Search is not available for this dataset
identifier
stringlengths
1
155
parameters
stringlengths
2
6.09k
docstring
stringlengths
11
63.4k
docstring_summary
stringlengths
0
63.4k
function
stringlengths
29
99.8k
function_tokens
sequence
start_point
sequence
end_point
sequence
language
stringclasses
1 value
docstring_language
stringlengths
2
7
docstring_language_predictions
stringlengths
18
23
is_langid_reliable
stringclasses
2 values
scopedef_t.typedefs
( self, name=None, function=None, header_dir=None, header_file=None, recursive=None, allow_empty=None)
returns a set of typedef declarations, that are matched defined criteria
returns a set of typedef declarations, that are matched defined criteria
def typedefs( self, name=None, function=None, header_dir=None, header_file=None, recursive=None, allow_empty=None): """returns a set of typedef declarations, that are matched defined criteria""" return ( self._find_multiple( self._impl_matchers[scopedef_t.typedef], name=name, function=function, decl_type=self._impl_decl_types[ scopedef_t.typedef], header_dir=header_dir, header_file=header_file, recursive=recursive, allow_empty=allow_empty) )
[ "def", "typedefs", "(", "self", ",", "name", "=", "None", ",", "function", "=", "None", ",", "header_dir", "=", "None", ",", "header_file", "=", "None", ",", "recursive", "=", "None", ",", "allow_empty", "=", "None", ")", ":", "return", "(", "self", ".", "_find_multiple", "(", "self", ".", "_impl_matchers", "[", "scopedef_t", ".", "typedef", "]", ",", "name", "=", "name", ",", "function", "=", "function", ",", "decl_type", "=", "self", ".", "_impl_decl_types", "[", "scopedef_t", ".", "typedef", "]", ",", "header_dir", "=", "header_dir", ",", "header_file", "=", "header_file", ",", "recursive", "=", "recursive", ",", "allow_empty", "=", "allow_empty", ")", ")" ]
[ 1186, 4 ]
[ 1207, 9 ]
python
en
['en', 'en', 'en']
True
scopedef_t.__getitem__
(self, name_or_function)
Allow simple name based find of declarations. Internally just calls `decls` method. :param name_or_function: Name of `decl` to lookup or finder function.
Allow simple name based find of declarations. Internally just calls `decls` method. :param name_or_function: Name of `decl` to lookup or finder function.
def __getitem__(self, name_or_function): """ Allow simple name based find of declarations. Internally just calls `decls` method. :param name_or_function: Name of `decl` to lookup or finder function. """ return self.decls(name_or_function)
[ "def", "__getitem__", "(", "self", ",", "name_or_function", ")", ":", "return", "self", ".", "decls", "(", "name_or_function", ")" ]
[ 1209, 4 ]
[ 1215, 43 ]
python
en
['en', 'error', 'th']
False
colored
(text, color=None, on_color=None, attrs=None)
Colorize text. Available text colors: red, green, yellow, blue, magenta, cyan, white. Available text highlights: on_red, on_green, on_yellow, on_blue, on_magenta, on_cyan, on_white. Available attributes: bold, dark, underline, blink, reverse, concealed. Example: colored('Hello, World!', 'red', 'on_grey', ['blue', 'blink']) colored('Hello, World!', 'green')
Colorize text.
def colored(text, color=None, on_color=None, attrs=None): """Colorize text. Available text colors: red, green, yellow, blue, magenta, cyan, white. Available text highlights: on_red, on_green, on_yellow, on_blue, on_magenta, on_cyan, on_white. Available attributes: bold, dark, underline, blink, reverse, concealed. Example: colored('Hello, World!', 'red', 'on_grey', ['blue', 'blink']) colored('Hello, World!', 'green') """ if os.getenv('ANSI_COLORS_DISABLED') is None: fmt_str = '\033[%dm%s' if color is not None: text = fmt_str % (COLORS[color], text) if on_color is not None: text = fmt_str % (HIGHLIGHTS[on_color], text) if attrs is not None: for attr in attrs: text = fmt_str % (ATTRIBUTES[attr], text) text += RESET return text
[ "def", "colored", "(", "text", ",", "color", "=", "None", ",", "on_color", "=", "None", ",", "attrs", "=", "None", ")", ":", "if", "os", ".", "getenv", "(", "'ANSI_COLORS_DISABLED'", ")", "is", "None", ":", "fmt_str", "=", "'\\033[%dm%s'", "if", "color", "is", "not", "None", ":", "text", "=", "fmt_str", "%", "(", "COLORS", "[", "color", "]", ",", "text", ")", "if", "on_color", "is", "not", "None", ":", "text", "=", "fmt_str", "%", "(", "HIGHLIGHTS", "[", "on_color", "]", ",", "text", ")", "if", "attrs", "is", "not", "None", ":", "for", "attr", "in", "attrs", ":", "text", "=", "fmt_str", "%", "(", "ATTRIBUTES", "[", "attr", "]", ",", "text", ")", "text", "+=", "RESET", "return", "text" ]
[ 85, 0 ]
[ 114, 15 ]
python
en
['en', 'fr', 'en']
False
cprint
(text, color=None, on_color=None, attrs=None, **kwargs)
Print colorize text. It accepts arguments of print function.
Print colorize text.
def cprint(text, color=None, on_color=None, attrs=None, **kwargs): """Print colorize text. It accepts arguments of print function. """ print((colored(text, color, on_color, attrs)), **kwargs)
[ "def", "cprint", "(", "text", ",", "color", "=", "None", ",", "on_color", "=", "None", ",", "attrs", "=", "None", ",", "*", "*", "kwargs", ")", ":", "print", "(", "(", "colored", "(", "text", ",", "color", ",", "on_color", ",", "attrs", ")", ")", ",", "*", "*", "kwargs", ")" ]
[ 117, 0 ]
[ 123, 60 ]
python
en
['en', 'fr', 'it']
False
smart_pointer_traits.is_smart_pointer
(type_)
returns True, if type represents instantiation of `boost::shared_ptr` or `std::shared_ptr`, False otherwise
returns True, if type represents instantiation of `boost::shared_ptr` or `std::shared_ptr`, False otherwise
def is_smart_pointer(type_): """returns True, if type represents instantiation of `boost::shared_ptr` or `std::shared_ptr`, False otherwise""" type_ = type_traits.remove_alias(type_) type_ = type_traits.remove_cv(type_) type_ = type_traits.remove_declarated(type_) if not isinstance(type_, (class_declaration.class_declaration_t, class_declaration.class_t)): return False if not ( traits_impl_details.impl_details.is_defined_in_xxx( 'boost', type_) or traits_impl_details.impl_details.is_defined_in_xxx( 'std', type_)): return False return type_.decl_string.startswith('::boost::shared_ptr<') or \ type_.decl_string.startswith('::std::shared_ptr<')
[ "def", "is_smart_pointer", "(", "type_", ")", ":", "type_", "=", "type_traits", ".", "remove_alias", "(", "type_", ")", "type_", "=", "type_traits", ".", "remove_cv", "(", "type_", ")", "type_", "=", "type_traits", ".", "remove_declarated", "(", "type_", ")", "if", "not", "isinstance", "(", "type_", ",", "(", "class_declaration", ".", "class_declaration_t", ",", "class_declaration", ".", "class_t", ")", ")", ":", "return", "False", "if", "not", "(", "traits_impl_details", ".", "impl_details", ".", "is_defined_in_xxx", "(", "'boost'", ",", "type_", ")", "or", "traits_impl_details", ".", "impl_details", ".", "is_defined_in_xxx", "(", "'std'", ",", "type_", ")", ")", ":", "return", "False", "return", "type_", ".", "decl_string", ".", "startswith", "(", "'::boost::shared_ptr<'", ")", "or", "type_", ".", "decl_string", ".", "startswith", "(", "'::std::shared_ptr<'", ")" ]
[ 46, 4 ]
[ 63, 62 ]
python
en
['en', 'nl', 'en']
True
smart_pointer_traits.value_type
(type_)
returns reference to `boost::shared_ptr` \ or `std::shared_ptr` value type
returns reference to `boost::shared_ptr` \ or `std::shared_ptr` value type
def value_type(type_): """returns reference to `boost::shared_ptr` \ or `std::shared_ptr` value type""" if not smart_pointer_traits.is_smart_pointer(type_): raise TypeError( 'Type "%s" is not an instantiation of \ boost::shared_ptr or std::shared_ptr' % type_.decl_string) return internal_type_traits.get_by_name(type_, "value_type")
[ "def", "value_type", "(", "type_", ")", ":", "if", "not", "smart_pointer_traits", ".", "is_smart_pointer", "(", "type_", ")", ":", "raise", "TypeError", "(", "'Type \"%s\" is not an instantiation of \\\n boost::shared_ptr or std::shared_ptr'", "%", "type_", ".", "decl_string", ")", "return", "internal_type_traits", ".", "get_by_name", "(", "type_", ",", "\"value_type\"", ")" ]
[ 66, 4 ]
[ 74, 68 ]
python
en
['en', 'en', 'en']
True
auto_ptr_traits.is_smart_pointer
(type_)
returns True, if type represents instantiation of `boost::shared_ptr`, False otherwise
returns True, if type represents instantiation of `boost::shared_ptr`, False otherwise
def is_smart_pointer(type_): """returns True, if type represents instantiation of `boost::shared_ptr`, False otherwise""" type_ = type_traits.remove_alias(type_) type_ = type_traits.remove_cv(type_) type_ = type_traits.remove_declarated(type_) if not isinstance(type_, (class_declaration.class_declaration_t, class_declaration.class_t)): return False if not traits_impl_details.impl_details.is_defined_in_xxx( 'std', type_): return False return type_.decl_string.startswith('::std::auto_ptr<')
[ "def", "is_smart_pointer", "(", "type_", ")", ":", "type_", "=", "type_traits", ".", "remove_alias", "(", "type_", ")", "type_", "=", "type_traits", ".", "remove_cv", "(", "type_", ")", "type_", "=", "type_traits", ".", "remove_declarated", "(", "type_", ")", "if", "not", "isinstance", "(", "type_", ",", "(", "class_declaration", ".", "class_declaration_t", ",", "class_declaration", ".", "class_t", ")", ")", ":", "return", "False", "if", "not", "traits_impl_details", ".", "impl_details", ".", "is_defined_in_xxx", "(", "'std'", ",", "type_", ")", ":", "return", "False", "return", "type_", ".", "decl_string", ".", "startswith", "(", "'::std::auto_ptr<'", ")" ]
[ 83, 4 ]
[ 96, 63 ]
python
en
['en', 'nl', 'en']
True
auto_ptr_traits.value_type
(type_)
returns reference to `boost::shared_ptr` value type
returns reference to `boost::shared_ptr` value type
def value_type(type_): """returns reference to `boost::shared_ptr` value type""" if not auto_ptr_traits.is_smart_pointer(type_): raise TypeError( 'Type "%s" is not instantiation of std::auto_ptr' % type_.decl_string) return internal_type_traits.get_by_name(type_, "element_type")
[ "def", "value_type", "(", "type_", ")", ":", "if", "not", "auto_ptr_traits", ".", "is_smart_pointer", "(", "type_", ")", ":", "raise", "TypeError", "(", "'Type \"%s\" is not instantiation of std::auto_ptr'", "%", "type_", ".", "decl_string", ")", "return", "internal_type_traits", ".", "get_by_name", "(", "type_", ",", "\"element_type\"", ")" ]
[ 99, 4 ]
[ 105, 70 ]
python
en
['en', 'en', 'en']
True
TeamCityReporter.report_message_type
(self, msg)
Issues an `inspectionType` service message to define generic properties of a given PyLint message type. :param utils.Message msg: a PyLint message
Issues an `inspectionType` service message to define generic properties of a given PyLint message type. :param utils.Message msg: a PyLint message
def report_message_type(self, msg): """Issues an `inspectionType` service message to define generic properties of a given PyLint message type. :param utils.Message msg: a PyLint message """ desc = get_message_description(self.linter, msg.msg_id) self.tc.message('inspectionType', id=msg.msg_id, name=msg.symbol, description=desc if desc else msg.symbol, category=msg.category)
[ "def", "report_message_type", "(", "self", ",", "msg", ")", ":", "desc", "=", "get_message_description", "(", "self", ".", "linter", ",", "msg", ".", "msg_id", ")", "self", ".", "tc", ".", "message", "(", "'inspectionType'", ",", "id", "=", "msg", ".", "msg_id", ",", "name", "=", "msg", ".", "symbol", ",", "description", "=", "desc", "if", "desc", "else", "msg", ".", "symbol", ",", "category", "=", "msg", ".", "category", ")" ]
[ 61, 4 ]
[ 66, 138 ]
python
en
['en', 'en', 'en']
True
TeamCityReporter.handle_message
(self, msg)
Issues an `inspection` service message based on a PyLint message. Registers each message type upon first encounter. :param utils.Message msg: a PyLint message
Issues an `inspection` service message based on a PyLint message. Registers each message type upon first encounter.
def handle_message(self, msg): """Issues an `inspection` service message based on a PyLint message. Registers each message type upon first encounter. :param utils.Message msg: a PyLint message """ if msg.msg_id not in self.msg_types: self.report_message_type(msg) self.msg_types.add(msg.msg_id) self.tc.message('inspection', typeId=msg.msg_id, message=msg.msg, file=os.path.relpath(msg.abspath).replace('\\', '/'), line=str(msg.line), SEVERITY=TC_SEVERITY.get(msg.category))
[ "def", "handle_message", "(", "self", ",", "msg", ")", ":", "if", "msg", ".", "msg_id", "not", "in", "self", ".", "msg_types", ":", "self", ".", "report_message_type", "(", "msg", ")", "self", ".", "msg_types", ".", "add", "(", "msg", ".", "msg_id", ")", "self", ".", "tc", ".", "message", "(", "'inspection'", ",", "typeId", "=", "msg", ".", "msg_id", ",", "message", "=", "msg", ".", "msg", ",", "file", "=", "os", ".", "path", ".", "relpath", "(", "msg", ".", "abspath", ")", ".", "replace", "(", "'\\\\'", ",", "'/'", ")", ",", "line", "=", "str", "(", "msg", ".", "line", ")", ",", "SEVERITY", "=", "TC_SEVERITY", ".", "get", "(", "msg", ".", "category", ")", ")" ]
[ 68, 4 ]
[ 81, 63 ]
python
en
['en', 'en', 'en']
True
TeamCityReporter.display_reports
(self, layout)
Issues the final PyLint score as a TeamCity build statistic value
Issues the final PyLint score as a TeamCity build statistic value
def display_reports(self, layout): """Issues the final PyLint score as a TeamCity build statistic value""" try: score = self.linter.stats['global_note'] except (AttributeError, KeyError): pass else: self.tc.message('buildStatisticValue', key='PyLintScore', value=str(score))
[ "def", "display_reports", "(", "self", ",", "layout", ")", ":", "try", ":", "score", "=", "self", ".", "linter", ".", "stats", "[", "'global_note'", "]", "except", "(", "AttributeError", ",", "KeyError", ")", ":", "pass", "else", ":", "self", ".", "tc", ".", "message", "(", "'buildStatisticValue'", ",", "key", "=", "'PyLintScore'", ",", "value", "=", "str", "(", "score", ")", ")" ]
[ 83, 4 ]
[ 90, 87 ]
python
en
['en', 'en', 'en']
True
unique_proportion
(_metrics)
Computes the proportion of unique non-null values out of all non-null values
Computes the proportion of unique non-null values out of all non-null values
def unique_proportion(_metrics): """Computes the proportion of unique non-null values out of all non-null values""" total_values = _metrics.get("table.row_count") unique_values = _metrics.get("column.distinct_values.count") null_count = _metrics.get("column_values.nonnull.unexpected_count") # Ensuring that we do not divide by 0, returning 0 if all values are nulls (we only consider non-nulls unique values) if total_values > 0 and total_values != null_count: return unique_values / (total_values - null_count) else: return 0
[ "def", "unique_proportion", "(", "_metrics", ")", ":", "total_values", "=", "_metrics", ".", "get", "(", "\"table.row_count\"", ")", "unique_values", "=", "_metrics", ".", "get", "(", "\"column.distinct_values.count\"", ")", "null_count", "=", "_metrics", ".", "get", "(", "\"column_values.nonnull.unexpected_count\"", ")", "# Ensuring that we do not divide by 0, returning 0 if all values are nulls (we only consider non-nulls unique values)", "if", "total_values", ">", "0", "and", "total_values", "!=", "null_count", ":", "return", "unique_values", "/", "(", "total_values", "-", "null_count", ")", "else", ":", "return", "0" ]
[ 22, 0 ]
[ 32, 16 ]
python
en
['en', 'en', 'en']
True
test_query_store_store_backend_id
(basic_sqlalchemy_query_store)
What does this test and why? A Store should be able to report it's store_backend_id which is set when the StoreBackend is instantiated.
What does this test and why? A Store should be able to report it's store_backend_id which is set when the StoreBackend is instantiated.
def test_query_store_store_backend_id(basic_sqlalchemy_query_store): """ What does this test and why? A Store should be able to report it's store_backend_id which is set when the StoreBackend is instantiated. """ # Check that store_backend_id exists can be read assert basic_sqlalchemy_query_store.store_backend_id is not None # Check that store_backend_id is a valid UUID assert test_utils.validate_uuid4(basic_sqlalchemy_query_store.store_backend_id)
[ "def", "test_query_store_store_backend_id", "(", "basic_sqlalchemy_query_store", ")", ":", "# Check that store_backend_id exists can be read", "assert", "basic_sqlalchemy_query_store", ".", "store_backend_id", "is", "not", "None", "# Check that store_backend_id is a valid UUID", "assert", "test_utils", ".", "validate_uuid4", "(", "basic_sqlalchemy_query_store", ".", "store_backend_id", ")" ]
[ 61, 0 ]
[ 70, 83 ]
python
en
['en', 'error', 'th']
False
MetricParameterBuilder.__init__
( self, parameter_name: str, metric_name: str, metric_domain_kwargs: Optional[Union[str, dict]] = None, metric_value_kwargs: Optional[Union[str, dict]] = None, enforce_numeric_metric: Optional[Union[str, bool]] = False, replace_nan_with_zero: Optional[Union[str, bool]] = False, data_context: Optional[DataContext] = None, batch_request: Optional[Union[dict, str]] = None, )
Args: parameter_name: the name of this parameter -- this is user-specified parameter name (from configuration); it is not the fully-qualified parameter name; a fully-qualified parameter name must start with "$parameter." and may contain one or more subsequent parts (e.g., "$parameter.<my_param_from_config>.<metric_name>"). metric_name: the name of a metric used in MetricConfiguration (must be a supported and registered metric) metric_domain_kwargs: used in MetricConfiguration metric_value_kwargs: used in MetricConfiguration enforce_numeric_metric: used in MetricConfiguration to insure that metric computations return numeric values replace_nan_with_zero: if False (default), then if the computed metric gives NaN, then exception is raised; otherwise, if True, then if the computed metric gives NaN, then it is converted to the 0.0 (float) value. data_context: DataContext batch_request: specified in ParameterBuilder configuration to get Batch objects for parameter computation.
Args: parameter_name: the name of this parameter -- this is user-specified parameter name (from configuration); it is not the fully-qualified parameter name; a fully-qualified parameter name must start with "$parameter." and may contain one or more subsequent parts (e.g., "$parameter.<my_param_from_config>.<metric_name>"). metric_name: the name of a metric used in MetricConfiguration (must be a supported and registered metric) metric_domain_kwargs: used in MetricConfiguration metric_value_kwargs: used in MetricConfiguration enforce_numeric_metric: used in MetricConfiguration to insure that metric computations return numeric values replace_nan_with_zero: if False (default), then if the computed metric gives NaN, then exception is raised; otherwise, if True, then if the computed metric gives NaN, then it is converted to the 0.0 (float) value. data_context: DataContext batch_request: specified in ParameterBuilder configuration to get Batch objects for parameter computation.
def __init__( self, parameter_name: str, metric_name: str, metric_domain_kwargs: Optional[Union[str, dict]] = None, metric_value_kwargs: Optional[Union[str, dict]] = None, enforce_numeric_metric: Optional[Union[str, bool]] = False, replace_nan_with_zero: Optional[Union[str, bool]] = False, data_context: Optional[DataContext] = None, batch_request: Optional[Union[dict, str]] = None, ): """ Args: parameter_name: the name of this parameter -- this is user-specified parameter name (from configuration); it is not the fully-qualified parameter name; a fully-qualified parameter name must start with "$parameter." and may contain one or more subsequent parts (e.g., "$parameter.<my_param_from_config>.<metric_name>"). metric_name: the name of a metric used in MetricConfiguration (must be a supported and registered metric) metric_domain_kwargs: used in MetricConfiguration metric_value_kwargs: used in MetricConfiguration enforce_numeric_metric: used in MetricConfiguration to insure that metric computations return numeric values replace_nan_with_zero: if False (default), then if the computed metric gives NaN, then exception is raised; otherwise, if True, then if the computed metric gives NaN, then it is converted to the 0.0 (float) value. data_context: DataContext batch_request: specified in ParameterBuilder configuration to get Batch objects for parameter computation. """ super().__init__( parameter_name=parameter_name, data_context=data_context, batch_request=batch_request, ) self._metric_name = metric_name self._metric_domain_kwargs = metric_domain_kwargs self._metric_value_kwargs = metric_value_kwargs self._enforce_numeric_metric = enforce_numeric_metric self._replace_nan_with_zero = replace_nan_with_zero
[ "def", "__init__", "(", "self", ",", "parameter_name", ":", "str", ",", "metric_name", ":", "str", ",", "metric_domain_kwargs", ":", "Optional", "[", "Union", "[", "str", ",", "dict", "]", "]", "=", "None", ",", "metric_value_kwargs", ":", "Optional", "[", "Union", "[", "str", ",", "dict", "]", "]", "=", "None", ",", "enforce_numeric_metric", ":", "Optional", "[", "Union", "[", "str", ",", "bool", "]", "]", "=", "False", ",", "replace_nan_with_zero", ":", "Optional", "[", "Union", "[", "str", ",", "bool", "]", "]", "=", "False", ",", "data_context", ":", "Optional", "[", "DataContext", "]", "=", "None", ",", "batch_request", ":", "Optional", "[", "Union", "[", "dict", ",", "str", "]", "]", "=", "None", ",", ")", ":", "super", "(", ")", ".", "__init__", "(", "parameter_name", "=", "parameter_name", ",", "data_context", "=", "data_context", ",", "batch_request", "=", "batch_request", ",", ")", "self", ".", "_metric_name", "=", "metric_name", "self", ".", "_metric_domain_kwargs", "=", "metric_domain_kwargs", "self", ".", "_metric_value_kwargs", "=", "metric_value_kwargs", "self", ".", "_enforce_numeric_metric", "=", "enforce_numeric_metric", "self", ".", "_replace_nan_with_zero", "=", "replace_nan_with_zero" ]
[ 19, 4 ]
[ 55, 59 ]
python
en
['en', 'error', 'th']
False
MetricParameterBuilder._build_parameters
( self, parameter_container: ParameterContainer, domain: Domain, *, variables: Optional[ParameterContainer] = None, parameters: Optional[Dict[str, ParameterContainer]] = None, )
Builds ParameterContainer object that holds ParameterNode objects with attribute name-value pairs and optional details. Args: :return: a ParameterContainer object that holds ParameterNode objects with attribute name-value pairs and optional details
Builds ParameterContainer object that holds ParameterNode objects with attribute name-value pairs and optional details. Args: :return: a ParameterContainer object that holds ParameterNode objects with attribute name-value pairs and optional details
def _build_parameters( self, parameter_container: ParameterContainer, domain: Domain, *, variables: Optional[ParameterContainer] = None, parameters: Optional[Dict[str, ParameterContainer]] = None, ): """ Builds ParameterContainer object that holds ParameterNode objects with attribute name-value pairs and optional details. Args: :return: a ParameterContainer object that holds ParameterNode objects with attribute name-value pairs and optional details """ validator: Validator = self.get_validator( domain=domain, variables=variables, parameters=parameters, ) batch_id: str = self.get_batch_id(variables=variables) metric_computation_result: Dict[ str, Union[Any, Number, Dict[str, Any]] ] = self.get_metric( batch_id=batch_id, validator=validator, metric_name=self._metric_name, metric_domain_kwargs=self._metric_domain_kwargs, metric_value_kwargs=self._metric_value_kwargs, enforce_numeric_metric=self._enforce_numeric_metric, replace_nan_with_zero=self._replace_nan_with_zero, domain=domain, variables=variables, parameters=parameters, ) parameter_values: Dict[str, Any] = { f"$parameter.{self.parameter_name}": metric_computation_result, } build_parameter_container( parameter_container=parameter_container, parameter_values=parameter_values )
[ "def", "_build_parameters", "(", "self", ",", "parameter_container", ":", "ParameterContainer", ",", "domain", ":", "Domain", ",", "*", ",", "variables", ":", "Optional", "[", "ParameterContainer", "]", "=", "None", ",", "parameters", ":", "Optional", "[", "Dict", "[", "str", ",", "ParameterContainer", "]", "]", "=", "None", ",", ")", ":", "validator", ":", "Validator", "=", "self", ".", "get_validator", "(", "domain", "=", "domain", ",", "variables", "=", "variables", ",", "parameters", "=", "parameters", ",", ")", "batch_id", ":", "str", "=", "self", ".", "get_batch_id", "(", "variables", "=", "variables", ")", "metric_computation_result", ":", "Dict", "[", "str", ",", "Union", "[", "Any", ",", "Number", ",", "Dict", "[", "str", ",", "Any", "]", "]", "]", "=", "self", ".", "get_metric", "(", "batch_id", "=", "batch_id", ",", "validator", "=", "validator", ",", "metric_name", "=", "self", ".", "_metric_name", ",", "metric_domain_kwargs", "=", "self", ".", "_metric_domain_kwargs", ",", "metric_value_kwargs", "=", "self", ".", "_metric_value_kwargs", ",", "enforce_numeric_metric", "=", "self", ".", "_enforce_numeric_metric", ",", "replace_nan_with_zero", "=", "self", ".", "_replace_nan_with_zero", ",", "domain", "=", "domain", ",", "variables", "=", "variables", ",", "parameters", "=", "parameters", ",", ")", "parameter_values", ":", "Dict", "[", "str", ",", "Any", "]", "=", "{", "f\"$parameter.{self.parameter_name}\"", ":", "metric_computation_result", ",", "}", "build_parameter_container", "(", "parameter_container", "=", "parameter_container", ",", "parameter_values", "=", "parameter_values", ")" ]
[ 57, 4 ]
[ 99, 9 ]
python
en
['en', 'error', 'th']
False
ExpectColumnValueZScoresToBeLessThan.validate_configuration
(self, configuration: Optional[ExpectationConfiguration])
Validates that a configuration has been set, and sets a configuration if it has yet to be set. Ensures that necessary configuration arguments have been provided for the validation of the expectation. Args: configuration (OPTIONAL[ExpectationConfiguration]): \ An optional Expectation Configuration entry that will be used to configure the expectation Returns: True if the configuration has been validated successfully. Otherwise, raises an exception
Validates that a configuration has been set, and sets a configuration if it has yet to be set. Ensures that necessary configuration arguments have been provided for the validation of the expectation.
def validate_configuration(self, configuration: Optional[ExpectationConfiguration]): """ Validates that a configuration has been set, and sets a configuration if it has yet to be set. Ensures that necessary configuration arguments have been provided for the validation of the expectation. Args: configuration (OPTIONAL[ExpectationConfiguration]): \ An optional Expectation Configuration entry that will be used to configure the expectation Returns: True if the configuration has been validated successfully. Otherwise, raises an exception """ # Setting up a configuration super().validate_configuration(configuration) if configuration is None: configuration = self.configuration try: # Ensuring Z-score Threshold metric has been properly provided assert ( "threshold" in configuration.kwargs ), "A Z-score threshold must be provided" assert isinstance( configuration.kwargs["threshold"], (float, int, dict) ), "Provided threshold must be a number" if isinstance(configuration.kwargs["threshold"], dict): assert ( "$PARAMETER" in configuration.kwargs["threshold"] ), 'Evaluation Parameter dict for threshold kwarg must have "$PARAMETER" key.' assert isinstance( configuration.kwargs["double_sided"], (bool, dict) ), "Double sided parameter must be a boolean value" if isinstance(configuration.kwargs["double_sided"], dict): assert ( "$PARAMETER" in configuration.kwargs["double_sided"] ), 'Evaluation Parameter dict for double_sided kwarg must have "$PARAMETER" key.' except AssertionError as e: raise InvalidExpectationConfigurationError(str(e)) return True
[ "def", "validate_configuration", "(", "self", ",", "configuration", ":", "Optional", "[", "ExpectationConfiguration", "]", ")", ":", "# Setting up a configuration", "super", "(", ")", ".", "validate_configuration", "(", "configuration", ")", "if", "configuration", "is", "None", ":", "configuration", "=", "self", ".", "configuration", "try", ":", "# Ensuring Z-score Threshold metric has been properly provided", "assert", "(", "\"threshold\"", "in", "configuration", ".", "kwargs", ")", ",", "\"A Z-score threshold must be provided\"", "assert", "isinstance", "(", "configuration", ".", "kwargs", "[", "\"threshold\"", "]", ",", "(", "float", ",", "int", ",", "dict", ")", ")", ",", "\"Provided threshold must be a number\"", "if", "isinstance", "(", "configuration", ".", "kwargs", "[", "\"threshold\"", "]", ",", "dict", ")", ":", "assert", "(", "\"$PARAMETER\"", "in", "configuration", ".", "kwargs", "[", "\"threshold\"", "]", ")", ",", "'Evaluation Parameter dict for threshold kwarg must have \"$PARAMETER\" key.'", "assert", "isinstance", "(", "configuration", ".", "kwargs", "[", "\"double_sided\"", "]", ",", "(", "bool", ",", "dict", ")", ")", ",", "\"Double sided parameter must be a boolean value\"", "if", "isinstance", "(", "configuration", ".", "kwargs", "[", "\"double_sided\"", "]", ",", "dict", ")", ":", "assert", "(", "\"$PARAMETER\"", "in", "configuration", ".", "kwargs", "[", "\"double_sided\"", "]", ")", ",", "'Evaluation Parameter dict for double_sided kwarg must have \"$PARAMETER\" key.'", "except", "AssertionError", "as", "e", ":", "raise", "InvalidExpectationConfigurationError", "(", "str", "(", "e", ")", ")", "return", "True" ]
[ 83, 4 ]
[ 121, 19 ]
python
en
['en', 'error', 'th']
False
test_cli_datasource_list
(empty_data_context, empty_sqlite_db, caplog)
Test an empty project and after adding a single datasource.
Test an empty project and after adding a single datasource.
def test_cli_datasource_list(empty_data_context, empty_sqlite_db, caplog): """Test an empty project and after adding a single datasource.""" project_root_dir = empty_data_context.root_directory context = DataContext(project_root_dir) runner = CliRunner(mix_stderr=False) result = runner.invoke( cli, ["datasource", "list", "-d", project_root_dir], catch_exceptions=False ) stdout = result.stdout.strip() assert "No Datasources found" in stdout assert context.list_datasources() == [] datasource_name = "wow_a_datasource" _add_datasource_and_credentials_to_context( context, datasource_name, empty_sqlite_db ) runner = CliRunner(mix_stderr=False) result = runner.invoke( cli, ["datasource", "list", "-d", project_root_dir], catch_exceptions=False ) url = str(empty_sqlite_db.engine.url) expected_output = """\ 1 Datasource found:  - name: wow_a_datasource module_name: great_expectations.datasource class_name: SqlAlchemyDatasource batch_kwargs_generators: default: class_name: TableBatchKwargsGenerator credentials: url: {} data_asset_type: class_name: SqlAlchemyDataset module_name: None """.format( url ).strip() stdout = result.stdout.strip() assert stdout == expected_output assert_no_logging_messages_or_tracebacks(caplog, result)
[ "def", "test_cli_datasource_list", "(", "empty_data_context", ",", "empty_sqlite_db", ",", "caplog", ")", ":", "project_root_dir", "=", "empty_data_context", ".", "root_directory", "context", "=", "DataContext", "(", "project_root_dir", ")", "runner", "=", "CliRunner", "(", "mix_stderr", "=", "False", ")", "result", "=", "runner", ".", "invoke", "(", "cli", ",", "[", "\"datasource\"", ",", "\"list\"", ",", "\"-d\"", ",", "project_root_dir", "]", ",", "catch_exceptions", "=", "False", ")", "stdout", "=", "result", ".", "stdout", ".", "strip", "(", ")", "assert", "\"No Datasources found\"", "in", "stdout", "assert", "context", ".", "list_datasources", "(", ")", "==", "[", "]", "datasource_name", "=", "\"wow_a_datasource\"", "_add_datasource_and_credentials_to_context", "(", "context", ",", "datasource_name", ",", "empty_sqlite_db", ")", "runner", "=", "CliRunner", "(", "mix_stderr", "=", "False", ")", "result", "=", "runner", ".", "invoke", "(", "cli", ",", "[", "\"datasource\"", ",", "\"list\"", ",", "\"-d\"", ",", "project_root_dir", "]", ",", "catch_exceptions", "=", "False", ")", "url", "=", "str", "(", "empty_sqlite_db", ".", "engine", ".", "url", ")", "expected_output", "=", "\"\"\"\\\n1 Datasource found:\u001b[0m\n\u001b[0m\n - \u001b[36mname:\u001b[0m wow_a_datasource\u001b[0m\n \u001b[36mmodule_name:\u001b[0m great_expectations.datasource\u001b[0m\n \u001b[36mclass_name:\u001b[0m SqlAlchemyDatasource\u001b[0m\n \u001b[36mbatch_kwargs_generators:\u001b[0m\u001b[0m\n \u001b[36mdefault:\u001b[0m\u001b[0m\n \u001b[36mclass_name:\u001b[0m TableBatchKwargsGenerator\u001b[0m\n \u001b[36mcredentials:\u001b[0m\u001b[0m\n \u001b[36murl:\u001b[0m {}\u001b[0m\n \u001b[36mdata_asset_type:\u001b[0m\u001b[0m\n \u001b[36mclass_name:\u001b[0m SqlAlchemyDataset\u001b[0m\n \u001b[36mmodule_name:\u001b[0m None\u001b[0m\n\"\"\"", ".", "format", "(", "url", ")", ".", "strip", "(", ")", "stdout", "=", "result", ".", "stdout", ".", "strip", "(", ")", "assert", "stdout", "==", "expected_output", "assert_no_logging_messages_or_tracebacks", "(", "caplog", ",", "result", ")" ]
[ 15, 0 ]
[ 60, 60 ]
python
en
['en', 'en', 'en']
True
test_cli_datasource_profile_answering_no
( empty_data_context, titanic_sqlite_db, caplog )
When datasource profile command is called without additional arguments, the command must prompt the user with a confirm (y/n) before profiling. We are verifying that it does that and respects user's "no".
When datasource profile command is called without additional arguments, the command must prompt the user with a confirm (y/n) before profiling. We are verifying that it does that and respects user's "no".
def test_cli_datasource_profile_answering_no( empty_data_context, titanic_sqlite_db, caplog ): """ When datasource profile command is called without additional arguments, the command must prompt the user with a confirm (y/n) before profiling. We are verifying that it does that and respects user's "no". """ project_root_dir = empty_data_context.root_directory context = DataContext(project_root_dir) datasource_name = "wow_a_datasource" context = _add_datasource_and_credentials_to_context( context, datasource_name, titanic_sqlite_db ) runner = CliRunner(mix_stderr=False) result = runner.invoke( cli, ["datasource", "profile", datasource_name, "-d", project_root_dir, "--no-view"], input="n\n", catch_exceptions=False, ) stdout = result.output assert result.exit_code == 0 assert "Profiling 'wow_a_datasource'" in stdout assert "Skipping profiling for now." in stdout assert_no_logging_messages_or_tracebacks(caplog, result)
[ "def", "test_cli_datasource_profile_answering_no", "(", "empty_data_context", ",", "titanic_sqlite_db", ",", "caplog", ")", ":", "project_root_dir", "=", "empty_data_context", ".", "root_directory", "context", "=", "DataContext", "(", "project_root_dir", ")", "datasource_name", "=", "\"wow_a_datasource\"", "context", "=", "_add_datasource_and_credentials_to_context", "(", "context", ",", "datasource_name", ",", "titanic_sqlite_db", ")", "runner", "=", "CliRunner", "(", "mix_stderr", "=", "False", ")", "result", "=", "runner", ".", "invoke", "(", "cli", ",", "[", "\"datasource\"", ",", "\"profile\"", ",", "datasource_name", ",", "\"-d\"", ",", "project_root_dir", ",", "\"--no-view\"", "]", ",", "input", "=", "\"n\\n\"", ",", "catch_exceptions", "=", "False", ",", ")", "stdout", "=", "result", ".", "output", "assert", "result", ".", "exit_code", "==", "0", "assert", "\"Profiling 'wow_a_datasource'\"", "in", "stdout", "assert", "\"Skipping profiling for now.\"", "in", "stdout", "assert_no_logging_messages_or_tracebacks", "(", "caplog", ",", "result", ")" ]
[ 195, 0 ]
[ 223, 60 ]
python
en
['en', 'error', 'th']
False
test_cli_datasource_profile_on_empty_database
( empty_data_context, empty_sqlite_db, caplog )
We run the datasource profile command against an empty database (no tables). This means that no generator can "see" a list of available data assets. The command must exit with an error message saying that no generator can see any assets.
We run the datasource profile command against an empty database (no tables). This means that no generator can "see" a list of available data assets. The command must exit with an error message saying that no generator can see any assets.
def test_cli_datasource_profile_on_empty_database( empty_data_context, empty_sqlite_db, caplog ): """ We run the datasource profile command against an empty database (no tables). This means that no generator can "see" a list of available data assets. The command must exit with an error message saying that no generator can see any assets. """ project_root_dir = empty_data_context.root_directory context = DataContext(project_root_dir) datasource_name = "wow_a_datasource" context = _add_datasource_and_credentials_to_context( context, datasource_name, empty_sqlite_db ) runner = CliRunner(mix_stderr=False) result = runner.invoke( cli, ["datasource", "profile", datasource_name, "-d", project_root_dir, "--no-view"], input="n\n", catch_exceptions=False, ) stdout = result.output assert result.exit_code == 1 assert "Profiling 'wow_a_datasource'" in stdout assert "No batch kwargs generators can list available data assets" in stdout assert_no_logging_messages_or_tracebacks(caplog, result)
[ "def", "test_cli_datasource_profile_on_empty_database", "(", "empty_data_context", ",", "empty_sqlite_db", ",", "caplog", ")", ":", "project_root_dir", "=", "empty_data_context", ".", "root_directory", "context", "=", "DataContext", "(", "project_root_dir", ")", "datasource_name", "=", "\"wow_a_datasource\"", "context", "=", "_add_datasource_and_credentials_to_context", "(", "context", ",", "datasource_name", ",", "empty_sqlite_db", ")", "runner", "=", "CliRunner", "(", "mix_stderr", "=", "False", ")", "result", "=", "runner", ".", "invoke", "(", "cli", ",", "[", "\"datasource\"", ",", "\"profile\"", ",", "datasource_name", ",", "\"-d\"", ",", "project_root_dir", ",", "\"--no-view\"", "]", ",", "input", "=", "\"n\\n\"", ",", "catch_exceptions", "=", "False", ",", ")", "stdout", "=", "result", ".", "output", "assert", "result", ".", "exit_code", "==", "1", "assert", "\"Profiling 'wow_a_datasource'\"", "in", "stdout", "assert", "\"No batch kwargs generators can list available data assets\"", "in", "stdout", "assert_no_logging_messages_or_tracebacks", "(", "caplog", ",", "result", ")" ]
[ 226, 0 ]
[ 256, 60 ]
python
en
['en', 'error', 'th']
False
test_cli_datasource_profile_with_datasource_arg_and_generator_name_arg
( empty_data_context, titanic_sqlite_db, caplog )
Here we are verifying that when generator_name argument is passed to the methods down the stack. We use a datasource with two generators. This way we can check that the name of the expectation suite created by the profiler corresponds to the name of the data asset listed by the generator that we told the profiler to use. The logic of processing this argument is testing in tests/profile.
Here we are verifying that when generator_name argument is passed to the methods down the stack.
def test_cli_datasource_profile_with_datasource_arg_and_generator_name_arg( empty_data_context, titanic_sqlite_db, caplog ): """ Here we are verifying that when generator_name argument is passed to the methods down the stack. We use a datasource with two generators. This way we can check that the name of the expectation suite created by the profiler corresponds to the name of the data asset listed by the generator that we told the profiler to use. The logic of processing this argument is testing in tests/profile. """ project_root_dir = empty_data_context.root_directory context = DataContext(project_root_dir) datasource_name = "wow_a_datasource" context = _add_datasource__with_two_generators_and_credentials_to_context( context, datasource_name, titanic_sqlite_db ) second_generator_name = "second_generator" runner = CliRunner() result = runner.invoke( cli, [ "datasource", "profile", datasource_name, "--batch-kwargs-generator-name", second_generator_name, "-d", project_root_dir, "--no-view", ], input="Y\n", ) stdout = result.stdout assert result.exit_code == 0 assert "Profiling '{}'".format(datasource_name) in stdout context = DataContext(project_root_dir) assert len(context.list_datasources()) == 1 expectations_store = context.stores["expectations_store"] suites = expectations_store.list_keys() assert len(suites) == 1 assert ( suites[0].expectation_suite_name == "wow_a_datasource.second_generator.asset_one.BasicDatasetProfiler" ) assert "Preparing column 1 of 7" in caplog.messages[0] assert len(caplog.messages) == 10 assert_no_tracebacks(result)
[ "def", "test_cli_datasource_profile_with_datasource_arg_and_generator_name_arg", "(", "empty_data_context", ",", "titanic_sqlite_db", ",", "caplog", ")", ":", "project_root_dir", "=", "empty_data_context", ".", "root_directory", "context", "=", "DataContext", "(", "project_root_dir", ")", "datasource_name", "=", "\"wow_a_datasource\"", "context", "=", "_add_datasource__with_two_generators_and_credentials_to_context", "(", "context", ",", "datasource_name", ",", "titanic_sqlite_db", ")", "second_generator_name", "=", "\"second_generator\"", "runner", "=", "CliRunner", "(", ")", "result", "=", "runner", ".", "invoke", "(", "cli", ",", "[", "\"datasource\"", ",", "\"profile\"", ",", "datasource_name", ",", "\"--batch-kwargs-generator-name\"", ",", "second_generator_name", ",", "\"-d\"", ",", "project_root_dir", ",", "\"--no-view\"", ",", "]", ",", "input", "=", "\"Y\\n\"", ",", ")", "stdout", "=", "result", ".", "stdout", "assert", "result", ".", "exit_code", "==", "0", "assert", "\"Profiling '{}'\"", ".", "format", "(", "datasource_name", ")", "in", "stdout", "context", "=", "DataContext", "(", "project_root_dir", ")", "assert", "len", "(", "context", ".", "list_datasources", "(", ")", ")", "==", "1", "expectations_store", "=", "context", ".", "stores", "[", "\"expectations_store\"", "]", "suites", "=", "expectations_store", ".", "list_keys", "(", ")", "assert", "len", "(", "suites", ")", "==", "1", "assert", "(", "suites", "[", "0", "]", ".", "expectation_suite_name", "==", "\"wow_a_datasource.second_generator.asset_one.BasicDatasetProfiler\"", ")", "assert", "\"Preparing column 1 of 7\"", "in", "caplog", ".", "messages", "[", "0", "]", "assert", "len", "(", "caplog", ".", "messages", ")", "==", "10", "assert_no_tracebacks", "(", "result", ")" ]
[ 316, 0 ]
[ 372, 32 ]
python
en
['en', 'error', 'th']
False
test_cli_datasource_profile_with_data_asset_and_additional_batch_kwargs_with_limit
( empty_data_context, titanic_sqlite_db, caplog )
User can pass additional batch kwargs (e.g., limit) to a sql backend. Here we are verifying that passing "limit" affects the query correctly - the row count in the batch that the profiler uses to profile the data asset must match the limit passed by the user.
User can pass additional batch kwargs (e.g., limit) to a sql backend. Here we are verifying that passing "limit" affects the query correctly - the row count in the batch that the profiler uses to profile the data asset must match the limit passed by the user.
def test_cli_datasource_profile_with_data_asset_and_additional_batch_kwargs_with_limit( empty_data_context, titanic_sqlite_db, caplog ): """ User can pass additional batch kwargs (e.g., limit) to a sql backend. Here we are verifying that passing "limit" affects the query correctly - the row count in the batch that the profiler uses to profile the data asset must match the limit passed by the user. """ project_root_dir = empty_data_context.root_directory context = DataContext(project_root_dir) datasource_name = "wow_a_datasource" context = _add_datasource_and_credentials_to_context( context, datasource_name, titanic_sqlite_db ) res = context.get_available_data_asset_names("wow_a_datasource") runner = CliRunner(mix_stderr=False) result = runner.invoke( cli, [ "datasource", "profile", "-d", project_root_dir, "--data-assets", "main.titanic", "--additional-batch-kwargs", '{"limit": 97}', "--no-view", ], input="Y\n", catch_exceptions=False, ) stdout = result.stdout assert result.exit_code == 0 assert "Profiling '{}'".format(datasource_name) in stdout assert "The following Data Docs sites will be built:\n" in stdout assert "local_site:" in stdout context = DataContext(project_root_dir) assert len(context.list_datasources()) == 1 expectations_store = context.stores["expectations_store"] suites = expectations_store.list_keys() assert len(suites) == 1 assert ( suites[0].expectation_suite_name == "wow_a_datasource.default.main.titanic.BasicDatasetProfiler" ) validations_store = context.stores["validations_store"] validation_keys = validations_store.list_keys() assert len(validation_keys) == 1 validation = validations_store.get(validation_keys[0]) assert ( validation.meta["expectation_suite_name"] == "wow_a_datasource.default.main.titanic.BasicDatasetProfiler" ) assert validation.success is False row_count_validation_results = [ validation_result for validation_result in validation.results if validation_result.expectation_config.expectation_type == "expect_table_row_count_to_be_between" ] assert len(row_count_validation_results) == 1 assert row_count_validation_results[0].result["observed_value"] == 97 assert "Preparing column 1 of 7" in caplog.messages[0] assert len(caplog.messages) == 10 assert_no_tracebacks(result)
[ "def", "test_cli_datasource_profile_with_data_asset_and_additional_batch_kwargs_with_limit", "(", "empty_data_context", ",", "titanic_sqlite_db", ",", "caplog", ")", ":", "project_root_dir", "=", "empty_data_context", ".", "root_directory", "context", "=", "DataContext", "(", "project_root_dir", ")", "datasource_name", "=", "\"wow_a_datasource\"", "context", "=", "_add_datasource_and_credentials_to_context", "(", "context", ",", "datasource_name", ",", "titanic_sqlite_db", ")", "res", "=", "context", ".", "get_available_data_asset_names", "(", "\"wow_a_datasource\"", ")", "runner", "=", "CliRunner", "(", "mix_stderr", "=", "False", ")", "result", "=", "runner", ".", "invoke", "(", "cli", ",", "[", "\"datasource\"", ",", "\"profile\"", ",", "\"-d\"", ",", "project_root_dir", ",", "\"--data-assets\"", ",", "\"main.titanic\"", ",", "\"--additional-batch-kwargs\"", ",", "'{\"limit\": 97}'", ",", "\"--no-view\"", ",", "]", ",", "input", "=", "\"Y\\n\"", ",", "catch_exceptions", "=", "False", ",", ")", "stdout", "=", "result", ".", "stdout", "assert", "result", ".", "exit_code", "==", "0", "assert", "\"Profiling '{}'\"", ".", "format", "(", "datasource_name", ")", "in", "stdout", "assert", "\"The following Data Docs sites will be built:\\n\"", "in", "stdout", "assert", "\"local_site:\"", "in", "stdout", "context", "=", "DataContext", "(", "project_root_dir", ")", "assert", "len", "(", "context", ".", "list_datasources", "(", ")", ")", "==", "1", "expectations_store", "=", "context", ".", "stores", "[", "\"expectations_store\"", "]", "suites", "=", "expectations_store", ".", "list_keys", "(", ")", "assert", "len", "(", "suites", ")", "==", "1", "assert", "(", "suites", "[", "0", "]", ".", "expectation_suite_name", "==", "\"wow_a_datasource.default.main.titanic.BasicDatasetProfiler\"", ")", "validations_store", "=", "context", ".", "stores", "[", "\"validations_store\"", "]", "validation_keys", "=", "validations_store", ".", "list_keys", "(", ")", "assert", "len", "(", "validation_keys", ")", "==", "1", "validation", "=", "validations_store", ".", "get", "(", "validation_keys", "[", "0", "]", ")", "assert", "(", "validation", ".", "meta", "[", "\"expectation_suite_name\"", "]", "==", "\"wow_a_datasource.default.main.titanic.BasicDatasetProfiler\"", ")", "assert", "validation", ".", "success", "is", "False", "row_count_validation_results", "=", "[", "validation_result", "for", "validation_result", "in", "validation", ".", "results", "if", "validation_result", ".", "expectation_config", ".", "expectation_type", "==", "\"expect_table_row_count_to_be_between\"", "]", "assert", "len", "(", "row_count_validation_results", ")", "==", "1", "assert", "row_count_validation_results", "[", "0", "]", ".", "result", "[", "\"observed_value\"", "]", "==", "97", "assert", "\"Preparing column 1 of 7\"", "in", "caplog", ".", "messages", "[", "0", "]", "assert", "len", "(", "caplog", ".", "messages", ")", "==", "10", "assert_no_tracebacks", "(", "result", ")" ]
[ 426, 0 ]
[ 499, 32 ]
python
en
['en', 'error', 'th']
False
ExpectColumnValuesToBeBetween.validate_configuration
(self, configuration: Optional[ExpectationConfiguration])
Validates that a configuration has been set, and sets a configuration if it has yet to be set. Ensures that necessary configuration arguments have been provided for the validation of the expectation. Args: configuration (OPTIONAL[ExpectationConfiguration]): \ An optional Expectation Configuration entry that will be used to configure the expectation Returns: True if the configuration has been validated successfully. Otherwise, raises an exception
Validates that a configuration has been set, and sets a configuration if it has yet to be set. Ensures that necessary configuration arguments have been provided for the validation of the expectation.
def validate_configuration(self, configuration: Optional[ExpectationConfiguration]): """ Validates that a configuration has been set, and sets a configuration if it has yet to be set. Ensures that necessary configuration arguments have been provided for the validation of the expectation. Args: configuration (OPTIONAL[ExpectationConfiguration]): \ An optional Expectation Configuration entry that will be used to configure the expectation Returns: True if the configuration has been validated successfully. Otherwise, raises an exception """ # Setting up a configuration super().validate_configuration(configuration) min_val = None max_val = None if "min_value" in configuration.kwargs: min_val = configuration.kwargs["min_value"] if "max_value" in configuration.kwargs: max_val = configuration.kwargs["max_value"] assert ( min_val is not None or max_val is not None ), "min_value and max_value cannot both be None" self.validate_metric_value_between_configuration(configuration=configuration)
[ "def", "validate_configuration", "(", "self", ",", "configuration", ":", "Optional", "[", "ExpectationConfiguration", "]", ")", ":", "# Setting up a configuration", "super", "(", ")", ".", "validate_configuration", "(", "configuration", ")", "min_val", "=", "None", "max_val", "=", "None", "if", "\"min_value\"", "in", "configuration", ".", "kwargs", ":", "min_val", "=", "configuration", ".", "kwargs", "[", "\"min_value\"", "]", "if", "\"max_value\"", "in", "configuration", ".", "kwargs", ":", "max_val", "=", "configuration", ".", "kwargs", "[", "\"max_value\"", "]", "assert", "(", "min_val", "is", "not", "None", "or", "max_val", "is", "not", "None", ")", ",", "\"min_value and max_value cannot both be None\"", "self", ".", "validate_metric_value_between_configuration", "(", "configuration", "=", "configuration", ")" ]
[ 113, 4 ]
[ 138, 85 ]
python
en
['en', 'error', 'th']
False
_add_chrome_proxy_extension
( chrome_options, proxy_string, proxy_user, proxy_pass)
Implementation of https://stackoverflow.com/a/35293284 for https://stackoverflow.com/questions/12848327/ (Run Selenium on a proxy server that requires authentication.)
Implementation of https://stackoverflow.com/a/35293284 for https://stackoverflow.com/questions/12848327/ (Run Selenium on a proxy server that requires authentication.)
def _add_chrome_proxy_extension( chrome_options, proxy_string, proxy_user, proxy_pass): """ Implementation of https://stackoverflow.com/a/35293284 for https://stackoverflow.com/questions/12848327/ (Run Selenium on a proxy server that requires authentication.) """ arg_join = " ".join(sys.argv) if not ("-n" in sys.argv or "-n=" in arg_join or arg_join == "-c"): # Single-threaded proxy_helper.create_proxy_zip(proxy_string, proxy_user, proxy_pass) else: # Pytest multi-threaded test import threading lock = threading.Lock() with lock: time.sleep(random.uniform(0.02, 0.15)) if not os.path.exists(PROXY_ZIP_PATH): proxy_helper.create_proxy_zip( proxy_string, proxy_user, proxy_pass) time.sleep(random.uniform(0.1, 0.2)) proxy_zip = PROXY_ZIP_PATH if not os.path.exists(PROXY_ZIP_PATH): # Handle "Permission denied" on the default proxy.zip path proxy_zip = PROXY_ZIP_PATH_2 chrome_options.add_extension(proxy_zip) return chrome_options
[ "def", "_add_chrome_proxy_extension", "(", "chrome_options", ",", "proxy_string", ",", "proxy_user", ",", "proxy_pass", ")", ":", "arg_join", "=", "\" \"", ".", "join", "(", "sys", ".", "argv", ")", "if", "not", "(", "\"-n\"", "in", "sys", ".", "argv", "or", "\"-n=\"", "in", "arg_join", "or", "arg_join", "==", "\"-c\"", ")", ":", "# Single-threaded", "proxy_helper", ".", "create_proxy_zip", "(", "proxy_string", ",", "proxy_user", ",", "proxy_pass", ")", "else", ":", "# Pytest multi-threaded test", "import", "threading", "lock", "=", "threading", ".", "Lock", "(", ")", "with", "lock", ":", "time", ".", "sleep", "(", "random", ".", "uniform", "(", "0.02", ",", "0.15", ")", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "PROXY_ZIP_PATH", ")", ":", "proxy_helper", ".", "create_proxy_zip", "(", "proxy_string", ",", "proxy_user", ",", "proxy_pass", ")", "time", ".", "sleep", "(", "random", ".", "uniform", "(", "0.1", ",", "0.2", ")", ")", "proxy_zip", "=", "PROXY_ZIP_PATH", "if", "not", "os", ".", "path", ".", "exists", "(", "PROXY_ZIP_PATH", ")", ":", "# Handle \"Permission denied\" on the default proxy.zip path", "proxy_zip", "=", "PROXY_ZIP_PATH_2", "chrome_options", ".", "add_extension", "(", "proxy_zip", ")", "return", "chrome_options" ]
[ 95, 0 ]
[ 119, 25 ]
python
en
['en', 'en', 'en']
True
_add_chrome_disable_csp_extension
(chrome_options)
Disable Chrome's Content-Security-Policy with a browser extension. See https://github.com/PhilGrayson/chrome-csp-disable for details.
Disable Chrome's Content-Security-Policy with a browser extension. See https://github.com/PhilGrayson/chrome-csp-disable for details.
def _add_chrome_disable_csp_extension(chrome_options): """ Disable Chrome's Content-Security-Policy with a browser extension. See https://github.com/PhilGrayson/chrome-csp-disable for details. """ disable_csp_zip = DISABLE_CSP_ZIP_PATH chrome_options.add_extension(disable_csp_zip) return chrome_options
[ "def", "_add_chrome_disable_csp_extension", "(", "chrome_options", ")", ":", "disable_csp_zip", "=", "DISABLE_CSP_ZIP_PATH", "chrome_options", ".", "add_extension", "(", "disable_csp_zip", ")", "return", "chrome_options" ]
[ 122, 0 ]
[ 127, 25 ]
python
en
['en', 'en', 'en']
True
get_local_driver
( browser_name, headless, servername, proxy_string, proxy_auth, proxy_user, proxy_pass, user_agent, disable_csp, enable_sync, use_auto_ext, no_sandbox, disable_gpu, incognito, guest_mode, devtools, user_data_dir, extension_zip, extension_dir, mobile_emulator, device_width, device_height, device_pixel_ratio)
Spins up a new web browser and returns the driver. Can also be used to spin up additional browsers for the same test.
Spins up a new web browser and returns the driver. Can also be used to spin up additional browsers for the same test.
def get_local_driver( browser_name, headless, servername, proxy_string, proxy_auth, proxy_user, proxy_pass, user_agent, disable_csp, enable_sync, use_auto_ext, no_sandbox, disable_gpu, incognito, guest_mode, devtools, user_data_dir, extension_zip, extension_dir, mobile_emulator, device_width, device_height, device_pixel_ratio): ''' Spins up a new web browser and returns the driver. Can also be used to spin up additional browsers for the same test. ''' downloads_path = download_helper.get_downloads_folder() download_helper.reset_downloads_folder() if browser_name == constants.Browser.FIREFOX: try: try: # Use Geckodriver for Firefox if it's on the PATH profile = _create_firefox_profile( downloads_path, proxy_string, user_agent, disable_csp) firefox_capabilities = DesiredCapabilities.FIREFOX.copy() firefox_capabilities['marionette'] = True options = webdriver.FirefoxOptions() if headless: options.add_argument('-headless') firefox_capabilities['moz:firefoxOptions'] = ( {'args': ['-headless']}) if LOCAL_GECKODRIVER and os.path.exists(LOCAL_GECKODRIVER): try: make_driver_executable_if_not(LOCAL_GECKODRIVER) except Exception as e: logging.debug("\nWarning: Could not make geckodriver" " executable: %s" % e) elif not is_geckodriver_on_path(): args = " ".join(sys.argv) if not ("-n" in sys.argv or "-n=" in args or args == "-c"): # (Not multithreaded) from seleniumbase.console_scripts import sb_install sys_args = sys.argv # Save a copy of current sys args print("\nWarning: geckodriver not found!" " Installing now:") try: sb_install.main(override="geckodriver") except Exception as e: print("\nWarning: Could not install geckodriver: " "%s" % e) sys.argv = sys_args # Put back the original sys args if "linux" in PLATFORM or not headless: firefox_driver = webdriver.Firefox( firefox_profile=profile, capabilities=firefox_capabilities) else: firefox_driver = webdriver.Firefox( firefox_profile=profile, capabilities=firefox_capabilities, options=options) except Exception: profile = _create_firefox_profile( downloads_path, proxy_string, user_agent, disable_csp) firefox_capabilities = DesiredCapabilities.FIREFOX.copy() firefox_driver = webdriver.Firefox( firefox_profile=profile, capabilities=firefox_capabilities) return firefox_driver except Exception as e: if headless: raise Exception(e) return webdriver.Firefox() elif browser_name == constants.Browser.INTERNET_EXPLORER: if not IS_WINDOWS: raise Exception( "IE Browser is for Windows-based operating systems only!") from selenium.webdriver.ie.options import Options ie_options = Options() ie_options.ignore_protected_mode_settings = False ie_options.ignore_zoom_level = True ie_options.require_window_focus = False ie_options.native_events = True ie_options.full_page_screenshot = True ie_options.persistent_hover = True ie_capabilities = ie_options.to_capabilities() if LOCAL_IEDRIVER and os.path.exists(LOCAL_IEDRIVER): try: make_driver_executable_if_not(LOCAL_IEDRIVER) except Exception as e: logging.debug("\nWarning: Could not make iedriver" " executable: %s" % e) return webdriver.Ie(capabilities=ie_capabilities) elif browser_name == constants.Browser.EDGE: try: chrome_options = _set_chrome_options( downloads_path, headless, proxy_string, proxy_auth, proxy_user, proxy_pass, user_agent, disable_csp, enable_sync, use_auto_ext, no_sandbox, disable_gpu, incognito, guest_mode, devtools, user_data_dir, extension_zip, extension_dir, servername, mobile_emulator, device_width, device_height, device_pixel_ratio) if LOCAL_EDGEDRIVER and os.path.exists(LOCAL_EDGEDRIVER): try: make_driver_executable_if_not(LOCAL_EDGEDRIVER) except Exception as e: logging.debug("\nWarning: Could not make edgedriver" " executable: %s" % e) elif not is_edgedriver_on_path(): args = " ".join(sys.argv) if not ("-n" in sys.argv or "-n=" in args or args == "-c"): # (Not multithreaded) from seleniumbase.console_scripts import sb_install sys_args = sys.argv # Save a copy of current sys args print("\nWarning: msedgedriver not found. Installing now:") sb_install.main(override="edgedriver") sys.argv = sys_args # Put back the original sys args return webdriver.Chrome(executable_path=LOCAL_EDGEDRIVER, options=chrome_options) except Exception as e: if headless: raise Exception(e) if LOCAL_EDGEDRIVER and os.path.exists(LOCAL_EDGEDRIVER): try: make_driver_executable_if_not(LOCAL_EDGEDRIVER) except Exception as e: logging.debug("\nWarning: Could not make edgedriver" " executable: %s" % e) return webdriver.Chrome(executable_path=LOCAL_EDGEDRIVER) elif browser_name == constants.Browser.SAFARI: arg_join = " ".join(sys.argv) if ("-n" in sys.argv) or ("-n=" in arg_join) or (arg_join == "-c"): # Skip if multithreaded raise Exception("Can't run Safari tests in multi-threaded mode!") safari_capabilities = _set_safari_capabilities() return webdriver.Safari(desired_capabilities=safari_capabilities) elif browser_name == constants.Browser.OPERA: if LOCAL_OPERADRIVER and os.path.exists(LOCAL_OPERADRIVER): try: make_driver_executable_if_not(LOCAL_OPERADRIVER) except Exception as e: logging.debug("\nWarning: Could not make operadriver" " executable: %s" % e) return webdriver.Opera() elif browser_name == constants.Browser.PHANTOM_JS: with warnings.catch_warnings(): # Ignore "PhantomJS has been deprecated" UserWarning warnings.simplefilter("ignore", category=UserWarning) return webdriver.PhantomJS() elif browser_name == constants.Browser.GOOGLE_CHROME: try: chrome_options = _set_chrome_options( downloads_path, headless, proxy_string, proxy_auth, proxy_user, proxy_pass, user_agent, disable_csp, enable_sync, use_auto_ext, no_sandbox, disable_gpu, incognito, guest_mode, devtools, user_data_dir, extension_zip, extension_dir, servername, mobile_emulator, device_width, device_height, device_pixel_ratio) if LOCAL_CHROMEDRIVER and os.path.exists(LOCAL_CHROMEDRIVER): try: make_driver_executable_if_not(LOCAL_CHROMEDRIVER) except Exception as e: logging.debug("\nWarning: Could not make chromedriver" " executable: %s" % e) elif not is_chromedriver_on_path(): args = " ".join(sys.argv) if not ("-n" in sys.argv or "-n=" in args or args == "-c"): # (Not multithreaded) from seleniumbase.console_scripts import sb_install sys_args = sys.argv # Save a copy of current sys args print("\nWarning: chromedriver not found. Installing now:") sb_install.main(override="chromedriver") sys.argv = sys_args # Put back the original sys args if not headless or "linux" not in PLATFORM: return webdriver.Chrome(options=chrome_options) else: # Running headless on Linux try: return webdriver.Chrome(options=chrome_options) except Exception: # Use the virtual display on Linux during headless errors logging.debug("\nWarning: Chrome failed to launch in" " headless mode. Attempting to use the" " SeleniumBase virtual display on Linux...") chrome_options.headless = False return webdriver.Chrome(options=chrome_options) except Exception as e: if headless: raise Exception(e) if LOCAL_CHROMEDRIVER and os.path.exists(LOCAL_CHROMEDRIVER): try: make_driver_executable_if_not(LOCAL_CHROMEDRIVER) except Exception as e: logging.debug("\nWarning: Could not make chromedriver" " executable: %s" % e) return webdriver.Chrome() else: raise Exception( "%s is not a valid browser option for this system!" % browser_name)
[ "def", "get_local_driver", "(", "browser_name", ",", "headless", ",", "servername", ",", "proxy_string", ",", "proxy_auth", ",", "proxy_user", ",", "proxy_pass", ",", "user_agent", ",", "disable_csp", ",", "enable_sync", ",", "use_auto_ext", ",", "no_sandbox", ",", "disable_gpu", ",", "incognito", ",", "guest_mode", ",", "devtools", ",", "user_data_dir", ",", "extension_zip", ",", "extension_dir", ",", "mobile_emulator", ",", "device_width", ",", "device_height", ",", "device_pixel_ratio", ")", ":", "downloads_path", "=", "download_helper", ".", "get_downloads_folder", "(", ")", "download_helper", ".", "reset_downloads_folder", "(", ")", "if", "browser_name", "==", "constants", ".", "Browser", ".", "FIREFOX", ":", "try", ":", "try", ":", "# Use Geckodriver for Firefox if it's on the PATH", "profile", "=", "_create_firefox_profile", "(", "downloads_path", ",", "proxy_string", ",", "user_agent", ",", "disable_csp", ")", "firefox_capabilities", "=", "DesiredCapabilities", ".", "FIREFOX", ".", "copy", "(", ")", "firefox_capabilities", "[", "'marionette'", "]", "=", "True", "options", "=", "webdriver", ".", "FirefoxOptions", "(", ")", "if", "headless", ":", "options", ".", "add_argument", "(", "'-headless'", ")", "firefox_capabilities", "[", "'moz:firefoxOptions'", "]", "=", "(", "{", "'args'", ":", "[", "'-headless'", "]", "}", ")", "if", "LOCAL_GECKODRIVER", "and", "os", ".", "path", ".", "exists", "(", "LOCAL_GECKODRIVER", ")", ":", "try", ":", "make_driver_executable_if_not", "(", "LOCAL_GECKODRIVER", ")", "except", "Exception", "as", "e", ":", "logging", ".", "debug", "(", "\"\\nWarning: Could not make geckodriver\"", "\" executable: %s\"", "%", "e", ")", "elif", "not", "is_geckodriver_on_path", "(", ")", ":", "args", "=", "\" \"", ".", "join", "(", "sys", ".", "argv", ")", "if", "not", "(", "\"-n\"", "in", "sys", ".", "argv", "or", "\"-n=\"", "in", "args", "or", "args", "==", "\"-c\"", ")", ":", "# (Not multithreaded)", "from", "seleniumbase", ".", "console_scripts", "import", "sb_install", "sys_args", "=", "sys", ".", "argv", "# Save a copy of current sys args", "print", "(", "\"\\nWarning: geckodriver not found!\"", "\" Installing now:\"", ")", "try", ":", "sb_install", ".", "main", "(", "override", "=", "\"geckodriver\"", ")", "except", "Exception", "as", "e", ":", "print", "(", "\"\\nWarning: Could not install geckodriver: \"", "\"%s\"", "%", "e", ")", "sys", ".", "argv", "=", "sys_args", "# Put back the original sys args", "if", "\"linux\"", "in", "PLATFORM", "or", "not", "headless", ":", "firefox_driver", "=", "webdriver", ".", "Firefox", "(", "firefox_profile", "=", "profile", ",", "capabilities", "=", "firefox_capabilities", ")", "else", ":", "firefox_driver", "=", "webdriver", ".", "Firefox", "(", "firefox_profile", "=", "profile", ",", "capabilities", "=", "firefox_capabilities", ",", "options", "=", "options", ")", "except", "Exception", ":", "profile", "=", "_create_firefox_profile", "(", "downloads_path", ",", "proxy_string", ",", "user_agent", ",", "disable_csp", ")", "firefox_capabilities", "=", "DesiredCapabilities", ".", "FIREFOX", ".", "copy", "(", ")", "firefox_driver", "=", "webdriver", ".", "Firefox", "(", "firefox_profile", "=", "profile", ",", "capabilities", "=", "firefox_capabilities", ")", "return", "firefox_driver", "except", "Exception", "as", "e", ":", "if", "headless", ":", "raise", "Exception", "(", "e", ")", "return", "webdriver", ".", "Firefox", "(", ")", "elif", "browser_name", "==", "constants", ".", "Browser", ".", "INTERNET_EXPLORER", ":", "if", "not", "IS_WINDOWS", ":", "raise", "Exception", "(", "\"IE Browser is for Windows-based operating systems only!\"", ")", "from", "selenium", ".", "webdriver", ".", "ie", ".", "options", "import", "Options", "ie_options", "=", "Options", "(", ")", "ie_options", ".", "ignore_protected_mode_settings", "=", "False", "ie_options", ".", "ignore_zoom_level", "=", "True", "ie_options", ".", "require_window_focus", "=", "False", "ie_options", ".", "native_events", "=", "True", "ie_options", ".", "full_page_screenshot", "=", "True", "ie_options", ".", "persistent_hover", "=", "True", "ie_capabilities", "=", "ie_options", ".", "to_capabilities", "(", ")", "if", "LOCAL_IEDRIVER", "and", "os", ".", "path", ".", "exists", "(", "LOCAL_IEDRIVER", ")", ":", "try", ":", "make_driver_executable_if_not", "(", "LOCAL_IEDRIVER", ")", "except", "Exception", "as", "e", ":", "logging", ".", "debug", "(", "\"\\nWarning: Could not make iedriver\"", "\" executable: %s\"", "%", "e", ")", "return", "webdriver", ".", "Ie", "(", "capabilities", "=", "ie_capabilities", ")", "elif", "browser_name", "==", "constants", ".", "Browser", ".", "EDGE", ":", "try", ":", "chrome_options", "=", "_set_chrome_options", "(", "downloads_path", ",", "headless", ",", "proxy_string", ",", "proxy_auth", ",", "proxy_user", ",", "proxy_pass", ",", "user_agent", ",", "disable_csp", ",", "enable_sync", ",", "use_auto_ext", ",", "no_sandbox", ",", "disable_gpu", ",", "incognito", ",", "guest_mode", ",", "devtools", ",", "user_data_dir", ",", "extension_zip", ",", "extension_dir", ",", "servername", ",", "mobile_emulator", ",", "device_width", ",", "device_height", ",", "device_pixel_ratio", ")", "if", "LOCAL_EDGEDRIVER", "and", "os", ".", "path", ".", "exists", "(", "LOCAL_EDGEDRIVER", ")", ":", "try", ":", "make_driver_executable_if_not", "(", "LOCAL_EDGEDRIVER", ")", "except", "Exception", "as", "e", ":", "logging", ".", "debug", "(", "\"\\nWarning: Could not make edgedriver\"", "\" executable: %s\"", "%", "e", ")", "elif", "not", "is_edgedriver_on_path", "(", ")", ":", "args", "=", "\" \"", ".", "join", "(", "sys", ".", "argv", ")", "if", "not", "(", "\"-n\"", "in", "sys", ".", "argv", "or", "\"-n=\"", "in", "args", "or", "args", "==", "\"-c\"", ")", ":", "# (Not multithreaded)", "from", "seleniumbase", ".", "console_scripts", "import", "sb_install", "sys_args", "=", "sys", ".", "argv", "# Save a copy of current sys args", "print", "(", "\"\\nWarning: msedgedriver not found. Installing now:\"", ")", "sb_install", ".", "main", "(", "override", "=", "\"edgedriver\"", ")", "sys", ".", "argv", "=", "sys_args", "# Put back the original sys args", "return", "webdriver", ".", "Chrome", "(", "executable_path", "=", "LOCAL_EDGEDRIVER", ",", "options", "=", "chrome_options", ")", "except", "Exception", "as", "e", ":", "if", "headless", ":", "raise", "Exception", "(", "e", ")", "if", "LOCAL_EDGEDRIVER", "and", "os", ".", "path", ".", "exists", "(", "LOCAL_EDGEDRIVER", ")", ":", "try", ":", "make_driver_executable_if_not", "(", "LOCAL_EDGEDRIVER", ")", "except", "Exception", "as", "e", ":", "logging", ".", "debug", "(", "\"\\nWarning: Could not make edgedriver\"", "\" executable: %s\"", "%", "e", ")", "return", "webdriver", ".", "Chrome", "(", "executable_path", "=", "LOCAL_EDGEDRIVER", ")", "elif", "browser_name", "==", "constants", ".", "Browser", ".", "SAFARI", ":", "arg_join", "=", "\" \"", ".", "join", "(", "sys", ".", "argv", ")", "if", "(", "\"-n\"", "in", "sys", ".", "argv", ")", "or", "(", "\"-n=\"", "in", "arg_join", ")", "or", "(", "arg_join", "==", "\"-c\"", ")", ":", "# Skip if multithreaded", "raise", "Exception", "(", "\"Can't run Safari tests in multi-threaded mode!\"", ")", "safari_capabilities", "=", "_set_safari_capabilities", "(", ")", "return", "webdriver", ".", "Safari", "(", "desired_capabilities", "=", "safari_capabilities", ")", "elif", "browser_name", "==", "constants", ".", "Browser", ".", "OPERA", ":", "if", "LOCAL_OPERADRIVER", "and", "os", ".", "path", ".", "exists", "(", "LOCAL_OPERADRIVER", ")", ":", "try", ":", "make_driver_executable_if_not", "(", "LOCAL_OPERADRIVER", ")", "except", "Exception", "as", "e", ":", "logging", ".", "debug", "(", "\"\\nWarning: Could not make operadriver\"", "\" executable: %s\"", "%", "e", ")", "return", "webdriver", ".", "Opera", "(", ")", "elif", "browser_name", "==", "constants", ".", "Browser", ".", "PHANTOM_JS", ":", "with", "warnings", ".", "catch_warnings", "(", ")", ":", "# Ignore \"PhantomJS has been deprecated\" UserWarning", "warnings", ".", "simplefilter", "(", "\"ignore\"", ",", "category", "=", "UserWarning", ")", "return", "webdriver", ".", "PhantomJS", "(", ")", "elif", "browser_name", "==", "constants", ".", "Browser", ".", "GOOGLE_CHROME", ":", "try", ":", "chrome_options", "=", "_set_chrome_options", "(", "downloads_path", ",", "headless", ",", "proxy_string", ",", "proxy_auth", ",", "proxy_user", ",", "proxy_pass", ",", "user_agent", ",", "disable_csp", ",", "enable_sync", ",", "use_auto_ext", ",", "no_sandbox", ",", "disable_gpu", ",", "incognito", ",", "guest_mode", ",", "devtools", ",", "user_data_dir", ",", "extension_zip", ",", "extension_dir", ",", "servername", ",", "mobile_emulator", ",", "device_width", ",", "device_height", ",", "device_pixel_ratio", ")", "if", "LOCAL_CHROMEDRIVER", "and", "os", ".", "path", ".", "exists", "(", "LOCAL_CHROMEDRIVER", ")", ":", "try", ":", "make_driver_executable_if_not", "(", "LOCAL_CHROMEDRIVER", ")", "except", "Exception", "as", "e", ":", "logging", ".", "debug", "(", "\"\\nWarning: Could not make chromedriver\"", "\" executable: %s\"", "%", "e", ")", "elif", "not", "is_chromedriver_on_path", "(", ")", ":", "args", "=", "\" \"", ".", "join", "(", "sys", ".", "argv", ")", "if", "not", "(", "\"-n\"", "in", "sys", ".", "argv", "or", "\"-n=\"", "in", "args", "or", "args", "==", "\"-c\"", ")", ":", "# (Not multithreaded)", "from", "seleniumbase", ".", "console_scripts", "import", "sb_install", "sys_args", "=", "sys", ".", "argv", "# Save a copy of current sys args", "print", "(", "\"\\nWarning: chromedriver not found. Installing now:\"", ")", "sb_install", ".", "main", "(", "override", "=", "\"chromedriver\"", ")", "sys", ".", "argv", "=", "sys_args", "# Put back the original sys args", "if", "not", "headless", "or", "\"linux\"", "not", "in", "PLATFORM", ":", "return", "webdriver", ".", "Chrome", "(", "options", "=", "chrome_options", ")", "else", ":", "# Running headless on Linux", "try", ":", "return", "webdriver", ".", "Chrome", "(", "options", "=", "chrome_options", ")", "except", "Exception", ":", "# Use the virtual display on Linux during headless errors", "logging", ".", "debug", "(", "\"\\nWarning: Chrome failed to launch in\"", "\" headless mode. Attempting to use the\"", "\" SeleniumBase virtual display on Linux...\"", ")", "chrome_options", ".", "headless", "=", "False", "return", "webdriver", ".", "Chrome", "(", "options", "=", "chrome_options", ")", "except", "Exception", "as", "e", ":", "if", "headless", ":", "raise", "Exception", "(", "e", ")", "if", "LOCAL_CHROMEDRIVER", "and", "os", ".", "path", ".", "exists", "(", "LOCAL_CHROMEDRIVER", ")", ":", "try", ":", "make_driver_executable_if_not", "(", "LOCAL_CHROMEDRIVER", ")", "except", "Exception", "as", "e", ":", "logging", ".", "debug", "(", "\"\\nWarning: Could not make chromedriver\"", "\" executable: %s\"", "%", "e", ")", "return", "webdriver", ".", "Chrome", "(", ")", "else", ":", "raise", "Exception", "(", "\"%s is not a valid browser option for this system!\"", "%", "browser_name", ")" ]
[ 565, 0 ]
[ 759, 79 ]
python
en
['en', 'error', 'th']
False
Document.__init__
(self, text: str, id: Optional[str] = None, score: Optional[float] = None, probability: Optional[float] = None, question: Optional[str] = None, meta: Dict[str, Any] = None, embedding: Optional[np.ndarray] = None)
Object used to represent documents / passages in a standardized way within Haystack. For example, this is what the retriever will return from the DocumentStore, regardless if it's ElasticsearchDocumentStore or InMemoryDocumentStore. Note that there can be multiple Documents originating from one file (e.g. PDF), if you split the text into smaller passages. We'll have one Document per passage in this case. :param id: ID used within the DocumentStore :param text: Text of the document :param score: Retriever's query score for a retrieved document :param probability: a pseudo probability by scaling score in the range 0 to 1 :param question: Question text for FAQs. :param meta: Meta fields for a document like name, url, or author. :param embedding: Vector encoding of the text
Object used to represent documents / passages in a standardized way within Haystack. For example, this is what the retriever will return from the DocumentStore, regardless if it's ElasticsearchDocumentStore or InMemoryDocumentStore.
def __init__(self, text: str, id: Optional[str] = None, score: Optional[float] = None, probability: Optional[float] = None, question: Optional[str] = None, meta: Dict[str, Any] = None, embedding: Optional[np.ndarray] = None): """ Object used to represent documents / passages in a standardized way within Haystack. For example, this is what the retriever will return from the DocumentStore, regardless if it's ElasticsearchDocumentStore or InMemoryDocumentStore. Note that there can be multiple Documents originating from one file (e.g. PDF), if you split the text into smaller passages. We'll have one Document per passage in this case. :param id: ID used within the DocumentStore :param text: Text of the document :param score: Retriever's query score for a retrieved document :param probability: a pseudo probability by scaling score in the range 0 to 1 :param question: Question text for FAQs. :param meta: Meta fields for a document like name, url, or author. :param embedding: Vector encoding of the text """ self.text = text # Create a unique ID (either new one, or one from user input) if id: self.id = str(id) else: self.id = str(uuid4()) self.score = score self.probability = probability self.question = question self.meta = meta or {} self.embedding = embedding
[ "def", "__init__", "(", "self", ",", "text", ":", "str", ",", "id", ":", "Optional", "[", "str", "]", "=", "None", ",", "score", ":", "Optional", "[", "float", "]", "=", "None", ",", "probability", ":", "Optional", "[", "float", "]", "=", "None", ",", "question", ":", "Optional", "[", "str", "]", "=", "None", ",", "meta", ":", "Dict", "[", "str", ",", "Any", "]", "=", "None", ",", "embedding", ":", "Optional", "[", "np", ".", "ndarray", "]", "=", "None", ")", ":", "self", ".", "text", "=", "text", "# Create a unique ID (either new one, or one from user input)", "if", "id", ":", "self", ".", "id", "=", "str", "(", "id", ")", "else", ":", "self", ".", "id", "=", "str", "(", "uuid4", "(", ")", ")", "self", ".", "score", "=", "score", "self", ".", "probability", "=", "probability", "self", ".", "question", "=", "question", "self", ".", "meta", "=", "meta", "or", "{", "}", "self", ".", "embedding", "=", "embedding" ]
[ 6, 4 ]
[ 41, 34 ]
python
en
['en', 'error', 'th']
False
Label.__init__
(self, question: str, answer: str, is_correct_answer: bool, is_correct_document: bool, origin: str, id: Optional[str] = None, document_id: Optional[str] = None, offset_start_in_doc: Optional[int] = None, no_answer: Optional[bool] = None, model_id: Optional[int] = None, created_at: Optional[str] = None, updated_at: Optional[str] = None)
Object used to represent label/feedback in a standardized way within Haystack. This includes labels from dataset like SQuAD, annotations from labeling tools, or, user-feedback from the Haystack REST API. :param question: the question(or query) for finding answers. :param answer: the answer string. :param is_correct_answer: whether the sample is positive or negative. :param is_correct_document: in case of negative sample(is_correct_answer is False), there could be two cases; incorrect answer but correct document & incorrect document. This flag denotes if the returned document was correct. :param origin: the source for the labels. It can be used to later for filtering. :param id: Unique ID used within the DocumentStore. If not supplied, a uuid will be generated automatically. :param document_id: the document_store's ID for the returned answer document. :param offset_start_in_doc: the answer start offset in the document. :param no_answer: whether the question in unanswerable. :param model_id: model_id used for prediction (in-case of user feedback). :param created_at: Timestamp of creation with format yyyy-MM-dd HH:mm:ss. Generate in Python via time.strftime("%Y-%m-%d %H:%M:%S"). :param created_at: Timestamp of update with format yyyy-MM-dd HH:mm:ss. Generate in Python via time.strftime("%Y-%m-%d %H:%M:%S")
Object used to represent label/feedback in a standardized way within Haystack. This includes labels from dataset like SQuAD, annotations from labeling tools, or, user-feedback from the Haystack REST API.
def __init__(self, question: str, answer: str, is_correct_answer: bool, is_correct_document: bool, origin: str, id: Optional[str] = None, document_id: Optional[str] = None, offset_start_in_doc: Optional[int] = None, no_answer: Optional[bool] = None, model_id: Optional[int] = None, created_at: Optional[str] = None, updated_at: Optional[str] = None): """ Object used to represent label/feedback in a standardized way within Haystack. This includes labels from dataset like SQuAD, annotations from labeling tools, or, user-feedback from the Haystack REST API. :param question: the question(or query) for finding answers. :param answer: the answer string. :param is_correct_answer: whether the sample is positive or negative. :param is_correct_document: in case of negative sample(is_correct_answer is False), there could be two cases; incorrect answer but correct document & incorrect document. This flag denotes if the returned document was correct. :param origin: the source for the labels. It can be used to later for filtering. :param id: Unique ID used within the DocumentStore. If not supplied, a uuid will be generated automatically. :param document_id: the document_store's ID for the returned answer document. :param offset_start_in_doc: the answer start offset in the document. :param no_answer: whether the question in unanswerable. :param model_id: model_id used for prediction (in-case of user feedback). :param created_at: Timestamp of creation with format yyyy-MM-dd HH:mm:ss. Generate in Python via time.strftime("%Y-%m-%d %H:%M:%S"). :param created_at: Timestamp of update with format yyyy-MM-dd HH:mm:ss. Generate in Python via time.strftime("%Y-%m-%d %H:%M:%S") """ # Create a unique ID (either new one, or one from user input) if id: self.id = str(id) else: self.id = str(uuid4()) self.created_at = created_at self.updated_at = updated_at self.question = question self.answer = answer self.is_correct_answer = is_correct_answer self.is_correct_document = is_correct_document self.origin = origin self.document_id = document_id self.offset_start_in_doc = offset_start_in_doc self.no_answer = no_answer self.model_id = model_id
[ "def", "__init__", "(", "self", ",", "question", ":", "str", ",", "answer", ":", "str", ",", "is_correct_answer", ":", "bool", ",", "is_correct_document", ":", "bool", ",", "origin", ":", "str", ",", "id", ":", "Optional", "[", "str", "]", "=", "None", ",", "document_id", ":", "Optional", "[", "str", "]", "=", "None", ",", "offset_start_in_doc", ":", "Optional", "[", "int", "]", "=", "None", ",", "no_answer", ":", "Optional", "[", "bool", "]", "=", "None", ",", "model_id", ":", "Optional", "[", "int", "]", "=", "None", ",", "created_at", ":", "Optional", "[", "str", "]", "=", "None", ",", "updated_at", ":", "Optional", "[", "str", "]", "=", "None", ")", ":", "# Create a unique ID (either new one, or one from user input)", "if", "id", ":", "self", ".", "id", "=", "str", "(", "id", ")", "else", ":", "self", ".", "id", "=", "str", "(", "uuid4", "(", ")", ")", "self", ".", "created_at", "=", "created_at", "self", ".", "updated_at", "=", "updated_at", "self", ".", "question", "=", "question", "self", ".", "answer", "=", "answer", "self", ".", "is_correct_answer", "=", "is_correct_answer", "self", ".", "is_correct_document", "=", "is_correct_document", "self", ".", "origin", "=", "origin", "self", ".", "document_id", "=", "document_id", "self", ".", "offset_start_in_doc", "=", "offset_start_in_doc", "self", ".", "no_answer", "=", "no_answer", "self", ".", "model_id", "=", "model_id" ]
[ 80, 4 ]
[ 131, 32 ]
python
en
['en', 'error', 'th']
False
MultiLabel.__init__
(self, question: str, multiple_answers: List[str], is_correct_answer: bool, is_correct_document: bool, origin: str, multiple_document_ids: List[Any], multiple_offset_start_in_docs: List[Any], no_answer: Optional[bool] = None, model_id: Optional[int] = None)
Object used to aggregate multiple possible answers for the same question :param question: the question(or query) for finding answers. :param multiple_answers: list of possible answer strings :param is_correct_answer: whether the sample is positive or negative. :param is_correct_document: in case of negative sample(is_correct_answer is False), there could be two cases; incorrect answer but correct document & incorrect document. This flag denotes if the returned document was correct. :param origin: the source for the labels. It can be used to later for filtering. :param multiple_document_ids: the document_store's IDs for the returned answer documents. :param multiple_offset_start_in_docs: the answer start offsets in the document. :param no_answer: whether the question in unanswerable. :param model_id: model_id used for prediction (in-case of user feedback).
Object used to aggregate multiple possible answers for the same question
def __init__(self, question: str, multiple_answers: List[str], is_correct_answer: bool, is_correct_document: bool, origin: str, multiple_document_ids: List[Any], multiple_offset_start_in_docs: List[Any], no_answer: Optional[bool] = None, model_id: Optional[int] = None): """ Object used to aggregate multiple possible answers for the same question :param question: the question(or query) for finding answers. :param multiple_answers: list of possible answer strings :param is_correct_answer: whether the sample is positive or negative. :param is_correct_document: in case of negative sample(is_correct_answer is False), there could be two cases; incorrect answer but correct document & incorrect document. This flag denotes if the returned document was correct. :param origin: the source for the labels. It can be used to later for filtering. :param multiple_document_ids: the document_store's IDs for the returned answer documents. :param multiple_offset_start_in_docs: the answer start offsets in the document. :param no_answer: whether the question in unanswerable. :param model_id: model_id used for prediction (in-case of user feedback). """ self.question = question self.multiple_answers = multiple_answers self.is_correct_answer = is_correct_answer self.is_correct_document = is_correct_document self.origin = origin self.multiple_document_ids = multiple_document_ids self.multiple_offset_start_in_docs = multiple_offset_start_in_docs self.no_answer = no_answer self.model_id = model_id
[ "def", "__init__", "(", "self", ",", "question", ":", "str", ",", "multiple_answers", ":", "List", "[", "str", "]", ",", "is_correct_answer", ":", "bool", ",", "is_correct_document", ":", "bool", ",", "origin", ":", "str", ",", "multiple_document_ids", ":", "List", "[", "Any", "]", ",", "multiple_offset_start_in_docs", ":", "List", "[", "Any", "]", ",", "no_answer", ":", "Optional", "[", "bool", "]", "=", "None", ",", "model_id", ":", "Optional", "[", "int", "]", "=", "None", ")", ":", "self", ".", "question", "=", "question", "self", ".", "multiple_answers", "=", "multiple_answers", "self", ".", "is_correct_answer", "=", "is_correct_answer", "self", ".", "is_correct_document", "=", "is_correct_document", "self", ".", "origin", "=", "origin", "self", ".", "multiple_document_ids", "=", "multiple_document_ids", "self", ".", "multiple_offset_start_in_docs", "=", "multiple_offset_start_in_docs", "self", ".", "no_answer", "=", "no_answer", "self", ".", "model_id", "=", "model_id" ]
[ 174, 4 ]
[ 206, 32 ]
python
en
['en', 'error', 'th']
False
BaseComponent.__init_subclass__
(cls, **kwargs)
This automatically keeps track of all available subclasses. Enables generic load() for all specific component implementations.
This automatically keeps track of all available subclasses. Enables generic load() for all specific component implementations.
def __init_subclass__(cls, **kwargs): """ This automatically keeps track of all available subclasses. Enables generic load() for all specific component implementations. """ super().__init_subclass__(**kwargs) cls.subclasses[cls.__name__] = cls
[ "def", "__init_subclass__", "(", "cls", ",", "*", "*", "kwargs", ")", ":", "super", "(", ")", ".", "__init_subclass__", "(", "*", "*", "kwargs", ")", "cls", ".", "subclasses", "[", "cls", ".", "__name__", "]", "=", "cls" ]
[ 230, 4 ]
[ 235, 42 ]
python
en
['en', 'en', 'en']
True
BaseComponent.load_from_args
(cls, component_type: str, **kwargs)
Load a component instance of the given type using the kwargs. :param component_type: name of the component class to load. :param kwargs: parameters to pass to the __init__() for the component.
Load a component instance of the given type using the kwargs. :param component_type: name of the component class to load. :param kwargs: parameters to pass to the __init__() for the component.
def load_from_args(cls, component_type: str, **kwargs): """ Load a component instance of the given type using the kwargs. :param component_type: name of the component class to load. :param kwargs: parameters to pass to the __init__() for the component. """ if component_type not in cls.subclasses.keys(): raise Exception(f"Haystack component with the name '{component_type}' does not exist.") instance = cls.subclasses[component_type](**kwargs) return instance
[ "def", "load_from_args", "(", "cls", ",", "component_type", ":", "str", ",", "*", "*", "kwargs", ")", ":", "if", "component_type", "not", "in", "cls", ".", "subclasses", ".", "keys", "(", ")", ":", "raise", "Exception", "(", "f\"Haystack component with the name '{component_type}' does not exist.\"", ")", "instance", "=", "cls", ".", "subclasses", "[", "component_type", "]", "(", "*", "*", "kwargs", ")", "return", "instance" ]
[ 238, 4 ]
[ 248, 23 ]
python
en
['en', 'error', 'th']
False
Twitter.start_streaming
(self, callback)
Starts streaming tweets and returning data to the callback.
Starts streaming tweets and returning data to the callback.
def start_streaming(self, callback): """Starts streaming tweets and returning data to the callback.""" self.twitter_listener = TwitterListener( callback=callback, logs_to_cloud=self.logs_to_cloud) twitter_stream = Stream(self.twitter_auth, self.twitter_listener) self.logs.debug('Starting stream.') twitter_stream.filter(follow=[TRUMP_USER_ID]) # If we got here because of an API error, raise it. if self.twitter_listener and self.twitter_listener.get_error_status(): raise Exception('Twitter API error: %s' % self.twitter_listener.get_error_status())
[ "def", "start_streaming", "(", "self", ",", "callback", ")", ":", "self", ".", "twitter_listener", "=", "TwitterListener", "(", "callback", "=", "callback", ",", "logs_to_cloud", "=", "self", ".", "logs_to_cloud", ")", "twitter_stream", "=", "Stream", "(", "self", ".", "twitter_auth", ",", "self", ".", "twitter_listener", ")", "self", ".", "logs", ".", "debug", "(", "'Starting stream.'", ")", "twitter_stream", ".", "filter", "(", "follow", "=", "[", "TRUMP_USER_ID", "]", ")", "# If we got here because of an API error, raise it.", "if", "self", ".", "twitter_listener", "and", "self", ".", "twitter_listener", ".", "get_error_status", "(", ")", ":", "raise", "Exception", "(", "'Twitter API error: %s'", "%", "self", ".", "twitter_listener", ".", "get_error_status", "(", ")", ")" ]
[ 77, 4 ]
[ 90, 69 ]
python
en
['en', 'en', 'en']
True
Twitter.stop_streaming
(self)
Stops the current stream.
Stops the current stream.
def stop_streaming(self): """Stops the current stream.""" if not self.twitter_listener: self.logs.warn('No stream to stop.') return self.logs.debug('Stopping stream.') self.twitter_listener.stop_queue() self.twitter_listener = None
[ "def", "stop_streaming", "(", "self", ")", ":", "if", "not", "self", ".", "twitter_listener", ":", "self", ".", "logs", ".", "warn", "(", "'No stream to stop.'", ")", "return", "self", ".", "logs", ".", "debug", "(", "'Stopping stream.'", ")", "self", ".", "twitter_listener", ".", "stop_queue", "(", ")", "self", ".", "twitter_listener", "=", "None" ]
[ 92, 4 ]
[ 101, 36 ]
python
en
['en', 'en', 'en']
True
Twitter.tweet
(self, companies, tweet)
Posts a tweet listing the companies, their ticker symbols, and a quote of the original tweet.
Posts a tweet listing the companies, their ticker symbols, and a quote of the original tweet.
def tweet(self, companies, tweet): """Posts a tweet listing the companies, their ticker symbols, and a quote of the original tweet. """ link = self.get_tweet_link(tweet) text = self.make_tweet_text(companies, link) self.logs.info('Tweeting: %s' % text) self.twitter_api.update_status(text)
[ "def", "tweet", "(", "self", ",", "companies", ",", "tweet", ")", ":", "link", "=", "self", ".", "get_tweet_link", "(", "tweet", ")", "text", "=", "self", ".", "make_tweet_text", "(", "companies", ",", "link", ")", "self", ".", "logs", ".", "info", "(", "'Tweeting: %s'", "%", "text", ")", "self", ".", "twitter_api", ".", "update_status", "(", "text", ")" ]
[ 103, 4 ]
[ 112, 44 ]
python
en
['en', 'en', 'en']
True
Twitter.make_tweet_text
(self, companies, link)
Generates the text for a tweet.
Generates the text for a tweet.
def make_tweet_text(self, companies, link): """Generates the text for a tweet.""" # Find all distinct company names. names = [] for company in companies: name = company['name'] if name not in names: names.append(name) # Collect the ticker symbols and sentiment scores for each name. tickers = {} sentiments = {} for name in names: tickers[name] = [] for company in companies: if company['name'] == name: ticker = company['ticker'] tickers[name].append(ticker) sentiment = company['sentiment'] # Assuming the same sentiment for each ticker. sentiments[name] = sentiment # Create lines for each name with sentiment emoji and ticker symbols. lines = [] for name in names: sentiment_str = self.get_sentiment_emoji(sentiments[name]) tickers_str = ' '.join(['$%s' % t for t in tickers[name]]) line = '%s %s %s' % (name, sentiment_str, tickers_str) lines.append(line) # Combine the lines and ellipsize if necessary. lines_str = '\n'.join(lines) size = len(lines_str) + 1 + len(link) if size > MAX_TWEET_SIZE: self.logs.warn('Ellipsizing lines: %s' % lines_str) lines_size = MAX_TWEET_SIZE - len(link) - 2 lines_str = '%s\u2026' % lines_str[:lines_size] # Combine the lines with the link. text = '%s\n%s' % (lines_str, link) return text
[ "def", "make_tweet_text", "(", "self", ",", "companies", ",", "link", ")", ":", "# Find all distinct company names.", "names", "=", "[", "]", "for", "company", "in", "companies", ":", "name", "=", "company", "[", "'name'", "]", "if", "name", "not", "in", "names", ":", "names", ".", "append", "(", "name", ")", "# Collect the ticker symbols and sentiment scores for each name.", "tickers", "=", "{", "}", "sentiments", "=", "{", "}", "for", "name", "in", "names", ":", "tickers", "[", "name", "]", "=", "[", "]", "for", "company", "in", "companies", ":", "if", "company", "[", "'name'", "]", "==", "name", ":", "ticker", "=", "company", "[", "'ticker'", "]", "tickers", "[", "name", "]", ".", "append", "(", "ticker", ")", "sentiment", "=", "company", "[", "'sentiment'", "]", "# Assuming the same sentiment for each ticker.", "sentiments", "[", "name", "]", "=", "sentiment", "# Create lines for each name with sentiment emoji and ticker symbols.", "lines", "=", "[", "]", "for", "name", "in", "names", ":", "sentiment_str", "=", "self", ".", "get_sentiment_emoji", "(", "sentiments", "[", "name", "]", ")", "tickers_str", "=", "' '", ".", "join", "(", "[", "'$%s'", "%", "t", "for", "t", "in", "tickers", "[", "name", "]", "]", ")", "line", "=", "'%s %s %s'", "%", "(", "name", ",", "sentiment_str", ",", "tickers_str", ")", "lines", ".", "append", "(", "line", ")", "# Combine the lines and ellipsize if necessary.", "lines_str", "=", "'\\n'", ".", "join", "(", "lines", ")", "size", "=", "len", "(", "lines_str", ")", "+", "1", "+", "len", "(", "link", ")", "if", "size", ">", "MAX_TWEET_SIZE", ":", "self", ".", "logs", ".", "warn", "(", "'Ellipsizing lines: %s'", "%", "lines_str", ")", "lines_size", "=", "MAX_TWEET_SIZE", "-", "len", "(", "link", ")", "-", "2", "lines_str", "=", "'%s\\u2026'", "%", "lines_str", "[", ":", "lines_size", "]", "# Combine the lines with the link.", "text", "=", "'%s\\n%s'", "%", "(", "lines_str", ",", "link", ")", "return", "text" ]
[ 114, 4 ]
[ 156, 19 ]
python
en
['en', 'en', 'en']
True
Twitter.get_sentiment_emoji
(self, sentiment)
Returns the emoji matching the sentiment.
Returns the emoji matching the sentiment.
def get_sentiment_emoji(self, sentiment): """Returns the emoji matching the sentiment.""" if not sentiment: return EMOJI_SHRUG if sentiment > 0: return EMOJI_THUMBS_UP if sentiment < 0: return EMOJI_THUMBS_DOWN self.logs.warn('Unknown sentiment: %s' % sentiment) return EMOJI_SHRUG
[ "def", "get_sentiment_emoji", "(", "self", ",", "sentiment", ")", ":", "if", "not", "sentiment", ":", "return", "EMOJI_SHRUG", "if", "sentiment", ">", "0", ":", "return", "EMOJI_THUMBS_UP", "if", "sentiment", "<", "0", ":", "return", "EMOJI_THUMBS_DOWN", "self", ".", "logs", ".", "warn", "(", "'Unknown sentiment: %s'", "%", "sentiment", ")", "return", "EMOJI_SHRUG" ]
[ 158, 4 ]
[ 171, 26 ]
python
en
['en', 'sn', 'en']
True
Twitter.get_tweet
(self, tweet_id)
Looks up metadata for a single tweet.
Looks up metadata for a single tweet.
def get_tweet(self, tweet_id): """Looks up metadata for a single tweet.""" try: # Use tweet_mode=extended so we get the full text. status = self.twitter_api.get_status(tweet_id, tweet_mode='extended') if not status: self.logs.error('Bad status response: %s' % status) return None except TweepError as e: self.logs.error('Failed to get status for ID: %s (%s)' % ( tweet_id, e)) return None # Use the raw JSON, just like the streaming API. return status._json
[ "def", "get_tweet", "(", "self", ",", "tweet_id", ")", ":", "try", ":", "# Use tweet_mode=extended so we get the full text.", "status", "=", "self", ".", "twitter_api", ".", "get_status", "(", "tweet_id", ",", "tweet_mode", "=", "'extended'", ")", "if", "not", "status", ":", "self", ".", "logs", ".", "error", "(", "'Bad status response: %s'", "%", "status", ")", "return", "None", "except", "TweepError", "as", "e", ":", "self", ".", "logs", ".", "error", "(", "'Failed to get status for ID: %s (%s)'", "%", "(", "tweet_id", ",", "e", ")", ")", "return", "None", "# Use the raw JSON, just like the streaming API.", "return", "status", ".", "_json" ]
[ 173, 4 ]
[ 189, 27 ]
python
en
['en', 'en', 'en']
True
Twitter.get_all_tweets
(self)
Looks up metadata for the most recent Trump tweets.
Looks up metadata for the most recent Trump tweets.
def get_all_tweets(self): """Looks up metadata for the most recent Trump tweets.""" tweets = [] # Only the 3,200 most recent tweets are available through the API. Use # the @Trump2Cash account to filter down to the relevant ones. for status in Cursor(self.twitter_api.user_timeline, user_id=TRUMP2CASH_USER_ID, exclude_replies=True).items(): # Extract the quoted @realDonaldTrump tweet, if available. try: quoted_tweet_id = status.quoted_status_id except AttributeError: self.logs.warn('Skipping tweet: %s' % status) continue # Get the tweet details and add it to the list. quoted_tweet = self.get_tweet(quoted_tweet_id) if quoted_tweet: tweets.append(quoted_tweet) self.logs.debug('Got tweets: %s' % tweets) return tweets
[ "def", "get_all_tweets", "(", "self", ")", ":", "tweets", "=", "[", "]", "# Only the 3,200 most recent tweets are available through the API. Use", "# the @Trump2Cash account to filter down to the relevant ones.", "for", "status", "in", "Cursor", "(", "self", ".", "twitter_api", ".", "user_timeline", ",", "user_id", "=", "TRUMP2CASH_USER_ID", ",", "exclude_replies", "=", "True", ")", ".", "items", "(", ")", ":", "# Extract the quoted @realDonaldTrump tweet, if available.", "try", ":", "quoted_tweet_id", "=", "status", ".", "quoted_status_id", "except", "AttributeError", ":", "self", ".", "logs", ".", "warn", "(", "'Skipping tweet: %s'", "%", "status", ")", "continue", "# Get the tweet details and add it to the list.", "quoted_tweet", "=", "self", ".", "get_tweet", "(", "quoted_tweet_id", ")", "if", "quoted_tweet", ":", "tweets", ".", "append", "(", "quoted_tweet", ")", "self", ".", "logs", ".", "debug", "(", "'Got tweets: %s'", "%", "tweets", ")", "return", "tweets" ]
[ 191, 4 ]
[ 216, 21 ]
python
en
['en', 'en', 'en']
True
Twitter.get_tweet_text
(self, tweet)
Returns the full text of a tweet.
Returns the full text of a tweet.
def get_tweet_text(self, tweet): """Returns the full text of a tweet.""" # The format for getting at the full text is different depending on # whether the tweet came through the REST API or the Streaming API: # https://dev.twitter.com/overview/api/upcoming-changes-to-tweets try: if 'extended_tweet' in tweet: self.logs.debug('Decoding extended tweet from Streaming API.') return tweet['extended_tweet']['full_text'] elif 'full_text' in tweet: self.logs.debug('Decoding extended tweet from REST API.') return tweet['full_text'] else: self.logs.debug('Decoding short tweet.') return tweet['text'] except KeyError: self.logs.error('Malformed tweet: %s' % tweet) return None
[ "def", "get_tweet_text", "(", "self", ",", "tweet", ")", ":", "# The format for getting at the full text is different depending on", "# whether the tweet came through the REST API or the Streaming API:", "# https://dev.twitter.com/overview/api/upcoming-changes-to-tweets", "try", ":", "if", "'extended_tweet'", "in", "tweet", ":", "self", ".", "logs", ".", "debug", "(", "'Decoding extended tweet from Streaming API.'", ")", "return", "tweet", "[", "'extended_tweet'", "]", "[", "'full_text'", "]", "elif", "'full_text'", "in", "tweet", ":", "self", ".", "logs", ".", "debug", "(", "'Decoding extended tweet from REST API.'", ")", "return", "tweet", "[", "'full_text'", "]", "else", ":", "self", ".", "logs", ".", "debug", "(", "'Decoding short tweet.'", ")", "return", "tweet", "[", "'text'", "]", "except", "KeyError", ":", "self", ".", "logs", ".", "error", "(", "'Malformed tweet: %s'", "%", "tweet", ")", "return", "None" ]
[ 218, 4 ]
[ 236, 23 ]
python
en
['en', 'en', 'en']
True
Twitter.get_tweet_link
(self, tweet)
Creates the link URL to a tweet.
Creates the link URL to a tweet.
def get_tweet_link(self, tweet): """Creates the link URL to a tweet.""" if not tweet: self.logs.error('No tweet to get link.') return None try: screen_name = tweet['user']['screen_name'] id_str = tweet['id_str'] except KeyError: self.logs.error('Malformed tweet for link: %s' % tweet) return None link = TWEET_URL % (screen_name, id_str) return link
[ "def", "get_tweet_link", "(", "self", ",", "tweet", ")", ":", "if", "not", "tweet", ":", "self", ".", "logs", ".", "error", "(", "'No tweet to get link.'", ")", "return", "None", "try", ":", "screen_name", "=", "tweet", "[", "'user'", "]", "[", "'screen_name'", "]", "id_str", "=", "tweet", "[", "'id_str'", "]", "except", "KeyError", ":", "self", ".", "logs", ".", "error", "(", "'Malformed tweet for link: %s'", "%", "tweet", ")", "return", "None", "link", "=", "TWEET_URL", "%", "(", "screen_name", ",", "id_str", ")", "return", "link" ]
[ 238, 4 ]
[ 253, 19 ]
python
en
['en', 'en', 'en']
True
TwitterListener.start_queue
(self)
Creates a queue and starts the worker threads.
Creates a queue and starts the worker threads.
def start_queue(self): """Creates a queue and starts the worker threads.""" self.queue = Queue() self.stop_event = Event() self.logs.debug('Starting %s worker threads.' % NUM_THREADS) self.workers = [] for worker_id in range(NUM_THREADS): worker = Thread(target=self.process_queue, args=[worker_id]) worker.daemon = True worker.start() self.workers.append(worker)
[ "def", "start_queue", "(", "self", ")", ":", "self", ".", "queue", "=", "Queue", "(", ")", "self", ".", "stop_event", "=", "Event", "(", ")", "self", ".", "logs", ".", "debug", "(", "'Starting %s worker threads.'", "%", "NUM_THREADS", ")", "self", ".", "workers", "=", "[", "]", "for", "worker_id", "in", "range", "(", "NUM_THREADS", ")", ":", "worker", "=", "Thread", "(", "target", "=", "self", ".", "process_queue", ",", "args", "=", "[", "worker_id", "]", ")", "worker", ".", "daemon", "=", "True", "worker", ".", "start", "(", ")", "self", ".", "workers", ".", "append", "(", "worker", ")" ]
[ 266, 4 ]
[ 277, 39 ]
python
en
['en', 'en', 'en']
True
TwitterListener.stop_queue
(self)
Shuts down the queue and worker threads.
Shuts down the queue and worker threads.
def stop_queue(self): """Shuts down the queue and worker threads.""" # First stop the queue. if self.queue: self.logs.debug('Stopping queue.') self.queue.join() else: self.logs.warn('No queue to stop.') # Then stop the worker threads. if self.workers: self.logs.debug('Stopping %d worker threads.' % len(self.workers)) self.stop_event.set() for worker in self.workers: # Block until the thread terminates. worker.join() else: self.logs.warn('No worker threads to stop.')
[ "def", "stop_queue", "(", "self", ")", ":", "# First stop the queue.", "if", "self", ".", "queue", ":", "self", ".", "logs", ".", "debug", "(", "'Stopping queue.'", ")", "self", ".", "queue", ".", "join", "(", ")", "else", ":", "self", ".", "logs", ".", "warn", "(", "'No queue to stop.'", ")", "# Then stop the worker threads.", "if", "self", ".", "workers", ":", "self", ".", "logs", ".", "debug", "(", "'Stopping %d worker threads.'", "%", "len", "(", "self", ".", "workers", ")", ")", "self", ".", "stop_event", ".", "set", "(", ")", "for", "worker", "in", "self", ".", "workers", ":", "# Block until the thread terminates.", "worker", ".", "join", "(", ")", "else", ":", "self", ".", "logs", ".", "warn", "(", "'No worker threads to stop.'", ")" ]
[ 279, 4 ]
[ 297, 56 ]
python
en
['en', 'en', 'en']
True
TwitterListener.process_queue
(self, worker_id)
Continuously processes tasks on the queue.
Continuously processes tasks on the queue.
def process_queue(self, worker_id): """Continuously processes tasks on the queue.""" # Create a new logs instance (with its own httplib2 instance) so that # there is a separate one for each thread. logs = Logs('twitter-listener-worker-%s' % worker_id, to_cloud=self.logs_to_cloud) logs.debug('Started worker thread: %s' % worker_id) while not self.stop_event.is_set(): try: data = self.queue.get(block=True, timeout=QUEUE_TIMEOUT_S) start_time = time() self.handle_data(logs, data) self.queue.task_done() end_time = time() qsize = self.queue.qsize() logs.debug('Worker %s took %.f ms with %d tasks remaining.' % (worker_id, end_time - start_time, qsize)) except Empty: logs.debug('Worker %s timed out on an empty queue.' % worker_id) continue except Exception: # The main loop doesn't catch and report exceptions from # background threads, so do that here. logs.catch() logs.debug('Stopped worker thread: %s' % worker_id)
[ "def", "process_queue", "(", "self", ",", "worker_id", ")", ":", "# Create a new logs instance (with its own httplib2 instance) so that", "# there is a separate one for each thread.", "logs", "=", "Logs", "(", "'twitter-listener-worker-%s'", "%", "worker_id", ",", "to_cloud", "=", "self", ".", "logs_to_cloud", ")", "logs", ".", "debug", "(", "'Started worker thread: %s'", "%", "worker_id", ")", "while", "not", "self", ".", "stop_event", ".", "is_set", "(", ")", ":", "try", ":", "data", "=", "self", ".", "queue", ".", "get", "(", "block", "=", "True", ",", "timeout", "=", "QUEUE_TIMEOUT_S", ")", "start_time", "=", "time", "(", ")", "self", ".", "handle_data", "(", "logs", ",", "data", ")", "self", ".", "queue", ".", "task_done", "(", ")", "end_time", "=", "time", "(", ")", "qsize", "=", "self", ".", "queue", ".", "qsize", "(", ")", "logs", ".", "debug", "(", "'Worker %s took %.f ms with %d tasks remaining.'", "%", "(", "worker_id", ",", "end_time", "-", "start_time", ",", "qsize", ")", ")", "except", "Empty", ":", "logs", ".", "debug", "(", "'Worker %s timed out on an empty queue.'", "%", "worker_id", ")", "continue", "except", "Exception", ":", "# The main loop doesn't catch and report exceptions from", "# background threads, so do that here.", "logs", ".", "catch", "(", ")", "logs", ".", "debug", "(", "'Stopped worker thread: %s'", "%", "worker_id", ")" ]
[ 299, 4 ]
[ 326, 59 ]
python
en
['en', 'en', 'en']
True
TwitterListener.on_error
(self, status)
Handles any API errors.
Handles any API errors.
def on_error(self, status): """Handles any API errors.""" self.logs.error('Twitter error: %s' % status) self.error_status = status self.stop_queue() return False
[ "def", "on_error", "(", "self", ",", "status", ")", ":", "self", ".", "logs", ".", "error", "(", "'Twitter error: %s'", "%", "status", ")", "self", ".", "error_status", "=", "status", "self", ".", "stop_queue", "(", ")", "return", "False" ]
[ 328, 4 ]
[ 334, 20 ]
python
en
['en', 'mg', 'en']
True
TwitterListener.get_error_status
(self)
Returns the API error status, if there was one.
Returns the API error status, if there was one.
def get_error_status(self): """Returns the API error status, if there was one.""" return self.error_status
[ "def", "get_error_status", "(", "self", ")", ":", "return", "self", ".", "error_status" ]
[ 336, 4 ]
[ 338, 32 ]
python
en
['en', 'en', 'en']
True
TwitterListener.on_data
(self, data)
Puts a task to process the new data on the queue.
Puts a task to process the new data on the queue.
def on_data(self, data): """Puts a task to process the new data on the queue.""" # Stop streaming if requested. if self.stop_event.is_set(): return False # Put the task on the queue and keep streaming. self.queue.put(data) return True
[ "def", "on_data", "(", "self", ",", "data", ")", ":", "# Stop streaming if requested.", "if", "self", ".", "stop_event", ".", "is_set", "(", ")", ":", "return", "False", "# Put the task on the queue and keep streaming.", "self", ".", "queue", ".", "put", "(", "data", ")", "return", "True" ]
[ 340, 4 ]
[ 349, 19 ]
python
en
['en', 'en', 'en']
True
TwitterListener.handle_data
(self, logs, data)
Sanity-checks and extracts the data before sending it to the callback.
Sanity-checks and extracts the data before sending it to the callback.
def handle_data(self, logs, data): """Sanity-checks and extracts the data before sending it to the callback. """ try: tweet = loads(data) except ValueError: logs.error('Failed to decode JSON data: %s' % data) return try: user_id_str = tweet['user']['id_str'] screen_name = tweet['user']['screen_name'] except KeyError: logs.error('Malformed tweet: %s' % tweet) return # We're only interested in tweets from Mr. Trump himself, so skip the # rest. if user_id_str != TRUMP_USER_ID: logs.debug('Skipping tweet from user: %s (%s)' % (screen_name, user_id_str)) return logs.info('Examining tweet: %s' % tweet) # Call the callback. self.callback(tweet)
[ "def", "handle_data", "(", "self", ",", "logs", ",", "data", ")", ":", "try", ":", "tweet", "=", "loads", "(", "data", ")", "except", "ValueError", ":", "logs", ".", "error", "(", "'Failed to decode JSON data: %s'", "%", "data", ")", "return", "try", ":", "user_id_str", "=", "tweet", "[", "'user'", "]", "[", "'id_str'", "]", "screen_name", "=", "tweet", "[", "'user'", "]", "[", "'screen_name'", "]", "except", "KeyError", ":", "logs", ".", "error", "(", "'Malformed tweet: %s'", "%", "tweet", ")", "return", "# We're only interested in tweets from Mr. Trump himself, so skip the", "# rest.", "if", "user_id_str", "!=", "TRUMP_USER_ID", ":", "logs", ".", "debug", "(", "'Skipping tweet from user: %s (%s)'", "%", "(", "screen_name", ",", "user_id_str", ")", ")", "return", "logs", ".", "info", "(", "'Examining tweet: %s'", "%", "tweet", ")", "# Call the callback.", "self", ".", "callback", "(", "tweet", ")" ]
[ 351, 4 ]
[ 379, 28 ]
python
en
['en', 'en', 'en']
True
parse_service_messages
(text)
Parses service messages from the given build log. :type text: str :rtype: list[ServiceMessage]
Parses service messages from the given build log. :type text: str :rtype: list[ServiceMessage]
def parse_service_messages(text): """ Parses service messages from the given build log. :type text: str :rtype: list[ServiceMessage] """ messages = list() for line in text.splitlines(): r = line.strip() index = r.find("##teamcity[") if index != -1: m = _parse_one_service_message(r[index:]) messages.append(m) return messages
[ "def", "parse_service_messages", "(", "text", ")", ":", "messages", "=", "list", "(", ")", "for", "line", "in", "text", ".", "splitlines", "(", ")", ":", "r", "=", "line", ".", "strip", "(", ")", "index", "=", "r", ".", "find", "(", "\"##teamcity[\"", ")", "if", "index", "!=", "-", "1", ":", "m", "=", "_parse_one_service_message", "(", "r", "[", "index", ":", "]", ")", "messages", ".", "append", "(", "m", ")", "return", "messages" ]
[ 47, 0 ]
[ 60, 19 ]
python
en
['en', 'error', 'th']
False
service_messages_to_string
(messages)
:type messages: list[ServiceMessage]
:type messages: list[ServiceMessage]
def service_messages_to_string(messages): """ :type messages: list[ServiceMessage] """ return u"\n".join([x.as_unicode() for x in messages])
[ "def", "service_messages_to_string", "(", "messages", ")", ":", "return", "u\"\\n\"", ".", "join", "(", "[", "x", ".", "as_unicode", "(", ")", "for", "x", "in", "messages", "]", ")" ]
[ 63, 0 ]
[ 67, 57 ]
python
en
['en', 'error', 'th']
False
_parse_one_service_message
(s)
Parses one service message. :type s: str :rtype: service_message
Parses one service message. :type s: str :rtype: service_message
def _parse_one_service_message(s): """ Parses one service message. :type s: str :rtype: service_message """ b1 = s.index('[') b2 = s.rindex(']', b1) inner = s[b1 + 1:b2].strip() space1 = inner.find(' ') if space1 >= 0: name_len = space1 else: name_len = inner.__len__() name = inner[0:name_len] params = dict() beg = name_len + 1 while beg < inner.__len__(): if inner[beg] == '_': beg += 1 continue eq = inner.find('=', beg) if eq == -1: break q1 = inner.find("'", eq) if q1 == -1: break q2 = inner.find("'", q1 + 1) while q2 > 0 and inner[q2 - 1] == '|': q2 = inner.find("'", q2 + 1) if q2 == -1: break param_name = inner[beg:eq].strip() param_value = inner[q1 + 1:q2] params[param_name] = param_value beg = q2 + 1 return ServiceMessage(name, params)
[ "def", "_parse_one_service_message", "(", "s", ")", ":", "b1", "=", "s", ".", "index", "(", "'['", ")", "b2", "=", "s", ".", "rindex", "(", "']'", ",", "b1", ")", "inner", "=", "s", "[", "b1", "+", "1", ":", "b2", "]", ".", "strip", "(", ")", "space1", "=", "inner", ".", "find", "(", "' '", ")", "if", "space1", ">=", "0", ":", "name_len", "=", "space1", "else", ":", "name_len", "=", "inner", ".", "__len__", "(", ")", "name", "=", "inner", "[", "0", ":", "name_len", "]", "params", "=", "dict", "(", ")", "beg", "=", "name_len", "+", "1", "while", "beg", "<", "inner", ".", "__len__", "(", ")", ":", "if", "inner", "[", "beg", "]", "==", "'_'", ":", "beg", "+=", "1", "continue", "eq", "=", "inner", ".", "find", "(", "'='", ",", "beg", ")", "if", "eq", "==", "-", "1", ":", "break", "q1", "=", "inner", ".", "find", "(", "\"'\"", ",", "eq", ")", "if", "q1", "==", "-", "1", ":", "break", "q2", "=", "inner", ".", "find", "(", "\"'\"", ",", "q1", "+", "1", ")", "while", "q2", ">", "0", "and", "inner", "[", "q2", "-", "1", "]", "==", "'|'", ":", "q2", "=", "inner", ".", "find", "(", "\"'\"", ",", "q2", "+", "1", ")", "if", "q2", "==", "-", "1", ":", "break", "param_name", "=", "inner", "[", "beg", ":", "eq", "]", ".", "strip", "(", ")", "param_value", "=", "inner", "[", "q1", "+", "1", ":", "q2", "]", "params", "[", "param_name", "]", "=", "param_value", "beg", "=", "q2", "+", "1", "return", "ServiceMessage", "(", "name", ",", "params", ")" ]
[ 70, 0 ]
[ 110, 39 ]
python
en
['en', 'error', 'th']
False
match
(messages, message)
:type messages: list[ServiceMessage] :type message: ServiceMessage
:type messages: list[ServiceMessage] :type message: ServiceMessage
def match(messages, message): """ :type messages: list[ServiceMessage] :type message: ServiceMessage """ candidates = [x for x in messages if x >= message] if len(candidates) == 0: raise AssertionError("No messages match " + message.as_unicode() + " across " + service_messages_to_string(messages)) if len(candidates) > 1: raise AssertionError("More than one message match " + message.as_unicode() + " across " + service_messages_to_string(messages) + ": " + service_messages_to_string(candidates)) return candidates[0]
[ "def", "match", "(", "messages", ",", "message", ")", ":", "candidates", "=", "[", "x", "for", "x", "in", "messages", "if", "x", ">=", "message", "]", "if", "len", "(", "candidates", ")", "==", "0", ":", "raise", "AssertionError", "(", "\"No messages match \"", "+", "message", ".", "as_unicode", "(", ")", "+", "\" across \"", "+", "service_messages_to_string", "(", "messages", ")", ")", "if", "len", "(", "candidates", ")", ">", "1", ":", "raise", "AssertionError", "(", "\"More than one message match \"", "+", "message", ".", "as_unicode", "(", ")", "+", "\" across \"", "+", "service_messages_to_string", "(", "messages", ")", "+", "\": \"", "+", "service_messages_to_string", "(", "candidates", ")", ")", "return", "candidates", "[", "0", "]" ]
[ 118, 0 ]
[ 129, 24 ]
python
en
['en', 'error', 'th']
False
assert_service_messages
(actual_messages_string, expected_messages, actual_messages_predicate=lambda x: True)
:type expected_messages: list[ServiceMessage]
:type expected_messages: list[ServiceMessage]
def assert_service_messages(actual_messages_string, expected_messages, actual_messages_predicate=lambda x: True): """ :type expected_messages: list[ServiceMessage] """ expected_messages = [x for x in expected_messages if x is not None] actual_messages = [x for x in parse_service_messages(actual_messages_string) if actual_messages_predicate(x)] try: if len(actual_messages) != len(expected_messages): raise AssertionError("Expected %d service messages, but got %d" % (len(expected_messages), len(actual_messages))) for index, (actual, expected) in enumerate(zip(actual_messages, expected_messages)): message = u"Expected\n" + expected.as_unicode() + u", but got\n" + actual.as_unicode() + u"\n at index " + str(index) assert actual >= expected, message except AssertionError: print("Actual:\n" + service_messages_to_string(actual_messages) + "\n") print("Expected:\n" + service_messages_to_string(expected_messages) + "\n") raise sys.exc_info()[1] return actual_messages
[ "def", "assert_service_messages", "(", "actual_messages_string", ",", "expected_messages", ",", "actual_messages_predicate", "=", "lambda", "x", ":", "True", ")", ":", "expected_messages", "=", "[", "x", "for", "x", "in", "expected_messages", "if", "x", "is", "not", "None", "]", "actual_messages", "=", "[", "x", "for", "x", "in", "parse_service_messages", "(", "actual_messages_string", ")", "if", "actual_messages_predicate", "(", "x", ")", "]", "try", ":", "if", "len", "(", "actual_messages", ")", "!=", "len", "(", "expected_messages", ")", ":", "raise", "AssertionError", "(", "\"Expected %d service messages, but got %d\"", "%", "(", "len", "(", "expected_messages", ")", ",", "len", "(", "actual_messages", ")", ")", ")", "for", "index", ",", "(", "actual", ",", "expected", ")", "in", "enumerate", "(", "zip", "(", "actual_messages", ",", "expected_messages", ")", ")", ":", "message", "=", "u\"Expected\\n\"", "+", "expected", ".", "as_unicode", "(", ")", "+", "u\", but got\\n\"", "+", "actual", ".", "as_unicode", "(", ")", "+", "u\"\\n at index \"", "+", "str", "(", "index", ")", "assert", "actual", ">=", "expected", ",", "message", "except", "AssertionError", ":", "print", "(", "\"Actual:\\n\"", "+", "service_messages_to_string", "(", "actual_messages", ")", "+", "\"\\n\"", ")", "print", "(", "\"Expected:\\n\"", "+", "service_messages_to_string", "(", "expected_messages", ")", "+", "\"\\n\"", ")", "raise", "sys", ".", "exc_info", "(", ")", "[", "1", "]", "return", "actual_messages" ]
[ 132, 0 ]
[ 151, 26 ]
python
en
['en', 'error', 'th']
False
ServiceMessage.__init__
(self, name, params)
:type name: string :type params: dict[string, string]
:type name: string :type params: dict[string, string]
def __init__(self, name, params): """ :type name: string :type params: dict[string, string] """ self.name = name self.params = params
[ "def", "__init__", "(", "self", ",", "name", ",", "params", ")", ":", "self", ".", "name", "=", "name", "self", ".", "params", "=", "params" ]
[ 6, 4 ]
[ 12, 28 ]
python
en
['en', 'error', 'th']
False
ServiceMessage.__ge__
(self, other)
:type self: service_message :type other: service_message :rtype: bool
:type self: service_message :type other: service_message :rtype: bool
def __ge__(self, other): """ :type self: service_message :type other: service_message :rtype: bool """ if self.name != other.name: return False for p in other.params: if p in self.params: v1 = self.params[p] v2 = other.params[p] if to_unicode(v1).lower() != to_unicode(v2).lower(): return False else: return False return True
[ "def", "__ge__", "(", "self", ",", "other", ")", ":", "if", "self", ".", "name", "!=", "other", ".", "name", ":", "return", "False", "for", "p", "in", "other", ".", "params", ":", "if", "p", "in", "self", ".", "params", ":", "v1", "=", "self", ".", "params", "[", "p", "]", "v2", "=", "other", ".", "params", "[", "p", "]", "if", "to_unicode", "(", "v1", ")", ".", "lower", "(", ")", "!=", "to_unicode", "(", "v2", ")", ".", "lower", "(", ")", ":", "return", "False", "else", ":", "return", "False", "return", "True" ]
[ 14, 4 ]
[ 31, 19 ]
python
en
['en', 'error', 'th']
False
TupleFilesystemStoreBackend.rrmdir
(self, mroot, curpath)
recursively removes empty dirs between curpath and mroot inclusive
recursively removes empty dirs between curpath and mroot inclusive
def rrmdir(self, mroot, curpath): """ recursively removes empty dirs between curpath and mroot inclusive """ try: while ( not os.listdir(curpath) and os.path.exists(curpath) and mroot != curpath ): f2 = os.path.dirname(curpath) os.rmdir(curpath) curpath = f2 except (NotADirectoryError, FileNotFoundError): pass
[ "def", "rrmdir", "(", "self", ",", "mroot", ",", "curpath", ")", ":", "try", ":", "while", "(", "not", "os", ".", "listdir", "(", "curpath", ")", "and", "os", ".", "path", ".", "exists", "(", "curpath", ")", "and", "mroot", "!=", "curpath", ")", ":", "f2", "=", "os", ".", "path", ".", "dirname", "(", "curpath", ")", "os", ".", "rmdir", "(", "curpath", ")", "curpath", "=", "f2", "except", "(", "NotADirectoryError", ",", "FileNotFoundError", ")", ":", "pass" ]
[ 373, 4 ]
[ 385, 16 ]
python
en
['en', 'error', 'th']
False
impute_missing_data_1D
(data1D)
This function returns the data in the same format as it was passed in, but with missing values either masked out or imputed with appropriate values (currently only using a linear trend). Many linear plotting functions for 1D data often (and should) only connect contiguous, non-nan data points. This leaves gaps in the piecewise linear plot, which are sometimes graphically undesirable. Parameters ---------- data: numpy.ndarray A 1D NumPy array for which missing values are to be masked or imputed suitably for at least matplotlib plotting. If formatting for other libraries such as seaborn or plotly is necessary, add that formatting requirement as a parameter.
This function returns the data in the same format as it was passed in, but with missing values either masked out or imputed with appropriate values (currently only using a linear trend). Many linear plotting functions for 1D data often (and should) only connect contiguous, non-nan data points. This leaves gaps in the piecewise linear plot, which are sometimes graphically undesirable. Parameters ---------- data: numpy.ndarray A 1D NumPy array for which missing values are to be masked or imputed suitably for at least matplotlib plotting. If formatting for other libraries such as seaborn or plotly is necessary, add that formatting requirement as a parameter.
def impute_missing_data_1D(data1D): """ This function returns the data in the same format as it was passed in, but with missing values either masked out or imputed with appropriate values (currently only using a linear trend). Many linear plotting functions for 1D data often (and should) only connect contiguous, non-nan data points. This leaves gaps in the piecewise linear plot, which are sometimes graphically undesirable. Parameters ---------- data: numpy.ndarray A 1D NumPy array for which missing values are to be masked or imputed suitably for at least matplotlib plotting. If formatting for other libraries such as seaborn or plotly is necessary, add that formatting requirement as a parameter. """ nan_mask = ~np.isnan(data1D) x = np.arange(len(data1D)) x_no_nan = x[nan_mask] data_no_nan = data1D[nan_mask] if len(x_no_nan) >= 2: f = interp1d(x_no_nan, data_no_nan) # Select points for interpolation. interpolation_x_mask = (x_no_nan[0]<=x) & (x<=x_no_nan[-1]) interpolation_x = x[interpolation_x_mask] data1D_interp = np.arange(len(data1D), dtype=np.float32) # The ends of data1D may contain NaNs that must be included. end_nan_inds = x[(x<=x_no_nan[0]) | (x_no_nan[-1]<=x)] data1D_interp[end_nan_inds] = np.nan data1D_interp[interpolation_x_mask] = f(interpolation_x) return data1D_interp else: # Cannot interpolate with a single non-nan point. return data1D
[ "def", "impute_missing_data_1D", "(", "data1D", ")", ":", "nan_mask", "=", "~", "np", ".", "isnan", "(", "data1D", ")", "x", "=", "np", ".", "arange", "(", "len", "(", "data1D", ")", ")", "x_no_nan", "=", "x", "[", "nan_mask", "]", "data_no_nan", "=", "data1D", "[", "nan_mask", "]", "if", "len", "(", "x_no_nan", ")", ">=", "2", ":", "f", "=", "interp1d", "(", "x_no_nan", ",", "data_no_nan", ")", "# Select points for interpolation.", "interpolation_x_mask", "=", "(", "x_no_nan", "[", "0", "]", "<=", "x", ")", "&", "(", "x", "<=", "x_no_nan", "[", "-", "1", "]", ")", "interpolation_x", "=", "x", "[", "interpolation_x_mask", "]", "data1D_interp", "=", "np", ".", "arange", "(", "len", "(", "data1D", ")", ",", "dtype", "=", "np", ".", "float32", ")", "# The ends of data1D may contain NaNs that must be included.", "end_nan_inds", "=", "x", "[", "(", "x", "<=", "x_no_nan", "[", "0", "]", ")", "|", "(", "x_no_nan", "[", "-", "1", "]", "<=", "x", ")", "]", "data1D_interp", "[", "end_nan_inds", "]", "=", "np", ".", "nan", "data1D_interp", "[", "interpolation_x_mask", "]", "=", "f", "(", "interpolation_x", ")", "return", "data1D_interp", "else", ":", "# Cannot interpolate with a single non-nan point.", "return", "data1D" ]
[ 43, 0 ]
[ 74, 21 ]
python
en
['en', 'error', 'th']
False
np_dt64_to_str
(np_datetime, fmt='%Y-%m-%d')
Converts a NumPy datetime64 object to a string based on a format string supplied to pandas strftime.
Converts a NumPy datetime64 object to a string based on a format string supplied to pandas strftime.
def np_dt64_to_str(np_datetime, fmt='%Y-%m-%d'): """Converts a NumPy datetime64 object to a string based on a format string supplied to pandas strftime.""" return pd.to_datetime(str(np_datetime)).strftime(fmt)
[ "def", "np_dt64_to_str", "(", "np_datetime", ",", "fmt", "=", "'%Y-%m-%d'", ")", ":", "return", "pd", ".", "to_datetime", "(", "str", "(", "np_datetime", ")", ")", ".", "strftime", "(", "fmt", ")" ]
[ 85, 0 ]
[ 87, 57 ]
python
en
['en', 'en', 'en']
True
xarray_plot_data_vars_over_time
(dataset, colors=['orange', 'blue'])
Plot a line plot of all data variables in an xarray.Dataset on a shared set of axes. Parameters ---------- dataset: xarray.Dataset The Dataset containing data variables to plot. The only dimension and coordinate must be 'time'. colors: list A list of strings denoting colors for each data variable's points. For example, 'red' or 'blue' are acceptable. :Authors: John Rattz ([email protected])
Plot a line plot of all data variables in an xarray.Dataset on a shared set of axes. Parameters ---------- dataset: xarray.Dataset The Dataset containing data variables to plot. The only dimension and coordinate must be 'time'. colors: list A list of strings denoting colors for each data variable's points. For example, 'red' or 'blue' are acceptable. :Authors: John Rattz (john.c.rattz
def xarray_plot_data_vars_over_time(dataset, colors=['orange', 'blue']): """ Plot a line plot of all data variables in an xarray.Dataset on a shared set of axes. Parameters ---------- dataset: xarray.Dataset The Dataset containing data variables to plot. The only dimension and coordinate must be 'time'. colors: list A list of strings denoting colors for each data variable's points. For example, 'red' or 'blue' are acceptable. :Authors: John Rattz ([email protected]) """ data_var_names = sorted(list(dataset.data_vars)) len_dataset = dataset.time.size nan_mask = np.full(len_dataset, True) for i, data_arr_name in enumerate(data_var_names): data_arr = dataset[data_arr_name] nan_mask = nan_mask & data_arr.notnull().values plt.plot(data_arr[nan_mask], marker='o', c=colors[i]) times = dataset.time.values date_strs = np.array(list(map(lambda time: np_dt64_to_str(time), times))) plt.xticks(np.arange(len(date_strs[nan_mask])), date_strs[nan_mask], rotation=45, ha='right', rotation_mode='anchor') plt.legend(data_var_names, loc='upper right') plt.show()
[ "def", "xarray_plot_data_vars_over_time", "(", "dataset", ",", "colors", "=", "[", "'orange'", ",", "'blue'", "]", ")", ":", "data_var_names", "=", "sorted", "(", "list", "(", "dataset", ".", "data_vars", ")", ")", "len_dataset", "=", "dataset", ".", "time", ".", "size", "nan_mask", "=", "np", ".", "full", "(", "len_dataset", ",", "True", ")", "for", "i", ",", "data_arr_name", "in", "enumerate", "(", "data_var_names", ")", ":", "data_arr", "=", "dataset", "[", "data_arr_name", "]", "nan_mask", "=", "nan_mask", "&", "data_arr", ".", "notnull", "(", ")", ".", "values", "plt", ".", "plot", "(", "data_arr", "[", "nan_mask", "]", ",", "marker", "=", "'o'", ",", "c", "=", "colors", "[", "i", "]", ")", "times", "=", "dataset", ".", "time", ".", "values", "date_strs", "=", "np", ".", "array", "(", "list", "(", "map", "(", "lambda", "time", ":", "np_dt64_to_str", "(", "time", ")", ",", "times", ")", ")", ")", "plt", ".", "xticks", "(", "np", ".", "arange", "(", "len", "(", "date_strs", "[", "nan_mask", "]", ")", ")", ",", "date_strs", "[", "nan_mask", "]", ",", "rotation", "=", "45", ",", "ha", "=", "'right'", ",", "rotation_mode", "=", "'anchor'", ")", "plt", ".", "legend", "(", "data_var_names", ",", "loc", "=", "'upper right'", ")", "plt", ".", "show", "(", ")" ]
[ 122, 0 ]
[ 149, 14 ]
python
en
['en', 'error', 'th']
False
xarray_scatterplot_data_vars
(dataset, figure_kwargs={'figsize':(12,6)}, colors=['blue', 'orange'], markersize=5)
Plot a scatterplot of all data variables in an xarray.Dataset on a shared set of axes. Currently requires a 'time' coordinate, which constitutes the x-axis. Parameters ---------- dataset: xarray.Dataset The Dataset containing data variables to plot. frac_dates: float The fraction of dates to label on the x-axis. figure_kwargs: dict A dictionary of kwargs for matplotlib figure creation. colors: list A list of strings denoting abbreviated colors for each data variable's points. For example, 'r' is red and 'b' is blue. markersize: float The size of markers in the scatterplot. :Authors: John Rattz ([email protected])
Plot a scatterplot of all data variables in an xarray.Dataset on a shared set of axes. Currently requires a 'time' coordinate, which constitutes the x-axis.
def xarray_scatterplot_data_vars(dataset, figure_kwargs={'figsize':(12,6)}, colors=['blue', 'orange'], markersize=5): """ Plot a scatterplot of all data variables in an xarray.Dataset on a shared set of axes. Currently requires a 'time' coordinate, which constitutes the x-axis. Parameters ---------- dataset: xarray.Dataset The Dataset containing data variables to plot. frac_dates: float The fraction of dates to label on the x-axis. figure_kwargs: dict A dictionary of kwargs for matplotlib figure creation. colors: list A list of strings denoting abbreviated colors for each data variable's points. For example, 'r' is red and 'b' is blue. markersize: float The size of markers in the scatterplot. :Authors: John Rattz ([email protected]) """ plt.figure(**figure_kwargs) data_var_names = list(dataset.data_vars) len_dataset = dataset.time.size nan_mask = np.full(len_dataset, True) for i, data_arr in enumerate(dataset.data_vars.values()): if len(list(dataset.dims)) > 1: dims_to_check_for_nulls = [dim for dim in list(dataset.dims) if dim != 'time'] nan_mask = nan_mask & data_arr.notnull().any(dim=dims_to_check_for_nulls).values else: nan_mask = data_arr.notnull().values times = data_arr.to_dataframe().index.get_level_values('time').values plt.scatter(stats.rankdata(times, method='dense')-1, data_arr.values.flatten(), c=colors[i], s=markersize) unique_times = dataset.time.values date_strs = np.array(list(map(lambda time: np_dt64_to_str(time), unique_times))) plt.xticks(np.arange(len(date_strs))[nan_mask], date_strs[nan_mask], rotation=45, ha='right', rotation_mode='anchor') plt.xlabel('time') plt.legend(data_var_names, loc='upper right') plt.show()
[ "def", "xarray_scatterplot_data_vars", "(", "dataset", ",", "figure_kwargs", "=", "{", "'figsize'", ":", "(", "12", ",", "6", ")", "}", ",", "colors", "=", "[", "'blue'", ",", "'orange'", "]", ",", "markersize", "=", "5", ")", ":", "plt", ".", "figure", "(", "*", "*", "figure_kwargs", ")", "data_var_names", "=", "list", "(", "dataset", ".", "data_vars", ")", "len_dataset", "=", "dataset", ".", "time", ".", "size", "nan_mask", "=", "np", ".", "full", "(", "len_dataset", ",", "True", ")", "for", "i", ",", "data_arr", "in", "enumerate", "(", "dataset", ".", "data_vars", ".", "values", "(", ")", ")", ":", "if", "len", "(", "list", "(", "dataset", ".", "dims", ")", ")", ">", "1", ":", "dims_to_check_for_nulls", "=", "[", "dim", "for", "dim", "in", "list", "(", "dataset", ".", "dims", ")", "if", "dim", "!=", "'time'", "]", "nan_mask", "=", "nan_mask", "&", "data_arr", ".", "notnull", "(", ")", ".", "any", "(", "dim", "=", "dims_to_check_for_nulls", ")", ".", "values", "else", ":", "nan_mask", "=", "data_arr", ".", "notnull", "(", ")", ".", "values", "times", "=", "data_arr", ".", "to_dataframe", "(", ")", ".", "index", ".", "get_level_values", "(", "'time'", ")", ".", "values", "plt", ".", "scatter", "(", "stats", ".", "rankdata", "(", "times", ",", "method", "=", "'dense'", ")", "-", "1", ",", "data_arr", ".", "values", ".", "flatten", "(", ")", ",", "c", "=", "colors", "[", "i", "]", ",", "s", "=", "markersize", ")", "unique_times", "=", "dataset", ".", "time", ".", "values", "date_strs", "=", "np", ".", "array", "(", "list", "(", "map", "(", "lambda", "time", ":", "np_dt64_to_str", "(", "time", ")", ",", "unique_times", ")", ")", ")", "plt", ".", "xticks", "(", "np", ".", "arange", "(", "len", "(", "date_strs", ")", ")", "[", "nan_mask", "]", ",", "date_strs", "[", "nan_mask", "]", ",", "rotation", "=", "45", ",", "ha", "=", "'right'", ",", "rotation_mode", "=", "'anchor'", ")", "plt", ".", "xlabel", "(", "'time'", ")", "plt", ".", "legend", "(", "data_var_names", ",", "loc", "=", "'upper right'", ")", "plt", ".", "show", "(", ")" ]
[ 151, 0 ]
[ 191, 14 ]
python
en
['en', 'error', 'th']
False
xarray_plot_ndvi_boxplot_wofs_lineplot_over_time
(dataset, resolution=None, colors=['orange', 'blue'])
For an xarray.Dataset, plot a boxplot of NDVI and line plot of WOFS across time. Parameters ---------- dataset: xarray.Dataset A Dataset formatted as follows: coordinates: time, latitude, longitude. data variables: ndvi, wofs resolution: str Denotes the resolution of aggregation. Only options are None or 'weekly'. colors: list A list of strings denoting colors for each data variable's points. For example, 'red' or 'blue' are acceptable. :Authors: John Rattz ([email protected])
For an xarray.Dataset, plot a boxplot of NDVI and line plot of WOFS across time. Parameters ---------- dataset: xarray.Dataset A Dataset formatted as follows: coordinates: time, latitude, longitude. data variables: ndvi, wofs resolution: str Denotes the resolution of aggregation. Only options are None or 'weekly'. colors: list A list of strings denoting colors for each data variable's points. For example, 'red' or 'blue' are acceptable. :Authors: John Rattz (john.c.rattz
def xarray_plot_ndvi_boxplot_wofs_lineplot_over_time(dataset, resolution=None, colors=['orange', 'blue']): """ For an xarray.Dataset, plot a boxplot of NDVI and line plot of WOFS across time. Parameters ---------- dataset: xarray.Dataset A Dataset formatted as follows: coordinates: time, latitude, longitude. data variables: ndvi, wofs resolution: str Denotes the resolution of aggregation. Only options are None or 'weekly'. colors: list A list of strings denoting colors for each data variable's points. For example, 'red' or 'blue' are acceptable. :Authors: John Rattz ([email protected]) """ plotting_data = dataset.stack(lat_lon=('latitude', 'longitude')) time_agg_str = 'weekofyear' if resolution is not None and resolution == 'weekly' else 'time' if time_agg_str != 'time': plotting_data = plotting_data.groupby('time.'+time_agg_str).mean(dim='time') fig, ax = plt.subplots(figsize=(9,6)) ndvi_box_color, wofs_line_color = ('orange', 'blue') times = plotting_data[time_agg_str].values # NDVI boxplot boxes # The data formatted for matplotlib.pyplot.boxplot(). ndvi_formatted_data = xr.DataArray(np.full_like(plotting_data.ndvi.values, np.nan)) for i, time in enumerate(times): ndvi_formatted_data.loc[i,:] = plotting_data.loc[{time_agg_str:time}].ndvi.values ndvi_nan_mask = ~np.isnan(ndvi_formatted_data) filtered_formatted_data = [] # Data formatted for matplotlib.pyplot.boxplot(). acq_inds_to_keep = [] # Indices of acquisitions to keep. Other indicies contain all nan values. for i, (d, m) in enumerate(zip(ndvi_formatted_data, ndvi_nan_mask)): if len(d[m] != 0): filtered_formatted_data.append(d[m]) acq_inds_to_keep.append(i) times_no_nan = times[acq_inds_to_keep] epochs = np.array(list(map(n64_to_epoch, times_no_nan))) if time_agg_str == 'time' else None x_locs = epochs if time_agg_str == 'time' else times_no_nan box_width = 0.5*np.min(np.diff(x_locs)) bp = ax.boxplot(filtered_formatted_data, widths=[box_width]*len(filtered_formatted_data), positions=x_locs, patch_artist=True, boxprops=dict(facecolor=ndvi_box_color), flierprops=dict(marker='o', markersize=0.25), manage_xticks=False) # `manage_xticks=False` to avoid excessive padding on the x-axis. # WOFS line wofs_formatted_data = xr.DataArray(np.full_like(plotting_data.wofs.values, np.nan)) for i, time in enumerate(times): wofs_formatted_data.loc[i,:] = plotting_data.loc[{time_agg_str:time}].wofs.values wofs_line_plot_data = np.nanmean(wofs_formatted_data.values, axis=1) wofs_nan_mask = ~np.isnan(wofs_line_plot_data) line = ax.plot(x_locs, wofs_line_plot_data[wofs_nan_mask], c=wofs_line_color) date_strs = np.array(list(map(lambda time: np_dt64_to_str(time), times_no_nan))) if time_agg_str=='time' else \ naive_months_ticks_by_week(times_no_nan) x_labels = date_strs plt.xticks(x_locs, x_labels, rotation=45, ha='right', rotation_mode='anchor') plt.legend(handles=[bp['boxes'][0],line[0]], labels=list(plotting_data.data_vars), loc='best') plt.tight_layout() plt.show()
[ "def", "xarray_plot_ndvi_boxplot_wofs_lineplot_over_time", "(", "dataset", ",", "resolution", "=", "None", ",", "colors", "=", "[", "'orange'", ",", "'blue'", "]", ")", ":", "plotting_data", "=", "dataset", ".", "stack", "(", "lat_lon", "=", "(", "'latitude'", ",", "'longitude'", ")", ")", "time_agg_str", "=", "'weekofyear'", "if", "resolution", "is", "not", "None", "and", "resolution", "==", "'weekly'", "else", "'time'", "if", "time_agg_str", "!=", "'time'", ":", "plotting_data", "=", "plotting_data", ".", "groupby", "(", "'time.'", "+", "time_agg_str", ")", ".", "mean", "(", "dim", "=", "'time'", ")", "fig", ",", "ax", "=", "plt", ".", "subplots", "(", "figsize", "=", "(", "9", ",", "6", ")", ")", "ndvi_box_color", ",", "wofs_line_color", "=", "(", "'orange'", ",", "'blue'", ")", "times", "=", "plotting_data", "[", "time_agg_str", "]", ".", "values", "# NDVI boxplot boxes", "# The data formatted for matplotlib.pyplot.boxplot().", "ndvi_formatted_data", "=", "xr", ".", "DataArray", "(", "np", ".", "full_like", "(", "plotting_data", ".", "ndvi", ".", "values", ",", "np", ".", "nan", ")", ")", "for", "i", ",", "time", "in", "enumerate", "(", "times", ")", ":", "ndvi_formatted_data", ".", "loc", "[", "i", ",", ":", "]", "=", "plotting_data", ".", "loc", "[", "{", "time_agg_str", ":", "time", "}", "]", ".", "ndvi", ".", "values", "ndvi_nan_mask", "=", "~", "np", ".", "isnan", "(", "ndvi_formatted_data", ")", "filtered_formatted_data", "=", "[", "]", "# Data formatted for matplotlib.pyplot.boxplot().", "acq_inds_to_keep", "=", "[", "]", "# Indices of acquisitions to keep. Other indicies contain all nan values.", "for", "i", ",", "(", "d", ",", "m", ")", "in", "enumerate", "(", "zip", "(", "ndvi_formatted_data", ",", "ndvi_nan_mask", ")", ")", ":", "if", "len", "(", "d", "[", "m", "]", "!=", "0", ")", ":", "filtered_formatted_data", ".", "append", "(", "d", "[", "m", "]", ")", "acq_inds_to_keep", ".", "append", "(", "i", ")", "times_no_nan", "=", "times", "[", "acq_inds_to_keep", "]", "epochs", "=", "np", ".", "array", "(", "list", "(", "map", "(", "n64_to_epoch", ",", "times_no_nan", ")", ")", ")", "if", "time_agg_str", "==", "'time'", "else", "None", "x_locs", "=", "epochs", "if", "time_agg_str", "==", "'time'", "else", "times_no_nan", "box_width", "=", "0.5", "*", "np", ".", "min", "(", "np", ".", "diff", "(", "x_locs", ")", ")", "bp", "=", "ax", ".", "boxplot", "(", "filtered_formatted_data", ",", "widths", "=", "[", "box_width", "]", "*", "len", "(", "filtered_formatted_data", ")", ",", "positions", "=", "x_locs", ",", "patch_artist", "=", "True", ",", "boxprops", "=", "dict", "(", "facecolor", "=", "ndvi_box_color", ")", ",", "flierprops", "=", "dict", "(", "marker", "=", "'o'", ",", "markersize", "=", "0.25", ")", ",", "manage_xticks", "=", "False", ")", "# `manage_xticks=False` to avoid excessive padding on the x-axis.", "# WOFS line", "wofs_formatted_data", "=", "xr", ".", "DataArray", "(", "np", ".", "full_like", "(", "plotting_data", ".", "wofs", ".", "values", ",", "np", ".", "nan", ")", ")", "for", "i", ",", "time", "in", "enumerate", "(", "times", ")", ":", "wofs_formatted_data", ".", "loc", "[", "i", ",", ":", "]", "=", "plotting_data", ".", "loc", "[", "{", "time_agg_str", ":", "time", "}", "]", ".", "wofs", ".", "values", "wofs_line_plot_data", "=", "np", ".", "nanmean", "(", "wofs_formatted_data", ".", "values", ",", "axis", "=", "1", ")", "wofs_nan_mask", "=", "~", "np", ".", "isnan", "(", "wofs_line_plot_data", ")", "line", "=", "ax", ".", "plot", "(", "x_locs", ",", "wofs_line_plot_data", "[", "wofs_nan_mask", "]", ",", "c", "=", "wofs_line_color", ")", "date_strs", "=", "np", ".", "array", "(", "list", "(", "map", "(", "lambda", "time", ":", "np_dt64_to_str", "(", "time", ")", ",", "times_no_nan", ")", ")", ")", "if", "time_agg_str", "==", "'time'", "else", "naive_months_ticks_by_week", "(", "times_no_nan", ")", "x_labels", "=", "date_strs", "plt", ".", "xticks", "(", "x_locs", ",", "x_labels", ",", "rotation", "=", "45", ",", "ha", "=", "'right'", ",", "rotation_mode", "=", "'anchor'", ")", "plt", ".", "legend", "(", "handles", "=", "[", "bp", "[", "'boxes'", "]", "[", "0", "]", ",", "line", "[", "0", "]", "]", ",", "labels", "=", "list", "(", "plotting_data", ".", "data_vars", ")", ",", "loc", "=", "'best'", ")", "plt", ".", "tight_layout", "(", ")", "plt", ".", "show", "(", ")" ]
[ 193, 0 ]
[ 256, 14 ]
python
en
['en', 'error', 'th']
False
xarray_time_series_plot
(dataset, plot_descs, x_coord='longitude', y_coord='latitude', fig_params=None, scale_params=None, fig=None, ax=None, max_times_per_plot=None, show_legend=True, title=None)
Plot data variables in an xarray.Dataset together in one figure, with different plot types for each (e.g. box-and-whisker plot, line plot, scatter plot), and optional curve fitting to aggregations along time. Handles data binned with xarray.Dataset methods resample() and groupby(). That is, it handles data binned along time (e.g. by week) or across years (e.g. by week of year). Parameters ----------- dataset: xarray.Dataset A Dataset containing some bands like NDVI or WOFS. The primary coordinate must be 'time'. plot_descs: dict Dictionary mapping names of DataArrays in the Dataset to plot to dictionaries mapping aggregation types (e.g. 'mean', 'median') to lists of dictionaries mapping plot types (e.g. 'line', 'box', 'scatter') to keyword arguments for plotting. Aggregation happens within time slices and can be many-to-many or many-to-one. Some plot types require many-to-many aggregation, and some other plot types require many-to-one aggregation. Aggregation types can be any of ['mean', 'median', 'none'], with 'none' performing no aggregation. Plot types can be any of ['scatter', 'line', 'gaussian', 'poly', 'cubic_spline', 'box']. The plot type 'poly' requires a 'degree' entry mapping to an integer in its dictionary of keyword arguments. Here is an example: {'ndvi':{'mean':[{'line':{'color':'forestgreen', 'alpha':alpha}}], 'none':[{'box':{'boxprops':{'facecolor':'forestgreen','alpha':alpha}, 'showfliers':False}}]}} This example will create a green line plot of the mean of the 'ndvi' band as well as a green box plot of the 'ndvi' band. x_coord, y_coord: str Names of the x and y coordinates in `dataset` to use as tick and axis labels. fig_params: dict Figure parameters dictionary (e.g. {'figsize':(12,6)}). Used to create a Figure ``if fig is None and ax is None``. Note that in the case of multiple plots being created (see ``max_times_per_plot`` below), figsize will be the size of each plot - not the entire figure. scale_params: dict Currently not used. Dictionary mapping names of DataArrays to scaling methods (e.g. {'ndvi': 'std', 'wofs':'norm'}). The options are ['std', 'norm']. The option 'std' standardizes. The option 'norm' normalizes (min-max scales). Note that of these options, only normalizing guarantees that the y values will be in a fixed range - namely [0,1]. fig: matplotlib.figure.Figure The figure to use for the plot. If only `fig` is supplied, the Axes object used will be the first. This argument is ignored if ``max_times_per_plot`` is less than the number of times. ax: matplotlib.axes.Axes The axes to use for the plot. This argument is ignored if ``max_times_per_plot`` is less than the number of times. max_times_per_plot: int The maximum number of times per plot. If specified, one plot will be generated for each group of this many times. The plots will be arranged in a row-major grid. show_legend: bool Whether or not to show the legend. title: str The title of each subplot. Note that a date range enclosed in parenthesis will be postpended whether this is specified or not. Returns ------- fig: matplotlib.figure.Figure The figure containing the plot grid. Raises ------ ValueError: If an aggregation type is not possible for a plot type :Authors: John Rattz ([email protected])
Plot data variables in an xarray.Dataset together in one figure, with different plot types for each (e.g. box-and-whisker plot, line plot, scatter plot), and optional curve fitting to aggregations along time. Handles data binned with xarray.Dataset methods resample() and groupby(). That is, it handles data binned along time (e.g. by week) or across years (e.g. by week of year). Parameters ----------- dataset: xarray.Dataset A Dataset containing some bands like NDVI or WOFS. The primary coordinate must be 'time'. plot_descs: dict Dictionary mapping names of DataArrays in the Dataset to plot to dictionaries mapping aggregation types (e.g. 'mean', 'median') to lists of dictionaries mapping plot types (e.g. 'line', 'box', 'scatter') to keyword arguments for plotting. Aggregation happens within time slices and can be many-to-many or many-to-one. Some plot types require many-to-many aggregation, and some other plot types require many-to-one aggregation. Aggregation types can be any of ['mean', 'median', 'none'], with 'none' performing no aggregation. Plot types can be any of ['scatter', 'line', 'gaussian', 'poly', 'cubic_spline', 'box']. The plot type 'poly' requires a 'degree' entry mapping to an integer in its dictionary of keyword arguments. Here is an example: {'ndvi':{'mean':[{'line':{'color':'forestgreen', 'alpha':alpha}}], 'none':[{'box':{'boxprops':{'facecolor':'forestgreen','alpha':alpha}, 'showfliers':False}}]}} This example will create a green line plot of the mean of the 'ndvi' band as well as a green box plot of the 'ndvi' band. x_coord, y_coord: str Names of the x and y coordinates in `dataset` to use as tick and axis labels. fig_params: dict Figure parameters dictionary (e.g. {'figsize':(12,6)}). Used to create a Figure ``if fig is None and ax is None``. Note that in the case of multiple plots being created (see ``max_times_per_plot`` below), figsize will be the size of each plot - not the entire figure. scale_params: dict Currently not used. Dictionary mapping names of DataArrays to scaling methods (e.g. {'ndvi': 'std', 'wofs':'norm'}). The options are ['std', 'norm']. The option 'std' standardizes. The option 'norm' normalizes (min-max scales). Note that of these options, only normalizing guarantees that the y values will be in a fixed range - namely [0,1]. fig: matplotlib.figure.Figure The figure to use for the plot. If only `fig` is supplied, the Axes object used will be the first. This argument is ignored if ``max_times_per_plot`` is less than the number of times. ax: matplotlib.axes.Axes The axes to use for the plot. This argument is ignored if ``max_times_per_plot`` is less than the number of times. max_times_per_plot: int The maximum number of times per plot. If specified, one plot will be generated for each group of this many times. The plots will be arranged in a row-major grid. show_legend: bool Whether or not to show the legend. title: str The title of each subplot. Note that a date range enclosed in parenthesis will be postpended whether this is specified or not. Returns ------- fig: matplotlib.figure.Figure The figure containing the plot grid. Raises ------ ValueError: If an aggregation type is not possible for a plot type :Authors: John Rattz (john.c.rattz
def xarray_time_series_plot(dataset, plot_descs, x_coord='longitude', y_coord='latitude', fig_params=None, scale_params=None, fig=None, ax=None, max_times_per_plot=None, show_legend=True, title=None): """ Plot data variables in an xarray.Dataset together in one figure, with different plot types for each (e.g. box-and-whisker plot, line plot, scatter plot), and optional curve fitting to aggregations along time. Handles data binned with xarray.Dataset methods resample() and groupby(). That is, it handles data binned along time (e.g. by week) or across years (e.g. by week of year). Parameters ----------- dataset: xarray.Dataset A Dataset containing some bands like NDVI or WOFS. The primary coordinate must be 'time'. plot_descs: dict Dictionary mapping names of DataArrays in the Dataset to plot to dictionaries mapping aggregation types (e.g. 'mean', 'median') to lists of dictionaries mapping plot types (e.g. 'line', 'box', 'scatter') to keyword arguments for plotting. Aggregation happens within time slices and can be many-to-many or many-to-one. Some plot types require many-to-many aggregation, and some other plot types require many-to-one aggregation. Aggregation types can be any of ['mean', 'median', 'none'], with 'none' performing no aggregation. Plot types can be any of ['scatter', 'line', 'gaussian', 'poly', 'cubic_spline', 'box']. The plot type 'poly' requires a 'degree' entry mapping to an integer in its dictionary of keyword arguments. Here is an example: {'ndvi':{'mean':[{'line':{'color':'forestgreen', 'alpha':alpha}}], 'none':[{'box':{'boxprops':{'facecolor':'forestgreen','alpha':alpha}, 'showfliers':False}}]}} This example will create a green line plot of the mean of the 'ndvi' band as well as a green box plot of the 'ndvi' band. x_coord, y_coord: str Names of the x and y coordinates in `dataset` to use as tick and axis labels. fig_params: dict Figure parameters dictionary (e.g. {'figsize':(12,6)}). Used to create a Figure ``if fig is None and ax is None``. Note that in the case of multiple plots being created (see ``max_times_per_plot`` below), figsize will be the size of each plot - not the entire figure. scale_params: dict Currently not used. Dictionary mapping names of DataArrays to scaling methods (e.g. {'ndvi': 'std', 'wofs':'norm'}). The options are ['std', 'norm']. The option 'std' standardizes. The option 'norm' normalizes (min-max scales). Note that of these options, only normalizing guarantees that the y values will be in a fixed range - namely [0,1]. fig: matplotlib.figure.Figure The figure to use for the plot. If only `fig` is supplied, the Axes object used will be the first. This argument is ignored if ``max_times_per_plot`` is less than the number of times. ax: matplotlib.axes.Axes The axes to use for the plot. This argument is ignored if ``max_times_per_plot`` is less than the number of times. max_times_per_plot: int The maximum number of times per plot. If specified, one plot will be generated for each group of this many times. The plots will be arranged in a row-major grid. show_legend: bool Whether or not to show the legend. title: str The title of each subplot. Note that a date range enclosed in parenthesis will be postpended whether this is specified or not. Returns ------- fig: matplotlib.figure.Figure The figure containing the plot grid. Raises ------ ValueError: If an aggregation type is not possible for a plot type :Authors: John Rattz ([email protected]) """ # Set default values for mutable data. fig_params = {} if fig_params is None else fig_params fig_params.setdefault('figsize', (18,12)) scale_params = {} if scale_params is None else scale_params # Lists of plot types that can and cannot accept many-to-one aggregation # for each time slice. plot_types_requiring_aggregation = ['line', 'gaussian', 'poly', 'cubic_spline'] plot_types_handling_aggregation = ['scatter'] + plot_types_requiring_aggregation plot_types_not_handling_aggregation = ['box'] all_plot_types = plot_types_requiring_aggregation + plot_types_handling_aggregation\ + plot_types_not_handling_aggregation # Aggregation types that aggregate all values for a given time to one value. many_to_one_agg_types = ['mean', 'median'] # Aggregation types that aggregate to many values or do not aggregate. many_to_many_agg_types = ['none'] all_agg_types = many_to_one_agg_types + many_to_many_agg_types # Determine how the data was aggregated, if at all. possible_time_agg_strs = ['week', 'weekofyear', 'month'] time_agg_str = 'time' for possible_time_agg_str in possible_time_agg_strs: if possible_time_agg_str in list(dataset.coords): time_agg_str = possible_time_agg_str break # Make the data 2D - time and a stack of all other dimensions. non_time_dims = list(set(dataset.dims)-{time_agg_str}) all_plotting_bands = list(plot_descs.keys()) all_plotting_data = dataset[all_plotting_bands].stack(stacked_data=non_time_dims) all_times = all_plotting_data[time_agg_str].values # Mask out times for which no data variable to plot has any non-NaN data. nan_mask_data_vars = list(all_plotting_data[all_plotting_bands]\ .notnull().data_vars.values()) for i, data_var in enumerate(nan_mask_data_vars): time_nan_mask = data_var.values if i == 0 else time_nan_mask | data_var.values time_nan_mask = np.any(time_nan_mask, axis=1) times_not_all_nan = all_times[time_nan_mask] all_plotting_data = all_plotting_data.loc[{time_agg_str:times_not_all_nan}] # Scale # if scale_params denotes the scaling type for the whole Dataset, scale the Dataset. if isinstance(scale_params, str): all_plotting_data = xr_scale(all_plotting_data, scaling=scale_params) # else, it is a dictionary denoting how to scale each DataArray. elif len(scale_params) > 0: for data_arr_name, scaling in scale_params.items(): all_plotting_data[data_arr_name] = \ xr_scale(all_plotting_data[data_arr_name], scaling=scaling) # Handle the potential for multiple plots. max_times_per_plot = len(times_not_all_nan) if max_times_per_plot is None else \ max_times_per_plot num_plots = int(np.ceil(len(times_not_all_nan)/max_times_per_plot)) subset_num_cols = 2 subset_num_rows = int(np.ceil(num_plots / subset_num_cols)) if num_plots > 1: # figsize = fig_params.pop('figsize') base_figsize = fig_params.pop('figsize', \ figure_ratio(dataset, x_coord, y_coord, fixed_width=10)) figsize = [base*num for base,num in zip(base_figsize, (subset_num_cols,subset_num_rows))] fig = plt.figure(figsize=figsize, **fig_params) # Create each plot. for time_ind, fig_ind in zip(range(0, len(times_not_all_nan), max_times_per_plot), range(num_plots)): lower_time_bound_ind, upper_time_bound_ind = \ time_ind, min(time_ind+max_times_per_plot, len(times_not_all_nan)) time_extents = times_not_all_nan[[lower_time_bound_ind, upper_time_bound_ind-1]] # Retrieve or create the axes if necessary. if len(times_not_all_nan) <= max_times_per_plot: fig, ax = retrieve_or_create_fig_ax(fig, ax, **fig_params) else: ax = fig.add_subplot(subset_num_rows, subset_num_cols, fig_ind + 1) fig_times_not_all_nan =\ times_not_all_nan[lower_time_bound_ind:upper_time_bound_ind] plotting_data = all_plotting_data.loc[{time_agg_str:fig_times_not_all_nan}] epochs = np.array(list(map(n64_to_epoch, fig_times_not_all_nan))) \ if time_agg_str == 'time' else None x_locs = np_scale(epochs if time_agg_str == 'time' else fig_times_not_all_nan) # Data variable plots within each plot. data_arr_plots = [] legend_labels = [] # For each data array to plot... for data_arr_name, agg_dict in plot_descs.items(): # For each aggregation type (e.g. 'mean', 'median')... for agg_type, plot_dicts in agg_dict.items(): # For each plot for this aggregation type... for plot_dict in plot_dicts: for plot_type, plot_kwargs in plot_dict.items(): assert plot_type in all_plot_types, \ r"For the '{}' DataArray: plot_type '{}' not recognized"\ .format(data_arr_name, plot_type) full_data_arr_plotting_data = plotting_data[data_arr_name].values # Any times with all nan data are ignored in any plot type. data_arr_nan_mask = \ np.any(~np.isnan(full_data_arr_plotting_data), axis=1) # Skip plotting this data variable if it does not have # enough data to plot. if skip_plot(np.sum(data_arr_nan_mask), plot_type, plot_kwargs): continue # Remove times with all nan data. data_arr_plotting_data = \ full_data_arr_plotting_data[data_arr_nan_mask] # Large scales for x_locs can break the curve fitting # for some reason. data_arr_x_locs = x_locs[data_arr_nan_mask] # Some plot types require aggregation. if plot_type in plot_types_requiring_aggregation: if agg_type not in many_to_one_agg_types: raise ValueError("For the '{}' DataArray: the plot type " "'{}' requires aggregation (currently using '{}'). " "Please pass any of {} as the aggregation type " "or change the plot type.".format(data_arr_name,\ plot_type, agg_type, many_to_one_agg_types)) # Some plot types cannot accept many-to-one aggregation. if plot_type not in plot_types_handling_aggregation: if agg_type not in many_to_many_agg_types: raise ValueError("For the '{}' DataArray: " "the plot type '{}' doesn't accept aggregation " "(currently using '{}'). Please pass any of {} as " "the aggregation type or change the plot type." .format(data_arr_name, plot_type, agg_type, many_to_many_agg_types)) if agg_type == 'mean': y = ignore_warnings(np.nanmean, \ data_arr_plotting_data, axis=1) elif agg_type == 'median': y = ignore_warnings(np.nanmedian, \ data_arr_plotting_data, axis=1) elif agg_type == 'none': y = data_arr_plotting_data # Create specified plot types. plot_type_str = "" # Used to label the legend. if plot_type == 'scatter': data_arr_plots.append(ax.scatter(data_arr_x_locs, y, **plot_kwargs)) plot_type_str += 'scatterplot' elif plot_type == 'line': data_arr_plots.append(ax.plot(data_arr_x_locs, y, **plot_kwargs)[0]) plot_type_str += 'lineplot' elif plot_type == 'box': boxplot_nan_mask = ~np.isnan(y) # Data formatted for matplotlib.pyplot.boxplot(). filtered_formatted_data = [] for i, (d, m) in enumerate(zip(y, boxplot_nan_mask)): if len(d[m] != 0): filtered_formatted_data.append(d[m]) box_width = 0.5*np.min(np.diff(data_arr_x_locs)) \ if len(data_arr_x_locs) > 1 else 0.5 # Provide default arguments. plot_kwargs.setdefault('boxprops', dict(facecolor='orange')) plot_kwargs.setdefault('flierprops', dict(marker='o',\ markersize=0.5)) plot_kwargs.setdefault('showfliers', False) # `manage_xticks=False` to avoid excessive padding on x-axis. bp = ax.boxplot(filtered_formatted_data, widths=[box_width]*len(filtered_formatted_data), positions=data_arr_x_locs, patch_artist=True, manage_xticks=False, **plot_kwargs) data_arr_plots.append(bp['boxes'][0]) plot_type_str += 'boxplot' elif plot_type == 'gaussian': data_arr_plots.append( plot_curvefit(data_arr_x_locs, y, fit_type=plot_type, plot_kwargs=plot_kwargs, ax=ax)) plot_type_str += 'gaussian fit' elif plot_type == 'poly': assert 'degree' in plot_kwargs, \ r"For the '{}' DataArray: When using 'poly' as "\ "the fit type, the fit kwargs must have 'degree'"\ "specified.".format(data_arr_name) data_arr_plots.append( plot_curvefit(data_arr_x_locs, y, fit_type=plot_type, plot_kwargs=plot_kwargs, ax=ax)) plot_type_str += 'degree {} polynomial fit'\ .format(plot_kwargs['degree']) elif plot_type == 'cubic_spline': data_arr_plots.append( plot_curvefit(data_arr_x_locs, y, fit_type=plot_type, plot_kwargs=plot_kwargs, ax=ax)) plot_type_str += 'cubic spline fit' plot_type_str += ' of {}'.format(agg_type) \ if agg_type != 'none' else '' legend_labels.append('{} of {}'\ .format(plot_type_str, data_arr_name)) # Label the axes and create the legend. date_strs = \ np.array(list(map(lambda time: np_dt64_to_str(time), fig_times_not_all_nan)))\ if time_agg_str=='time' else\ naive_months_ticks_by_week(fig_times_not_all_nan) \ if time_agg_str in ['week', 'weekofyear'] else\ month_ints_to_month_names(fig_times_not_all_nan) plt.xticks(x_locs, date_strs, rotation=45, ha='right', rotation_mode='anchor') if show_legend: plt.legend(handles=data_arr_plots, labels=legend_labels, loc='best') title_postpend = " ({} to {})".format(date_strs[0], date_strs[-1]) title_prepend = "Figure {}".format(fig_ind) if title is None else title plt.title(title_prepend + title_postpend) plt.tight_layout() return fig
[ "def", "xarray_time_series_plot", "(", "dataset", ",", "plot_descs", ",", "x_coord", "=", "'longitude'", ",", "y_coord", "=", "'latitude'", ",", "fig_params", "=", "None", ",", "scale_params", "=", "None", ",", "fig", "=", "None", ",", "ax", "=", "None", ",", "max_times_per_plot", "=", "None", ",", "show_legend", "=", "True", ",", "title", "=", "None", ")", ":", "# Set default values for mutable data.", "fig_params", "=", "{", "}", "if", "fig_params", "is", "None", "else", "fig_params", "fig_params", ".", "setdefault", "(", "'figsize'", ",", "(", "18", ",", "12", ")", ")", "scale_params", "=", "{", "}", "if", "scale_params", "is", "None", "else", "scale_params", "# Lists of plot types that can and cannot accept many-to-one aggregation ", "# for each time slice.", "plot_types_requiring_aggregation", "=", "[", "'line'", ",", "'gaussian'", ",", "'poly'", ",", "'cubic_spline'", "]", "plot_types_handling_aggregation", "=", "[", "'scatter'", "]", "+", "plot_types_requiring_aggregation", "plot_types_not_handling_aggregation", "=", "[", "'box'", "]", "all_plot_types", "=", "plot_types_requiring_aggregation", "+", "plot_types_handling_aggregation", "+", "plot_types_not_handling_aggregation", "# Aggregation types that aggregate all values for a given time to one value.", "many_to_one_agg_types", "=", "[", "'mean'", ",", "'median'", "]", "# Aggregation types that aggregate to many values or do not aggregate.", "many_to_many_agg_types", "=", "[", "'none'", "]", "all_agg_types", "=", "many_to_one_agg_types", "+", "many_to_many_agg_types", "# Determine how the data was aggregated, if at all.", "possible_time_agg_strs", "=", "[", "'week'", ",", "'weekofyear'", ",", "'month'", "]", "time_agg_str", "=", "'time'", "for", "possible_time_agg_str", "in", "possible_time_agg_strs", ":", "if", "possible_time_agg_str", "in", "list", "(", "dataset", ".", "coords", ")", ":", "time_agg_str", "=", "possible_time_agg_str", "break", "# Make the data 2D - time and a stack of all other dimensions.", "non_time_dims", "=", "list", "(", "set", "(", "dataset", ".", "dims", ")", "-", "{", "time_agg_str", "}", ")", "all_plotting_bands", "=", "list", "(", "plot_descs", ".", "keys", "(", ")", ")", "all_plotting_data", "=", "dataset", "[", "all_plotting_bands", "]", ".", "stack", "(", "stacked_data", "=", "non_time_dims", ")", "all_times", "=", "all_plotting_data", "[", "time_agg_str", "]", ".", "values", "# Mask out times for which no data variable to plot has any non-NaN data.", "nan_mask_data_vars", "=", "list", "(", "all_plotting_data", "[", "all_plotting_bands", "]", ".", "notnull", "(", ")", ".", "data_vars", ".", "values", "(", ")", ")", "for", "i", ",", "data_var", "in", "enumerate", "(", "nan_mask_data_vars", ")", ":", "time_nan_mask", "=", "data_var", ".", "values", "if", "i", "==", "0", "else", "time_nan_mask", "|", "data_var", ".", "values", "time_nan_mask", "=", "np", ".", "any", "(", "time_nan_mask", ",", "axis", "=", "1", ")", "times_not_all_nan", "=", "all_times", "[", "time_nan_mask", "]", "all_plotting_data", "=", "all_plotting_data", ".", "loc", "[", "{", "time_agg_str", ":", "times_not_all_nan", "}", "]", "# Scale", "# if scale_params denotes the scaling type for the whole Dataset, scale the Dataset.", "if", "isinstance", "(", "scale_params", ",", "str", ")", ":", "all_plotting_data", "=", "xr_scale", "(", "all_plotting_data", ",", "scaling", "=", "scale_params", ")", "# else, it is a dictionary denoting how to scale each DataArray.", "elif", "len", "(", "scale_params", ")", ">", "0", ":", "for", "data_arr_name", ",", "scaling", "in", "scale_params", ".", "items", "(", ")", ":", "all_plotting_data", "[", "data_arr_name", "]", "=", "xr_scale", "(", "all_plotting_data", "[", "data_arr_name", "]", ",", "scaling", "=", "scaling", ")", "# Handle the potential for multiple plots.", "max_times_per_plot", "=", "len", "(", "times_not_all_nan", ")", "if", "max_times_per_plot", "is", "None", "else", "max_times_per_plot", "num_plots", "=", "int", "(", "np", ".", "ceil", "(", "len", "(", "times_not_all_nan", ")", "/", "max_times_per_plot", ")", ")", "subset_num_cols", "=", "2", "subset_num_rows", "=", "int", "(", "np", ".", "ceil", "(", "num_plots", "/", "subset_num_cols", ")", ")", "if", "num_plots", ">", "1", ":", "# figsize = fig_params.pop('figsize')", "base_figsize", "=", "fig_params", ".", "pop", "(", "'figsize'", ",", "figure_ratio", "(", "dataset", ",", "x_coord", ",", "y_coord", ",", "fixed_width", "=", "10", ")", ")", "figsize", "=", "[", "base", "*", "num", "for", "base", ",", "num", "in", "zip", "(", "base_figsize", ",", "(", "subset_num_cols", ",", "subset_num_rows", ")", ")", "]", "fig", "=", "plt", ".", "figure", "(", "figsize", "=", "figsize", ",", "*", "*", "fig_params", ")", "# Create each plot.", "for", "time_ind", ",", "fig_ind", "in", "zip", "(", "range", "(", "0", ",", "len", "(", "times_not_all_nan", ")", ",", "max_times_per_plot", ")", ",", "range", "(", "num_plots", ")", ")", ":", "lower_time_bound_ind", ",", "upper_time_bound_ind", "=", "time_ind", ",", "min", "(", "time_ind", "+", "max_times_per_plot", ",", "len", "(", "times_not_all_nan", ")", ")", "time_extents", "=", "times_not_all_nan", "[", "[", "lower_time_bound_ind", ",", "upper_time_bound_ind", "-", "1", "]", "]", "# Retrieve or create the axes if necessary.", "if", "len", "(", "times_not_all_nan", ")", "<=", "max_times_per_plot", ":", "fig", ",", "ax", "=", "retrieve_or_create_fig_ax", "(", "fig", ",", "ax", ",", "*", "*", "fig_params", ")", "else", ":", "ax", "=", "fig", ".", "add_subplot", "(", "subset_num_rows", ",", "subset_num_cols", ",", "fig_ind", "+", "1", ")", "fig_times_not_all_nan", "=", "times_not_all_nan", "[", "lower_time_bound_ind", ":", "upper_time_bound_ind", "]", "plotting_data", "=", "all_plotting_data", ".", "loc", "[", "{", "time_agg_str", ":", "fig_times_not_all_nan", "}", "]", "epochs", "=", "np", ".", "array", "(", "list", "(", "map", "(", "n64_to_epoch", ",", "fig_times_not_all_nan", ")", ")", ")", "if", "time_agg_str", "==", "'time'", "else", "None", "x_locs", "=", "np_scale", "(", "epochs", "if", "time_agg_str", "==", "'time'", "else", "fig_times_not_all_nan", ")", "# Data variable plots within each plot.", "data_arr_plots", "=", "[", "]", "legend_labels", "=", "[", "]", "# For each data array to plot...", "for", "data_arr_name", ",", "agg_dict", "in", "plot_descs", ".", "items", "(", ")", ":", "# For each aggregation type (e.g. 'mean', 'median')...", "for", "agg_type", ",", "plot_dicts", "in", "agg_dict", ".", "items", "(", ")", ":", "# For each plot for this aggregation type...", "for", "plot_dict", "in", "plot_dicts", ":", "for", "plot_type", ",", "plot_kwargs", "in", "plot_dict", ".", "items", "(", ")", ":", "assert", "plot_type", "in", "all_plot_types", ",", "r\"For the '{}' DataArray: plot_type '{}' not recognized\"", ".", "format", "(", "data_arr_name", ",", "plot_type", ")", "full_data_arr_plotting_data", "=", "plotting_data", "[", "data_arr_name", "]", ".", "values", "# Any times with all nan data are ignored in any plot type.", "data_arr_nan_mask", "=", "np", ".", "any", "(", "~", "np", ".", "isnan", "(", "full_data_arr_plotting_data", ")", ",", "axis", "=", "1", ")", "# Skip plotting this data variable if it does not have ", "# enough data to plot.", "if", "skip_plot", "(", "np", ".", "sum", "(", "data_arr_nan_mask", ")", ",", "plot_type", ",", "plot_kwargs", ")", ":", "continue", "# Remove times with all nan data.", "data_arr_plotting_data", "=", "full_data_arr_plotting_data", "[", "data_arr_nan_mask", "]", "# Large scales for x_locs can break the curve fitting ", "# for some reason.", "data_arr_x_locs", "=", "x_locs", "[", "data_arr_nan_mask", "]", "# Some plot types require aggregation.", "if", "plot_type", "in", "plot_types_requiring_aggregation", ":", "if", "agg_type", "not", "in", "many_to_one_agg_types", ":", "raise", "ValueError", "(", "\"For the '{}' DataArray: the plot type \"", "\"'{}' requires aggregation (currently using '{}'). \"", "\"Please pass any of {} as the aggregation type \"", "\"or change the plot type.\"", ".", "format", "(", "data_arr_name", ",", "plot_type", ",", "agg_type", ",", "many_to_one_agg_types", ")", ")", "# Some plot types cannot accept many-to-one aggregation.", "if", "plot_type", "not", "in", "plot_types_handling_aggregation", ":", "if", "agg_type", "not", "in", "many_to_many_agg_types", ":", "raise", "ValueError", "(", "\"For the '{}' DataArray: \"", "\"the plot type '{}' doesn't accept aggregation \"", "\"(currently using '{}'). Please pass any of {} as \"", "\"the aggregation type or change the plot type.\"", ".", "format", "(", "data_arr_name", ",", "plot_type", ",", "agg_type", ",", "many_to_many_agg_types", ")", ")", "if", "agg_type", "==", "'mean'", ":", "y", "=", "ignore_warnings", "(", "np", ".", "nanmean", ",", "data_arr_plotting_data", ",", "axis", "=", "1", ")", "elif", "agg_type", "==", "'median'", ":", "y", "=", "ignore_warnings", "(", "np", ".", "nanmedian", ",", "data_arr_plotting_data", ",", "axis", "=", "1", ")", "elif", "agg_type", "==", "'none'", ":", "y", "=", "data_arr_plotting_data", "# Create specified plot types.", "plot_type_str", "=", "\"\"", "# Used to label the legend.", "if", "plot_type", "==", "'scatter'", ":", "data_arr_plots", ".", "append", "(", "ax", ".", "scatter", "(", "data_arr_x_locs", ",", "y", ",", "*", "*", "plot_kwargs", ")", ")", "plot_type_str", "+=", "'scatterplot'", "elif", "plot_type", "==", "'line'", ":", "data_arr_plots", ".", "append", "(", "ax", ".", "plot", "(", "data_arr_x_locs", ",", "y", ",", "*", "*", "plot_kwargs", ")", "[", "0", "]", ")", "plot_type_str", "+=", "'lineplot'", "elif", "plot_type", "==", "'box'", ":", "boxplot_nan_mask", "=", "~", "np", ".", "isnan", "(", "y", ")", "# Data formatted for matplotlib.pyplot.boxplot().", "filtered_formatted_data", "=", "[", "]", "for", "i", ",", "(", "d", ",", "m", ")", "in", "enumerate", "(", "zip", "(", "y", ",", "boxplot_nan_mask", ")", ")", ":", "if", "len", "(", "d", "[", "m", "]", "!=", "0", ")", ":", "filtered_formatted_data", ".", "append", "(", "d", "[", "m", "]", ")", "box_width", "=", "0.5", "*", "np", ".", "min", "(", "np", ".", "diff", "(", "data_arr_x_locs", ")", ")", "if", "len", "(", "data_arr_x_locs", ")", ">", "1", "else", "0.5", "# Provide default arguments.", "plot_kwargs", ".", "setdefault", "(", "'boxprops'", ",", "dict", "(", "facecolor", "=", "'orange'", ")", ")", "plot_kwargs", ".", "setdefault", "(", "'flierprops'", ",", "dict", "(", "marker", "=", "'o'", ",", "markersize", "=", "0.5", ")", ")", "plot_kwargs", ".", "setdefault", "(", "'showfliers'", ",", "False", ")", "# `manage_xticks=False` to avoid excessive padding on x-axis.", "bp", "=", "ax", ".", "boxplot", "(", "filtered_formatted_data", ",", "widths", "=", "[", "box_width", "]", "*", "len", "(", "filtered_formatted_data", ")", ",", "positions", "=", "data_arr_x_locs", ",", "patch_artist", "=", "True", ",", "manage_xticks", "=", "False", ",", "*", "*", "plot_kwargs", ")", "data_arr_plots", ".", "append", "(", "bp", "[", "'boxes'", "]", "[", "0", "]", ")", "plot_type_str", "+=", "'boxplot'", "elif", "plot_type", "==", "'gaussian'", ":", "data_arr_plots", ".", "append", "(", "plot_curvefit", "(", "data_arr_x_locs", ",", "y", ",", "fit_type", "=", "plot_type", ",", "plot_kwargs", "=", "plot_kwargs", ",", "ax", "=", "ax", ")", ")", "plot_type_str", "+=", "'gaussian fit'", "elif", "plot_type", "==", "'poly'", ":", "assert", "'degree'", "in", "plot_kwargs", ",", "r\"For the '{}' DataArray: When using 'poly' as \"", "\"the fit type, the fit kwargs must have 'degree'\"", "\"specified.\"", ".", "format", "(", "data_arr_name", ")", "data_arr_plots", ".", "append", "(", "plot_curvefit", "(", "data_arr_x_locs", ",", "y", ",", "fit_type", "=", "plot_type", ",", "plot_kwargs", "=", "plot_kwargs", ",", "ax", "=", "ax", ")", ")", "plot_type_str", "+=", "'degree {} polynomial fit'", ".", "format", "(", "plot_kwargs", "[", "'degree'", "]", ")", "elif", "plot_type", "==", "'cubic_spline'", ":", "data_arr_plots", ".", "append", "(", "plot_curvefit", "(", "data_arr_x_locs", ",", "y", ",", "fit_type", "=", "plot_type", ",", "plot_kwargs", "=", "plot_kwargs", ",", "ax", "=", "ax", ")", ")", "plot_type_str", "+=", "'cubic spline fit'", "plot_type_str", "+=", "' of {}'", ".", "format", "(", "agg_type", ")", "if", "agg_type", "!=", "'none'", "else", "''", "legend_labels", ".", "append", "(", "'{} of {}'", ".", "format", "(", "plot_type_str", ",", "data_arr_name", ")", ")", "# Label the axes and create the legend.", "date_strs", "=", "np", ".", "array", "(", "list", "(", "map", "(", "lambda", "time", ":", "np_dt64_to_str", "(", "time", ")", ",", "fig_times_not_all_nan", ")", ")", ")", "if", "time_agg_str", "==", "'time'", "else", "naive_months_ticks_by_week", "(", "fig_times_not_all_nan", ")", "if", "time_agg_str", "in", "[", "'week'", ",", "'weekofyear'", "]", "else", "month_ints_to_month_names", "(", "fig_times_not_all_nan", ")", "plt", ".", "xticks", "(", "x_locs", ",", "date_strs", ",", "rotation", "=", "45", ",", "ha", "=", "'right'", ",", "rotation_mode", "=", "'anchor'", ")", "if", "show_legend", ":", "plt", ".", "legend", "(", "handles", "=", "data_arr_plots", ",", "labels", "=", "legend_labels", ",", "loc", "=", "'best'", ")", "title_postpend", "=", "\" ({} to {})\"", ".", "format", "(", "date_strs", "[", "0", "]", ",", "date_strs", "[", "-", "1", "]", ")", "title_prepend", "=", "\"Figure {}\"", ".", "format", "(", "fig_ind", ")", "if", "title", "is", "None", "else", "title", "plt", ".", "title", "(", "title_prepend", "+", "title_postpend", ")", "plt", ".", "tight_layout", "(", ")", "return", "fig" ]
[ 258, 0 ]
[ 552, 14 ]
python
en
['en', 'error', 'th']
False
plot_curvefit
(x, y, fit_type, x_smooth=None, n_pts=200, fig_params={}, plot_kwargs={}, fig=None, ax=None)
Plots a curve fit given x values, y values, a type of curve to plot, and parameters for that curve. Parameters ---------- x: np.ndarray A 1D NumPy array. The x values to fit to. y: np.ndarray A 1D NumPy array. The y values to fit to. fit_type: str The type of curve to fit. One of ['poly', 'gaussian', 'cubic_spline']. The option 'poly' plots a polynomial fit. The option 'gaussian' plots a Gaussian fit. The option 'cubic_spline' plots a cubic spline fit. x_smooth: list-like The exact x values to interpolate for. Supercedes `n_pts`. n_pts: int The number of evenly spaced points spanning the range of `x` to interpolate for. fig_params: dict Figure parameters dictionary (e.g. {'figsize':(12,6)}). Used to create a Figure ``if fig is None and ax is None``. plot_kwargs: dict The kwargs for the call to ``matplotlib.axes.Axes.plot()``. fig: matplotlib.figure.Figure The figure to use for the plot. The figure must have at least one Axes object. You can use the code ``fig,ax = plt.subplots()`` to create a figure with an associated Axes object. The code ``fig = plt.figure()`` will not provide the Axes object. The Axes object used will be the first. ax: matplotlib.axes.Axes The axes to use for the plot. Returns ------- lines: matplotlib.lines.Line2D Can be used as a handle for a matplotlib legend (i.e. plt.legend(handles=...)) among other things. :Authors: John Rattz ([email protected])
Plots a curve fit given x values, y values, a type of curve to plot, and parameters for that curve. Parameters ---------- x: np.ndarray A 1D NumPy array. The x values to fit to. y: np.ndarray A 1D NumPy array. The y values to fit to. fit_type: str The type of curve to fit. One of ['poly', 'gaussian', 'cubic_spline']. The option 'poly' plots a polynomial fit. The option 'gaussian' plots a Gaussian fit. The option 'cubic_spline' plots a cubic spline fit. x_smooth: list-like The exact x values to interpolate for. Supercedes `n_pts`. n_pts: int The number of evenly spaced points spanning the range of `x` to interpolate for. fig_params: dict Figure parameters dictionary (e.g. {'figsize':(12,6)}). Used to create a Figure ``if fig is None and ax is None``. plot_kwargs: dict The kwargs for the call to ``matplotlib.axes.Axes.plot()``. fig: matplotlib.figure.Figure The figure to use for the plot. The figure must have at least one Axes object. You can use the code ``fig,ax = plt.subplots()`` to create a figure with an associated Axes object. The code ``fig = plt.figure()`` will not provide the Axes object. The Axes object used will be the first. ax: matplotlib.axes.Axes The axes to use for the plot. Returns ------- lines: matplotlib.lines.Line2D Can be used as a handle for a matplotlib legend (i.e. plt.legend(handles=...)) among other things. :Authors: John Rattz (john.c.rattz
def plot_curvefit(x, y, fit_type, x_smooth=None, n_pts=200, fig_params={}, plot_kwargs={}, fig=None, ax=None): """ Plots a curve fit given x values, y values, a type of curve to plot, and parameters for that curve. Parameters ---------- x: np.ndarray A 1D NumPy array. The x values to fit to. y: np.ndarray A 1D NumPy array. The y values to fit to. fit_type: str The type of curve to fit. One of ['poly', 'gaussian', 'cubic_spline']. The option 'poly' plots a polynomial fit. The option 'gaussian' plots a Gaussian fit. The option 'cubic_spline' plots a cubic spline fit. x_smooth: list-like The exact x values to interpolate for. Supercedes `n_pts`. n_pts: int The number of evenly spaced points spanning the range of `x` to interpolate for. fig_params: dict Figure parameters dictionary (e.g. {'figsize':(12,6)}). Used to create a Figure ``if fig is None and ax is None``. plot_kwargs: dict The kwargs for the call to ``matplotlib.axes.Axes.plot()``. fig: matplotlib.figure.Figure The figure to use for the plot. The figure must have at least one Axes object. You can use the code ``fig,ax = plt.subplots()`` to create a figure with an associated Axes object. The code ``fig = plt.figure()`` will not provide the Axes object. The Axes object used will be the first. ax: matplotlib.axes.Axes The axes to use for the plot. Returns ------- lines: matplotlib.lines.Line2D Can be used as a handle for a matplotlib legend (i.e. plt.legend(handles=...)) among other things. :Authors: John Rattz ([email protected]) """ # Avoid modifying the original arguments. fig_params, plot_kwargs = fig_params.copy(), plot_kwargs.copy() fig_params.setdefault('figsize', (12,6)) plot_kwargs.setdefault('linestyle', '-') # Retrieve or create the axes if necessary. fig, ax = retrieve_or_create_fig_ax(fig, ax, **fig_params) if x_smooth is None: x_smooth = np.linspace(x.min(), x.max(), n_pts) if fit_type == 'gaussian': y_smooth = gaussian_fit(x, y, x_smooth) elif fit_type == 'poly': assert 'degree' in plot_kwargs.keys(), "When plotting a polynomal fit, there must be" \ "a 'degree' entry in the plot_kwargs parameter." degree = plot_kwargs.pop('degree') y_smooth = poly_fit(x, y, degree, x_smooth) elif fit_type == 'cubic_spline': cs = CubicSpline(x,y) y_smooth = cs(x_smooth) return ax.plot(x_smooth, y_smooth, **plot_kwargs)[0]
[ "def", "plot_curvefit", "(", "x", ",", "y", ",", "fit_type", ",", "x_smooth", "=", "None", ",", "n_pts", "=", "200", ",", "fig_params", "=", "{", "}", ",", "plot_kwargs", "=", "{", "}", ",", "fig", "=", "None", ",", "ax", "=", "None", ")", ":", "# Avoid modifying the original arguments.", "fig_params", ",", "plot_kwargs", "=", "fig_params", ".", "copy", "(", ")", ",", "plot_kwargs", ".", "copy", "(", ")", "fig_params", ".", "setdefault", "(", "'figsize'", ",", "(", "12", ",", "6", ")", ")", "plot_kwargs", ".", "setdefault", "(", "'linestyle'", ",", "'-'", ")", "# Retrieve or create the axes if necessary.", "fig", ",", "ax", "=", "retrieve_or_create_fig_ax", "(", "fig", ",", "ax", ",", "*", "*", "fig_params", ")", "if", "x_smooth", "is", "None", ":", "x_smooth", "=", "np", ".", "linspace", "(", "x", ".", "min", "(", ")", ",", "x", ".", "max", "(", ")", ",", "n_pts", ")", "if", "fit_type", "==", "'gaussian'", ":", "y_smooth", "=", "gaussian_fit", "(", "x", ",", "y", ",", "x_smooth", ")", "elif", "fit_type", "==", "'poly'", ":", "assert", "'degree'", "in", "plot_kwargs", ".", "keys", "(", ")", ",", "\"When plotting a polynomal fit, there must be\"", "\"a 'degree' entry in the plot_kwargs parameter.\"", "degree", "=", "plot_kwargs", ".", "pop", "(", "'degree'", ")", "y_smooth", "=", "poly_fit", "(", "x", ",", "y", ",", "degree", ",", "x_smooth", ")", "elif", "fit_type", "==", "'cubic_spline'", ":", "cs", "=", "CubicSpline", "(", "x", ",", "y", ")", "y_smooth", "=", "cs", "(", "x_smooth", ")", "return", "ax", ".", "plot", "(", "x_smooth", ",", "y_smooth", ",", "*", "*", "plot_kwargs", ")", "[", "0", "]" ]
[ 556, 0 ]
[ 615, 56 ]
python
en
['en', 'error', 'th']
False
plot_band
(dataset, figsize=(20,15), fontsize=24, legend_fontsize=24)
Plots several statistics over time - including mean, median, linear regression of the means, Gaussian smoothed curve of means, and the band enclosing the 25th and 75th percentiles. This is very similar to the output of the Comet Time Series Toolset (https://github.com/CosmiQ/CometTS). Parameters ---------- dataset: xarray.DataArray An xarray `DataArray` containing time, latitude, and longitude coordinates. figsize: tuple A 2-tuple of the figure size in inches for the entire figure. fontsize: int The font size to use for text.
Plots several statistics over time - including mean, median, linear regression of the means, Gaussian smoothed curve of means, and the band enclosing the 25th and 75th percentiles. This is very similar to the output of the Comet Time Series Toolset (https://github.com/CosmiQ/CometTS). Parameters ---------- dataset: xarray.DataArray An xarray `DataArray` containing time, latitude, and longitude coordinates. figsize: tuple A 2-tuple of the figure size in inches for the entire figure. fontsize: int The font size to use for text.
def plot_band(dataset, figsize=(20,15), fontsize=24, legend_fontsize=24): """ Plots several statistics over time - including mean, median, linear regression of the means, Gaussian smoothed curve of means, and the band enclosing the 25th and 75th percentiles. This is very similar to the output of the Comet Time Series Toolset (https://github.com/CosmiQ/CometTS). Parameters ---------- dataset: xarray.DataArray An xarray `DataArray` containing time, latitude, and longitude coordinates. figsize: tuple A 2-tuple of the figure size in inches for the entire figure. fontsize: int The font size to use for text. """ # Calculations times = dataset.time.values epochs = np.sort(np.array(list(map(n64_to_epoch, times)))) x_locs = (epochs - epochs.min()) / (epochs.max() - epochs.min()) means = dataset.mean(dim=['latitude','longitude'], skipna = True).values medians = dataset.median(dim=['latitude','longitude'], skipna = True).values mask = ~np.isnan(means) & ~np.isnan(medians) plt.figure(figsize=figsize) ax = plt.gca() # Shaded Area (percentiles) with warnings.catch_warnings(): # Ignore warning about encountering an All-NaN slice. Some acquisitions have all-NaN values. warnings.simplefilter("ignore", category=RuntimeWarning) quarter = np.nanpercentile( dataset.values.reshape(( len(dataset['time']), len(dataset['latitude']) * len(dataset['longitude']))), 25, axis = 1 ) three_quarters = np.nanpercentile( dataset.values.reshape(( len(dataset['time']), len(dataset['latitude']) * len(dataset['longitude']))), 75, axis = 1 ) np.array(quarter) np.array(three_quarters) ax.grid(color='lightgray', linestyle='-', linewidth=1) fillcolor='gray' fillalpha=0.4 plt.fill_between(x_locs, quarter, three_quarters, interpolate=False, color=fillcolor, alpha=fillalpha, label="25th and 75th percentile band") #Medians plt.plot(x_locs,medians,color="black",marker="o",linestyle='None', label = "Medians") #The Actual Plot plt.plot(x_locs,means,color="blue",label="Mean") #Linear Regression (on mean) m, b = np.polyfit(x_locs[mask], means[mask], 1) plt.plot(x_locs, m*x_locs + b, '-', color="red",label="linear regression of means",linewidth = 3.0) #Gaussian Curve plot_curvefit(x_locs[mask], means[mask], fit_type='gaussian', ax=ax, plot_kwargs=dict(linestyle='-', label="Gaussian smoothed of means", alpha=1, color='limegreen', linewidth = 3.0)) #Formatting date_strs = np.array(list(map(lambda time: np_dt64_to_str(time), times[mask]))) ax.grid(color='k', alpha=0.1, linestyle='-', linewidth=1) ax.xaxis.set_major_formatter(FuncFormatter(tfmt)) plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=legend_fontsize) plt.xticks(x_locs, date_strs, rotation=45, fontsize=fontsize) plt.yticks(fontsize=fontsize) ax.set_xlabel('Time', fontsize=fontsize) ax.set_ylabel('Value', fontsize=fontsize) plt.show()
[ "def", "plot_band", "(", "dataset", ",", "figsize", "=", "(", "20", ",", "15", ")", ",", "fontsize", "=", "24", ",", "legend_fontsize", "=", "24", ")", ":", "# Calculations", "times", "=", "dataset", ".", "time", ".", "values", "epochs", "=", "np", ".", "sort", "(", "np", ".", "array", "(", "list", "(", "map", "(", "n64_to_epoch", ",", "times", ")", ")", ")", ")", "x_locs", "=", "(", "epochs", "-", "epochs", ".", "min", "(", ")", ")", "/", "(", "epochs", ".", "max", "(", ")", "-", "epochs", ".", "min", "(", ")", ")", "means", "=", "dataset", ".", "mean", "(", "dim", "=", "[", "'latitude'", ",", "'longitude'", "]", ",", "skipna", "=", "True", ")", ".", "values", "medians", "=", "dataset", ".", "median", "(", "dim", "=", "[", "'latitude'", ",", "'longitude'", "]", ",", "skipna", "=", "True", ")", ".", "values", "mask", "=", "~", "np", ".", "isnan", "(", "means", ")", "&", "~", "np", ".", "isnan", "(", "medians", ")", "plt", ".", "figure", "(", "figsize", "=", "figsize", ")", "ax", "=", "plt", ".", "gca", "(", ")", "# Shaded Area (percentiles)", "with", "warnings", ".", "catch_warnings", "(", ")", ":", "# Ignore warning about encountering an All-NaN slice. Some acquisitions have all-NaN values.", "warnings", ".", "simplefilter", "(", "\"ignore\"", ",", "category", "=", "RuntimeWarning", ")", "quarter", "=", "np", ".", "nanpercentile", "(", "dataset", ".", "values", ".", "reshape", "(", "(", "len", "(", "dataset", "[", "'time'", "]", ")", ",", "len", "(", "dataset", "[", "'latitude'", "]", ")", "*", "len", "(", "dataset", "[", "'longitude'", "]", ")", ")", ")", ",", "25", ",", "axis", "=", "1", ")", "three_quarters", "=", "np", ".", "nanpercentile", "(", "dataset", ".", "values", ".", "reshape", "(", "(", "len", "(", "dataset", "[", "'time'", "]", ")", ",", "len", "(", "dataset", "[", "'latitude'", "]", ")", "*", "len", "(", "dataset", "[", "'longitude'", "]", ")", ")", ")", ",", "75", ",", "axis", "=", "1", ")", "np", ".", "array", "(", "quarter", ")", "np", ".", "array", "(", "three_quarters", ")", "ax", ".", "grid", "(", "color", "=", "'lightgray'", ",", "linestyle", "=", "'-'", ",", "linewidth", "=", "1", ")", "fillcolor", "=", "'gray'", "fillalpha", "=", "0.4", "plt", ".", "fill_between", "(", "x_locs", ",", "quarter", ",", "three_quarters", ",", "interpolate", "=", "False", ",", "color", "=", "fillcolor", ",", "alpha", "=", "fillalpha", ",", "label", "=", "\"25th and 75th percentile band\"", ")", "#Medians", "plt", ".", "plot", "(", "x_locs", ",", "medians", ",", "color", "=", "\"black\"", ",", "marker", "=", "\"o\"", ",", "linestyle", "=", "'None'", ",", "label", "=", "\"Medians\"", ")", "#The Actual Plot", "plt", ".", "plot", "(", "x_locs", ",", "means", ",", "color", "=", "\"blue\"", ",", "label", "=", "\"Mean\"", ")", "#Linear Regression (on mean)", "m", ",", "b", "=", "np", ".", "polyfit", "(", "x_locs", "[", "mask", "]", ",", "means", "[", "mask", "]", ",", "1", ")", "plt", ".", "plot", "(", "x_locs", ",", "m", "*", "x_locs", "+", "b", ",", "'-'", ",", "color", "=", "\"red\"", ",", "label", "=", "\"linear regression of means\"", ",", "linewidth", "=", "3.0", ")", "#Gaussian Curve", "plot_curvefit", "(", "x_locs", "[", "mask", "]", ",", "means", "[", "mask", "]", ",", "fit_type", "=", "'gaussian'", ",", "ax", "=", "ax", ",", "plot_kwargs", "=", "dict", "(", "linestyle", "=", "'-'", ",", "label", "=", "\"Gaussian smoothed of means\"", ",", "alpha", "=", "1", ",", "color", "=", "'limegreen'", ",", "linewidth", "=", "3.0", ")", ")", "#Formatting", "date_strs", "=", "np", ".", "array", "(", "list", "(", "map", "(", "lambda", "time", ":", "np_dt64_to_str", "(", "time", ")", ",", "times", "[", "mask", "]", ")", ")", ")", "ax", ".", "grid", "(", "color", "=", "'k'", ",", "alpha", "=", "0.1", ",", "linestyle", "=", "'-'", ",", "linewidth", "=", "1", ")", "ax", ".", "xaxis", ".", "set_major_formatter", "(", "FuncFormatter", "(", "tfmt", ")", ")", "plt", ".", "legend", "(", "loc", "=", "'center left'", ",", "bbox_to_anchor", "=", "(", "1", ",", "0.5", ")", ",", "fontsize", "=", "legend_fontsize", ")", "plt", ".", "xticks", "(", "x_locs", ",", "date_strs", ",", "rotation", "=", "45", ",", "fontsize", "=", "fontsize", ")", "plt", ".", "yticks", "(", "fontsize", "=", "fontsize", ")", "ax", ".", "set_xlabel", "(", "'Time'", ",", "fontsize", "=", "fontsize", ")", "ax", ".", "set_ylabel", "(", "'Value'", ",", "fontsize", "=", "fontsize", ")", "plt", ".", "show", "(", ")" ]
[ 619, 0 ]
[ 695, 14 ]
python
en
['en', 'error', 'th']
False
convert_name_rgb_255
(color)
Converts a name of a matplotlib color to a list of rgb values in the range [0,255]. Else, returns the original argument. Parameters ---------- color: str or list (size 3) The color name to convert or a list of red, green, and blue already in range [0,255].
Converts a name of a matplotlib color to a list of rgb values in the range [0,255]. Else, returns the original argument.
def convert_name_rgb_255(color): """ Converts a name of a matplotlib color to a list of rgb values in the range [0,255]. Else, returns the original argument. Parameters ---------- color: str or list (size 3) The color name to convert or a list of red, green, and blue already in range [0,255]. """ return [255*rgb for rgb in mpl.colors.to_rgb(color)] if isinstance(color,str) else color
[ "def", "convert_name_rgb_255", "(", "color", ")", ":", "return", "[", "255", "*", "rgb", "for", "rgb", "in", "mpl", ".", "colors", ".", "to_rgb", "(", "color", ")", "]", "if", "isinstance", "(", "color", ",", "str", ")", "else", "color" ]
[ 748, 0 ]
[ 758, 92 ]
python
en
['en', 'error', 'th']
False
norm_color
(color)
Converts either a string name of a matplotlib color or a 3-tuple of rgb values in the range [0,255] to a 3-tuple of rgb values in the range [0,1]. Parameters ---------- color: str or list-like of numeric The name of a matplolib color or a .
Converts either a string name of a matplotlib color or a 3-tuple of rgb values in the range [0,255] to a 3-tuple of rgb values in the range [0,1]. Parameters ---------- color: str or list-like of numeric The name of a matplolib color or a .
def norm_color(color): """ Converts either a string name of a matplotlib color or a 3-tuple of rgb values in the range [0,255] to a 3-tuple of rgb values in the range [0,1]. Parameters ---------- color: str or list-like of numeric The name of a matplolib color or a . """ color = convert_name_rgb_255(color) if len(color) == 3: color = [rgb/255 for rgb in color] return color
[ "def", "norm_color", "(", "color", ")", ":", "color", "=", "convert_name_rgb_255", "(", "color", ")", "if", "len", "(", "color", ")", "==", "3", ":", "color", "=", "[", "rgb", "/", "255", "for", "rgb", "in", "color", "]", "return", "color" ]
[ 760, 0 ]
[ 773, 16 ]
python
en
['en', 'error', 'th']
False
create_discrete_color_map
(data_range=None, colors=None, cmap=None, th=None, pts=None, cmap_name='my_cmap', data_range_fmt=None, pts_fmt=None)
Creates a discrete matplotlib LinearSegmentedColormap with thresholds for color changes. Exclusively either `colors` or `cmap` must be specified (i.e. one and only one). At least one of the parameters `th` or `pts` may be specified, but not both. Parameters ---------- data_range: list A 2-tuple of the minimum and maximum values the data may take. Can be omitted if `pts` is specified as a list-like of points. colors: list-like Colors to use between thresholds specified in `th` or around points specified in `pts`. Colors can be string names of matplotlib colors, 3-tuples of rgb values in range [0,255], or 4-tuples of rgba values in range [0,1]. cmap: matplotlib.colors.Colormap A matplotlib colormap used to color data in the regions between thresholds specified in `th` or around points specified in `pts`. th: list-like of float Threshold values separating colors, so `len(colors) == len(th)+1`. Must be in the range of `data_range` - noninclusive. pts: int or list-like of float Points around which to color the same. This can be either an integer specifying the number of evenly-spaced points to use or a list-like of points, in which case values must be in the range of `data_range` - inclusive. The thresholds used will be the midpoints between points in `pts`. cmap_name: str The name of the created colormap for matplotlib. data_range_fmt: list-like of size 2 A mutable container intended to hold values used to set vmin and vmax, respectively, of `pyplot.imshow()` for the purpose of formatting a colorbar. Only useful if `pts` is specified as a list-like. pts_fmt: list-like A mutable container intended to hold the midpoints of the thresholds. This must have the same length as the number of points specified by `pts` or have a length of `len(th)+1`. :Authors: John Rattz ([email protected])
Creates a discrete matplotlib LinearSegmentedColormap with thresholds for color changes. Exclusively either `colors` or `cmap` must be specified (i.e. one and only one). At least one of the parameters `th` or `pts` may be specified, but not both. Parameters ---------- data_range: list A 2-tuple of the minimum and maximum values the data may take. Can be omitted if `pts` is specified as a list-like of points. colors: list-like Colors to use between thresholds specified in `th` or around points specified in `pts`. Colors can be string names of matplotlib colors, 3-tuples of rgb values in range [0,255], or 4-tuples of rgba values in range [0,1]. cmap: matplotlib.colors.Colormap A matplotlib colormap used to color data in the regions between thresholds specified in `th` or around points specified in `pts`. th: list-like of float Threshold values separating colors, so `len(colors) == len(th)+1`. Must be in the range of `data_range` - noninclusive. pts: int or list-like of float Points around which to color the same. This can be either an integer specifying the number of evenly-spaced points to use or a list-like of points, in which case values must be in the range of `data_range` - inclusive. The thresholds used will be the midpoints between points in `pts`. cmap_name: str The name of the created colormap for matplotlib. data_range_fmt: list-like of size 2 A mutable container intended to hold values used to set vmin and vmax, respectively, of `pyplot.imshow()` for the purpose of formatting a colorbar. Only useful if `pts` is specified as a list-like. pts_fmt: list-like A mutable container intended to hold the midpoints of the thresholds. This must have the same length as the number of points specified by `pts` or have a length of `len(th)+1`. :Authors: John Rattz (john.c.rattz
def create_discrete_color_map(data_range=None, colors=None, cmap=None, th=None, pts=None, cmap_name='my_cmap', data_range_fmt=None, pts_fmt=None): """ Creates a discrete matplotlib LinearSegmentedColormap with thresholds for color changes. Exclusively either `colors` or `cmap` must be specified (i.e. one and only one). At least one of the parameters `th` or `pts` may be specified, but not both. Parameters ---------- data_range: list A 2-tuple of the minimum and maximum values the data may take. Can be omitted if `pts` is specified as a list-like of points. colors: list-like Colors to use between thresholds specified in `th` or around points specified in `pts`. Colors can be string names of matplotlib colors, 3-tuples of rgb values in range [0,255], or 4-tuples of rgba values in range [0,1]. cmap: matplotlib.colors.Colormap A matplotlib colormap used to color data in the regions between thresholds specified in `th` or around points specified in `pts`. th: list-like of float Threshold values separating colors, so `len(colors) == len(th)+1`. Must be in the range of `data_range` - noninclusive. pts: int or list-like of float Points around which to color the same. This can be either an integer specifying the number of evenly-spaced points to use or a list-like of points, in which case values must be in the range of `data_range` - inclusive. The thresholds used will be the midpoints between points in `pts`. cmap_name: str The name of the created colormap for matplotlib. data_range_fmt: list-like of size 2 A mutable container intended to hold values used to set vmin and vmax, respectively, of `pyplot.imshow()` for the purpose of formatting a colorbar. Only useful if `pts` is specified as a list-like. pts_fmt: list-like A mutable container intended to hold the midpoints of the thresholds. This must have the same length as the number of points specified by `pts` or have a length of `len(th)+1`. :Authors: John Rattz ([email protected]) """ assert (colors is None) ^ (cmap is None), \ "Exclusively either `colors` or `cmap` must be specified." assert th is None or pts is None, \ "The parameters `th` or `pts` may be specified, but not both." cmap = plt.get_cmap(cmap) if isinstance(cmap, str) else cmap if th is None: # If `th` is not supplied, construct it based on other arguments. if pts is not None: if isinstance(pts, int): # Use `pts` as the number of evenly-spaced points. assert pts > 0, "The number of points specified by `pts` must be positive." th_spacing = (data_range[1] - data_range[0])/pts th = np.linspace(data_range[0]+th_spacing, data_range[1]-th_spacing, pts-1) else: # Use `pts` as a list-like of points to put thresholds between. assert data_range[0] <= min(pts) and max(pts) <= data_range[1], \ "The values in `pts` must be within `data_range`, inclusive." # Choose imaginary lower and upper bounds of the data to scale `pts` with # so that the first and last color regions are sized appropriately. data_range_fmt = [None]*2 if data_range_fmt is None else data_range_fmt data_range_fmt[0] = pts[0] - (pts[1] - pts[0])/2 data_range_fmt[1] = pts[-1] + (pts[-1] - pts[-2])/2 pts = np.interp(pts, data_range_fmt, data_range)#(0,1)) # pts = list(map(lambda pt: norm_range(pt, data_range_fmt), pts)) th = [pts[ind-1] + (pts[ind] - pts[ind-1])/2 for ind in range(1, len(pts))] else: assert colors is not None, \ "If neither `th` nor `pts` are specified, `colors` must be specified." th_spacing = (data_range[1] - data_range[0])/len(colors) th = np.linspace(data_range[0]+th_spacing, data_range[1]-th_spacing, len(colors)-1) else: assert len(th) == 0 or (data_range[0] < min(th) and max(th) < data_range[1]), \ "The values in `th` must be within `data_range`, exclusive." # Normalize threshold values based on the data range. th = [(val-data_range[0])/(data_range[1]-data_range[0]) for val in th] th = np.interp(th, data_range, (0,1)) th = [0.0] + list(th) + [1.0] if pts_fmt is not None: for ind in range(len(th)-1): pts_fmt[ind] = th[ind] + (th[ind+1] - th[ind])/2 if colors is None: # If `colors` is not supplied, construct it based on other arguments. assert cmap is not None, \ "If `colors` is not specified, `cmap` must be specified." colors = [cmap(th[ind-1] + (th[ind] - th[ind-1])/2) for ind in range(1, len(th))] else: colors = list(map(norm_color, colors)) cdict = {} # These are fully-saturated red, green, and blue - not the matplotlib colors for 'red', 'green', and 'blue'. primary_colors = ['red', 'green', 'blue'] # Get the 3-tuples of rgb values for the colors. color_rgbs = [(mpl.colors.to_rgb(color) if isinstance(color,str) else color) for color in colors] # For each color entry to go into the color dictionary... for primary_color_ind, primary_color in enumerate(primary_colors): cdict_entry = [None]*len(th) # For each threshold (as well as 0.0 and 1.0), specify the values for this primary color. for row_ind, th_ind in enumerate(range(len(th))): # Get the two colors that this threshold corresponds to. th_color_inds = [0,0] if th_ind==0 else \ [len(colors)-1, len(colors)-1] if th_ind==len(th)-1 else \ [th_ind-1, th_ind] primary_color_vals = [color_rgbs[th_color_ind][primary_color_ind] for th_color_ind in th_color_inds] cdict_entry[row_ind] = (th[th_ind],) + tuple(primary_color_vals) cdict[primary_color] = cdict_entry cmap = LinearSegmentedColormap(cmap_name, cdict) return cmap
[ "def", "create_discrete_color_map", "(", "data_range", "=", "None", ",", "colors", "=", "None", ",", "cmap", "=", "None", ",", "th", "=", "None", ",", "pts", "=", "None", ",", "cmap_name", "=", "'my_cmap'", ",", "data_range_fmt", "=", "None", ",", "pts_fmt", "=", "None", ")", ":", "assert", "(", "colors", "is", "None", ")", "^", "(", "cmap", "is", "None", ")", ",", "\"Exclusively either `colors` or `cmap` must be specified.\"", "assert", "th", "is", "None", "or", "pts", "is", "None", ",", "\"The parameters `th` or `pts` may be specified, but not both.\"", "cmap", "=", "plt", ".", "get_cmap", "(", "cmap", ")", "if", "isinstance", "(", "cmap", ",", "str", ")", "else", "cmap", "if", "th", "is", "None", ":", "# If `th` is not supplied, construct it based on other arguments.", "if", "pts", "is", "not", "None", ":", "if", "isinstance", "(", "pts", ",", "int", ")", ":", "# Use `pts` as the number of evenly-spaced points.", "assert", "pts", ">", "0", ",", "\"The number of points specified by `pts` must be positive.\"", "th_spacing", "=", "(", "data_range", "[", "1", "]", "-", "data_range", "[", "0", "]", ")", "/", "pts", "th", "=", "np", ".", "linspace", "(", "data_range", "[", "0", "]", "+", "th_spacing", ",", "data_range", "[", "1", "]", "-", "th_spacing", ",", "pts", "-", "1", ")", "else", ":", "# Use `pts` as a list-like of points to put thresholds between.", "assert", "data_range", "[", "0", "]", "<=", "min", "(", "pts", ")", "and", "max", "(", "pts", ")", "<=", "data_range", "[", "1", "]", ",", "\"The values in `pts` must be within `data_range`, inclusive.\"", "# Choose imaginary lower and upper bounds of the data to scale `pts` with", "# so that the first and last color regions are sized appropriately.", "data_range_fmt", "=", "[", "None", "]", "*", "2", "if", "data_range_fmt", "is", "None", "else", "data_range_fmt", "data_range_fmt", "[", "0", "]", "=", "pts", "[", "0", "]", "-", "(", "pts", "[", "1", "]", "-", "pts", "[", "0", "]", ")", "/", "2", "data_range_fmt", "[", "1", "]", "=", "pts", "[", "-", "1", "]", "+", "(", "pts", "[", "-", "1", "]", "-", "pts", "[", "-", "2", "]", ")", "/", "2", "pts", "=", "np", ".", "interp", "(", "pts", ",", "data_range_fmt", ",", "data_range", ")", "#(0,1))", "# pts = list(map(lambda pt: norm_range(pt, data_range_fmt), pts))", "th", "=", "[", "pts", "[", "ind", "-", "1", "]", "+", "(", "pts", "[", "ind", "]", "-", "pts", "[", "ind", "-", "1", "]", ")", "/", "2", "for", "ind", "in", "range", "(", "1", ",", "len", "(", "pts", ")", ")", "]", "else", ":", "assert", "colors", "is", "not", "None", ",", "\"If neither `th` nor `pts` are specified, `colors` must be specified.\"", "th_spacing", "=", "(", "data_range", "[", "1", "]", "-", "data_range", "[", "0", "]", ")", "/", "len", "(", "colors", ")", "th", "=", "np", ".", "linspace", "(", "data_range", "[", "0", "]", "+", "th_spacing", ",", "data_range", "[", "1", "]", "-", "th_spacing", ",", "len", "(", "colors", ")", "-", "1", ")", "else", ":", "assert", "len", "(", "th", ")", "==", "0", "or", "(", "data_range", "[", "0", "]", "<", "min", "(", "th", ")", "and", "max", "(", "th", ")", "<", "data_range", "[", "1", "]", ")", ",", "\"The values in `th` must be within `data_range`, exclusive.\"", "# Normalize threshold values based on the data range.", "th", "=", "[", "(", "val", "-", "data_range", "[", "0", "]", ")", "/", "(", "data_range", "[", "1", "]", "-", "data_range", "[", "0", "]", ")", "for", "val", "in", "th", "]", "th", "=", "np", ".", "interp", "(", "th", ",", "data_range", ",", "(", "0", ",", "1", ")", ")", "th", "=", "[", "0.0", "]", "+", "list", "(", "th", ")", "+", "[", "1.0", "]", "if", "pts_fmt", "is", "not", "None", ":", "for", "ind", "in", "range", "(", "len", "(", "th", ")", "-", "1", ")", ":", "pts_fmt", "[", "ind", "]", "=", "th", "[", "ind", "]", "+", "(", "th", "[", "ind", "+", "1", "]", "-", "th", "[", "ind", "]", ")", "/", "2", "if", "colors", "is", "None", ":", "# If `colors` is not supplied, construct it based on other arguments.", "assert", "cmap", "is", "not", "None", ",", "\"If `colors` is not specified, `cmap` must be specified.\"", "colors", "=", "[", "cmap", "(", "th", "[", "ind", "-", "1", "]", "+", "(", "th", "[", "ind", "]", "-", "th", "[", "ind", "-", "1", "]", ")", "/", "2", ")", "for", "ind", "in", "range", "(", "1", ",", "len", "(", "th", ")", ")", "]", "else", ":", "colors", "=", "list", "(", "map", "(", "norm_color", ",", "colors", ")", ")", "cdict", "=", "{", "}", "# These are fully-saturated red, green, and blue - not the matplotlib colors for 'red', 'green', and 'blue'.", "primary_colors", "=", "[", "'red'", ",", "'green'", ",", "'blue'", "]", "# Get the 3-tuples of rgb values for the colors.", "color_rgbs", "=", "[", "(", "mpl", ".", "colors", ".", "to_rgb", "(", "color", ")", "if", "isinstance", "(", "color", ",", "str", ")", "else", "color", ")", "for", "color", "in", "colors", "]", "# For each color entry to go into the color dictionary...", "for", "primary_color_ind", ",", "primary_color", "in", "enumerate", "(", "primary_colors", ")", ":", "cdict_entry", "=", "[", "None", "]", "*", "len", "(", "th", ")", "# For each threshold (as well as 0.0 and 1.0), specify the values for this primary color.", "for", "row_ind", ",", "th_ind", "in", "enumerate", "(", "range", "(", "len", "(", "th", ")", ")", ")", ":", "# Get the two colors that this threshold corresponds to.", "th_color_inds", "=", "[", "0", ",", "0", "]", "if", "th_ind", "==", "0", "else", "[", "len", "(", "colors", ")", "-", "1", ",", "len", "(", "colors", ")", "-", "1", "]", "if", "th_ind", "==", "len", "(", "th", ")", "-", "1", "else", "[", "th_ind", "-", "1", ",", "th_ind", "]", "primary_color_vals", "=", "[", "color_rgbs", "[", "th_color_ind", "]", "[", "primary_color_ind", "]", "for", "th_color_ind", "in", "th_color_inds", "]", "cdict_entry", "[", "row_ind", "]", "=", "(", "th", "[", "th_ind", "]", ",", ")", "+", "tuple", "(", "primary_color_vals", ")", "cdict", "[", "primary_color", "]", "=", "cdict_entry", "cmap", "=", "LinearSegmentedColormap", "(", "cmap_name", ",", "cdict", ")", "return", "cmap" ]
[ 779, 0 ]
[ 885, 15 ]
python
en
['en', 'error', 'th']
False
create_gradient_color_map
(data_range, colors, positions=None, cmap_name='my_cmap')
Creates a gradient colormap with a LinearSegmentedColormap. Currently only creates linear gradients. Parameters ---------- data_range: list-like A 2-tuple of the minimum and maximum values the data may take. colors: list of str or list of tuple Colors can be string names of matplotlib colors or 3-tuples of rgb values in range [0,255]. The first and last colors are placed at the beginning and end of the colormap, respectively. positions: list-like The values which are colored with corresponding colors in `colors`, except the first and last colors, so `len(positions) == len(colors)-2`. Positions must be in the range of `data_range` - noninclusive. If no positions are provided, the colors are evenly spaced. cmap_name: str The name of the created colormap for matplotlib. Examples -------- Creating a linear gradient colormap of red, green, and blue, with even spacing between them: create_gradient_color_map(data_range=(0,1), positions=(0.5,), colors=('red', 'green', 'blue')) Which can also be done without specifying `positions`: create_gradient_color_map(data_range=(0,1), colors=('red', 'green', 'blue'))
Creates a gradient colormap with a LinearSegmentedColormap. Currently only creates linear gradients. Parameters ---------- data_range: list-like A 2-tuple of the minimum and maximum values the data may take. colors: list of str or list of tuple Colors can be string names of matplotlib colors or 3-tuples of rgb values in range [0,255]. The first and last colors are placed at the beginning and end of the colormap, respectively. positions: list-like The values which are colored with corresponding colors in `colors`, except the first and last colors, so `len(positions) == len(colors)-2`. Positions must be in the range of `data_range` - noninclusive. If no positions are provided, the colors are evenly spaced. cmap_name: str The name of the created colormap for matplotlib. Examples -------- Creating a linear gradient colormap of red, green, and blue, with even spacing between them: create_gradient_color_map(data_range=(0,1), positions=(0.5,), colors=('red', 'green', 'blue')) Which can also be done without specifying `positions`: create_gradient_color_map(data_range=(0,1), colors=('red', 'green', 'blue'))
def create_gradient_color_map(data_range, colors, positions=None, cmap_name='my_cmap'): """ Creates a gradient colormap with a LinearSegmentedColormap. Currently only creates linear gradients. Parameters ---------- data_range: list-like A 2-tuple of the minimum and maximum values the data may take. colors: list of str or list of tuple Colors can be string names of matplotlib colors or 3-tuples of rgb values in range [0,255]. The first and last colors are placed at the beginning and end of the colormap, respectively. positions: list-like The values which are colored with corresponding colors in `colors`, except the first and last colors, so `len(positions) == len(colors)-2`. Positions must be in the range of `data_range` - noninclusive. If no positions are provided, the colors are evenly spaced. cmap_name: str The name of the created colormap for matplotlib. Examples -------- Creating a linear gradient colormap of red, green, and blue, with even spacing between them: create_gradient_color_map(data_range=(0,1), positions=(0.5,), colors=('red', 'green', 'blue')) Which can also be done without specifying `positions`: create_gradient_color_map(data_range=(0,1), colors=('red', 'green', 'blue')) """ # Normalize position values based on the data range. if positions is None: range_size = data_range[1] - data_range[0] spacing = range_size / (len(colors) - 1) positions = [spacing*i for i in range(1, len(colors)-1)] else: positions = list(map(lambda val: (val - data_range[0])/(data_range[1] - data_range[0]), positions)) colors = list(map(norm_color, colors)) # Normalize color values for colormap creation. positions = [0.0] + positions + [1.0] cdict = {} # These are fully-saturated red, green, and blue - not the matplotlib colors for 'red', 'green', and 'blue'. primary_colors = ['red', 'green', 'blue'] # Get the 3-tuples of rgb values for the colors. color_rgbs = [(mpl.colors.to_rgb(color) if isinstance(color,str) else color) for color in colors] cdict = {'red':[], 'green':[], 'blue':[]} for pos, color in zip(positions, color_rgbs): cdict['red'].append((pos, color[0], color[0])) cdict['green'].append((pos, color[1], color[1])) cdict['blue'].append((pos, color[2], color[2])) return LinearSegmentedColormap(cmap_name, cdict)
[ "def", "create_gradient_color_map", "(", "data_range", ",", "colors", ",", "positions", "=", "None", ",", "cmap_name", "=", "'my_cmap'", ")", ":", "# Normalize position values based on the data range.", "if", "positions", "is", "None", ":", "range_size", "=", "data_range", "[", "1", "]", "-", "data_range", "[", "0", "]", "spacing", "=", "range_size", "/", "(", "len", "(", "colors", ")", "-", "1", ")", "positions", "=", "[", "spacing", "*", "i", "for", "i", "in", "range", "(", "1", ",", "len", "(", "colors", ")", "-", "1", ")", "]", "else", ":", "positions", "=", "list", "(", "map", "(", "lambda", "val", ":", "(", "val", "-", "data_range", "[", "0", "]", ")", "/", "(", "data_range", "[", "1", "]", "-", "data_range", "[", "0", "]", ")", ",", "positions", ")", ")", "colors", "=", "list", "(", "map", "(", "norm_color", ",", "colors", ")", ")", "# Normalize color values for colormap creation.", "positions", "=", "[", "0.0", "]", "+", "positions", "+", "[", "1.0", "]", "cdict", "=", "{", "}", "# These are fully-saturated red, green, and blue - not the matplotlib colors for 'red', 'green', and 'blue'.", "primary_colors", "=", "[", "'red'", ",", "'green'", ",", "'blue'", "]", "# Get the 3-tuples of rgb values for the colors.", "color_rgbs", "=", "[", "(", "mpl", ".", "colors", ".", "to_rgb", "(", "color", ")", "if", "isinstance", "(", "color", ",", "str", ")", "else", "color", ")", "for", "color", "in", "colors", "]", "cdict", "=", "{", "'red'", ":", "[", "]", ",", "'green'", ":", "[", "]", ",", "'blue'", ":", "[", "]", "}", "for", "pos", ",", "color", "in", "zip", "(", "positions", ",", "color_rgbs", ")", ":", "cdict", "[", "'red'", "]", ".", "append", "(", "(", "pos", ",", "color", "[", "0", "]", ",", "color", "[", "0", "]", ")", ")", "cdict", "[", "'green'", "]", ".", "append", "(", "(", "pos", ",", "color", "[", "1", "]", ",", "color", "[", "1", "]", ")", ")", "cdict", "[", "'blue'", "]", ".", "append", "(", "(", "pos", ",", "color", "[", "2", "]", ",", "color", "[", "2", "]", ")", ")", "return", "LinearSegmentedColormap", "(", "cmap_name", ",", "cdict", ")" ]
[ 887, 0 ]
[ 934, 52 ]
python
en
['en', 'error', 'th']
False
binary_class_change_plot
(dataarrays, mask=None, x_coord='longitude', y_coord='latitude', colors=None, class_legend_label=None, width=10, fig=None, ax=None, title=None, fig_kwargs={}, title_kwargs={}, imshow_kwargs={}, x_label_kwargs={}, y_label_kwargs={}, legend_kwargs={})
Creates a figure showing one of the following, depending on the format of arguments: 1. The change in the extents of a binary pixel classification in a region over time. Pixels are colored based on never, sometimes, or always being a member of the class. In this case, there are 3 regions - never, sometimes, and always. 2. The change in the extents of a binary pixel classification in a region over time between two time periods. Pixels are colored based on a change in having zero or more than zero times in which they are members of the class between the time periods. In this case, there are 4 regions - (never,never),(never,some),(some,never),(some,some). Parameters ---------- dataarrays: list-like of xarray.DataArray A list-like of one or two DataArrays of classification values to plot, which must be either 0 or 1. mask: numpy.ndarray A NumPy array of the same shape as the dataarrays. The pixels for which it is `True` are colored `color_mask`. x_coord, y_coord: str Names of the x and y coordinates in the elements of `dataarrays` to use as tick and axis labels. colors: list-like: A list-like of list-likes of 3 elements - red, green, and blue values in range [0,255], or the name of a matplotlib color. If `dataarrays` contains one DataArray, these are the colors for pixels. Provide 3 color entries - for never, sometimes, and always class membership, in that order. If `dataarrays` contains two DataArrays, these are the colors for pixels that have zero or more than zero times in which they are members of the class between the time periods. Provide 4 color entires - (never,never),(never,some),(some,never),(some,some) class membership. class_legend_label: str The class label on the legend. For example, `class_legend_label='Water'` would yield legend labels like "Never Water". width: numeric The width of the created ``matplotlib.figure.Figure``, if none is supplied in `fig`. The height will be set to maintain aspect ratio. Will be overridden by `'figsize'` in `fig_kwargs`, if present. fig: matplotlib.figure.Figure The figure to use for the plot. If `ax` is not supplied, the Axes object used will be the first. ax: matplotlib.axes.Axes The axes to use for the plot. title: str The title of the plot. fig_kwargs: dict The dictionary of keyword arguments used to build the figure. title_kwargs: dict The dictionary of keyword arguments used to format the title. Passed to `matplotlib.axes.Axes.set_title()`. imshow_kwargs: dict The dictionary of keyword arguments passed to `ax.imshow()`. You can pass a colormap here with the key 'cmap'. x_label_kwargs, y_label_kwargs: dict Dictionaries of keyword arguments for `Axes.set_xlabel()` and `Axes.set_ylabel()`, respectively. They cannot reference the same dictionary. legend_kwargs: dict The dictionary of keyword arguments passed to `ax.legend()`. Returns ------- (fig,ax), pcts: A 2-tuple of the figure and axes followed by a list of either 3 or 4 percents of pixel membership, depending on whether `dataarray` contains one or two DataArrays. If `dataarrays` contains one DataArray, there are 3 percents for never, sometimes, and always class membership. If `dataarrays` contains two DataArrays, there are 4 percents for (never,never),(never,some),(some,never),(some,some) class membership. :Authors: John Rattz ([email protected])
Creates a figure showing one of the following, depending on the format of arguments: 1. The change in the extents of a binary pixel classification in a region over time. Pixels are colored based on never, sometimes, or always being a member of the class. In this case, there are 3 regions - never, sometimes, and always. 2. The change in the extents of a binary pixel classification in a region over time between two time periods. Pixels are colored based on a change in having zero or more than zero times in which they are members of the class between the time periods. In this case, there are 4 regions - (never,never),(never,some),(some,never),(some,some). Parameters ---------- dataarrays: list-like of xarray.DataArray A list-like of one or two DataArrays of classification values to plot, which must be either 0 or 1. mask: numpy.ndarray A NumPy array of the same shape as the dataarrays. The pixels for which it is `True` are colored `color_mask`. x_coord, y_coord: str Names of the x and y coordinates in the elements of `dataarrays` to use as tick and axis labels. colors: list-like: A list-like of list-likes of 3 elements - red, green, and blue values in range [0,255], or the name of a matplotlib color. If `dataarrays` contains one DataArray, these are the colors for pixels. Provide 3 color entries - for never, sometimes, and always class membership, in that order. If `dataarrays` contains two DataArrays, these are the colors for pixels that have zero or more than zero times in which they are members of the class between the time periods. Provide 4 color entires - (never,never),(never,some),(some,never),(some,some) class membership. class_legend_label: str The class label on the legend. For example, `class_legend_label='Water'` would yield legend labels like "Never Water". width: numeric The width of the created ``matplotlib.figure.Figure``, if none is supplied in `fig`. The height will be set to maintain aspect ratio. Will be overridden by `'figsize'` in `fig_kwargs`, if present. fig: matplotlib.figure.Figure The figure to use for the plot. If `ax` is not supplied, the Axes object used will be the first. ax: matplotlib.axes.Axes The axes to use for the plot. title: str The title of the plot. fig_kwargs: dict The dictionary of keyword arguments used to build the figure. title_kwargs: dict The dictionary of keyword arguments used to format the title. Passed to `matplotlib.axes.Axes.set_title()`. imshow_kwargs: dict The dictionary of keyword arguments passed to `ax.imshow()`. You can pass a colormap here with the key 'cmap'. x_label_kwargs, y_label_kwargs: dict Dictionaries of keyword arguments for `Axes.set_xlabel()` and `Axes.set_ylabel()`, respectively. They cannot reference the same dictionary. legend_kwargs: dict The dictionary of keyword arguments passed to `ax.legend()`. Returns ------- (fig,ax), pcts: A 2-tuple of the figure and axes followed by a list of either 3 or 4 percents of pixel membership, depending on whether `dataarray` contains one or two DataArrays.
def binary_class_change_plot(dataarrays, mask=None, x_coord='longitude', y_coord='latitude', colors=None, class_legend_label=None, width=10, fig=None, ax=None, title=None, fig_kwargs={}, title_kwargs={}, imshow_kwargs={}, x_label_kwargs={}, y_label_kwargs={}, legend_kwargs={}): """ Creates a figure showing one of the following, depending on the format of arguments: 1. The change in the extents of a binary pixel classification in a region over time. Pixels are colored based on never, sometimes, or always being a member of the class. In this case, there are 3 regions - never, sometimes, and always. 2. The change in the extents of a binary pixel classification in a region over time between two time periods. Pixels are colored based on a change in having zero or more than zero times in which they are members of the class between the time periods. In this case, there are 4 regions - (never,never),(never,some),(some,never),(some,some). Parameters ---------- dataarrays: list-like of xarray.DataArray A list-like of one or two DataArrays of classification values to plot, which must be either 0 or 1. mask: numpy.ndarray A NumPy array of the same shape as the dataarrays. The pixels for which it is `True` are colored `color_mask`. x_coord, y_coord: str Names of the x and y coordinates in the elements of `dataarrays` to use as tick and axis labels. colors: list-like: A list-like of list-likes of 3 elements - red, green, and blue values in range [0,255], or the name of a matplotlib color. If `dataarrays` contains one DataArray, these are the colors for pixels. Provide 3 color entries - for never, sometimes, and always class membership, in that order. If `dataarrays` contains two DataArrays, these are the colors for pixels that have zero or more than zero times in which they are members of the class between the time periods. Provide 4 color entires - (never,never),(never,some),(some,never),(some,some) class membership. class_legend_label: str The class label on the legend. For example, `class_legend_label='Water'` would yield legend labels like "Never Water". width: numeric The width of the created ``matplotlib.figure.Figure``, if none is supplied in `fig`. The height will be set to maintain aspect ratio. Will be overridden by `'figsize'` in `fig_kwargs`, if present. fig: matplotlib.figure.Figure The figure to use for the plot. If `ax` is not supplied, the Axes object used will be the first. ax: matplotlib.axes.Axes The axes to use for the plot. title: str The title of the plot. fig_kwargs: dict The dictionary of keyword arguments used to build the figure. title_kwargs: dict The dictionary of keyword arguments used to format the title. Passed to `matplotlib.axes.Axes.set_title()`. imshow_kwargs: dict The dictionary of keyword arguments passed to `ax.imshow()`. You can pass a colormap here with the key 'cmap'. x_label_kwargs, y_label_kwargs: dict Dictionaries of keyword arguments for `Axes.set_xlabel()` and `Axes.set_ylabel()`, respectively. They cannot reference the same dictionary. legend_kwargs: dict The dictionary of keyword arguments passed to `ax.legend()`. Returns ------- (fig,ax), pcts: A 2-tuple of the figure and axes followed by a list of either 3 or 4 percents of pixel membership, depending on whether `dataarray` contains one or two DataArrays. If `dataarrays` contains one DataArray, there are 3 percents for never, sometimes, and always class membership. If `dataarrays` contains two DataArrays, there are 4 percents for (never,never),(never,some),(some,never),(some,some) class membership. :Authors: John Rattz ([email protected]) """ # Avoid modifying the original arguments. fig_kwargs, title_kwargs, legend_kwargs = \ fig_kwargs.copy(), title_kwargs.copy(), legend_kwargs.copy() # Handle conversion of matplotlib color names to lists of rgb values (range [0,255] for plt.imshow()). colors = list(map(convert_name_rgb_255, colors)) def get_none_chng_perm_masks(dataarray, time_dim='time'): """ For a DataArray of binary classifications (0 or 1) with a 'time' dimension, get a list of masks indicating where the points are, in order, never, sometimes, or always a member of the class (1 indicates membership), considering only non-NaN values for those points. """ # Get the sum of classifications across time. sum_cls = dataarray.sum(dim=time_dim) # The number of acquistions that were not nan for each point. num_times_not_nan = dataarray.count(dim=time_dim) # Find where pixels are permanent, changing, or never a member of the class. none_mask = sum_cls == 0 chng_mask = xr_and(0 < sum_cls, sum_cls < num_times_not_nan) perm_mask = sum_cls == num_times_not_nan return [none_mask, chng_mask, perm_mask] # Assemble the color masks. masks = [] if len(dataarrays) == 1: # Determine extent change in one time period. dataarray = dataarrays[0] masks += get_none_chng_perm_masks(dataarray) else: # Determine change between two time periods. baseline_da, analysis_da = dataarrays baseline_none_mask, baseline_chng_mask, baseline_perm_mask = get_none_chng_perm_masks(baseline_da) analysis_none_mask, analysis_chng_mask, analysis_perm_mask = get_none_chng_perm_masks(analysis_da) # Find where points are never a member of the class or are a member at one or more times. baseline_cls_ever = xr_or(baseline_chng_mask, baseline_perm_mask) analysis_cls_ever = xr_or(analysis_chng_mask, analysis_perm_mask) # Find where points change between never being a member of the class # and being a member at one or more times between the two periods. no_cls_no_cls_mask = xr_and(baseline_none_mask, analysis_none_mask) no_cls_cls_mask = xr_and(baseline_none_mask, analysis_cls_ever) cls_no_cls_mask = xr_and(baseline_cls_ever, analysis_none_mask) cls_cls_mask = xr_and(baseline_cls_ever, analysis_cls_ever) masks += [no_cls_no_cls_mask, no_cls_cls_mask, cls_no_cls_mask, cls_cls_mask] # Determine the overriding mask. y_x_shape = len(dataarrays[0][y_coord]), len(dataarrays[0][x_coord]) mask = np.zeros(y_x_shape, dtype=np.bool) if mask is None else mask # Color the image with the masks. color_array = np.zeros((*y_x_shape, 3)).astype(np.int16) for i, mask in enumerate(masks): color_array[mask.values] = colors[i] fig_kwargs['figsize'] = fig_kwargs.get('figsize', figure_ratio(dataarrays[0], x_coord, y_coord, fixed_width = width)) fig, ax = retrieve_or_create_fig_ax(fig, ax, **fig_kwargs) # Set the tick and axes labels. xarray_set_axes_labels(dataarrays[0], ax, x_coord, y_coord, x_label_kwargs, y_label_kwargs) # Title the plot. if title is None: title = "Class Extents Change" if len(dataarrays)==1 else \ "Class Extents Change (Baseline/Analysis)" ax.set_title(title, **title_kwargs) # Create the legend. colors = [np.array(color)/255 for color in colors] # Colors must be in range [0,1] for color patches. if len(dataarrays)==1: class_legend_label = "a Member of the Class" if class_legend_label is None else class_legend_label labels = list(map(lambda str: str.format(class_legend_label), ['Never {}', 'Sometimes {}', 'Always {}'])) else: class_legend_label = "Class Membership" if class_legend_label is None else class_legend_label labels = list(map(lambda str: str.format(class_legend_label, class_legend_label), ['No {} to No {}', 'No {} to {}', '{} to No {}', '{} to {}'])) color_patches = list(map(lambda color, label: mpatches.Patch(color=color, label=label), colors, labels)) legend_kwargs.setdefault('loc', 'best') legend_kwargs['handles'] = color_patches ax.legend(**legend_kwargs) ax.imshow(color_array, **imshow_kwargs) # Calculate the percentage of pixels that are permanent, changing, or never members. pcts = [float((mask.sum() / (y_x_shape[0]*y_x_shape[1])).values) for mask in masks] return [fig,ax], pcts
[ "def", "binary_class_change_plot", "(", "dataarrays", ",", "mask", "=", "None", ",", "x_coord", "=", "'longitude'", ",", "y_coord", "=", "'latitude'", ",", "colors", "=", "None", ",", "class_legend_label", "=", "None", ",", "width", "=", "10", ",", "fig", "=", "None", ",", "ax", "=", "None", ",", "title", "=", "None", ",", "fig_kwargs", "=", "{", "}", ",", "title_kwargs", "=", "{", "}", ",", "imshow_kwargs", "=", "{", "}", ",", "x_label_kwargs", "=", "{", "}", ",", "y_label_kwargs", "=", "{", "}", ",", "legend_kwargs", "=", "{", "}", ")", ":", "# Avoid modifying the original arguments.", "fig_kwargs", ",", "title_kwargs", ",", "legend_kwargs", "=", "fig_kwargs", ".", "copy", "(", ")", ",", "title_kwargs", ".", "copy", "(", ")", ",", "legend_kwargs", ".", "copy", "(", ")", "# Handle conversion of matplotlib color names to lists of rgb values (range [0,255] for plt.imshow()).", "colors", "=", "list", "(", "map", "(", "convert_name_rgb_255", ",", "colors", ")", ")", "def", "get_none_chng_perm_masks", "(", "dataarray", ",", "time_dim", "=", "'time'", ")", ":", "\"\"\"\n For a DataArray of binary classifications (0 or 1) with a 'time' dimension, \n get a list of masks indicating where the points are, in order, never, sometimes, \n or always a member of the class (1 indicates membership), considering only \n non-NaN values for those points.\n \"\"\"", "# Get the sum of classifications across time.", "sum_cls", "=", "dataarray", ".", "sum", "(", "dim", "=", "time_dim", ")", "# The number of acquistions that were not nan for each point.", "num_times_not_nan", "=", "dataarray", ".", "count", "(", "dim", "=", "time_dim", ")", "# Find where pixels are permanent, changing, or never a member of the class.", "none_mask", "=", "sum_cls", "==", "0", "chng_mask", "=", "xr_and", "(", "0", "<", "sum_cls", ",", "sum_cls", "<", "num_times_not_nan", ")", "perm_mask", "=", "sum_cls", "==", "num_times_not_nan", "return", "[", "none_mask", ",", "chng_mask", ",", "perm_mask", "]", "# Assemble the color masks.", "masks", "=", "[", "]", "if", "len", "(", "dataarrays", ")", "==", "1", ":", "# Determine extent change in one time period.", "dataarray", "=", "dataarrays", "[", "0", "]", "masks", "+=", "get_none_chng_perm_masks", "(", "dataarray", ")", "else", ":", "# Determine change between two time periods.", "baseline_da", ",", "analysis_da", "=", "dataarrays", "baseline_none_mask", ",", "baseline_chng_mask", ",", "baseline_perm_mask", "=", "get_none_chng_perm_masks", "(", "baseline_da", ")", "analysis_none_mask", ",", "analysis_chng_mask", ",", "analysis_perm_mask", "=", "get_none_chng_perm_masks", "(", "analysis_da", ")", "# Find where points are never a member of the class or are a member at one or more times.", "baseline_cls_ever", "=", "xr_or", "(", "baseline_chng_mask", ",", "baseline_perm_mask", ")", "analysis_cls_ever", "=", "xr_or", "(", "analysis_chng_mask", ",", "analysis_perm_mask", ")", "# Find where points change between never being a member of the class ", "# and being a member at one or more times between the two periods.", "no_cls_no_cls_mask", "=", "xr_and", "(", "baseline_none_mask", ",", "analysis_none_mask", ")", "no_cls_cls_mask", "=", "xr_and", "(", "baseline_none_mask", ",", "analysis_cls_ever", ")", "cls_no_cls_mask", "=", "xr_and", "(", "baseline_cls_ever", ",", "analysis_none_mask", ")", "cls_cls_mask", "=", "xr_and", "(", "baseline_cls_ever", ",", "analysis_cls_ever", ")", "masks", "+=", "[", "no_cls_no_cls_mask", ",", "no_cls_cls_mask", ",", "cls_no_cls_mask", ",", "cls_cls_mask", "]", "# Determine the overriding mask.", "y_x_shape", "=", "len", "(", "dataarrays", "[", "0", "]", "[", "y_coord", "]", ")", ",", "len", "(", "dataarrays", "[", "0", "]", "[", "x_coord", "]", ")", "mask", "=", "np", ".", "zeros", "(", "y_x_shape", ",", "dtype", "=", "np", ".", "bool", ")", "if", "mask", "is", "None", "else", "mask", "# Color the image with the masks.", "color_array", "=", "np", ".", "zeros", "(", "(", "*", "y_x_shape", ",", "3", ")", ")", ".", "astype", "(", "np", ".", "int16", ")", "for", "i", ",", "mask", "in", "enumerate", "(", "masks", ")", ":", "color_array", "[", "mask", ".", "values", "]", "=", "colors", "[", "i", "]", "fig_kwargs", "[", "'figsize'", "]", "=", "fig_kwargs", ".", "get", "(", "'figsize'", ",", "figure_ratio", "(", "dataarrays", "[", "0", "]", ",", "x_coord", ",", "y_coord", ",", "fixed_width", "=", "width", ")", ")", "fig", ",", "ax", "=", "retrieve_or_create_fig_ax", "(", "fig", ",", "ax", ",", "*", "*", "fig_kwargs", ")", "# Set the tick and axes labels.", "xarray_set_axes_labels", "(", "dataarrays", "[", "0", "]", ",", "ax", ",", "x_coord", ",", "y_coord", ",", "x_label_kwargs", ",", "y_label_kwargs", ")", "# Title the plot.", "if", "title", "is", "None", ":", "title", "=", "\"Class Extents Change\"", "if", "len", "(", "dataarrays", ")", "==", "1", "else", "\"Class Extents Change (Baseline/Analysis)\"", "ax", ".", "set_title", "(", "title", ",", "*", "*", "title_kwargs", ")", "# Create the legend.", "colors", "=", "[", "np", ".", "array", "(", "color", ")", "/", "255", "for", "color", "in", "colors", "]", "# Colors must be in range [0,1] for color patches.", "if", "len", "(", "dataarrays", ")", "==", "1", ":", "class_legend_label", "=", "\"a Member of the Class\"", "if", "class_legend_label", "is", "None", "else", "class_legend_label", "labels", "=", "list", "(", "map", "(", "lambda", "str", ":", "str", ".", "format", "(", "class_legend_label", ")", ",", "[", "'Never {}'", ",", "'Sometimes {}'", ",", "'Always {}'", "]", ")", ")", "else", ":", "class_legend_label", "=", "\"Class Membership\"", "if", "class_legend_label", "is", "None", "else", "class_legend_label", "labels", "=", "list", "(", "map", "(", "lambda", "str", ":", "str", ".", "format", "(", "class_legend_label", ",", "class_legend_label", ")", ",", "[", "'No {} to No {}'", ",", "'No {} to {}'", ",", "'{} to No {}'", ",", "'{} to {}'", "]", ")", ")", "color_patches", "=", "list", "(", "map", "(", "lambda", "color", ",", "label", ":", "mpatches", ".", "Patch", "(", "color", "=", "color", ",", "label", "=", "label", ")", ",", "colors", ",", "labels", ")", ")", "legend_kwargs", ".", "setdefault", "(", "'loc'", ",", "'best'", ")", "legend_kwargs", "[", "'handles'", "]", "=", "color_patches", "ax", ".", "legend", "(", "*", "*", "legend_kwargs", ")", "ax", ".", "imshow", "(", "color_array", ",", "*", "*", "imshow_kwargs", ")", "# Calculate the percentage of pixels that are permanent, changing, or never members.", "pcts", "=", "[", "float", "(", "(", "mask", ".", "sum", "(", ")", "/", "(", "y_x_shape", "[", "0", "]", "*", "y_x_shape", "[", "1", "]", ")", ")", ".", "values", ")", "for", "mask", "in", "masks", "]", "return", "[", "fig", ",", "ax", "]", ",", "pcts" ]
[ 940, 0 ]
[ 1105, 25 ]
python
en
['en', 'error', 'th']
False
intersection_threshold_plot
(first, second, th, mask = None, color_none='black', color_first='green', color_second='red', color_both='white', color_mask='gray', width = 10, fig=None, ax=None, *args, **kwargs)
Given two dataarrays, create a threshold plot showing where zero, one, or both are within a threshold. Parameters ---------- first, second: xarray.DataArray The DataArrays to compare. th: tuple A 2-tuple of the minimum (inclusive) and maximum (exclusive) threshold values, respectively. mask: numpy.ndarray A NumPy array of the same shape as the dataarrays. The pixels for which it is `True` are colored`color_mask`. color_none: list-like or str A list-like of 3 elements - red, green, and blue values in range [0,255], or the name of a matplotlib color. Used to color regions where neither first nor second have values within the threshold. Default color is black. color_first: list-like or str A list-like of 3 elements - red, green, and blue values in range [0,255], or the name of a matplotlib color. Used to color regions where only the first has values within the threshold. Default color is green. color_second: list-like or str A list-like of 3 elements - red, green, and blue values in range [0,255], or the name of a matplotlib color. Used to color regions where only the second has values within the threshold. Default color is red. color_both: list-like or str A list-like of 3 elements - red, green, and blue values in range [0,255], or the name of a matplotlib color. Used to color regions where both the first and second have values within the threshold. Default color is white. color_mask: list-like or str A list-like of 3 elements - red, green, and blue values in range [0,255], or the name of a matplotlib color. Used to color regions where `mask == True`. Overrides any other color a region may have. Default color is gray. width: int The width of the created ``matplotlib.figure.Figure``. The height will be set to maintain aspect ratio. fig: matplotlib.figure.Figure The figure to use for the plot. If `ax` is not supplied, the Axes object used will be the first. ax: matplotlib.axes.Axes The axes to use for the plot. *args: list Arguments passed to ``matplotlib.pyplot.imshow()``. **kwargs: dict Keyword arguments passed to ``matplotlib.pyplot.imshow()``.
Given two dataarrays, create a threshold plot showing where zero, one, or both are within a threshold. Parameters ---------- first, second: xarray.DataArray The DataArrays to compare. th: tuple A 2-tuple of the minimum (inclusive) and maximum (exclusive) threshold values, respectively. mask: numpy.ndarray A NumPy array of the same shape as the dataarrays. The pixels for which it is `True` are colored`color_mask`. color_none: list-like or str A list-like of 3 elements - red, green, and blue values in range [0,255], or the name of a matplotlib color. Used to color regions where neither first nor second have values within the threshold. Default color is black. color_first: list-like or str A list-like of 3 elements - red, green, and blue values in range [0,255], or the name of a matplotlib color. Used to color regions where only the first has values within the threshold. Default color is green. color_second: list-like or str A list-like of 3 elements - red, green, and blue values in range [0,255], or the name of a matplotlib color. Used to color regions where only the second has values within the threshold. Default color is red. color_both: list-like or str A list-like of 3 elements - red, green, and blue values in range [0,255], or the name of a matplotlib color. Used to color regions where both the first and second have values within the threshold. Default color is white. color_mask: list-like or str A list-like of 3 elements - red, green, and blue values in range [0,255], or the name of a matplotlib color. Used to color regions where `mask == True`. Overrides any other color a region may have. Default color is gray. width: int The width of the created ``matplotlib.figure.Figure``. The height will be set to maintain aspect ratio. fig: matplotlib.figure.Figure The figure to use for the plot. If `ax` is not supplied, the Axes object used will be the first. ax: matplotlib.axes.Axes The axes to use for the plot. *args: list Arguments passed to ``matplotlib.pyplot.imshow()``. **kwargs: dict Keyword arguments passed to ``matplotlib.pyplot.imshow()``.
def intersection_threshold_plot(first, second, th, mask = None, color_none='black', color_first='green', color_second='red', color_both='white', color_mask='gray', width = 10, fig=None, ax=None, *args, **kwargs): """ Given two dataarrays, create a threshold plot showing where zero, one, or both are within a threshold. Parameters ---------- first, second: xarray.DataArray The DataArrays to compare. th: tuple A 2-tuple of the minimum (inclusive) and maximum (exclusive) threshold values, respectively. mask: numpy.ndarray A NumPy array of the same shape as the dataarrays. The pixels for which it is `True` are colored`color_mask`. color_none: list-like or str A list-like of 3 elements - red, green, and blue values in range [0,255], or the name of a matplotlib color. Used to color regions where neither first nor second have values within the threshold. Default color is black. color_first: list-like or str A list-like of 3 elements - red, green, and blue values in range [0,255], or the name of a matplotlib color. Used to color regions where only the first has values within the threshold. Default color is green. color_second: list-like or str A list-like of 3 elements - red, green, and blue values in range [0,255], or the name of a matplotlib color. Used to color regions where only the second has values within the threshold. Default color is red. color_both: list-like or str A list-like of 3 elements - red, green, and blue values in range [0,255], or the name of a matplotlib color. Used to color regions where both the first and second have values within the threshold. Default color is white. color_mask: list-like or str A list-like of 3 elements - red, green, and blue values in range [0,255], or the name of a matplotlib color. Used to color regions where `mask == True`. Overrides any other color a region may have. Default color is gray. width: int The width of the created ``matplotlib.figure.Figure``. The height will be set to maintain aspect ratio. fig: matplotlib.figure.Figure The figure to use for the plot. If `ax` is not supplied, the Axes object used will be the first. ax: matplotlib.axes.Axes The axes to use for the plot. *args: list Arguments passed to ``matplotlib.pyplot.imshow()``. **kwargs: dict Keyword arguments passed to ``matplotlib.pyplot.imshow()``. """ # Handle conversion of matplotlib color names to lists of rgb values. color_none, color_first, color_second, color_both, color_mask = \ list(map(convert_name_rgb_255, [color_none, color_first, color_second, color_both, color_mask])) # Determine the regions. first_in = np.logical_and(th[0] <= first, first < th[1]) second_in = np.logical_and(th[0] <= second, second < th[1]) both_in = np.logical_and(first_in, second_in) none_in = np.invert(both_in) # Determine the overriding mask. mask = np.zeros(first.shape).astype(bool) if mask is None else mask # The colors for each pixel. color_array = np.zeros((*first.shape, 3)).astype(np.int16) color_array[none_in] = color_none color_array[first_in] = color_first color_array[second_in] = color_second color_array[both_in] = color_both color_array[mask] = color_mask fig, ax = retrieve_or_create_fig_ax(fig, ax, figsize=figure_ratio(first, x_coord, y_coord, fixed_width = width)) plt.title("Threshold: {} < x < {}".format(th[0], th[1])) max_num_ticks = 10 # Max ticks per axis. lon = first.longitude.values label_every = int(round(len(lon)/max_num_ticks)) lon_labels = ["{0:.4f}".format(lon_val) for lon_val in lon[::label_every]] plt.xlabel('Longitude') plt.xticks(range(len(lon))[::label_every], lon_labels, rotation='vertical') lat = first.latitude.values label_every = int(round(len(lat)/max_num_ticks)) lat_labels = ["{0:.4f}".format(lat_val) for lat_val in lat[::label_every]] plt.ylabel('Latitude') plt.yticks(range(len(lat))[::label_every], lat_labels) plt.imshow(color_array, *args, **kwargs) plt.show()
[ "def", "intersection_threshold_plot", "(", "first", ",", "second", ",", "th", ",", "mask", "=", "None", ",", "color_none", "=", "'black'", ",", "color_first", "=", "'green'", ",", "color_second", "=", "'red'", ",", "color_both", "=", "'white'", ",", "color_mask", "=", "'gray'", ",", "width", "=", "10", ",", "fig", "=", "None", ",", "ax", "=", "None", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "# Handle conversion of matplotlib color names to lists of rgb values.", "color_none", ",", "color_first", ",", "color_second", ",", "color_both", ",", "color_mask", "=", "list", "(", "map", "(", "convert_name_rgb_255", ",", "[", "color_none", ",", "color_first", ",", "color_second", ",", "color_both", ",", "color_mask", "]", ")", ")", "# Determine the regions.", "first_in", "=", "np", ".", "logical_and", "(", "th", "[", "0", "]", "<=", "first", ",", "first", "<", "th", "[", "1", "]", ")", "second_in", "=", "np", ".", "logical_and", "(", "th", "[", "0", "]", "<=", "second", ",", "second", "<", "th", "[", "1", "]", ")", "both_in", "=", "np", ".", "logical_and", "(", "first_in", ",", "second_in", ")", "none_in", "=", "np", ".", "invert", "(", "both_in", ")", "# Determine the overriding mask.", "mask", "=", "np", ".", "zeros", "(", "first", ".", "shape", ")", ".", "astype", "(", "bool", ")", "if", "mask", "is", "None", "else", "mask", "# The colors for each pixel.", "color_array", "=", "np", ".", "zeros", "(", "(", "*", "first", ".", "shape", ",", "3", ")", ")", ".", "astype", "(", "np", ".", "int16", ")", "color_array", "[", "none_in", "]", "=", "color_none", "color_array", "[", "first_in", "]", "=", "color_first", "color_array", "[", "second_in", "]", "=", "color_second", "color_array", "[", "both_in", "]", "=", "color_both", "color_array", "[", "mask", "]", "=", "color_mask", "fig", ",", "ax", "=", "retrieve_or_create_fig_ax", "(", "fig", ",", "ax", ",", "figsize", "=", "figure_ratio", "(", "first", ",", "x_coord", ",", "y_coord", ",", "fixed_width", "=", "width", ")", ")", "plt", ".", "title", "(", "\"Threshold: {} < x < {}\"", ".", "format", "(", "th", "[", "0", "]", ",", "th", "[", "1", "]", ")", ")", "max_num_ticks", "=", "10", "# Max ticks per axis.", "lon", "=", "first", ".", "longitude", ".", "values", "label_every", "=", "int", "(", "round", "(", "len", "(", "lon", ")", "/", "max_num_ticks", ")", ")", "lon_labels", "=", "[", "\"{0:.4f}\"", ".", "format", "(", "lon_val", ")", "for", "lon_val", "in", "lon", "[", ":", ":", "label_every", "]", "]", "plt", ".", "xlabel", "(", "'Longitude'", ")", "plt", ".", "xticks", "(", "range", "(", "len", "(", "lon", ")", ")", "[", ":", ":", "label_every", "]", ",", "lon_labels", ",", "rotation", "=", "'vertical'", ")", "lat", "=", "first", ".", "latitude", ".", "values", "label_every", "=", "int", "(", "round", "(", "len", "(", "lat", ")", "/", "max_num_ticks", ")", ")", "lat_labels", "=", "[", "\"{0:.4f}\"", ".", "format", "(", "lat_val", ")", "for", "lat_val", "in", "lat", "[", ":", ":", "label_every", "]", "]", "plt", ".", "ylabel", "(", "'Latitude'", ")", "plt", ".", "yticks", "(", "range", "(", "len", "(", "lat", ")", ")", "[", ":", ":", "label_every", "]", ",", "lat_labels", ")", "plt", ".", "imshow", "(", "color_array", ",", "*", "args", ",", "*", "*", "kwargs", ")", "plt", ".", "show", "(", ")" ]
[ 1109, 0 ]
[ 1203, 14 ]
python
en
['en', 'error', 'th']
False
print_matrix
(cell_value_mtx, cell_label_mtx=None, row_labels=None, col_labels=None, show_row_labels=True, show_col_labels=True, show_cell_labels=True, cmap=None, cell_val_fmt='2g', annot_kwargs={}, tick_fontsize=14, x_axis_tick_kwargs=None, y_axis_tick_kwargs=None, x_axis_ticks_position='default', y_axis_ticks_position='default', fig=None, ax=None, heatmap_kwargs={}, fig_kwargs={})
Prints a matrix as a heatmap. Inspired by https://gist.github.com/shaypal5/94c53d765083101efc0240d776a23823. Arguments --------- cell_value_mtx: numpy.ndarray A 2D NumPy array to be used as the cell values when coloring with the colormap. cell_label_mtx: numpy.ndarray A 2D NumPy array to be used as the cell labels. row_labels, col_labels: list A list of labels in the order they index the matrix rows and columns, respectively. show_row_labels, show_col_labels: bool Whether to show the row or column labels, respectively. show_cell_labels: bool Whether to show values as cell labels or not. cmap: matplotlib.colors.Colormap A matplotlib colormap used to color the cells based on `cell_value_mtx`. cell_val_fmt: str Formatting string for values in the matrix cells. annot_kwargs: dict Keyword arguments for ``ax.text`` for formatting cell annotation text. tick_fontsize: int The fontsize of tick labels. Overridden by `x_axis_tick_kwargs` and `y_axis_tick_kwargs`. x_axis_tick_kwargs, y_axis_tick_kwargs: dict Keyword arguments for x and y axis tick labels, respectively. Specifically, keyword arguments for calls to `ax.[x_axis,y_axis].set_ticklabels()` where `ax` is the `matplotlib.axes.Axes` object returned by `seaborn.heatmap()`. x_axis_ticks_position, y_axis_ticks_position: str The position of x and y axis ticks, respectively. For x_axis_ticks_position, possible values are ['top', 'bottom', 'both', 'default', 'none']. For y_axis_ticks_position, possible values are ['left', 'right', 'both', 'default', 'none']. See https://matplotlib.org/api/axis_api.html for more information. fig: matplotlib.figure.Figure The figure to use for the plot. If only `fig` is supplied, the Axes object used will be the first. ax: matplotlib.axes.Axes The axes to use for the plot. heatmap_kwargs: dict Dictionary of keyword arguments to `seaborn.heatmap()`. Overrides any other relevant parameters passed to this function. Some notable parameters include 'vmin', 'vmax', 'cbar', and 'cbar_kws'. fig_kwargs: dict The dictionary of keyword arguments used to build the figure. Returns ------- fig, ax: matplotlib.figure.Figure, matplotlib.axes.Axes The figure and axes used for the plot.
Prints a matrix as a heatmap. Inspired by https://gist.github.com/shaypal5/94c53d765083101efc0240d776a23823. Arguments --------- cell_value_mtx: numpy.ndarray A 2D NumPy array to be used as the cell values when coloring with the colormap. cell_label_mtx: numpy.ndarray A 2D NumPy array to be used as the cell labels. row_labels, col_labels: list A list of labels in the order they index the matrix rows and columns, respectively. show_row_labels, show_col_labels: bool Whether to show the row or column labels, respectively. show_cell_labels: bool Whether to show values as cell labels or not. cmap: matplotlib.colors.Colormap A matplotlib colormap used to color the cells based on `cell_value_mtx`. cell_val_fmt: str Formatting string for values in the matrix cells. annot_kwargs: dict Keyword arguments for ``ax.text`` for formatting cell annotation text. tick_fontsize: int The fontsize of tick labels. Overridden by `x_axis_tick_kwargs` and `y_axis_tick_kwargs`. x_axis_tick_kwargs, y_axis_tick_kwargs: dict Keyword arguments for x and y axis tick labels, respectively. Specifically, keyword arguments for calls to `ax.[x_axis,y_axis].set_ticklabels()` where `ax` is the `matplotlib.axes.Axes` object returned by `seaborn.heatmap()`. x_axis_ticks_position, y_axis_ticks_position: str The position of x and y axis ticks, respectively. For x_axis_ticks_position, possible values are ['top', 'bottom', 'both', 'default', 'none']. For y_axis_ticks_position, possible values are ['left', 'right', 'both', 'default', 'none']. See https://matplotlib.org/api/axis_api.html for more information. fig: matplotlib.figure.Figure The figure to use for the plot. If only `fig` is supplied, the Axes object used will be the first. ax: matplotlib.axes.Axes The axes to use for the plot. heatmap_kwargs: dict Dictionary of keyword arguments to `seaborn.heatmap()`. Overrides any other relevant parameters passed to this function. Some notable parameters include 'vmin', 'vmax', 'cbar', and 'cbar_kws'. fig_kwargs: dict The dictionary of keyword arguments used to build the figure. Returns ------- fig, ax: matplotlib.figure.Figure, matplotlib.axes.Axes The figure and axes used for the plot.
def print_matrix(cell_value_mtx, cell_label_mtx=None, row_labels=None, col_labels=None, show_row_labels=True, show_col_labels=True, show_cell_labels=True, cmap=None, cell_val_fmt='2g', annot_kwargs={}, tick_fontsize=14, x_axis_tick_kwargs=None, y_axis_tick_kwargs=None, x_axis_ticks_position='default', y_axis_ticks_position='default', fig=None, ax=None, heatmap_kwargs={}, fig_kwargs={}): """ Prints a matrix as a heatmap. Inspired by https://gist.github.com/shaypal5/94c53d765083101efc0240d776a23823. Arguments --------- cell_value_mtx: numpy.ndarray A 2D NumPy array to be used as the cell values when coloring with the colormap. cell_label_mtx: numpy.ndarray A 2D NumPy array to be used as the cell labels. row_labels, col_labels: list A list of labels in the order they index the matrix rows and columns, respectively. show_row_labels, show_col_labels: bool Whether to show the row or column labels, respectively. show_cell_labels: bool Whether to show values as cell labels or not. cmap: matplotlib.colors.Colormap A matplotlib colormap used to color the cells based on `cell_value_mtx`. cell_val_fmt: str Formatting string for values in the matrix cells. annot_kwargs: dict Keyword arguments for ``ax.text`` for formatting cell annotation text. tick_fontsize: int The fontsize of tick labels. Overridden by `x_axis_tick_kwargs` and `y_axis_tick_kwargs`. x_axis_tick_kwargs, y_axis_tick_kwargs: dict Keyword arguments for x and y axis tick labels, respectively. Specifically, keyword arguments for calls to `ax.[x_axis,y_axis].set_ticklabels()` where `ax` is the `matplotlib.axes.Axes` object returned by `seaborn.heatmap()`. x_axis_ticks_position, y_axis_ticks_position: str The position of x and y axis ticks, respectively. For x_axis_ticks_position, possible values are ['top', 'bottom', 'both', 'default', 'none']. For y_axis_ticks_position, possible values are ['left', 'right', 'both', 'default', 'none']. See https://matplotlib.org/api/axis_api.html for more information. fig: matplotlib.figure.Figure The figure to use for the plot. If only `fig` is supplied, the Axes object used will be the first. ax: matplotlib.axes.Axes The axes to use for the plot. heatmap_kwargs: dict Dictionary of keyword arguments to `seaborn.heatmap()`. Overrides any other relevant parameters passed to this function. Some notable parameters include 'vmin', 'vmax', 'cbar', and 'cbar_kws'. fig_kwargs: dict The dictionary of keyword arguments used to build the figure. Returns ------- fig, ax: matplotlib.figure.Figure, matplotlib.axes.Axes The figure and axes used for the plot. """ cell_label_mtx = cell_value_mtx if cell_label_mtx is None else cell_label_mtx row_labels = ['']*cell_value_mtx.shape[0] if not show_row_labels else row_labels col_labels = ['']*cell_value_mtx.shape[1] if not show_col_labels else col_labels heatmap_kwargs.setdefault('cbar', False) df = pd.DataFrame(cell_value_mtx, index=row_labels, columns=col_labels) cell_labels = cell_label_mtx if show_cell_labels else None fig, ax = retrieve_or_create_fig_ax(fig, ax, **fig_kwargs) heatmap = sns.heatmap(df, cmap=cmap, annot=cell_labels, fmt=cell_val_fmt, annot_kws=annot_kwargs, ax=ax, **heatmap_kwargs) if not show_row_labels: heatmap.set_yticks([]) # Ticks must be hidden explicitly. else: if y_axis_tick_kwargs is None: y_axis_tick_kwargs = dict(rotation=0, ha='right') y_axis_tick_kwargs.setdefault('fontsize', tick_fontsize) heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), **y_axis_tick_kwargs) heatmap.yaxis.set_ticks_position(y_axis_ticks_position) heatmap.yaxis.tick_left() # Ticks may also appear on the right side otherwise. if not show_col_labels: heatmap.set_xticks([]) else: if x_axis_tick_kwargs is None: x_axis_tick_kwargs = dict(rotation=45, ha='right') x_axis_tick_kwargs.setdefault('fontsize', tick_fontsize) heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), **x_axis_tick_kwargs) heatmap.xaxis.set_ticks_position(x_axis_ticks_position) return fig, ax
[ "def", "print_matrix", "(", "cell_value_mtx", ",", "cell_label_mtx", "=", "None", ",", "row_labels", "=", "None", ",", "col_labels", "=", "None", ",", "show_row_labels", "=", "True", ",", "show_col_labels", "=", "True", ",", "show_cell_labels", "=", "True", ",", "cmap", "=", "None", ",", "cell_val_fmt", "=", "'2g'", ",", "annot_kwargs", "=", "{", "}", ",", "tick_fontsize", "=", "14", ",", "x_axis_tick_kwargs", "=", "None", ",", "y_axis_tick_kwargs", "=", "None", ",", "x_axis_ticks_position", "=", "'default'", ",", "y_axis_ticks_position", "=", "'default'", ",", "fig", "=", "None", ",", "ax", "=", "None", ",", "heatmap_kwargs", "=", "{", "}", ",", "fig_kwargs", "=", "{", "}", ")", ":", "cell_label_mtx", "=", "cell_value_mtx", "if", "cell_label_mtx", "is", "None", "else", "cell_label_mtx", "row_labels", "=", "[", "''", "]", "*", "cell_value_mtx", ".", "shape", "[", "0", "]", "if", "not", "show_row_labels", "else", "row_labels", "col_labels", "=", "[", "''", "]", "*", "cell_value_mtx", ".", "shape", "[", "1", "]", "if", "not", "show_col_labels", "else", "col_labels", "heatmap_kwargs", ".", "setdefault", "(", "'cbar'", ",", "False", ")", "df", "=", "pd", ".", "DataFrame", "(", "cell_value_mtx", ",", "index", "=", "row_labels", ",", "columns", "=", "col_labels", ")", "cell_labels", "=", "cell_label_mtx", "if", "show_cell_labels", "else", "None", "fig", ",", "ax", "=", "retrieve_or_create_fig_ax", "(", "fig", ",", "ax", ",", "*", "*", "fig_kwargs", ")", "heatmap", "=", "sns", ".", "heatmap", "(", "df", ",", "cmap", "=", "cmap", ",", "annot", "=", "cell_labels", ",", "fmt", "=", "cell_val_fmt", ",", "annot_kws", "=", "annot_kwargs", ",", "ax", "=", "ax", ",", "*", "*", "heatmap_kwargs", ")", "if", "not", "show_row_labels", ":", "heatmap", ".", "set_yticks", "(", "[", "]", ")", "# Ticks must be hidden explicitly.", "else", ":", "if", "y_axis_tick_kwargs", "is", "None", ":", "y_axis_tick_kwargs", "=", "dict", "(", "rotation", "=", "0", ",", "ha", "=", "'right'", ")", "y_axis_tick_kwargs", ".", "setdefault", "(", "'fontsize'", ",", "tick_fontsize", ")", "heatmap", ".", "yaxis", ".", "set_ticklabels", "(", "heatmap", ".", "yaxis", ".", "get_ticklabels", "(", ")", ",", "*", "*", "y_axis_tick_kwargs", ")", "heatmap", ".", "yaxis", ".", "set_ticks_position", "(", "y_axis_ticks_position", ")", "heatmap", ".", "yaxis", ".", "tick_left", "(", ")", "# Ticks may also appear on the right side otherwise.", "if", "not", "show_col_labels", ":", "heatmap", ".", "set_xticks", "(", "[", "]", ")", "else", ":", "if", "x_axis_tick_kwargs", "is", "None", ":", "x_axis_tick_kwargs", "=", "dict", "(", "rotation", "=", "45", ",", "ha", "=", "'right'", ")", "x_axis_tick_kwargs", ".", "setdefault", "(", "'fontsize'", ",", "tick_fontsize", ")", "heatmap", ".", "xaxis", ".", "set_ticklabels", "(", "heatmap", ".", "xaxis", ".", "get_ticklabels", "(", ")", ",", "*", "*", "x_axis_tick_kwargs", ")", "heatmap", ".", "xaxis", ".", "set_ticks_position", "(", "x_axis_ticks_position", ")", "return", "fig", ",", "ax" ]
[ 1211, 0 ]
[ 1294, 18 ]
python
en
['en', 'error', 'th']
False
get_ax_size
(fig, ax)
Given matplotlib Figure (fig) and Axes (ax) objects, return the width and height of the Axes object in inches as a list.
Given matplotlib Figure (fig) and Axes (ax) objects, return the width and height of the Axes object in inches as a list.
def get_ax_size(fig, ax): """ Given matplotlib Figure (fig) and Axes (ax) objects, return the width and height of the Axes object in inches as a list. """ # Credit goes to https://stackoverflow.com/a/19306776/5449970. bbox = ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted()) return [bbox.width, bbox.height]
[ "def", "get_ax_size", "(", "fig", ",", "ax", ")", ":", "# Credit goes to https://stackoverflow.com/a/19306776/5449970.", "bbox", "=", "ax", ".", "get_window_extent", "(", ")", ".", "transformed", "(", "fig", ".", "dpi_scale_trans", ".", "inverted", "(", ")", ")", "return", "[", "bbox", ".", "width", ",", "bbox", ".", "height", "]" ]
[ 1296, 0 ]
[ 1303, 36 ]
python
en
['en', 'error', 'th']
False
xarray_imshow
(data, x_coord='longitude', y_coord='latitude', width=10, fig=None, ax=None, use_colorbar=True, cbar_labels=None, use_legend=False, legend_labels=None, fig_kwargs=None, imshow_kwargs=None, x_label_kwargs=None, y_label_kwargs=None, cbar_kwargs=None, nan_color='white', legend_kwargs=None, ax_tick_label_kwargs=None, x_tick_label_kwargs=None, y_tick_label_kwargs=None, title=None, title_kwargs=None, ax_lbl_font_scaling=(8, np.inf, 2), ax_tick_lbl_font_scaling=(8, np.inf, 1.5), title_font_scaling=(8, np.inf, 1.5), legend_font_scaling=(8, np.inf, 1.5))
Shows a heatmap of an xarray DataArray with only latitude and longitude dimensions. Unlike `data.plot.imshow()`, this sets axes ticks and labels - including labeling "Latitude" and "Longitude". It also simplifies creating a colorbar and legend. Parameters ---------- data: xarray.DataArray The xarray.DataArray containing only latitude and longitude coordinates. x_coord, y_coord: str Names of the x and y coordinates in `data` to use as tick and axis labels. width: numeric The width of the created ``matplotlib.figure.Figure``, if none is supplied in `fig`. The height will be set to maintain aspect ratio. Will be overridden by `'figsize'` in `fig_kwargs`, if present. fig: matplotlib.figure.Figure The figure to use for the plot. If `ax` is not supplied, the Axes object used will be the first. ax: matplotlib.axes.Axes The axes to use for the plot. use_colorbar: bool Whether or not to create a colorbar to the right of the axes. cbar_labels: list A list of strings to label the colorbar. use_legend: bool Whether or not to create a legend showing labels for unique values. Only use if you are sure you have a low number of unique values. legend_labels: dict A mapping of values to legend labels. fig_kwargs: dict The dictionary of keyword arguments used to build the figure. imshow_kwargs: dict The dictionary of keyword arguments passed to `plt.imshow()`. You can pass a colormap here with the key 'cmap'. x_label_kwargs, y_label_kwargs: dict Dictionaries of keyword arguments for `Axes.set_xlabel()` and `Axes.set_ylabel()`, respectively. They cannot reference the same dictionary. cbar_kwargs: dict The dictionary of keyword arguments passed to `plt.colorbar()`. Some parameters of note include 'ticks', which is a list of values to place ticks at. nan_color: str or list-like The color used for NaN regions. Can be a string name of a matplotlib color or a 3-tuple (list-like) of rgb values in range [0,255]. legend_kwargs: dict The dictionary of keyword arguments passed to `plt.legend()`. ax_tick_label_kwargs: dict The dictionary of keyword arguments passed to `ax.tick_params()`. x_tick_label_kwargs, y_tick_label_kwargs: dict Dictionaries of keyword arguments passed to `ax.set_xticklabels()` and `ax.set_yticklabels()`, respectively. title: str The title of the figure. title_kwargs: dict The dictionary of keyword arguments passed to `ax.set_title()`. ax_lbl_font_scaling, ax_tick_lbl_font_scaling, title_font_scaling, legend_font_scaling: list-like of float Some list-likes of the minimum font size, maximum font size, and the rate at which they scale with the figure dimensions. So each contains 3 numeric values. These variables are for, respectively, axis label font scaling, axis tick label font scaling, title font scaling, and legend font scaling. The axis label, tick label, and title font sizes scale on the average of the width and height of the axes. The legend font size also scales on the width and height of the axes, but the number of legend elements and the maximum legend element length are also factored. Returns ------- fig, ax, im, cbar: matplotlib.figure.Figure, matplotlib.axes.Axes, matplotlib.image.AxesImage, matplotlib.colorbar.Colorbar The figure and axes used as well as the image returned by `pyplot.imshow()` and the colorbar. If `use_colorbar == False`, `cbar` will be `None`. :Authors: John Rattz ([email protected])
Shows a heatmap of an xarray DataArray with only latitude and longitude dimensions. Unlike `data.plot.imshow()`, this sets axes ticks and labels - including labeling "Latitude" and "Longitude". It also simplifies creating a colorbar and legend. Parameters ---------- data: xarray.DataArray The xarray.DataArray containing only latitude and longitude coordinates. x_coord, y_coord: str Names of the x and y coordinates in `data` to use as tick and axis labels. width: numeric The width of the created ``matplotlib.figure.Figure``, if none is supplied in `fig`. The height will be set to maintain aspect ratio. Will be overridden by `'figsize'` in `fig_kwargs`, if present. fig: matplotlib.figure.Figure The figure to use for the plot. If `ax` is not supplied, the Axes object used will be the first. ax: matplotlib.axes.Axes The axes to use for the plot. use_colorbar: bool Whether or not to create a colorbar to the right of the axes. cbar_labels: list A list of strings to label the colorbar. use_legend: bool Whether or not to create a legend showing labels for unique values. Only use if you are sure you have a low number of unique values. legend_labels: dict A mapping of values to legend labels. fig_kwargs: dict The dictionary of keyword arguments used to build the figure. imshow_kwargs: dict The dictionary of keyword arguments passed to `plt.imshow()`. You can pass a colormap here with the key 'cmap'. x_label_kwargs, y_label_kwargs: dict Dictionaries of keyword arguments for `Axes.set_xlabel()` and `Axes.set_ylabel()`, respectively. They cannot reference the same dictionary. cbar_kwargs: dict The dictionary of keyword arguments passed to `plt.colorbar()`. Some parameters of note include 'ticks', which is a list of values to place ticks at. nan_color: str or list-like The color used for NaN regions. Can be a string name of a matplotlib color or a 3-tuple (list-like) of rgb values in range [0,255]. legend_kwargs: dict The dictionary of keyword arguments passed to `plt.legend()`. ax_tick_label_kwargs: dict The dictionary of keyword arguments passed to `ax.tick_params()`. x_tick_label_kwargs, y_tick_label_kwargs: dict Dictionaries of keyword arguments passed to `ax.set_xticklabels()` and `ax.set_yticklabels()`, respectively. title: str The title of the figure. title_kwargs: dict The dictionary of keyword arguments passed to `ax.set_title()`. ax_lbl_font_scaling, ax_tick_lbl_font_scaling, title_font_scaling, legend_font_scaling: list-like of float Some list-likes of the minimum font size, maximum font size, and the rate at which they scale with the figure dimensions. So each contains 3 numeric values. These variables are for, respectively, axis label font scaling, axis tick label font scaling, title font scaling, and legend font scaling. The axis label, tick label, and title font sizes scale on the average of the width and height of the axes. The legend font size also scales on the width and height of the axes, but the number of legend elements and the maximum legend element length are also factored. Returns ------- fig, ax, im, cbar: matplotlib.figure.Figure, matplotlib.axes.Axes, matplotlib.image.AxesImage, matplotlib.colorbar.Colorbar The figure and axes used as well as the image returned by `pyplot.imshow()` and the colorbar. If `use_colorbar == False`, `cbar` will be `None`. :Authors: John Rattz (john.c.rattz
def xarray_imshow(data, x_coord='longitude', y_coord='latitude', width=10, fig=None, ax=None, use_colorbar=True, cbar_labels=None, use_legend=False, legend_labels=None, fig_kwargs=None, imshow_kwargs=None, x_label_kwargs=None, y_label_kwargs=None, cbar_kwargs=None, nan_color='white', legend_kwargs=None, ax_tick_label_kwargs=None, x_tick_label_kwargs=None, y_tick_label_kwargs=None, title=None, title_kwargs=None, ax_lbl_font_scaling=(8, np.inf, 2), ax_tick_lbl_font_scaling=(8, np.inf, 1.5), title_font_scaling=(8, np.inf, 1.5), legend_font_scaling=(8, np.inf, 1.5)): """ Shows a heatmap of an xarray DataArray with only latitude and longitude dimensions. Unlike `data.plot.imshow()`, this sets axes ticks and labels - including labeling "Latitude" and "Longitude". It also simplifies creating a colorbar and legend. Parameters ---------- data: xarray.DataArray The xarray.DataArray containing only latitude and longitude coordinates. x_coord, y_coord: str Names of the x and y coordinates in `data` to use as tick and axis labels. width: numeric The width of the created ``matplotlib.figure.Figure``, if none is supplied in `fig`. The height will be set to maintain aspect ratio. Will be overridden by `'figsize'` in `fig_kwargs`, if present. fig: matplotlib.figure.Figure The figure to use for the plot. If `ax` is not supplied, the Axes object used will be the first. ax: matplotlib.axes.Axes The axes to use for the plot. use_colorbar: bool Whether or not to create a colorbar to the right of the axes. cbar_labels: list A list of strings to label the colorbar. use_legend: bool Whether or not to create a legend showing labels for unique values. Only use if you are sure you have a low number of unique values. legend_labels: dict A mapping of values to legend labels. fig_kwargs: dict The dictionary of keyword arguments used to build the figure. imshow_kwargs: dict The dictionary of keyword arguments passed to `plt.imshow()`. You can pass a colormap here with the key 'cmap'. x_label_kwargs, y_label_kwargs: dict Dictionaries of keyword arguments for `Axes.set_xlabel()` and `Axes.set_ylabel()`, respectively. They cannot reference the same dictionary. cbar_kwargs: dict The dictionary of keyword arguments passed to `plt.colorbar()`. Some parameters of note include 'ticks', which is a list of values to place ticks at. nan_color: str or list-like The color used for NaN regions. Can be a string name of a matplotlib color or a 3-tuple (list-like) of rgb values in range [0,255]. legend_kwargs: dict The dictionary of keyword arguments passed to `plt.legend()`. ax_tick_label_kwargs: dict The dictionary of keyword arguments passed to `ax.tick_params()`. x_tick_label_kwargs, y_tick_label_kwargs: dict Dictionaries of keyword arguments passed to `ax.set_xticklabels()` and `ax.set_yticklabels()`, respectively. title: str The title of the figure. title_kwargs: dict The dictionary of keyword arguments passed to `ax.set_title()`. ax_lbl_font_scaling, ax_tick_lbl_font_scaling, title_font_scaling, legend_font_scaling: list-like of float Some list-likes of the minimum font size, maximum font size, and the rate at which they scale with the figure dimensions. So each contains 3 numeric values. These variables are for, respectively, axis label font scaling, axis tick label font scaling, title font scaling, and legend font scaling. The axis label, tick label, and title font sizes scale on the average of the width and height of the axes. The legend font size also scales on the width and height of the axes, but the number of legend elements and the maximum legend element length are also factored. Returns ------- fig, ax, im, cbar: matplotlib.figure.Figure, matplotlib.axes.Axes, matplotlib.image.AxesImage, matplotlib.colorbar.Colorbar The figure and axes used as well as the image returned by `pyplot.imshow()` and the colorbar. If `use_colorbar == False`, `cbar` will be `None`. :Authors: John Rattz ([email protected]) """ from mpl_toolkits.axes_grid1 import make_axes_locatable # Figure kwargs # Use `copy()` to avoid modifying the original dictionaries. fig_kwargs = {} if fig_kwargs is None else fig_kwargs.copy() figsize = \ fig_kwargs.setdefault('figsize', figure_ratio(data, x_coord, y_coord, fixed_width = width)) # Imshow kwargs imshow_kwargs = {} if imshow_kwargs is None else imshow_kwargs.copy() imshow_kwargs.setdefault('interpolation', 'nearest') nan_color = norm_color(nan_color) # Normalize color value for matplotlib. fig, ax = retrieve_or_create_fig_ax(fig, ax, **fig_kwargs) axsize = get_ax_size(fig,ax) # Scale fonts on axis size, not figure size. # Axis label kwargs ax_lbl_fnt_sz = max(ax_lbl_font_scaling[0], min(ax_lbl_font_scaling[2]*(axsize[0]+axsize[1])/2,#(x_lbl_fnt_sz+y_lbl_fnt_sz)/2, ax_lbl_font_scaling[1])) x_label_kwargs = {} if x_label_kwargs is None else x_label_kwargs.copy() x_label_kwargs.setdefault("fontsize", ax_lbl_fnt_sz) y_label_kwargs = {} if y_label_kwargs is None else y_label_kwargs.copy() y_label_kwargs.setdefault("fontsize", ax_lbl_fnt_sz) # Axis tick label kwargs ax_tick_label_kwargs = {} if ax_tick_label_kwargs is None else \ ax_tick_label_kwargs.copy() ax_tick_lbl_fnt_sz = max(ax_tick_lbl_font_scaling[0], min(ax_tick_lbl_font_scaling[2]*(axsize[0]+axsize[1])/2, ax_tick_lbl_font_scaling[1])) x_tick_label_kwargs = {} if x_tick_label_kwargs is None else \ x_tick_label_kwargs x_tick_label_kwargs.setdefault('fontsize', ax_tick_lbl_fnt_sz) y_tick_label_kwargs = {} if y_tick_label_kwargs is None else \ y_tick_label_kwargs y_tick_label_kwargs.setdefault('fontsize', ax_tick_lbl_fnt_sz) # Handle display of NaN values. data_arr = data.values masked_array = np.ma.array(data_arr, mask=np.isnan(data_arr)) cmap = imshow_kwargs.setdefault('cmap', plt.get_cmap('viridis')) cmap.set_bad(nan_color) im = ax.imshow(masked_array, **imshow_kwargs) # Set axis labels and tick labels. xarray_set_axes_labels(data, ax, x_coord, y_coord, x_label_kwargs, y_label_kwargs, ax_tick_label_kwargs, x_tick_label_kwargs, y_tick_label_kwargs) # Set the title. if title is not None: title_fnt_sz = max(title_font_scaling[0], min(title_font_scaling[2]*((axsize[0]+axsize[1])/2+3),#-len(title)/12 title_font_scaling[1])) title_kwargs = {} if title_kwargs is None else title_kwargs.copy() title_kwargs.setdefault('fontdict', dict(fontsize=title_fnt_sz)) ax.set_title(title, **title_kwargs) # Create a colorbar. if use_colorbar: cbar_kwargs = {} if cbar_kwargs is None else cbar_kwargs.copy() divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="7.5%", pad=0.05) cbar = fig.colorbar(im, ax=ax, cax=cax, **cbar_kwargs) if cbar_labels is not None: cbar.ax.set_yticklabels(cbar_labels) else: cbar = None # Create a legend. if use_legend: legend_kwargs = {} if legend_kwargs is None else legend_kwargs.copy() legend_kwargs.setdefault("framealpha", 0.4) # Determine the legend labels. unique_values = np.unique(data.values) unique_values = unique_values[~np.isnan(unique_values)] if legend_labels is None: legend_labels = ["{}".format(value) for value in unique_values] else: legend_labels = [legend_labels.get(value,"{}".format(value)) for value in unique_values] colors = [im.cmap(im.norm(unique_values)) for unique_values in unique_values] patches = [mpatches.Patch(color=colors[i], label=legend_labels[i]) for i in range(len(legend_labels))] # Determine the font size of the legend. legend_num_elems = len(legend_labels) legend_max_len = len(max(legend_labels, key=len)) legend_hz_sz = legend_font_scaling[2] * (axsize[0] - legend_max_len/9 + 3) legend_vt_sz = legend_font_scaling[2] * (axsize[1] - legend_num_elems/9 + 3) legend_fnt_sz = \ max(legend_font_scaling[0], min(min(legend_hz_sz, legend_vt_sz), legend_font_scaling[1])) legend_kwargs.setdefault("fontsize", legend_fnt_sz) legend_kwargs.setdefault('loc', 'best') legend_kwargs['handles'] = patches ax.legend(**legend_kwargs) return fig, ax, im, cbar
[ "def", "xarray_imshow", "(", "data", ",", "x_coord", "=", "'longitude'", ",", "y_coord", "=", "'latitude'", ",", "width", "=", "10", ",", "fig", "=", "None", ",", "ax", "=", "None", ",", "use_colorbar", "=", "True", ",", "cbar_labels", "=", "None", ",", "use_legend", "=", "False", ",", "legend_labels", "=", "None", ",", "fig_kwargs", "=", "None", ",", "imshow_kwargs", "=", "None", ",", "x_label_kwargs", "=", "None", ",", "y_label_kwargs", "=", "None", ",", "cbar_kwargs", "=", "None", ",", "nan_color", "=", "'white'", ",", "legend_kwargs", "=", "None", ",", "ax_tick_label_kwargs", "=", "None", ",", "x_tick_label_kwargs", "=", "None", ",", "y_tick_label_kwargs", "=", "None", ",", "title", "=", "None", ",", "title_kwargs", "=", "None", ",", "ax_lbl_font_scaling", "=", "(", "8", ",", "np", ".", "inf", ",", "2", ")", ",", "ax_tick_lbl_font_scaling", "=", "(", "8", ",", "np", ".", "inf", ",", "1.5", ")", ",", "title_font_scaling", "=", "(", "8", ",", "np", ".", "inf", ",", "1.5", ")", ",", "legend_font_scaling", "=", "(", "8", ",", "np", ".", "inf", ",", "1.5", ")", ")", ":", "from", "mpl_toolkits", ".", "axes_grid1", "import", "make_axes_locatable", "# Figure kwargs", "# Use `copy()` to avoid modifying the original dictionaries.", "fig_kwargs", "=", "{", "}", "if", "fig_kwargs", "is", "None", "else", "fig_kwargs", ".", "copy", "(", ")", "figsize", "=", "fig_kwargs", ".", "setdefault", "(", "'figsize'", ",", "figure_ratio", "(", "data", ",", "x_coord", ",", "y_coord", ",", "fixed_width", "=", "width", ")", ")", "# Imshow kwargs", "imshow_kwargs", "=", "{", "}", "if", "imshow_kwargs", "is", "None", "else", "imshow_kwargs", ".", "copy", "(", ")", "imshow_kwargs", ".", "setdefault", "(", "'interpolation'", ",", "'nearest'", ")", "nan_color", "=", "norm_color", "(", "nan_color", ")", "# Normalize color value for matplotlib.", "fig", ",", "ax", "=", "retrieve_or_create_fig_ax", "(", "fig", ",", "ax", ",", "*", "*", "fig_kwargs", ")", "axsize", "=", "get_ax_size", "(", "fig", ",", "ax", ")", "# Scale fonts on axis size, not figure size.", "# Axis label kwargs", "ax_lbl_fnt_sz", "=", "max", "(", "ax_lbl_font_scaling", "[", "0", "]", ",", "min", "(", "ax_lbl_font_scaling", "[", "2", "]", "*", "(", "axsize", "[", "0", "]", "+", "axsize", "[", "1", "]", ")", "/", "2", ",", "#(x_lbl_fnt_sz+y_lbl_fnt_sz)/2, ", "ax_lbl_font_scaling", "[", "1", "]", ")", ")", "x_label_kwargs", "=", "{", "}", "if", "x_label_kwargs", "is", "None", "else", "x_label_kwargs", ".", "copy", "(", ")", "x_label_kwargs", ".", "setdefault", "(", "\"fontsize\"", ",", "ax_lbl_fnt_sz", ")", "y_label_kwargs", "=", "{", "}", "if", "y_label_kwargs", "is", "None", "else", "y_label_kwargs", ".", "copy", "(", ")", "y_label_kwargs", ".", "setdefault", "(", "\"fontsize\"", ",", "ax_lbl_fnt_sz", ")", "# Axis tick label kwargs", "ax_tick_label_kwargs", "=", "{", "}", "if", "ax_tick_label_kwargs", "is", "None", "else", "ax_tick_label_kwargs", ".", "copy", "(", ")", "ax_tick_lbl_fnt_sz", "=", "max", "(", "ax_tick_lbl_font_scaling", "[", "0", "]", ",", "min", "(", "ax_tick_lbl_font_scaling", "[", "2", "]", "*", "(", "axsize", "[", "0", "]", "+", "axsize", "[", "1", "]", ")", "/", "2", ",", "ax_tick_lbl_font_scaling", "[", "1", "]", ")", ")", "x_tick_label_kwargs", "=", "{", "}", "if", "x_tick_label_kwargs", "is", "None", "else", "x_tick_label_kwargs", "x_tick_label_kwargs", ".", "setdefault", "(", "'fontsize'", ",", "ax_tick_lbl_fnt_sz", ")", "y_tick_label_kwargs", "=", "{", "}", "if", "y_tick_label_kwargs", "is", "None", "else", "y_tick_label_kwargs", "y_tick_label_kwargs", ".", "setdefault", "(", "'fontsize'", ",", "ax_tick_lbl_fnt_sz", ")", "# Handle display of NaN values.", "data_arr", "=", "data", ".", "values", "masked_array", "=", "np", ".", "ma", ".", "array", "(", "data_arr", ",", "mask", "=", "np", ".", "isnan", "(", "data_arr", ")", ")", "cmap", "=", "imshow_kwargs", ".", "setdefault", "(", "'cmap'", ",", "plt", ".", "get_cmap", "(", "'viridis'", ")", ")", "cmap", ".", "set_bad", "(", "nan_color", ")", "im", "=", "ax", ".", "imshow", "(", "masked_array", ",", "*", "*", "imshow_kwargs", ")", "# Set axis labels and tick labels.", "xarray_set_axes_labels", "(", "data", ",", "ax", ",", "x_coord", ",", "y_coord", ",", "x_label_kwargs", ",", "y_label_kwargs", ",", "ax_tick_label_kwargs", ",", "x_tick_label_kwargs", ",", "y_tick_label_kwargs", ")", "# Set the title.", "if", "title", "is", "not", "None", ":", "title_fnt_sz", "=", "max", "(", "title_font_scaling", "[", "0", "]", ",", "min", "(", "title_font_scaling", "[", "2", "]", "*", "(", "(", "axsize", "[", "0", "]", "+", "axsize", "[", "1", "]", ")", "/", "2", "+", "3", ")", ",", "#-len(title)/12", "title_font_scaling", "[", "1", "]", ")", ")", "title_kwargs", "=", "{", "}", "if", "title_kwargs", "is", "None", "else", "title_kwargs", ".", "copy", "(", ")", "title_kwargs", ".", "setdefault", "(", "'fontdict'", ",", "dict", "(", "fontsize", "=", "title_fnt_sz", ")", ")", "ax", ".", "set_title", "(", "title", ",", "*", "*", "title_kwargs", ")", "# Create a colorbar.", "if", "use_colorbar", ":", "cbar_kwargs", "=", "{", "}", "if", "cbar_kwargs", "is", "None", "else", "cbar_kwargs", ".", "copy", "(", ")", "divider", "=", "make_axes_locatable", "(", "ax", ")", "cax", "=", "divider", ".", "append_axes", "(", "\"right\"", ",", "size", "=", "\"7.5%\"", ",", "pad", "=", "0.05", ")", "cbar", "=", "fig", ".", "colorbar", "(", "im", ",", "ax", "=", "ax", ",", "cax", "=", "cax", ",", "*", "*", "cbar_kwargs", ")", "if", "cbar_labels", "is", "not", "None", ":", "cbar", ".", "ax", ".", "set_yticklabels", "(", "cbar_labels", ")", "else", ":", "cbar", "=", "None", "# Create a legend.", "if", "use_legend", ":", "legend_kwargs", "=", "{", "}", "if", "legend_kwargs", "is", "None", "else", "legend_kwargs", ".", "copy", "(", ")", "legend_kwargs", ".", "setdefault", "(", "\"framealpha\"", ",", "0.4", ")", "# Determine the legend labels.", "unique_values", "=", "np", ".", "unique", "(", "data", ".", "values", ")", "unique_values", "=", "unique_values", "[", "~", "np", ".", "isnan", "(", "unique_values", ")", "]", "if", "legend_labels", "is", "None", ":", "legend_labels", "=", "[", "\"{}\"", ".", "format", "(", "value", ")", "for", "value", "in", "unique_values", "]", "else", ":", "legend_labels", "=", "[", "legend_labels", ".", "get", "(", "value", ",", "\"{}\"", ".", "format", "(", "value", ")", ")", "for", "value", "in", "unique_values", "]", "colors", "=", "[", "im", ".", "cmap", "(", "im", ".", "norm", "(", "unique_values", ")", ")", "for", "unique_values", "in", "unique_values", "]", "patches", "=", "[", "mpatches", ".", "Patch", "(", "color", "=", "colors", "[", "i", "]", ",", "label", "=", "legend_labels", "[", "i", "]", ")", "for", "i", "in", "range", "(", "len", "(", "legend_labels", ")", ")", "]", "# Determine the font size of the legend.", "legend_num_elems", "=", "len", "(", "legend_labels", ")", "legend_max_len", "=", "len", "(", "max", "(", "legend_labels", ",", "key", "=", "len", ")", ")", "legend_hz_sz", "=", "legend_font_scaling", "[", "2", "]", "*", "(", "axsize", "[", "0", "]", "-", "legend_max_len", "/", "9", "+", "3", ")", "legend_vt_sz", "=", "legend_font_scaling", "[", "2", "]", "*", "(", "axsize", "[", "1", "]", "-", "legend_num_elems", "/", "9", "+", "3", ")", "legend_fnt_sz", "=", "max", "(", "legend_font_scaling", "[", "0", "]", ",", "min", "(", "min", "(", "legend_hz_sz", ",", "legend_vt_sz", ")", ",", "legend_font_scaling", "[", "1", "]", ")", ")", "legend_kwargs", ".", "setdefault", "(", "\"fontsize\"", ",", "legend_fnt_sz", ")", "legend_kwargs", ".", "setdefault", "(", "'loc'", ",", "'best'", ")", "legend_kwargs", "[", "'handles'", "]", "=", "patches", "ax", ".", "legend", "(", "*", "*", "legend_kwargs", ")", "return", "fig", ",", "ax", ",", "im", ",", "cbar" ]
[ 1305, 0 ]
[ 1496, 28 ]
python
en
['en', 'error', 'th']
False
xarray_set_axes_labels
(data, ax, x_coord='longitude', y_coord='latitude', x_label_kwargs=None, y_label_kwargs=None, ax_tick_label_kwargs=None, x_tick_label_kwargs=None, y_tick_label_kwargs=None)
Sets tick locations and labels for x and y axes on a `matplotlib.axes.Axes` object such that the tick labels do not overlap. This currently only supports numeric coordinates. Parameters ---------- data: xarray.Dataset or xarray.DataArray The xarray Dataset or DataArray containing latitude and longitude coordinates. ax: matplotlib.axes.Axes The matplotlib Axes object to set tick locations and labels for. x_coord, y_coord: str Names of the x and y coordinates in `data` to use as tick and axis labels. x_label_kwargs, y_label_kwargs: dict Dictionaries of keyword arguments for `Axes.set_xlabel()` and `Axes.set_ylabel()`, respectively. Unless 'xlabel' or 'ylabel' are specified, the labels will be the capitalized versions of `x_coord` and `y_coord`. ax_tick_label_kwargs: dict The dictionary of keyword arguments passed to `ax.tick_params()`. x_tick_label_kwargs, y_tick_label_kwargs: dict Dictionaries of keyword arguments passed to `ax.set_xticklabels()` and `ax.set_yticklabels()`, respectively. :Authors: John Rattz ([email protected])
Sets tick locations and labels for x and y axes on a `matplotlib.axes.Axes` object such that the tick labels do not overlap. This currently only supports numeric coordinates. Parameters ---------- data: xarray.Dataset or xarray.DataArray The xarray Dataset or DataArray containing latitude and longitude coordinates. ax: matplotlib.axes.Axes The matplotlib Axes object to set tick locations and labels for. x_coord, y_coord: str Names of the x and y coordinates in `data` to use as tick and axis labels. x_label_kwargs, y_label_kwargs: dict Dictionaries of keyword arguments for `Axes.set_xlabel()` and `Axes.set_ylabel()`, respectively. Unless 'xlabel' or 'ylabel' are specified, the labels will be the capitalized versions of `x_coord` and `y_coord`. ax_tick_label_kwargs: dict The dictionary of keyword arguments passed to `ax.tick_params()`. x_tick_label_kwargs, y_tick_label_kwargs: dict Dictionaries of keyword arguments passed to `ax.set_xticklabels()` and `ax.set_yticklabels()`, respectively. :Authors: John Rattz (john.c.rattz
def xarray_set_axes_labels(data, ax, x_coord='longitude', y_coord='latitude', x_label_kwargs=None, y_label_kwargs=None, ax_tick_label_kwargs=None, x_tick_label_kwargs=None, y_tick_label_kwargs=None): """ Sets tick locations and labels for x and y axes on a `matplotlib.axes.Axes` object such that the tick labels do not overlap. This currently only supports numeric coordinates. Parameters ---------- data: xarray.Dataset or xarray.DataArray The xarray Dataset or DataArray containing latitude and longitude coordinates. ax: matplotlib.axes.Axes The matplotlib Axes object to set tick locations and labels for. x_coord, y_coord: str Names of the x and y coordinates in `data` to use as tick and axis labels. x_label_kwargs, y_label_kwargs: dict Dictionaries of keyword arguments for `Axes.set_xlabel()` and `Axes.set_ylabel()`, respectively. Unless 'xlabel' or 'ylabel' are specified, the labels will be the capitalized versions of `x_coord` and `y_coord`. ax_tick_label_kwargs: dict The dictionary of keyword arguments passed to `ax.tick_params()`. x_tick_label_kwargs, y_tick_label_kwargs: dict Dictionaries of keyword arguments passed to `ax.set_xticklabels()` and `ax.set_yticklabels()`, respectively. :Authors: John Rattz ([email protected]) """ import string # Avoid modifying the original arguments. x_label_kwargs = {} if x_label_kwargs is None else x_label_kwargs.copy() y_label_kwargs = {} if y_label_kwargs is None else y_label_kwargs.copy() ax_tick_label_kwargs = {} if ax_tick_label_kwargs is None else \ ax_tick_label_kwargs.copy() x_tick_label_kwargs = {} if x_tick_label_kwargs is None else \ x_tick_label_kwargs.copy() y_tick_label_kwargs = {} if y_tick_label_kwargs is None else \ y_tick_label_kwargs.copy() # x_label_kwargs, y_label_kwargs = \ # x_label_kwargs.copy(), y_label_kwargs.copy() # x_tick_label_kwargs, y_tick_label_kwargs = \ # x_tick_label_kwargs.copy(), y_tick_label_kwargs.copy() width, height = get_ax_size(ax.figure, ax) # Labels x_label_kwargs.setdefault('xlabel', string.capwords(x_coord)) ax.set_xlabel(**x_label_kwargs) y_label_kwargs.setdefault('ylabel', string.capwords(y_coord)) ax.set_ylabel(**y_label_kwargs) # Tick labels ax.tick_params(**ax_tick_label_kwargs) # X ticks x_vals = data[x_coord].values x_fontsize = \ x_tick_label_kwargs.setdefault('fontsize', mpl.rcParams['font.size']) label_every = max(1, int(round(1/10*len(x_vals)*x_fontsize/width))) x_labels = ["{0:.4f}".format(float(x_val)) for x_val in x_vals[::label_every]] ax.set_xticks(range(len(x_vals))[::label_every]) x_tick_label_kwargs.setdefault('rotation', 30) ax.set_xticklabels(x_labels, **x_tick_label_kwargs) # Y ticks y_vals = data[y_coord].values y_fontsize = \ y_tick_label_kwargs.setdefault('fontsize', mpl.rcParams['font.size']) label_every = max(1, int(round(1/10*len(y_vals)*y_fontsize/height))) y_labels = ["{0:.4f}".format(float(y_val)) for y_val in y_vals[::label_every]] ax.set_yticks(range(len(y_vals))[::label_every]) ax.set_yticklabels(y_labels, **y_tick_label_kwargs)
[ "def", "xarray_set_axes_labels", "(", "data", ",", "ax", ",", "x_coord", "=", "'longitude'", ",", "y_coord", "=", "'latitude'", ",", "x_label_kwargs", "=", "None", ",", "y_label_kwargs", "=", "None", ",", "ax_tick_label_kwargs", "=", "None", ",", "x_tick_label_kwargs", "=", "None", ",", "y_tick_label_kwargs", "=", "None", ")", ":", "import", "string", "# Avoid modifying the original arguments.", "x_label_kwargs", "=", "{", "}", "if", "x_label_kwargs", "is", "None", "else", "x_label_kwargs", ".", "copy", "(", ")", "y_label_kwargs", "=", "{", "}", "if", "y_label_kwargs", "is", "None", "else", "y_label_kwargs", ".", "copy", "(", ")", "ax_tick_label_kwargs", "=", "{", "}", "if", "ax_tick_label_kwargs", "is", "None", "else", "ax_tick_label_kwargs", ".", "copy", "(", ")", "x_tick_label_kwargs", "=", "{", "}", "if", "x_tick_label_kwargs", "is", "None", "else", "x_tick_label_kwargs", ".", "copy", "(", ")", "y_tick_label_kwargs", "=", "{", "}", "if", "y_tick_label_kwargs", "is", "None", "else", "y_tick_label_kwargs", ".", "copy", "(", ")", "# x_label_kwargs, y_label_kwargs = \\", "# x_label_kwargs.copy(), y_label_kwargs.copy()", "# x_tick_label_kwargs, y_tick_label_kwargs = \\", "# x_tick_label_kwargs.copy(), y_tick_label_kwargs.copy()", "width", ",", "height", "=", "get_ax_size", "(", "ax", ".", "figure", ",", "ax", ")", "# Labels", "x_label_kwargs", ".", "setdefault", "(", "'xlabel'", ",", "string", ".", "capwords", "(", "x_coord", ")", ")", "ax", ".", "set_xlabel", "(", "*", "*", "x_label_kwargs", ")", "y_label_kwargs", ".", "setdefault", "(", "'ylabel'", ",", "string", ".", "capwords", "(", "y_coord", ")", ")", "ax", ".", "set_ylabel", "(", "*", "*", "y_label_kwargs", ")", "# Tick labels", "ax", ".", "tick_params", "(", "*", "*", "ax_tick_label_kwargs", ")", "# X ticks", "x_vals", "=", "data", "[", "x_coord", "]", ".", "values", "x_fontsize", "=", "x_tick_label_kwargs", ".", "setdefault", "(", "'fontsize'", ",", "mpl", ".", "rcParams", "[", "'font.size'", "]", ")", "label_every", "=", "max", "(", "1", ",", "int", "(", "round", "(", "1", "/", "10", "*", "len", "(", "x_vals", ")", "*", "x_fontsize", "/", "width", ")", ")", ")", "x_labels", "=", "[", "\"{0:.4f}\"", ".", "format", "(", "float", "(", "x_val", ")", ")", "for", "x_val", "in", "x_vals", "[", ":", ":", "label_every", "]", "]", "ax", ".", "set_xticks", "(", "range", "(", "len", "(", "x_vals", ")", ")", "[", ":", ":", "label_every", "]", ")", "x_tick_label_kwargs", ".", "setdefault", "(", "'rotation'", ",", "30", ")", "ax", ".", "set_xticklabels", "(", "x_labels", ",", "*", "*", "x_tick_label_kwargs", ")", "# Y ticks", "y_vals", "=", "data", "[", "y_coord", "]", ".", "values", "y_fontsize", "=", "y_tick_label_kwargs", ".", "setdefault", "(", "'fontsize'", ",", "mpl", ".", "rcParams", "[", "'font.size'", "]", ")", "label_every", "=", "max", "(", "1", ",", "int", "(", "round", "(", "1", "/", "10", "*", "len", "(", "y_vals", ")", "*", "y_fontsize", "/", "height", ")", ")", ")", "y_labels", "=", "[", "\"{0:.4f}\"", ".", "format", "(", "float", "(", "y_val", ")", ")", "for", "y_val", "in", "y_vals", "[", ":", ":", "label_every", "]", "]", "ax", ".", "set_yticks", "(", "range", "(", "len", "(", "y_vals", ")", ")", "[", ":", ":", "label_every", "]", ")", "ax", ".", "set_yticklabels", "(", "y_labels", ",", "*", "*", "y_tick_label_kwargs", ")" ]
[ 1498, 0 ]
[ 1571, 55 ]
python
en
['en', 'error', 'th']
False
figure_ratio
(data, x_coord='longitude', y_coord='latitude', fixed_width=8, fixed_height=None, num_cols=1, num_rows=1)
Returns a list of the width and height that match constraints on height and width for a figure while maintaining aspect ratio if possible. Also handles a grid of plots of identically sized cells. Parameters ---------- data: xarray.Dataset or xarray.DataArray or list-like Can be either of the following: 1. A list-like of x and y dimension sizes, respectively 2. An xarray Dataset or DataArray containing x and y dimensions x_coord, y_coord: str Names of the x and y coordinates in `data`. fixed_width, fixed_height: float The desired width or height. If both are specified, the aspect ratio is maintained and `fixed_width` and `fixed_height` are treated as maximum values for the size of a single grid element. num_cols, num_rows: int The number of columns and rows in the grid the plots will be in. Zero, one, or both may be specified.
Returns a list of the width and height that match constraints on height and width for a figure while maintaining aspect ratio if possible. Also handles a grid of plots of identically sized cells. Parameters ---------- data: xarray.Dataset or xarray.DataArray or list-like Can be either of the following: 1. A list-like of x and y dimension sizes, respectively 2. An xarray Dataset or DataArray containing x and y dimensions x_coord, y_coord: str Names of the x and y coordinates in `data`. fixed_width, fixed_height: float The desired width or height. If both are specified, the aspect ratio is maintained and `fixed_width` and `fixed_height` are treated as maximum values for the size of a single grid element. num_cols, num_rows: int The number of columns and rows in the grid the plots will be in. Zero, one, or both may be specified.
def figure_ratio(data, x_coord='longitude', y_coord='latitude', fixed_width=8, fixed_height=None, num_cols=1, num_rows=1): """ Returns a list of the width and height that match constraints on height and width for a figure while maintaining aspect ratio if possible. Also handles a grid of plots of identically sized cells. Parameters ---------- data: xarray.Dataset or xarray.DataArray or list-like Can be either of the following: 1. A list-like of x and y dimension sizes, respectively 2. An xarray Dataset or DataArray containing x and y dimensions x_coord, y_coord: str Names of the x and y coordinates in `data`. fixed_width, fixed_height: float The desired width or height. If both are specified, the aspect ratio is maintained and `fixed_width` and `fixed_height` are treated as maximum values for the size of a single grid element. num_cols, num_rows: int The number of columns and rows in the grid the plots will be in. Zero, one, or both may be specified. """ assert (fixed_width is not None) or (fixed_height is not None),\ "At least one of `fixed_width` or `fixed_height` must be specified." # Determine the x and y dimension sizes and the aspect ratio. if isinstance(data, xr.Dataset) or isinstance(data, xr.DataArray): x_sz, y_sz = len(data[x_coord]), len(data[y_coord]) else: x_sz, y_sz = data[0], data[1] aspect_ratio = y_sz / x_sz # Determine the figure size. if fixed_width is not None: width = fixed_width; height = width*aspect_ratio elif fixed_height is not None: height = fixed_height; width = height/aspect_ratio # If both `fixed_width` and `fixed_height` are specified, treat as maximums. if (fixed_width is not None) and (fixed_height is not None): if width > fixed_width: height *= fixed_width/width width = fixed_width if height > fixed_height: width *= fixed_height/height height = fixed_height return [width*num_cols, height*num_rows]
[ "def", "figure_ratio", "(", "data", ",", "x_coord", "=", "'longitude'", ",", "y_coord", "=", "'latitude'", ",", "fixed_width", "=", "8", ",", "fixed_height", "=", "None", ",", "num_cols", "=", "1", ",", "num_rows", "=", "1", ")", ":", "assert", "(", "fixed_width", "is", "not", "None", ")", "or", "(", "fixed_height", "is", "not", "None", ")", ",", "\"At least one of `fixed_width` or `fixed_height` must be specified.\"", "# Determine the x and y dimension sizes and the aspect ratio.", "if", "isinstance", "(", "data", ",", "xr", ".", "Dataset", ")", "or", "isinstance", "(", "data", ",", "xr", ".", "DataArray", ")", ":", "x_sz", ",", "y_sz", "=", "len", "(", "data", "[", "x_coord", "]", ")", ",", "len", "(", "data", "[", "y_coord", "]", ")", "else", ":", "x_sz", ",", "y_sz", "=", "data", "[", "0", "]", ",", "data", "[", "1", "]", "aspect_ratio", "=", "y_sz", "/", "x_sz", "# Determine the figure size.", "if", "fixed_width", "is", "not", "None", ":", "width", "=", "fixed_width", "height", "=", "width", "*", "aspect_ratio", "elif", "fixed_height", "is", "not", "None", ":", "height", "=", "fixed_height", "width", "=", "height", "/", "aspect_ratio", "# If both `fixed_width` and `fixed_height` are specified, treat as maximums.", "if", "(", "fixed_width", "is", "not", "None", ")", "and", "(", "fixed_height", "is", "not", "None", ")", ":", "if", "width", ">", "fixed_width", ":", "height", "*=", "fixed_width", "/", "width", "width", "=", "fixed_width", "if", "height", ">", "fixed_height", ":", "width", "*=", "fixed_height", "/", "height", "height", "=", "fixed_height", "return", "[", "width", "*", "num_cols", ",", "height", "*", "num_rows", "]" ]
[ 1573, 0 ]
[ 1618, 44 ]
python
en
['en', 'error', 'th']
False
retrieve_or_create_fig_ax
(fig=None, ax=None, **fig_params)
Returns appropriate matplotlib Figure and Axes objects given Figure and/or Axes objects. If neither is supplied, a new figure will be created with associated axes. If only `fig` is supplied, `(fig,fig.axes[0])` is returned. That is, the first Axes object will be used (and created if necessary). If `ax` is supplied, `(fig, ax)` is returned. Returns ------- fig, ax: matplotlib.figure.Figure, matplotlib.axes.Axes The figure and the axes of that figure.
Returns appropriate matplotlib Figure and Axes objects given Figure and/or Axes objects. If neither is supplied, a new figure will be created with associated axes. If only `fig` is supplied, `(fig,fig.axes[0])` is returned. That is, the first Axes object will be used (and created if necessary). If `ax` is supplied, `(fig, ax)` is returned. Returns ------- fig, ax: matplotlib.figure.Figure, matplotlib.axes.Axes The figure and the axes of that figure.
def retrieve_or_create_fig_ax(fig=None, ax=None, **fig_params): """ Returns appropriate matplotlib Figure and Axes objects given Figure and/or Axes objects. If neither is supplied, a new figure will be created with associated axes. If only `fig` is supplied, `(fig,fig.axes[0])` is returned. That is, the first Axes object will be used (and created if necessary). If `ax` is supplied, `(fig, ax)` is returned. Returns ------- fig, ax: matplotlib.figure.Figure, matplotlib.axes.Axes The figure and the axes of that figure. """ if ax is None: if fig is None: fig, ax = plt.subplots(**fig_params) else: if len(fig.axes) == 0: fig.add_axes([1,1,1,1]) ax = fig.axes[0] return fig, ax
[ "def", "retrieve_or_create_fig_ax", "(", "fig", "=", "None", ",", "ax", "=", "None", ",", "*", "*", "fig_params", ")", ":", "if", "ax", "is", "None", ":", "if", "fig", "is", "None", ":", "fig", ",", "ax", "=", "plt", ".", "subplots", "(", "*", "*", "fig_params", ")", "else", ":", "if", "len", "(", "fig", ".", "axes", ")", "==", "0", ":", "fig", ".", "add_axes", "(", "[", "1", ",", "1", ",", "1", ",", "1", "]", ")", "ax", "=", "fig", ".", "axes", "[", "0", "]", "return", "fig", ",", "ax" ]
[ 1620, 0 ]
[ 1639, 18 ]
python
en
['en', 'error', 'th']
False
skip_plot
(n_pts, plot_type, kwargs={})
Returns a boolean denoting whether to skip plotting data given the number of points it contains.
Returns a boolean denoting whether to skip plotting data given the number of points it contains.
def skip_plot(n_pts, plot_type, kwargs={}): """Returns a boolean denoting whether to skip plotting data given the number of points it contains.""" min_pts_dict = {'scatter': 1, 'box': 1, 'gaussian': 3, 'poly': 1, 'cubic_spline': 3, 'line':2} min_pts = min_pts_dict[plot_type] if plot_type == 'poly': assert 'degree' in kwargs.keys(), "When plotting a polynomal fit, there must be" \ "a 'degree' entry in the fit_kwargs parameter." degree = kwargs['degree'] min_pts = min_pts + degree return n_pts < min_pts
[ "def", "skip_plot", "(", "n_pts", ",", "plot_type", ",", "kwargs", "=", "{", "}", ")", ":", "min_pts_dict", "=", "{", "'scatter'", ":", "1", ",", "'box'", ":", "1", ",", "'gaussian'", ":", "3", ",", "'poly'", ":", "1", ",", "'cubic_spline'", ":", "3", ",", "'line'", ":", "2", "}", "min_pts", "=", "min_pts_dict", "[", "plot_type", "]", "if", "plot_type", "==", "'poly'", ":", "assert", "'degree'", "in", "kwargs", ".", "keys", "(", ")", ",", "\"When plotting a polynomal fit, there must be\"", "\"a 'degree' entry in the fit_kwargs parameter.\"", "degree", "=", "kwargs", "[", "'degree'", "]", "min_pts", "=", "min_pts", "+", "degree", "return", "n_pts", "<", "min_pts" ]
[ 1641, 0 ]
[ 1650, 26 ]
python
en
['en', 'en', 'en']
True
remove_non_unique_ordered_list_str
(ordered_list)
Sets all occurrences of a value in an ordered list after its first occurence to ''. For example, ['a', 'a', 'b', 'b', 'c'] would become ['a', '', 'b', '', 'c'].
Sets all occurrences of a value in an ordered list after its first occurence to ''. For example, ['a', 'a', 'b', 'b', 'c'] would become ['a', '', 'b', '', 'c'].
def remove_non_unique_ordered_list_str(ordered_list): """ Sets all occurrences of a value in an ordered list after its first occurence to ''. For example, ['a', 'a', 'b', 'b', 'c'] would become ['a', '', 'b', '', 'c']. """ prev_unique_str = "" for i in range(len(ordered_list)): current_str = ordered_list[i] if current_str != prev_unique_str: prev_unique_str = current_str else: ordered_list[i] = "" return ordered_list
[ "def", "remove_non_unique_ordered_list_str", "(", "ordered_list", ")", ":", "prev_unique_str", "=", "\"\"", "for", "i", "in", "range", "(", "len", "(", "ordered_list", ")", ")", ":", "current_str", "=", "ordered_list", "[", "i", "]", "if", "current_str", "!=", "prev_unique_str", ":", "prev_unique_str", "=", "current_str", "else", ":", "ordered_list", "[", "i", "]", "=", "\"\"", "return", "ordered_list" ]
[ 1652, 0 ]
[ 1664, 23 ]
python
en
['en', 'error', 'th']
False
get_weeks_per_month
(num_weeks)
Including January, give 5 weeks to every third month - accounting for variation between 52 and 54 weeks in a year by adding weeks to the last 3 months.
Including January, give 5 weeks to every third month - accounting for variation between 52 and 54 weeks in a year by adding weeks to the last 3 months.
def get_weeks_per_month(num_weeks): """ Including January, give 5 weeks to every third month - accounting for variation between 52 and 54 weeks in a year by adding weeks to the last 3 months. """ last_months_num_weeks = None if num_weeks <= 52: last_months_num_weeks = [5,4,4] elif num_weeks == 53: last_months_num_weeks = [5,4,5] elif num_weeks == 54: last_months_num_weeks = [5,5,5] return {month_int:num_weeks for (month_int,num_weeks) in zip(days_per_month.keys(), [5,4,4]*3+last_months_num_weeks)}
[ "def", "get_weeks_per_month", "(", "num_weeks", ")", ":", "last_months_num_weeks", "=", "None", "if", "num_weeks", "<=", "52", ":", "last_months_num_weeks", "=", "[", "5", ",", "4", ",", "4", "]", "elif", "num_weeks", "==", "53", ":", "last_months_num_weeks", "=", "[", "5", ",", "4", ",", "5", "]", "elif", "num_weeks", "==", "54", ":", "last_months_num_weeks", "=", "[", "5", ",", "5", ",", "5", "]", "return", "{", "month_int", ":", "num_weeks", "for", "(", "month_int", ",", "num_weeks", ")", "in", "zip", "(", "days_per_month", ".", "keys", "(", ")", ",", "[", "5", ",", "4", ",", "4", "]", "*", "3", "+", "last_months_num_weeks", ")", "}" ]
[ 1670, 0 ]
[ 1682, 121 ]
python
en
['en', 'error', 'th']
False
month_ints_to_month_names
(month_ints)
Converts ordinal numbers for months (in range [1,12]) to their 3-letter names.
Converts ordinal numbers for months (in range [1,12]) to their 3-letter names.
def month_ints_to_month_names(month_ints): """ Converts ordinal numbers for months (in range [1,12]) to their 3-letter names. """ return [month_names[i-1] for i in month_ints]
[ "def", "month_ints_to_month_names", "(", "month_ints", ")", ":", "return", "[", "month_names", "[", "i", "-", "1", "]", "for", "i", "in", "month_ints", "]" ]
[ 1687, 0 ]
[ 1691, 49 ]
python
en
['en', 'error', 'th']
False
week_ints_to_month_names
(week_ints)
Converts ordinal numbers for weeks (in range [1,54]) to their months' 3-letter names.
Converts ordinal numbers for weeks (in range [1,54]) to their months' 3-letter names.
def week_ints_to_month_names(week_ints): """ Converts ordinal numbers for weeks (in range [1,54]) to their months' 3-letter names. """ weeks_per_month = get_weeks_per_month(max(week_ints)) week_month_strs = [] for week_int in week_ints: month_int = -1 for current_month_int, current_month_weeks in weeks_per_month.items(): week_int -= current_month_weeks if week_int <= 0: month_int = current_month_int break week_month_strs.append(month_names[month_int-1]) return week_month_strs
[ "def", "week_ints_to_month_names", "(", "week_ints", ")", ":", "weeks_per_month", "=", "get_weeks_per_month", "(", "max", "(", "week_ints", ")", ")", "week_month_strs", "=", "[", "]", "for", "week_int", "in", "week_ints", ":", "month_int", "=", "-", "1", "for", "current_month_int", ",", "current_month_weeks", "in", "weeks_per_month", ".", "items", "(", ")", ":", "week_int", "-=", "current_month_weeks", "if", "week_int", "<=", "0", ":", "month_int", "=", "current_month_int", "break", "week_month_strs", ".", "append", "(", "month_names", "[", "month_int", "-", "1", "]", ")", "return", "week_month_strs" ]
[ 1693, 0 ]
[ 1707, 26 ]
python
en
['en', 'error', 'th']
False
naive_months_ticks_by_week
(week_ints=None)
Given a list of week numbers (in range [1,54]), returns a list of month strings separated by spaces. Covers 54 weeks if no list-like of week numbers is given. This is only intended to be used for labeling axes in plotting.
Given a list of week numbers (in range [1,54]), returns a list of month strings separated by spaces. Covers 54 weeks if no list-like of week numbers is given. This is only intended to be used for labeling axes in plotting.
def naive_months_ticks_by_week(week_ints=None): """ Given a list of week numbers (in range [1,54]), returns a list of month strings separated by spaces. Covers 54 weeks if no list-like of week numbers is given. This is only intended to be used for labeling axes in plotting. """ month_ticks_by_week = [] if week_ints is None: # Give month ticks for all weeks. month_ticks_by_week = week_ints_to_month_names(list(range(54))) else: month_ticks_by_week = remove_non_unique_ordered_list_str(week_ints_to_month_names(week_ints)) return month_ticks_by_week
[ "def", "naive_months_ticks_by_week", "(", "week_ints", "=", "None", ")", ":", "month_ticks_by_week", "=", "[", "]", "if", "week_ints", "is", "None", ":", "# Give month ticks for all weeks.", "month_ticks_by_week", "=", "week_ints_to_month_names", "(", "list", "(", "range", "(", "54", ")", ")", ")", "else", ":", "month_ticks_by_week", "=", "remove_non_unique_ordered_list_str", "(", "week_ints_to_month_names", "(", "week_ints", ")", ")", "return", "month_ticks_by_week" ]
[ 1709, 0 ]
[ 1720, 30 ]
python
en
['en', 'error', 'th']
False
HtmlSiteStore.get_url_for_resource
(self, resource_identifier=None, only_if_exists=True)
Return the URL of the HTML document that renders a resource (e.g., an expectation suite or a validation result). :param resource_identifier: ExpectationSuiteIdentifier, ValidationResultIdentifier or any other type's identifier. The argument is optional - when not supplied, the method returns the URL of the index page. :return: URL (string)
Return the URL of the HTML document that renders a resource (e.g., an expectation suite or a validation result).
def get_url_for_resource(self, resource_identifier=None, only_if_exists=True): """ Return the URL of the HTML document that renders a resource (e.g., an expectation suite or a validation result). :param resource_identifier: ExpectationSuiteIdentifier, ValidationResultIdentifier or any other type's identifier. The argument is optional - when not supplied, the method returns the URL of the index page. :return: URL (string) """ if resource_identifier is None: store_backend = self.store_backends["index_page"] key = () elif isinstance(resource_identifier, ExpectationSuiteIdentifier): store_backend = self.store_backends[ExpectationSuiteIdentifier] key = resource_identifier.to_tuple() elif isinstance(resource_identifier, ValidationResultIdentifier): store_backend = self.store_backends[ValidationResultIdentifier] key = resource_identifier.to_tuple() else: # this method does not support getting the URL of static assets raise ValueError( "Cannot get URL for resource {:s}".format(str(resource_identifier)) ) # <WILL> : this is a hack for Taylor. Change this back. 20200924 # if only_if_exists: # return ( # store_backend.get_url_for_key(key) # if store_backend.has_key(key) # else None # ) # return store_backend.get_url_for_key(key) if store_backend.base_public_path: if only_if_exists: return ( store_backend.get_public_url_for_key(key) if store_backend.has_key(key) else None ) else: return store_backend.get_public_url_for_key(key) else: if only_if_exists: return ( store_backend.get_url_for_key(key) if store_backend.has_key(key) else None ) else: return store_backend.get_url_for_key(key)
[ "def", "get_url_for_resource", "(", "self", ",", "resource_identifier", "=", "None", ",", "only_if_exists", "=", "True", ")", ":", "if", "resource_identifier", "is", "None", ":", "store_backend", "=", "self", ".", "store_backends", "[", "\"index_page\"", "]", "key", "=", "(", ")", "elif", "isinstance", "(", "resource_identifier", ",", "ExpectationSuiteIdentifier", ")", ":", "store_backend", "=", "self", ".", "store_backends", "[", "ExpectationSuiteIdentifier", "]", "key", "=", "resource_identifier", ".", "to_tuple", "(", ")", "elif", "isinstance", "(", "resource_identifier", ",", "ValidationResultIdentifier", ")", ":", "store_backend", "=", "self", ".", "store_backends", "[", "ValidationResultIdentifier", "]", "key", "=", "resource_identifier", ".", "to_tuple", "(", ")", "else", ":", "# this method does not support getting the URL of static assets", "raise", "ValueError", "(", "\"Cannot get URL for resource {:s}\"", ".", "format", "(", "str", "(", "resource_identifier", ")", ")", ")", "# <WILL> : this is a hack for Taylor. Change this back. 20200924", "# if only_if_exists:", "# return (", "# store_backend.get_url_for_key(key)", "# if store_backend.has_key(key)", "# else None", "# )", "# return store_backend.get_url_for_key(key)", "if", "store_backend", ".", "base_public_path", ":", "if", "only_if_exists", ":", "return", "(", "store_backend", ".", "get_public_url_for_key", "(", "key", ")", "if", "store_backend", ".", "has_key", "(", "key", ")", "else", "None", ")", "else", ":", "return", "store_backend", ".", "get_public_url_for_key", "(", "key", ")", "else", ":", "if", "only_if_exists", ":", "return", "(", "store_backend", ".", "get_url_for_key", "(", "key", ")", "if", "store_backend", ".", "has_key", "(", "key", ")", "else", "None", ")", "else", ":", "return", "store_backend", ".", "get_url_for_key", "(", "key", ")" ]
[ 238, 4 ]
[ 289, 57 ]
python
en
['en', 'error', 'th']
False
HtmlSiteStore.write_index_page
(self, page)
This third param_store has a special method, which uses a zero-length tuple as a key.
This third param_store has a special method, which uses a zero-length tuple as a key.
def write_index_page(self, page): """This third param_store has a special method, which uses a zero-length tuple as a key.""" return self.store_backends["index_page"].set( (), page, content_encoding="utf-8", content_type="text/html; " "charset=utf-8", )
[ "def", "write_index_page", "(", "self", ",", "page", ")", ":", "return", "self", ".", "store_backends", "[", "\"index_page\"", "]", ".", "set", "(", "(", ")", ",", "page", ",", "content_encoding", "=", "\"utf-8\"", ",", "content_type", "=", "\"text/html; \"", "\"charset=utf-8\"", ",", ")" ]
[ 333, 4 ]
[ 340, 9 ]
python
en
['en', 'en', 'en']
True
HtmlSiteStore.copy_static_assets
(self, static_assets_source_dir=None)
Copies static assets, using a special "static_assets" backend store that accepts variable-length tuples as keys, with no filepath_template.
Copies static assets, using a special "static_assets" backend store that accepts variable-length tuples as keys, with no filepath_template.
def copy_static_assets(self, static_assets_source_dir=None): """ Copies static assets, using a special "static_assets" backend store that accepts variable-length tuples as keys, with no filepath_template. """ file_exclusions = [".DS_Store"] dir_exclusions = [] if not static_assets_source_dir: static_assets_source_dir = file_relative_path( __file__, os.path.join("..", "..", "render", "view", "static") ) for item in os.listdir(static_assets_source_dir): # Directory if os.path.isdir(os.path.join(static_assets_source_dir, item)): if item in dir_exclusions: continue # Recurse new_source_dir = os.path.join(static_assets_source_dir, item) self.copy_static_assets(new_source_dir) # File else: # Copy file over using static assets store backend if item in file_exclusions: continue source_name = os.path.join(static_assets_source_dir, item) with open(source_name, "rb") as f: # Only use path elements starting from static/ for key store_key = tuple(os.path.normpath(source_name).split(os.sep)) store_key = store_key[store_key.index("static") :] content_type, content_encoding = guess_type(item, strict=False) if content_type is None: # Use GE-known content-type if possible if source_name.endswith(".otf"): content_type = "font/opentype" else: # fallback logger.warning( "Unable to automatically determine content_type for {}".format( source_name ) ) content_type = "text/html; charset=utf8" self.store_backends["static_assets"].set( store_key, f.read(), content_encoding=content_encoding, content_type=content_type, )
[ "def", "copy_static_assets", "(", "self", ",", "static_assets_source_dir", "=", "None", ")", ":", "file_exclusions", "=", "[", "\".DS_Store\"", "]", "dir_exclusions", "=", "[", "]", "if", "not", "static_assets_source_dir", ":", "static_assets_source_dir", "=", "file_relative_path", "(", "__file__", ",", "os", ".", "path", ".", "join", "(", "\"..\"", ",", "\"..\"", ",", "\"render\"", ",", "\"view\"", ",", "\"static\"", ")", ")", "for", "item", "in", "os", ".", "listdir", "(", "static_assets_source_dir", ")", ":", "# Directory", "if", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "static_assets_source_dir", ",", "item", ")", ")", ":", "if", "item", "in", "dir_exclusions", ":", "continue", "# Recurse", "new_source_dir", "=", "os", ".", "path", ".", "join", "(", "static_assets_source_dir", ",", "item", ")", "self", ".", "copy_static_assets", "(", "new_source_dir", ")", "# File", "else", ":", "# Copy file over using static assets store backend", "if", "item", "in", "file_exclusions", ":", "continue", "source_name", "=", "os", ".", "path", ".", "join", "(", "static_assets_source_dir", ",", "item", ")", "with", "open", "(", "source_name", ",", "\"rb\"", ")", "as", "f", ":", "# Only use path elements starting from static/ for key", "store_key", "=", "tuple", "(", "os", ".", "path", ".", "normpath", "(", "source_name", ")", ".", "split", "(", "os", ".", "sep", ")", ")", "store_key", "=", "store_key", "[", "store_key", ".", "index", "(", "\"static\"", ")", ":", "]", "content_type", ",", "content_encoding", "=", "guess_type", "(", "item", ",", "strict", "=", "False", ")", "if", "content_type", "is", "None", ":", "# Use GE-known content-type if possible", "if", "source_name", ".", "endswith", "(", "\".otf\"", ")", ":", "content_type", "=", "\"font/opentype\"", "else", ":", "# fallback", "logger", ".", "warning", "(", "\"Unable to automatically determine content_type for {}\"", ".", "format", "(", "source_name", ")", ")", "content_type", "=", "\"text/html; charset=utf8\"", "self", ".", "store_backends", "[", "\"static_assets\"", "]", ".", "set", "(", "store_key", ",", "f", ".", "read", "(", ")", ",", "content_encoding", "=", "content_encoding", ",", "content_type", "=", "content_type", ",", ")" ]
[ 348, 4 ]
[ 399, 21 ]
python
en
['en', 'error', 'th']
False
test_checkpoint_new_raises_error_on_existing_checkpoint
( mock_emit, caplog, monkeypatch, titanic_pandas_data_context_with_v013_datasource_stats_enabled_with_checkpoints_v1_with_templates, )
What does this test and why? The `checkpoint new` CLI flow should raise an error if the Checkpoint name being created already exists in your checkpoint store.
What does this test and why? The `checkpoint new` CLI flow should raise an error if the Checkpoint name being created already exists in your checkpoint store.
def test_checkpoint_new_raises_error_on_existing_checkpoint( mock_emit, caplog, monkeypatch, titanic_pandas_data_context_with_v013_datasource_stats_enabled_with_checkpoints_v1_with_templates, ): """ What does this test and why? The `checkpoint new` CLI flow should raise an error if the Checkpoint name being created already exists in your checkpoint store. """ context: DataContext = titanic_pandas_data_context_with_v013_datasource_stats_enabled_with_checkpoints_v1_with_templates monkeypatch.chdir(os.path.dirname(context.root_directory)) runner: CliRunner = CliRunner(mix_stderr=False) result: Result = runner.invoke( cli, f"--v3-api checkpoint new my_minimal_simple_checkpoint", catch_exceptions=False, ) assert result.exit_code == 1 stdout: str = result.stdout assert ( "A Checkpoint named `my_minimal_simple_checkpoint` already exists. Please choose a new name." in stdout ) assert mock_emit.call_count == 3 assert mock_emit.call_args_list == [ mock.call( {"event_payload": {}, "event": "data_context.__init__", "success": True} ), mock.call( { "event": "cli.checkpoint.new.begin", "event_payload": {"api_version": "v3"}, "success": True, } ), mock.call( { "event": "cli.checkpoint.new.end", "event_payload": {"api_version": "v3"}, "success": False, } ), ] assert_no_logging_messages_or_tracebacks( caplog, result, )
[ "def", "test_checkpoint_new_raises_error_on_existing_checkpoint", "(", "mock_emit", ",", "caplog", ",", "monkeypatch", ",", "titanic_pandas_data_context_with_v013_datasource_stats_enabled_with_checkpoints_v1_with_templates", ",", ")", ":", "context", ":", "DataContext", "=", "titanic_pandas_data_context_with_v013_datasource_stats_enabled_with_checkpoints_v1_with_templates", "monkeypatch", ".", "chdir", "(", "os", ".", "path", ".", "dirname", "(", "context", ".", "root_directory", ")", ")", "runner", ":", "CliRunner", "=", "CliRunner", "(", "mix_stderr", "=", "False", ")", "result", ":", "Result", "=", "runner", ".", "invoke", "(", "cli", ",", "f\"--v3-api checkpoint new my_minimal_simple_checkpoint\"", ",", "catch_exceptions", "=", "False", ",", ")", "assert", "result", ".", "exit_code", "==", "1", "stdout", ":", "str", "=", "result", ".", "stdout", "assert", "(", "\"A Checkpoint named `my_minimal_simple_checkpoint` already exists. Please choose a new name.\"", "in", "stdout", ")", "assert", "mock_emit", ".", "call_count", "==", "3", "assert", "mock_emit", ".", "call_args_list", "==", "[", "mock", ".", "call", "(", "{", "\"event_payload\"", ":", "{", "}", ",", "\"event\"", ":", "\"data_context.__init__\"", ",", "\"success\"", ":", "True", "}", ")", ",", "mock", ".", "call", "(", "{", "\"event\"", ":", "\"cli.checkpoint.new.begin\"", ",", "\"event_payload\"", ":", "{", "\"api_version\"", ":", "\"v3\"", "}", ",", "\"success\"", ":", "True", ",", "}", ")", ",", "mock", ".", "call", "(", "{", "\"event\"", ":", "\"cli.checkpoint.new.end\"", ",", "\"event_payload\"", ":", "{", "\"api_version\"", ":", "\"v3\"", "}", ",", "\"success\"", ":", "False", ",", "}", ")", ",", "]", "assert_no_logging_messages_or_tracebacks", "(", "caplog", ",", "result", ",", ")" ]
[ 600, 0 ]
[ 652, 5 ]
python
en
['en', 'error', 'th']
False
test_checkpoint_new_happy_path_generates_a_notebook_and_checkpoint
( mock_webbroser, mock_subprocess, mock_emit, caplog, monkeypatch, deterministic_asset_dataconnector_context, titanic_expectation_suite, )
What does this test and why? The v3 (Batch Request) API `checkpoint new` CLI flow includes creating a notebook to configure the Checkpoint. This test builds that notebook and runs it to generate a Checkpoint and then tests the resulting configuration in the Checkpoint file. The notebook that is generated does create a sample configuration using one of the available Data Assets, this is what is used to generate the Checkpoint configuration.
What does this test and why? The v3 (Batch Request) API `checkpoint new` CLI flow includes creating a notebook to configure the Checkpoint. This test builds that notebook and runs it to generate a Checkpoint and then tests the resulting configuration in the Checkpoint file. The notebook that is generated does create a sample configuration using one of the available Data Assets, this is what is used to generate the Checkpoint configuration.
def test_checkpoint_new_happy_path_generates_a_notebook_and_checkpoint( mock_webbroser, mock_subprocess, mock_emit, caplog, monkeypatch, deterministic_asset_dataconnector_context, titanic_expectation_suite, ): """ What does this test and why? The v3 (Batch Request) API `checkpoint new` CLI flow includes creating a notebook to configure the Checkpoint. This test builds that notebook and runs it to generate a Checkpoint and then tests the resulting configuration in the Checkpoint file. The notebook that is generated does create a sample configuration using one of the available Data Assets, this is what is used to generate the Checkpoint configuration. """ context: DataContext = deterministic_asset_dataconnector_context root_dir: str = context.root_directory monkeypatch.chdir(os.path.dirname(root_dir)) assert context.list_checkpoints() == [] context.save_expectation_suite(titanic_expectation_suite) assert context.list_expectation_suite_names() == ["Titanic.warning"] # Clear the "data_context.save_expectation_suite" call mock_emit.reset_mock() runner: CliRunner = CliRunner(mix_stderr=False) result: Result = runner.invoke( cli, f"--v3-api checkpoint new passengers", input="1\n1\n", catch_exceptions=False, ) assert result.exit_code == 0 stdout: str = result.stdout assert "open a notebook for you now" in stdout assert mock_emit.call_count == 3 assert mock_emit.call_args_list == [ mock.call( {"event_payload": {}, "event": "data_context.__init__", "success": True} ), mock.call( { "event": "cli.checkpoint.new.begin", "event_payload": {"api_version": "v3"}, "success": True, } ), mock.call( { "event": "cli.checkpoint.new.end", "event_payload": {"api_version": "v3"}, "success": True, } ), ] assert mock_subprocess.call_count == 1 assert mock_webbroser.call_count == 0 expected_notebook_path: str = os.path.join( root_dir, "uncommitted", "edit_checkpoint_passengers.ipynb" ) assert os.path.isfile(expected_notebook_path) with open(expected_notebook_path) as f: nb: NotebookNode = nbformat.read(f, as_version=4) uncommitted_dir: str = os.path.join(root_dir, "uncommitted") # Run notebook # TODO: <ANTHONY>We should mock the datadocs call or skip running that cell within the notebook (rather than commenting it out in the notebook)</ANTHONY> ep: ExecutePreprocessor = ExecutePreprocessor(timeout=600, kernel_name="python3") ep.preprocess(nb, {"metadata": {"path": uncommitted_dir}}) # Ensure the checkpoint file was created expected_checkpoint_path: str = os.path.join( root_dir, "checkpoints", "passengers.yml" ) assert os.path.isfile(expected_checkpoint_path) # Ensure the Checkpoint configuration in the file is as expected with open(expected_checkpoint_path) as f: checkpoint_config: str = f.read() expected_checkpoint_config: str = """name: passengers config_version: 1.0 template_name: module_name: great_expectations.checkpoint class_name: Checkpoint run_name_template: '%Y%m%d-%H%M%S-my-run-name-template' expectation_suite_name: batch_request: action_list: - name: store_validation_result action: class_name: StoreValidationResultAction - name: store_evaluation_params action: class_name: StoreEvaluationParametersAction - name: update_data_docs action: class_name: UpdateDataDocsAction site_names: [] evaluation_parameters: {} runtime_configuration: {} validations: - batch_request: datasource_name: my_datasource data_connector_name: my_other_data_connector data_asset_name: users data_connector_query: index: -1 expectation_suite_name: Titanic.warning profilers: [] ge_cloud_id: """ assert checkpoint_config == expected_checkpoint_config assert_no_logging_messages_or_tracebacks( my_caplog=caplog, click_result=result, )
[ "def", "test_checkpoint_new_happy_path_generates_a_notebook_and_checkpoint", "(", "mock_webbroser", ",", "mock_subprocess", ",", "mock_emit", ",", "caplog", ",", "monkeypatch", ",", "deterministic_asset_dataconnector_context", ",", "titanic_expectation_suite", ",", ")", ":", "context", ":", "DataContext", "=", "deterministic_asset_dataconnector_context", "root_dir", ":", "str", "=", "context", ".", "root_directory", "monkeypatch", ".", "chdir", "(", "os", ".", "path", ".", "dirname", "(", "root_dir", ")", ")", "assert", "context", ".", "list_checkpoints", "(", ")", "==", "[", "]", "context", ".", "save_expectation_suite", "(", "titanic_expectation_suite", ")", "assert", "context", ".", "list_expectation_suite_names", "(", ")", "==", "[", "\"Titanic.warning\"", "]", "# Clear the \"data_context.save_expectation_suite\" call", "mock_emit", ".", "reset_mock", "(", ")", "runner", ":", "CliRunner", "=", "CliRunner", "(", "mix_stderr", "=", "False", ")", "result", ":", "Result", "=", "runner", ".", "invoke", "(", "cli", ",", "f\"--v3-api checkpoint new passengers\"", ",", "input", "=", "\"1\\n1\\n\"", ",", "catch_exceptions", "=", "False", ",", ")", "assert", "result", ".", "exit_code", "==", "0", "stdout", ":", "str", "=", "result", ".", "stdout", "assert", "\"open a notebook for you now\"", "in", "stdout", "assert", "mock_emit", ".", "call_count", "==", "3", "assert", "mock_emit", ".", "call_args_list", "==", "[", "mock", ".", "call", "(", "{", "\"event_payload\"", ":", "{", "}", ",", "\"event\"", ":", "\"data_context.__init__\"", ",", "\"success\"", ":", "True", "}", ")", ",", "mock", ".", "call", "(", "{", "\"event\"", ":", "\"cli.checkpoint.new.begin\"", ",", "\"event_payload\"", ":", "{", "\"api_version\"", ":", "\"v3\"", "}", ",", "\"success\"", ":", "True", ",", "}", ")", ",", "mock", ".", "call", "(", "{", "\"event\"", ":", "\"cli.checkpoint.new.end\"", ",", "\"event_payload\"", ":", "{", "\"api_version\"", ":", "\"v3\"", "}", ",", "\"success\"", ":", "True", ",", "}", ")", ",", "]", "assert", "mock_subprocess", ".", "call_count", "==", "1", "assert", "mock_webbroser", ".", "call_count", "==", "0", "expected_notebook_path", ":", "str", "=", "os", ".", "path", ".", "join", "(", "root_dir", ",", "\"uncommitted\"", ",", "\"edit_checkpoint_passengers.ipynb\"", ")", "assert", "os", ".", "path", ".", "isfile", "(", "expected_notebook_path", ")", "with", "open", "(", "expected_notebook_path", ")", "as", "f", ":", "nb", ":", "NotebookNode", "=", "nbformat", ".", "read", "(", "f", ",", "as_version", "=", "4", ")", "uncommitted_dir", ":", "str", "=", "os", ".", "path", ".", "join", "(", "root_dir", ",", "\"uncommitted\"", ")", "# Run notebook", "# TODO: <ANTHONY>We should mock the datadocs call or skip running that cell within the notebook (rather than commenting it out in the notebook)</ANTHONY>", "ep", ":", "ExecutePreprocessor", "=", "ExecutePreprocessor", "(", "timeout", "=", "600", ",", "kernel_name", "=", "\"python3\"", ")", "ep", ".", "preprocess", "(", "nb", ",", "{", "\"metadata\"", ":", "{", "\"path\"", ":", "uncommitted_dir", "}", "}", ")", "# Ensure the checkpoint file was created", "expected_checkpoint_path", ":", "str", "=", "os", ".", "path", ".", "join", "(", "root_dir", ",", "\"checkpoints\"", ",", "\"passengers.yml\"", ")", "assert", "os", ".", "path", ".", "isfile", "(", "expected_checkpoint_path", ")", "# Ensure the Checkpoint configuration in the file is as expected", "with", "open", "(", "expected_checkpoint_path", ")", "as", "f", ":", "checkpoint_config", ":", "str", "=", "f", ".", "read", "(", ")", "expected_checkpoint_config", ":", "str", "=", "\"\"\"name: passengers\nconfig_version: 1.0\ntemplate_name:\nmodule_name: great_expectations.checkpoint\nclass_name: Checkpoint\nrun_name_template: '%Y%m%d-%H%M%S-my-run-name-template'\nexpectation_suite_name:\nbatch_request:\naction_list:\n - name: store_validation_result\n action:\n class_name: StoreValidationResultAction\n - name: store_evaluation_params\n action:\n class_name: StoreEvaluationParametersAction\n - name: update_data_docs\n action:\n class_name: UpdateDataDocsAction\n site_names: []\nevaluation_parameters: {}\nruntime_configuration: {}\nvalidations:\n - batch_request:\n datasource_name: my_datasource\n data_connector_name: my_other_data_connector\n data_asset_name: users\n data_connector_query:\n index: -1\n expectation_suite_name: Titanic.warning\nprofilers: []\nge_cloud_id:\n\"\"\"", "assert", "checkpoint_config", "==", "expected_checkpoint_config", "assert_no_logging_messages_or_tracebacks", "(", "my_caplog", "=", "caplog", ",", "click_result", "=", "result", ",", ")" ]
[ 660, 0 ]
[ 783, 5 ]
python
en
['en', 'error', 'th']
False
test_checkpoint_script_happy_path_executable_successful_validation_pandas
( caplog, monkeypatch, titanic_pandas_data_context_with_v013_datasource_with_checkpoints_v1_with_empty_store_stats_enabled, )
We call the "checkpoint script" command on a project with a Checkpoint. The command should: - create the script (note output is tested in other tests) When run the script should: - execute - return a 0 status code - print a success message
We call the "checkpoint script" command on a project with a Checkpoint.
def test_checkpoint_script_happy_path_executable_successful_validation_pandas( caplog, monkeypatch, titanic_pandas_data_context_with_v013_datasource_with_checkpoints_v1_with_empty_store_stats_enabled, ): """ We call the "checkpoint script" command on a project with a Checkpoint. The command should: - create the script (note output is tested in other tests) When run the script should: - execute - return a 0 status code - print a success message """ monkeypatch.setenv("VAR", "test") monkeypatch.setenv("MY_PARAM", "1") monkeypatch.setenv("OLD_PARAM", "2") context: DataContext = titanic_pandas_data_context_with_v013_datasource_with_checkpoints_v1_with_empty_store_stats_enabled suite: ExpectationSuite = context.create_expectation_suite( expectation_suite_name="users.delivery" ) context.save_expectation_suite(expectation_suite=suite) assert context.list_expectation_suite_names() == ["users.delivery"] monkeypatch.chdir(os.path.dirname(context.root_directory)) checkpoint_file_path: str = os.path.join( context.root_directory, DataContextConfigDefaults.CHECKPOINTS_BASE_DIRECTORY.value, "my_fancy_checkpoint.yml", ) checkpoint_yaml_config: str = f""" name: my_fancy_checkpoint config_version: 1 class_name: Checkpoint run_name_template: "%Y-%M-foo-bar-template-$VAR" validations: - batch_request: datasource_name: my_datasource data_connector_name: my_special_data_connector data_asset_name: users data_connector_query: index: -1 expectation_suite_name: users.delivery action_list: - name: store_validation_result action: class_name: StoreValidationResultAction - name: store_evaluation_params action: class_name: StoreEvaluationParametersAction - name: update_data_docs action: class_name: UpdateDataDocsAction evaluation_parameters: param1: "$MY_PARAM" param2: 1 + "$OLD_PARAM" runtime_configuration: result_format: result_format: BASIC partial_unexpected_count: 20 """ config: dict = dict(yaml.load(checkpoint_yaml_config)) _write_checkpoint_dict_to_file( config=config, checkpoint_file_path=checkpoint_file_path ) runner: CliRunner = CliRunner(mix_stderr=False) result: Result = runner.invoke( cli, f"--v3-api checkpoint script my_fancy_checkpoint", catch_exceptions=False, ) assert result.exit_code == 0 assert_no_logging_messages_or_tracebacks( my_caplog=caplog, click_result=result, ) script_path: str = os.path.abspath( os.path.join( context.root_directory, context.GE_UNCOMMITTED_DIR, "run_my_fancy_checkpoint.py", ) ) assert os.path.isfile(script_path) # In travis on osx, python may not execute from the build dir cmdstring: str = f"python {script_path}" if os.environ.get("TRAVIS_OS_NAME") == "osx": build_dir: str = os.environ.get("TRAVIS_BUILD_DIR") print(os.listdir(build_dir)) cmdstring = f"python3 {script_path}" print("about to run: " + cmdstring) print(os.curdir) print(os.listdir(os.curdir)) print(os.listdir(os.path.abspath(os.path.join(context.root_directory, "..")))) status: int output: str status, output = subprocess.getstatusoutput(cmdstring) print(f"\n\nScript exited with code: {status} and output:\n{output}") assert status == 0 assert "Validation succeeded!" in output
[ "def", "test_checkpoint_script_happy_path_executable_successful_validation_pandas", "(", "caplog", ",", "monkeypatch", ",", "titanic_pandas_data_context_with_v013_datasource_with_checkpoints_v1_with_empty_store_stats_enabled", ",", ")", ":", "monkeypatch", ".", "setenv", "(", "\"VAR\"", ",", "\"test\"", ")", "monkeypatch", ".", "setenv", "(", "\"MY_PARAM\"", ",", "\"1\"", ")", "monkeypatch", ".", "setenv", "(", "\"OLD_PARAM\"", ",", "\"2\"", ")", "context", ":", "DataContext", "=", "titanic_pandas_data_context_with_v013_datasource_with_checkpoints_v1_with_empty_store_stats_enabled", "suite", ":", "ExpectationSuite", "=", "context", ".", "create_expectation_suite", "(", "expectation_suite_name", "=", "\"users.delivery\"", ")", "context", ".", "save_expectation_suite", "(", "expectation_suite", "=", "suite", ")", "assert", "context", ".", "list_expectation_suite_names", "(", ")", "==", "[", "\"users.delivery\"", "]", "monkeypatch", ".", "chdir", "(", "os", ".", "path", ".", "dirname", "(", "context", ".", "root_directory", ")", ")", "checkpoint_file_path", ":", "str", "=", "os", ".", "path", ".", "join", "(", "context", ".", "root_directory", ",", "DataContextConfigDefaults", ".", "CHECKPOINTS_BASE_DIRECTORY", ".", "value", ",", "\"my_fancy_checkpoint.yml\"", ",", ")", "checkpoint_yaml_config", ":", "str", "=", "f\"\"\"\n name: my_fancy_checkpoint\n config_version: 1\n class_name: Checkpoint\n run_name_template: \"%Y-%M-foo-bar-template-$VAR\"\n validations:\n - batch_request:\n datasource_name: my_datasource\n data_connector_name: my_special_data_connector\n data_asset_name: users\n data_connector_query:\n index: -1\n expectation_suite_name: users.delivery\n action_list:\n - name: store_validation_result\n action:\n class_name: StoreValidationResultAction\n - name: store_evaluation_params\n action:\n class_name: StoreEvaluationParametersAction\n - name: update_data_docs\n action:\n class_name: UpdateDataDocsAction\n evaluation_parameters:\n param1: \"$MY_PARAM\"\n param2: 1 + \"$OLD_PARAM\"\n runtime_configuration:\n result_format:\n result_format: BASIC\n partial_unexpected_count: 20\n \"\"\"", "config", ":", "dict", "=", "dict", "(", "yaml", ".", "load", "(", "checkpoint_yaml_config", ")", ")", "_write_checkpoint_dict_to_file", "(", "config", "=", "config", ",", "checkpoint_file_path", "=", "checkpoint_file_path", ")", "runner", ":", "CliRunner", "=", "CliRunner", "(", "mix_stderr", "=", "False", ")", "result", ":", "Result", "=", "runner", ".", "invoke", "(", "cli", ",", "f\"--v3-api checkpoint script my_fancy_checkpoint\"", ",", "catch_exceptions", "=", "False", ",", ")", "assert", "result", ".", "exit_code", "==", "0", "assert_no_logging_messages_or_tracebacks", "(", "my_caplog", "=", "caplog", ",", "click_result", "=", "result", ",", ")", "script_path", ":", "str", "=", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "join", "(", "context", ".", "root_directory", ",", "context", ".", "GE_UNCOMMITTED_DIR", ",", "\"run_my_fancy_checkpoint.py\"", ",", ")", ")", "assert", "os", ".", "path", ".", "isfile", "(", "script_path", ")", "# In travis on osx, python may not execute from the build dir", "cmdstring", ":", "str", "=", "f\"python {script_path}\"", "if", "os", ".", "environ", ".", "get", "(", "\"TRAVIS_OS_NAME\"", ")", "==", "\"osx\"", ":", "build_dir", ":", "str", "=", "os", ".", "environ", ".", "get", "(", "\"TRAVIS_BUILD_DIR\"", ")", "print", "(", "os", ".", "listdir", "(", "build_dir", ")", ")", "cmdstring", "=", "f\"python3 {script_path}\"", "print", "(", "\"about to run: \"", "+", "cmdstring", ")", "print", "(", "os", ".", "curdir", ")", "print", "(", "os", ".", "listdir", "(", "os", ".", "curdir", ")", ")", "print", "(", "os", ".", "listdir", "(", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "join", "(", "context", ".", "root_directory", ",", "\"..\"", ")", ")", ")", ")", "status", ":", "int", "output", ":", "str", "status", ",", "output", "=", "subprocess", ".", "getstatusoutput", "(", "cmdstring", ")", "print", "(", "f\"\\n\\nScript exited with code: {status} and output:\\n{output}\"", ")", "assert", "status", "==", "0", "assert", "\"Validation succeeded!\"", "in", "output" ]
[ 2654, 0 ]
[ 2764, 44 ]
python
en
['en', 'error', 'th']
False
test_checkpoint_script_happy_path_executable_failed_validation_pandas
( caplog, monkeypatch, titanic_pandas_data_context_with_v013_datasource_with_checkpoints_v1_with_empty_store_stats_enabled, titanic_expectation_suite, )
We call the "checkpoint script" command on a project with a Checkpoint. The command should: - create the script (note output is tested in other tests) When run the script should: - execute - return a 1 status code - print a failure message
We call the "checkpoint script" command on a project with a Checkpoint.
def test_checkpoint_script_happy_path_executable_failed_validation_pandas( caplog, monkeypatch, titanic_pandas_data_context_with_v013_datasource_with_checkpoints_v1_with_empty_store_stats_enabled, titanic_expectation_suite, ): """ We call the "checkpoint script" command on a project with a Checkpoint. The command should: - create the script (note output is tested in other tests) When run the script should: - execute - return a 1 status code - print a failure message """ monkeypatch.setenv("VAR", "test") monkeypatch.setenv("MY_PARAM", "1") monkeypatch.setenv("OLD_PARAM", "2") context: DataContext = titanic_pandas_data_context_with_v013_datasource_with_checkpoints_v1_with_empty_store_stats_enabled context.save_expectation_suite( expectation_suite=titanic_expectation_suite, expectation_suite_name="Titanic.warning", ) assert context.list_expectation_suite_names() == ["Titanic.warning"] monkeypatch.chdir(os.path.dirname(context.root_directory)) # To fail an expectation, make number of rows less than 1313 (the original number of rows in the "Titanic" dataset). csv_path: str = os.path.join( context.root_directory, "..", "data", "titanic", "Titanic_19120414_1313.csv" ) df: pd.DataFrame = pd.read_csv(filepath_or_buffer=csv_path) df = df.sample(frac=0.5, replace=True, random_state=1) df.to_csv(path_or_buf=csv_path) checkpoint_file_path: str = os.path.join( context.root_directory, DataContextConfigDefaults.CHECKPOINTS_BASE_DIRECTORY.value, "my_fancy_checkpoint.yml", ) checkpoint_yaml_config: str = f""" name: my_fancy_checkpoint config_version: 1 class_name: Checkpoint run_name_template: "%Y-%M-foo-bar-template-$VAR" validations: - batch_request: datasource_name: my_datasource data_connector_name: my_special_data_connector data_asset_name: users data_connector_query: index: -1 expectation_suite_name: Titanic.warning action_list: - name: store_validation_result action: class_name: StoreValidationResultAction - name: store_evaluation_params action: class_name: StoreEvaluationParametersAction - name: update_data_docs action: class_name: UpdateDataDocsAction evaluation_parameters: param1: "$MY_PARAM" param2: 1 + "$OLD_PARAM" runtime_configuration: result_format: result_format: BASIC partial_unexpected_count: 20 """ config: dict = dict(yaml.load(checkpoint_yaml_config)) _write_checkpoint_dict_to_file( config=config, checkpoint_file_path=checkpoint_file_path ) runner: CliRunner = CliRunner(mix_stderr=False) result: Result = runner.invoke( cli, f"--v3-api checkpoint script my_fancy_checkpoint", catch_exceptions=False, ) assert result.exit_code == 0 assert_no_logging_messages_or_tracebacks( my_caplog=caplog, click_result=result, ) script_path: str = os.path.abspath( os.path.join( context.root_directory, context.GE_UNCOMMITTED_DIR, "run_my_fancy_checkpoint.py", ) ) assert os.path.isfile(script_path) # In travis on osx, python may not execute from the build dir cmdstring: str = f"python {script_path}" if os.environ.get("TRAVIS_OS_NAME") == "osx": build_dir: str = os.environ.get("TRAVIS_BUILD_DIR") print(os.listdir(build_dir)) cmdstring = f"python3 {script_path}" print("about to run: " + cmdstring) print(os.curdir) print(os.listdir(os.curdir)) print(os.listdir(os.path.abspath(os.path.join(context.root_directory, "..")))) status: int output: str status, output = subprocess.getstatusoutput(cmdstring) print(f"\n\nScript exited with code: {status} and output:\n{output}") assert status == 1 assert "Validation failed!" in output
[ "def", "test_checkpoint_script_happy_path_executable_failed_validation_pandas", "(", "caplog", ",", "monkeypatch", ",", "titanic_pandas_data_context_with_v013_datasource_with_checkpoints_v1_with_empty_store_stats_enabled", ",", "titanic_expectation_suite", ",", ")", ":", "monkeypatch", ".", "setenv", "(", "\"VAR\"", ",", "\"test\"", ")", "monkeypatch", ".", "setenv", "(", "\"MY_PARAM\"", ",", "\"1\"", ")", "monkeypatch", ".", "setenv", "(", "\"OLD_PARAM\"", ",", "\"2\"", ")", "context", ":", "DataContext", "=", "titanic_pandas_data_context_with_v013_datasource_with_checkpoints_v1_with_empty_store_stats_enabled", "context", ".", "save_expectation_suite", "(", "expectation_suite", "=", "titanic_expectation_suite", ",", "expectation_suite_name", "=", "\"Titanic.warning\"", ",", ")", "assert", "context", ".", "list_expectation_suite_names", "(", ")", "==", "[", "\"Titanic.warning\"", "]", "monkeypatch", ".", "chdir", "(", "os", ".", "path", ".", "dirname", "(", "context", ".", "root_directory", ")", ")", "# To fail an expectation, make number of rows less than 1313 (the original number of rows in the \"Titanic\" dataset).", "csv_path", ":", "str", "=", "os", ".", "path", ".", "join", "(", "context", ".", "root_directory", ",", "\"..\"", ",", "\"data\"", ",", "\"titanic\"", ",", "\"Titanic_19120414_1313.csv\"", ")", "df", ":", "pd", ".", "DataFrame", "=", "pd", ".", "read_csv", "(", "filepath_or_buffer", "=", "csv_path", ")", "df", "=", "df", ".", "sample", "(", "frac", "=", "0.5", ",", "replace", "=", "True", ",", "random_state", "=", "1", ")", "df", ".", "to_csv", "(", "path_or_buf", "=", "csv_path", ")", "checkpoint_file_path", ":", "str", "=", "os", ".", "path", ".", "join", "(", "context", ".", "root_directory", ",", "DataContextConfigDefaults", ".", "CHECKPOINTS_BASE_DIRECTORY", ".", "value", ",", "\"my_fancy_checkpoint.yml\"", ",", ")", "checkpoint_yaml_config", ":", "str", "=", "f\"\"\"\n name: my_fancy_checkpoint\n config_version: 1\n class_name: Checkpoint\n run_name_template: \"%Y-%M-foo-bar-template-$VAR\"\n validations:\n - batch_request:\n datasource_name: my_datasource\n data_connector_name: my_special_data_connector\n data_asset_name: users\n data_connector_query:\n index: -1\n expectation_suite_name: Titanic.warning\n action_list:\n - name: store_validation_result\n action:\n class_name: StoreValidationResultAction\n - name: store_evaluation_params\n action:\n class_name: StoreEvaluationParametersAction\n - name: update_data_docs\n action:\n class_name: UpdateDataDocsAction\n evaluation_parameters:\n param1: \"$MY_PARAM\"\n param2: 1 + \"$OLD_PARAM\"\n runtime_configuration:\n result_format:\n result_format: BASIC\n partial_unexpected_count: 20\n \"\"\"", "config", ":", "dict", "=", "dict", "(", "yaml", ".", "load", "(", "checkpoint_yaml_config", ")", ")", "_write_checkpoint_dict_to_file", "(", "config", "=", "config", ",", "checkpoint_file_path", "=", "checkpoint_file_path", ")", "runner", ":", "CliRunner", "=", "CliRunner", "(", "mix_stderr", "=", "False", ")", "result", ":", "Result", "=", "runner", ".", "invoke", "(", "cli", ",", "f\"--v3-api checkpoint script my_fancy_checkpoint\"", ",", "catch_exceptions", "=", "False", ",", ")", "assert", "result", ".", "exit_code", "==", "0", "assert_no_logging_messages_or_tracebacks", "(", "my_caplog", "=", "caplog", ",", "click_result", "=", "result", ",", ")", "script_path", ":", "str", "=", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "join", "(", "context", ".", "root_directory", ",", "context", ".", "GE_UNCOMMITTED_DIR", ",", "\"run_my_fancy_checkpoint.py\"", ",", ")", ")", "assert", "os", ".", "path", ".", "isfile", "(", "script_path", ")", "# In travis on osx, python may not execute from the build dir", "cmdstring", ":", "str", "=", "f\"python {script_path}\"", "if", "os", ".", "environ", ".", "get", "(", "\"TRAVIS_OS_NAME\"", ")", "==", "\"osx\"", ":", "build_dir", ":", "str", "=", "os", ".", "environ", ".", "get", "(", "\"TRAVIS_BUILD_DIR\"", ")", "print", "(", "os", ".", "listdir", "(", "build_dir", ")", ")", "cmdstring", "=", "f\"python3 {script_path}\"", "print", "(", "\"about to run: \"", "+", "cmdstring", ")", "print", "(", "os", ".", "curdir", ")", "print", "(", "os", ".", "listdir", "(", "os", ".", "curdir", ")", ")", "print", "(", "os", ".", "listdir", "(", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "join", "(", "context", ".", "root_directory", ",", "\"..\"", ")", ")", ")", ")", "status", ":", "int", "output", ":", "str", "status", ",", "output", "=", "subprocess", ".", "getstatusoutput", "(", "cmdstring", ")", "print", "(", "f\"\\n\\nScript exited with code: {status} and output:\\n{output}\"", ")", "assert", "status", "==", "1", "assert", "\"Validation failed!\"", "in", "output" ]
[ 2767, 0 ]
[ 2885, 41 ]
python
en
['en', 'error', 'th']
False
test_checkpoint_script_happy_path_executable_failed_validation_due_to_bad_data_pandas
( caplog, monkeypatch, titanic_pandas_data_context_with_v013_datasource_with_checkpoints_v1_with_empty_store_stats_enabled, titanic_expectation_suite, )
We call the "checkpoint script" command on a project with a Checkpoint. The command should: - create the script (note output is tested in other tests) When run the script should: - execute - return a 1 status code - print a failure message
We call the "checkpoint script" command on a project with a Checkpoint.
def test_checkpoint_script_happy_path_executable_failed_validation_due_to_bad_data_pandas( caplog, monkeypatch, titanic_pandas_data_context_with_v013_datasource_with_checkpoints_v1_with_empty_store_stats_enabled, titanic_expectation_suite, ): """ We call the "checkpoint script" command on a project with a Checkpoint. The command should: - create the script (note output is tested in other tests) When run the script should: - execute - return a 1 status code - print a failure message """ monkeypatch.setenv("VAR", "test") monkeypatch.setenv("MY_PARAM", "1") monkeypatch.setenv("OLD_PARAM", "2") context: DataContext = titanic_pandas_data_context_with_v013_datasource_with_checkpoints_v1_with_empty_store_stats_enabled context.save_expectation_suite( expectation_suite=titanic_expectation_suite, expectation_suite_name="Titanic.warning", ) assert context.list_expectation_suite_names() == ["Titanic.warning"] monkeypatch.chdir(os.path.dirname(context.root_directory)) csv_path: str = os.path.join( context.root_directory, "..", "data", "titanic", "Titanic_19120414_1313.csv" ) # mangle the csv with open(csv_path, "w") as f: f.write("foo,bar\n1,2\n") checkpoint_file_path: str = os.path.join( context.root_directory, DataContextConfigDefaults.CHECKPOINTS_BASE_DIRECTORY.value, "my_fancy_checkpoint.yml", ) checkpoint_yaml_config: str = f""" name: my_fancy_checkpoint config_version: 1 class_name: Checkpoint run_name_template: "%Y-%M-foo-bar-template-$VAR" validations: - batch_request: datasource_name: my_datasource data_connector_name: my_special_data_connector data_asset_name: users data_connector_query: index: -1 expectation_suite_name: Titanic.warning action_list: - name: store_validation_result action: class_name: StoreValidationResultAction - name: store_evaluation_params action: class_name: StoreEvaluationParametersAction - name: update_data_docs action: class_name: UpdateDataDocsAction evaluation_parameters: param1: "$MY_PARAM" param2: 1 + "$OLD_PARAM" runtime_configuration: result_format: result_format: BASIC partial_unexpected_count: 20 """ config: dict = dict(yaml.load(checkpoint_yaml_config)) _write_checkpoint_dict_to_file( config=config, checkpoint_file_path=checkpoint_file_path ) runner: CliRunner = CliRunner(mix_stderr=False) result: Result = runner.invoke( cli, f"--v3-api checkpoint script my_fancy_checkpoint", catch_exceptions=False, ) assert result.exit_code == 0 assert_no_logging_messages_or_tracebacks( my_caplog=caplog, click_result=result, ) script_path: str = os.path.abspath( os.path.join( context.root_directory, context.GE_UNCOMMITTED_DIR, "run_my_fancy_checkpoint.py", ) ) assert os.path.isfile(script_path) # In travis on osx, python may not execute from the build dir cmdstring: str = f"python {script_path}" if os.environ.get("TRAVIS_OS_NAME") == "osx": build_dir: str = os.environ.get("TRAVIS_BUILD_DIR") print(os.listdir(build_dir)) cmdstring = f"python3 {script_path}" print("about to run: " + cmdstring) print(os.curdir) print(os.listdir(os.curdir)) print(os.listdir(os.path.abspath(os.path.join(context.root_directory, "..")))) status: int output: str status, output = subprocess.getstatusoutput(cmdstring) print(f"\n\nScript exited with code: {status} and output:\n{output}") assert status == 1 assert ( 'ExecutionEngineError: Error: The column "Name" in BatchData does not exist.' in output )
[ "def", "test_checkpoint_script_happy_path_executable_failed_validation_due_to_bad_data_pandas", "(", "caplog", ",", "monkeypatch", ",", "titanic_pandas_data_context_with_v013_datasource_with_checkpoints_v1_with_empty_store_stats_enabled", ",", "titanic_expectation_suite", ",", ")", ":", "monkeypatch", ".", "setenv", "(", "\"VAR\"", ",", "\"test\"", ")", "monkeypatch", ".", "setenv", "(", "\"MY_PARAM\"", ",", "\"1\"", ")", "monkeypatch", ".", "setenv", "(", "\"OLD_PARAM\"", ",", "\"2\"", ")", "context", ":", "DataContext", "=", "titanic_pandas_data_context_with_v013_datasource_with_checkpoints_v1_with_empty_store_stats_enabled", "context", ".", "save_expectation_suite", "(", "expectation_suite", "=", "titanic_expectation_suite", ",", "expectation_suite_name", "=", "\"Titanic.warning\"", ",", ")", "assert", "context", ".", "list_expectation_suite_names", "(", ")", "==", "[", "\"Titanic.warning\"", "]", "monkeypatch", ".", "chdir", "(", "os", ".", "path", ".", "dirname", "(", "context", ".", "root_directory", ")", ")", "csv_path", ":", "str", "=", "os", ".", "path", ".", "join", "(", "context", ".", "root_directory", ",", "\"..\"", ",", "\"data\"", ",", "\"titanic\"", ",", "\"Titanic_19120414_1313.csv\"", ")", "# mangle the csv", "with", "open", "(", "csv_path", ",", "\"w\"", ")", "as", "f", ":", "f", ".", "write", "(", "\"foo,bar\\n1,2\\n\"", ")", "checkpoint_file_path", ":", "str", "=", "os", ".", "path", ".", "join", "(", "context", ".", "root_directory", ",", "DataContextConfigDefaults", ".", "CHECKPOINTS_BASE_DIRECTORY", ".", "value", ",", "\"my_fancy_checkpoint.yml\"", ",", ")", "checkpoint_yaml_config", ":", "str", "=", "f\"\"\"\n name: my_fancy_checkpoint\n config_version: 1\n class_name: Checkpoint\n run_name_template: \"%Y-%M-foo-bar-template-$VAR\"\n validations:\n - batch_request:\n datasource_name: my_datasource\n data_connector_name: my_special_data_connector\n data_asset_name: users\n data_connector_query:\n index: -1\n expectation_suite_name: Titanic.warning\n action_list:\n - name: store_validation_result\n action:\n class_name: StoreValidationResultAction\n - name: store_evaluation_params\n action:\n class_name: StoreEvaluationParametersAction\n - name: update_data_docs\n action:\n class_name: UpdateDataDocsAction\n evaluation_parameters:\n param1: \"$MY_PARAM\"\n param2: 1 + \"$OLD_PARAM\"\n runtime_configuration:\n result_format:\n result_format: BASIC\n partial_unexpected_count: 20\n \"\"\"", "config", ":", "dict", "=", "dict", "(", "yaml", ".", "load", "(", "checkpoint_yaml_config", ")", ")", "_write_checkpoint_dict_to_file", "(", "config", "=", "config", ",", "checkpoint_file_path", "=", "checkpoint_file_path", ")", "runner", ":", "CliRunner", "=", "CliRunner", "(", "mix_stderr", "=", "False", ")", "result", ":", "Result", "=", "runner", ".", "invoke", "(", "cli", ",", "f\"--v3-api checkpoint script my_fancy_checkpoint\"", ",", "catch_exceptions", "=", "False", ",", ")", "assert", "result", ".", "exit_code", "==", "0", "assert_no_logging_messages_or_tracebacks", "(", "my_caplog", "=", "caplog", ",", "click_result", "=", "result", ",", ")", "script_path", ":", "str", "=", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "join", "(", "context", ".", "root_directory", ",", "context", ".", "GE_UNCOMMITTED_DIR", ",", "\"run_my_fancy_checkpoint.py\"", ",", ")", ")", "assert", "os", ".", "path", ".", "isfile", "(", "script_path", ")", "# In travis on osx, python may not execute from the build dir", "cmdstring", ":", "str", "=", "f\"python {script_path}\"", "if", "os", ".", "environ", ".", "get", "(", "\"TRAVIS_OS_NAME\"", ")", "==", "\"osx\"", ":", "build_dir", ":", "str", "=", "os", ".", "environ", ".", "get", "(", "\"TRAVIS_BUILD_DIR\"", ")", "print", "(", "os", ".", "listdir", "(", "build_dir", ")", ")", "cmdstring", "=", "f\"python3 {script_path}\"", "print", "(", "\"about to run: \"", "+", "cmdstring", ")", "print", "(", "os", ".", "curdir", ")", "print", "(", "os", ".", "listdir", "(", "os", ".", "curdir", ")", ")", "print", "(", "os", ".", "listdir", "(", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "join", "(", "context", ".", "root_directory", ",", "\"..\"", ")", ")", ")", ")", "status", ":", "int", "output", ":", "str", "status", ",", "output", "=", "subprocess", ".", "getstatusoutput", "(", "cmdstring", ")", "print", "(", "f\"\\n\\nScript exited with code: {status} and output:\\n{output}\"", ")", "assert", "status", "==", "1", "assert", "(", "'ExecutionEngineError: Error: The column \"Name\" in BatchData does not exist.'", "in", "output", ")" ]
[ 2888, 0 ]
[ 3008, 5 ]
python
en
['en', 'error', 'th']
False
retry_on_exception
(tries=6, delay=1, backoff=2, max_delay=32)
Decorator for implementing exponential backoff for retrying on failures. tries: Max number of tries to execute the wrapped function before failing. delay: Delay time in seconds before the FIRST retry. backoff: Multiplier to extend the initial delay by for each retry. max_delay: Max time in seconds to wait between retries.
Decorator for implementing exponential backoff for retrying on failures.
def retry_on_exception(tries=6, delay=1, backoff=2, max_delay=32): ''' Decorator for implementing exponential backoff for retrying on failures. tries: Max number of tries to execute the wrapped function before failing. delay: Delay time in seconds before the FIRST retry. backoff: Multiplier to extend the initial delay by for each retry. max_delay: Max time in seconds to wait between retries. ''' tries = math.floor(tries) if tries < 1: raise ValueError('"tries" must be greater than or equal to 1.') if delay < 0: raise ValueError('"delay" must be greater than or equal to 0.') if backoff < 1: raise ValueError('"backoff" must be greater than or equal to 1.') if max_delay < delay: raise ValueError('"max_delay" must be greater than or equal to delay.') def decorated_function_with_retry(func): @wraps(func) def function_to_retry(*args, **kwargs): local_tries, local_delay = tries, delay while local_tries > 1: try: return func(*args, **kwargs) except Exception as e: if local_delay > max_delay: local_delay = max_delay logging.exception('%s: Retrying in %d seconds...' % (str(e), local_delay)) time.sleep(local_delay) local_tries -= 1 local_delay *= backoff return func(*args, **kwargs) return function_to_retry return decorated_function_with_retry
[ "def", "retry_on_exception", "(", "tries", "=", "6", ",", "delay", "=", "1", ",", "backoff", "=", "2", ",", "max_delay", "=", "32", ")", ":", "tries", "=", "math", ".", "floor", "(", "tries", ")", "if", "tries", "<", "1", ":", "raise", "ValueError", "(", "'\"tries\" must be greater than or equal to 1.'", ")", "if", "delay", "<", "0", ":", "raise", "ValueError", "(", "'\"delay\" must be greater than or equal to 0.'", ")", "if", "backoff", "<", "1", ":", "raise", "ValueError", "(", "'\"backoff\" must be greater than or equal to 1.'", ")", "if", "max_delay", "<", "delay", ":", "raise", "ValueError", "(", "'\"max_delay\" must be greater than or equal to delay.'", ")", "def", "decorated_function_with_retry", "(", "func", ")", ":", "@", "wraps", "(", "func", ")", "def", "function_to_retry", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "local_tries", ",", "local_delay", "=", "tries", ",", "delay", "while", "local_tries", ">", "1", ":", "try", ":", "return", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "except", "Exception", "as", "e", ":", "if", "local_delay", ">", "max_delay", ":", "local_delay", "=", "max_delay", "logging", ".", "exception", "(", "'%s: Retrying in %d seconds...'", "%", "(", "str", "(", "e", ")", ",", "local_delay", ")", ")", "time", ".", "sleep", "(", "local_delay", ")", "local_tries", "-=", "1", "local_delay", "*=", "backoff", "return", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "return", "function_to_retry", "return", "decorated_function_with_retry" ]
[ 10, 0 ]
[ 46, 40 ]
python
en
['en', 'error', 'th']
False
rate_limited
(max_per_second)
This decorator limits how often a method can get called in a second. If the limit is exceeded, the call will be held in a queue until enough time has passed. Useful when trying to avoid overloading a system with rapid calls.
This decorator limits how often a method can get called in a second. If the limit is exceeded, the call will be held in a queue until enough time has passed. Useful when trying to avoid overloading a system with rapid calls.
def rate_limited(max_per_second): """ This decorator limits how often a method can get called in a second. If the limit is exceeded, the call will be held in a queue until enough time has passed. Useful when trying to avoid overloading a system with rapid calls. """ min_interval = 1.0 / float(max_per_second) def decorate(func): last_time_called = [0.0] rate_lock = threading.Lock() # To support multi-threading def rate_limited_function(*args, **kargs): try: rate_lock.acquire(True) elapsed = None if sys.version_info[0] >= 3: elapsed = time.process_time() - last_time_called[0] else: elapsed = time.clock() - last_time_called[0] wait_time_remaining = min_interval - elapsed if wait_time_remaining > 0: time.sleep(wait_time_remaining) if sys.version_info[0] >= 3: last_time_called[0] = time.process_time() else: last_time_called[0] = time.clock() finally: rate_lock.release() return func(*args, **kargs) return rate_limited_function return decorate
[ "def", "rate_limited", "(", "max_per_second", ")", ":", "min_interval", "=", "1.0", "/", "float", "(", "max_per_second", ")", "def", "decorate", "(", "func", ")", ":", "last_time_called", "=", "[", "0.0", "]", "rate_lock", "=", "threading", ".", "Lock", "(", ")", "# To support multi-threading", "def", "rate_limited_function", "(", "*", "args", ",", "*", "*", "kargs", ")", ":", "try", ":", "rate_lock", ".", "acquire", "(", "True", ")", "elapsed", "=", "None", "if", "sys", ".", "version_info", "[", "0", "]", ">=", "3", ":", "elapsed", "=", "time", ".", "process_time", "(", ")", "-", "last_time_called", "[", "0", "]", "else", ":", "elapsed", "=", "time", ".", "clock", "(", ")", "-", "last_time_called", "[", "0", "]", "wait_time_remaining", "=", "min_interval", "-", "elapsed", "if", "wait_time_remaining", ">", "0", ":", "time", ".", "sleep", "(", "wait_time_remaining", ")", "if", "sys", ".", "version_info", "[", "0", "]", ">=", "3", ":", "last_time_called", "[", "0", "]", "=", "time", ".", "process_time", "(", ")", "else", ":", "last_time_called", "[", "0", "]", "=", "time", ".", "clock", "(", ")", "finally", ":", "rate_lock", ".", "release", "(", ")", "return", "func", "(", "*", "args", ",", "*", "*", "kargs", ")", "return", "rate_limited_function", "return", "decorate" ]
[ 49, 0 ]
[ 79, 19 ]
python
en
['en', 'en', 'en']
True
deprecated
(message=None)
This decorator marks methods as deprecated. A warning is displayed if the method is called.
This decorator marks methods as deprecated. A warning is displayed if the method is called.
def deprecated(message=None): """ This decorator marks methods as deprecated. A warning is displayed if the method is called. """ def decorated_method_to_deprecate(func): if inspect.isclass(func): # Handle a deprecated class differently from a deprecated method msg = "Class {}() is DEPRECATED! *** ".format(func.__name__) if message: msg += "<> %s <>" % message warnings.simplefilter('always', DeprecationWarning) # See Warnings warnings.warn(msg, category=DeprecationWarning, stacklevel=2) warnings.simplefilter('default', DeprecationWarning) # Set Default return func @wraps(func) def new_func(*args, **kwargs): msg = "Method {}() is DEPRECATED! *** ".format(func.__name__) if message: msg += "<> %s <>" % message warnings.simplefilter('always', DeprecationWarning) # See Warnings warnings.warn(msg, category=DeprecationWarning, stacklevel=2) warnings.simplefilter('default', DeprecationWarning) # Set Default return func(*args, **kwargs) return new_func return decorated_method_to_deprecate
[ "def", "deprecated", "(", "message", "=", "None", ")", ":", "def", "decorated_method_to_deprecate", "(", "func", ")", ":", "if", "inspect", ".", "isclass", "(", "func", ")", ":", "# Handle a deprecated class differently from a deprecated method", "msg", "=", "\"Class {}() is DEPRECATED! *** \"", ".", "format", "(", "func", ".", "__name__", ")", "if", "message", ":", "msg", "+=", "\"<> %s <>\"", "%", "message", "warnings", ".", "simplefilter", "(", "'always'", ",", "DeprecationWarning", ")", "# See Warnings", "warnings", ".", "warn", "(", "msg", ",", "category", "=", "DeprecationWarning", ",", "stacklevel", "=", "2", ")", "warnings", ".", "simplefilter", "(", "'default'", ",", "DeprecationWarning", ")", "# Set Default", "return", "func", "@", "wraps", "(", "func", ")", "def", "new_func", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "msg", "=", "\"Method {}() is DEPRECATED! *** \"", ".", "format", "(", "func", ".", "__name__", ")", "if", "message", ":", "msg", "+=", "\"<> %s <>\"", "%", "message", "warnings", ".", "simplefilter", "(", "'always'", ",", "DeprecationWarning", ")", "# See Warnings", "warnings", ".", "warn", "(", "msg", ",", "category", "=", "DeprecationWarning", ",", "stacklevel", "=", "2", ")", "warnings", ".", "simplefilter", "(", "'default'", ",", "DeprecationWarning", ")", "# Set Default", "return", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "return", "new_func", "return", "decorated_method_to_deprecate" ]
[ 82, 0 ]
[ 107, 40 ]
python
en
['en', 'en', 'en']
True
benchmark_querying
(n_docs_options, retriever_doc_stores, data_dir, data_s3_url, filename_gold, filename_negative, n_queries, embeddings_filenames, embeddings_dir, update_json, save_markdown, **kwargs)
Benchmark the time it takes to perform querying. Doc embeddings are loaded from file.
Benchmark the time it takes to perform querying. Doc embeddings are loaded from file.
def benchmark_querying(n_docs_options, retriever_doc_stores, data_dir, data_s3_url, filename_gold, filename_negative, n_queries, embeddings_filenames, embeddings_dir, update_json, save_markdown, **kwargs): """ Benchmark the time it takes to perform querying. Doc embeddings are loaded from file.""" retriever_results = [] for n_docs in n_docs_options: for retriever_name, doc_store_name in retriever_doc_stores: try: logger.info(f"##### Start querying run: {retriever_name}, {doc_store_name}, {n_docs} docs ##### ") if retriever_name == "elastic": similarity = "cosine" else: similarity = "dot_product" doc_store = get_document_store(doc_store_name, similarity=similarity) retriever = get_retriever(retriever_name, doc_store) add_precomputed = retriever_name in ["dpr"] # For DPR, precomputed embeddings are loaded from file docs, labels = prepare_data(data_dir=data_dir, filename_gold=filename_gold, filename_negative=filename_negative, data_s3_url=data_s3_url, embeddings_filenames=embeddings_filenames, embeddings_dir=embeddings_dir, n_docs=n_docs, n_queries=n_queries, add_precomputed=add_precomputed) logger.info("Start indexing...") index_to_doc_store(doc_store, docs, retriever, labels) logger.info("Start queries...") raw_results = retriever.eval() results = { "retriever": retriever_name, "doc_store": doc_store_name, "n_docs": n_docs, "n_queries": raw_results["n_questions"], "retrieve_time": raw_results["retrieve_time"], "queries_per_second": raw_results["n_questions"] / raw_results["retrieve_time"], "seconds_per_query": raw_results["retrieve_time"]/ raw_results["n_questions"], "recall": raw_results["recall"] * 100, "map": raw_results["map"] * 100, "top_k": raw_results["top_k"], "date_time": datetime.datetime.now(), "error": None } logger.info("Deleting all docs from this run ...") if isinstance(doc_store, FAISSDocumentStore): doc_store.session.close() else: doc_store.delete_all_documents(index=doc_index) doc_store.delete_all_documents(index=label_index) time.sleep(5) del doc_store del retriever except Exception: tb = traceback.format_exc() logging.error(f"##### The following Error was raised while running querying run: {retriever_name}, {doc_store_name}, {n_docs} docs #####") logging.error(tb) results = { "retriever": retriever_name, "doc_store": doc_store_name, "n_docs": n_docs, "n_queries": 0, "retrieve_time": 0., "queries_per_second": 0., "seconds_per_query": 0., "recall": 0., "map": 0., "top_k": 0, "date_time": datetime.datetime.now(), "error": str(tb) } logger.info("Deleting all docs from this run ...") if isinstance(doc_store, FAISSDocumentStore): doc_store.session.close() else: doc_store.delete_all_documents(index=doc_index) doc_store.delete_all_documents(index=label_index) time.sleep(5) del doc_store del retriever logger.info(results) retriever_results.append(results) retriever_df = pd.DataFrame.from_records(retriever_results) retriever_df = retriever_df.sort_values(by="retriever").sort_values(by="doc_store") retriever_df.to_csv(query_results_file) if save_markdown: md_file = query_results_file.replace(".csv", ".md") with open(md_file, "w") as f: f.write(str(retriever_df.to_markdown())) if update_json: populate_retriever_json()
[ "def", "benchmark_querying", "(", "n_docs_options", ",", "retriever_doc_stores", ",", "data_dir", ",", "data_s3_url", ",", "filename_gold", ",", "filename_negative", ",", "n_queries", ",", "embeddings_filenames", ",", "embeddings_dir", ",", "update_json", ",", "save_markdown", ",", "*", "*", "kwargs", ")", ":", "retriever_results", "=", "[", "]", "for", "n_docs", "in", "n_docs_options", ":", "for", "retriever_name", ",", "doc_store_name", "in", "retriever_doc_stores", ":", "try", ":", "logger", ".", "info", "(", "f\"##### Start querying run: {retriever_name}, {doc_store_name}, {n_docs} docs ##### \"", ")", "if", "retriever_name", "==", "\"elastic\"", ":", "similarity", "=", "\"cosine\"", "else", ":", "similarity", "=", "\"dot_product\"", "doc_store", "=", "get_document_store", "(", "doc_store_name", ",", "similarity", "=", "similarity", ")", "retriever", "=", "get_retriever", "(", "retriever_name", ",", "doc_store", ")", "add_precomputed", "=", "retriever_name", "in", "[", "\"dpr\"", "]", "# For DPR, precomputed embeddings are loaded from file", "docs", ",", "labels", "=", "prepare_data", "(", "data_dir", "=", "data_dir", ",", "filename_gold", "=", "filename_gold", ",", "filename_negative", "=", "filename_negative", ",", "data_s3_url", "=", "data_s3_url", ",", "embeddings_filenames", "=", "embeddings_filenames", ",", "embeddings_dir", "=", "embeddings_dir", ",", "n_docs", "=", "n_docs", ",", "n_queries", "=", "n_queries", ",", "add_precomputed", "=", "add_precomputed", ")", "logger", ".", "info", "(", "\"Start indexing...\"", ")", "index_to_doc_store", "(", "doc_store", ",", "docs", ",", "retriever", ",", "labels", ")", "logger", ".", "info", "(", "\"Start queries...\"", ")", "raw_results", "=", "retriever", ".", "eval", "(", ")", "results", "=", "{", "\"retriever\"", ":", "retriever_name", ",", "\"doc_store\"", ":", "doc_store_name", ",", "\"n_docs\"", ":", "n_docs", ",", "\"n_queries\"", ":", "raw_results", "[", "\"n_questions\"", "]", ",", "\"retrieve_time\"", ":", "raw_results", "[", "\"retrieve_time\"", "]", ",", "\"queries_per_second\"", ":", "raw_results", "[", "\"n_questions\"", "]", "/", "raw_results", "[", "\"retrieve_time\"", "]", ",", "\"seconds_per_query\"", ":", "raw_results", "[", "\"retrieve_time\"", "]", "/", "raw_results", "[", "\"n_questions\"", "]", ",", "\"recall\"", ":", "raw_results", "[", "\"recall\"", "]", "*", "100", ",", "\"map\"", ":", "raw_results", "[", "\"map\"", "]", "*", "100", ",", "\"top_k\"", ":", "raw_results", "[", "\"top_k\"", "]", ",", "\"date_time\"", ":", "datetime", ".", "datetime", ".", "now", "(", ")", ",", "\"error\"", ":", "None", "}", "logger", ".", "info", "(", "\"Deleting all docs from this run ...\"", ")", "if", "isinstance", "(", "doc_store", ",", "FAISSDocumentStore", ")", ":", "doc_store", ".", "session", ".", "close", "(", ")", "else", ":", "doc_store", ".", "delete_all_documents", "(", "index", "=", "doc_index", ")", "doc_store", ".", "delete_all_documents", "(", "index", "=", "label_index", ")", "time", ".", "sleep", "(", "5", ")", "del", "doc_store", "del", "retriever", "except", "Exception", ":", "tb", "=", "traceback", ".", "format_exc", "(", ")", "logging", ".", "error", "(", "f\"##### The following Error was raised while running querying run: {retriever_name}, {doc_store_name}, {n_docs} docs #####\"", ")", "logging", ".", "error", "(", "tb", ")", "results", "=", "{", "\"retriever\"", ":", "retriever_name", ",", "\"doc_store\"", ":", "doc_store_name", ",", "\"n_docs\"", ":", "n_docs", ",", "\"n_queries\"", ":", "0", ",", "\"retrieve_time\"", ":", "0.", ",", "\"queries_per_second\"", ":", "0.", ",", "\"seconds_per_query\"", ":", "0.", ",", "\"recall\"", ":", "0.", ",", "\"map\"", ":", "0.", ",", "\"top_k\"", ":", "0", ",", "\"date_time\"", ":", "datetime", ".", "datetime", ".", "now", "(", ")", ",", "\"error\"", ":", "str", "(", "tb", ")", "}", "logger", ".", "info", "(", "\"Deleting all docs from this run ...\"", ")", "if", "isinstance", "(", "doc_store", ",", "FAISSDocumentStore", ")", ":", "doc_store", ".", "session", ".", "close", "(", ")", "else", ":", "doc_store", ".", "delete_all_documents", "(", "index", "=", "doc_index", ")", "doc_store", ".", "delete_all_documents", "(", "index", "=", "label_index", ")", "time", ".", "sleep", "(", "5", ")", "del", "doc_store", "del", "retriever", "logger", ".", "info", "(", "results", ")", "retriever_results", ".", "append", "(", "results", ")", "retriever_df", "=", "pd", ".", "DataFrame", ".", "from_records", "(", "retriever_results", ")", "retriever_df", "=", "retriever_df", ".", "sort_values", "(", "by", "=", "\"retriever\"", ")", ".", "sort_values", "(", "by", "=", "\"doc_store\"", ")", "retriever_df", ".", "to_csv", "(", "query_results_file", ")", "if", "save_markdown", ":", "md_file", "=", "query_results_file", ".", "replace", "(", "\".csv\"", ",", "\".md\"", ")", "with", "open", "(", "md_file", ",", "\"w\"", ")", "as", "f", ":", "f", ".", "write", "(", "str", "(", "retriever_df", ".", "to_markdown", "(", ")", ")", ")", "if", "update_json", ":", "populate_retriever_json", "(", ")" ]
[ 117, 0 ]
[ 220, 33 ]
python
en
['en', 'en', 'en']
True
prepare_data
(data_dir, filename_gold, filename_negative, data_s3_url, embeddings_filenames, embeddings_dir, n_docs=None, n_queries=None, add_precomputed=False)
filename_gold points to a squad format file. filename_negative points to a csv file where the first column is doc_id and second is document text. If add_precomputed is True, this fn will look in the embeddings files for precomputed embeddings to add to each Document
filename_gold points to a squad format file. filename_negative points to a csv file where the first column is doc_id and second is document text. If add_precomputed is True, this fn will look in the embeddings files for precomputed embeddings to add to each Document
def prepare_data(data_dir, filename_gold, filename_negative, data_s3_url, embeddings_filenames, embeddings_dir, n_docs=None, n_queries=None, add_precomputed=False): """ filename_gold points to a squad format file. filename_negative points to a csv file where the first column is doc_id and second is document text. If add_precomputed is True, this fn will look in the embeddings files for precomputed embeddings to add to each Document """ logging.getLogger("farm").setLevel(logging.INFO) download_from_s3(data_s3_url + filename_gold, cache_dir=data_dir) download_from_s3(data_s3_url + filename_negative, cache_dir=data_dir) if add_precomputed: for embedding_filename in embeddings_filenames: download_from_s3(data_s3_url + str(embeddings_dir) + embedding_filename, cache_dir=data_dir) logging.getLogger("farm").setLevel(logging.WARN) gold_docs, labels = eval_data_from_json(data_dir + filename_gold) # Reduce number of docs gold_docs = gold_docs[:n_docs] # Remove labels whose gold docs have been removed doc_ids = [x.id for x in gold_docs] labels = [x for x in labels if x.document_id in doc_ids] # Filter labels down to n_queries selected_queries = list(set(f"{x.document_id} | {x.question}" for x in labels)) selected_queries = selected_queries[:n_queries] labels = [x for x in labels if f"{x.document_id} | {x.question}" in selected_queries] n_neg_docs = max(0, n_docs - len(gold_docs)) neg_docs = prepare_negative_passages(data_dir, filename_negative, n_neg_docs) docs = gold_docs + neg_docs if add_precomputed: docs = add_precomputed_embeddings(data_dir + embeddings_dir, embeddings_filenames, docs) return docs, labels
[ "def", "prepare_data", "(", "data_dir", ",", "filename_gold", ",", "filename_negative", ",", "data_s3_url", ",", "embeddings_filenames", ",", "embeddings_dir", ",", "n_docs", "=", "None", ",", "n_queries", "=", "None", ",", "add_precomputed", "=", "False", ")", ":", "logging", ".", "getLogger", "(", "\"farm\"", ")", ".", "setLevel", "(", "logging", ".", "INFO", ")", "download_from_s3", "(", "data_s3_url", "+", "filename_gold", ",", "cache_dir", "=", "data_dir", ")", "download_from_s3", "(", "data_s3_url", "+", "filename_negative", ",", "cache_dir", "=", "data_dir", ")", "if", "add_precomputed", ":", "for", "embedding_filename", "in", "embeddings_filenames", ":", "download_from_s3", "(", "data_s3_url", "+", "str", "(", "embeddings_dir", ")", "+", "embedding_filename", ",", "cache_dir", "=", "data_dir", ")", "logging", ".", "getLogger", "(", "\"farm\"", ")", ".", "setLevel", "(", "logging", ".", "WARN", ")", "gold_docs", ",", "labels", "=", "eval_data_from_json", "(", "data_dir", "+", "filename_gold", ")", "# Reduce number of docs", "gold_docs", "=", "gold_docs", "[", ":", "n_docs", "]", "# Remove labels whose gold docs have been removed", "doc_ids", "=", "[", "x", ".", "id", "for", "x", "in", "gold_docs", "]", "labels", "=", "[", "x", "for", "x", "in", "labels", "if", "x", ".", "document_id", "in", "doc_ids", "]", "# Filter labels down to n_queries", "selected_queries", "=", "list", "(", "set", "(", "f\"{x.document_id} | {x.question}\"", "for", "x", "in", "labels", ")", ")", "selected_queries", "=", "selected_queries", "[", ":", "n_queries", "]", "labels", "=", "[", "x", "for", "x", "in", "labels", "if", "f\"{x.document_id} | {x.question}\"", "in", "selected_queries", "]", "n_neg_docs", "=", "max", "(", "0", ",", "n_docs", "-", "len", "(", "gold_docs", ")", ")", "neg_docs", "=", "prepare_negative_passages", "(", "data_dir", ",", "filename_negative", ",", "n_neg_docs", ")", "docs", "=", "gold_docs", "+", "neg_docs", "if", "add_precomputed", ":", "docs", "=", "add_precomputed_embeddings", "(", "data_dir", "+", "embeddings_dir", ",", "embeddings_filenames", ",", "docs", ")", "return", "docs", ",", "labels" ]
[ 256, 0 ]
[ 292, 23 ]
python
en
['en', 'error', 'th']
False
recipe_image_file_path
(instance, filename)
Generate file path for new recipe image
Generate file path for new recipe image
def recipe_image_file_path(instance, filename): """Generate file path for new recipe image""" ext = filename.split('.')[-1] filename = f'{uuid.uuid4()}.{ext}' return os.path.join('upload/recipe/', filename)
[ "def", "recipe_image_file_path", "(", "instance", ",", "filename", ")", ":", "ext", "=", "filename", ".", "split", "(", "'.'", ")", "[", "-", "1", "]", "filename", "=", "f'{uuid.uuid4()}.{ext}'", "return", "os", ".", "path", ".", "join", "(", "'upload/recipe/'", ",", "filename", ")" ]
[ 9, 0 ]
[ 14, 51 ]
python
en
['en', 'en', 'en']
True
UserManager.create_user
(self, email, password=None, **extra_fields)
Creates and saves a new user
Creates and saves a new user
def create_user(self, email, password=None, **extra_fields): """Creates and saves a new user""" if not email: raise ValueError('Users must have an email address') user = self.model(email=self.normalize_email(email), **extra_fields) user.set_password(password) user.save(using=self._db) return user
[ "def", "create_user", "(", "self", ",", "email", ",", "password", "=", "None", ",", "*", "*", "extra_fields", ")", ":", "if", "not", "email", ":", "raise", "ValueError", "(", "'Users must have an email address'", ")", "user", "=", "self", ".", "model", "(", "email", "=", "self", ".", "normalize_email", "(", "email", ")", ",", "*", "*", "extra_fields", ")", "user", ".", "set_password", "(", "password", ")", "user", ".", "save", "(", "using", "=", "self", ".", "_db", ")", "return", "user" ]
[ 19, 4 ]
[ 27, 19 ]
python
en
['en', 'en', 'en']
True
UserManager.create_superuser
(self, email, password)
Creates and saves a new super user
Creates and saves a new super user
def create_superuser(self, email, password): """Creates and saves a new super user""" user = self.create_user(email, password) user.is_staff = True user.is_superuser = True user.save(using=self._db) return user
[ "def", "create_superuser", "(", "self", ",", "email", ",", "password", ")", ":", "user", "=", "self", ".", "create_user", "(", "email", ",", "password", ")", "user", ".", "is_staff", "=", "True", "user", ".", "is_superuser", "=", "True", "user", ".", "save", "(", "using", "=", "self", ".", "_db", ")", "return", "user" ]
[ 29, 4 ]
[ 36, 19 ]
python
en
['en', 'en', 'en']
True
ExpectTableColumnsToMatchSet.validate_configuration
(self, configuration: Optional[ExpectationConfiguration])
Validates that a configuration has been set, and sets a configuration if it has yet to be set. Ensures that necessary configuration arguments have been provided for the validation of the expectation. Args: configuration (OPTIONAL[ExpectationConfiguration]): \ An optional Expectation Configuration entry that will be used to configure the expectation Returns: True if the configuration has been validated successfully. Otherwise, raises an exception
Validates that a configuration has been set, and sets a configuration if it has yet to be set. Ensures that necessary configuration arguments have been provided for the validation of the expectation.
def validate_configuration(self, configuration: Optional[ExpectationConfiguration]): """ Validates that a configuration has been set, and sets a configuration if it has yet to be set. Ensures that necessary configuration arguments have been provided for the validation of the expectation. Args: configuration (OPTIONAL[ExpectationConfiguration]): \ An optional Expectation Configuration entry that will be used to configure the expectation Returns: True if the configuration has been validated successfully. Otherwise, raises an exception """ # Setting up a configuration super().validate_configuration(configuration) # Ensuring that a proper value has been provided try: assert "column_set" in configuration.kwargs, "column_set is required" assert ( isinstance(configuration.kwargs["column_set"], (list, set, dict)) or configuration.kwargs["column_set"] is None ), "column_set must be a list, set, or None" if isinstance(configuration.kwargs["column_set"], dict): assert ( "$PARAMETER" in configuration.kwargs["column_set"] ), 'Evaluation Parameter dict for column_set kwarg must have "$PARAMETER" key.' except AssertionError as e: raise InvalidExpectationConfigurationError(str(e)) return True
[ "def", "validate_configuration", "(", "self", ",", "configuration", ":", "Optional", "[", "ExpectationConfiguration", "]", ")", ":", "# Setting up a configuration", "super", "(", ")", ".", "validate_configuration", "(", "configuration", ")", "# Ensuring that a proper value has been provided", "try", ":", "assert", "\"column_set\"", "in", "configuration", ".", "kwargs", ",", "\"column_set is required\"", "assert", "(", "isinstance", "(", "configuration", ".", "kwargs", "[", "\"column_set\"", "]", ",", "(", "list", ",", "set", ",", "dict", ")", ")", "or", "configuration", ".", "kwargs", "[", "\"column_set\"", "]", "is", "None", ")", ",", "\"column_set must be a list, set, or None\"", "if", "isinstance", "(", "configuration", ".", "kwargs", "[", "\"column_set\"", "]", ",", "dict", ")", ":", "assert", "(", "\"$PARAMETER\"", "in", "configuration", ".", "kwargs", "[", "\"column_set\"", "]", ")", ",", "'Evaluation Parameter dict for column_set kwarg must have \"$PARAMETER\" key.'", "except", "AssertionError", "as", "e", ":", "raise", "InvalidExpectationConfigurationError", "(", "str", "(", "e", ")", ")", "return", "True" ]
[ 70, 4 ]
[ 98, 19 ]
python
en
['en', 'error', 'th']
False
UnboundedQueue.qsize
(self)
Returns the number of items currently in the queue.
Returns the number of items currently in the queue.
def qsize(self): """Returns the number of items currently in the queue.""" return len(self._data)
[ "def", "qsize", "(", "self", ")", ":", "return", "len", "(", "self", ".", "_data", ")" ]
[ 58, 4 ]
[ 60, 30 ]
python
en
['en', 'en', 'en']
True
UnboundedQueue.empty
(self)
Returns True if the queue is empty, False otherwise. There is some subtlety to interpreting this method's return value: see `issue #63 <https://github.com/python-trio/trio/issues/63>`__.
Returns True if the queue is empty, False otherwise.
def empty(self): """Returns True if the queue is empty, False otherwise. There is some subtlety to interpreting this method's return value: see `issue #63 <https://github.com/python-trio/trio/issues/63>`__. """ return not self._data
[ "def", "empty", "(", "self", ")", ":", "return", "not", "self", ".", "_data" ]
[ 62, 4 ]
[ 69, 29 ]
python
en
['en', 'en', 'en']
True
UnboundedQueue.put_nowait
(self, obj)
Put an object into the queue, without blocking. This always succeeds, because the queue is unbounded. We don't provide a blocking ``put`` method, because it would never need to block. Args: obj (object): The object to enqueue.
Put an object into the queue, without blocking.
def put_nowait(self, obj): """Put an object into the queue, without blocking. This always succeeds, because the queue is unbounded. We don't provide a blocking ``put`` method, because it would never need to block. Args: obj (object): The object to enqueue. """ if not self._data: assert not self._can_get if self._lot: self._lot.unpark(count=1) else: self._can_get = True self._data.append(obj)
[ "def", "put_nowait", "(", "self", ",", "obj", ")", ":", "if", "not", "self", ".", "_data", ":", "assert", "not", "self", ".", "_can_get", "if", "self", ".", "_lot", ":", "self", ".", "_lot", ".", "unpark", "(", "count", "=", "1", ")", "else", ":", "self", ".", "_can_get", "=", "True", "self", ".", "_data", ".", "append", "(", "obj", ")" ]
[ 72, 4 ]
[ 88, 30 ]
python
en
['en', 'en', 'en']
True