_features | (self) | Flag supported features. | Flag supported features. | def supported_features(self):
"""Flag supported features."""
supports = SUPPORT_BRIGHTNESS
if self.wink.supports_temperature():
supports = supports | SUPPORT_COLOR_TEMP
if self.wink.supports_xy_color():
supports = supports | SUPPORT_COLOR
elif self.wink.supports_hue_saturation():
supports = supports | SUPPORT_COLOR
return supports | [
"def",
"supported_features",
"(",
"self",
")",
":",
"supports",
"=",
"SUPPORT_BRIGHTNESS",
"if",
"self",
".",
"wink",
".",
"supports_temperature",
"(",
")",
":",
"supports",
"=",
"supports",
"|",
"SUPPORT_COLOR_TEMP",
"if",
"self",
".",
"wink",
".",
"supports_xy_color",
"(",
")",
":",
"supports",
"=",
"supports",
"|",
"SUPPORT_COLOR",
"elif",
"self",
".",
"wink",
".",
"supports_hue_saturation",
"(",
")",
":",
"supports",
"=",
"supports",
"|",
"SUPPORT_COLOR",
"return",
"supports"
] | [
76,
4
] | [
85,
23
] | python | en | ['da', 'en', 'en'] | True |
WinkLight.turn_on | (self, **kwargs) | Turn the switch on. | Turn the switch on. | def turn_on(self, **kwargs):
"""Turn the switch on."""
brightness = kwargs.get(ATTR_BRIGHTNESS)
hs_color = kwargs.get(ATTR_HS_COLOR)
color_temp_mired = kwargs.get(ATTR_COLOR_TEMP)
state_kwargs = {}
if hs_color:
if self.wink.supports_xy_color():
xy_color = color_util.color_hs_to_xy(*hs_color)
state_kwargs["color_xy"] = xy_color
if self.wink.supports_hue_saturation():
hs_scaled = hs_color[0] / 360, hs_color[1] / 100
state_kwargs["color_hue_saturation"] = hs_scaled
if color_temp_mired:
state_kwargs["color_kelvin"] = mired_to_kelvin(color_temp_mired)
if brightness:
state_kwargs["brightness"] = brightness / 255.0
self.wink.set_state(True, **state_kwargs) | [
"def",
"turn_on",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"brightness",
"=",
"kwargs",
".",
"get",
"(",
"ATTR_BRIGHTNESS",
")",
"hs_color",
"=",
"kwargs",
".",
"get",
"(",
"ATTR_HS_COLOR",
")",
"color_temp_mired",
"=",
"kwargs",
".",
"get",
"(",
"ATTR_COLOR_TEMP",
")",
"state_kwargs",
"=",
"{",
"}",
"if",
"hs_color",
":",
"if",
"self",
".",
"wink",
".",
"supports_xy_color",
"(",
")",
":",
"xy_color",
"=",
"color_util",
".",
"color_hs_to_xy",
"(",
"*",
"hs_color",
")",
"state_kwargs",
"[",
"\"color_xy\"",
"]",
"=",
"xy_color",
"if",
"self",
".",
"wink",
".",
"supports_hue_saturation",
"(",
")",
":",
"hs_scaled",
"=",
"hs_color",
"[",
"0",
"]",
"/",
"360",
",",
"hs_color",
"[",
"1",
"]",
"/",
"100",
"state_kwargs",
"[",
"\"color_hue_saturation\"",
"]",
"=",
"hs_scaled",
"if",
"color_temp_mired",
":",
"state_kwargs",
"[",
"\"color_kelvin\"",
"]",
"=",
"mired_to_kelvin",
"(",
"color_temp_mired",
")",
"if",
"brightness",
":",
"state_kwargs",
"[",
"\"brightness\"",
"]",
"=",
"brightness",
"/",
"255.0",
"self",
".",
"wink",
".",
"set_state",
"(",
"True",
",",
"*",
"*",
"state_kwargs",
")"
] | [
87,
4
] | [
109,
49
] | python | en | ['en', 'en', 'en'] | True |
WinkLight.turn_off | (self, **kwargs) | Turn the switch off. | Turn the switch off. | def turn_off(self, **kwargs):
"""Turn the switch off."""
self.wink.set_state(False) | [
"def",
"turn_off",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"self",
".",
"wink",
".",
"set_state",
"(",
"False",
")"
] | [
111,
4
] | [
113,
34
] | python | en | ['en', 'en', 'en'] | True |
hash_from_url | (url: str) | Hash url to create a unique ID. | Hash url to create a unique ID. | def hash_from_url(url: str):
"""Hash url to create a unique ID."""
return hashlib.sha256(url.encode("utf-8")).hexdigest() | [
"def",
"hash_from_url",
"(",
"url",
":",
"str",
")",
":",
"return",
"hashlib",
".",
"sha256",
"(",
"url",
".",
"encode",
"(",
"\"utf-8\"",
")",
")",
".",
"hexdigest",
"(",
")"
] | [
4,
0
] | [
6,
58
] | python | en | ['es', 'it', 'en'] | False |
clust_name | (hostname,username,password) | Finding cluster name & feeding into the targets.json file for labels of prometheus.
In case no cluster name is found populating 'Orphan VM' value. ReST endpoint used 'pools/default'.
Parameters
----------
hostname : str
The hostname of the Couchbase VM.
username : str
The username of that given Couchbase VM.
password : str
The password of that given Couchbase VM.
| Finding cluster name & feeding into the targets.json file for labels of prometheus.
In case no cluster name is found populating 'Orphan VM' value. ReST endpoint used 'pools/default'.
Parameters
----------
hostname : str
The hostname of the Couchbase VM.
username : str
The username of that given Couchbase VM.
password : str
The password of that given Couchbase VM.
| def clust_name(hostname,username,password):
'''Finding cluster name & feeding into the targets.json file for labels of prometheus.
In case no cluster name is found populating 'Orphan VM' value. ReST endpoint used 'pools/default'.
Parameters
----------
hostname : str
The hostname of the Couchbase VM.
username : str
The username of that given Couchbase VM.
password : str
The password of that given Couchbase VM.
'''
port='8091'
URL='http://'+hostname+':'+port
try:
resp = requests.get(URL + '/pools/default', auth=HTTPBasicAuth(username, password))
if resp.status_code != 200:
return 0
else:
data=resp.json()
cluster_name=data['clusterName']
if len(cluster_name.replace(" ","")) == 0:
return "Orphan VM. No, Cluster Name."
else:
return cluster_name
except requests.exceptions.RequestException as err:
print (hostname + " - OOps: Something Else",err)
except requests.exceptions.HTTPError as errh:
print (hostname + " - Http Error:",errh)
except requests.exceptions.ConnectionError as errc:
print (hostname + " - Error Connecting:",errc)
except requests.exceptions.Timeout as errt:
print (hostname + " - Timeout Error:",errt) | [
"def",
"clust_name",
"(",
"hostname",
",",
"username",
",",
"password",
")",
":",
"port",
"=",
"'8091'",
"URL",
"=",
"'http://'",
"+",
"hostname",
"+",
"':'",
"+",
"port",
"try",
":",
"resp",
"=",
"requests",
".",
"get",
"(",
"URL",
"+",
"'/pools/default'",
",",
"auth",
"=",
"HTTPBasicAuth",
"(",
"username",
",",
"password",
")",
")",
"if",
"resp",
".",
"status_code",
"!=",
"200",
":",
"return",
"0",
"else",
":",
"data",
"=",
"resp",
".",
"json",
"(",
")",
"cluster_name",
"=",
"data",
"[",
"'clusterName'",
"]",
"if",
"len",
"(",
"cluster_name",
".",
"replace",
"(",
"\" \"",
",",
"\"\"",
")",
")",
"==",
"0",
":",
"return",
"\"Orphan VM. No, Cluster Name.\"",
"else",
":",
"return",
"cluster_name",
"except",
"requests",
".",
"exceptions",
".",
"RequestException",
"as",
"err",
":",
"print",
"(",
"hostname",
"+",
"\" - OOps: Something Else\"",
",",
"err",
")",
"except",
"requests",
".",
"exceptions",
".",
"HTTPError",
"as",
"errh",
":",
"print",
"(",
"hostname",
"+",
"\" - Http Error:\"",
",",
"errh",
")",
"except",
"requests",
".",
"exceptions",
".",
"ConnectionError",
"as",
"errc",
":",
"print",
"(",
"hostname",
"+",
"\" - Error Connecting:\"",
",",
"errc",
")",
"except",
"requests",
".",
"exceptions",
".",
"Timeout",
"as",
"errt",
":",
"print",
"(",
"hostname",
"+",
"\" - Timeout Error:\"",
",",
"errt",
")"
] | [
10,
0
] | [
46,
51
] | python | en | ['en', 'en', 'en'] | True |
get_empty_port | () | Finding and returning an empty port-number for starting couchbase-exporter process.
Each VM for exporting stats by couchbase-exporter requires it's own specific port number.
Returns
-------
port_no : int
The empty port number returned for CB-Exporter to spin its instance.
| Finding and returning an empty port-number for starting couchbase-exporter process.
Each VM for exporting stats by couchbase-exporter requires it's own specific port number. | def get_empty_port():
'''Finding and returning an empty port-number for starting couchbase-exporter process.
Each VM for exporting stats by couchbase-exporter requires it's own specific port number.
Returns
-------
port_no : int
The empty port number returned for CB-Exporter to spin its instance.
'''
# Assumption empty is available in the given VM.
port_no = -1
mssg_dgst = '-1 Imaginary Port'
while( len(mssg_dgst) != 0 ):
port_no = random.randint(16384,65535)
eff_command = "netstat -anp | grep ':"+str(port_no)+"'"
# giving shell=True is a bad code design, for insecure input: hazardous pointed by documentation
p = subprocess.Popen(eff_command, stdout=subprocess.PIPE, shell=True)
mssg_dgst = p.communicate()[0]
return port_no | [
"def",
"get_empty_port",
"(",
")",
":",
"# Assumption empty is available in the given VM.",
"port_no",
"=",
"-",
"1",
"mssg_dgst",
"=",
"'-1 Imaginary Port'",
"while",
"(",
"len",
"(",
"mssg_dgst",
")",
"!=",
"0",
")",
":",
"port_no",
"=",
"random",
".",
"randint",
"(",
"16384",
",",
"65535",
")",
"eff_command",
"=",
"\"netstat -anp | grep ':\"",
"+",
"str",
"(",
"port_no",
")",
"+",
"\"'\"",
"# giving shell=True is a bad code design, for insecure input: hazardous pointed by documentation",
"p",
"=",
"subprocess",
".",
"Popen",
"(",
"eff_command",
",",
"stdout",
"=",
"subprocess",
".",
"PIPE",
",",
"shell",
"=",
"True",
")",
"mssg_dgst",
"=",
"p",
".",
"communicate",
"(",
")",
"[",
"0",
"]",
"return",
"port_no"
] | [
49,
0
] | [
69,
18
] | python | en | ['en', 'en', 'en'] | True |
write_util | (hostname,username, password, port_no) | write VM related information into the reference file.
Parameters
----------
hostname : str
The hostname of the Couchbase VM.
username : str
The username of that given Couchbase VM.
password : str
The password of that given Couchbase VM.
port_no : int
The port-no on which CB-Exporter instance is running.
| write VM related information into the reference file.
Parameters
----------
hostname : str
The hostname of the Couchbase VM.
username : str
The username of that given Couchbase VM.
password : str
The password of that given Couchbase VM.
port_no : int
The port-no on which CB-Exporter instance is running.
| def write_util(hostname,username, password, port_no):
'''write VM related information into the reference file.
Parameters
----------
hostname : str
The hostname of the Couchbase VM.
username : str
The username of that given Couchbase VM.
password : str
The password of that given Couchbase VM.
port_no : int
The port-no on which CB-Exporter instance is running.
'''
with open("targets.json", "r") as read_file:
data=json.load(read_file)
str_val = username+","+password+","+str(port_no)
data[hostname] = str_val
print("Inserted Data: for key"+" hostname "+data[hostname])
with open("targets.json", "w+") as write_file:
data=json.dump(data,write_file, indent=4, separators=(',', ': ')) | [
"def",
"write_util",
"(",
"hostname",
",",
"username",
",",
"password",
",",
"port_no",
")",
":",
"with",
"open",
"(",
"\"targets.json\"",
",",
"\"r\"",
")",
"as",
"read_file",
":",
"data",
"=",
"json",
".",
"load",
"(",
"read_file",
")",
"str_val",
"=",
"username",
"+",
"\",\"",
"+",
"password",
"+",
"\",\"",
"+",
"str",
"(",
"port_no",
")",
"data",
"[",
"hostname",
"]",
"=",
"str_val",
"print",
"(",
"\"Inserted Data: for key\"",
"+",
"\" hostname \"",
"+",
"data",
"[",
"hostname",
"]",
")",
"with",
"open",
"(",
"\"targets.json\"",
",",
"\"w+\"",
")",
"as",
"write_file",
":",
"data",
"=",
"json",
".",
"dump",
"(",
"data",
",",
"write_file",
",",
"indent",
"=",
"4",
",",
"separators",
"=",
"(",
"','",
",",
"': '",
")",
")"
] | [
74,
0
] | [
94,
73
] | python | en | ['en', 'en', 'en'] | True |
get_util | (hostname) | return information related to particular hostname passed as string argument. | return information related to particular hostname passed as string argument. | def get_util(hostname):
'''return information related to particular hostname passed as string argument.'''
with open("targets.json", "r") as read_file:
data=json.load(read_file)
if hostname in data:
return data[hostname]
return "Key Not Present. Please Check." | [
"def",
"get_util",
"(",
"hostname",
")",
":",
"with",
"open",
"(",
"\"targets.json\"",
",",
"\"r\"",
")",
"as",
"read_file",
":",
"data",
"=",
"json",
".",
"load",
"(",
"read_file",
")",
"if",
"hostname",
"in",
"data",
":",
"return",
"data",
"[",
"hostname",
"]",
"return",
"\"Key Not Present. Please Check.\""
] | [
97,
0
] | [
104,
43
] | python | en | ['en', 'en', 'en'] | True |
get_view | () | returns all information of reference targets.json file under consideration. | returns all information of reference targets.json file under consideration. | def get_view():
'''returns all information of reference targets.json file under consideration. '''
with open("targets.json", "r") as read_file:
data=json.load(read_file)
return data | [
"def",
"get_view",
"(",
")",
":",
"with",
"open",
"(",
"\"targets.json\"",
",",
"\"r\"",
")",
"as",
"read_file",
":",
"data",
"=",
"json",
".",
"load",
"(",
"read_file",
")",
"return",
"data"
] | [
107,
0
] | [
112,
15
] | python | en | ['en', 'en', 'en'] | True |
del_util | (hostname) | Delete given Key entry from reference targets.json file. | Delete given Key entry from reference targets.json file. | def del_util(hostname):
'''Delete given Key entry from reference targets.json file.'''
with open("targets.json", "r") as read_file:
data=json.load(read_file)
str_val = ""
port_no = "-1"
if hostname in data:
str_val = data.pop(hostname)
val_lst = str_val.split(',')
port_no = val_lst[2]
str_val = "Values Deleted: "+str_val+" for Key: "+hostname
else:
str_val = "Key Not Present. Please Check."
with open("targets.json", "w+") as write_file:
json.dump(data,write_file, indent=4, separators=(',', ': '))
return str_val, port_no | [
"def",
"del_util",
"(",
"hostname",
")",
":",
"with",
"open",
"(",
"\"targets.json\"",
",",
"\"r\"",
")",
"as",
"read_file",
":",
"data",
"=",
"json",
".",
"load",
"(",
"read_file",
")",
"str_val",
"=",
"\"\"",
"port_no",
"=",
"\"-1\"",
"if",
"hostname",
"in",
"data",
":",
"str_val",
"=",
"data",
".",
"pop",
"(",
"hostname",
")",
"val_lst",
"=",
"str_val",
".",
"split",
"(",
"','",
")",
"port_no",
"=",
"val_lst",
"[",
"2",
"]",
"str_val",
"=",
"\"Values Deleted: \"",
"+",
"str_val",
"+",
"\" for Key: \"",
"+",
"hostname",
"else",
":",
"str_val",
"=",
"\"Key Not Present. Please Check.\"",
"with",
"open",
"(",
"\"targets.json\"",
",",
"\"w+\"",
")",
"as",
"write_file",
":",
"json",
".",
"dump",
"(",
"data",
",",
"write_file",
",",
"indent",
"=",
"4",
",",
"separators",
"=",
"(",
"','",
",",
"': '",
")",
")",
"return",
"str_val",
",",
"port_no"
] | [
115,
0
] | [
131,
27
] | python | en | ['en', 'en', 'en'] | True |
cbexport_start | (hostname) | Start the couchbase exporter with executing the command. | Start the couchbase exporter with executing the command. | def cbexport_start(hostname):
'''Start the couchbase exporter with executing the command.'''
with open("targets.json", "r") as read_file:
data=json.load(read_file)
if hostname in data:
str_vals=data[hostname]
lst_vals=str_vals.split(",")
eff_command="nohup ./../CBExporter/couchbase-exporter --couchbase.username "+lst_vals[0]+" --couchbase.password "+lst_vals[1]+" --web.listen-address="+ \
'":'+lst_vals[2]+'" --couchbase.url="http://'+hostname+':8091" &'
else:
eff_command="echo Malformed Command Exception: Key Not Found."
p = subprocess.Popen(eff_command, stdout=subprocess.PIPE, shell=True)
mssg_dgst = p.communicate()[0]
return eff_command, mssg_dgst | [
"def",
"cbexport_start",
"(",
"hostname",
")",
":",
"with",
"open",
"(",
"\"targets.json\"",
",",
"\"r\"",
")",
"as",
"read_file",
":",
"data",
"=",
"json",
".",
"load",
"(",
"read_file",
")",
"if",
"hostname",
"in",
"data",
":",
"str_vals",
"=",
"data",
"[",
"hostname",
"]",
"lst_vals",
"=",
"str_vals",
".",
"split",
"(",
"\",\"",
")",
"eff_command",
"=",
"\"nohup ./../CBExporter/couchbase-exporter --couchbase.username \"",
"+",
"lst_vals",
"[",
"0",
"]",
"+",
"\" --couchbase.password \"",
"+",
"lst_vals",
"[",
"1",
"]",
"+",
"\" --web.listen-address=\"",
"+",
"'\":'",
"+",
"lst_vals",
"[",
"2",
"]",
"+",
"'\" --couchbase.url=\"http://'",
"+",
"hostname",
"+",
"':8091\" &'",
"else",
":",
"eff_command",
"=",
"\"echo Malformed Command Exception: Key Not Found.\"",
"p",
"=",
"subprocess",
".",
"Popen",
"(",
"eff_command",
",",
"stdout",
"=",
"subprocess",
".",
"PIPE",
",",
"shell",
"=",
"True",
")",
"mssg_dgst",
"=",
"p",
".",
"communicate",
"(",
")",
"[",
"0",
"]",
"return",
"eff_command",
",",
"mssg_dgst"
] | [
134,
0
] | [
148,
33
] | python | en | ['en', 'en', 'en'] | True |
cbexport_del | (port_no) | Delete or end the couchbase exporter process. | Delete or end the couchbase exporter process. | def cbexport_del(port_no):
'''Delete or end the couchbase exporter process.'''
# Need to be 'root' to know the process id information.
port_command = 'netstat -nlp | grep ":'+str(port_no)+'"'
p = subprocess.Popen(port_command, stdout=subprocess.PIPE, shell=True)
mssg_dgst = p.communicate()[0]
if len(mssg_dgst) != 0:
mssg_lst = mssg_dgst.split(" ")
mssg_lst[:] = [item for item in mssg_lst if item != '']
rgx = re.compile(r'[0-9]+\/\w+')
pid_list = list(filter(rgx.match, mssg_lst))
pid_list = map(lambda x: x.split("/")[0], pid_list)
if len(pid_list) != 0:
for x in pid_list:
kill_command = 'kill -SIGTERM '+str(x)
p = subprocess.Popen(kill_command, stdout=subprocess.PIPE, shell=True)
mssg_dgst = p.communicate()[0]
print(mssg_dgst)
else:
print("Port number not in use.") | [
"def",
"cbexport_del",
"(",
"port_no",
")",
":",
"# Need to be 'root' to know the process id information.",
"port_command",
"=",
"'netstat -nlp | grep \":'",
"+",
"str",
"(",
"port_no",
")",
"+",
"'\"'",
"p",
"=",
"subprocess",
".",
"Popen",
"(",
"port_command",
",",
"stdout",
"=",
"subprocess",
".",
"PIPE",
",",
"shell",
"=",
"True",
")",
"mssg_dgst",
"=",
"p",
".",
"communicate",
"(",
")",
"[",
"0",
"]",
"if",
"len",
"(",
"mssg_dgst",
")",
"!=",
"0",
":",
"mssg_lst",
"=",
"mssg_dgst",
".",
"split",
"(",
"\" \"",
")",
"mssg_lst",
"[",
":",
"]",
"=",
"[",
"item",
"for",
"item",
"in",
"mssg_lst",
"if",
"item",
"!=",
"''",
"]",
"rgx",
"=",
"re",
".",
"compile",
"(",
"r'[0-9]+\\/\\w+'",
")",
"pid_list",
"=",
"list",
"(",
"filter",
"(",
"rgx",
".",
"match",
",",
"mssg_lst",
")",
")",
"pid_list",
"=",
"map",
"(",
"lambda",
"x",
":",
"x",
".",
"split",
"(",
"\"/\"",
")",
"[",
"0",
"]",
",",
"pid_list",
")",
"if",
"len",
"(",
"pid_list",
")",
"!=",
"0",
":",
"for",
"x",
"in",
"pid_list",
":",
"kill_command",
"=",
"'kill -SIGTERM '",
"+",
"str",
"(",
"x",
")",
"p",
"=",
"subprocess",
".",
"Popen",
"(",
"kill_command",
",",
"stdout",
"=",
"subprocess",
".",
"PIPE",
",",
"shell",
"=",
"True",
")",
"mssg_dgst",
"=",
"p",
".",
"communicate",
"(",
")",
"[",
"0",
"]",
"print",
"(",
"mssg_dgst",
")",
"else",
":",
"print",
"(",
"\"Port number not in use.\"",
")"
] | [
155,
0
] | [
175,
40
] | python | en | ['en', 'en', 'en'] | True |
write_targets | (port_no,hostname,username,password) | Write into json file of prometheus running server. For dynamic detection by Node Exporter. | Write into json file of prometheus running server. For dynamic detection by Node Exporter. | def write_targets(port_no,hostname,username,password):
'''Write into json file of prometheus running server. For dynamic detection by Node Exporter.'''
targ_str = "localhost:"+str(port_no)
# These two entries can be fetched from global repository
# get this data with another rest query to server
clus_str = clust_name(hostname, username, password)
# eff_net_str for inputting into targets.json
eff_net_str = '{ "targets": [ "localhost:'+str(port_no)+'" ], "labels": { "cluster": "'+clus_str+'"} }'
data_appnd = json.loads(eff_net_str)
with open('../prometheus-2.9.2.linux-amd64/targets.json','r') as read_file:
data = json.load(read_file)
data.append(data_appnd)
with open('../prometheus-2.9.2.linux-amd64/targets.json','w+') as write_file:
data=json.dump(data,write_file, indent=4, separators=(',', ': ')) | [
"def",
"write_targets",
"(",
"port_no",
",",
"hostname",
",",
"username",
",",
"password",
")",
":",
"targ_str",
"=",
"\"localhost:\"",
"+",
"str",
"(",
"port_no",
")",
"# These two entries can be fetched from global repository",
"# get this data with another rest query to server",
"clus_str",
"=",
"clust_name",
"(",
"hostname",
",",
"username",
",",
"password",
")",
"# eff_net_str for inputting into targets.json",
"eff_net_str",
"=",
"'{ \"targets\": [ \"localhost:'",
"+",
"str",
"(",
"port_no",
")",
"+",
"'\" ], \"labels\": { \"cluster\": \"'",
"+",
"clus_str",
"+",
"'\"} }'",
"data_appnd",
"=",
"json",
".",
"loads",
"(",
"eff_net_str",
")",
"with",
"open",
"(",
"'../prometheus-2.9.2.linux-amd64/targets.json'",
",",
"'r'",
")",
"as",
"read_file",
":",
"data",
"=",
"json",
".",
"load",
"(",
"read_file",
")",
"data",
".",
"append",
"(",
"data_appnd",
")",
"with",
"open",
"(",
"'../prometheus-2.9.2.linux-amd64/targets.json'",
",",
"'w+'",
")",
"as",
"write_file",
":",
"data",
"=",
"json",
".",
"dump",
"(",
"data",
",",
"write_file",
",",
"indent",
"=",
"4",
",",
"separators",
"=",
"(",
"','",
",",
"': '",
")",
")"
] | [
178,
0
] | [
192,
73
] | python | en | ['en', 'en', 'en'] | True |
del_targets | (port_no) | Delete value from json file of prometheus running server. For dynamic detection by Node Exporter. | Delete value from json file of prometheus running server. For dynamic detection by Node Exporter. | def del_targets(port_no):
'''Delete value from json file of prometheus running server. For dynamic detection by Node Exporter.'''
with open('../prometheus-2.9.2.linux-amd64/targets.json','r') as read_file:
data = json.load(read_file)
i=0
for x in data:
str_ports = ''.join(x['targets'])
str_lst = re.findall(r'\d+', str_ports)
str_ports = ''.join(str_lst)
# print(str_ports)
if str_ports == str(port_no):
# print(re.findall(r'\d+', str(x['targets'][0])))
# print(str(port_no))
s=data.pop(i)
# print(s)
i=i+1
# print(data)
with open('../prometheus-2.9.2.linux-amd64/targets.json','w+') as write_file:
data=json.dump(data,write_file, indent=4, separators=(',', ': ')) | [
"def",
"del_targets",
"(",
"port_no",
")",
":",
"with",
"open",
"(",
"'../prometheus-2.9.2.linux-amd64/targets.json'",
",",
"'r'",
")",
"as",
"read_file",
":",
"data",
"=",
"json",
".",
"load",
"(",
"read_file",
")",
"i",
"=",
"0",
"for",
"x",
"in",
"data",
":",
"str_ports",
"=",
"''",
".",
"join",
"(",
"x",
"[",
"'targets'",
"]",
")",
"str_lst",
"=",
"re",
".",
"findall",
"(",
"r'\\d+'",
",",
"str_ports",
")",
"str_ports",
"=",
"''",
".",
"join",
"(",
"str_lst",
")",
"# print(str_ports)",
"if",
"str_ports",
"==",
"str",
"(",
"port_no",
")",
":",
"# print(re.findall(r'\\d+', str(x['targets'][0])))",
"# print(str(port_no))",
"s",
"=",
"data",
".",
"pop",
"(",
"i",
")",
"# print(s)",
"i",
"=",
"i",
"+",
"1",
"# print(data)",
"with",
"open",
"(",
"'../prometheus-2.9.2.linux-amd64/targets.json'",
",",
"'w+'",
")",
"as",
"write_file",
":",
"data",
"=",
"json",
".",
"dump",
"(",
"data",
",",
"write_file",
",",
"indent",
"=",
"4",
",",
"separators",
"=",
"(",
"','",
",",
"': '",
")",
")"
] | [
195,
0
] | [
214,
73
] | python | en | ['en', 'en', 'en'] | True |
async_set_lights_xy | (hass, lights, x_val, y_val, brightness, transition) | Set color of array of lights. | Set color of array of lights. | async def async_set_lights_xy(hass, lights, x_val, y_val, brightness, transition):
"""Set color of array of lights."""
for light in lights:
if is_on(hass, light):
service_data = {ATTR_ENTITY_ID: light}
if x_val is not None and y_val is not None:
service_data[ATTR_XY_COLOR] = [x_val, y_val]
if brightness is not None:
service_data[ATTR_BRIGHTNESS] = brightness
service_data[ATTR_WHITE_VALUE] = brightness
if transition is not None:
service_data[ATTR_TRANSITION] = transition
await hass.services.async_call(LIGHT_DOMAIN, SERVICE_TURN_ON, service_data) | [
"async",
"def",
"async_set_lights_xy",
"(",
"hass",
",",
"lights",
",",
"x_val",
",",
"y_val",
",",
"brightness",
",",
"transition",
")",
":",
"for",
"light",
"in",
"lights",
":",
"if",
"is_on",
"(",
"hass",
",",
"light",
")",
":",
"service_data",
"=",
"{",
"ATTR_ENTITY_ID",
":",
"light",
"}",
"if",
"x_val",
"is",
"not",
"None",
"and",
"y_val",
"is",
"not",
"None",
":",
"service_data",
"[",
"ATTR_XY_COLOR",
"]",
"=",
"[",
"x_val",
",",
"y_val",
"]",
"if",
"brightness",
"is",
"not",
"None",
":",
"service_data",
"[",
"ATTR_BRIGHTNESS",
"]",
"=",
"brightness",
"service_data",
"[",
"ATTR_WHITE_VALUE",
"]",
"=",
"brightness",
"if",
"transition",
"is",
"not",
"None",
":",
"service_data",
"[",
"ATTR_TRANSITION",
"]",
"=",
"transition",
"await",
"hass",
".",
"services",
".",
"async_call",
"(",
"LIGHT_DOMAIN",
",",
"SERVICE_TURN_ON",
",",
"service_data",
")"
] | [
89,
0
] | [
101,
87
] | python | en | ['en', 'da', 'en'] | True |
async_set_lights_temp | (hass, lights, mired, brightness, transition) | Set color of array of lights. | Set color of array of lights. | async def async_set_lights_temp(hass, lights, mired, brightness, transition):
"""Set color of array of lights."""
for light in lights:
if is_on(hass, light):
service_data = {ATTR_ENTITY_ID: light}
if mired is not None:
service_data[ATTR_COLOR_TEMP] = int(mired)
if brightness is not None:
service_data[ATTR_BRIGHTNESS] = brightness
if transition is not None:
service_data[ATTR_TRANSITION] = transition
await hass.services.async_call(LIGHT_DOMAIN, SERVICE_TURN_ON, service_data) | [
"async",
"def",
"async_set_lights_temp",
"(",
"hass",
",",
"lights",
",",
"mired",
",",
"brightness",
",",
"transition",
")",
":",
"for",
"light",
"in",
"lights",
":",
"if",
"is_on",
"(",
"hass",
",",
"light",
")",
":",
"service_data",
"=",
"{",
"ATTR_ENTITY_ID",
":",
"light",
"}",
"if",
"mired",
"is",
"not",
"None",
":",
"service_data",
"[",
"ATTR_COLOR_TEMP",
"]",
"=",
"int",
"(",
"mired",
")",
"if",
"brightness",
"is",
"not",
"None",
":",
"service_data",
"[",
"ATTR_BRIGHTNESS",
"]",
"=",
"brightness",
"if",
"transition",
"is",
"not",
"None",
":",
"service_data",
"[",
"ATTR_TRANSITION",
"]",
"=",
"transition",
"await",
"hass",
".",
"services",
".",
"async_call",
"(",
"LIGHT_DOMAIN",
",",
"SERVICE_TURN_ON",
",",
"service_data",
")"
] | [
104,
0
] | [
115,
87
] | python | en | ['en', 'da', 'en'] | True |
async_set_lights_rgb | (hass, lights, rgb, transition) | Set color of array of lights. | Set color of array of lights. | async def async_set_lights_rgb(hass, lights, rgb, transition):
"""Set color of array of lights."""
for light in lights:
if is_on(hass, light):
service_data = {ATTR_ENTITY_ID: light}
if rgb is not None:
service_data[ATTR_RGB_COLOR] = rgb
if transition is not None:
service_data[ATTR_TRANSITION] = transition
await hass.services.async_call(LIGHT_DOMAIN, SERVICE_TURN_ON, service_data) | [
"async",
"def",
"async_set_lights_rgb",
"(",
"hass",
",",
"lights",
",",
"rgb",
",",
"transition",
")",
":",
"for",
"light",
"in",
"lights",
":",
"if",
"is_on",
"(",
"hass",
",",
"light",
")",
":",
"service_data",
"=",
"{",
"ATTR_ENTITY_ID",
":",
"light",
"}",
"if",
"rgb",
"is",
"not",
"None",
":",
"service_data",
"[",
"ATTR_RGB_COLOR",
"]",
"=",
"rgb",
"if",
"transition",
"is",
"not",
"None",
":",
"service_data",
"[",
"ATTR_TRANSITION",
"]",
"=",
"transition",
"await",
"hass",
".",
"services",
".",
"async_call",
"(",
"LIGHT_DOMAIN",
",",
"SERVICE_TURN_ON",
",",
"service_data",
")"
] | [
118,
0
] | [
127,
87
] | python | en | ['en', 'da', 'en'] | True |
async_setup_platform | (hass, config, async_add_entities, discovery_info=None) | Set up the Flux switches. | Set up the Flux switches. | async def async_setup_platform(hass, config, async_add_entities, discovery_info=None):
"""Set up the Flux switches."""
name = config.get(CONF_NAME)
lights = config.get(CONF_LIGHTS)
start_time = config.get(CONF_START_TIME)
stop_time = config.get(CONF_STOP_TIME)
start_colortemp = config.get(CONF_START_CT)
sunset_colortemp = config.get(CONF_SUNSET_CT)
stop_colortemp = config.get(CONF_STOP_CT)
brightness = config.get(CONF_BRIGHTNESS)
disable_brightness_adjust = config.get(CONF_DISABLE_BRIGHTNESS_ADJUST)
mode = config.get(CONF_MODE)
interval = config.get(CONF_INTERVAL)
transition = config.get(ATTR_TRANSITION)
flux = FluxSwitch(
name,
hass,
lights,
start_time,
stop_time,
start_colortemp,
sunset_colortemp,
stop_colortemp,
brightness,
disable_brightness_adjust,
mode,
interval,
transition,
)
async_add_entities([flux])
async def async_update(call=None):
"""Update lights."""
await flux.async_flux_update()
service_name = slugify(f"{name} update")
hass.services.async_register(DOMAIN, service_name, async_update) | [
"async",
"def",
"async_setup_platform",
"(",
"hass",
",",
"config",
",",
"async_add_entities",
",",
"discovery_info",
"=",
"None",
")",
":",
"name",
"=",
"config",
".",
"get",
"(",
"CONF_NAME",
")",
"lights",
"=",
"config",
".",
"get",
"(",
"CONF_LIGHTS",
")",
"start_time",
"=",
"config",
".",
"get",
"(",
"CONF_START_TIME",
")",
"stop_time",
"=",
"config",
".",
"get",
"(",
"CONF_STOP_TIME",
")",
"start_colortemp",
"=",
"config",
".",
"get",
"(",
"CONF_START_CT",
")",
"sunset_colortemp",
"=",
"config",
".",
"get",
"(",
"CONF_SUNSET_CT",
")",
"stop_colortemp",
"=",
"config",
".",
"get",
"(",
"CONF_STOP_CT",
")",
"brightness",
"=",
"config",
".",
"get",
"(",
"CONF_BRIGHTNESS",
")",
"disable_brightness_adjust",
"=",
"config",
".",
"get",
"(",
"CONF_DISABLE_BRIGHTNESS_ADJUST",
")",
"mode",
"=",
"config",
".",
"get",
"(",
"CONF_MODE",
")",
"interval",
"=",
"config",
".",
"get",
"(",
"CONF_INTERVAL",
")",
"transition",
"=",
"config",
".",
"get",
"(",
"ATTR_TRANSITION",
")",
"flux",
"=",
"FluxSwitch",
"(",
"name",
",",
"hass",
",",
"lights",
",",
"start_time",
",",
"stop_time",
",",
"start_colortemp",
",",
"sunset_colortemp",
",",
"stop_colortemp",
",",
"brightness",
",",
"disable_brightness_adjust",
",",
"mode",
",",
"interval",
",",
"transition",
",",
")",
"async_add_entities",
"(",
"[",
"flux",
"]",
")",
"async",
"def",
"async_update",
"(",
"call",
"=",
"None",
")",
":",
"\"\"\"Update lights.\"\"\"",
"await",
"flux",
".",
"async_flux_update",
"(",
")",
"service_name",
"=",
"slugify",
"(",
"f\"{name} update\"",
")",
"hass",
".",
"services",
".",
"async_register",
"(",
"DOMAIN",
",",
"service_name",
",",
"async_update",
")"
] | [
130,
0
] | [
166,
68
] | python | en | ['en', 'en', 'en'] | True |
FluxSwitch.__init__ | (
self,
name,
hass,
lights,
start_time,
stop_time,
start_colortemp,
sunset_colortemp,
stop_colortemp,
brightness,
disable_brightness_adjust,
mode,
interval,
transition,
) | Initialize the Flux switch. | Initialize the Flux switch. | def __init__(
self,
name,
hass,
lights,
start_time,
stop_time,
start_colortemp,
sunset_colortemp,
stop_colortemp,
brightness,
disable_brightness_adjust,
mode,
interval,
transition,
):
"""Initialize the Flux switch."""
self._name = name
self.hass = hass
self._lights = lights
self._start_time = start_time
self._stop_time = stop_time
self._start_colortemp = start_colortemp
self._sunset_colortemp = sunset_colortemp
self._stop_colortemp = stop_colortemp
self._brightness = brightness
self._disable_brightness_adjust = disable_brightness_adjust
self._mode = mode
self._interval = interval
self._transition = transition
self.unsub_tracker = None | [
"def",
"__init__",
"(",
"self",
",",
"name",
",",
"hass",
",",
"lights",
",",
"start_time",
",",
"stop_time",
",",
"start_colortemp",
",",
"sunset_colortemp",
",",
"stop_colortemp",
",",
"brightness",
",",
"disable_brightness_adjust",
",",
"mode",
",",
"interval",
",",
"transition",
",",
")",
":",
"self",
".",
"_name",
"=",
"name",
"self",
".",
"hass",
"=",
"hass",
"self",
".",
"_lights",
"=",
"lights",
"self",
".",
"_start_time",
"=",
"start_time",
"self",
".",
"_stop_time",
"=",
"stop_time",
"self",
".",
"_start_colortemp",
"=",
"start_colortemp",
"self",
".",
"_sunset_colortemp",
"=",
"sunset_colortemp",
"self",
".",
"_stop_colortemp",
"=",
"stop_colortemp",
"self",
".",
"_brightness",
"=",
"brightness",
"self",
".",
"_disable_brightness_adjust",
"=",
"disable_brightness_adjust",
"self",
".",
"_mode",
"=",
"mode",
"self",
".",
"_interval",
"=",
"interval",
"self",
".",
"_transition",
"=",
"transition",
"self",
".",
"unsub_tracker",
"=",
"None"
] | [
172,
4
] | [
202,
33
] | python | en | ['en', 'en', 'en'] | True |
FluxSwitch.name | (self) | Return the name of the device if any. | Return the name of the device if any. | def name(self):
"""Return the name of the device if any."""
return self._name | [
"def",
"name",
"(",
"self",
")",
":",
"return",
"self",
".",
"_name"
] | [
205,
4
] | [
207,
25
] | python | en | ['en', 'en', 'en'] | True |
FluxSwitch.is_on | (self) | Return true if switch is on. | Return true if switch is on. | def is_on(self):
"""Return true if switch is on."""
return self.unsub_tracker is not None | [
"def",
"is_on",
"(",
"self",
")",
":",
"return",
"self",
".",
"unsub_tracker",
"is",
"not",
"None"
] | [
210,
4
] | [
212,
45
] | python | en | ['en', 'fy', 'en'] | True |
FluxSwitch.async_added_to_hass | (self) | Call when entity about to be added to hass. | Call when entity about to be added to hass. | async def async_added_to_hass(self):
"""Call when entity about to be added to hass."""
last_state = await self.async_get_last_state()
if last_state and last_state.state == STATE_ON:
await self.async_turn_on() | [
"async",
"def",
"async_added_to_hass",
"(",
"self",
")",
":",
"last_state",
"=",
"await",
"self",
".",
"async_get_last_state",
"(",
")",
"if",
"last_state",
"and",
"last_state",
".",
"state",
"==",
"STATE_ON",
":",
"await",
"self",
".",
"async_turn_on",
"(",
")"
] | [
214,
4
] | [
218,
38
] | python | en | ['en', 'en', 'en'] | True |
FluxSwitch.async_turn_on | (self, **kwargs) | Turn on flux. | Turn on flux. | async def async_turn_on(self, **kwargs):
"""Turn on flux."""
if self.is_on:
return
self.unsub_tracker = event.async_track_time_interval(
self.hass,
self.async_flux_update,
datetime.timedelta(seconds=self._interval),
)
# Make initial update
await self.async_flux_update()
self.async_write_ha_state() | [
"async",
"def",
"async_turn_on",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"self",
".",
"is_on",
":",
"return",
"self",
".",
"unsub_tracker",
"=",
"event",
".",
"async_track_time_interval",
"(",
"self",
".",
"hass",
",",
"self",
".",
"async_flux_update",
",",
"datetime",
".",
"timedelta",
"(",
"seconds",
"=",
"self",
".",
"_interval",
")",
",",
")",
"# Make initial update",
"await",
"self",
".",
"async_flux_update",
"(",
")",
"self",
".",
"async_write_ha_state",
"(",
")"
] | [
220,
4
] | [
234,
35
] | python | en | ['en', 'et', 'en'] | True |
FluxSwitch.async_turn_off | (self, **kwargs) | Turn off flux. | Turn off flux. | async def async_turn_off(self, **kwargs):
"""Turn off flux."""
if self.is_on:
self.unsub_tracker()
self.unsub_tracker = None
self.async_write_ha_state() | [
"async",
"def",
"async_turn_off",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"self",
".",
"is_on",
":",
"self",
".",
"unsub_tracker",
"(",
")",
"self",
".",
"unsub_tracker",
"=",
"None",
"self",
".",
"async_write_ha_state",
"(",
")"
] | [
236,
4
] | [
242,
35
] | python | en | ['en', 'da', 'en'] | True |
FluxSwitch.async_flux_update | (self, utcnow=None) | Update all the lights using flux. | Update all the lights using flux. | async def async_flux_update(self, utcnow=None):
"""Update all the lights using flux."""
if utcnow is None:
utcnow = dt_utcnow()
now = as_local(utcnow)
sunset = get_astral_event_date(self.hass, SUN_EVENT_SUNSET, now.date())
start_time = self.find_start_time(now)
stop_time = self.find_stop_time(now)
if stop_time <= start_time:
# stop_time does not happen in the same day as start_time
if start_time < now:
# stop time is tomorrow
stop_time += datetime.timedelta(days=1)
elif now < start_time:
# stop_time was yesterday since the new start_time is not reached
stop_time -= datetime.timedelta(days=1)
if start_time < now < sunset:
# Daytime
time_state = "day"
temp_range = abs(self._start_colortemp - self._sunset_colortemp)
day_length = int(sunset.timestamp() - start_time.timestamp())
seconds_from_start = int(now.timestamp() - start_time.timestamp())
percentage_complete = seconds_from_start / day_length
temp_offset = temp_range * percentage_complete
if self._start_colortemp > self._sunset_colortemp:
temp = self._start_colortemp - temp_offset
else:
temp = self._start_colortemp + temp_offset
else:
# Night time
time_state = "night"
if now < stop_time:
if stop_time < start_time and stop_time.day == sunset.day:
# we need to use yesterday's sunset time
sunset_time = sunset - datetime.timedelta(days=1)
else:
sunset_time = sunset
night_length = int(stop_time.timestamp() - sunset_time.timestamp())
seconds_from_sunset = int(now.timestamp() - sunset_time.timestamp())
percentage_complete = seconds_from_sunset / night_length
else:
percentage_complete = 1
temp_range = abs(self._sunset_colortemp - self._stop_colortemp)
temp_offset = temp_range * percentage_complete
if self._sunset_colortemp > self._stop_colortemp:
temp = self._sunset_colortemp - temp_offset
else:
temp = self._sunset_colortemp + temp_offset
rgb = color_temperature_to_rgb(temp)
x_val, y_val, b_val = color_RGB_to_xy_brightness(*rgb)
brightness = self._brightness if self._brightness else b_val
if self._disable_brightness_adjust:
brightness = None
if self._mode == MODE_XY:
await async_set_lights_xy(
self.hass, self._lights, x_val, y_val, brightness, self._transition
)
_LOGGER.debug(
"Lights updated to x:%s y:%s brightness:%s, %s%% "
"of %s cycle complete at %s",
x_val,
y_val,
brightness,
round(percentage_complete * 100),
time_state,
now,
)
elif self._mode == MODE_RGB:
await async_set_lights_rgb(self.hass, self._lights, rgb, self._transition)
_LOGGER.debug(
"Lights updated to rgb:%s, %s%% of %s cycle complete at %s",
rgb,
round(percentage_complete * 100),
time_state,
now,
)
else:
# Convert to mired and clamp to allowed values
mired = color_temperature_kelvin_to_mired(temp)
await async_set_lights_temp(
self.hass, self._lights, mired, brightness, self._transition
)
_LOGGER.debug(
"Lights updated to mired:%s brightness:%s, %s%% "
"of %s cycle complete at %s",
mired,
brightness,
round(percentage_complete * 100),
time_state,
now,
) | [
"async",
"def",
"async_flux_update",
"(",
"self",
",",
"utcnow",
"=",
"None",
")",
":",
"if",
"utcnow",
"is",
"None",
":",
"utcnow",
"=",
"dt_utcnow",
"(",
")",
"now",
"=",
"as_local",
"(",
"utcnow",
")",
"sunset",
"=",
"get_astral_event_date",
"(",
"self",
".",
"hass",
",",
"SUN_EVENT_SUNSET",
",",
"now",
".",
"date",
"(",
")",
")",
"start_time",
"=",
"self",
".",
"find_start_time",
"(",
"now",
")",
"stop_time",
"=",
"self",
".",
"find_stop_time",
"(",
"now",
")",
"if",
"stop_time",
"<=",
"start_time",
":",
"# stop_time does not happen in the same day as start_time",
"if",
"start_time",
"<",
"now",
":",
"# stop time is tomorrow",
"stop_time",
"+=",
"datetime",
".",
"timedelta",
"(",
"days",
"=",
"1",
")",
"elif",
"now",
"<",
"start_time",
":",
"# stop_time was yesterday since the new start_time is not reached",
"stop_time",
"-=",
"datetime",
".",
"timedelta",
"(",
"days",
"=",
"1",
")",
"if",
"start_time",
"<",
"now",
"<",
"sunset",
":",
"# Daytime",
"time_state",
"=",
"\"day\"",
"temp_range",
"=",
"abs",
"(",
"self",
".",
"_start_colortemp",
"-",
"self",
".",
"_sunset_colortemp",
")",
"day_length",
"=",
"int",
"(",
"sunset",
".",
"timestamp",
"(",
")",
"-",
"start_time",
".",
"timestamp",
"(",
")",
")",
"seconds_from_start",
"=",
"int",
"(",
"now",
".",
"timestamp",
"(",
")",
"-",
"start_time",
".",
"timestamp",
"(",
")",
")",
"percentage_complete",
"=",
"seconds_from_start",
"/",
"day_length",
"temp_offset",
"=",
"temp_range",
"*",
"percentage_complete",
"if",
"self",
".",
"_start_colortemp",
">",
"self",
".",
"_sunset_colortemp",
":",
"temp",
"=",
"self",
".",
"_start_colortemp",
"-",
"temp_offset",
"else",
":",
"temp",
"=",
"self",
".",
"_start_colortemp",
"+",
"temp_offset",
"else",
":",
"# Night time",
"time_state",
"=",
"\"night\"",
"if",
"now",
"<",
"stop_time",
":",
"if",
"stop_time",
"<",
"start_time",
"and",
"stop_time",
".",
"day",
"==",
"sunset",
".",
"day",
":",
"# we need to use yesterday's sunset time",
"sunset_time",
"=",
"sunset",
"-",
"datetime",
".",
"timedelta",
"(",
"days",
"=",
"1",
")",
"else",
":",
"sunset_time",
"=",
"sunset",
"night_length",
"=",
"int",
"(",
"stop_time",
".",
"timestamp",
"(",
")",
"-",
"sunset_time",
".",
"timestamp",
"(",
")",
")",
"seconds_from_sunset",
"=",
"int",
"(",
"now",
".",
"timestamp",
"(",
")",
"-",
"sunset_time",
".",
"timestamp",
"(",
")",
")",
"percentage_complete",
"=",
"seconds_from_sunset",
"/",
"night_length",
"else",
":",
"percentage_complete",
"=",
"1",
"temp_range",
"=",
"abs",
"(",
"self",
".",
"_sunset_colortemp",
"-",
"self",
".",
"_stop_colortemp",
")",
"temp_offset",
"=",
"temp_range",
"*",
"percentage_complete",
"if",
"self",
".",
"_sunset_colortemp",
">",
"self",
".",
"_stop_colortemp",
":",
"temp",
"=",
"self",
".",
"_sunset_colortemp",
"-",
"temp_offset",
"else",
":",
"temp",
"=",
"self",
".",
"_sunset_colortemp",
"+",
"temp_offset",
"rgb",
"=",
"color_temperature_to_rgb",
"(",
"temp",
")",
"x_val",
",",
"y_val",
",",
"b_val",
"=",
"color_RGB_to_xy_brightness",
"(",
"*",
"rgb",
")",
"brightness",
"=",
"self",
".",
"_brightness",
"if",
"self",
".",
"_brightness",
"else",
"b_val",
"if",
"self",
".",
"_disable_brightness_adjust",
":",
"brightness",
"=",
"None",
"if",
"self",
".",
"_mode",
"==",
"MODE_XY",
":",
"await",
"async_set_lights_xy",
"(",
"self",
".",
"hass",
",",
"self",
".",
"_lights",
",",
"x_val",
",",
"y_val",
",",
"brightness",
",",
"self",
".",
"_transition",
")",
"_LOGGER",
".",
"debug",
"(",
"\"Lights updated to x:%s y:%s brightness:%s, %s%% \"",
"\"of %s cycle complete at %s\"",
",",
"x_val",
",",
"y_val",
",",
"brightness",
",",
"round",
"(",
"percentage_complete",
"*",
"100",
")",
",",
"time_state",
",",
"now",
",",
")",
"elif",
"self",
".",
"_mode",
"==",
"MODE_RGB",
":",
"await",
"async_set_lights_rgb",
"(",
"self",
".",
"hass",
",",
"self",
".",
"_lights",
",",
"rgb",
",",
"self",
".",
"_transition",
")",
"_LOGGER",
".",
"debug",
"(",
"\"Lights updated to rgb:%s, %s%% of %s cycle complete at %s\"",
",",
"rgb",
",",
"round",
"(",
"percentage_complete",
"*",
"100",
")",
",",
"time_state",
",",
"now",
",",
")",
"else",
":",
"# Convert to mired and clamp to allowed values",
"mired",
"=",
"color_temperature_kelvin_to_mired",
"(",
"temp",
")",
"await",
"async_set_lights_temp",
"(",
"self",
".",
"hass",
",",
"self",
".",
"_lights",
",",
"mired",
",",
"brightness",
",",
"self",
".",
"_transition",
")",
"_LOGGER",
".",
"debug",
"(",
"\"Lights updated to mired:%s brightness:%s, %s%% \"",
"\"of %s cycle complete at %s\"",
",",
"mired",
",",
"brightness",
",",
"round",
"(",
"percentage_complete",
"*",
"100",
")",
",",
"time_state",
",",
"now",
",",
")"
] | [
244,
4
] | [
341,
13
] | python | en | ['en', 'en', 'en'] | True |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.