Search is not available for this dataset
identifier
stringlengths
1
155
parameters
stringlengths
2
6.09k
docstring
stringlengths
11
63.4k
docstring_summary
stringlengths
0
63.4k
function
stringlengths
29
99.8k
function_tokens
sequence
start_point
sequence
end_point
sequence
language
stringclasses
1 value
docstring_language
stringlengths
2
7
docstring_language_predictions
stringlengths
18
23
is_langid_reliable
stringclasses
2 values
axis_aligned_iou_loss
(pred, target)
Calculate the IoU loss (1-IoU) of two set of axis aligned bounding boxes. Note that predictions and targets are one-to-one corresponded. Args: pred (torch.Tensor): Bbox predictions with shape [..., 3]. target (torch.Tensor): Bbox targets (gt) with shape [..., 3]. Returns: torch.Tensor: IoU loss between predictions and targets.
Calculate the IoU loss (1-IoU) of two set of axis aligned bounding boxes. Note that predictions and targets are one-to-one corresponded.
def axis_aligned_iou_loss(pred, target): """Calculate the IoU loss (1-IoU) of two set of axis aligned bounding boxes. Note that predictions and targets are one-to-one corresponded. Args: pred (torch.Tensor): Bbox predictions with shape [..., 3]. target (torch.Tensor): Bbox targets (gt) with shape [..., 3]. Returns: torch.Tensor: IoU loss between predictions and targets. """ axis_aligned_iou = AxisAlignedBboxOverlaps3D()( pred, target, is_aligned=True) iou_loss = 1 - axis_aligned_iou return iou_loss
[ "def", "axis_aligned_iou_loss", "(", "pred", ",", "target", ")", ":", "axis_aligned_iou", "=", "AxisAlignedBboxOverlaps3D", "(", ")", "(", "pred", ",", "target", ",", "is_aligned", "=", "True", ")", "iou_loss", "=", "1", "-", "axis_aligned_iou", "return", "iou_loss" ]
[ 9, 0 ]
[ 24, 19 ]
python
en
['en', 'en', 'en']
True
Stream.maxpoints
(self)
Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. The 'maxpoints' property is a number and may be specified as: - An int or float in the interval [0, 10000] Returns ------- int|float
Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. The 'maxpoints' property is a number and may be specified as: - An int or float in the interval [0, 10000]
def maxpoints(self): """ Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. The 'maxpoints' property is a number and may be specified as: - An int or float in the interval [0, 10000] Returns ------- int|float """ return self["maxpoints"]
[ "def", "maxpoints", "(", "self", ")", ":", "return", "self", "[", "\"maxpoints\"", "]" ]
[ 15, 4 ]
[ 28, 32 ]
python
en
['en', 'error', 'th']
False
Stream.token
(self)
The stream id number links a data trace on a plot with a stream. See https://chart-studio.plotly.com/settings for more details. The 'token' property is a string and must be specified as: - A non-empty string Returns ------- str
The stream id number links a data trace on a plot with a stream. See https://chart-studio.plotly.com/settings for more details. The 'token' property is a string and must be specified as: - A non-empty string
def token(self): """ The stream id number links a data trace on a plot with a stream. See https://chart-studio.plotly.com/settings for more details. The 'token' property is a string and must be specified as: - A non-empty string Returns ------- str """ return self["token"]
[ "def", "token", "(", "self", ")", ":", "return", "self", "[", "\"token\"", "]" ]
[ 37, 4 ]
[ 50, 28 ]
python
en
['en', 'error', 'th']
False
Stream.__init__
(self, arg=None, maxpoints=None, token=None, **kwargs)
Construct a new Stream object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.densitymapbox.Stream` maxpoints Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. token The stream id number links a data trace on a plot with a stream. See https://chart-studio.plotly.com/settings for more details. Returns ------- Stream
Construct a new Stream object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.densitymapbox.Stream` maxpoints Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. token The stream id number links a data trace on a plot with a stream. See https://chart-studio.plotly.com/settings for more details.
def __init__(self, arg=None, maxpoints=None, token=None, **kwargs): """ Construct a new Stream object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.densitymapbox.Stream` maxpoints Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. token The stream id number links a data trace on a plot with a stream. See https://chart-studio.plotly.com/settings for more details. Returns ------- Stream """ super(Stream, self).__init__("stream") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.densitymapbox.Stream constructor must be a dict or an instance of :class:`plotly.graph_objs.densitymapbox.Stream`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("maxpoints", None) _v = maxpoints if maxpoints is not None else _v if _v is not None: self["maxpoints"] = _v _v = arg.pop("token", None) _v = token if token is not None else _v if _v is not None: self["token"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
[ "def", "__init__", "(", "self", ",", "arg", "=", "None", ",", "maxpoints", "=", "None", ",", "token", "=", "None", ",", "*", "*", "kwargs", ")", ":", "super", "(", "Stream", ",", "self", ")", ".", "__init__", "(", "\"stream\"", ")", "if", "\"_parent\"", "in", "kwargs", ":", "self", ".", "_parent", "=", "kwargs", "[", "\"_parent\"", "]", "return", "# Validate arg", "# ------------", "if", "arg", "is", "None", ":", "arg", "=", "{", "}", "elif", "isinstance", "(", "arg", ",", "self", ".", "__class__", ")", ":", "arg", "=", "arg", ".", "to_plotly_json", "(", ")", "elif", "isinstance", "(", "arg", ",", "dict", ")", ":", "arg", "=", "_copy", ".", "copy", "(", "arg", ")", "else", ":", "raise", "ValueError", "(", "\"\"\"\\\nThe first argument to the plotly.graph_objs.densitymapbox.Stream \nconstructor must be a dict or \nan instance of :class:`plotly.graph_objs.densitymapbox.Stream`\"\"\"", ")", "# Handle skip_invalid", "# -------------------", "self", ".", "_skip_invalid", "=", "kwargs", ".", "pop", "(", "\"skip_invalid\"", ",", "False", ")", "self", ".", "_validate", "=", "kwargs", ".", "pop", "(", "\"_validate\"", ",", "True", ")", "# Populate data dict with properties", "# ----------------------------------", "_v", "=", "arg", ".", "pop", "(", "\"maxpoints\"", ",", "None", ")", "_v", "=", "maxpoints", "if", "maxpoints", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"maxpoints\"", "]", "=", "_v", "_v", "=", "arg", ".", "pop", "(", "\"token\"", ",", "None", ")", "_v", "=", "token", "if", "token", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"token\"", "]", "=", "_v", "# Process unknown kwargs", "# ----------------------", "self", ".", "_process_kwargs", "(", "*", "*", "dict", "(", "arg", ",", "*", "*", "kwargs", ")", ")", "# Reset skip_invalid", "# ------------------", "self", ".", "_skip_invalid", "=", "False" ]
[ 72, 4 ]
[ 140, 34 ]
python
en
['en', 'error', 'th']
False
ContextBuilder.__init__
(self, settings: Mapping[str, object] = None)
Initialize an instance of the context builder. Args: settings: Mapping of configuration settings
Initialize an instance of the context builder.
def __init__(self, settings: Mapping[str, object] = None): """ Initialize an instance of the context builder. Args: settings: Mapping of configuration settings """ self.settings = Settings(settings)
[ "def", "__init__", "(", "self", ",", "settings", ":", "Mapping", "[", "str", ",", "object", "]", "=", "None", ")", ":", "self", ".", "settings", "=", "Settings", "(", "settings", ")" ]
[ 12, 4 ]
[ 20, 42 ]
python
en
['en', 'error', 'th']
False
ContextBuilder.build
(self)
Build the new injection context.
Build the new injection context.
async def build(self) -> InjectionContext: """Build the new injection context."""
[ "async", "def", "build", "(", "self", ")", "->", "InjectionContext", ":" ]
[ 23, 4 ]
[ 24, 46 ]
python
en
['en', 'en', 'en']
True
ContextBuilder.update_settings
(self, settings: Mapping[str, object])
Update the context builder with additional settings.
Update the context builder with additional settings.
def update_settings(self, settings: Mapping[str, object]): """Update the context builder with additional settings.""" if settings: self.settings = self.settings.extend(settings)
[ "def", "update_settings", "(", "self", ",", "settings", ":", "Mapping", "[", "str", ",", "object", "]", ")", ":", "if", "settings", ":", "self", ".", "settings", "=", "self", ".", "settings", ".", "extend", "(", "settings", ")" ]
[ 26, 4 ]
[ 29, 58 ]
python
en
['en', 'en', 'en']
True
WsTransport.__init__
(self)
Initialize an `WsTransport` instance.
Initialize an `WsTransport` instance.
def __init__(self) -> None: """Initialize an `WsTransport` instance.""" super(WsTransport, self).__init__() self.logger = logging.getLogger(__name__)
[ "def", "__init__", "(", "self", ")", "->", "None", ":", "super", "(", "WsTransport", ",", "self", ")", ".", "__init__", "(", ")", "self", ".", "logger", "=", "logging", ".", "getLogger", "(", "__name__", ")" ]
[ 15, 4 ]
[ 18, 49 ]
python
en
['en', 'en', 'nl']
True
WsTransport.start
(self)
Start the outbound transport.
Start the outbound transport.
async def start(self): """Start the outbound transport.""" self.client_session = ClientSession(cookie_jar=DummyCookieJar()) return self
[ "async", "def", "start", "(", "self", ")", ":", "self", ".", "client_session", "=", "ClientSession", "(", "cookie_jar", "=", "DummyCookieJar", "(", ")", ")", "return", "self" ]
[ 20, 4 ]
[ 23, 19 ]
python
en
['en', 'en', 'en']
True
WsTransport.stop
(self)
Stop the outbound transport.
Stop the outbound transport.
async def stop(self): """Stop the outbound transport.""" await self.client_session.close() self.client_session = None
[ "async", "def", "stop", "(", "self", ")", ":", "await", "self", ".", "client_session", ".", "close", "(", ")", "self", ".", "client_session", "=", "None" ]
[ 25, 4 ]
[ 28, 34 ]
python
en
['en', 'en', 'en']
True
WsTransport.handle_message
(self, payload: Union[str, bytes], endpoint: str)
Handle message from queue. Args: message: `OutboundMessage` to send over transport implementation
Handle message from queue.
async def handle_message(self, payload: Union[str, bytes], endpoint: str): """ Handle message from queue. Args: message: `OutboundMessage` to send over transport implementation """ # aiohttp should automatically handle websocket sessions async with self.client_session.ws_connect(endpoint) as ws: if isinstance(payload, bytes): await ws.send_bytes(payload) else: await ws.send_str(payload)
[ "async", "def", "handle_message", "(", "self", ",", "payload", ":", "Union", "[", "str", ",", "bytes", "]", ",", "endpoint", ":", "str", ")", ":", "# aiohttp should automatically handle websocket sessions", "async", "with", "self", ".", "client_session", ".", "ws_connect", "(", "endpoint", ")", "as", "ws", ":", "if", "isinstance", "(", "payload", ",", "bytes", ")", ":", "await", "ws", ".", "send_bytes", "(", "payload", ")", "else", ":", "await", "ws", ".", "send_str", "(", "payload", ")" ]
[ 30, 4 ]
[ 42, 42 ]
python
en
['en', 'error', 'th']
False
Button.args
(self)
Sets the arguments values to be passed to the Plotly method set in `method` on click. The 'args' property is an info array that may be specified as: * a list or tuple of up to 3 elements where: (0) The 'args[0]' property accepts values of any type (1) The 'args[1]' property accepts values of any type (2) The 'args[2]' property accepts values of any type Returns ------- list
Sets the arguments values to be passed to the Plotly method set in `method` on click. The 'args' property is an info array that may be specified as: * a list or tuple of up to 3 elements where: (0) The 'args[0]' property accepts values of any type (1) The 'args[1]' property accepts values of any type (2) The 'args[2]' property accepts values of any type
def args(self): """ Sets the arguments values to be passed to the Plotly method set in `method` on click. The 'args' property is an info array that may be specified as: * a list or tuple of up to 3 elements where: (0) The 'args[0]' property accepts values of any type (1) The 'args[1]' property accepts values of any type (2) The 'args[2]' property accepts values of any type Returns ------- list """ return self["args"]
[ "def", "args", "(", "self", ")", ":", "return", "self", "[", "\"args\"", "]" ]
[ 24, 4 ]
[ 40, 27 ]
python
en
['en', 'error', 'th']
False
Button.args2
(self)
Sets a 2nd set of `args`, these arguments values are passed to the Plotly method set in `method` when clicking this button while in the active state. Use this to create toggle buttons. The 'args2' property is an info array that may be specified as: * a list or tuple of up to 3 elements where: (0) The 'args2[0]' property accepts values of any type (1) The 'args2[1]' property accepts values of any type (2) The 'args2[2]' property accepts values of any type Returns ------- list
Sets a 2nd set of `args`, these arguments values are passed to the Plotly method set in `method` when clicking this button while in the active state. Use this to create toggle buttons. The 'args2' property is an info array that may be specified as: * a list or tuple of up to 3 elements where: (0) The 'args2[0]' property accepts values of any type (1) The 'args2[1]' property accepts values of any type (2) The 'args2[2]' property accepts values of any type
def args2(self): """ Sets a 2nd set of `args`, these arguments values are passed to the Plotly method set in `method` when clicking this button while in the active state. Use this to create toggle buttons. The 'args2' property is an info array that may be specified as: * a list or tuple of up to 3 elements where: (0) The 'args2[0]' property accepts values of any type (1) The 'args2[1]' property accepts values of any type (2) The 'args2[2]' property accepts values of any type Returns ------- list """ return self["args2"]
[ "def", "args2", "(", "self", ")", ":", "return", "self", "[", "\"args2\"", "]" ]
[ 49, 4 ]
[ 66, 28 ]
python
en
['en', 'error', 'th']
False
Button.execute
(self)
When true, the API method is executed. When false, all other behaviors are the same and command execution is skipped. This may be useful when hooking into, for example, the `plotly_buttonclicked` method and executing the API command manually without losing the benefit of the updatemenu automatically binding to the state of the plot through the specification of `method` and `args`. The 'execute' property must be specified as a bool (either True, or False) Returns ------- bool
When true, the API method is executed. When false, all other behaviors are the same and command execution is skipped. This may be useful when hooking into, for example, the `plotly_buttonclicked` method and executing the API command manually without losing the benefit of the updatemenu automatically binding to the state of the plot through the specification of `method` and `args`. The 'execute' property must be specified as a bool (either True, or False)
def execute(self): """ When true, the API method is executed. When false, all other behaviors are the same and command execution is skipped. This may be useful when hooking into, for example, the `plotly_buttonclicked` method and executing the API command manually without losing the benefit of the updatemenu automatically binding to the state of the plot through the specification of `method` and `args`. The 'execute' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["execute"]
[ "def", "execute", "(", "self", ")", ":", "return", "self", "[", "\"execute\"", "]" ]
[ 75, 4 ]
[ 92, 30 ]
python
en
['en', 'error', 'th']
False
Button.label
(self)
Sets the text label to appear on the button. The 'label' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str
Sets the text label to appear on the button. The 'label' property is a string and must be specified as: - A string - A number that will be converted to a string
def label(self): """ Sets the text label to appear on the button. The 'label' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["label"]
[ "def", "label", "(", "self", ")", ":", "return", "self", "[", "\"label\"", "]" ]
[ 101, 4 ]
[ 113, 28 ]
python
en
['en', 'error', 'th']
False
Button.method
(self)
Sets the Plotly method to be called on click. If the `skip` method is used, the API updatemenu will function as normal but will perform no API calls and will not bind automatically to state updates. This may be used to create a component interface and attach to updatemenu events manually via JavaScript. The 'method' property is an enumeration that may be specified as: - One of the following enumeration values: ['restyle', 'relayout', 'animate', 'update', 'skip'] Returns ------- Any
Sets the Plotly method to be called on click. If the `skip` method is used, the API updatemenu will function as normal but will perform no API calls and will not bind automatically to state updates. This may be used to create a component interface and attach to updatemenu events manually via JavaScript. The 'method' property is an enumeration that may be specified as: - One of the following enumeration values: ['restyle', 'relayout', 'animate', 'update', 'skip']
def method(self): """ Sets the Plotly method to be called on click. If the `skip` method is used, the API updatemenu will function as normal but will perform no API calls and will not bind automatically to state updates. This may be used to create a component interface and attach to updatemenu events manually via JavaScript. The 'method' property is an enumeration that may be specified as: - One of the following enumeration values: ['restyle', 'relayout', 'animate', 'update', 'skip'] Returns ------- Any """ return self["method"]
[ "def", "method", "(", "self", ")", ":", "return", "self", "[", "\"method\"", "]" ]
[ 122, 4 ]
[ 138, 29 ]
python
en
['en', 'error', 'th']
False
Button.name
(self)
When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. The 'name' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str
When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. The 'name' property is a string and must be specified as: - A string - A number that will be converted to a string
def name(self): """ When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. The 'name' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["name"]
[ "def", "name", "(", "self", ")", ":", "return", "self", "[", "\"name\"", "]" ]
[ 147, 4 ]
[ 165, 27 ]
python
en
['en', 'error', 'th']
False
Button.templateitemname
(self)
Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. The 'templateitemname' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str
Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. The 'templateitemname' property is a string and must be specified as: - A string - A number that will be converted to a string
def templateitemname(self): """ Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. The 'templateitemname' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["templateitemname"]
[ "def", "templateitemname", "(", "self", ")", ":", "return", "self", "[", "\"templateitemname\"", "]" ]
[ 174, 4 ]
[ 193, 39 ]
python
en
['en', 'error', 'th']
False
Button.visible
(self)
Determines whether or not this button is visible. The 'visible' property must be specified as a bool (either True, or False) Returns ------- bool
Determines whether or not this button is visible. The 'visible' property must be specified as a bool (either True, or False)
def visible(self): """ Determines whether or not this button is visible. The 'visible' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["visible"]
[ "def", "visible", "(", "self", ")", ":", "return", "self", "[", "\"visible\"", "]" ]
[ 202, 4 ]
[ 213, 30 ]
python
en
['en', 'error', 'th']
False
Button.__init__
( self, arg=None, args=None, args2=None, execute=None, label=None, method=None, name=None, templateitemname=None, visible=None, **kwargs )
Construct a new Button object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.layout.updatemenu.Button` args Sets the arguments values to be passed to the Plotly method set in `method` on click. args2 Sets a 2nd set of `args`, these arguments values are passed to the Plotly method set in `method` when clicking this button while in the active state. Use this to create toggle buttons. execute When true, the API method is executed. When false, all other behaviors are the same and command execution is skipped. This may be useful when hooking into, for example, the `plotly_buttonclicked` method and executing the API command manually without losing the benefit of the updatemenu automatically binding to the state of the plot through the specification of `method` and `args`. label Sets the text label to appear on the button. method Sets the Plotly method to be called on click. If the `skip` method is used, the API updatemenu will function as normal but will perform no API calls and will not bind automatically to state updates. This may be used to create a component interface and attach to updatemenu events manually via JavaScript. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. visible Determines whether or not this button is visible. Returns ------- Button
Construct a new Button object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.layout.updatemenu.Button` args Sets the arguments values to be passed to the Plotly method set in `method` on click. args2 Sets a 2nd set of `args`, these arguments values are passed to the Plotly method set in `method` when clicking this button while in the active state. Use this to create toggle buttons. execute When true, the API method is executed. When false, all other behaviors are the same and command execution is skipped. This may be useful when hooking into, for example, the `plotly_buttonclicked` method and executing the API command manually without losing the benefit of the updatemenu automatically binding to the state of the plot through the specification of `method` and `args`. label Sets the text label to appear on the button. method Sets the Plotly method to be called on click. If the `skip` method is used, the API updatemenu will function as normal but will perform no API calls and will not bind automatically to state updates. This may be used to create a component interface and attach to updatemenu events manually via JavaScript. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. visible Determines whether or not this button is visible.
def __init__( self, arg=None, args=None, args2=None, execute=None, label=None, method=None, name=None, templateitemname=None, visible=None, **kwargs ): """ Construct a new Button object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.layout.updatemenu.Button` args Sets the arguments values to be passed to the Plotly method set in `method` on click. args2 Sets a 2nd set of `args`, these arguments values are passed to the Plotly method set in `method` when clicking this button while in the active state. Use this to create toggle buttons. execute When true, the API method is executed. When false, all other behaviors are the same and command execution is skipped. This may be useful when hooking into, for example, the `plotly_buttonclicked` method and executing the API command manually without losing the benefit of the updatemenu automatically binding to the state of the plot through the specification of `method` and `args`. label Sets the text label to appear on the button. method Sets the Plotly method to be called on click. If the `skip` method is used, the API updatemenu will function as normal but will perform no API calls and will not bind automatically to state updates. This may be used to create a component interface and attach to updatemenu events manually via JavaScript. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. visible Determines whether or not this button is visible. Returns ------- Button """ super(Button, self).__init__("buttons") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.layout.updatemenu.Button constructor must be a dict or an instance of :class:`plotly.graph_objs.layout.updatemenu.Button`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("args", None) _v = args if args is not None else _v if _v is not None: self["args"] = _v _v = arg.pop("args2", None) _v = args2 if args2 is not None else _v if _v is not None: self["args2"] = _v _v = arg.pop("execute", None) _v = execute if execute is not None else _v if _v is not None: self["execute"] = _v _v = arg.pop("label", None) _v = label if label is not None else _v if _v is not None: self["label"] = _v _v = arg.pop("method", None) _v = method if method is not None else _v if _v is not None: self["method"] = _v _v = arg.pop("name", None) _v = name if name is not None else _v if _v is not None: self["name"] = _v _v = arg.pop("templateitemname", None) _v = templateitemname if templateitemname is not None else _v if _v is not None: self["templateitemname"] = _v _v = arg.pop("visible", None) _v = visible if visible is not None else _v if _v is not None: self["visible"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
[ "def", "__init__", "(", "self", ",", "arg", "=", "None", ",", "args", "=", "None", ",", "args2", "=", "None", ",", "execute", "=", "None", ",", "label", "=", "None", ",", "method", "=", "None", ",", "name", "=", "None", ",", "templateitemname", "=", "None", ",", "visible", "=", "None", ",", "*", "*", "kwargs", ")", ":", "super", "(", "Button", ",", "self", ")", ".", "__init__", "(", "\"buttons\"", ")", "if", "\"_parent\"", "in", "kwargs", ":", "self", ".", "_parent", "=", "kwargs", "[", "\"_parent\"", "]", "return", "# Validate arg", "# ------------", "if", "arg", "is", "None", ":", "arg", "=", "{", "}", "elif", "isinstance", "(", "arg", ",", "self", ".", "__class__", ")", ":", "arg", "=", "arg", ".", "to_plotly_json", "(", ")", "elif", "isinstance", "(", "arg", ",", "dict", ")", ":", "arg", "=", "_copy", ".", "copy", "(", "arg", ")", "else", ":", "raise", "ValueError", "(", "\"\"\"\\\nThe first argument to the plotly.graph_objs.layout.updatemenu.Button \nconstructor must be a dict or \nan instance of :class:`plotly.graph_objs.layout.updatemenu.Button`\"\"\"", ")", "# Handle skip_invalid", "# -------------------", "self", ".", "_skip_invalid", "=", "kwargs", ".", "pop", "(", "\"skip_invalid\"", ",", "False", ")", "self", ".", "_validate", "=", "kwargs", ".", "pop", "(", "\"_validate\"", ",", "True", ")", "# Populate data dict with properties", "# ----------------------------------", "_v", "=", "arg", ".", "pop", "(", "\"args\"", ",", "None", ")", "_v", "=", "args", "if", "args", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"args\"", "]", "=", "_v", "_v", "=", "arg", ".", "pop", "(", "\"args2\"", ",", "None", ")", "_v", "=", "args2", "if", "args2", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"args2\"", "]", "=", "_v", "_v", "=", "arg", ".", "pop", "(", "\"execute\"", ",", "None", ")", "_v", "=", "execute", "if", "execute", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"execute\"", "]", "=", "_v", "_v", "=", "arg", ".", "pop", "(", "\"label\"", ",", "None", ")", "_v", "=", "label", "if", "label", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"label\"", "]", "=", "_v", "_v", "=", "arg", ".", "pop", "(", "\"method\"", ",", "None", ")", "_v", "=", "method", "if", "method", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"method\"", "]", "=", "_v", "_v", "=", "arg", ".", "pop", "(", "\"name\"", ",", "None", ")", "_v", "=", "name", "if", "name", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"name\"", "]", "=", "_v", "_v", "=", "arg", ".", "pop", "(", "\"templateitemname\"", ",", "None", ")", "_v", "=", "templateitemname", "if", "templateitemname", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"templateitemname\"", "]", "=", "_v", "_v", "=", "arg", ".", "pop", "(", "\"visible\"", ",", "None", ")", "_v", "=", "visible", "if", "visible", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"visible\"", "]", "=", "_v", "# Process unknown kwargs", "# ----------------------", "self", ".", "_process_kwargs", "(", "*", "*", "dict", "(", "arg", ",", "*", "*", "kwargs", ")", ")", "# Reset skip_invalid", "# ------------------", "self", ".", "_skip_invalid", "=", "False" ]
[ 273, 4 ]
[ 415, 34 ]
python
en
['en', 'error', 'th']
False
Tickfont.color
(self)
The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str
The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen
def color(self): """ The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["color"]
[ "def", "color", "(", "self", ")", ":", "return", "self", "[", "\"color\"", "]" ]
[ 15, 4 ]
[ 63, 28 ]
python
en
['en', 'error', 'th']
False
Tickfont.family
(self)
HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart- studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". The 'family' property is a string and must be specified as: - A non-empty string Returns ------- str
HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart- studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". The 'family' property is a string and must be specified as: - A non-empty string
def family(self): """ HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart- studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". The 'family' property is a string and must be specified as: - A non-empty string Returns ------- str """ return self["family"]
[ "def", "family", "(", "self", ")", ":", "return", "self", "[", "\"family\"", "]" ]
[ 72, 4 ]
[ 94, 29 ]
python
en
['en', 'error', 'th']
False
Tickfont.size
(self)
The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf] Returns ------- int|float
The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf]
def size(self): """ The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf] Returns ------- int|float """ return self["size"]
[ "def", "size", "(", "self", ")", ":", "return", "self", "[", "\"size\"", "]" ]
[ 103, 4 ]
[ 112, 27 ]
python
en
['en', 'error', 'th']
False
Tickfont.__init__
(self, arg=None, color=None, family=None, size=None, **kwargs)
Construct a new Tickfont object Sets the tick font. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.layout.scene.zaxis.Tickfont` color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size Returns ------- Tickfont
Construct a new Tickfont object Sets the tick font.
def __init__(self, arg=None, color=None, family=None, size=None, **kwargs): """ Construct a new Tickfont object Sets the tick font. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.layout.scene.zaxis.Tickfont` color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size Returns ------- Tickfont """ super(Tickfont, self).__init__("tickfont") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.layout.scene.zaxis.Tickfont constructor must be a dict or an instance of :class:`plotly.graph_objs.layout.scene.zaxis.Tickfont`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("color", None) _v = color if color is not None else _v if _v is not None: self["color"] = _v _v = arg.pop("family", None) _v = family if family is not None else _v if _v is not None: self["family"] = _v _v = arg.pop("size", None) _v = size if size is not None else _v if _v is not None: self["size"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
[ "def", "__init__", "(", "self", ",", "arg", "=", "None", ",", "color", "=", "None", ",", "family", "=", "None", ",", "size", "=", "None", ",", "*", "*", "kwargs", ")", ":", "super", "(", "Tickfont", ",", "self", ")", ".", "__init__", "(", "\"tickfont\"", ")", "if", "\"_parent\"", "in", "kwargs", ":", "self", ".", "_parent", "=", "kwargs", "[", "\"_parent\"", "]", "return", "# Validate arg", "# ------------", "if", "arg", "is", "None", ":", "arg", "=", "{", "}", "elif", "isinstance", "(", "arg", ",", "self", ".", "__class__", ")", ":", "arg", "=", "arg", ".", "to_plotly_json", "(", ")", "elif", "isinstance", "(", "arg", ",", "dict", ")", ":", "arg", "=", "_copy", ".", "copy", "(", "arg", ")", "else", ":", "raise", "ValueError", "(", "\"\"\"\\\nThe first argument to the plotly.graph_objs.layout.scene.zaxis.Tickfont \nconstructor must be a dict or \nan instance of :class:`plotly.graph_objs.layout.scene.zaxis.Tickfont`\"\"\"", ")", "# Handle skip_invalid", "# -------------------", "self", ".", "_skip_invalid", "=", "kwargs", ".", "pop", "(", "\"skip_invalid\"", ",", "False", ")", "self", ".", "_validate", "=", "kwargs", ".", "pop", "(", "\"_validate\"", ",", "True", ")", "# Populate data dict with properties", "# ----------------------------------", "_v", "=", "arg", ".", "pop", "(", "\"color\"", ",", "None", ")", "_v", "=", "color", "if", "color", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"color\"", "]", "=", "_v", "_v", "=", "arg", ".", "pop", "(", "\"family\"", ",", "None", ")", "_v", "=", "family", "if", "family", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"family\"", "]", "=", "_v", "_v", "=", "arg", ".", "pop", "(", "\"size\"", ",", "None", ")", "_v", "=", "size", "if", "size", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"size\"", "]", "=", "_v", "# Process unknown kwargs", "# ----------------------", "self", ".", "_process_kwargs", "(", "*", "*", "dict", "(", "arg", ",", "*", "*", "kwargs", ")", ")", "# Reset skip_invalid", "# ------------------", "self", ".", "_skip_invalid", "=", "False" ]
[ 143, 4 ]
[ 226, 34 ]
python
en
['en', 'error', 'th']
False
AccountCmdSet.at_cmdset_creation
(self)
Populates the cmdset
Populates the cmdset
def at_cmdset_creation(self): "Populates the cmdset" # Account-specific commands self.add(account.CmdOOCLook()) self.add(account.CmdIC()) self.add(account.CmdOOC()) self.add(account.CmdCharCreate()) self.add(account.CmdCharDelete()) # self.add(account.CmdSessions()) self.add(account.CmdWho()) self.add(account.CmdOption()) self.add(account.CmdQuit()) self.add(account.CmdPassword()) self.add(account.CmdColorTest()) self.add(account.CmdQuell()) # nicks self.add(general.CmdNick()) # testing self.add(building.CmdExamine()) # Help command self.add(help.CmdHelp()) # system commands self.add(system.CmdReload()) self.add(system.CmdReset()) self.add(system.CmdShutdown()) self.add(system.CmdPy()) # Admin commands self.add(admin.CmdDelAccount()) self.add(admin.CmdNewPassword()) # Comm commands self.add(comms.CmdAddCom()) self.add(comms.CmdDelCom()) self.add(comms.CmdAllCom()) self.add(comms.CmdChannels()) self.add(comms.CmdCdestroy()) self.add(comms.CmdChannelCreate()) self.add(comms.CmdClock()) self.add(comms.CmdCBoot()) self.add(comms.CmdCemit()) self.add(comms.CmdCWho()) self.add(comms.CmdCdesc()) self.add(comms.CmdPage()) self.add(comms.CmdIRC2Chan()) self.add(comms.CmdIRCStatus()) self.add(comms.CmdRSS2Chan())
[ "def", "at_cmdset_creation", "(", "self", ")", ":", "# Account-specific commands", "self", ".", "add", "(", "account", ".", "CmdOOCLook", "(", ")", ")", "self", ".", "add", "(", "account", ".", "CmdIC", "(", ")", ")", "self", ".", "add", "(", "account", ".", "CmdOOC", "(", ")", ")", "self", ".", "add", "(", "account", ".", "CmdCharCreate", "(", ")", ")", "self", ".", "add", "(", "account", ".", "CmdCharDelete", "(", ")", ")", "# self.add(account.CmdSessions())", "self", ".", "add", "(", "account", ".", "CmdWho", "(", ")", ")", "self", ".", "add", "(", "account", ".", "CmdOption", "(", ")", ")", "self", ".", "add", "(", "account", ".", "CmdQuit", "(", ")", ")", "self", ".", "add", "(", "account", ".", "CmdPassword", "(", ")", ")", "self", ".", "add", "(", "account", ".", "CmdColorTest", "(", ")", ")", "self", ".", "add", "(", "account", ".", "CmdQuell", "(", ")", ")", "# nicks", "self", ".", "add", "(", "general", ".", "CmdNick", "(", ")", ")", "# testing", "self", ".", "add", "(", "building", ".", "CmdExamine", "(", ")", ")", "# Help command", "self", ".", "add", "(", "help", ".", "CmdHelp", "(", ")", ")", "# system commands", "self", ".", "add", "(", "system", ".", "CmdReload", "(", ")", ")", "self", ".", "add", "(", "system", ".", "CmdReset", "(", ")", ")", "self", ".", "add", "(", "system", ".", "CmdShutdown", "(", ")", ")", "self", ".", "add", "(", "system", ".", "CmdPy", "(", ")", ")", "# Admin commands", "self", ".", "add", "(", "admin", ".", "CmdDelAccount", "(", ")", ")", "self", ".", "add", "(", "admin", ".", "CmdNewPassword", "(", ")", ")", "# Comm commands", "self", ".", "add", "(", "comms", ".", "CmdAddCom", "(", ")", ")", "self", ".", "add", "(", "comms", ".", "CmdDelCom", "(", ")", ")", "self", ".", "add", "(", "comms", ".", "CmdAllCom", "(", ")", ")", "self", ".", "add", "(", "comms", ".", "CmdChannels", "(", ")", ")", "self", ".", "add", "(", "comms", ".", "CmdCdestroy", "(", ")", ")", "self", ".", "add", "(", "comms", ".", "CmdChannelCreate", "(", ")", ")", "self", ".", "add", "(", "comms", ".", "CmdClock", "(", ")", ")", "self", ".", "add", "(", "comms", ".", "CmdCBoot", "(", ")", ")", "self", ".", "add", "(", "comms", ".", "CmdCemit", "(", ")", ")", "self", ".", "add", "(", "comms", ".", "CmdCWho", "(", ")", ")", "self", ".", "add", "(", "comms", ".", "CmdCdesc", "(", ")", ")", "self", ".", "add", "(", "comms", ".", "CmdPage", "(", ")", ")", "self", ".", "add", "(", "comms", ".", "CmdIRC2Chan", "(", ")", ")", "self", ".", "add", "(", "comms", ".", "CmdIRCStatus", "(", ")", ")", "self", ".", "add", "(", "comms", ".", "CmdRSS2Chan", "(", ")", ")" ]
[ 24, 4 ]
[ 75, 37 ]
python
en
['en', 'sr', 'en']
True
Tickformatstop.dtickrange
(self)
range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" The 'dtickrange' property is an info array that may be specified as: * a list or tuple of 2 elements where: (0) The 'dtickrange[0]' property accepts values of any type (1) The 'dtickrange[1]' property accepts values of any type Returns ------- list
range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" The 'dtickrange' property is an info array that may be specified as: * a list or tuple of 2 elements where: (0) The 'dtickrange[0]' property accepts values of any type (1) The 'dtickrange[1]' property accepts values of any type
def dtickrange(self): """ range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" The 'dtickrange' property is an info array that may be specified as: * a list or tuple of 2 elements where: (0) The 'dtickrange[0]' property accepts values of any type (1) The 'dtickrange[1]' property accepts values of any type Returns ------- list """ return self["dtickrange"]
[ "def", "dtickrange", "(", "self", ")", ":", "return", "self", "[", "\"dtickrange\"", "]" ]
[ 15, 4 ]
[ 31, 33 ]
python
en
['en', 'error', 'th']
False
Tickformatstop.enabled
(self)
Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. The 'enabled' property must be specified as a bool (either True, or False) Returns ------- bool
Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. The 'enabled' property must be specified as a bool (either True, or False)
def enabled(self): """ Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. The 'enabled' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["enabled"]
[ "def", "enabled", "(", "self", ")", ":", "return", "self", "[", "\"enabled\"", "]" ]
[ 40, 4 ]
[ 52, 30 ]
python
en
['en', 'error', 'th']
False
Tickformatstop.name
(self)
When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. The 'name' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str
When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. The 'name' property is a string and must be specified as: - A string - A number that will be converted to a string
def name(self): """ When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. The 'name' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["name"]
[ "def", "name", "(", "self", ")", ":", "return", "self", "[", "\"name\"", "]" ]
[ 61, 4 ]
[ 79, 27 ]
python
en
['en', 'error', 'th']
False
Tickformatstop.templateitemname
(self)
Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. The 'templateitemname' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str
Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. The 'templateitemname' property is a string and must be specified as: - A string - A number that will be converted to a string
def templateitemname(self): """ Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. The 'templateitemname' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["templateitemname"]
[ "def", "templateitemname", "(", "self", ")", ":", "return", "self", "[", "\"templateitemname\"", "]" ]
[ 88, 4 ]
[ 107, 39 ]
python
en
['en', 'error', 'th']
False
Tickformatstop.value
(self)
string - dtickformat for described zoom level, the same as "tickformat" The 'value' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str
string - dtickformat for described zoom level, the same as "tickformat" The 'value' property is a string and must be specified as: - A string - A number that will be converted to a string
def value(self): """ string - dtickformat for described zoom level, the same as "tickformat" The 'value' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["value"]
[ "def", "value", "(", "self", ")", ":", "return", "self", "[", "\"value\"", "]" ]
[ 116, 4 ]
[ 129, 28 ]
python
en
['en', 'error', 'th']
False
Tickformatstop.__init__
( self, arg=None, dtickrange=None, enabled=None, name=None, templateitemname=None, value=None, **kwargs )
Construct a new Tickformatstop object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.isosurface.col orbar.Tickformatstop` dtickrange range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" enabled Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. value string - dtickformat for described zoom level, the same as "tickformat" Returns ------- Tickformatstop
Construct a new Tickformatstop object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.isosurface.col orbar.Tickformatstop` dtickrange range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" enabled Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. value string - dtickformat for described zoom level, the same as "tickformat"
def __init__( self, arg=None, dtickrange=None, enabled=None, name=None, templateitemname=None, value=None, **kwargs ): """ Construct a new Tickformatstop object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.isosurface.col orbar.Tickformatstop` dtickrange range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" enabled Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. value string - dtickformat for described zoom level, the same as "tickformat" Returns ------- Tickformatstop """ super(Tickformatstop, self).__init__("tickformatstops") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.isosurface.colorbar.Tickformatstop constructor must be a dict or an instance of :class:`plotly.graph_objs.isosurface.colorbar.Tickformatstop`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("dtickrange", None) _v = dtickrange if dtickrange is not None else _v if _v is not None: self["dtickrange"] = _v _v = arg.pop("enabled", None) _v = enabled if enabled is not None else _v if _v is not None: self["enabled"] = _v _v = arg.pop("name", None) _v = name if name is not None else _v if _v is not None: self["name"] = _v _v = arg.pop("templateitemname", None) _v = templateitemname if templateitemname is not None else _v if _v is not None: self["templateitemname"] = _v _v = arg.pop("value", None) _v = value if value is not None else _v if _v is not None: self["value"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
[ "def", "__init__", "(", "self", ",", "arg", "=", "None", ",", "dtickrange", "=", "None", ",", "enabled", "=", "None", ",", "name", "=", "None", ",", "templateitemname", "=", "None", ",", "value", "=", "None", ",", "*", "*", "kwargs", ")", ":", "super", "(", "Tickformatstop", ",", "self", ")", ".", "__init__", "(", "\"tickformatstops\"", ")", "if", "\"_parent\"", "in", "kwargs", ":", "self", ".", "_parent", "=", "kwargs", "[", "\"_parent\"", "]", "return", "# Validate arg", "# ------------", "if", "arg", "is", "None", ":", "arg", "=", "{", "}", "elif", "isinstance", "(", "arg", ",", "self", ".", "__class__", ")", ":", "arg", "=", "arg", ".", "to_plotly_json", "(", ")", "elif", "isinstance", "(", "arg", ",", "dict", ")", ":", "arg", "=", "_copy", ".", "copy", "(", "arg", ")", "else", ":", "raise", "ValueError", "(", "\"\"\"\\\nThe first argument to the plotly.graph_objs.isosurface.colorbar.Tickformatstop \nconstructor must be a dict or \nan instance of :class:`plotly.graph_objs.isosurface.colorbar.Tickformatstop`\"\"\"", ")", "# Handle skip_invalid", "# -------------------", "self", ".", "_skip_invalid", "=", "kwargs", ".", "pop", "(", "\"skip_invalid\"", ",", "False", ")", "self", ".", "_validate", "=", "kwargs", ".", "pop", "(", "\"_validate\"", ",", "True", ")", "# Populate data dict with properties", "# ----------------------------------", "_v", "=", "arg", ".", "pop", "(", "\"dtickrange\"", ",", "None", ")", "_v", "=", "dtickrange", "if", "dtickrange", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"dtickrange\"", "]", "=", "_v", "_v", "=", "arg", ".", "pop", "(", "\"enabled\"", ",", "None", ")", "_v", "=", "enabled", "if", "enabled", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"enabled\"", "]", "=", "_v", "_v", "=", "arg", ".", "pop", "(", "\"name\"", ",", "None", ")", "_v", "=", "name", "if", "name", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"name\"", "]", "=", "_v", "_v", "=", "arg", ".", "pop", "(", "\"templateitemname\"", ",", "None", ")", "_v", "=", "templateitemname", "if", "templateitemname", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"templateitemname\"", "]", "=", "_v", "_v", "=", "arg", ".", "pop", "(", "\"value\"", ",", "None", ")", "_v", "=", "value", "if", "value", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"value\"", "]", "=", "_v", "# Process unknown kwargs", "# ----------------------", "self", ".", "_process_kwargs", "(", "*", "*", "dict", "(", "arg", ",", "*", "*", "kwargs", ")", ")", "# Reset skip_invalid", "# ------------------", "self", ".", "_skip_invalid", "=", "False" ]
[ 172, 4 ]
[ 282, 34 ]
python
en
['en', 'error', 'th']
False
Leaf.opacity
(self)
Sets the opacity of the leaves. With colorscale it is defaulted to 1; otherwise it is defaulted to 0.7 The 'opacity' property is a number and may be specified as: - An int or float in the interval [0, 1] Returns ------- int|float
Sets the opacity of the leaves. With colorscale it is defaulted to 1; otherwise it is defaulted to 0.7 The 'opacity' property is a number and may be specified as: - An int or float in the interval [0, 1]
def opacity(self): """ Sets the opacity of the leaves. With colorscale it is defaulted to 1; otherwise it is defaulted to 0.7 The 'opacity' property is a number and may be specified as: - An int or float in the interval [0, 1] Returns ------- int|float """ return self["opacity"]
[ "def", "opacity", "(", "self", ")", ":", "return", "self", "[", "\"opacity\"", "]" ]
[ 15, 4 ]
[ 27, 30 ]
python
en
['en', 'error', 'th']
False
Leaf.__init__
(self, arg=None, opacity=None, **kwargs)
Construct a new Leaf object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.sunburst.Leaf` opacity Sets the opacity of the leaves. With colorscale it is defaulted to 1; otherwise it is defaulted to 0.7 Returns ------- Leaf
Construct a new Leaf object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.sunburst.Leaf` opacity Sets the opacity of the leaves. With colorscale it is defaulted to 1; otherwise it is defaulted to 0.7
def __init__(self, arg=None, opacity=None, **kwargs): """ Construct a new Leaf object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.sunburst.Leaf` opacity Sets the opacity of the leaves. With colorscale it is defaulted to 1; otherwise it is defaulted to 0.7 Returns ------- Leaf """ super(Leaf, self).__init__("leaf") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.sunburst.Leaf constructor must be a dict or an instance of :class:`plotly.graph_objs.sunburst.Leaf`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("opacity", None) _v = opacity if opacity is not None else _v if _v is not None: self["opacity"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
[ "def", "__init__", "(", "self", ",", "arg", "=", "None", ",", "opacity", "=", "None", ",", "*", "*", "kwargs", ")", ":", "super", "(", "Leaf", ",", "self", ")", ".", "__init__", "(", "\"leaf\"", ")", "if", "\"_parent\"", "in", "kwargs", ":", "self", ".", "_parent", "=", "kwargs", "[", "\"_parent\"", "]", "return", "# Validate arg", "# ------------", "if", "arg", "is", "None", ":", "arg", "=", "{", "}", "elif", "isinstance", "(", "arg", ",", "self", ".", "__class__", ")", ":", "arg", "=", "arg", ".", "to_plotly_json", "(", ")", "elif", "isinstance", "(", "arg", ",", "dict", ")", ":", "arg", "=", "_copy", ".", "copy", "(", "arg", ")", "else", ":", "raise", "ValueError", "(", "\"\"\"\\\nThe first argument to the plotly.graph_objs.sunburst.Leaf \nconstructor must be a dict or \nan instance of :class:`plotly.graph_objs.sunburst.Leaf`\"\"\"", ")", "# Handle skip_invalid", "# -------------------", "self", ".", "_skip_invalid", "=", "kwargs", ".", "pop", "(", "\"skip_invalid\"", ",", "False", ")", "self", ".", "_validate", "=", "kwargs", ".", "pop", "(", "\"_validate\"", ",", "True", ")", "# Populate data dict with properties", "# ----------------------------------", "_v", "=", "arg", ".", "pop", "(", "\"opacity\"", ",", "None", ")", "_v", "=", "opacity", "if", "opacity", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"opacity\"", "]", "=", "_v", "# Process unknown kwargs", "# ----------------------", "self", ".", "_process_kwargs", "(", "*", "*", "dict", "(", "arg", ",", "*", "*", "kwargs", ")", ")", "# Reset skip_invalid", "# ------------------", "self", ".", "_skip_invalid", "=", "False" ]
[ 43, 4 ]
[ 100, 34 ]
python
en
['en', 'error', 'th']
False
TestSeq2Seq.test_generation
(self)
This test uses a single-turn sequence repitition task.
This test uses a single-turn sequence repitition task.
def test_generation(self): """ This test uses a single-turn sequence repitition task. """ valid, test = testing_utils.eval_model( dict( task='integration_tests:multiturn_nocandidate', model='seq2seq', model_file='zoo:unittest/seq2seq/model', dict_file='zoo:unittest/seq2seq/model.dict', skip_generation=False, inference='greedy', batchsize=8, num_examples=32, ) ) self.assertLess(valid['ppl'], 1.2) self.assertLess(test['ppl'], 1.2)
[ "def", "test_generation", "(", "self", ")", ":", "valid", ",", "test", "=", "testing_utils", ".", "eval_model", "(", "dict", "(", "task", "=", "'integration_tests:multiturn_nocandidate'", ",", "model", "=", "'seq2seq'", ",", "model_file", "=", "'zoo:unittest/seq2seq/model'", ",", "dict_file", "=", "'zoo:unittest/seq2seq/model.dict'", ",", "skip_generation", "=", "False", ",", "inference", "=", "'greedy'", ",", "batchsize", "=", "8", ",", "num_examples", "=", "32", ",", ")", ")", "self", ".", "assertLess", "(", "valid", "[", "'ppl'", "]", ",", "1.2", ")", "self", ".", "assertLess", "(", "test", "[", "'ppl'", "]", ",", "1.2", ")" ]
[ 43, 4 ]
[ 61, 41 ]
python
en
['en', 'error', 'th']
False
TestSeq2Seq.test_beamsearch
(self)
Ensures beam search can generate the correct response.
Ensures beam search can generate the correct response.
def test_beamsearch(self): """ Ensures beam search can generate the correct response. """ valid, test = testing_utils.eval_model( dict( task='integration_tests:multiturn_nocandidate', model='seq2seq', model_file='zoo:unittest/seq2seq/model', dict_file='zoo:unittest/seq2seq/model.dict', skip_generation=False, inference='beam', beam_size=5, num_examples=16, ) ) self.assertGreater(valid['accuracy'], 0.95) self.assertGreater(test['accuracy'], 0.95)
[ "def", "test_beamsearch", "(", "self", ")", ":", "valid", ",", "test", "=", "testing_utils", ".", "eval_model", "(", "dict", "(", "task", "=", "'integration_tests:multiturn_nocandidate'", ",", "model", "=", "'seq2seq'", ",", "model_file", "=", "'zoo:unittest/seq2seq/model'", ",", "dict_file", "=", "'zoo:unittest/seq2seq/model.dict'", ",", "skip_generation", "=", "False", ",", "inference", "=", "'beam'", ",", "beam_size", "=", "5", ",", "num_examples", "=", "16", ",", ")", ")", "self", ".", "assertGreater", "(", "valid", "[", "'accuracy'", "]", ",", "0.95", ")", "self", ".", "assertGreater", "(", "test", "[", "'accuracy'", "]", ",", "0.95", ")" ]
[ 63, 4 ]
[ 80, 50 ]
python
en
['en', 'error', 'th']
False
net_photosynthesis_rate
(carbohydrate_amount_Buf, carbohydrate_amount_Leaf, air_co2, canopy_t, PAR_Canopy)
Equation 9.10 carbohydrate_mass_flow_AirBuf = M_CH2O * carbohydrates_saturation_photosynthesis_rate_inhibition * (gross_canopy_photosynthesis_rate - photosynthesis_process_photorespiration) Returns: The photosynthesis rate [mg m^-2 s^-1]
Equation 9.10 carbohydrate_mass_flow_AirBuf = M_CH2O * carbohydrates_saturation_photosynthesis_rate_inhibition * (gross_canopy_photosynthesis_rate - photosynthesis_process_photorespiration) Returns: The photosynthesis rate [mg m^-2 s^-1]
def net_photosynthesis_rate(carbohydrate_amount_Buf, carbohydrate_amount_Leaf, air_co2, canopy_t, PAR_Canopy): """ Equation 9.10 carbohydrate_mass_flow_AirBuf = M_CH2O * carbohydrates_saturation_photosynthesis_rate_inhibition * (gross_canopy_photosynthesis_rate - photosynthesis_process_photorespiration) Returns: The photosynthesis rate [mg m^-2 s^-1] """ carbohydrates_saturation_photosynthesis_rate_inhibition_rate = carbohydrates_saturation_photosynthesis_rate_inhibition( carbohydrate_amount_Buf) stomata_co2_concentration = co2_concentration_inside_stomata(air_co2) co2_compensation_point = co2_compensation(carbohydrate_amount_Leaf, canopy_t) gross_canopy_photosynthesis_rate = canopy_level_photosynthesis_rate(carbohydrate_amount_Leaf, canopy_t, stomata_co2_concentration, co2_compensation_point, PAR_Canopy) return M_CH2O * carbohydrates_saturation_photosynthesis_rate_inhibition_rate \ * (gross_canopy_photosynthesis_rate - photorespiration_rate(gross_canopy_photosynthesis_rate, stomata_co2_concentration, co2_compensation_point))
[ "def", "net_photosynthesis_rate", "(", "carbohydrate_amount_Buf", ",", "carbohydrate_amount_Leaf", ",", "air_co2", ",", "canopy_t", ",", "PAR_Canopy", ")", ":", "carbohydrates_saturation_photosynthesis_rate_inhibition_rate", "=", "carbohydrates_saturation_photosynthesis_rate_inhibition", "(", "carbohydrate_amount_Buf", ")", "stomata_co2_concentration", "=", "co2_concentration_inside_stomata", "(", "air_co2", ")", "co2_compensation_point", "=", "co2_compensation", "(", "carbohydrate_amount_Leaf", ",", "canopy_t", ")", "gross_canopy_photosynthesis_rate", "=", "canopy_level_photosynthesis_rate", "(", "carbohydrate_amount_Leaf", ",", "canopy_t", ",", "stomata_co2_concentration", ",", "co2_compensation_point", ",", "PAR_Canopy", ")", "return", "M_CH2O", "*", "carbohydrates_saturation_photosynthesis_rate_inhibition_rate", "*", "(", "gross_canopy_photosynthesis_rate", "-", "photorespiration_rate", "(", "gross_canopy_photosynthesis_rate", ",", "stomata_co2_concentration", ",", "co2_compensation_point", ")", ")" ]
[ 7, 0 ]
[ 25, 62 ]
python
en
['en', 'error', 'th']
False
canopy_level_photosynthesis_rate
(carbohydrate_amount_Leaf, canopy_t, stomata_co2_concentration, co2_compensation_point, PAR_Canopy)
Equations 9.12 canopy_level_photosynthesis_rate = electron_transport_rate * (stomata_CO2_concentration - CO2_compensation_point) / (4 * (stomata_CO2_concentration + 2*CO2_compensation_point)) Returns: gross canopy photosynthesis rate [µmol {CO2} m^-2 s^-1]
Equations 9.12 canopy_level_photosynthesis_rate = electron_transport_rate * (stomata_CO2_concentration - CO2_compensation_point) / (4 * (stomata_CO2_concentration + 2*CO2_compensation_point)) Returns: gross canopy photosynthesis rate [µmol {CO2} m^-2 s^-1]
def canopy_level_photosynthesis_rate(carbohydrate_amount_Leaf, canopy_t, stomata_co2_concentration, co2_compensation_point, PAR_Canopy): """ Equations 9.12 canopy_level_photosynthesis_rate = electron_transport_rate * (stomata_CO2_concentration - CO2_compensation_point) / (4 * (stomata_CO2_concentration + 2*CO2_compensation_point)) Returns: gross canopy photosynthesis rate [µmol {CO2} m^-2 s^-1] """ electron_transport_rate = electron_transport(carbohydrate_amount_Leaf, canopy_t, PAR_Canopy) return electron_transport_rate * (stomata_co2_concentration - co2_compensation_point) \ / (4 * (stomata_co2_concentration + 2 * co2_compensation_point))
[ "def", "canopy_level_photosynthesis_rate", "(", "carbohydrate_amount_Leaf", ",", "canopy_t", ",", "stomata_co2_concentration", ",", "co2_compensation_point", ",", "PAR_Canopy", ")", ":", "electron_transport_rate", "=", "electron_transport", "(", "carbohydrate_amount_Leaf", ",", "canopy_t", ",", "PAR_Canopy", ")", "return", "electron_transport_rate", "*", "(", "stomata_co2_concentration", "-", "co2_compensation_point", ")", "/", "(", "4", "*", "(", "stomata_co2_concentration", "+", "2", "*", "co2_compensation_point", ")", ")" ]
[ 28, 0 ]
[ 36, 75 ]
python
en
['en', 'error', 'th']
False
photorespiration_rate
(gross_canopy_photosynthesis_rate, stomata_co2_concentration, co2_compensation_point)
Equations 9.13 photorespiration_rate = gross_canopy_photosynthesis_rate * CO2_compensation_point / stomata_CO2_concentration Args: gross_canopy_photosynthesis_rate: stomata_co2_concentration: co2_compensation_point: Returns: photorespiration rate [µmol {CO2} m^-2 s^-1]
Equations 9.13 photorespiration_rate = gross_canopy_photosynthesis_rate * CO2_compensation_point / stomata_CO2_concentration Args: gross_canopy_photosynthesis_rate: stomata_co2_concentration: co2_compensation_point: Returns: photorespiration rate [µmol {CO2} m^-2 s^-1]
def photorespiration_rate(gross_canopy_photosynthesis_rate, stomata_co2_concentration, co2_compensation_point): """ Equations 9.13 photorespiration_rate = gross_canopy_photosynthesis_rate * CO2_compensation_point / stomata_CO2_concentration Args: gross_canopy_photosynthesis_rate: stomata_co2_concentration: co2_compensation_point: Returns: photorespiration rate [µmol {CO2} m^-2 s^-1] """ return gross_canopy_photosynthesis_rate * co2_compensation_point / stomata_co2_concentration
[ "def", "photorespiration_rate", "(", "gross_canopy_photosynthesis_rate", ",", "stomata_co2_concentration", ",", "co2_compensation_point", ")", ":", "return", "gross_canopy_photosynthesis_rate", "*", "co2_compensation_point", "/", "stomata_co2_concentration" ]
[ 39, 0 ]
[ 49, 96 ]
python
en
['en', 'error', 'th']
False
carbohydrate_flow_from_buffer_to_fruits
(carbohydrate_amount_Buf, canopy_t, sum_canopy_t, last_24_canopy_t)
Equations 9.24 carbohydrate_flow_BufFruits = carbohydrates_saturation_photosynthesis_rate_inhibition_rate * non_optimal_instantaneous_temperature_inhibition_rate * non_optimal_24_hour_canopy_temperatures_inhibition_rate * crop_development_stage_inhibition_rate * growth_rate * POTENTIAL_FRUIT_GROWTH_RATE_COEF Returns: carbohydrate flow from buffer to fruits [mg m^-2 s^-1]
Equations 9.24 carbohydrate_flow_BufFruits = carbohydrates_saturation_photosynthesis_rate_inhibition_rate * non_optimal_instantaneous_temperature_inhibition_rate * non_optimal_24_hour_canopy_temperatures_inhibition_rate * crop_development_stage_inhibition_rate * growth_rate * POTENTIAL_FRUIT_GROWTH_RATE_COEF Returns: carbohydrate flow from buffer to fruits [mg m^-2 s^-1]
def carbohydrate_flow_from_buffer_to_fruits(carbohydrate_amount_Buf, canopy_t, sum_canopy_t, last_24_canopy_t): """ Equations 9.24 carbohydrate_flow_BufFruits = carbohydrates_saturation_photosynthesis_rate_inhibition_rate * non_optimal_instantaneous_temperature_inhibition_rate * non_optimal_24_hour_canopy_temperatures_inhibition_rate * crop_development_stage_inhibition_rate * growth_rate * POTENTIAL_FRUIT_GROWTH_RATE_COEF Returns: carbohydrate flow from buffer to fruits [mg m^-2 s^-1] """ carbohydrates_saturation_photosynthesis_rate_inhibition_rate = carbohydrates_saturation_photosynthesis_rate_inhibition(carbohydrate_amount_Buf) non_optimal_instantaneous_temperature_inhibition_rate = non_optimal_instantaneous_temperature_inhibition(canopy_t) non_optimal_24_hour_canopy_temperatures_inhibition_rate = non_optimal_24_hour_canopy_temperatures_inhibition(last_24_canopy_t) crop_development_stage_inhibition_rate = crop_development_stage_inhibition(sum_canopy_t) growth_rate = growth_rate_dependency_to_temperature(last_24_canopy_t) return carbohydrates_saturation_photosynthesis_rate_inhibition_rate \ * non_optimal_instantaneous_temperature_inhibition_rate \ * non_optimal_24_hour_canopy_temperatures_inhibition_rate \ * crop_development_stage_inhibition_rate \ * growth_rate \ * POTENTIAL_FRUIT_GROWTH_RATE_COEF
[ "def", "carbohydrate_flow_from_buffer_to_fruits", "(", "carbohydrate_amount_Buf", ",", "canopy_t", ",", "sum_canopy_t", ",", "last_24_canopy_t", ")", ":", "carbohydrates_saturation_photosynthesis_rate_inhibition_rate", "=", "carbohydrates_saturation_photosynthesis_rate_inhibition", "(", "carbohydrate_amount_Buf", ")", "non_optimal_instantaneous_temperature_inhibition_rate", "=", "non_optimal_instantaneous_temperature_inhibition", "(", "canopy_t", ")", "non_optimal_24_hour_canopy_temperatures_inhibition_rate", "=", "non_optimal_24_hour_canopy_temperatures_inhibition", "(", "last_24_canopy_t", ")", "crop_development_stage_inhibition_rate", "=", "crop_development_stage_inhibition", "(", "sum_canopy_t", ")", "growth_rate", "=", "growth_rate_dependency_to_temperature", "(", "last_24_canopy_t", ")", "return", "carbohydrates_saturation_photosynthesis_rate_inhibition_rate", "*", "non_optimal_instantaneous_temperature_inhibition_rate", "*", "non_optimal_24_hour_canopy_temperatures_inhibition_rate", "*", "crop_development_stage_inhibition_rate", "*", "growth_rate", "*", "POTENTIAL_FRUIT_GROWTH_RATE_COEF" ]
[ 52, 0 ]
[ 73, 45 ]
python
en
['en', 'error', 'th']
False
carbohydrate_flow_from_buffer_to_leaves
(carbohydrate_amount_Buf, last_24_canopy_t)
Equations 9.25 carbohydrate_flow_BufLeaf = carbohydrates_saturation_photosynthesis_rate_inhibition_rate * non_optimal_24_hour_canopy_temperatures_inhibition_rate * growth_rate * POTENTIAL_LEAF_GROWTH_RATE_COEF Returns: carbohydrate flow from buffer to leaves [mg m^-2 s^-1]
Equations 9.25 carbohydrate_flow_BufLeaf = carbohydrates_saturation_photosynthesis_rate_inhibition_rate * non_optimal_24_hour_canopy_temperatures_inhibition_rate * growth_rate * POTENTIAL_LEAF_GROWTH_RATE_COEF Returns: carbohydrate flow from buffer to leaves [mg m^-2 s^-1]
def carbohydrate_flow_from_buffer_to_leaves(carbohydrate_amount_Buf, last_24_canopy_t): """ Equations 9.25 carbohydrate_flow_BufLeaf = carbohydrates_saturation_photosynthesis_rate_inhibition_rate * non_optimal_24_hour_canopy_temperatures_inhibition_rate * growth_rate * POTENTIAL_LEAF_GROWTH_RATE_COEF Returns: carbohydrate flow from buffer to leaves [mg m^-2 s^-1] """ carbohydrates_saturation_photosynthesis_rate_inhibition_rate = carbohydrates_saturation_photosynthesis_rate_inhibition(carbohydrate_amount_Buf) non_optimal_24_hour_canopy_temperatures_inhibition_rate = non_optimal_24_hour_canopy_temperatures_inhibition(last_24_canopy_t) growth_rate = growth_rate_dependency_to_temperature(last_24_canopy_t) return carbohydrates_saturation_photosynthesis_rate_inhibition_rate \ * non_optimal_24_hour_canopy_temperatures_inhibition_rate \ * growth_rate \ * POTENTIAL_LEAF_GROWTH_RATE_COEF
[ "def", "carbohydrate_flow_from_buffer_to_leaves", "(", "carbohydrate_amount_Buf", ",", "last_24_canopy_t", ")", ":", "carbohydrates_saturation_photosynthesis_rate_inhibition_rate", "=", "carbohydrates_saturation_photosynthesis_rate_inhibition", "(", "carbohydrate_amount_Buf", ")", "non_optimal_24_hour_canopy_temperatures_inhibition_rate", "=", "non_optimal_24_hour_canopy_temperatures_inhibition", "(", "last_24_canopy_t", ")", "growth_rate", "=", "growth_rate_dependency_to_temperature", "(", "last_24_canopy_t", ")", "return", "carbohydrates_saturation_photosynthesis_rate_inhibition_rate", "*", "non_optimal_24_hour_canopy_temperatures_inhibition_rate", "*", "growth_rate", "*", "POTENTIAL_LEAF_GROWTH_RATE_COEF" ]
[ 76, 0 ]
[ 90, 44 ]
python
en
['en', 'error', 'th']
False
carbohydrate_flow_from_buffer_to_stem
(carbohydrate_amount_Buf, last_24_canopy_t)
Equations 9.25 carbohydrate_flow_BufStem = carbohydrates_saturation_photosynthesis_rate_inhibition_rate * non_optimal_24_hour_canopy_temperatures_inhibition_rate * growth_rate * POTENTIAL_STEM_GROWTH_RATE_COEF Returns: carbohydrate flow from buffer to stem [mg m^-2 s^-1]
Equations 9.25 carbohydrate_flow_BufStem = carbohydrates_saturation_photosynthesis_rate_inhibition_rate * non_optimal_24_hour_canopy_temperatures_inhibition_rate * growth_rate * POTENTIAL_STEM_GROWTH_RATE_COEF Returns: carbohydrate flow from buffer to stem [mg m^-2 s^-1]
def carbohydrate_flow_from_buffer_to_stem(carbohydrate_amount_Buf, last_24_canopy_t): """ Equations 9.25 carbohydrate_flow_BufStem = carbohydrates_saturation_photosynthesis_rate_inhibition_rate * non_optimal_24_hour_canopy_temperatures_inhibition_rate * growth_rate * POTENTIAL_STEM_GROWTH_RATE_COEF Returns: carbohydrate flow from buffer to stem [mg m^-2 s^-1] """ carbohydrates_saturation_photosynthesis_rate_inhibition_rate = carbohydrates_saturation_photosynthesis_rate_inhibition(carbohydrate_amount_Buf) non_optimal_24_hour_canopy_temperatures_inhibition_rate = non_optimal_24_hour_canopy_temperatures_inhibition(last_24_canopy_t) growth_rate = growth_rate_dependency_to_temperature(last_24_canopy_t) return carbohydrates_saturation_photosynthesis_rate_inhibition_rate \ * non_optimal_24_hour_canopy_temperatures_inhibition_rate \ * growth_rate \ * POTENTIAL_STEM_GROWTH_RATE_COEF
[ "def", "carbohydrate_flow_from_buffer_to_stem", "(", "carbohydrate_amount_Buf", ",", "last_24_canopy_t", ")", ":", "carbohydrates_saturation_photosynthesis_rate_inhibition_rate", "=", "carbohydrates_saturation_photosynthesis_rate_inhibition", "(", "carbohydrate_amount_Buf", ")", "non_optimal_24_hour_canopy_temperatures_inhibition_rate", "=", "non_optimal_24_hour_canopy_temperatures_inhibition", "(", "last_24_canopy_t", ")", "growth_rate", "=", "growth_rate_dependency_to_temperature", "(", "last_24_canopy_t", ")", "return", "carbohydrates_saturation_photosynthesis_rate_inhibition_rate", "*", "non_optimal_24_hour_canopy_temperatures_inhibition_rate", "*", "growth_rate", "*", "POTENTIAL_STEM_GROWTH_RATE_COEF" ]
[ 93, 0 ]
[ 108, 44 ]
python
en
['en', 'error', 'th']
False
carbohydrate_flow_through_fruit_stages
(jth: int, carbohydrate_amount_Fruits, last_24_canopy_t)
Equations 9.34 carbohydrate_flow_Fruit_j_Fruit_jplus = fruit_development_rate * FRUIT_DEVELOPMENT_STAGES_NUM * carbohydrate_amount_Fruit_j Args: jth: stage number Returns: carbohydrates flow from fruit stage j to fruit stage j+1 [mg m^-2 s^-1]
Equations 9.34 carbohydrate_flow_Fruit_j_Fruit_jplus = fruit_development_rate * FRUIT_DEVELOPMENT_STAGES_NUM * carbohydrate_amount_Fruit_j Args: jth: stage number
def carbohydrate_flow_through_fruit_stages(jth: int, carbohydrate_amount_Fruits, last_24_canopy_t): """ Equations 9.34 carbohydrate_flow_Fruit_j_Fruit_jplus = fruit_development_rate * FRUIT_DEVELOPMENT_STAGES_NUM * carbohydrate_amount_Fruit_j Args: jth: stage number Returns: carbohydrates flow from fruit stage j to fruit stage j+1 [mg m^-2 s^-1] """ carbohydrate_amount_Fruit_j = carbohydrate_amount_Fruits[jth - 1] fruit_development_rate = fruit_development(last_24_canopy_t) return fruit_development_rate * FRUIT_DEVELOPMENT_STAGES_NUM * carbohydrate_amount_Fruit_j
[ "def", "carbohydrate_flow_through_fruit_stages", "(", "jth", ":", "int", ",", "carbohydrate_amount_Fruits", ",", "last_24_canopy_t", ")", ":", "carbohydrate_amount_Fruit_j", "=", "carbohydrate_amount_Fruits", "[", "jth", "-", "1", "]", "fruit_development_rate", "=", "fruit_development", "(", "last_24_canopy_t", ")", "return", "fruit_development_rate", "*", "FRUIT_DEVELOPMENT_STAGES_NUM", "*", "carbohydrate_amount_Fruit_j" ]
[ 111, 0 ]
[ 122, 94 ]
python
en
['en', 'error', 'th']
False
carbohydrate_flow_from_buffer_to_first_fruit_stage
(carbohydrate_amount_Buf, canopy_t, sum_canopy_t, last_24_canopy_t)
Equations 9.35 carbohydrate_flow_BufFruit_1 = W_Pot_Fruit_1 * number_flow_BufFruit_1 Returns: carbohydrates flow from buffer to fruit stage 1 [mg m^-2 s^-1]
Equations 9.35 carbohydrate_flow_BufFruit_1 = W_Pot_Fruit_1 * number_flow_BufFruit_1 Returns: carbohydrates flow from buffer to fruit stage 1 [mg m^-2 s^-1]
def carbohydrate_flow_from_buffer_to_first_fruit_stage(carbohydrate_amount_Buf, canopy_t, sum_canopy_t, last_24_canopy_t): """ Equations 9.35 carbohydrate_flow_BufFruit_1 = W_Pot_Fruit_1 * number_flow_BufFruit_1 Returns: carbohydrates flow from buffer to fruit stage 1 [mg m^-2 s^-1] """ carbohydrate_flow_BufFruits = carbohydrate_flow_from_buffer_to_fruits(carbohydrate_amount_Buf, canopy_t, sum_canopy_t, last_24_canopy_t) number_flow_BufFruit_1 = fruit_set_of_first_development_stage(last_24_canopy_t, carbohydrate_flow_BufFruits) W_Pot_Fruit_1 = fruit_growth(1, last_24_canopy_t) * FRUIT_DEVELOPMENT_STAGES_NUM return W_Pot_Fruit_1 * number_flow_BufFruit_1
[ "def", "carbohydrate_flow_from_buffer_to_first_fruit_stage", "(", "carbohydrate_amount_Buf", ",", "canopy_t", ",", "sum_canopy_t", ",", "last_24_canopy_t", ")", ":", "carbohydrate_flow_BufFruits", "=", "carbohydrate_flow_from_buffer_to_fruits", "(", "carbohydrate_amount_Buf", ",", "canopy_t", ",", "sum_canopy_t", ",", "last_24_canopy_t", ")", "number_flow_BufFruit_1", "=", "fruit_set_of_first_development_stage", "(", "last_24_canopy_t", ",", "carbohydrate_flow_BufFruits", ")", "W_Pot_Fruit_1", "=", "fruit_growth", "(", "1", ",", "last_24_canopy_t", ")", "*", "FRUIT_DEVELOPMENT_STAGES_NUM", "return", "W_Pot_Fruit_1", "*", "number_flow_BufFruit_1" ]
[ 125, 0 ]
[ 135, 49 ]
python
en
['en', 'error', 'th']
False
carbohydrate_flow_from_buffer_to_fruit_stages
(jth: int, carbohydrate_amount_Buf, number_Fruits, canopy_t, sum_canopy_t, last_24_canopy_t)
Equations 9.36 carbohydrate_flow_BufFruit_j = sum_carbohydrate_flow_BufFruit_conversion_factor * number_fruit_j * fruit_growth_rate * (carbohydrate_flow_BufFruits - carbohydrate_flow_BufFruit_1) Returns: carbohydrates flow from buffer to fruit stage j [mg m^-2 s^-1]
Equations 9.36 carbohydrate_flow_BufFruit_j = sum_carbohydrate_flow_BufFruit_conversion_factor * number_fruit_j * fruit_growth_rate * (carbohydrate_flow_BufFruits - carbohydrate_flow_BufFruit_1) Returns: carbohydrates flow from buffer to fruit stage j [mg m^-2 s^-1]
def carbohydrate_flow_from_buffer_to_fruit_stages(jth: int, carbohydrate_amount_Buf, number_Fruits, canopy_t, sum_canopy_t, last_24_canopy_t): """ Equations 9.36 carbohydrate_flow_BufFruit_j = sum_carbohydrate_flow_BufFruit_conversion_factor * number_fruit_j * fruit_growth_rate * (carbohydrate_flow_BufFruits - carbohydrate_flow_BufFruit_1) Returns: carbohydrates flow from buffer to fruit stage j [mg m^-2 s^-1] """ if jth == 1: return carbohydrate_flow_from_buffer_to_first_fruit_stage(carbohydrate_amount_Buf, canopy_t, sum_canopy_t, last_24_canopy_t) sum_carbohydrate_flow_BufFruit_conversion_factor = sum_carbohydrate_flow_BufFruit_conversion(number_Fruits, last_24_canopy_t) number_fruit_j = number_Fruits[jth] fruit_growth_rate_j = fruit_growth(jth, last_24_canopy_t) carbohydrate_flow_BufFruits = carbohydrate_flow_from_buffer_to_fruits(carbohydrate_amount_Buf, canopy_t, sum_canopy_t, last_24_canopy_t) carbohydrate_flow_BufFruit_1 = carbohydrate_flow_from_buffer_to_fruit_stages(1, carbohydrate_amount_Buf, None, canopy_t, sum_canopy_t, last_24_canopy_t) return sum_carbohydrate_flow_BufFruit_conversion_factor * number_fruit_j \ * fruit_growth_rate_j * (carbohydrate_flow_BufFruits - carbohydrate_flow_BufFruit_1)
[ "def", "carbohydrate_flow_from_buffer_to_fruit_stages", "(", "jth", ":", "int", ",", "carbohydrate_amount_Buf", ",", "number_Fruits", ",", "canopy_t", ",", "sum_canopy_t", ",", "last_24_canopy_t", ")", ":", "if", "jth", "==", "1", ":", "return", "carbohydrate_flow_from_buffer_to_first_fruit_stage", "(", "carbohydrate_amount_Buf", ",", "canopy_t", ",", "sum_canopy_t", ",", "last_24_canopy_t", ")", "sum_carbohydrate_flow_BufFruit_conversion_factor", "=", "sum_carbohydrate_flow_BufFruit_conversion", "(", "number_Fruits", ",", "last_24_canopy_t", ")", "number_fruit_j", "=", "number_Fruits", "[", "jth", "]", "fruit_growth_rate_j", "=", "fruit_growth", "(", "jth", ",", "last_24_canopy_t", ")", "carbohydrate_flow_BufFruits", "=", "carbohydrate_flow_from_buffer_to_fruits", "(", "carbohydrate_amount_Buf", ",", "canopy_t", ",", "sum_canopy_t", ",", "last_24_canopy_t", ")", "carbohydrate_flow_BufFruit_1", "=", "carbohydrate_flow_from_buffer_to_fruit_stages", "(", "1", ",", "carbohydrate_amount_Buf", ",", "None", ",", "canopy_t", ",", "sum_canopy_t", ",", "last_24_canopy_t", ")", "return", "sum_carbohydrate_flow_BufFruit_conversion_factor", "*", "number_fruit_j", "*", "fruit_growth_rate_j", "*", "(", "carbohydrate_flow_BufFruits", "-", "carbohydrate_flow_BufFruit_1", ")" ]
[ 138, 0 ]
[ 158, 95 ]
python
en
['en', 'error', 'th']
False
carbohydrate_flow_from_growth_respiration
(carbohydrate_amount_Buf, canopy_t, sum_canopy_t, last_24_canopy_t)
Equations 9.43 carbohydrate_flow_BufAir = Returns: carbohydrates flow from growth respiration [mg m^-2 s^-1]
Equations 9.43 carbohydrate_flow_BufAir = Returns: carbohydrates flow from growth respiration [mg m^-2 s^-1]
def carbohydrate_flow_from_growth_respiration(carbohydrate_amount_Buf, canopy_t, sum_canopy_t, last_24_canopy_t): """ Equations 9.43 carbohydrate_flow_BufAir = Returns: carbohydrates flow from growth respiration [mg m^-2 s^-1] """ carbohydrate_flow_BufFruits = carbohydrate_flow_from_buffer_to_fruits(carbohydrate_amount_Buf, canopy_t, sum_canopy_t, last_24_canopy_t) carbohydrate_flow_BufLeaf = carbohydrate_flow_from_buffer_to_leaves(carbohydrate_amount_Buf, last_24_canopy_t) carbohydrate_flow_BufStem = carbohydrate_flow_from_buffer_to_stem(carbohydrate_amount_Buf, last_24_canopy_t) return FRUIT_GROWTH_RESPIRATION_COEF * carbohydrate_flow_BufFruits \ + LEAF_GROWTH_RESPIRATION_COEF * carbohydrate_flow_BufLeaf \ + STEM_GROWTH_RESPIRATION_COEF * carbohydrate_flow_BufStem
[ "def", "carbohydrate_flow_from_growth_respiration", "(", "carbohydrate_amount_Buf", ",", "canopy_t", ",", "sum_canopy_t", ",", "last_24_canopy_t", ")", ":", "carbohydrate_flow_BufFruits", "=", "carbohydrate_flow_from_buffer_to_fruits", "(", "carbohydrate_amount_Buf", ",", "canopy_t", ",", "sum_canopy_t", ",", "last_24_canopy_t", ")", "carbohydrate_flow_BufLeaf", "=", "carbohydrate_flow_from_buffer_to_leaves", "(", "carbohydrate_amount_Buf", ",", "last_24_canopy_t", ")", "carbohydrate_flow_BufStem", "=", "carbohydrate_flow_from_buffer_to_stem", "(", "carbohydrate_amount_Buf", ",", "last_24_canopy_t", ")", "return", "FRUIT_GROWTH_RESPIRATION_COEF", "*", "carbohydrate_flow_BufFruits", "+", "LEAF_GROWTH_RESPIRATION_COEF", "*", "carbohydrate_flow_BufLeaf", "+", "STEM_GROWTH_RESPIRATION_COEF", "*", "carbohydrate_flow_BufStem" ]
[ 161, 0 ]
[ 173, 69 ]
python
en
['en', 'error', 'th']
False
carbohydrate_flow_from_fruit_maintenance_respiration
(carbohydrate_amount_Fruit_j, last_24_canopy_t)
Equations 9.45 carbohydrate_flow_FruitAir_j = FRUIT_MAINTENANCE_RESPIRATION_COEF * Q10_M**(0.1*(last_24_canopy_t-25)) * carbohydrate_amount_Fruit_j * (1 - math.exp(-MAINTENANCE_RESPIRATION_FUNCTION_REGRESSION_COEF*RELATIVE_GROWTH_RATE)) Returns: carbohydrates flow from fruit maintenance respiration [mg m^-2 s^-1]
Equations 9.45 carbohydrate_flow_FruitAir_j = FRUIT_MAINTENANCE_RESPIRATION_COEF * Q10_M**(0.1*(last_24_canopy_t-25)) * carbohydrate_amount_Fruit_j * (1 - math.exp(-MAINTENANCE_RESPIRATION_FUNCTION_REGRESSION_COEF*RELATIVE_GROWTH_RATE)) Returns: carbohydrates flow from fruit maintenance respiration [mg m^-2 s^-1]
def carbohydrate_flow_from_fruit_maintenance_respiration(carbohydrate_amount_Fruit_j, last_24_canopy_t): """ Equations 9.45 carbohydrate_flow_FruitAir_j = FRUIT_MAINTENANCE_RESPIRATION_COEF * Q10_M**(0.1*(last_24_canopy_t-25)) * carbohydrate_amount_Fruit_j * (1 - math.exp(-MAINTENANCE_RESPIRATION_FUNCTION_REGRESSION_COEF*RELATIVE_GROWTH_RATE)) Returns: carbohydrates flow from fruit maintenance respiration [mg m^-2 s^-1] """ return FRUIT_MAINTENANCE_RESPIRATION_COEF * Q10_M**(0.1*(last_24_canopy_t-25)) * carbohydrate_amount_Fruit_j \ * (1 - math.exp(-MAINTENANCE_RESPIRATION_FUNCTION_REGRESSION_COEF*RELATIVE_GROWTH_RATE))
[ "def", "carbohydrate_flow_from_fruit_maintenance_respiration", "(", "carbohydrate_amount_Fruit_j", ",", "last_24_canopy_t", ")", ":", "return", "FRUIT_MAINTENANCE_RESPIRATION_COEF", "*", "Q10_M", "**", "(", "0.1", "*", "(", "last_24_canopy_t", "-", "25", ")", ")", "*", "carbohydrate_amount_Fruit_j", "*", "(", "1", "-", "math", ".", "exp", "(", "-", "MAINTENANCE_RESPIRATION_FUNCTION_REGRESSION_COEF", "*", "RELATIVE_GROWTH_RATE", ")", ")" ]
[ 176, 0 ]
[ 184, 99 ]
python
en
['en', 'error', 'th']
False
carbohydrate_flow_from_leaf_maintenance_respiration
(carbohydrate_amount_Leaf, last_24_canopy_t)
Equations 9.45 carbohydrate_flow_LeafAir = LEAF_MAINTENANCE_RESPIRATION_COEF * Q10_M**(0.1*(last_24_canopy_t-25)) * carbohydrate_amount_Leaf \ * (1 - math.exp(-MAINTENANCE_RESPIRATION_FUNCTION_REGRESSION_COEF*RELATIVE_GROWTH_RATE)) Returns: carbohydrates flow from leaf maintenance respiration [mg m^-2 s^-1]
Equations 9.45 carbohydrate_flow_LeafAir = LEAF_MAINTENANCE_RESPIRATION_COEF * Q10_M**(0.1*(last_24_canopy_t-25)) * carbohydrate_amount_Leaf \ * (1 - math.exp(-MAINTENANCE_RESPIRATION_FUNCTION_REGRESSION_COEF*RELATIVE_GROWTH_RATE)) Returns: carbohydrates flow from leaf maintenance respiration [mg m^-2 s^-1]
def carbohydrate_flow_from_leaf_maintenance_respiration(carbohydrate_amount_Leaf, last_24_canopy_t): """ Equations 9.45 carbohydrate_flow_LeafAir = LEAF_MAINTENANCE_RESPIRATION_COEF * Q10_M**(0.1*(last_24_canopy_t-25)) * carbohydrate_amount_Leaf \ * (1 - math.exp(-MAINTENANCE_RESPIRATION_FUNCTION_REGRESSION_COEF*RELATIVE_GROWTH_RATE)) Returns: carbohydrates flow from leaf maintenance respiration [mg m^-2 s^-1] """ return LEAF_MAINTENANCE_RESPIRATION_COEF * Q10_M**(0.1*(last_24_canopy_t-25)) * carbohydrate_amount_Leaf \ * (1 - math.exp(-MAINTENANCE_RESPIRATION_FUNCTION_REGRESSION_COEF*RELATIVE_GROWTH_RATE))
[ "def", "carbohydrate_flow_from_leaf_maintenance_respiration", "(", "carbohydrate_amount_Leaf", ",", "last_24_canopy_t", ")", ":", "return", "LEAF_MAINTENANCE_RESPIRATION_COEF", "*", "Q10_M", "**", "(", "0.1", "*", "(", "last_24_canopy_t", "-", "25", ")", ")", "*", "carbohydrate_amount_Leaf", "*", "(", "1", "-", "math", ".", "exp", "(", "-", "MAINTENANCE_RESPIRATION_FUNCTION_REGRESSION_COEF", "*", "RELATIVE_GROWTH_RATE", ")", ")" ]
[ 187, 0 ]
[ 195, 99 ]
python
en
['en', 'error', 'th']
False
carbohydrate_flow_from_stem_maintenance_respiration
(carbohydrate_amount_Stem, last_24_canopy_t)
Equations 9.45 carbohydrate_flow_StemAir = STEM_MAINTENANCE_RESPIRATION_COEF * Q10_M**(0.1*(last_24_canopy_t-25)) * carbohydrate_amount_Stem \ * (1 - math.exp(-MAINTENANCE_RESPIRATION_FUNCTION_REGRESSION_COEF*RELATIVE_GROWTH_RATE)) Returns: carbohydrates flow from stem maintenance respiration [mg m^-2 s^-1]
Equations 9.45 carbohydrate_flow_StemAir = STEM_MAINTENANCE_RESPIRATION_COEF * Q10_M**(0.1*(last_24_canopy_t-25)) * carbohydrate_amount_Stem \ * (1 - math.exp(-MAINTENANCE_RESPIRATION_FUNCTION_REGRESSION_COEF*RELATIVE_GROWTH_RATE)) Returns: carbohydrates flow from stem maintenance respiration [mg m^-2 s^-1]
def carbohydrate_flow_from_stem_maintenance_respiration(carbohydrate_amount_Stem, last_24_canopy_t): """ Equations 9.45 carbohydrate_flow_StemAir = STEM_MAINTENANCE_RESPIRATION_COEF * Q10_M**(0.1*(last_24_canopy_t-25)) * carbohydrate_amount_Stem \ * (1 - math.exp(-MAINTENANCE_RESPIRATION_FUNCTION_REGRESSION_COEF*RELATIVE_GROWTH_RATE)) Returns: carbohydrates flow from stem maintenance respiration [mg m^-2 s^-1] """ return STEM_MAINTENANCE_RESPIRATION_COEF * Q10_M**(0.1*(last_24_canopy_t-25)) * carbohydrate_amount_Stem \ * (1 - math.exp(-MAINTENANCE_RESPIRATION_FUNCTION_REGRESSION_COEF*RELATIVE_GROWTH_RATE))
[ "def", "carbohydrate_flow_from_stem_maintenance_respiration", "(", "carbohydrate_amount_Stem", ",", "last_24_canopy_t", ")", ":", "return", "STEM_MAINTENANCE_RESPIRATION_COEF", "*", "Q10_M", "**", "(", "0.1", "*", "(", "last_24_canopy_t", "-", "25", ")", ")", "*", "carbohydrate_amount_Stem", "*", "(", "1", "-", "math", ".", "exp", "(", "-", "MAINTENANCE_RESPIRATION_FUNCTION_REGRESSION_COEF", "*", "RELATIVE_GROWTH_RATE", ")", ")" ]
[ 198, 0 ]
[ 206, 99 ]
python
en
['en', 'error', 'th']
False
leaf_harvest_rate
(carbohydrate_amount_Leaf)
Equations 9.47, B.5 carbohydrate_flow_LeafHar = S_ * (carbohydrate_amount_Leaf - maximum_carbohydrates_stored_in_the_leaves) Returns: leaf harvest rate [mg m^-2 s^-1]
Equations 9.47, B.5 carbohydrate_flow_LeafHar = S_ * (carbohydrate_amount_Leaf - maximum_carbohydrates_stored_in_the_leaves) Returns: leaf harvest rate [mg m^-2 s^-1]
def leaf_harvest_rate(carbohydrate_amount_Leaf): """ Equations 9.47, B.5 carbohydrate_flow_LeafHar = S_ * (carbohydrate_amount_Leaf - maximum_carbohydrates_stored_in_the_leaves) Returns: leaf harvest rate [mg m^-2 s^-1] """ max_stored_leaves_carbohydrates = maximum_carbohydrates_stored_in_the_leaves() return smoothed_conditional_function(carbohydrate_amount_Leaf, -5e-5, max_stored_leaves_carbohydrates) \ * (carbohydrate_amount_Leaf - max_stored_leaves_carbohydrates)
[ "def", "leaf_harvest_rate", "(", "carbohydrate_amount_Leaf", ")", ":", "max_stored_leaves_carbohydrates", "=", "maximum_carbohydrates_stored_in_the_leaves", "(", ")", "return", "smoothed_conditional_function", "(", "carbohydrate_amount_Leaf", ",", "-", "5e-5", ",", "max_stored_leaves_carbohydrates", ")", "*", "(", "carbohydrate_amount_Leaf", "-", "max_stored_leaves_carbohydrates", ")" ]
[ 209, 0 ]
[ 217, 73 ]
python
en
['en', 'error', 'th']
False
Injector.__init__
( self, settings: Mapping[str, object] = None, enforce_typing: bool = True )
Initialize an `Injector`.
Initialize an `Injector`.
def __init__( self, settings: Mapping[str, object] = None, enforce_typing: bool = True ): """Initialize an `Injector`.""" self.enforce_typing = enforce_typing self._providers = {} self._settings = Settings(settings)
[ "def", "__init__", "(", "self", ",", "settings", ":", "Mapping", "[", "str", ",", "object", "]", "=", "None", ",", "enforce_typing", ":", "bool", "=", "True", ")", ":", "self", ".", "enforce_typing", "=", "enforce_typing", "self", ".", "_providers", "=", "{", "}", "self", ".", "_settings", "=", "Settings", "(", "settings", ")" ]
[ 12, 4 ]
[ 18, 43 ]
python
en
['en', 'en', 'it']
True
Injector.settings
(self)
Accessor for scope-specific settings.
Accessor for scope-specific settings.
def settings(self) -> Settings: """Accessor for scope-specific settings.""" return self._settings
[ "def", "settings", "(", "self", ")", "->", "Settings", ":", "return", "self", ".", "_settings" ]
[ 21, 4 ]
[ 23, 29 ]
python
en
['en', 'en', 'en']
True
Injector.settings
(self, settings: Settings)
Setter for scope-specific settings.
Setter for scope-specific settings.
def settings(self, settings: Settings): """Setter for scope-specific settings.""" self._settings = settings
[ "def", "settings", "(", "self", ",", "settings", ":", "Settings", ")", ":", "self", ".", "_settings", "=", "settings" ]
[ 26, 4 ]
[ 28, 33 ]
python
en
['en', 'no', 'en']
True
Injector.bind_instance
(self, base_cls: type, instance: object)
Add a static instance as a class binding.
Add a static instance as a class binding.
def bind_instance(self, base_cls: type, instance: object): """Add a static instance as a class binding.""" self._providers[base_cls] = InstanceProvider(instance)
[ "def", "bind_instance", "(", "self", ",", "base_cls", ":", "type", ",", "instance", ":", "object", ")", ":", "self", ".", "_providers", "[", "base_cls", "]", "=", "InstanceProvider", "(", "instance", ")" ]
[ 30, 4 ]
[ 32, 62 ]
python
en
['en', 'en', 'en']
True
Injector.bind_provider
( self, base_cls: type, provider: BaseProvider, *, cache: bool = False )
Add a dynamic instance resolver as a class binding.
Add a dynamic instance resolver as a class binding.
def bind_provider( self, base_cls: type, provider: BaseProvider, *, cache: bool = False ): """Add a dynamic instance resolver as a class binding.""" if not provider: raise ValueError("Class provider binding must be non-empty") if cache and not isinstance(provider, CachedProvider): provider = CachedProvider(provider) self._providers[base_cls] = provider
[ "def", "bind_provider", "(", "self", ",", "base_cls", ":", "type", ",", "provider", ":", "BaseProvider", ",", "*", ",", "cache", ":", "bool", "=", "False", ")", ":", "if", "not", "provider", ":", "raise", "ValueError", "(", "\"Class provider binding must be non-empty\"", ")", "if", "cache", "and", "not", "isinstance", "(", "provider", ",", "CachedProvider", ")", ":", "provider", "=", "CachedProvider", "(", "provider", ")", "self", ".", "_providers", "[", "base_cls", "]", "=", "provider" ]
[ 34, 4 ]
[ 42, 44 ]
python
en
['en', 'en', 'en']
True
Injector.clear_binding
(self, base_cls: type)
Remove a previously-added binding.
Remove a previously-added binding.
def clear_binding(self, base_cls: type): """Remove a previously-added binding.""" if base_cls in self._providers: del self._providers[base_cls]
[ "def", "clear_binding", "(", "self", ",", "base_cls", ":", "type", ")", ":", "if", "base_cls", "in", "self", ".", "_providers", ":", "del", "self", ".", "_providers", "[", "base_cls", "]" ]
[ 44, 4 ]
[ 47, 41 ]
python
en
['en', 'en', 'en']
True
Injector.get_provider
(self, base_cls: type)
Find the provider associated with a class binding.
Find the provider associated with a class binding.
def get_provider(self, base_cls: type): """Find the provider associated with a class binding.""" return self._providers.get(base_cls)
[ "def", "get_provider", "(", "self", ",", "base_cls", ":", "type", ")", ":", "return", "self", ".", "_providers", ".", "get", "(", "base_cls", ")" ]
[ 49, 4 ]
[ 51, 44 ]
python
en
['en', 'en', 'en']
True
Injector.inject
( self, base_cls: type, settings: Mapping[str, object] = None, *, required: bool = True, )
Get the provided instance of a given class identifier. Args: cls: The base class to retrieve an instance of params: An optional dict providing configuration to the provider Returns: An instance of the base class, or None
Get the provided instance of a given class identifier.
async def inject( self, base_cls: type, settings: Mapping[str, object] = None, *, required: bool = True, ): """ Get the provided instance of a given class identifier. Args: cls: The base class to retrieve an instance of params: An optional dict providing configuration to the provider Returns: An instance of the base class, or None """ if not base_cls: raise InjectorError("No base class provided for lookup") provider = self._providers.get(base_cls) ext_settings = self.settings.extend(settings) if settings else self.settings if provider: result = await provider.provide(ext_settings, self) else: result = None if result is None: if required: raise InjectorError( "No instance provided for class: {}".format(base_cls.__name__) ) elif not isinstance(result, base_cls) and self.enforce_typing: raise InjectorError( "Provided instance does not implement the base class: {}".format( base_cls.__name__ ) ) return result
[ "async", "def", "inject", "(", "self", ",", "base_cls", ":", "type", ",", "settings", ":", "Mapping", "[", "str", ",", "object", "]", "=", "None", ",", "*", ",", "required", ":", "bool", "=", "True", ",", ")", ":", "if", "not", "base_cls", ":", "raise", "InjectorError", "(", "\"No base class provided for lookup\"", ")", "provider", "=", "self", ".", "_providers", ".", "get", "(", "base_cls", ")", "ext_settings", "=", "self", ".", "settings", ".", "extend", "(", "settings", ")", "if", "settings", "else", "self", ".", "settings", "if", "provider", ":", "result", "=", "await", "provider", ".", "provide", "(", "ext_settings", ",", "self", ")", "else", ":", "result", "=", "None", "if", "result", "is", "None", ":", "if", "required", ":", "raise", "InjectorError", "(", "\"No instance provided for class: {}\"", ".", "format", "(", "base_cls", ".", "__name__", ")", ")", "elif", "not", "isinstance", "(", "result", ",", "base_cls", ")", "and", "self", ".", "enforce_typing", ":", "raise", "InjectorError", "(", "\"Provided instance does not implement the base class: {}\"", ".", "format", "(", "base_cls", ".", "__name__", ")", ")", "return", "result" ]
[ 53, 4 ]
[ 90, 21 ]
python
en
['en', 'error', 'th']
False
Injector.copy
(self)
Produce a copy of the injector instance.
Produce a copy of the injector instance.
def copy(self) -> BaseInjector: """Produce a copy of the injector instance.""" result = Injector(self.settings) result._providers = self._providers.copy() return result
[ "def", "copy", "(", "self", ")", "->", "BaseInjector", ":", "result", "=", "Injector", "(", "self", ".", "settings", ")", "result", ".", "_providers", "=", "self", ".", "_providers", ".", "copy", "(", ")", "return", "result" ]
[ 92, 4 ]
[ 96, 21 ]
python
en
['en', 'en', 'en']
True
Injector.__repr__
(self)
Provide a human readable representation of this object.
Provide a human readable representation of this object.
def __repr__(self) -> str: """Provide a human readable representation of this object.""" return f"<{self.__class__.__name__}>"
[ "def", "__repr__", "(", "self", ")", "->", "str", ":", "return", "f\"<{self.__class__.__name__}>\"" ]
[ 98, 4 ]
[ 100, 45 ]
python
en
['en', 'en', 'en']
True
Stream.maxpoints
(self)
Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. The 'maxpoints' property is a number and may be specified as: - An int or float in the interval [0, 10000] Returns ------- int|float
Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. The 'maxpoints' property is a number and may be specified as: - An int or float in the interval [0, 10000]
def maxpoints(self): """ Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. The 'maxpoints' property is a number and may be specified as: - An int or float in the interval [0, 10000] Returns ------- int|float """ return self["maxpoints"]
[ "def", "maxpoints", "(", "self", ")", ":", "return", "self", "[", "\"maxpoints\"", "]" ]
[ 15, 4 ]
[ 28, 32 ]
python
en
['en', 'error', 'th']
False
Stream.token
(self)
The stream id number links a data trace on a plot with a stream. See https://chart-studio.plotly.com/settings for more details. The 'token' property is a string and must be specified as: - A non-empty string Returns ------- str
The stream id number links a data trace on a plot with a stream. See https://chart-studio.plotly.com/settings for more details. The 'token' property is a string and must be specified as: - A non-empty string
def token(self): """ The stream id number links a data trace on a plot with a stream. See https://chart-studio.plotly.com/settings for more details. The 'token' property is a string and must be specified as: - A non-empty string Returns ------- str """ return self["token"]
[ "def", "token", "(", "self", ")", ":", "return", "self", "[", "\"token\"", "]" ]
[ 37, 4 ]
[ 50, 28 ]
python
en
['en', 'error', 'th']
False
Stream.__init__
(self, arg=None, maxpoints=None, token=None, **kwargs)
Construct a new Stream object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.indicator.Stream` maxpoints Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. token The stream id number links a data trace on a plot with a stream. See https://chart-studio.plotly.com/settings for more details. Returns ------- Stream
Construct a new Stream object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.indicator.Stream` maxpoints Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. token The stream id number links a data trace on a plot with a stream. See https://chart-studio.plotly.com/settings for more details.
def __init__(self, arg=None, maxpoints=None, token=None, **kwargs): """ Construct a new Stream object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.indicator.Stream` maxpoints Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. token The stream id number links a data trace on a plot with a stream. See https://chart-studio.plotly.com/settings for more details. Returns ------- Stream """ super(Stream, self).__init__("stream") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.indicator.Stream constructor must be a dict or an instance of :class:`plotly.graph_objs.indicator.Stream`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("maxpoints", None) _v = maxpoints if maxpoints is not None else _v if _v is not None: self["maxpoints"] = _v _v = arg.pop("token", None) _v = token if token is not None else _v if _v is not None: self["token"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
[ "def", "__init__", "(", "self", ",", "arg", "=", "None", ",", "maxpoints", "=", "None", ",", "token", "=", "None", ",", "*", "*", "kwargs", ")", ":", "super", "(", "Stream", ",", "self", ")", ".", "__init__", "(", "\"stream\"", ")", "if", "\"_parent\"", "in", "kwargs", ":", "self", ".", "_parent", "=", "kwargs", "[", "\"_parent\"", "]", "return", "# Validate arg", "# ------------", "if", "arg", "is", "None", ":", "arg", "=", "{", "}", "elif", "isinstance", "(", "arg", ",", "self", ".", "__class__", ")", ":", "arg", "=", "arg", ".", "to_plotly_json", "(", ")", "elif", "isinstance", "(", "arg", ",", "dict", ")", ":", "arg", "=", "_copy", ".", "copy", "(", "arg", ")", "else", ":", "raise", "ValueError", "(", "\"\"\"\\\nThe first argument to the plotly.graph_objs.indicator.Stream \nconstructor must be a dict or \nan instance of :class:`plotly.graph_objs.indicator.Stream`\"\"\"", ")", "# Handle skip_invalid", "# -------------------", "self", ".", "_skip_invalid", "=", "kwargs", ".", "pop", "(", "\"skip_invalid\"", ",", "False", ")", "self", ".", "_validate", "=", "kwargs", ".", "pop", "(", "\"_validate\"", ",", "True", ")", "# Populate data dict with properties", "# ----------------------------------", "_v", "=", "arg", ".", "pop", "(", "\"maxpoints\"", ",", "None", ")", "_v", "=", "maxpoints", "if", "maxpoints", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"maxpoints\"", "]", "=", "_v", "_v", "=", "arg", ".", "pop", "(", "\"token\"", ",", "None", ")", "_v", "=", "token", "if", "token", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"token\"", "]", "=", "_v", "# Process unknown kwargs", "# ----------------------", "self", ".", "_process_kwargs", "(", "*", "*", "dict", "(", "arg", ",", "*", "*", "kwargs", ")", ")", "# Reset skip_invalid", "# ------------------", "self", ".", "_skip_invalid", "=", "False" ]
[ 72, 4 ]
[ 140, 34 ]
python
en
['en', 'error', 'th']
False
is_block
(modules)
Check if is ResNet building block.
Check if is ResNet building block.
def is_block(modules): """Check if is ResNet building block.""" if isinstance(modules, (BasicBlock, Bottleneck, BottleneckX, Bottle2neck)): return True return False
[ "def", "is_block", "(", "modules", ")", ":", "if", "isinstance", "(", "modules", ",", "(", "BasicBlock", ",", "Bottleneck", ",", "BottleneckX", ",", "Bottle2neck", ")", ")", ":", "return", "True", "return", "False" ]
[ 14, 0 ]
[ 18, 16 ]
python
en
['en', 'en', 'en']
True
is_norm
(modules)
Check if is one of the norms.
Check if is one of the norms.
def is_norm(modules): """Check if is one of the norms.""" if isinstance(modules, (GroupNorm, _BatchNorm)): return True return False
[ "def", "is_norm", "(", "modules", ")", ":", "if", "isinstance", "(", "modules", ",", "(", "GroupNorm", ",", "_BatchNorm", ")", ")", ":", "return", "True", "return", "False" ]
[ 21, 0 ]
[ 25, 16 ]
python
en
['en', 'en', 'en']
True
all_zeros
(modules)
Check if the weight(and bias) is all zero.
Check if the weight(and bias) is all zero.
def all_zeros(modules): """Check if the weight(and bias) is all zero.""" weight_zero = torch.allclose(modules.weight.data, torch.zeros_like(modules.weight.data)) if hasattr(modules, 'bias'): bias_zero = torch.allclose(modules.bias.data, torch.zeros_like(modules.bias.data)) else: bias_zero = True return weight_zero and bias_zero
[ "def", "all_zeros", "(", "modules", ")", ":", "weight_zero", "=", "torch", ".", "allclose", "(", "modules", ".", "weight", ".", "data", ",", "torch", ".", "zeros_like", "(", "modules", ".", "weight", ".", "data", ")", ")", "if", "hasattr", "(", "modules", ",", "'bias'", ")", ":", "bias_zero", "=", "torch", ".", "allclose", "(", "modules", ".", "bias", ".", "data", ",", "torch", ".", "zeros_like", "(", "modules", ".", "bias", ".", "data", ")", ")", "else", ":", "bias_zero", "=", "True", "return", "weight_zero", "and", "bias_zero" ]
[ 28, 0 ]
[ 38, 36 ]
python
en
['en', 'en', 'en']
True
check_norm_state
(modules, train_state)
Check if norm layer is in correct train state.
Check if norm layer is in correct train state.
def check_norm_state(modules, train_state): """Check if norm layer is in correct train state.""" for mod in modules: if isinstance(mod, _BatchNorm): if mod.training != train_state: return False return True
[ "def", "check_norm_state", "(", "modules", ",", "train_state", ")", ":", "for", "mod", "in", "modules", ":", "if", "isinstance", "(", "mod", ",", "_BatchNorm", ")", ":", "if", "mod", ".", "training", "!=", "train_state", ":", "return", "False", "return", "True" ]
[ 41, 0 ]
[ 47, 15 ]
python
en
['en', 'en', 'en']
True
test_resnet_backbone
()
Test resnet backbone.
Test resnet backbone.
def test_resnet_backbone(): """Test resnet backbone.""" with pytest.raises(KeyError): # ResNet depth should be in [18, 34, 50, 101, 152] ResNet(20) with pytest.raises(AssertionError): # In ResNet: 1 <= num_stages <= 4 ResNet(50, num_stages=0) with pytest.raises(AssertionError): # len(stage_with_dcn) == num_stages dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False) ResNet(50, dcn=dcn, stage_with_dcn=(True, )) with pytest.raises(AssertionError): # len(stage_with_plugin) == num_stages plugins = [ dict( cfg=dict(type='ContextBlock', ratio=1. / 16), stages=(False, True, True), position='after_conv3') ] ResNet(50, plugins=plugins) with pytest.raises(AssertionError): # In ResNet: 1 <= num_stages <= 4 ResNet(50, num_stages=5) with pytest.raises(AssertionError): # len(strides) == len(dilations) == num_stages ResNet(50, strides=(1, ), dilations=(1, 1), num_stages=3) with pytest.raises(TypeError): # pretrained must be a string path model = ResNet(50) model.init_weights(pretrained=0) with pytest.raises(AssertionError): # Style must be in ['pytorch', 'caffe'] ResNet(50, style='tensorflow') # Test ResNet50 norm_eval=True model = ResNet(50, norm_eval=True) model.init_weights() model.train() assert check_norm_state(model.modules(), False) # Test ResNet50 with torchvision pretrained weight model = ResNet(depth=50, norm_eval=True) model.init_weights('torchvision://resnet50') model.train() assert check_norm_state(model.modules(), False) # Test ResNet50 with first stage frozen frozen_stages = 1 model = ResNet(50, frozen_stages=frozen_stages) model.init_weights() model.train() assert model.norm1.training is False for layer in [model.conv1, model.norm1]: for param in layer.parameters(): assert param.requires_grad is False for i in range(1, frozen_stages + 1): layer = getattr(model, f'layer{i}') for mod in layer.modules(): if isinstance(mod, _BatchNorm): assert mod.training is False for param in layer.parameters(): assert param.requires_grad is False # Test ResNet50V1d with first stage frozen model = ResNetV1d(depth=50, frozen_stages=frozen_stages) assert len(model.stem) == 9 model.init_weights() model.train() check_norm_state(model.stem, False) for param in model.stem.parameters(): assert param.requires_grad is False for i in range(1, frozen_stages + 1): layer = getattr(model, f'layer{i}') for mod in layer.modules(): if isinstance(mod, _BatchNorm): assert mod.training is False for param in layer.parameters(): assert param.requires_grad is False # Test ResNet18 forward model = ResNet(18) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 64, 56, 56]) assert feat[1].shape == torch.Size([1, 128, 28, 28]) assert feat[2].shape == torch.Size([1, 256, 14, 14]) assert feat[3].shape == torch.Size([1, 512, 7, 7]) # Test ResNet18 with checkpoint forward model = ResNet(18, with_cp=True) for m in model.modules(): if is_block(m): assert m.with_cp # Test ResNet50 with BatchNorm forward model = ResNet(50) for m in model.modules(): if is_norm(m): assert isinstance(m, _BatchNorm) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7]) # Test ResNet50 with layers 1, 2, 3 out forward model = ResNet(50, out_indices=(0, 1, 2)) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 3 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) # Test ResNet50 with checkpoint forward model = ResNet(50, with_cp=True) for m in model.modules(): if is_block(m): assert m.with_cp model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7]) # Test ResNet50 with GroupNorm forward model = ResNet( 50, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)) for m in model.modules(): if is_norm(m): assert isinstance(m, GroupNorm) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7]) # Test ResNet50 with 1 GeneralizedAttention after conv2, 1 NonLocal2D # after conv2, 1 ContextBlock after conv3 in layers 2, 3, 4 plugins = [ dict( cfg=dict( type='GeneralizedAttention', spatial_range=-1, num_heads=8, attention_type='0010', kv_stride=2), stages=(False, True, True, True), position='after_conv2'), dict(cfg=dict(type='NonLocal2d'), position='after_conv2'), dict( cfg=dict(type='ContextBlock', ratio=1. / 16), stages=(False, True, True, False), position='after_conv3') ] model = ResNet(50, plugins=plugins) for m in model.layer1.modules(): if is_block(m): assert not hasattr(m, 'context_block') assert not hasattr(m, 'gen_attention_block') assert m.nonlocal_block.in_channels == 64 for m in model.layer2.modules(): if is_block(m): assert m.nonlocal_block.in_channels == 128 assert m.gen_attention_block.in_channels == 128 assert m.context_block.in_channels == 512 for m in model.layer3.modules(): if is_block(m): assert m.nonlocal_block.in_channels == 256 assert m.gen_attention_block.in_channels == 256 assert m.context_block.in_channels == 1024 for m in model.layer4.modules(): if is_block(m): assert m.nonlocal_block.in_channels == 512 assert m.gen_attention_block.in_channels == 512 assert not hasattr(m, 'context_block') model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7]) # Test ResNet50 with 1 ContextBlock after conv2, 1 ContextBlock after # conv3 in layers 2, 3, 4 plugins = [ dict( cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=1), stages=(False, True, True, False), position='after_conv3'), dict( cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=2), stages=(False, True, True, False), position='after_conv3') ] model = ResNet(50, plugins=plugins) for m in model.layer1.modules(): if is_block(m): assert not hasattr(m, 'context_block') assert not hasattr(m, 'context_block1') assert not hasattr(m, 'context_block2') for m in model.layer2.modules(): if is_block(m): assert not hasattr(m, 'context_block') assert m.context_block1.in_channels == 512 assert m.context_block2.in_channels == 512 for m in model.layer3.modules(): if is_block(m): assert not hasattr(m, 'context_block') assert m.context_block1.in_channels == 1024 assert m.context_block2.in_channels == 1024 for m in model.layer4.modules(): if is_block(m): assert not hasattr(m, 'context_block') assert not hasattr(m, 'context_block1') assert not hasattr(m, 'context_block2') model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7]) # Test ResNet50 zero initialization of residual model = ResNet(50, zero_init_residual=True) model.init_weights() for m in model.modules(): if isinstance(m, Bottleneck): assert all_zeros(m.norm3) elif isinstance(m, BasicBlock): assert all_zeros(m.norm2) model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7]) # Test ResNetV1d forward model = ResNetV1d(depth=50) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7]) # Test ResNet50 stem_channels model = ResNet(depth=50, stem_channels=128) model.init_weights() model.train() assert model.conv1.out_channels == 128 assert model.layer1[0].conv1.in_channels == 128 imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7]) # Test ResNet50V1d stem_channels model = ResNetV1d(depth=50, stem_channels=128) model.init_weights() model.train() assert model.stem[0].out_channels == 64 assert model.stem[3].out_channels == 64 assert model.stem[6].out_channels == 128 assert model.layer1[0].conv1.in_channels == 128 imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7])
[ "def", "test_resnet_backbone", "(", ")", ":", "with", "pytest", ".", "raises", "(", "KeyError", ")", ":", "# ResNet depth should be in [18, 34, 50, 101, 152]", "ResNet", "(", "20", ")", "with", "pytest", ".", "raises", "(", "AssertionError", ")", ":", "# In ResNet: 1 <= num_stages <= 4", "ResNet", "(", "50", ",", "num_stages", "=", "0", ")", "with", "pytest", ".", "raises", "(", "AssertionError", ")", ":", "# len(stage_with_dcn) == num_stages", "dcn", "=", "dict", "(", "type", "=", "'DCN'", ",", "deform_groups", "=", "1", ",", "fallback_on_stride", "=", "False", ")", "ResNet", "(", "50", ",", "dcn", "=", "dcn", ",", "stage_with_dcn", "=", "(", "True", ",", ")", ")", "with", "pytest", ".", "raises", "(", "AssertionError", ")", ":", "# len(stage_with_plugin) == num_stages", "plugins", "=", "[", "dict", "(", "cfg", "=", "dict", "(", "type", "=", "'ContextBlock'", ",", "ratio", "=", "1.", "/", "16", ")", ",", "stages", "=", "(", "False", ",", "True", ",", "True", ")", ",", "position", "=", "'after_conv3'", ")", "]", "ResNet", "(", "50", ",", "plugins", "=", "plugins", ")", "with", "pytest", ".", "raises", "(", "AssertionError", ")", ":", "# In ResNet: 1 <= num_stages <= 4", "ResNet", "(", "50", ",", "num_stages", "=", "5", ")", "with", "pytest", ".", "raises", "(", "AssertionError", ")", ":", "# len(strides) == len(dilations) == num_stages", "ResNet", "(", "50", ",", "strides", "=", "(", "1", ",", ")", ",", "dilations", "=", "(", "1", ",", "1", ")", ",", "num_stages", "=", "3", ")", "with", "pytest", ".", "raises", "(", "TypeError", ")", ":", "# pretrained must be a string path", "model", "=", "ResNet", "(", "50", ")", "model", ".", "init_weights", "(", "pretrained", "=", "0", ")", "with", "pytest", ".", "raises", "(", "AssertionError", ")", ":", "# Style must be in ['pytorch', 'caffe']", "ResNet", "(", "50", ",", "style", "=", "'tensorflow'", ")", "# Test ResNet50 norm_eval=True", "model", "=", "ResNet", "(", "50", ",", "norm_eval", "=", "True", ")", "model", ".", "init_weights", "(", ")", "model", ".", "train", "(", ")", "assert", "check_norm_state", "(", "model", ".", "modules", "(", ")", ",", "False", ")", "# Test ResNet50 with torchvision pretrained weight", "model", "=", "ResNet", "(", "depth", "=", "50", ",", "norm_eval", "=", "True", ")", "model", ".", "init_weights", "(", "'torchvision://resnet50'", ")", "model", ".", "train", "(", ")", "assert", "check_norm_state", "(", "model", ".", "modules", "(", ")", ",", "False", ")", "# Test ResNet50 with first stage frozen", "frozen_stages", "=", "1", "model", "=", "ResNet", "(", "50", ",", "frozen_stages", "=", "frozen_stages", ")", "model", ".", "init_weights", "(", ")", "model", ".", "train", "(", ")", "assert", "model", ".", "norm1", ".", "training", "is", "False", "for", "layer", "in", "[", "model", ".", "conv1", ",", "model", ".", "norm1", "]", ":", "for", "param", "in", "layer", ".", "parameters", "(", ")", ":", "assert", "param", ".", "requires_grad", "is", "False", "for", "i", "in", "range", "(", "1", ",", "frozen_stages", "+", "1", ")", ":", "layer", "=", "getattr", "(", "model", ",", "f'layer{i}'", ")", "for", "mod", "in", "layer", ".", "modules", "(", ")", ":", "if", "isinstance", "(", "mod", ",", "_BatchNorm", ")", ":", "assert", "mod", ".", "training", "is", "False", "for", "param", "in", "layer", ".", "parameters", "(", ")", ":", "assert", "param", ".", "requires_grad", "is", "False", "# Test ResNet50V1d with first stage frozen", "model", "=", "ResNetV1d", "(", "depth", "=", "50", ",", "frozen_stages", "=", "frozen_stages", ")", "assert", "len", "(", "model", ".", "stem", ")", "==", "9", "model", ".", "init_weights", "(", ")", "model", ".", "train", "(", ")", "check_norm_state", "(", "model", ".", "stem", ",", "False", ")", "for", "param", "in", "model", ".", "stem", ".", "parameters", "(", ")", ":", "assert", "param", ".", "requires_grad", "is", "False", "for", "i", "in", "range", "(", "1", ",", "frozen_stages", "+", "1", ")", ":", "layer", "=", "getattr", "(", "model", ",", "f'layer{i}'", ")", "for", "mod", "in", "layer", ".", "modules", "(", ")", ":", "if", "isinstance", "(", "mod", ",", "_BatchNorm", ")", ":", "assert", "mod", ".", "training", "is", "False", "for", "param", "in", "layer", ".", "parameters", "(", ")", ":", "assert", "param", ".", "requires_grad", "is", "False", "# Test ResNet18 forward", "model", "=", "ResNet", "(", "18", ")", "model", ".", "init_weights", "(", ")", "model", ".", "train", "(", ")", "imgs", "=", "torch", ".", "randn", "(", "1", ",", "3", ",", "224", ",", "224", ")", "feat", "=", "model", "(", "imgs", ")", "assert", "len", "(", "feat", ")", "==", "4", "assert", "feat", "[", "0", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "64", ",", "56", ",", "56", "]", ")", "assert", "feat", "[", "1", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "128", ",", "28", ",", "28", "]", ")", "assert", "feat", "[", "2", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "256", ",", "14", ",", "14", "]", ")", "assert", "feat", "[", "3", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "512", ",", "7", ",", "7", "]", ")", "# Test ResNet18 with checkpoint forward", "model", "=", "ResNet", "(", "18", ",", "with_cp", "=", "True", ")", "for", "m", "in", "model", ".", "modules", "(", ")", ":", "if", "is_block", "(", "m", ")", ":", "assert", "m", ".", "with_cp", "# Test ResNet50 with BatchNorm forward", "model", "=", "ResNet", "(", "50", ")", "for", "m", "in", "model", ".", "modules", "(", ")", ":", "if", "is_norm", "(", "m", ")", ":", "assert", "isinstance", "(", "m", ",", "_BatchNorm", ")", "model", ".", "init_weights", "(", ")", "model", ".", "train", "(", ")", "imgs", "=", "torch", ".", "randn", "(", "1", ",", "3", ",", "224", ",", "224", ")", "feat", "=", "model", "(", "imgs", ")", "assert", "len", "(", "feat", ")", "==", "4", "assert", "feat", "[", "0", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "256", ",", "56", ",", "56", "]", ")", "assert", "feat", "[", "1", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "512", ",", "28", ",", "28", "]", ")", "assert", "feat", "[", "2", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "1024", ",", "14", ",", "14", "]", ")", "assert", "feat", "[", "3", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "2048", ",", "7", ",", "7", "]", ")", "# Test ResNet50 with layers 1, 2, 3 out forward", "model", "=", "ResNet", "(", "50", ",", "out_indices", "=", "(", "0", ",", "1", ",", "2", ")", ")", "model", ".", "init_weights", "(", ")", "model", ".", "train", "(", ")", "imgs", "=", "torch", ".", "randn", "(", "1", ",", "3", ",", "224", ",", "224", ")", "feat", "=", "model", "(", "imgs", ")", "assert", "len", "(", "feat", ")", "==", "3", "assert", "feat", "[", "0", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "256", ",", "56", ",", "56", "]", ")", "assert", "feat", "[", "1", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "512", ",", "28", ",", "28", "]", ")", "assert", "feat", "[", "2", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "1024", ",", "14", ",", "14", "]", ")", "# Test ResNet50 with checkpoint forward", "model", "=", "ResNet", "(", "50", ",", "with_cp", "=", "True", ")", "for", "m", "in", "model", ".", "modules", "(", ")", ":", "if", "is_block", "(", "m", ")", ":", "assert", "m", ".", "with_cp", "model", ".", "init_weights", "(", ")", "model", ".", "train", "(", ")", "imgs", "=", "torch", ".", "randn", "(", "1", ",", "3", ",", "224", ",", "224", ")", "feat", "=", "model", "(", "imgs", ")", "assert", "len", "(", "feat", ")", "==", "4", "assert", "feat", "[", "0", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "256", ",", "56", ",", "56", "]", ")", "assert", "feat", "[", "1", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "512", ",", "28", ",", "28", "]", ")", "assert", "feat", "[", "2", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "1024", ",", "14", ",", "14", "]", ")", "assert", "feat", "[", "3", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "2048", ",", "7", ",", "7", "]", ")", "# Test ResNet50 with GroupNorm forward", "model", "=", "ResNet", "(", "50", ",", "norm_cfg", "=", "dict", "(", "type", "=", "'GN'", ",", "num_groups", "=", "32", ",", "requires_grad", "=", "True", ")", ")", "for", "m", "in", "model", ".", "modules", "(", ")", ":", "if", "is_norm", "(", "m", ")", ":", "assert", "isinstance", "(", "m", ",", "GroupNorm", ")", "model", ".", "init_weights", "(", ")", "model", ".", "train", "(", ")", "imgs", "=", "torch", ".", "randn", "(", "1", ",", "3", ",", "224", ",", "224", ")", "feat", "=", "model", "(", "imgs", ")", "assert", "len", "(", "feat", ")", "==", "4", "assert", "feat", "[", "0", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "256", ",", "56", ",", "56", "]", ")", "assert", "feat", "[", "1", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "512", ",", "28", ",", "28", "]", ")", "assert", "feat", "[", "2", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "1024", ",", "14", ",", "14", "]", ")", "assert", "feat", "[", "3", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "2048", ",", "7", ",", "7", "]", ")", "# Test ResNet50 with 1 GeneralizedAttention after conv2, 1 NonLocal2D", "# after conv2, 1 ContextBlock after conv3 in layers 2, 3, 4", "plugins", "=", "[", "dict", "(", "cfg", "=", "dict", "(", "type", "=", "'GeneralizedAttention'", ",", "spatial_range", "=", "-", "1", ",", "num_heads", "=", "8", ",", "attention_type", "=", "'0010'", ",", "kv_stride", "=", "2", ")", ",", "stages", "=", "(", "False", ",", "True", ",", "True", ",", "True", ")", ",", "position", "=", "'after_conv2'", ")", ",", "dict", "(", "cfg", "=", "dict", "(", "type", "=", "'NonLocal2d'", ")", ",", "position", "=", "'after_conv2'", ")", ",", "dict", "(", "cfg", "=", "dict", "(", "type", "=", "'ContextBlock'", ",", "ratio", "=", "1.", "/", "16", ")", ",", "stages", "=", "(", "False", ",", "True", ",", "True", ",", "False", ")", ",", "position", "=", "'after_conv3'", ")", "]", "model", "=", "ResNet", "(", "50", ",", "plugins", "=", "plugins", ")", "for", "m", "in", "model", ".", "layer1", ".", "modules", "(", ")", ":", "if", "is_block", "(", "m", ")", ":", "assert", "not", "hasattr", "(", "m", ",", "'context_block'", ")", "assert", "not", "hasattr", "(", "m", ",", "'gen_attention_block'", ")", "assert", "m", ".", "nonlocal_block", ".", "in_channels", "==", "64", "for", "m", "in", "model", ".", "layer2", ".", "modules", "(", ")", ":", "if", "is_block", "(", "m", ")", ":", "assert", "m", ".", "nonlocal_block", ".", "in_channels", "==", "128", "assert", "m", ".", "gen_attention_block", ".", "in_channels", "==", "128", "assert", "m", ".", "context_block", ".", "in_channels", "==", "512", "for", "m", "in", "model", ".", "layer3", ".", "modules", "(", ")", ":", "if", "is_block", "(", "m", ")", ":", "assert", "m", ".", "nonlocal_block", ".", "in_channels", "==", "256", "assert", "m", ".", "gen_attention_block", ".", "in_channels", "==", "256", "assert", "m", ".", "context_block", ".", "in_channels", "==", "1024", "for", "m", "in", "model", ".", "layer4", ".", "modules", "(", ")", ":", "if", "is_block", "(", "m", ")", ":", "assert", "m", ".", "nonlocal_block", ".", "in_channels", "==", "512", "assert", "m", ".", "gen_attention_block", ".", "in_channels", "==", "512", "assert", "not", "hasattr", "(", "m", ",", "'context_block'", ")", "model", ".", "init_weights", "(", ")", "model", ".", "train", "(", ")", "imgs", "=", "torch", ".", "randn", "(", "1", ",", "3", ",", "224", ",", "224", ")", "feat", "=", "model", "(", "imgs", ")", "assert", "len", "(", "feat", ")", "==", "4", "assert", "feat", "[", "0", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "256", ",", "56", ",", "56", "]", ")", "assert", "feat", "[", "1", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "512", ",", "28", ",", "28", "]", ")", "assert", "feat", "[", "2", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "1024", ",", "14", ",", "14", "]", ")", "assert", "feat", "[", "3", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "2048", ",", "7", ",", "7", "]", ")", "# Test ResNet50 with 1 ContextBlock after conv2, 1 ContextBlock after", "# conv3 in layers 2, 3, 4", "plugins", "=", "[", "dict", "(", "cfg", "=", "dict", "(", "type", "=", "'ContextBlock'", ",", "ratio", "=", "1.", "/", "16", ",", "postfix", "=", "1", ")", ",", "stages", "=", "(", "False", ",", "True", ",", "True", ",", "False", ")", ",", "position", "=", "'after_conv3'", ")", ",", "dict", "(", "cfg", "=", "dict", "(", "type", "=", "'ContextBlock'", ",", "ratio", "=", "1.", "/", "16", ",", "postfix", "=", "2", ")", ",", "stages", "=", "(", "False", ",", "True", ",", "True", ",", "False", ")", ",", "position", "=", "'after_conv3'", ")", "]", "model", "=", "ResNet", "(", "50", ",", "plugins", "=", "plugins", ")", "for", "m", "in", "model", ".", "layer1", ".", "modules", "(", ")", ":", "if", "is_block", "(", "m", ")", ":", "assert", "not", "hasattr", "(", "m", ",", "'context_block'", ")", "assert", "not", "hasattr", "(", "m", ",", "'context_block1'", ")", "assert", "not", "hasattr", "(", "m", ",", "'context_block2'", ")", "for", "m", "in", "model", ".", "layer2", ".", "modules", "(", ")", ":", "if", "is_block", "(", "m", ")", ":", "assert", "not", "hasattr", "(", "m", ",", "'context_block'", ")", "assert", "m", ".", "context_block1", ".", "in_channels", "==", "512", "assert", "m", ".", "context_block2", ".", "in_channels", "==", "512", "for", "m", "in", "model", ".", "layer3", ".", "modules", "(", ")", ":", "if", "is_block", "(", "m", ")", ":", "assert", "not", "hasattr", "(", "m", ",", "'context_block'", ")", "assert", "m", ".", "context_block1", ".", "in_channels", "==", "1024", "assert", "m", ".", "context_block2", ".", "in_channels", "==", "1024", "for", "m", "in", "model", ".", "layer4", ".", "modules", "(", ")", ":", "if", "is_block", "(", "m", ")", ":", "assert", "not", "hasattr", "(", "m", ",", "'context_block'", ")", "assert", "not", "hasattr", "(", "m", ",", "'context_block1'", ")", "assert", "not", "hasattr", "(", "m", ",", "'context_block2'", ")", "model", ".", "init_weights", "(", ")", "model", ".", "train", "(", ")", "imgs", "=", "torch", ".", "randn", "(", "1", ",", "3", ",", "224", ",", "224", ")", "feat", "=", "model", "(", "imgs", ")", "assert", "len", "(", "feat", ")", "==", "4", "assert", "feat", "[", "0", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "256", ",", "56", ",", "56", "]", ")", "assert", "feat", "[", "1", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "512", ",", "28", ",", "28", "]", ")", "assert", "feat", "[", "2", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "1024", ",", "14", ",", "14", "]", ")", "assert", "feat", "[", "3", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "2048", ",", "7", ",", "7", "]", ")", "# Test ResNet50 zero initialization of residual", "model", "=", "ResNet", "(", "50", ",", "zero_init_residual", "=", "True", ")", "model", ".", "init_weights", "(", ")", "for", "m", "in", "model", ".", "modules", "(", ")", ":", "if", "isinstance", "(", "m", ",", "Bottleneck", ")", ":", "assert", "all_zeros", "(", "m", ".", "norm3", ")", "elif", "isinstance", "(", "m", ",", "BasicBlock", ")", ":", "assert", "all_zeros", "(", "m", ".", "norm2", ")", "model", ".", "train", "(", ")", "imgs", "=", "torch", ".", "randn", "(", "1", ",", "3", ",", "224", ",", "224", ")", "feat", "=", "model", "(", "imgs", ")", "assert", "len", "(", "feat", ")", "==", "4", "assert", "feat", "[", "0", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "256", ",", "56", ",", "56", "]", ")", "assert", "feat", "[", "1", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "512", ",", "28", ",", "28", "]", ")", "assert", "feat", "[", "2", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "1024", ",", "14", ",", "14", "]", ")", "assert", "feat", "[", "3", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "2048", ",", "7", ",", "7", "]", ")", "# Test ResNetV1d forward", "model", "=", "ResNetV1d", "(", "depth", "=", "50", ")", "model", ".", "init_weights", "(", ")", "model", ".", "train", "(", ")", "imgs", "=", "torch", ".", "randn", "(", "1", ",", "3", ",", "224", ",", "224", ")", "feat", "=", "model", "(", "imgs", ")", "assert", "len", "(", "feat", ")", "==", "4", "assert", "feat", "[", "0", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "256", ",", "56", ",", "56", "]", ")", "assert", "feat", "[", "1", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "512", ",", "28", ",", "28", "]", ")", "assert", "feat", "[", "2", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "1024", ",", "14", ",", "14", "]", ")", "assert", "feat", "[", "3", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "2048", ",", "7", ",", "7", "]", ")", "# Test ResNet50 stem_channels", "model", "=", "ResNet", "(", "depth", "=", "50", ",", "stem_channels", "=", "128", ")", "model", ".", "init_weights", "(", ")", "model", ".", "train", "(", ")", "assert", "model", ".", "conv1", ".", "out_channels", "==", "128", "assert", "model", ".", "layer1", "[", "0", "]", ".", "conv1", ".", "in_channels", "==", "128", "imgs", "=", "torch", ".", "randn", "(", "1", ",", "3", ",", "224", ",", "224", ")", "feat", "=", "model", "(", "imgs", ")", "assert", "len", "(", "feat", ")", "==", "4", "assert", "feat", "[", "0", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "256", ",", "56", ",", "56", "]", ")", "assert", "feat", "[", "1", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "512", ",", "28", ",", "28", "]", ")", "assert", "feat", "[", "2", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "1024", ",", "14", ",", "14", "]", ")", "assert", "feat", "[", "3", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "2048", ",", "7", ",", "7", "]", ")", "# Test ResNet50V1d stem_channels", "model", "=", "ResNetV1d", "(", "depth", "=", "50", ",", "stem_channels", "=", "128", ")", "model", ".", "init_weights", "(", ")", "model", ".", "train", "(", ")", "assert", "model", ".", "stem", "[", "0", "]", ".", "out_channels", "==", "64", "assert", "model", ".", "stem", "[", "3", "]", ".", "out_channels", "==", "64", "assert", "model", ".", "stem", "[", "6", "]", ".", "out_channels", "==", "128", "assert", "model", ".", "layer1", "[", "0", "]", ".", "conv1", ".", "in_channels", "==", "128", "imgs", "=", "torch", ".", "randn", "(", "1", ",", "3", ",", "224", ",", "224", ")", "feat", "=", "model", "(", "imgs", ")", "assert", "len", "(", "feat", ")", "==", "4", "assert", "feat", "[", "0", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "256", ",", "56", ",", "56", "]", ")", "assert", "feat", "[", "1", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "512", ",", "28", ",", "28", "]", ")", "assert", "feat", "[", "2", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "1024", ",", "14", ",", "14", "]", ")", "assert", "feat", "[", "3", "]", ".", "shape", "==", "torch", ".", "Size", "(", "[", "1", ",", "2048", ",", "7", ",", "7", "]", ")" ]
[ 291, 0 ]
[ 618, 55 ]
python
en
['nl', 'no', 'en']
False
Font.color
(self)
The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str
The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen
def color(self): """ The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["color"]
[ "def", "color", "(", "self", ")", ":", "return", "self", "[", "\"color\"", "]" ]
[ 15, 4 ]
[ 63, 28 ]
python
en
['en', 'error', 'th']
False
Font.family
(self)
HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart- studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". The 'family' property is a string and must be specified as: - A non-empty string Returns ------- str
HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart- studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". The 'family' property is a string and must be specified as: - A non-empty string
def family(self): """ HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart- studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". The 'family' property is a string and must be specified as: - A non-empty string Returns ------- str """ return self["family"]
[ "def", "family", "(", "self", ")", ":", "return", "self", "[", "\"family\"", "]" ]
[ 72, 4 ]
[ 94, 29 ]
python
en
['en', 'error', 'th']
False
Font.size
(self)
The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf] Returns ------- int|float
The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf]
def size(self): """ The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf] Returns ------- int|float """ return self["size"]
[ "def", "size", "(", "self", ")", ":", "return", "self", "[", "\"size\"", "]" ]
[ 103, 4 ]
[ 112, 27 ]
python
en
['en', 'error', 'th']
False
Font.__init__
(self, arg=None, color=None, family=None, size=None, **kwargs)
Construct a new Font object Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.layout.colorax is.colorbar.title.Font` color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size Returns ------- Font
Construct a new Font object Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute.
def __init__(self, arg=None, color=None, family=None, size=None, **kwargs): """ Construct a new Font object Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.layout.colorax is.colorbar.title.Font` color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size Returns ------- Font """ super(Font, self).__init__("font") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.layout.coloraxis.colorbar.title.Font constructor must be a dict or an instance of :class:`plotly.graph_objs.layout.coloraxis.colorbar.title.Font`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("color", None) _v = color if color is not None else _v if _v is not None: self["color"] = _v _v = arg.pop("family", None) _v = family if family is not None else _v if _v is not None: self["family"] = _v _v = arg.pop("size", None) _v = size if size is not None else _v if _v is not None: self["size"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
[ "def", "__init__", "(", "self", ",", "arg", "=", "None", ",", "color", "=", "None", ",", "family", "=", "None", ",", "size", "=", "None", ",", "*", "*", "kwargs", ")", ":", "super", "(", "Font", ",", "self", ")", ".", "__init__", "(", "\"font\"", ")", "if", "\"_parent\"", "in", "kwargs", ":", "self", ".", "_parent", "=", "kwargs", "[", "\"_parent\"", "]", "return", "# Validate arg", "# ------------", "if", "arg", "is", "None", ":", "arg", "=", "{", "}", "elif", "isinstance", "(", "arg", ",", "self", ".", "__class__", ")", ":", "arg", "=", "arg", ".", "to_plotly_json", "(", ")", "elif", "isinstance", "(", "arg", ",", "dict", ")", ":", "arg", "=", "_copy", ".", "copy", "(", "arg", ")", "else", ":", "raise", "ValueError", "(", "\"\"\"\\\nThe first argument to the plotly.graph_objs.layout.coloraxis.colorbar.title.Font \nconstructor must be a dict or \nan instance of :class:`plotly.graph_objs.layout.coloraxis.colorbar.title.Font`\"\"\"", ")", "# Handle skip_invalid", "# -------------------", "self", ".", "_skip_invalid", "=", "kwargs", ".", "pop", "(", "\"skip_invalid\"", ",", "False", ")", "self", ".", "_validate", "=", "kwargs", ".", "pop", "(", "\"_validate\"", ",", "True", ")", "# Populate data dict with properties", "# ----------------------------------", "_v", "=", "arg", ".", "pop", "(", "\"color\"", ",", "None", ")", "_v", "=", "color", "if", "color", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"color\"", "]", "=", "_v", "_v", "=", "arg", ".", "pop", "(", "\"family\"", ",", "None", ")", "_v", "=", "family", "if", "family", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"family\"", "]", "=", "_v", "_v", "=", "arg", ".", "pop", "(", "\"size\"", ",", "None", ")", "_v", "=", "size", "if", "size", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"size\"", "]", "=", "_v", "# Process unknown kwargs", "# ----------------------", "self", ".", "_process_kwargs", "(", "*", "*", "dict", "(", "arg", ",", "*", "*", "kwargs", ")", ")", "# Reset skip_invalid", "# ------------------", "self", ".", "_skip_invalid", "=", "False" ]
[ 143, 4 ]
[ 227, 34 ]
python
en
['en', 'error', 'th']
False
TestParlaiParser.test_shortopt
(self)
Tests whether short opts like -mtw work. Known to be tricky in python 3.8.
Tests whether short opts like -mtw work.
def test_shortopt(self): """ Tests whether short opts like -mtw work. Known to be tricky in python 3.8. """ pp = ParlaiParser(False, False) pp.add_argument("-m", "--model") pp.add_argument("-mtw", "--multitask-weights") opt = pp.parse_args(["-m", "memnn"]) print(opt)
[ "def", "test_shortopt", "(", "self", ")", ":", "pp", "=", "ParlaiParser", "(", "False", ",", "False", ")", "pp", ".", "add_argument", "(", "\"-m\"", ",", "\"--model\"", ")", "pp", ".", "add_argument", "(", "\"-mtw\"", ",", "\"--multitask-weights\"", ")", "opt", "=", "pp", ".", "parse_args", "(", "[", "\"-m\"", ",", "\"memnn\"", "]", ")", "print", "(", "opt", ")" ]
[ 37, 4 ]
[ 47, 18 ]
python
en
['en', 'error', 'th']
False
TestParlaiParser.test_upgrade_opt
(self)
Test whether upgrade_opt works.
Test whether upgrade_opt works.
def test_upgrade_opt(self): """ Test whether upgrade_opt works. """ with testing_utils.tempdir() as tmp: modfn = os.path.join(tmp, 'model') with open(modfn, 'w') as f: f.write('Test.') optfn = modfn + '.opt' base_opt = { 'model': 'tests.test_params:_ExampleUpgradeOptAgent', 'dict_file': modfn + '.dict', 'model_file': modfn, } with open(optfn, 'w') as f: json.dump(base_opt, f) pp = ParlaiParser(True, True) opt = pp.parse_args(['--model-file', modfn]) agents.create_agent(opt)
[ "def", "test_upgrade_opt", "(", "self", ")", ":", "with", "testing_utils", ".", "tempdir", "(", ")", "as", "tmp", ":", "modfn", "=", "os", ".", "path", ".", "join", "(", "tmp", ",", "'model'", ")", "with", "open", "(", "modfn", ",", "'w'", ")", "as", "f", ":", "f", ".", "write", "(", "'Test.'", ")", "optfn", "=", "modfn", "+", "'.opt'", "base_opt", "=", "{", "'model'", ":", "'tests.test_params:_ExampleUpgradeOptAgent'", ",", "'dict_file'", ":", "modfn", "+", "'.dict'", ",", "'model_file'", ":", "modfn", ",", "}", "with", "open", "(", "optfn", ",", "'w'", ")", "as", "f", ":", "json", ".", "dump", "(", "base_opt", ",", "f", ")", "pp", "=", "ParlaiParser", "(", "True", ",", "True", ")", "opt", "=", "pp", ".", "parse_args", "(", "[", "'--model-file'", ",", "modfn", "]", ")", "agents", ".", "create_agent", "(", "opt", ")" ]
[ 49, 4 ]
[ 68, 36 ]
python
en
['en', 'error', 'th']
False
TestParlaiParser.test_recommendations_single
(self)
Test whether recommended args work for non-group.
Test whether recommended args work for non-group.
def test_recommendations_single(self): """ Test whether recommended args work for non-group. """ parser = ParlaiParser(False, False) parser.add_argument( '-bs', '--batchsize', default=1, type=int, help='batch size for minibatch training schemes', recommended=1337, ) parser.parse_args([]) help_str = parser.format_help() assert 'recommended:' in help_str assert '1337' in help_str
[ "def", "test_recommendations_single", "(", "self", ")", ":", "parser", "=", "ParlaiParser", "(", "False", ",", "False", ")", "parser", ".", "add_argument", "(", "'-bs'", ",", "'--batchsize'", ",", "default", "=", "1", ",", "type", "=", "int", ",", "help", "=", "'batch size for minibatch training schemes'", ",", "recommended", "=", "1337", ",", ")", "parser", ".", "parse_args", "(", "[", "]", ")", "help_str", "=", "parser", ".", "format_help", "(", ")", "assert", "'recommended:'", "in", "help_str", "assert", "'1337'", "in", "help_str" ]
[ 70, 4 ]
[ 86, 33 ]
python
en
['en', 'error', 'th']
False
TestParlaiParser.test_recommendations_group
(self)
Test whether recommended args work for a group.
Test whether recommended args work for a group.
def test_recommendations_group(self): """ Test whether recommended args work for a group. """ parser = ParlaiParser(False, False) parser_grp = parser.add_argument_group('Test Group') parser_grp.add_argument( '-bs', '--batchsize', default=1, type=int, help='batch size for minibatch training schemes', recommended=1337, ) parser.parse_args([]) help_str = parser.format_help() assert 'Test Group' in help_str _, latter = help_str.split('Test Group') assert 'recommended:' in latter assert '1337' in latter
[ "def", "test_recommendations_group", "(", "self", ")", ":", "parser", "=", "ParlaiParser", "(", "False", ",", "False", ")", "parser_grp", "=", "parser", ".", "add_argument_group", "(", "'Test Group'", ")", "parser_grp", ".", "add_argument", "(", "'-bs'", ",", "'--batchsize'", ",", "default", "=", "1", ",", "type", "=", "int", ",", "help", "=", "'batch size for minibatch training schemes'", ",", "recommended", "=", "1337", ",", ")", "parser", ".", "parse_args", "(", "[", "]", ")", "help_str", "=", "parser", ".", "format_help", "(", ")", "assert", "'Test Group'", "in", "help_str", "_", ",", "latter", "=", "help_str", ".", "split", "(", "'Test Group'", ")", "assert", "'recommended:'", "in", "latter", "assert", "'1337'", "in", "latter" ]
[ 88, 4 ]
[ 108, 31 ]
python
en
['en', 'error', 'th']
False
TestParlaiParser.test_bool
(self)
test add_argument(type=bool)
test add_argument(type=bool)
def test_bool(self): """ test add_argument(type=bool) """ parser = ParlaiParser(True, True) parser.add_argument('--foo', type=bool) opt = parser.parse_args(['--foo', 'true']) assert opt['foo'] is True opt = parser.parse_args(['--foo', 'False']) assert opt['foo'] is False opt = parser.parse_args(['--foo', '0']) assert opt['foo'] is False group = parser.add_argument_group('foo container') group.add_argument('--bar', type=bool) opt = parser.parse_args(['--bar', 'true']) assert opt['bar'] is True opt = parser.parse_args(['--bar', 'False']) assert opt['bar'] is False opt = parser.parse_args(['--bar', '0']) assert opt['bar'] is False parser = ParlaiParser(True, True) parser.add_argument('--foo', type='bool') opt = parser.parse_args(['--foo', 'true']) assert opt['foo'] is True opt = parser.parse_args(['--foo', 'False']) assert opt['foo'] is False opt = parser.parse_args(['--foo', '0']) assert opt['foo'] is False group = parser.add_argument_group('foo container') group.add_argument('--bar', type='bool') opt = parser.parse_args(['--bar', 'true']) assert opt['bar'] is True opt = parser.parse_args(['--bar', 'False']) assert opt['bar'] is False opt = parser.parse_args(['--bar', '0']) assert opt['bar'] is False
[ "def", "test_bool", "(", "self", ")", ":", "parser", "=", "ParlaiParser", "(", "True", ",", "True", ")", "parser", ".", "add_argument", "(", "'--foo'", ",", "type", "=", "bool", ")", "opt", "=", "parser", ".", "parse_args", "(", "[", "'--foo'", ",", "'true'", "]", ")", "assert", "opt", "[", "'foo'", "]", "is", "True", "opt", "=", "parser", ".", "parse_args", "(", "[", "'--foo'", ",", "'False'", "]", ")", "assert", "opt", "[", "'foo'", "]", "is", "False", "opt", "=", "parser", ".", "parse_args", "(", "[", "'--foo'", ",", "'0'", "]", ")", "assert", "opt", "[", "'foo'", "]", "is", "False", "group", "=", "parser", ".", "add_argument_group", "(", "'foo container'", ")", "group", ".", "add_argument", "(", "'--bar'", ",", "type", "=", "bool", ")", "opt", "=", "parser", ".", "parse_args", "(", "[", "'--bar'", ",", "'true'", "]", ")", "assert", "opt", "[", "'bar'", "]", "is", "True", "opt", "=", "parser", ".", "parse_args", "(", "[", "'--bar'", ",", "'False'", "]", ")", "assert", "opt", "[", "'bar'", "]", "is", "False", "opt", "=", "parser", ".", "parse_args", "(", "[", "'--bar'", ",", "'0'", "]", ")", "assert", "opt", "[", "'bar'", "]", "is", "False", "parser", "=", "ParlaiParser", "(", "True", ",", "True", ")", "parser", ".", "add_argument", "(", "'--foo'", ",", "type", "=", "'bool'", ")", "opt", "=", "parser", ".", "parse_args", "(", "[", "'--foo'", ",", "'true'", "]", ")", "assert", "opt", "[", "'foo'", "]", "is", "True", "opt", "=", "parser", ".", "parse_args", "(", "[", "'--foo'", ",", "'False'", "]", ")", "assert", "opt", "[", "'foo'", "]", "is", "False", "opt", "=", "parser", ".", "parse_args", "(", "[", "'--foo'", ",", "'0'", "]", ")", "assert", "opt", "[", "'foo'", "]", "is", "False", "group", "=", "parser", ".", "add_argument_group", "(", "'foo container'", ")", "group", ".", "add_argument", "(", "'--bar'", ",", "type", "=", "'bool'", ")", "opt", "=", "parser", ".", "parse_args", "(", "[", "'--bar'", ",", "'true'", "]", ")", "assert", "opt", "[", "'bar'", "]", "is", "True", "opt", "=", "parser", ".", "parse_args", "(", "[", "'--bar'", ",", "'False'", "]", ")", "assert", "opt", "[", "'bar'", "]", "is", "False", "opt", "=", "parser", ".", "parse_args", "(", "[", "'--bar'", ",", "'0'", "]", ")", "assert", "opt", "[", "'bar'", "]", "is", "False" ]
[ 134, 4 ]
[ 172, 34 ]
python
en
['en', 'error', 'th']
False
CredentialOffer.__init__
( self, _id: str = None, *, comment: str = None, credential_preview: CredentialPreview = None, offers_attach: Sequence[AttachDecorator] = None, **kwargs, )
Initialize credential offer object. Args: comment: optional human-readable comment credential_preview: credential preview offers_attach: list of offer attachments
Initialize credential offer object.
def __init__( self, _id: str = None, *, comment: str = None, credential_preview: CredentialPreview = None, offers_attach: Sequence[AttachDecorator] = None, **kwargs, ): """ Initialize credential offer object. Args: comment: optional human-readable comment credential_preview: credential preview offers_attach: list of offer attachments """ super().__init__(_id=_id, **kwargs) self.comment = comment self.credential_preview = ( credential_preview if credential_preview else CredentialPreview() ) self.offers_attach = list(offers_attach) if offers_attach else []
[ "def", "__init__", "(", "self", ",", "_id", ":", "str", "=", "None", ",", "*", ",", "comment", ":", "str", "=", "None", ",", "credential_preview", ":", "CredentialPreview", "=", "None", ",", "offers_attach", ":", "Sequence", "[", "AttachDecorator", "]", "=", "None", ",", "*", "*", "kwargs", ",", ")", ":", "super", "(", ")", ".", "__init__", "(", "_id", "=", "_id", ",", "*", "*", "kwargs", ")", "self", ".", "comment", "=", "comment", "self", ".", "credential_preview", "=", "(", "credential_preview", "if", "credential_preview", "else", "CredentialPreview", "(", ")", ")", "self", ".", "offers_attach", "=", "list", "(", "offers_attach", ")", "if", "offers_attach", "else", "[", "]" ]
[ 31, 4 ]
[ 54, 73 ]
python
en
['en', 'error', 'th']
False
CredentialOffer.indy_offer
(self, index: int = 0)
Retrieve and decode indy offer from attachment. Args: index: ordinal in attachment list to decode and return (typically, list has length 1)
Retrieve and decode indy offer from attachment.
def indy_offer(self, index: int = 0) -> dict: """ Retrieve and decode indy offer from attachment. Args: index: ordinal in attachment list to decode and return (typically, list has length 1) """ return self.offers_attach[index].indy_dict
[ "def", "indy_offer", "(", "self", ",", "index", ":", "int", "=", "0", ")", "->", "dict", ":", "return", "self", ".", "offers_attach", "[", "index", "]", ".", "indy_dict" ]
[ 56, 4 ]
[ 65, 50 ]
python
en
['en', 'error', 'th']
False
CredentialOffer.wrap_indy_offer
(cls, indy_offer: dict)
Convert an indy credential offer to an attachment decorator.
Convert an indy credential offer to an attachment decorator.
def wrap_indy_offer(cls, indy_offer: dict) -> AttachDecorator: """Convert an indy credential offer to an attachment decorator.""" return AttachDecorator.from_indy_dict( indy_dict=indy_offer, ident=ATTACH_DECO_IDS[CREDENTIAL_OFFER] )
[ "def", "wrap_indy_offer", "(", "cls", ",", "indy_offer", ":", "dict", ")", "->", "AttachDecorator", ":", "return", "AttachDecorator", ".", "from_indy_dict", "(", "indy_dict", "=", "indy_offer", ",", "ident", "=", "ATTACH_DECO_IDS", "[", "CREDENTIAL_OFFER", "]", ")" ]
[ 68, 4 ]
[ 72, 9 ]
python
en
['en', 'en', 'en']
True
_Abstract._h
(self, x)
Hash function.
Hash function.
def _h(self, x): """ Hash function. """ h = int(hashlib.sha1(x.encode('utf-8')).hexdigest(), 16) % 10 if h == 0: return 'valid' elif h == 1: return 'test' else: return 'train'
[ "def", "_h", "(", "self", ",", "x", ")", ":", "h", "=", "int", "(", "hashlib", ".", "sha1", "(", "x", ".", "encode", "(", "'utf-8'", ")", ")", ".", "hexdigest", "(", ")", ",", "16", ")", "%", "10", "if", "h", "==", "0", ":", "return", "'valid'", "elif", "h", "==", "1", ":", "return", "'test'", "else", ":", "return", "'train'" ]
[ 75, 4 ]
[ 85, 26 ]
python
en
['en', 'error', 'th']
False
Rotation.lat
(self)
Rotates the map along meridians (in degrees North). The 'lat' property is a number and may be specified as: - An int or float Returns ------- int|float
Rotates the map along meridians (in degrees North). The 'lat' property is a number and may be specified as: - An int or float
def lat(self): """ Rotates the map along meridians (in degrees North). The 'lat' property is a number and may be specified as: - An int or float Returns ------- int|float """ return self["lat"]
[ "def", "lat", "(", "self", ")", ":", "return", "self", "[", "\"lat\"", "]" ]
[ 15, 4 ]
[ 26, 26 ]
python
en
['en', 'error', 'th']
False
Rotation.lon
(self)
Rotates the map along parallels (in degrees East). Defaults to the center of the `lonaxis.range` values. The 'lon' property is a number and may be specified as: - An int or float Returns ------- int|float
Rotates the map along parallels (in degrees East). Defaults to the center of the `lonaxis.range` values. The 'lon' property is a number and may be specified as: - An int or float
def lon(self): """ Rotates the map along parallels (in degrees East). Defaults to the center of the `lonaxis.range` values. The 'lon' property is a number and may be specified as: - An int or float Returns ------- int|float """ return self["lon"]
[ "def", "lon", "(", "self", ")", ":", "return", "self", "[", "\"lon\"", "]" ]
[ 35, 4 ]
[ 47, 26 ]
python
en
['en', 'error', 'th']
False
Rotation.roll
(self)
Roll the map (in degrees) For example, a roll of 180 makes the map appear upside down. The 'roll' property is a number and may be specified as: - An int or float Returns ------- int|float
Roll the map (in degrees) For example, a roll of 180 makes the map appear upside down. The 'roll' property is a number and may be specified as: - An int or float
def roll(self): """ Roll the map (in degrees) For example, a roll of 180 makes the map appear upside down. The 'roll' property is a number and may be specified as: - An int or float Returns ------- int|float """ return self["roll"]
[ "def", "roll", "(", "self", ")", ":", "return", "self", "[", "\"roll\"", "]" ]
[ 56, 4 ]
[ 68, 27 ]
python
en
['en', 'error', 'th']
False
Rotation.__init__
(self, arg=None, lat=None, lon=None, roll=None, **kwargs)
Construct a new Rotation object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.layout.geo.pro jection.Rotation` lat Rotates the map along meridians (in degrees North). lon Rotates the map along parallels (in degrees East). Defaults to the center of the `lonaxis.range` values. roll Roll the map (in degrees) For example, a roll of 180 makes the map appear upside down. Returns ------- Rotation
Construct a new Rotation object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.layout.geo.pro jection.Rotation` lat Rotates the map along meridians (in degrees North). lon Rotates the map along parallels (in degrees East). Defaults to the center of the `lonaxis.range` values. roll Roll the map (in degrees) For example, a roll of 180 makes the map appear upside down.
def __init__(self, arg=None, lat=None, lon=None, roll=None, **kwargs): """ Construct a new Rotation object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.layout.geo.pro jection.Rotation` lat Rotates the map along meridians (in degrees North). lon Rotates the map along parallels (in degrees East). Defaults to the center of the `lonaxis.range` values. roll Roll the map (in degrees) For example, a roll of 180 makes the map appear upside down. Returns ------- Rotation """ super(Rotation, self).__init__("rotation") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.layout.geo.projection.Rotation constructor must be a dict or an instance of :class:`plotly.graph_objs.layout.geo.projection.Rotation`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("lat", None) _v = lat if lat is not None else _v if _v is not None: self["lat"] = _v _v = arg.pop("lon", None) _v = lon if lon is not None else _v if _v is not None: self["lon"] = _v _v = arg.pop("roll", None) _v = roll if roll is not None else _v if _v is not None: self["roll"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
[ "def", "__init__", "(", "self", ",", "arg", "=", "None", ",", "lat", "=", "None", ",", "lon", "=", "None", ",", "roll", "=", "None", ",", "*", "*", "kwargs", ")", ":", "super", "(", "Rotation", ",", "self", ")", ".", "__init__", "(", "\"rotation\"", ")", "if", "\"_parent\"", "in", "kwargs", ":", "self", ".", "_parent", "=", "kwargs", "[", "\"_parent\"", "]", "return", "# Validate arg", "# ------------", "if", "arg", "is", "None", ":", "arg", "=", "{", "}", "elif", "isinstance", "(", "arg", ",", "self", ".", "__class__", ")", ":", "arg", "=", "arg", ".", "to_plotly_json", "(", ")", "elif", "isinstance", "(", "arg", ",", "dict", ")", ":", "arg", "=", "_copy", ".", "copy", "(", "arg", ")", "else", ":", "raise", "ValueError", "(", "\"\"\"\\\nThe first argument to the plotly.graph_objs.layout.geo.projection.Rotation \nconstructor must be a dict or \nan instance of :class:`plotly.graph_objs.layout.geo.projection.Rotation`\"\"\"", ")", "# Handle skip_invalid", "# -------------------", "self", ".", "_skip_invalid", "=", "kwargs", ".", "pop", "(", "\"skip_invalid\"", ",", "False", ")", "self", ".", "_validate", "=", "kwargs", ".", "pop", "(", "\"_validate\"", ",", "True", ")", "# Populate data dict with properties", "# ----------------------------------", "_v", "=", "arg", ".", "pop", "(", "\"lat\"", ",", "None", ")", "_v", "=", "lat", "if", "lat", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"lat\"", "]", "=", "_v", "_v", "=", "arg", ".", "pop", "(", "\"lon\"", ",", "None", ")", "_v", "=", "lon", "if", "lon", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"lon\"", "]", "=", "_v", "_v", "=", "arg", ".", "pop", "(", "\"roll\"", ",", "None", ")", "_v", "=", "roll", "if", "roll", "is", "not", "None", "else", "_v", "if", "_v", "is", "not", "None", ":", "self", "[", "\"roll\"", "]", "=", "_v", "# Process unknown kwargs", "# ----------------------", "self", ".", "_process_kwargs", "(", "*", "*", "dict", "(", "arg", ",", "*", "*", "kwargs", ")", ")", "# Reset skip_invalid", "# ------------------", "self", ".", "_skip_invalid", "=", "False" ]
[ 89, 4 ]
[ 160, 34 ]
python
en
['en', 'error', 'th']
False
list_of_options
(iterable, conj="and", period=True)
Returns an English listing of objects seperated by commas ',' For example, ['foo', 'bar', 'baz'] becomes 'foo, bar and baz' if the conjunction 'and' is selected.
Returns an English listing of objects seperated by commas ','
def list_of_options(iterable, conj="and", period=True): """ Returns an English listing of objects seperated by commas ',' For example, ['foo', 'bar', 'baz'] becomes 'foo, bar and baz' if the conjunction 'and' is selected. """ if len(iterable) < 2: raise _plotly_utils.exceptions.PlotlyError( "Your list or tuple must contain at least 2 items." ) template = (len(iterable) - 2) * "{}, " + "{} " + conj + " {}" + period * "." return template.format(*iterable)
[ "def", "list_of_options", "(", "iterable", ",", "conj", "=", "\"and\"", ",", "period", "=", "True", ")", ":", "if", "len", "(", "iterable", ")", "<", "2", ":", "raise", "_plotly_utils", ".", "exceptions", ".", "PlotlyError", "(", "\"Your list or tuple must contain at least 2 items.\"", ")", "template", "=", "(", "len", "(", "iterable", ")", "-", "2", ")", "*", "\"{}, \"", "+", "\"{} \"", "+", "conj", "+", "\" {}\"", "+", "period", "*", "\".\"", "return", "template", ".", "format", "(", "*", "iterable", ")" ]
[ 72, 0 ]
[ 84, 37 ]
python
en
['en', 'error', 'th']
False
build
(opt)
Create train and validation data for synthetic shapes described by attributes.
Create train and validation data for synthetic shapes described by attributes.
def build(opt): """ Create train and validation data for synthetic shapes described by attributes. """ dpath = os.path.join(opt['datapath'], 'taskntalk') if not build_data.built(dpath): print('[building data: ' + dpath + ']') build_data.make_dir(os.path.join(dpath, 'large')) build_data.make_dir(os.path.join(dpath, 'small')) # save training and validation data to_save = { 'attributes': ['color', 'shape', 'style'], 'task_defn': [ ['color', 'shape'], ['shape', 'color'], ['color', 'style'], ['style', 'color'], ['shape', 'style'], ['style', 'shape'], ], } split_data = {} # small dataset properties properties = { 'color': ['red', 'green', 'blue', 'purple'], 'shape': ['square', 'triangle', 'circle', 'star'], 'style': ['dotted', 'solid', 'filled', 'dashed'], } to_save['properties'] = properties # properties.values() not used directly to maintain order data_verbose = list( itertools.product(*[properties[key] for key in to_save['attributes']]) ) # randomly select train and rest of it is valid split_data['valid'] = random.sample(data_verbose, int(0.2 * len(data_verbose))) split_data['train'] = [s for s in data_verbose if s not in split_data['valid']] to_save['data'] = split_data['train'] with PathManager.open( os.path.join(dpath, 'small', 'train.json'), 'w' ) as outfile: json.dump( to_save, outfile, indent=4, separators=(',', ': '), sort_keys=True ) to_save['data'] = split_data['valid'] with PathManager.open( os.path.join(dpath, 'small', 'valid.json'), 'w' ) as outfile: json.dump( to_save, outfile, indent=4, separators=(',', ': '), sort_keys=True ) # large dataset properties properties = { 'color': [ 'red', 'green', 'blue', 'purple', 'yellow', 'cyan', 'orange', 'teal', ], 'shape': [ 'square', 'triangle', 'circle', 'star', 'heart', 'spade', 'club', 'diamond', ], 'style': [ 'dotted', 'solid', 'filled', 'dashed', 'hstripe', 'vstripe', 'hgrad', 'vgrad', ], } to_save['properties'] = properties data_verbose = list( itertools.product(*[properties[key] for key in to_save['attributes']]) ) split_data['valid'] = random.sample(data_verbose, int(0.8 * len(data_verbose))) split_data['train'] = [s for s in data_verbose if s not in split_data['valid']] to_save['data'] = split_data['train'] with PathManager.open( os.path.join(dpath, 'large', 'train.json'), 'w' ) as outfile: json.dump( to_save, outfile, indent=4, separators=(',', ': '), sort_keys=True ) to_save['data'] = split_data['valid'] with PathManager.open( os.path.join(dpath, 'large', 'valid.json'), 'w' ) as outfile: json.dump( to_save, outfile, indent=4, separators=(',', ': '), sort_keys=True ) # Mark the data as built. build_data.mark_done(dpath)
[ "def", "build", "(", "opt", ")", ":", "dpath", "=", "os", ".", "path", ".", "join", "(", "opt", "[", "'datapath'", "]", ",", "'taskntalk'", ")", "if", "not", "build_data", ".", "built", "(", "dpath", ")", ":", "print", "(", "'[building data: '", "+", "dpath", "+", "']'", ")", "build_data", ".", "make_dir", "(", "os", ".", "path", ".", "join", "(", "dpath", ",", "'large'", ")", ")", "build_data", ".", "make_dir", "(", "os", ".", "path", ".", "join", "(", "dpath", ",", "'small'", ")", ")", "# save training and validation data", "to_save", "=", "{", "'attributes'", ":", "[", "'color'", ",", "'shape'", ",", "'style'", "]", ",", "'task_defn'", ":", "[", "[", "'color'", ",", "'shape'", "]", ",", "[", "'shape'", ",", "'color'", "]", ",", "[", "'color'", ",", "'style'", "]", ",", "[", "'style'", ",", "'color'", "]", ",", "[", "'shape'", ",", "'style'", "]", ",", "[", "'style'", ",", "'shape'", "]", ",", "]", ",", "}", "split_data", "=", "{", "}", "# small dataset properties", "properties", "=", "{", "'color'", ":", "[", "'red'", ",", "'green'", ",", "'blue'", ",", "'purple'", "]", ",", "'shape'", ":", "[", "'square'", ",", "'triangle'", ",", "'circle'", ",", "'star'", "]", ",", "'style'", ":", "[", "'dotted'", ",", "'solid'", ",", "'filled'", ",", "'dashed'", "]", ",", "}", "to_save", "[", "'properties'", "]", "=", "properties", "# properties.values() not used directly to maintain order", "data_verbose", "=", "list", "(", "itertools", ".", "product", "(", "*", "[", "properties", "[", "key", "]", "for", "key", "in", "to_save", "[", "'attributes'", "]", "]", ")", ")", "# randomly select train and rest of it is valid", "split_data", "[", "'valid'", "]", "=", "random", ".", "sample", "(", "data_verbose", ",", "int", "(", "0.2", "*", "len", "(", "data_verbose", ")", ")", ")", "split_data", "[", "'train'", "]", "=", "[", "s", "for", "s", "in", "data_verbose", "if", "s", "not", "in", "split_data", "[", "'valid'", "]", "]", "to_save", "[", "'data'", "]", "=", "split_data", "[", "'train'", "]", "with", "PathManager", ".", "open", "(", "os", ".", "path", ".", "join", "(", "dpath", ",", "'small'", ",", "'train.json'", ")", ",", "'w'", ")", "as", "outfile", ":", "json", ".", "dump", "(", "to_save", ",", "outfile", ",", "indent", "=", "4", ",", "separators", "=", "(", "','", ",", "': '", ")", ",", "sort_keys", "=", "True", ")", "to_save", "[", "'data'", "]", "=", "split_data", "[", "'valid'", "]", "with", "PathManager", ".", "open", "(", "os", ".", "path", ".", "join", "(", "dpath", ",", "'small'", ",", "'valid.json'", ")", ",", "'w'", ")", "as", "outfile", ":", "json", ".", "dump", "(", "to_save", ",", "outfile", ",", "indent", "=", "4", ",", "separators", "=", "(", "','", ",", "': '", ")", ",", "sort_keys", "=", "True", ")", "# large dataset properties", "properties", "=", "{", "'color'", ":", "[", "'red'", ",", "'green'", ",", "'blue'", ",", "'purple'", ",", "'yellow'", ",", "'cyan'", ",", "'orange'", ",", "'teal'", ",", "]", ",", "'shape'", ":", "[", "'square'", ",", "'triangle'", ",", "'circle'", ",", "'star'", ",", "'heart'", ",", "'spade'", ",", "'club'", ",", "'diamond'", ",", "]", ",", "'style'", ":", "[", "'dotted'", ",", "'solid'", ",", "'filled'", ",", "'dashed'", ",", "'hstripe'", ",", "'vstripe'", ",", "'hgrad'", ",", "'vgrad'", ",", "]", ",", "}", "to_save", "[", "'properties'", "]", "=", "properties", "data_verbose", "=", "list", "(", "itertools", ".", "product", "(", "*", "[", "properties", "[", "key", "]", "for", "key", "in", "to_save", "[", "'attributes'", "]", "]", ")", ")", "split_data", "[", "'valid'", "]", "=", "random", ".", "sample", "(", "data_verbose", ",", "int", "(", "0.8", "*", "len", "(", "data_verbose", ")", ")", ")", "split_data", "[", "'train'", "]", "=", "[", "s", "for", "s", "in", "data_verbose", "if", "s", "not", "in", "split_data", "[", "'valid'", "]", "]", "to_save", "[", "'data'", "]", "=", "split_data", "[", "'train'", "]", "with", "PathManager", ".", "open", "(", "os", ".", "path", ".", "join", "(", "dpath", ",", "'large'", ",", "'train.json'", ")", ",", "'w'", ")", "as", "outfile", ":", "json", ".", "dump", "(", "to_save", ",", "outfile", ",", "indent", "=", "4", ",", "separators", "=", "(", "','", ",", "': '", ")", ",", "sort_keys", "=", "True", ")", "to_save", "[", "'data'", "]", "=", "split_data", "[", "'valid'", "]", "with", "PathManager", ".", "open", "(", "os", ".", "path", ".", "join", "(", "dpath", ",", "'large'", ",", "'valid.json'", ")", ",", "'w'", ")", "as", "outfile", ":", "json", ".", "dump", "(", "to_save", ",", "outfile", ",", "indent", "=", "4", ",", "separators", "=", "(", "','", ",", "': '", ")", ",", "sort_keys", "=", "True", ")", "# Mark the data as built.", "build_data", ".", "mark_done", "(", "dpath", ")" ]
[ 15, 0 ]
[ 129, 35 ]
python
en
['en', 'error', 'th']
False
validate_proof
(result)
Validates state proof
Validates state proof
def validate_proof(result): """ Validates state proof """ state_root_hash = result[STATE_PROOF]['root_hash'] state_root_hash = state_roots_serializer.deserialize(state_root_hash) proof_nodes = result[STATE_PROOF]['proof_nodes'] if isinstance(proof_nodes, str): proof_nodes = proof_nodes.encode() proof_nodes = proof_nodes_serializer.deserialize(proof_nodes) key, value = prepare_for_state(result) valid = PruningState.verify_state_proof(state_root_hash, key, value, proof_nodes, serialized=True) return valid
[ "def", "validate_proof", "(", "result", ")", ":", "state_root_hash", "=", "result", "[", "STATE_PROOF", "]", "[", "'root_hash'", "]", "state_root_hash", "=", "state_roots_serializer", ".", "deserialize", "(", "state_root_hash", ")", "proof_nodes", "=", "result", "[", "STATE_PROOF", "]", "[", "'proof_nodes'", "]", "if", "isinstance", "(", "proof_nodes", ",", "str", ")", ":", "proof_nodes", "=", "proof_nodes", ".", "encode", "(", ")", "proof_nodes", "=", "proof_nodes_serializer", ".", "deserialize", "(", "proof_nodes", ")", "key", ",", "value", "=", "prepare_for_state", "(", "result", ")", "valid", "=", "PruningState", ".", "verify_state_proof", "(", "state_root_hash", ",", "key", ",", "value", ",", "proof_nodes", ",", "serialized", "=", "True", ")", "return", "valid" ]
[ 92, 0 ]
[ 108, 16 ]
python
en
['en', 'error', 'th']
False
score_match
(query_rep, text, length_penalty, dictionary=None)
Calculate the score match between the query representation the text. :param query_rep: base query representation to match text again. :param text: string to compare against query_rep for matching tokens :param length_penalty: scores are divided by the norm taken to this power :param dictionary: optional dictionary to use to tokenize text :returns: float score of match
Calculate the score match between the query representation the text.
def score_match(query_rep, text, length_penalty, dictionary=None): """ Calculate the score match between the query representation the text. :param query_rep: base query representation to match text again. :param text: string to compare against query_rep for matching tokens :param length_penalty: scores are divided by the norm taken to this power :param dictionary: optional dictionary to use to tokenize text :returns: float score of match """ if text == "": return 0 words = [w for w in dictionary.tokenize(text.lower())] score = 0 rw = query_rep['words'] used = {} for w in words: if w in rw and w not in used: score += rw[w] used[w] = True norm = math.sqrt(len(used)) norm = math.pow(norm * query_rep['norm'], length_penalty) if norm > 1: score /= norm return score
[ "def", "score_match", "(", "query_rep", ",", "text", ",", "length_penalty", ",", "dictionary", "=", "None", ")", ":", "if", "text", "==", "\"\"", ":", "return", "0", "words", "=", "[", "w", "for", "w", "in", "dictionary", ".", "tokenize", "(", "text", ".", "lower", "(", ")", ")", "]", "score", "=", "0", "rw", "=", "query_rep", "[", "'words'", "]", "used", "=", "{", "}", "for", "w", "in", "words", ":", "if", "w", "in", "rw", "and", "w", "not", "in", "used", ":", "score", "+=", "rw", "[", "w", "]", "used", "[", "w", "]", "=", "True", "norm", "=", "math", ".", "sqrt", "(", "len", "(", "used", ")", ")", "norm", "=", "math", ".", "pow", "(", "norm", "*", "query_rep", "[", "'norm'", "]", ",", "length_penalty", ")", "if", "norm", ">", "1", ":", "score", "/=", "norm", "return", "score" ]
[ 151, 0 ]
[ 181, 16 ]
python
en
['en', 'error', 'th']
False
rank_candidates
(query_rep, cands, length_penalty, dictionary)
Rank candidates given representation of query. :param query_rep: base query representation to match text again. :param cands: strings to compare against query_rep for matching tokens :param length_penalty: scores are divided by the norm taken to this power :dictionary: dictionary to use to tokenize text :returns: ordered list of candidate strings in score-ranked order
Rank candidates given representation of query.
def rank_candidates(query_rep, cands, length_penalty, dictionary): """ Rank candidates given representation of query. :param query_rep: base query representation to match text again. :param cands: strings to compare against query_rep for matching tokens :param length_penalty: scores are divided by the norm taken to this power :dictionary: dictionary to use to tokenize text :returns: ordered list of candidate strings in score-ranked order """ if True: mpq = MaxPriorityQueue(100) for c in cands: score = score_match(query_rep, c, length_penalty, dictionary) mpq.add(c, score) return list(reversed(mpq)) else: cands = list(cands) score = [0] * len(cands) for i, c in enumerate(cands): score[i] = -score_match(query_rep, c, length_penalty, dictionary) r = [i[0] for i in sorted(enumerate(score), key=lambda x: x[1])] res = [] for i in range(min(100, len(score))): res.append(cands[r[i]]) return res
[ "def", "rank_candidates", "(", "query_rep", ",", "cands", ",", "length_penalty", ",", "dictionary", ")", ":", "if", "True", ":", "mpq", "=", "MaxPriorityQueue", "(", "100", ")", "for", "c", "in", "cands", ":", "score", "=", "score_match", "(", "query_rep", ",", "c", ",", "length_penalty", ",", "dictionary", ")", "mpq", ".", "add", "(", "c", ",", "score", ")", "return", "list", "(", "reversed", "(", "mpq", ")", ")", "else", ":", "cands", "=", "list", "(", "cands", ")", "score", "=", "[", "0", "]", "*", "len", "(", "cands", ")", "for", "i", ",", "c", "in", "enumerate", "(", "cands", ")", ":", "score", "[", "i", "]", "=", "-", "score_match", "(", "query_rep", ",", "c", ",", "length_penalty", ",", "dictionary", ")", "r", "=", "[", "i", "[", "0", "]", "for", "i", "in", "sorted", "(", "enumerate", "(", "score", ")", ",", "key", "=", "lambda", "x", ":", "x", "[", "1", "]", ")", "]", "res", "=", "[", "]", "for", "i", "in", "range", "(", "min", "(", "100", ",", "len", "(", "score", ")", ")", ")", ":", "res", ".", "append", "(", "cands", "[", "r", "[", "i", "]", "]", ")", "return", "res" ]
[ 184, 0 ]
[ 215, 18 ]
python
en
['en', 'error', 'th']
False
MaxPriorityQueue.__init__
(self, max_size)
Initialize priority queue. :param max_size: maximum capacity of priority queue.
Initialize priority queue.
def __init__(self, max_size): """ Initialize priority queue. :param max_size: maximum capacity of priority queue. """ self.capacity = max_size self.lst = []
[ "def", "__init__", "(", "self", ",", "max_size", ")", ":", "self", ".", "capacity", "=", "max_size", "self", ".", "lst", "=", "[", "]" ]
[ 41, 4 ]
[ 48, 21 ]
python
en
['en', 'error', 'th']
False
MaxPriorityQueue.add
(self, item, priority)
Add element to the queue, with a separate priority if desired. Element will not be added if the queue is at capacity and the element has lower priority than the lowest currently in the queue. :param item: item to add to queue. :param priority: priority to use for item.
Add element to the queue, with a separate priority if desired.
def add(self, item, priority): """ Add element to the queue, with a separate priority if desired. Element will not be added if the queue is at capacity and the element has lower priority than the lowest currently in the queue. :param item: item to add to queue. :param priority: priority to use for item. """ if len(self.lst) < self.capacity: heapq.heappush(self.lst, (priority, item)) elif priority > self.lst[0][0]: heapq.heapreplace(self.lst, (priority, item))
[ "def", "add", "(", "self", ",", "item", ",", "priority", ")", ":", "if", "len", "(", "self", ".", "lst", ")", "<", "self", ".", "capacity", ":", "heapq", ".", "heappush", "(", "self", ".", "lst", ",", "(", "priority", ",", "item", ")", ")", "elif", "priority", ">", "self", ".", "lst", "[", "0", "]", "[", "0", "]", ":", "heapq", ".", "heapreplace", "(", "self", ".", "lst", ",", "(", "priority", ",", "item", ")", ")" ]
[ 50, 4 ]
[ 65, 57 ]
python
en
['en', 'error', 'th']
False
MaxPriorityQueue.__getitem__
(self, key)
Get item at specified index. :param key: integer index into priority queue, 0 <= index < max_size. :returns: item stored at the specified index.
Get item at specified index.
def __getitem__(self, key): """ Get item at specified index. :param key: integer index into priority queue, 0 <= index < max_size. :returns: item stored at the specified index. """ return sorted(self.lst)[key][1]
[ "def", "__getitem__", "(", "self", ",", "key", ")", ":", "return", "sorted", "(", "self", ".", "lst", ")", "[", "key", "]", "[", "1", "]" ]
[ 67, 4 ]
[ 75, 39 ]
python
en
['en', 'error', 'th']
False
MaxPriorityQueue.__len__
(self)
Return length of priority queue.
Return length of priority queue.
def __len__(self): """ Return length of priority queue. """ return len(self.lst)
[ "def", "__len__", "(", "self", ")", ":", "return", "len", "(", "self", ".", "lst", ")" ]
[ 77, 4 ]
[ 81, 28 ]
python
en
['en', 'error', 'th']
False
IrBaselineAgent.add_cmdline_args
( cls, parser: ParlaiParser, partial_opt: Optional[Opt] = None )
Add command line args specific to this agent.
Add command line args specific to this agent.
def add_cmdline_args( cls, parser: ParlaiParser, partial_opt: Optional[Opt] = None ) -> ParlaiParser: """ Add command line args specific to this agent. """ parser = parser.add_argument_group('IrBaseline Arguments') parser.add_argument( '-lp', '--length_penalty', type=float, default=0.5, help='length penalty for responses', ) parser.add_argument( '-hsz', '--history_size', type=int, default=1, help='number of utterances from the dialogue history to take use ' 'as the query', ) parser.add_argument( '--label_candidates_file', type=str, default=None, help='file of candidate responses to choose from', ) cls.dictionary_class().add_cmdline_args(parser, partial_opt=partial_opt) return parser
[ "def", "add_cmdline_args", "(", "cls", ",", "parser", ":", "ParlaiParser", ",", "partial_opt", ":", "Optional", "[", "Opt", "]", "=", "None", ")", "->", "ParlaiParser", ":", "parser", "=", "parser", ".", "add_argument_group", "(", "'IrBaseline Arguments'", ")", "parser", ".", "add_argument", "(", "'-lp'", ",", "'--length_penalty'", ",", "type", "=", "float", ",", "default", "=", "0.5", ",", "help", "=", "'length penalty for responses'", ",", ")", "parser", ".", "add_argument", "(", "'-hsz'", ",", "'--history_size'", ",", "type", "=", "int", ",", "default", "=", "1", ",", "help", "=", "'number of utterances from the dialogue history to take use '", "'as the query'", ",", ")", "parser", ".", "add_argument", "(", "'--label_candidates_file'", ",", "type", "=", "str", ",", "default", "=", "None", ",", "help", "=", "'file of candidate responses to choose from'", ",", ")", "cls", ".", "dictionary_class", "(", ")", ".", "add_cmdline_args", "(", "parser", ",", "partial_opt", "=", "partial_opt", ")", "return", "parser" ]
[ 224, 4 ]
[ 253, 21 ]
python
en
['en', 'error', 'th']
False
IrBaselineAgent.__init__
(self, opt, shared=None)
Initialize agent.
Initialize agent.
def __init__(self, opt, shared=None): """ Initialize agent. """ super().__init__(opt) self.id = 'IRBaselineAgent' self.length_penalty = float(opt['length_penalty']) self.dictionary = DictionaryAgent(opt) self.opt = opt self.history = [] self.episodeDone = True if opt.get('label_candidates_file'): f = open(opt.get('label_candidates_file')) self.label_candidates = f.read().split('\n')
[ "def", "__init__", "(", "self", ",", "opt", ",", "shared", "=", "None", ")", ":", "super", "(", ")", ".", "__init__", "(", "opt", ")", "self", ".", "id", "=", "'IRBaselineAgent'", "self", ".", "length_penalty", "=", "float", "(", "opt", "[", "'length_penalty'", "]", ")", "self", ".", "dictionary", "=", "DictionaryAgent", "(", "opt", ")", "self", ".", "opt", "=", "opt", "self", ".", "history", "=", "[", "]", "self", ".", "episodeDone", "=", "True", "if", "opt", ".", "get", "(", "'label_candidates_file'", ")", ":", "f", "=", "open", "(", "opt", ".", "get", "(", "'label_candidates_file'", ")", ")", "self", ".", "label_candidates", "=", "f", ".", "read", "(", ")", ".", "split", "(", "'\\n'", ")" ]
[ 259, 4 ]
[ 272, 56 ]
python
en
['en', 'error', 'th']
False
IrBaselineAgent.reset
(self)
Reset agent properties.
Reset agent properties.
def reset(self): """ Reset agent properties. """ self.observation = None self.history = [] self.episodeDone = True
[ "def", "reset", "(", "self", ")", ":", "self", ".", "observation", "=", "None", "self", ".", "history", "=", "[", "]", "self", ".", "episodeDone", "=", "True" ]
[ 274, 4 ]
[ 280, 31 ]
python
en
['en', 'error', 'th']
False
IrBaselineAgent.observe
(self, obs)
Store and remember incoming observation message dict.
Store and remember incoming observation message dict.
def observe(self, obs): """ Store and remember incoming observation message dict. """ self.observation = obs self.dictionary.observe(obs) if self.episodeDone: self.history = [] if 'text' in obs: self.history.append(obs.get('text', '')) self.episodeDone = obs.get('episode_done', False) return obs
[ "def", "observe", "(", "self", ",", "obs", ")", ":", "self", ".", "observation", "=", "obs", "self", ".", "dictionary", ".", "observe", "(", "obs", ")", "if", "self", ".", "episodeDone", ":", "self", ".", "history", "=", "[", "]", "if", "'text'", "in", "obs", ":", "self", ".", "history", ".", "append", "(", "obs", ".", "get", "(", "'text'", ",", "''", ")", ")", "self", ".", "episodeDone", "=", "obs", ".", "get", "(", "'episode_done'", ",", "False", ")", "return", "obs" ]
[ 282, 4 ]
[ 293, 18 ]
python
en
['en', 'error', 'th']
False
IrBaselineAgent.act
(self)
Generate a response to the previously seen observation(s).
Generate a response to the previously seen observation(s).
def act(self): """ Generate a response to the previously seen observation(s). """ if self.opt.get('datatype', '').startswith('train'): self.dictionary.act() obs = self.observation reply = {} reply['id'] = self.getID() # Rank candidates cands = None if obs.get('label_candidates', False) and len(obs['label_candidates']) > 0: cands = obs['label_candidates'] if hasattr(self, 'label_candidates'): # override label candidates with candidate file if set cands = self.label_candidates if cands: hist_sz = self.opt.get('history_size', 1) left_idx = max(0, len(self.history) - hist_sz) text = ' '.join(self.history[left_idx : len(self.history)]) rep = self.build_query_representation(text) reply['text_candidates'] = rank_candidates( rep, cands, self.length_penalty, self.dictionary ) reply['text'] = reply['text_candidates'][0] return reply
[ "def", "act", "(", "self", ")", ":", "if", "self", ".", "opt", ".", "get", "(", "'datatype'", ",", "''", ")", ".", "startswith", "(", "'train'", ")", ":", "self", ".", "dictionary", ".", "act", "(", ")", "obs", "=", "self", ".", "observation", "reply", "=", "{", "}", "reply", "[", "'id'", "]", "=", "self", ".", "getID", "(", ")", "# Rank candidates", "cands", "=", "None", "if", "obs", ".", "get", "(", "'label_candidates'", ",", "False", ")", "and", "len", "(", "obs", "[", "'label_candidates'", "]", ")", ">", "0", ":", "cands", "=", "obs", "[", "'label_candidates'", "]", "if", "hasattr", "(", "self", ",", "'label_candidates'", ")", ":", "# override label candidates with candidate file if set", "cands", "=", "self", ".", "label_candidates", "if", "cands", ":", "hist_sz", "=", "self", ".", "opt", ".", "get", "(", "'history_size'", ",", "1", ")", "left_idx", "=", "max", "(", "0", ",", "len", "(", "self", ".", "history", ")", "-", "hist_sz", ")", "text", "=", "' '", ".", "join", "(", "self", ".", "history", "[", "left_idx", ":", "len", "(", "self", ".", "history", ")", "]", ")", "rep", "=", "self", ".", "build_query_representation", "(", "text", ")", "reply", "[", "'text_candidates'", "]", "=", "rank_candidates", "(", "rep", ",", "cands", ",", "self", ".", "length_penalty", ",", "self", ".", "dictionary", ")", "reply", "[", "'text'", "]", "=", "reply", "[", "'text_candidates'", "]", "[", "0", "]", "return", "reply" ]
[ 295, 4 ]
[ 322, 20 ]
python
en
['en', 'error', 'th']
False
IrBaselineAgent.save
(self, path=None)
Save dictionary tokenizer if available.
Save dictionary tokenizer if available.
def save(self, path=None): """ Save dictionary tokenizer if available. """ path = self.opt.get('model_file', None) if path is None else path if path: self.dictionary.save(path + '.dict') data = {} data['opt'] = self.opt torch_utils.atomic_save(data, path) with PathManager.open(path + '.opt', 'w') as handle: json.dump(self.opt, handle)
[ "def", "save", "(", "self", ",", "path", "=", "None", ")", ":", "path", "=", "self", ".", "opt", ".", "get", "(", "'model_file'", ",", "None", ")", "if", "path", "is", "None", "else", "path", "if", "path", ":", "self", ".", "dictionary", ".", "save", "(", "path", "+", "'.dict'", ")", "data", "=", "{", "}", "data", "[", "'opt'", "]", "=", "self", ".", "opt", "torch_utils", ".", "atomic_save", "(", "data", ",", "path", ")", "with", "PathManager", ".", "open", "(", "path", "+", "'.opt'", ",", "'w'", ")", "as", "handle", ":", "json", ".", "dump", "(", "self", ".", "opt", ",", "handle", ")" ]
[ 324, 4 ]
[ 335, 43 ]
python
en
['en', 'error', 'th']
False
IrBaselineAgent.build_query_representation
(self, query)
Build representation of query, e.g. words or n-grams. :param query: string to represent. :returns: dictionary containing 'words' dictionary (token => frequency) and 'norm' float (square root of the number of tokens)
Build representation of query, e.g. words or n-grams.
def build_query_representation(self, query): """ Build representation of query, e.g. words or n-grams. :param query: string to represent. :returns: dictionary containing 'words' dictionary (token => frequency) and 'norm' float (square root of the number of tokens) """ rep = {} rep['words'] = {} words = [w for w in self.dictionary.tokenize(query.lower())] rw = rep['words'] used = {} for w in words: assert len(self.dictionary.freq) > 0 rw[w] = 1.0 / (1.0 + math.log(1.0 + self.dictionary.freq[w])) used[w] = True rep['norm'] = math.sqrt(len(words)) return rep
[ "def", "build_query_representation", "(", "self", ",", "query", ")", ":", "rep", "=", "{", "}", "rep", "[", "'words'", "]", "=", "{", "}", "words", "=", "[", "w", "for", "w", "in", "self", ".", "dictionary", ".", "tokenize", "(", "query", ".", "lower", "(", ")", ")", "]", "rw", "=", "rep", "[", "'words'", "]", "used", "=", "{", "}", "for", "w", "in", "words", ":", "assert", "len", "(", "self", ".", "dictionary", ".", "freq", ")", ">", "0", "rw", "[", "w", "]", "=", "1.0", "/", "(", "1.0", "+", "math", ".", "log", "(", "1.0", "+", "self", ".", "dictionary", ".", "freq", "[", "w", "]", ")", ")", "used", "[", "w", "]", "=", "True", "rep", "[", "'norm'", "]", "=", "math", ".", "sqrt", "(", "len", "(", "words", ")", ")", "return", "rep" ]
[ 337, 4 ]
[ 356, 18 ]
python
en
['en', 'error', 'th']
False