Search is not available for this dataset
identifier
stringlengths
1
155
parameters
stringlengths
2
6.09k
docstring
stringlengths
11
63.4k
docstring_summary
stringlengths
0
63.4k
function
stringlengths
29
99.8k
function_tokens
sequence
start_point
sequence
end_point
sequence
language
stringclasses
1 value
docstring_language
stringlengths
2
7
docstring_language_predictions
stringlengths
18
23
is_langid_reliable
stringclasses
2 values
_get_encoding_from_headers
(headers: ResponseHeaders)
Determine if we have any encoding information in our headers.
Determine if we have any encoding information in our headers.
def _get_encoding_from_headers(headers: ResponseHeaders) -> Optional[str]: """Determine if we have any encoding information in our headers. """ if headers and "Content-Type" in headers: content_type, params = cgi.parse_header(headers["Content-Type"]) if "charset" in params: return params['charset'] return None
[ "def", "_get_encoding_from_headers", "(", "headers", ":", "ResponseHeaders", ")", "->", "Optional", "[", "str", "]", ":", "if", "headers", "and", "\"Content-Type\"", "in", "headers", ":", "content_type", ",", "params", "=", "cgi", ".", "parse_header", "(", "headers", "[", "\"Content-Type\"", "]", ")", "if", "\"charset\"", "in", "params", ":", "return", "params", "[", "'charset'", "]", "return", "None" ]
[ 146, 0 ]
[ 153, 15 ]
python
en
['en', 'en', 'en']
True
_determine_base_url
(document: HTMLElement, page_url: str)
Determine the HTML document's base URL. This looks for a ``<base>`` tag in the HTML document. If present, its href attribute denotes the base URL of anchor tags in the document. If there is no such tag (or if it does not have a valid href attribute), the HTML file's URL is used as the base URL. :param document: An HTML document representation. The current implementation expects the result of ``html5lib.parse()``. :param page_url: The URL of the HTML document.
Determine the HTML document's base URL.
def _determine_base_url(document: HTMLElement, page_url: str) -> str: """Determine the HTML document's base URL. This looks for a ``<base>`` tag in the HTML document. If present, its href attribute denotes the base URL of anchor tags in the document. If there is no such tag (or if it does not have a valid href attribute), the HTML file's URL is used as the base URL. :param document: An HTML document representation. The current implementation expects the result of ``html5lib.parse()``. :param page_url: The URL of the HTML document. """ for base in document.findall(".//base"): href = base.get("href") if href is not None: return href return page_url
[ "def", "_determine_base_url", "(", "document", ":", "HTMLElement", ",", "page_url", ":", "str", ")", "->", "str", ":", "for", "base", "in", "document", ".", "findall", "(", "\".//base\"", ")", ":", "href", "=", "base", ".", "get", "(", "\"href\"", ")", "if", "href", "is", "not", "None", ":", "return", "href", "return", "page_url" ]
[ 156, 0 ]
[ 172, 19 ]
python
en
['en', 'no', 'en']
True
_clean_url_path_part
(part: str)
Clean a "part" of a URL path (i.e. after splitting on "@" characters).
Clean a "part" of a URL path (i.e. after splitting on "
def _clean_url_path_part(part: str) -> str: """ Clean a "part" of a URL path (i.e. after splitting on "@" characters). """ # We unquote prior to quoting to make sure nothing is double quoted. return urllib.parse.quote(urllib.parse.unquote(part))
[ "def", "_clean_url_path_part", "(", "part", ":", "str", ")", "->", "str", ":", "# We unquote prior to quoting to make sure nothing is double quoted.", "return", "urllib", ".", "parse", ".", "quote", "(", "urllib", ".", "parse", ".", "unquote", "(", "part", ")", ")" ]
[ 175, 0 ]
[ 180, 57 ]
python
en
['en', 'error', 'th']
False
_clean_file_url_path
(part: str)
Clean the first part of a URL path that corresponds to a local filesystem path (i.e. the first part after splitting on "@" characters).
Clean the first part of a URL path that corresponds to a local filesystem path (i.e. the first part after splitting on "
def _clean_file_url_path(part: str) -> str: """ Clean the first part of a URL path that corresponds to a local filesystem path (i.e. the first part after splitting on "@" characters). """ # We unquote prior to quoting to make sure nothing is double quoted. # Also, on Windows the path part might contain a drive letter which # should not be quoted. On Linux where drive letters do not # exist, the colon should be quoted. We rely on urllib.request # to do the right thing here. return urllib.request.pathname2url(urllib.request.url2pathname(part))
[ "def", "_clean_file_url_path", "(", "part", ":", "str", ")", "->", "str", ":", "# We unquote prior to quoting to make sure nothing is double quoted.", "# Also, on Windows the path part might contain a drive letter which", "# should not be quoted. On Linux where drive letters do not", "# exist, the colon should be quoted. We rely on urllib.request", "# to do the right thing here.", "return", "urllib", ".", "request", ".", "pathname2url", "(", "urllib", ".", "request", ".", "url2pathname", "(", "part", ")", ")" ]
[ 183, 0 ]
[ 193, 73 ]
python
en
['en', 'error', 'th']
False
_clean_url_path
(path: str, is_local_path: bool)
Clean the path portion of a URL.
Clean the path portion of a URL.
def _clean_url_path(path: str, is_local_path: bool) -> str: """ Clean the path portion of a URL. """ if is_local_path: clean_func = _clean_file_url_path else: clean_func = _clean_url_path_part # Split on the reserved characters prior to cleaning so that # revision strings in VCS URLs are properly preserved. parts = _reserved_chars_re.split(path) cleaned_parts = [] for to_clean, reserved in pairwise(itertools.chain(parts, [''])): cleaned_parts.append(clean_func(to_clean)) # Normalize %xx escapes (e.g. %2f -> %2F) cleaned_parts.append(reserved.upper()) return ''.join(cleaned_parts)
[ "def", "_clean_url_path", "(", "path", ":", "str", ",", "is_local_path", ":", "bool", ")", "->", "str", ":", "if", "is_local_path", ":", "clean_func", "=", "_clean_file_url_path", "else", ":", "clean_func", "=", "_clean_url_path_part", "# Split on the reserved characters prior to cleaning so that", "# revision strings in VCS URLs are properly preserved.", "parts", "=", "_reserved_chars_re", ".", "split", "(", "path", ")", "cleaned_parts", "=", "[", "]", "for", "to_clean", ",", "reserved", "in", "pairwise", "(", "itertools", ".", "chain", "(", "parts", ",", "[", "''", "]", ")", ")", ":", "cleaned_parts", ".", "append", "(", "clean_func", "(", "to_clean", ")", ")", "# Normalize %xx escapes (e.g. %2f -> %2F)", "cleaned_parts", ".", "append", "(", "reserved", ".", "upper", "(", ")", ")", "return", "''", ".", "join", "(", "cleaned_parts", ")" ]
[ 200, 0 ]
[ 219, 33 ]
python
en
['en', 'error', 'th']
False
_clean_link
(url: str)
Make sure a link is fully quoted. For example, if ' ' occurs in the URL, it will be replaced with "%20", and without double-quoting other characters.
Make sure a link is fully quoted. For example, if ' ' occurs in the URL, it will be replaced with "%20", and without double-quoting other characters.
def _clean_link(url: str) -> str: """ Make sure a link is fully quoted. For example, if ' ' occurs in the URL, it will be replaced with "%20", and without double-quoting other characters. """ # Split the URL into parts according to the general structure # `scheme://netloc/path;parameters?query#fragment`. result = urllib.parse.urlparse(url) # If the netloc is empty, then the URL refers to a local filesystem path. is_local_path = not result.netloc path = _clean_url_path(result.path, is_local_path=is_local_path) return urllib.parse.urlunparse(result._replace(path=path))
[ "def", "_clean_link", "(", "url", ":", "str", ")", "->", "str", ":", "# Split the URL into parts according to the general structure", "# `scheme://netloc/path;parameters?query#fragment`.", "result", "=", "urllib", ".", "parse", ".", "urlparse", "(", "url", ")", "# If the netloc is empty, then the URL refers to a local filesystem path.", "is_local_path", "=", "not", "result", ".", "netloc", "path", "=", "_clean_url_path", "(", "result", ".", "path", ",", "is_local_path", "=", "is_local_path", ")", "return", "urllib", ".", "parse", ".", "urlunparse", "(", "result", ".", "_replace", "(", "path", "=", "path", ")", ")" ]
[ 222, 0 ]
[ 234, 62 ]
python
en
['en', 'error', 'th']
False
_create_link_from_element
( anchor: HTMLElement, page_url: str, base_url: str, )
Convert an anchor element in a simple repository page to a Link.
Convert an anchor element in a simple repository page to a Link.
def _create_link_from_element( anchor: HTMLElement, page_url: str, base_url: str, ) -> Optional[Link]: """ Convert an anchor element in a simple repository page to a Link. """ href = anchor.get("href") if not href: return None url = _clean_link(urllib.parse.urljoin(base_url, href)) pyrequire = anchor.get('data-requires-python') pyrequire = html.unescape(pyrequire) if pyrequire else None yanked_reason = anchor.get('data-yanked') if yanked_reason: yanked_reason = html.unescape(yanked_reason) link = Link( url, comes_from=page_url, requires_python=pyrequire, yanked_reason=yanked_reason, ) return link
[ "def", "_create_link_from_element", "(", "anchor", ":", "HTMLElement", ",", "page_url", ":", "str", ",", "base_url", ":", "str", ",", ")", "->", "Optional", "[", "Link", "]", ":", "href", "=", "anchor", ".", "get", "(", "\"href\"", ")", "if", "not", "href", ":", "return", "None", "url", "=", "_clean_link", "(", "urllib", ".", "parse", ".", "urljoin", "(", "base_url", ",", "href", ")", ")", "pyrequire", "=", "anchor", ".", "get", "(", "'data-requires-python'", ")", "pyrequire", "=", "html", ".", "unescape", "(", "pyrequire", ")", "if", "pyrequire", "else", "None", "yanked_reason", "=", "anchor", ".", "get", "(", "'data-yanked'", ")", "if", "yanked_reason", ":", "yanked_reason", "=", "html", ".", "unescape", "(", "yanked_reason", ")", "link", "=", "Link", "(", "url", ",", "comes_from", "=", "page_url", ",", "requires_python", "=", "pyrequire", ",", "yanked_reason", "=", "yanked_reason", ",", ")", "return", "link" ]
[ 237, 0 ]
[ 264, 15 ]
python
en
['en', 'error', 'th']
False
with_cached_html_pages
( fn: Callable[["HTMLPage"], Iterable[Link]], )
Given a function that parses an Iterable[Link] from an HTMLPage, cache the function's result (keyed by CacheablePageContent), unless the HTMLPage `page` has `page.cache_link_parsing == False`.
Given a function that parses an Iterable[Link] from an HTMLPage, cache the function's result (keyed by CacheablePageContent), unless the HTMLPage `page` has `page.cache_link_parsing == False`.
def with_cached_html_pages( fn: Callable[["HTMLPage"], Iterable[Link]], ) -> Callable[["HTMLPage"], List[Link]]: """ Given a function that parses an Iterable[Link] from an HTMLPage, cache the function's result (keyed by CacheablePageContent), unless the HTMLPage `page` has `page.cache_link_parsing == False`. """ @functools.lru_cache(maxsize=None) def wrapper(cacheable_page: CacheablePageContent) -> List[Link]: return list(fn(cacheable_page.page)) @functools.wraps(fn) def wrapper_wrapper(page: "HTMLPage") -> List[Link]: if page.cache_link_parsing: return wrapper(CacheablePageContent(page)) return list(fn(page)) return wrapper_wrapper
[ "def", "with_cached_html_pages", "(", "fn", ":", "Callable", "[", "[", "\"HTMLPage\"", "]", ",", "Iterable", "[", "Link", "]", "]", ",", ")", "->", "Callable", "[", "[", "\"HTMLPage\"", "]", ",", "List", "[", "Link", "]", "]", ":", "@", "functools", ".", "lru_cache", "(", "maxsize", "=", "None", ")", "def", "wrapper", "(", "cacheable_page", ":", "CacheablePageContent", ")", "->", "List", "[", "Link", "]", ":", "return", "list", "(", "fn", "(", "cacheable_page", ".", "page", ")", ")", "@", "functools", ".", "wraps", "(", "fn", ")", "def", "wrapper_wrapper", "(", "page", ":", "\"HTMLPage\"", ")", "->", "List", "[", "Link", "]", ":", "if", "page", ".", "cache_link_parsing", ":", "return", "wrapper", "(", "CacheablePageContent", "(", "page", ")", ")", "return", "list", "(", "fn", "(", "page", ")", ")", "return", "wrapper_wrapper" ]
[ 280, 0 ]
[ 299, 26 ]
python
en
['en', 'error', 'th']
False
parse_links
(page: "HTMLPage")
Parse an HTML document, and yield its anchor elements as Link objects.
Parse an HTML document, and yield its anchor elements as Link objects.
def parse_links(page: "HTMLPage") -> Iterable[Link]: """ Parse an HTML document, and yield its anchor elements as Link objects. """ document = html5lib.parse( page.content, transport_encoding=page.encoding, namespaceHTMLElements=False, ) url = page.url base_url = _determine_base_url(document, url) for anchor in document.findall(".//a"): link = _create_link_from_element( anchor, page_url=url, base_url=base_url, ) if link is None: continue yield link
[ "def", "parse_links", "(", "page", ":", "\"HTMLPage\"", ")", "->", "Iterable", "[", "Link", "]", ":", "document", "=", "html5lib", ".", "parse", "(", "page", ".", "content", ",", "transport_encoding", "=", "page", ".", "encoding", ",", "namespaceHTMLElements", "=", "False", ",", ")", "url", "=", "page", ".", "url", "base_url", "=", "_determine_base_url", "(", "document", ",", "url", ")", "for", "anchor", "in", "document", ".", "findall", "(", "\".//a\"", ")", ":", "link", "=", "_create_link_from_element", "(", "anchor", ",", "page_url", "=", "url", ",", "base_url", "=", "base_url", ",", ")", "if", "link", "is", "None", ":", "continue", "yield", "link" ]
[ 303, 0 ]
[ 323, 18 ]
python
en
['en', 'error', 'th']
False
HTMLPage.__init__
( self, content: bytes, encoding: Optional[str], url: str, cache_link_parsing: bool = True, )
:param encoding: the encoding to decode the given content. :param url: the URL from which the HTML was downloaded. :param cache_link_parsing: whether links parsed from this page's url should be cached. PyPI index urls should have this set to False, for example.
:param encoding: the encoding to decode the given content. :param url: the URL from which the HTML was downloaded. :param cache_link_parsing: whether links parsed from this page's url should be cached. PyPI index urls should have this set to False, for example.
def __init__( self, content: bytes, encoding: Optional[str], url: str, cache_link_parsing: bool = True, ) -> None: """ :param encoding: the encoding to decode the given content. :param url: the URL from which the HTML was downloaded. :param cache_link_parsing: whether links parsed from this page's url should be cached. PyPI index urls should have this set to False, for example. """ self.content = content self.encoding = encoding self.url = url self.cache_link_parsing = cache_link_parsing
[ "def", "__init__", "(", "self", ",", "content", ":", "bytes", ",", "encoding", ":", "Optional", "[", "str", "]", ",", "url", ":", "str", ",", "cache_link_parsing", ":", "bool", "=", "True", ",", ")", "->", "None", ":", "self", ".", "content", "=", "content", "self", ".", "encoding", "=", "encoding", "self", ".", "url", "=", "url", "self", ".", "cache_link_parsing", "=", "cache_link_parsing" ]
[ 329, 4 ]
[ 346, 52 ]
python
en
['en', 'error', 'th']
False
LinkCollector.create
( cls, session: PipSession, options: Values, suppress_no_index: bool = False )
:param session: The Session to use to make requests. :param suppress_no_index: Whether to ignore the --no-index option when constructing the SearchScope object.
:param session: The Session to use to make requests. :param suppress_no_index: Whether to ignore the --no-index option when constructing the SearchScope object.
def create( cls, session: PipSession, options: Values, suppress_no_index: bool = False ) -> "LinkCollector": """ :param session: The Session to use to make requests. :param suppress_no_index: Whether to ignore the --no-index option when constructing the SearchScope object. """ index_urls = [options.index_url] + options.extra_index_urls if options.no_index and not suppress_no_index: logger.debug( 'Ignoring indexes: %s', ','.join(redact_auth_from_url(url) for url in index_urls), ) index_urls = [] # Make sure find_links is a list before passing to create(). find_links = options.find_links or [] search_scope = SearchScope.create( find_links=find_links, index_urls=index_urls, ) link_collector = LinkCollector( session=session, search_scope=search_scope, ) return link_collector
[ "def", "create", "(", "cls", ",", "session", ":", "PipSession", ",", "options", ":", "Values", ",", "suppress_no_index", ":", "bool", "=", "False", ")", "->", "\"LinkCollector\"", ":", "index_urls", "=", "[", "options", ".", "index_url", "]", "+", "options", ".", "extra_index_urls", "if", "options", ".", "no_index", "and", "not", "suppress_no_index", ":", "logger", ".", "debug", "(", "'Ignoring indexes: %s'", ",", "','", ".", "join", "(", "redact_auth_from_url", "(", "url", ")", "for", "url", "in", "index_urls", ")", ",", ")", "index_urls", "=", "[", "]", "# Make sure find_links is a list before passing to create().", "find_links", "=", "options", ".", "find_links", "or", "[", "]", "search_scope", "=", "SearchScope", ".", "create", "(", "find_links", "=", "find_links", ",", "index_urls", "=", "index_urls", ",", ")", "link_collector", "=", "LinkCollector", "(", "session", "=", "session", ",", "search_scope", "=", "search_scope", ",", ")", "return", "link_collector" ]
[ 452, 4 ]
[ 479, 29 ]
python
en
['en', 'error', 'th']
False
LinkCollector.fetch_page
(self, location: Link)
Fetch an HTML page containing package links.
Fetch an HTML page containing package links.
def fetch_page(self, location: Link) -> Optional[HTMLPage]: """ Fetch an HTML page containing package links. """ return _get_html_page(location, session=self.session)
[ "def", "fetch_page", "(", "self", ",", "location", ":", "Link", ")", "->", "Optional", "[", "HTMLPage", "]", ":", "return", "_get_html_page", "(", "location", ",", "session", "=", "self", ".", "session", ")" ]
[ 485, 4 ]
[ 489, 61 ]
python
en
['en', 'error', 'th']
False
WKBReader.read
(self, wkb)
Return a GEOSGeometry for the given WKB buffer.
Return a GEOSGeometry for the given WKB buffer.
def read(self, wkb): "Return a GEOSGeometry for the given WKB buffer." return GEOSGeometry(super().read(wkb))
[ "def", "read", "(", "self", ",", "wkb", ")", ":", "return", "GEOSGeometry", "(", "super", "(", ")", ".", "read", "(", "wkb", ")", ")" ]
[ 15, 4 ]
[ 17, 46 ]
python
en
['en', 'en', 'en']
True
WKTReader.read
(self, wkt)
Return a GEOSGeometry for the given WKT string.
Return a GEOSGeometry for the given WKT string.
def read(self, wkt): "Return a GEOSGeometry for the given WKT string." return GEOSGeometry(super().read(wkt))
[ "def", "read", "(", "self", ",", "wkt", ")", ":", "return", "GEOSGeometry", "(", "super", "(", ")", ".", "read", "(", "wkt", ")", ")" ]
[ 21, 4 ]
[ 23, 46 ]
python
en
['en', 'en', 'en']
True
_wrapper
(args: Optional[List[str]] = None)
Central wrapper for all old entrypoints. Historically pip has had several entrypoints defined. Because of issues arising from PATH, sys.path, multiple Pythons, their interactions, and most of them having a pip installed, users suffer every time an entrypoint gets moved. To alleviate this pain, and provide a mechanism for warning users and directing them to an appropriate place for help, we now define all of our old entrypoints as wrappers for the current one.
Central wrapper for all old entrypoints.
def _wrapper(args: Optional[List[str]] = None) -> int: """Central wrapper for all old entrypoints. Historically pip has had several entrypoints defined. Because of issues arising from PATH, sys.path, multiple Pythons, their interactions, and most of them having a pip installed, users suffer every time an entrypoint gets moved. To alleviate this pain, and provide a mechanism for warning users and directing them to an appropriate place for help, we now define all of our old entrypoints as wrappers for the current one. """ sys.stderr.write( "WARNING: pip is being invoked by an old script wrapper. This will " "fail in a future version of pip.\n" "Please see https://github.com/pypa/pip/issues/5599 for advice on " "fixing the underlying issue.\n" "To avoid this problem you can invoke Python with '-m pip' instead of " "running pip directly.\n" ) return main(args)
[ "def", "_wrapper", "(", "args", ":", "Optional", "[", "List", "[", "str", "]", "]", "=", "None", ")", "->", "int", ":", "sys", ".", "stderr", ".", "write", "(", "\"WARNING: pip is being invoked by an old script wrapper. This will \"", "\"fail in a future version of pip.\\n\"", "\"Please see https://github.com/pypa/pip/issues/5599 for advice on \"", "\"fixing the underlying issue.\\n\"", "\"To avoid this problem you can invoke Python with '-m pip' instead of \"", "\"running pip directly.\\n\"", ")", "return", "main", "(", "args", ")" ]
[ 6, 0 ]
[ 26, 21 ]
python
en
['en', 'en', 'en']
True
_validate_clientsecrets
(clientsecrets_dict)
Validate parsed client secrets from a file. Args: clientsecrets_dict: dict, a dictionary holding the client secrets. Returns: tuple, a string of the client type and the information parsed from the file.
Validate parsed client secrets from a file.
def _validate_clientsecrets(clientsecrets_dict): """Validate parsed client secrets from a file. Args: clientsecrets_dict: dict, a dictionary holding the client secrets. Returns: tuple, a string of the client type and the information parsed from the file. """ _INVALID_FILE_FORMAT_MSG = ( 'Invalid file format. See ' 'https://developers.google.com/api-client-library/' 'python/guide/aaa_client_secrets') if clientsecrets_dict is None: raise InvalidClientSecretsError(_INVALID_FILE_FORMAT_MSG) try: (client_type, client_info), = clientsecrets_dict.items() except (ValueError, AttributeError): raise InvalidClientSecretsError( _INVALID_FILE_FORMAT_MSG + ' ' 'Expected a JSON object with a single property for a "web" or ' '"installed" application') if client_type not in VALID_CLIENT: raise InvalidClientSecretsError( 'Unknown client type: {0}.'.format(client_type)) for prop_name in VALID_CLIENT[client_type]['required']: if prop_name not in client_info: raise InvalidClientSecretsError( 'Missing property "{0}" in a client type of "{1}".'.format( prop_name, client_type)) for prop_name in VALID_CLIENT[client_type]['string']: if client_info[prop_name].startswith('[['): raise InvalidClientSecretsError( 'Property "{0}" is not configured.'.format(prop_name)) return client_type, client_info
[ "def", "_validate_clientsecrets", "(", "clientsecrets_dict", ")", ":", "_INVALID_FILE_FORMAT_MSG", "=", "(", "'Invalid file format. See '", "'https://developers.google.com/api-client-library/'", "'python/guide/aaa_client_secrets'", ")", "if", "clientsecrets_dict", "is", "None", ":", "raise", "InvalidClientSecretsError", "(", "_INVALID_FILE_FORMAT_MSG", ")", "try", ":", "(", "client_type", ",", "client_info", ")", ",", "=", "clientsecrets_dict", ".", "items", "(", ")", "except", "(", "ValueError", ",", "AttributeError", ")", ":", "raise", "InvalidClientSecretsError", "(", "_INVALID_FILE_FORMAT_MSG", "+", "' '", "'Expected a JSON object with a single property for a \"web\" or '", "'\"installed\" application'", ")", "if", "client_type", "not", "in", "VALID_CLIENT", ":", "raise", "InvalidClientSecretsError", "(", "'Unknown client type: {0}.'", ".", "format", "(", "client_type", ")", ")", "for", "prop_name", "in", "VALID_CLIENT", "[", "client_type", "]", "[", "'required'", "]", ":", "if", "prop_name", "not", "in", "client_info", ":", "raise", "InvalidClientSecretsError", "(", "'Missing property \"{0}\" in a client type of \"{1}\".'", ".", "format", "(", "prop_name", ",", "client_type", ")", ")", "for", "prop_name", "in", "VALID_CLIENT", "[", "client_type", "]", "[", "'string'", "]", ":", "if", "client_info", "[", "prop_name", "]", ".", "startswith", "(", "'[['", ")", ":", "raise", "InvalidClientSecretsError", "(", "'Property \"{0}\" is not configured.'", ".", "format", "(", "prop_name", ")", ")", "return", "client_type", ",", "client_info" ]
[ 67, 0 ]
[ 105, 35 ]
python
en
['en', 'en', 'en']
True
loadfile
(filename, cache=None)
Loading of client_secrets JSON file, optionally backed by a cache. Typical cache storage would be App Engine memcache service, but you can pass in any other cache client that implements these methods: * ``get(key, namespace=ns)`` * ``set(key, value, namespace=ns)`` Usage:: # without caching client_type, client_info = loadfile('secrets.json') # using App Engine memcache service from google.appengine.api import memcache client_type, client_info = loadfile('secrets.json', cache=memcache) Args: filename: string, Path to a client_secrets.json file on a filesystem. cache: An optional cache service client that implements get() and set() methods. If not specified, the file is always being loaded from a filesystem. Raises: InvalidClientSecretsError: In case of a validation error or some I/O failure. Can happen only on cache miss. Returns: (client_type, client_info) tuple, as _loadfile() normally would. JSON contents is validated only during first load. Cache hits are not validated.
Loading of client_secrets JSON file, optionally backed by a cache.
def loadfile(filename, cache=None): """Loading of client_secrets JSON file, optionally backed by a cache. Typical cache storage would be App Engine memcache service, but you can pass in any other cache client that implements these methods: * ``get(key, namespace=ns)`` * ``set(key, value, namespace=ns)`` Usage:: # without caching client_type, client_info = loadfile('secrets.json') # using App Engine memcache service from google.appengine.api import memcache client_type, client_info = loadfile('secrets.json', cache=memcache) Args: filename: string, Path to a client_secrets.json file on a filesystem. cache: An optional cache service client that implements get() and set() methods. If not specified, the file is always being loaded from a filesystem. Raises: InvalidClientSecretsError: In case of a validation error or some I/O failure. Can happen only on cache miss. Returns: (client_type, client_info) tuple, as _loadfile() normally would. JSON contents is validated only during first load. Cache hits are not validated. """ _SECRET_NAMESPACE = 'oauth2client:secrets#ns' if not cache: return _loadfile(filename) obj = cache.get(filename, namespace=_SECRET_NAMESPACE) if obj is None: client_type, client_info = _loadfile(filename) obj = {client_type: client_info} cache.set(filename, obj, namespace=_SECRET_NAMESPACE) return next(six.iteritems(obj))
[ "def", "loadfile", "(", "filename", ",", "cache", "=", "None", ")", ":", "_SECRET_NAMESPACE", "=", "'oauth2client:secrets#ns'", "if", "not", "cache", ":", "return", "_loadfile", "(", "filename", ")", "obj", "=", "cache", ".", "get", "(", "filename", ",", "namespace", "=", "_SECRET_NAMESPACE", ")", "if", "obj", "is", "None", ":", "client_type", ",", "client_info", "=", "_loadfile", "(", "filename", ")", "obj", "=", "{", "client_type", ":", "client_info", "}", "cache", ".", "set", "(", "filename", ",", "obj", ",", "namespace", "=", "_SECRET_NAMESPACE", ")", "return", "next", "(", "six", ".", "iteritems", "(", "obj", ")", ")" ]
[ 128, 0 ]
[ 172, 35 ]
python
en
['en', 'en', 'en']
True
_check_lazy_references
(apps, ignore=None)
Ensure all lazy (i.e. string) model references have been resolved. Lazy references are used in various places throughout Django, primarily in related fields and model signals. Identify those common cases and provide more helpful error messages for them. The ignore parameter is used by StateApps to exclude swappable models from this check.
Ensure all lazy (i.e. string) model references have been resolved.
def _check_lazy_references(apps, ignore=None): """ Ensure all lazy (i.e. string) model references have been resolved. Lazy references are used in various places throughout Django, primarily in related fields and model signals. Identify those common cases and provide more helpful error messages for them. The ignore parameter is used by StateApps to exclude swappable models from this check. """ pending_models = set(apps._pending_operations) - (ignore or set()) # Short circuit if there aren't any errors. if not pending_models: return [] from django.db.models import signals model_signals = { signal: name for name, signal in vars(signals).items() if isinstance(signal, signals.ModelSignal) } def extract_operation(obj): """ Take a callable found in Apps._pending_operations and identify the original callable passed to Apps.lazy_model_operation(). If that callable was a partial, return the inner, non-partial function and any arguments and keyword arguments that were supplied with it. obj is a callback defined locally in Apps.lazy_model_operation() and annotated there with a `func` attribute so as to imitate a partial. """ operation, args, keywords = obj, [], {} while hasattr(operation, 'func'): args.extend(getattr(operation, 'args', [])) keywords.update(getattr(operation, 'keywords', {})) operation = operation.func return operation, args, keywords def app_model_error(model_key): try: apps.get_app_config(model_key[0]) model_error = "app '%s' doesn't provide model '%s'" % model_key except LookupError: model_error = "app '%s' isn't installed" % model_key[0] return model_error # Here are several functions which return CheckMessage instances for the # most common usages of lazy operations throughout Django. These functions # take the model that was being waited on as an (app_label, modelname) # pair, the original lazy function, and its positional and keyword args as # determined by extract_operation(). def field_error(model_key, func, args, keywords): error_msg = ( "The field %(field)s was declared with a lazy reference " "to '%(model)s', but %(model_error)s." ) params = { 'model': '.'.join(model_key), 'field': keywords['field'], 'model_error': app_model_error(model_key), } return Error(error_msg % params, obj=keywords['field'], id='fields.E307') def signal_connect_error(model_key, func, args, keywords): error_msg = ( "%(receiver)s was connected to the '%(signal)s' signal with a " "lazy reference to the sender '%(model)s', but %(model_error)s." ) receiver = args[0] # The receiver is either a function or an instance of class # defining a `__call__` method. if isinstance(receiver, types.FunctionType): description = "The function '%s'" % receiver.__name__ elif isinstance(receiver, types.MethodType): description = "Bound method '%s.%s'" % (receiver.__self__.__class__.__name__, receiver.__name__) else: description = "An instance of class '%s'" % receiver.__class__.__name__ signal_name = model_signals.get(func.__self__, 'unknown') params = { 'model': '.'.join(model_key), 'receiver': description, 'signal': signal_name, 'model_error': app_model_error(model_key), } return Error(error_msg % params, obj=receiver.__module__, id='signals.E001') def default_error(model_key, func, args, keywords): error_msg = "%(op)s contains a lazy reference to %(model)s, but %(model_error)s." params = { 'op': func, 'model': '.'.join(model_key), 'model_error': app_model_error(model_key), } return Error(error_msg % params, obj=func, id='models.E022') # Maps common uses of lazy operations to corresponding error functions # defined above. If a key maps to None, no error will be produced. # default_error() will be used for usages that don't appear in this dict. known_lazy = { ('django.db.models.fields.related', 'resolve_related_class'): field_error, ('django.db.models.fields.related', 'set_managed'): None, ('django.dispatch.dispatcher', 'connect'): signal_connect_error, } def build_error(model_key, func, args, keywords): key = (func.__module__, func.__name__) error_fn = known_lazy.get(key, default_error) return error_fn(model_key, func, args, keywords) if error_fn else None return sorted(filter(None, ( build_error(model_key, *extract_operation(func)) for model_key in pending_models for func in apps._pending_operations[model_key] )), key=lambda error: error.msg)
[ "def", "_check_lazy_references", "(", "apps", ",", "ignore", "=", "None", ")", ":", "pending_models", "=", "set", "(", "apps", ".", "_pending_operations", ")", "-", "(", "ignore", "or", "set", "(", ")", ")", "# Short circuit if there aren't any errors.", "if", "not", "pending_models", ":", "return", "[", "]", "from", "django", ".", "db", ".", "models", "import", "signals", "model_signals", "=", "{", "signal", ":", "name", "for", "name", ",", "signal", "in", "vars", "(", "signals", ")", ".", "items", "(", ")", "if", "isinstance", "(", "signal", ",", "signals", ".", "ModelSignal", ")", "}", "def", "extract_operation", "(", "obj", ")", ":", "\"\"\"\n Take a callable found in Apps._pending_operations and identify the\n original callable passed to Apps.lazy_model_operation(). If that\n callable was a partial, return the inner, non-partial function and\n any arguments and keyword arguments that were supplied with it.\n\n obj is a callback defined locally in Apps.lazy_model_operation() and\n annotated there with a `func` attribute so as to imitate a partial.\n \"\"\"", "operation", ",", "args", ",", "keywords", "=", "obj", ",", "[", "]", ",", "{", "}", "while", "hasattr", "(", "operation", ",", "'func'", ")", ":", "args", ".", "extend", "(", "getattr", "(", "operation", ",", "'args'", ",", "[", "]", ")", ")", "keywords", ".", "update", "(", "getattr", "(", "operation", ",", "'keywords'", ",", "{", "}", ")", ")", "operation", "=", "operation", ".", "func", "return", "operation", ",", "args", ",", "keywords", "def", "app_model_error", "(", "model_key", ")", ":", "try", ":", "apps", ".", "get_app_config", "(", "model_key", "[", "0", "]", ")", "model_error", "=", "\"app '%s' doesn't provide model '%s'\"", "%", "model_key", "except", "LookupError", ":", "model_error", "=", "\"app '%s' isn't installed\"", "%", "model_key", "[", "0", "]", "return", "model_error", "# Here are several functions which return CheckMessage instances for the", "# most common usages of lazy operations throughout Django. These functions", "# take the model that was being waited on as an (app_label, modelname)", "# pair, the original lazy function, and its positional and keyword args as", "# determined by extract_operation().", "def", "field_error", "(", "model_key", ",", "func", ",", "args", ",", "keywords", ")", ":", "error_msg", "=", "(", "\"The field %(field)s was declared with a lazy reference \"", "\"to '%(model)s', but %(model_error)s.\"", ")", "params", "=", "{", "'model'", ":", "'.'", ".", "join", "(", "model_key", ")", ",", "'field'", ":", "keywords", "[", "'field'", "]", ",", "'model_error'", ":", "app_model_error", "(", "model_key", ")", ",", "}", "return", "Error", "(", "error_msg", "%", "params", ",", "obj", "=", "keywords", "[", "'field'", "]", ",", "id", "=", "'fields.E307'", ")", "def", "signal_connect_error", "(", "model_key", ",", "func", ",", "args", ",", "keywords", ")", ":", "error_msg", "=", "(", "\"%(receiver)s was connected to the '%(signal)s' signal with a \"", "\"lazy reference to the sender '%(model)s', but %(model_error)s.\"", ")", "receiver", "=", "args", "[", "0", "]", "# The receiver is either a function or an instance of class", "# defining a `__call__` method.", "if", "isinstance", "(", "receiver", ",", "types", ".", "FunctionType", ")", ":", "description", "=", "\"The function '%s'\"", "%", "receiver", ".", "__name__", "elif", "isinstance", "(", "receiver", ",", "types", ".", "MethodType", ")", ":", "description", "=", "\"Bound method '%s.%s'\"", "%", "(", "receiver", ".", "__self__", ".", "__class__", ".", "__name__", ",", "receiver", ".", "__name__", ")", "else", ":", "description", "=", "\"An instance of class '%s'\"", "%", "receiver", ".", "__class__", ".", "__name__", "signal_name", "=", "model_signals", ".", "get", "(", "func", ".", "__self__", ",", "'unknown'", ")", "params", "=", "{", "'model'", ":", "'.'", ".", "join", "(", "model_key", ")", ",", "'receiver'", ":", "description", ",", "'signal'", ":", "signal_name", ",", "'model_error'", ":", "app_model_error", "(", "model_key", ")", ",", "}", "return", "Error", "(", "error_msg", "%", "params", ",", "obj", "=", "receiver", ".", "__module__", ",", "id", "=", "'signals.E001'", ")", "def", "default_error", "(", "model_key", ",", "func", ",", "args", ",", "keywords", ")", ":", "error_msg", "=", "\"%(op)s contains a lazy reference to %(model)s, but %(model_error)s.\"", "params", "=", "{", "'op'", ":", "func", ",", "'model'", ":", "'.'", ".", "join", "(", "model_key", ")", ",", "'model_error'", ":", "app_model_error", "(", "model_key", ")", ",", "}", "return", "Error", "(", "error_msg", "%", "params", ",", "obj", "=", "func", ",", "id", "=", "'models.E022'", ")", "# Maps common uses of lazy operations to corresponding error functions", "# defined above. If a key maps to None, no error will be produced.", "# default_error() will be used for usages that don't appear in this dict.", "known_lazy", "=", "{", "(", "'django.db.models.fields.related'", ",", "'resolve_related_class'", ")", ":", "field_error", ",", "(", "'django.db.models.fields.related'", ",", "'set_managed'", ")", ":", "None", ",", "(", "'django.dispatch.dispatcher'", ",", "'connect'", ")", ":", "signal_connect_error", ",", "}", "def", "build_error", "(", "model_key", ",", "func", ",", "args", ",", "keywords", ")", ":", "key", "=", "(", "func", ".", "__module__", ",", "func", ".", "__name__", ")", "error_fn", "=", "known_lazy", ".", "get", "(", "key", ",", "default_error", ")", "return", "error_fn", "(", "model_key", ",", "func", ",", "args", ",", "keywords", ")", "if", "error_fn", "else", "None", "return", "sorted", "(", "filter", "(", "None", ",", "(", "build_error", "(", "model_key", ",", "*", "extract_operation", "(", "func", ")", ")", "for", "model_key", "in", "pending_models", "for", "func", "in", "apps", ".", "_pending_operations", "[", "model_key", "]", ")", ")", ",", "key", "=", "lambda", "error", ":", "error", ".", "msg", ")" ]
[ 88, 0 ]
[ 204, 36 ]
python
en
['en', 'error', 'th']
False
install_scripts.write_script
(self, script_name, contents, mode="t", *ignored)
Write an executable file to the scripts directory
Write an executable file to the scripts directory
def write_script(self, script_name, contents, mode="t", *ignored): """Write an executable file to the scripts directory""" from setuptools.command.easy_install import chmod, current_umask log.info("Installing %s script to %s", script_name, self.install_dir) target = os.path.join(self.install_dir, script_name) self.outfiles.append(target) mask = current_umask() if not self.dry_run: ensure_directory(target) f = open(target, "w" + mode) f.write(contents) f.close() chmod(target, 0o777 - mask)
[ "def", "write_script", "(", "self", ",", "script_name", ",", "contents", ",", "mode", "=", "\"t\"", ",", "*", "ignored", ")", ":", "from", "setuptools", ".", "command", ".", "easy_install", "import", "chmod", ",", "current_umask", "log", ".", "info", "(", "\"Installing %s script to %s\"", ",", "script_name", ",", "self", ".", "install_dir", ")", "target", "=", "os", ".", "path", ".", "join", "(", "self", ".", "install_dir", ",", "script_name", ")", "self", ".", "outfiles", ".", "append", "(", "target", ")", "mask", "=", "current_umask", "(", ")", "if", "not", "self", ".", "dry_run", ":", "ensure_directory", "(", "target", ")", "f", "=", "open", "(", "target", ",", "\"w\"", "+", "mode", ")", "f", ".", "write", "(", "contents", ")", "f", ".", "close", "(", ")", "chmod", "(", "target", ",", "0o777", "-", "mask", ")" ]
[ 50, 4 ]
[ 64, 39 ]
python
en
['en', 'en', 'en']
True
StandardizedFeature.fit
(self, blocks, y=None)
Args: blocks (List[Block]): as output by :class:`Blockifier.blockify` y (None): This isn't used, it's only here for API consistency. Returns: :class:`StandardizedFeature`: an instance of this class with the ``self.scaler`` attribute fit to the ``blocks`` data Note: When fitting the :class:`StandardScaler` object, you'll probably want to determine the mean and/or std of *multiple* HTML files' blocks, rather than just a single observation. To do that, just concatenate all of the blocks together in a single iterable. In contrast, you'll typically apply :meth:`transform` to a *single* HTML file's blocks at a time.
Args: blocks (List[Block]): as output by :class:`Blockifier.blockify` y (None): This isn't used, it's only here for API consistency.
def fit(self, blocks, y=None): """ Args: blocks (List[Block]): as output by :class:`Blockifier.blockify` y (None): This isn't used, it's only here for API consistency. Returns: :class:`StandardizedFeature`: an instance of this class with the ``self.scaler`` attribute fit to the ``blocks`` data Note: When fitting the :class:`StandardScaler` object, you'll probably want to determine the mean and/or std of *multiple* HTML files' blocks, rather than just a single observation. To do that, just concatenate all of the blocks together in a single iterable. In contrast, you'll typically apply :meth:`transform` to a *single* HTML file's blocks at a time. """ feature_array = self.feature.fit_transform(blocks) self.scaler = self.scaler.fit(feature_array) return self
[ "def", "fit", "(", "self", ",", "blocks", ",", "y", "=", "None", ")", ":", "feature_array", "=", "self", ".", "feature", ".", "fit_transform", "(", "blocks", ")", "self", ".", "scaler", "=", "self", ".", "scaler", ".", "fit", "(", "feature_array", ")", "return", "self" ]
[ 23, 4 ]
[ 44, 19 ]
python
en
['en', 'error', 'th']
False
StandardizedFeature.transform
(self, blocks, y=None)
Transform an ordered sequence of blocks into a 2D features matrix with shape (num blocks, num features) and standardized feature values. Args: blocks (List[Block]): as output by :class:`Blockifier.blockify` y (None): This isn't used, it's only here for API consistency. Returns: `np.ndarray`: 2D array of shape (num blocks, num sub-features), where ``blocks`` data has been transformed by ``self.feature`` and optionally standardized by ``self.scaler``.
Transform an ordered sequence of blocks into a 2D features matrix with shape (num blocks, num features) and standardized feature values.
def transform(self, blocks, y=None): """ Transform an ordered sequence of blocks into a 2D features matrix with shape (num blocks, num features) and standardized feature values. Args: blocks (List[Block]): as output by :class:`Blockifier.blockify` y (None): This isn't used, it's only here for API consistency. Returns: `np.ndarray`: 2D array of shape (num blocks, num sub-features), where ``blocks`` data has been transformed by ``self.feature`` and optionally standardized by ``self.scaler``. """ return self.scaler.transform(self.feature.transform(blocks))
[ "def", "transform", "(", "self", ",", "blocks", ",", "y", "=", "None", ")", ":", "return", "self", ".", "scaler", ".", "transform", "(", "self", ".", "feature", ".", "transform", "(", "blocks", ")", ")" ]
[ 46, 4 ]
[ 60, 68 ]
python
en
['en', 'error', 'th']
False
DateField._check_fix_default_value
(self)
Warn that using an actual date or datetime value is probably wrong; it's only evaluated on server startup.
Warn that using an actual date or datetime value is probably wrong; it's only evaluated on server startup.
def _check_fix_default_value(self): """ Warn that using an actual date or datetime value is probably wrong; it's only evaluated on server startup. """ if not self.has_default(): return [] now = timezone.now() if not timezone.is_naive(now): now = timezone.make_naive(now, timezone.utc) value = self.default if isinstance(value, datetime.datetime): if not timezone.is_naive(value): value = timezone.make_naive(value, timezone.utc) value = value.date() elif isinstance(value, datetime.date): # Nothing to do, as dates don't have tz information pass else: # No explicit date / datetime value -- no checks necessary return [] offset = datetime.timedelta(days=1) lower = (now - offset).date() upper = (now + offset).date() if lower <= value <= upper: return [ checks.Warning( 'Fixed default value provided.', hint='It seems you set a fixed date / time / datetime ' 'value as default for this field. This may not be ' 'what you want. If you want to have the current date ' 'as default, use `django.utils.timezone.now`', obj=self, id='fields.W161', ) ] return []
[ "def", "_check_fix_default_value", "(", "self", ")", ":", "if", "not", "self", ".", "has_default", "(", ")", ":", "return", "[", "]", "now", "=", "timezone", ".", "now", "(", ")", "if", "not", "timezone", ".", "is_naive", "(", "now", ")", ":", "now", "=", "timezone", ".", "make_naive", "(", "now", ",", "timezone", ".", "utc", ")", "value", "=", "self", ".", "default", "if", "isinstance", "(", "value", ",", "datetime", ".", "datetime", ")", ":", "if", "not", "timezone", ".", "is_naive", "(", "value", ")", ":", "value", "=", "timezone", ".", "make_naive", "(", "value", ",", "timezone", ".", "utc", ")", "value", "=", "value", ".", "date", "(", ")", "elif", "isinstance", "(", "value", ",", "datetime", ".", "date", ")", ":", "# Nothing to do, as dates don't have tz information", "pass", "else", ":", "# No explicit date / datetime value -- no checks necessary", "return", "[", "]", "offset", "=", "datetime", ".", "timedelta", "(", "days", "=", "1", ")", "lower", "=", "(", "now", "-", "offset", ")", ".", "date", "(", ")", "upper", "=", "(", "now", "+", "offset", ")", ".", "date", "(", ")", "if", "lower", "<=", "value", "<=", "upper", ":", "return", "[", "checks", ".", "Warning", "(", "'Fixed default value provided.'", ",", "hint", "=", "'It seems you set a fixed date / time / datetime '", "'value as default for this field. This may not be '", "'what you want. If you want to have the current date '", "'as default, use `django.utils.timezone.now`'", ",", "obj", "=", "self", ",", "id", "=", "'fields.W161'", ",", ")", "]", "return", "[", "]" ]
[ 1159, 4 ]
[ 1197, 17 ]
python
en
['en', 'error', 'th']
False
DateTimeField._check_fix_default_value
(self)
Warn that using an actual date or datetime value is probably wrong; it's only evaluated on server startup.
Warn that using an actual date or datetime value is probably wrong; it's only evaluated on server startup.
def _check_fix_default_value(self): """ Warn that using an actual date or datetime value is probably wrong; it's only evaluated on server startup. """ if not self.has_default(): return [] now = timezone.now() if not timezone.is_naive(now): now = timezone.make_naive(now, timezone.utc) value = self.default if isinstance(value, datetime.datetime): second_offset = datetime.timedelta(seconds=10) lower = now - second_offset upper = now + second_offset if timezone.is_aware(value): value = timezone.make_naive(value, timezone.utc) elif isinstance(value, datetime.date): second_offset = datetime.timedelta(seconds=10) lower = now - second_offset lower = datetime.datetime(lower.year, lower.month, lower.day) upper = now + second_offset upper = datetime.datetime(upper.year, upper.month, upper.day) value = datetime.datetime(value.year, value.month, value.day) else: # No explicit date / datetime value -- no checks necessary return [] if lower <= value <= upper: return [ checks.Warning( 'Fixed default value provided.', hint='It seems you set a fixed date / time / datetime ' 'value as default for this field. This may not be ' 'what you want. If you want to have the current date ' 'as default, use `django.utils.timezone.now`', obj=self, id='fields.W161', ) ] return []
[ "def", "_check_fix_default_value", "(", "self", ")", ":", "if", "not", "self", ".", "has_default", "(", ")", ":", "return", "[", "]", "now", "=", "timezone", ".", "now", "(", ")", "if", "not", "timezone", ".", "is_naive", "(", "now", ")", ":", "now", "=", "timezone", ".", "make_naive", "(", "now", ",", "timezone", ".", "utc", ")", "value", "=", "self", ".", "default", "if", "isinstance", "(", "value", ",", "datetime", ".", "datetime", ")", ":", "second_offset", "=", "datetime", ".", "timedelta", "(", "seconds", "=", "10", ")", "lower", "=", "now", "-", "second_offset", "upper", "=", "now", "+", "second_offset", "if", "timezone", ".", "is_aware", "(", "value", ")", ":", "value", "=", "timezone", ".", "make_naive", "(", "value", ",", "timezone", ".", "utc", ")", "elif", "isinstance", "(", "value", ",", "datetime", ".", "date", ")", ":", "second_offset", "=", "datetime", ".", "timedelta", "(", "seconds", "=", "10", ")", "lower", "=", "now", "-", "second_offset", "lower", "=", "datetime", ".", "datetime", "(", "lower", ".", "year", ",", "lower", ".", "month", ",", "lower", ".", "day", ")", "upper", "=", "now", "+", "second_offset", "upper", "=", "datetime", ".", "datetime", "(", "upper", ".", "year", ",", "upper", ".", "month", ",", "upper", ".", "day", ")", "value", "=", "datetime", ".", "datetime", "(", "value", ".", "year", ",", "value", ".", "month", ",", "value", ".", "day", ")", "else", ":", "# No explicit date / datetime value -- no checks necessary", "return", "[", "]", "if", "lower", "<=", "value", "<=", "upper", ":", "return", "[", "checks", ".", "Warning", "(", "'Fixed default value provided.'", ",", "hint", "=", "'It seems you set a fixed date / time / datetime '", "'value as default for this field. This may not be '", "'what you want. If you want to have the current date '", "'as default, use `django.utils.timezone.now`'", ",", "obj", "=", "self", ",", "id", "=", "'fields.W161'", ",", ")", "]", "return", "[", "]" ]
[ 1299, 4 ]
[ 1340, 17 ]
python
en
['en', 'error', 'th']
False
PositiveIntegerRelDbTypeMixin.rel_db_type
(self, connection)
Return the data type that a related field pointing to this field should use. In most cases, a foreign key pointing to a positive integer primary key will have an integer column data type but some databases (e.g. MySQL) have an unsigned integer type. In that case (related_fields_match_type=True), the primary key should return its db_type.
Return the data type that a related field pointing to this field should use. In most cases, a foreign key pointing to a positive integer primary key will have an integer column data type but some databases (e.g. MySQL) have an unsigned integer type. In that case (related_fields_match_type=True), the primary key should return its db_type.
def rel_db_type(self, connection): """ Return the data type that a related field pointing to this field should use. In most cases, a foreign key pointing to a positive integer primary key will have an integer column data type but some databases (e.g. MySQL) have an unsigned integer type. In that case (related_fields_match_type=True), the primary key should return its db_type. """ if connection.features.related_fields_match_type: return self.db_type(connection) else: return self.integer_field_class().db_type(connection=connection)
[ "def", "rel_db_type", "(", "self", ",", "connection", ")", ":", "if", "connection", ".", "features", ".", "related_fields_match_type", ":", "return", "self", ".", "db_type", "(", "connection", ")", "else", ":", "return", "self", ".", "integer_field_class", "(", ")", ".", "db_type", "(", "connection", "=", "connection", ")" ]
[ 2026, 4 ]
[ 2038, 76 ]
python
en
['en', 'error', 'th']
False
TimeField._check_fix_default_value
(self)
Warn that using an actual date or datetime value is probably wrong; it's only evaluated on server startup.
Warn that using an actual date or datetime value is probably wrong; it's only evaluated on server startup.
def _check_fix_default_value(self): """ Warn that using an actual date or datetime value is probably wrong; it's only evaluated on server startup. """ if not self.has_default(): return [] now = timezone.now() if not timezone.is_naive(now): now = timezone.make_naive(now, timezone.utc) value = self.default if isinstance(value, datetime.datetime): second_offset = datetime.timedelta(seconds=10) lower = now - second_offset upper = now + second_offset if timezone.is_aware(value): value = timezone.make_naive(value, timezone.utc) elif isinstance(value, datetime.time): second_offset = datetime.timedelta(seconds=10) lower = now - second_offset upper = now + second_offset value = datetime.datetime.combine(now.date(), value) if timezone.is_aware(value): value = timezone.make_naive(value, timezone.utc).time() else: # No explicit time / datetime value -- no checks necessary return [] if lower <= value <= upper: return [ checks.Warning( 'Fixed default value provided.', hint='It seems you set a fixed date / time / datetime ' 'value as default for this field. This may not be ' 'what you want. If you want to have the current date ' 'as default, use `django.utils.timezone.now`', obj=self, id='fields.W161', ) ] return []
[ "def", "_check_fix_default_value", "(", "self", ")", ":", "if", "not", "self", ".", "has_default", "(", ")", ":", "return", "[", "]", "now", "=", "timezone", ".", "now", "(", ")", "if", "not", "timezone", ".", "is_naive", "(", "now", ")", ":", "now", "=", "timezone", ".", "make_naive", "(", "now", ",", "timezone", ".", "utc", ")", "value", "=", "self", ".", "default", "if", "isinstance", "(", "value", ",", "datetime", ".", "datetime", ")", ":", "second_offset", "=", "datetime", ".", "timedelta", "(", "seconds", "=", "10", ")", "lower", "=", "now", "-", "second_offset", "upper", "=", "now", "+", "second_offset", "if", "timezone", ".", "is_aware", "(", "value", ")", ":", "value", "=", "timezone", ".", "make_naive", "(", "value", ",", "timezone", ".", "utc", ")", "elif", "isinstance", "(", "value", ",", "datetime", ".", "time", ")", ":", "second_offset", "=", "datetime", ".", "timedelta", "(", "seconds", "=", "10", ")", "lower", "=", "now", "-", "second_offset", "upper", "=", "now", "+", "second_offset", "value", "=", "datetime", ".", "datetime", ".", "combine", "(", "now", ".", "date", "(", ")", ",", "value", ")", "if", "timezone", ".", "is_aware", "(", "value", ")", ":", "value", "=", "timezone", ".", "make_naive", "(", "value", ",", "timezone", ".", "utc", ")", ".", "time", "(", ")", "else", ":", "# No explicit time / datetime value -- no checks necessary", "return", "[", "]", "if", "lower", "<=", "value", "<=", "upper", ":", "return", "[", "checks", ".", "Warning", "(", "'Fixed default value provided.'", ",", "hint", "=", "'It seems you set a fixed date / time / datetime '", "'value as default for this field. This may not be '", "'what you want. If you want to have the current date '", "'as default, use `django.utils.timezone.now`'", ",", "obj", "=", "self", ",", "id", "=", "'fields.W161'", ",", ")", "]", "return", "[", "]" ]
[ 2195, 4 ]
[ 2236, 17 ]
python
en
['en', 'error', 'th']
False
BinaryField.value_to_string
(self, obj)
Binary data is serialized as base64
Binary data is serialized as base64
def value_to_string(self, obj): """Binary data is serialized as base64""" return b64encode(self.value_from_object(obj)).decode('ascii')
[ "def", "value_to_string", "(", "self", ",", "obj", ")", ":", "return", "b64encode", "(", "self", ".", "value_from_object", "(", "obj", ")", ")", ".", "decode", "(", "'ascii'", ")" ]
[ 2385, 4 ]
[ 2387, 69 ]
python
en
['en', 'en', 'en']
True
get_srid_info
(srid, connection)
Return the units, unit name, and spheroid WKT associated with the given SRID from the `spatial_ref_sys` (or equivalent) spatial database table for the given database connection. These results are cached.
Return the units, unit name, and spheroid WKT associated with the given SRID from the `spatial_ref_sys` (or equivalent) spatial database table for the given database connection. These results are cached.
def get_srid_info(srid, connection): """ Return the units, unit name, and spheroid WKT associated with the given SRID from the `spatial_ref_sys` (or equivalent) spatial database table for the given database connection. These results are cached. """ from django.contrib.gis.gdal import SpatialReference global _srid_cache try: # The SpatialRefSys model for the spatial backend. SpatialRefSys = connection.ops.spatial_ref_sys() except NotImplementedError: SpatialRefSys = None alias, get_srs = ( (connection.alias, lambda srid: SpatialRefSys.objects.using(connection.alias).get(srid=srid).srs) if SpatialRefSys else (None, SpatialReference) ) if srid not in _srid_cache[alias]: srs = get_srs(srid) units, units_name = srs.units _srid_cache[alias][srid] = SRIDCacheEntry( units=units, units_name=units_name, spheroid='SPHEROID["%s",%s,%s]' % (srs['spheroid'], srs.semi_major, srs.inverse_flattening), geodetic=srs.geographic, ) return _srid_cache[alias][srid]
[ "def", "get_srid_info", "(", "srid", ",", "connection", ")", ":", "from", "django", ".", "contrib", ".", "gis", ".", "gdal", "import", "SpatialReference", "global", "_srid_cache", "try", ":", "# The SpatialRefSys model for the spatial backend.", "SpatialRefSys", "=", "connection", ".", "ops", ".", "spatial_ref_sys", "(", ")", "except", "NotImplementedError", ":", "SpatialRefSys", "=", "None", "alias", ",", "get_srs", "=", "(", "(", "connection", ".", "alias", ",", "lambda", "srid", ":", "SpatialRefSys", ".", "objects", ".", "using", "(", "connection", ".", "alias", ")", ".", "get", "(", "srid", "=", "srid", ")", ".", "srs", ")", "if", "SpatialRefSys", "else", "(", "None", ",", "SpatialReference", ")", ")", "if", "srid", "not", "in", "_srid_cache", "[", "alias", "]", ":", "srs", "=", "get_srs", "(", "srid", ")", "units", ",", "units_name", "=", "srs", ".", "units", "_srid_cache", "[", "alias", "]", "[", "srid", "]", "=", "SRIDCacheEntry", "(", "units", "=", "units", ",", "units_name", "=", "units_name", ",", "spheroid", "=", "'SPHEROID[\"%s\",%s,%s]'", "%", "(", "srs", "[", "'spheroid'", "]", ",", "srs", ".", "semi_major", ",", "srs", ".", "inverse_flattening", ")", ",", "geodetic", "=", "srs", ".", "geographic", ",", ")", "return", "_srid_cache", "[", "alias", "]", "[", "srid", "]" ]
[ 22, 0 ]
[ 52, 35 ]
python
en
['en', 'error', 'th']
False
BaseSpatialField.__init__
(self, verbose_name=None, srid=4326, spatial_index=True, **kwargs)
The initialization function for base spatial fields. Takes the following as keyword arguments: srid: The spatial reference system identifier, an OGC standard. Defaults to 4326 (WGS84). spatial_index: Indicates whether to create a spatial index. Defaults to True. Set this instead of 'db_index' for geographic fields since index creation is different for geometry columns.
The initialization function for base spatial fields. Takes the following as keyword arguments:
def __init__(self, verbose_name=None, srid=4326, spatial_index=True, **kwargs): """ The initialization function for base spatial fields. Takes the following as keyword arguments: srid: The spatial reference system identifier, an OGC standard. Defaults to 4326 (WGS84). spatial_index: Indicates whether to create a spatial index. Defaults to True. Set this instead of 'db_index' for geographic fields since index creation is different for geometry columns. """ # Setting the index flag with the value of the `spatial_index` keyword. self.spatial_index = spatial_index # Setting the SRID and getting the units. Unit information must be # easily available in the field instance for distance queries. self.srid = srid # Setting the verbose_name keyword argument with the positional # first parameter, so this works like normal fields. kwargs['verbose_name'] = verbose_name super().__init__(**kwargs)
[ "def", "__init__", "(", "self", ",", "verbose_name", "=", "None", ",", "srid", "=", "4326", ",", "spatial_index", "=", "True", ",", "*", "*", "kwargs", ")", ":", "# Setting the index flag with the value of the `spatial_index` keyword.", "self", ".", "spatial_index", "=", "spatial_index", "# Setting the SRID and getting the units. Unit information must be", "# easily available in the field instance for distance queries.", "self", ".", "srid", "=", "srid", "# Setting the verbose_name keyword argument with the positional", "# first parameter, so this works like normal fields.", "kwargs", "[", "'verbose_name'", "]", "=", "verbose_name", "super", "(", ")", ".", "__init__", "(", "*", "*", "kwargs", ")" ]
[ 66, 4 ]
[ 92, 34 ]
python
en
['en', 'error', 'th']
False
BaseSpatialField.geodetic
(self, connection)
Return true if this field's SRID corresponds with a coordinate system that uses non-projected units (e.g., latitude/longitude).
Return true if this field's SRID corresponds with a coordinate system that uses non-projected units (e.g., latitude/longitude).
def geodetic(self, connection): """ Return true if this field's SRID corresponds with a coordinate system that uses non-projected units (e.g., latitude/longitude). """ return get_srid_info(self.srid, connection).geodetic
[ "def", "geodetic", "(", "self", ",", "connection", ")", ":", "return", "get_srid_info", "(", "self", ".", "srid", ",", "connection", ")", ".", "geodetic" ]
[ 115, 4 ]
[ 120, 60 ]
python
en
['en', 'error', 'th']
False
BaseSpatialField.get_placeholder
(self, value, compiler, connection)
Return the placeholder for the spatial column for the given value.
Return the placeholder for the spatial column for the given value.
def get_placeholder(self, value, compiler, connection): """ Return the placeholder for the spatial column for the given value. """ return connection.ops.get_geom_placeholder(self, value, compiler)
[ "def", "get_placeholder", "(", "self", ",", "value", ",", "compiler", ",", "connection", ")", ":", "return", "connection", ".", "ops", ".", "get_geom_placeholder", "(", "self", ",", "value", ",", "compiler", ")" ]
[ 122, 4 ]
[ 127, 73 ]
python
en
['en', 'error', 'th']
False
BaseSpatialField.get_srid
(self, obj)
Return the default SRID for the given geometry or raster, taking into account the SRID set for the field. For example, if the input geometry or raster doesn't have an SRID, then the SRID of the field will be returned.
Return the default SRID for the given geometry or raster, taking into account the SRID set for the field. For example, if the input geometry or raster doesn't have an SRID, then the SRID of the field will be returned.
def get_srid(self, obj): """ Return the default SRID for the given geometry or raster, taking into account the SRID set for the field. For example, if the input geometry or raster doesn't have an SRID, then the SRID of the field will be returned. """ srid = obj.srid # SRID of given geometry. if srid is None or self.srid == -1 or (srid == -1 and self.srid != -1): return self.srid else: return srid
[ "def", "get_srid", "(", "self", ",", "obj", ")", ":", "srid", "=", "obj", ".", "srid", "# SRID of given geometry.", "if", "srid", "is", "None", "or", "self", ".", "srid", "==", "-", "1", "or", "(", "srid", "==", "-", "1", "and", "self", ".", "srid", "!=", "-", "1", ")", ":", "return", "self", ".", "srid", "else", ":", "return", "srid" ]
[ 129, 4 ]
[ 140, 23 ]
python
en
['en', 'error', 'th']
False
BaseSpatialField.get_raster_prep_value
(self, value, is_candidate)
Return a GDALRaster if conversion is successful, otherwise return None.
Return a GDALRaster if conversion is successful, otherwise return None.
def get_raster_prep_value(self, value, is_candidate): """ Return a GDALRaster if conversion is successful, otherwise return None. """ if isinstance(value, gdal.GDALRaster): return value elif is_candidate: try: return gdal.GDALRaster(value) except GDALException: pass elif isinstance(value, dict): try: return gdal.GDALRaster(value) except GDALException: raise ValueError("Couldn't create spatial object from lookup value '%s'." % value)
[ "def", "get_raster_prep_value", "(", "self", ",", "value", ",", "is_candidate", ")", ":", "if", "isinstance", "(", "value", ",", "gdal", ".", "GDALRaster", ")", ":", "return", "value", "elif", "is_candidate", ":", "try", ":", "return", "gdal", ".", "GDALRaster", "(", "value", ")", "except", "GDALException", ":", "pass", "elif", "isinstance", "(", "value", ",", "dict", ")", ":", "try", ":", "return", "gdal", ".", "GDALRaster", "(", "value", ")", "except", "GDALException", ":", "raise", "ValueError", "(", "\"Couldn't create spatial object from lookup value '%s'.\"", "%", "value", ")" ]
[ 154, 4 ]
[ 169, 98 ]
python
en
['en', 'error', 'th']
False
GeometryField.__init__
(self, verbose_name=None, dim=2, geography=False, *, extent=(-180.0, -90.0, 180.0, 90.0), tolerance=0.05, **kwargs)
The initialization function for geometry fields. In addition to the parameters from BaseSpatialField, it takes the following as keyword arguments: dim: The number of dimensions for this geometry. Defaults to 2. extent: Customize the extent, in a 4-tuple of WGS 84 coordinates, for the geometry field entry in the `USER_SDO_GEOM_METADATA` table. Defaults to (-180.0, -90.0, 180.0, 90.0). tolerance: Define the tolerance, in meters, to use for the geometry field entry in the `USER_SDO_GEOM_METADATA` table. Defaults to 0.05.
The initialization function for geometry fields. In addition to the parameters from BaseSpatialField, it takes the following as keyword arguments:
def __init__(self, verbose_name=None, dim=2, geography=False, *, extent=(-180.0, -90.0, 180.0, 90.0), tolerance=0.05, **kwargs): """ The initialization function for geometry fields. In addition to the parameters from BaseSpatialField, it takes the following as keyword arguments: dim: The number of dimensions for this geometry. Defaults to 2. extent: Customize the extent, in a 4-tuple of WGS 84 coordinates, for the geometry field entry in the `USER_SDO_GEOM_METADATA` table. Defaults to (-180.0, -90.0, 180.0, 90.0). tolerance: Define the tolerance, in meters, to use for the geometry field entry in the `USER_SDO_GEOM_METADATA` table. Defaults to 0.05. """ # Setting the dimension of the geometry field. self.dim = dim # Is this a geography rather than a geometry column? self.geography = geography # Oracle-specific private attributes for creating the entry in # `USER_SDO_GEOM_METADATA` self._extent = extent self._tolerance = tolerance super().__init__(verbose_name=verbose_name, **kwargs)
[ "def", "__init__", "(", "self", ",", "verbose_name", "=", "None", ",", "dim", "=", "2", ",", "geography", "=", "False", ",", "*", ",", "extent", "=", "(", "-", "180.0", ",", "-", "90.0", ",", "180.0", ",", "90.0", ")", ",", "tolerance", "=", "0.05", ",", "*", "*", "kwargs", ")", ":", "# Setting the dimension of the geometry field.", "self", ".", "dim", "=", "dim", "# Is this a geography rather than a geometry column?", "self", ".", "geography", "=", "geography", "# Oracle-specific private attributes for creating the entry in", "# `USER_SDO_GEOM_METADATA`", "self", ".", "_extent", "=", "extent", "self", ".", "_tolerance", "=", "tolerance", "super", "(", ")", ".", "__init__", "(", "verbose_name", "=", "verbose_name", ",", "*", "*", "kwargs", ")" ]
[ 210, 4 ]
[ 240, 61 ]
python
en
['en', 'error', 'th']
False
GeometryField.select_format
(self, compiler, sql, params)
Return the selection format string, depending on the requirements of the spatial backend. For example, Oracle and MySQL require custom selection formats in order to retrieve geometries in OGC WKB.
Return the selection format string, depending on the requirements of the spatial backend. For example, Oracle and MySQL require custom selection formats in order to retrieve geometries in OGC WKB.
def select_format(self, compiler, sql, params): """ Return the selection format string, depending on the requirements of the spatial backend. For example, Oracle and MySQL require custom selection formats in order to retrieve geometries in OGC WKB. """ if not compiler.query.subquery: return compiler.connection.ops.select % sql, params return sql, params
[ "def", "select_format", "(", "self", ",", "compiler", ",", "sql", ",", "params", ")", ":", "if", "not", "compiler", ".", "query", ".", "subquery", ":", "return", "compiler", ".", "connection", ".", "ops", ".", "select", "%", "sql", ",", "params", "return", "sql", ",", "params" ]
[ 272, 4 ]
[ 280, 26 ]
python
en
['en', 'error', 'th']
False
main
(_)
Train a word2vec model.
Train a word2vec model.
def main(_): """Train a word2vec model.""" if not FLAGS.train_data or not FLAGS.eval_data or not FLAGS.save_path: print("--train_data --eval_data and --save_path must be specified.") sys.exit(1) opts = Options() with tf.Graph().as_default(), tf.Session() as session: with tf.device("/cpu:0"): model = Word2Vec(opts, session) model.read_analogies() # Read analogy questions for _ in xrange(opts.epochs_to_train): model.train() # Process one epoch model.eval() # Eval analogies. # Perform a final save. model.saver.save(session, os.path.join(opts.save_path, "model.ckpt"), global_step=model.global_step) if FLAGS.interactive: # E.g., # [0]: model.analogy(b'france', b'paris', b'russia') # [1]: model.nearby([b'proton', b'elephant', b'maxwell']) _start_shell(locals())
[ "def", "main", "(", "_", ")", ":", "if", "not", "FLAGS", ".", "train_data", "or", "not", "FLAGS", ".", "eval_data", "or", "not", "FLAGS", ".", "save_path", ":", "print", "(", "\"--train_data --eval_data and --save_path must be specified.\"", ")", "sys", ".", "exit", "(", "1", ")", "opts", "=", "Options", "(", ")", "with", "tf", ".", "Graph", "(", ")", ".", "as_default", "(", ")", ",", "tf", ".", "Session", "(", ")", "as", "session", ":", "with", "tf", ".", "device", "(", "\"/cpu:0\"", ")", ":", "model", "=", "Word2Vec", "(", "opts", ",", "session", ")", "model", ".", "read_analogies", "(", ")", "# Read analogy questions", "for", "_", "in", "xrange", "(", "opts", ".", "epochs_to_train", ")", ":", "model", ".", "train", "(", ")", "# Process one epoch", "model", ".", "eval", "(", ")", "# Eval analogies.", "# Perform a final save.", "model", ".", "saver", ".", "save", "(", "session", ",", "os", ".", "path", ".", "join", "(", "opts", ".", "save_path", ",", "\"model.ckpt\"", ")", ",", "global_step", "=", "model", ".", "global_step", ")", "if", "FLAGS", ".", "interactive", ":", "# E.g.,", "# [0]: model.analogy(b'france', b'paris', b'russia')", "# [1]: model.nearby([b'proton', b'elephant', b'maxwell'])", "_start_shell", "(", "locals", "(", ")", ")" ]
[ 510, 0 ]
[ 531, 28 ]
python
en
['en', 'ca', 'en']
True
Word2Vec.read_analogies
(self)
Reads through the analogy question file. Returns: questions: a [n, 4] numpy array containing the analogy question's word ids. questions_skipped: questions skipped due to unknown words.
Reads through the analogy question file.
def read_analogies(self): """Reads through the analogy question file. Returns: questions: a [n, 4] numpy array containing the analogy question's word ids. questions_skipped: questions skipped due to unknown words. """ questions = [] questions_skipped = 0 with open(self._options.eval_data, "rb") as analogy_f: for line in analogy_f: if line.startswith(b":"): # Skip comments. continue words = line.strip().lower().split(b" ") ids = [self._word2id.get(w.strip()) for w in words] if None in ids or len(ids) != 4: questions_skipped += 1 else: questions.append(np.array(ids)) print("Eval analogy file: ", self._options.eval_data) print("Questions: ", len(questions)) print("Skipped: ", questions_skipped) self._analogy_questions = np.array(questions, dtype=np.int32)
[ "def", "read_analogies", "(", "self", ")", ":", "questions", "=", "[", "]", "questions_skipped", "=", "0", "with", "open", "(", "self", ".", "_options", ".", "eval_data", ",", "\"rb\"", ")", "as", "analogy_f", ":", "for", "line", "in", "analogy_f", ":", "if", "line", ".", "startswith", "(", "b\":\"", ")", ":", "# Skip comments.", "continue", "words", "=", "line", ".", "strip", "(", ")", ".", "lower", "(", ")", ".", "split", "(", "b\" \"", ")", "ids", "=", "[", "self", ".", "_word2id", ".", "get", "(", "w", ".", "strip", "(", ")", ")", "for", "w", "in", "words", "]", "if", "None", "in", "ids", "or", "len", "(", "ids", ")", "!=", "4", ":", "questions_skipped", "+=", "1", "else", ":", "questions", ".", "append", "(", "np", ".", "array", "(", "ids", ")", ")", "print", "(", "\"Eval analogy file: \"", ",", "self", ".", "_options", ".", "eval_data", ")", "print", "(", "\"Questions: \"", ",", "len", "(", "questions", ")", ")", "print", "(", "\"Skipped: \"", ",", "questions_skipped", ")", "self", ".", "_analogy_questions", "=", "np", ".", "array", "(", "questions", ",", "dtype", "=", "np", ".", "int32", ")" ]
[ 169, 2 ]
[ 192, 65 ]
python
en
['en', 'en', 'en']
True
Word2Vec.forward
(self, examples, labels)
Build the graph for the forward pass.
Build the graph for the forward pass.
def forward(self, examples, labels): """Build the graph for the forward pass.""" opts = self._options # Declare all variables we need. # Embedding: [vocab_size, emb_dim] init_width = 0.5 / opts.emb_dim emb = tf.Variable( tf.random_uniform( [opts.vocab_size, opts.emb_dim], -init_width, init_width), name="emb") self._emb = emb # Softmax weight: [vocab_size, emb_dim]. Transposed. sm_w_t = tf.Variable( tf.zeros([opts.vocab_size, opts.emb_dim]), name="sm_w_t") # Softmax bias: [vocab_size]. sm_b = tf.Variable(tf.zeros([opts.vocab_size]), name="sm_b") # Global step: scalar, i.e., shape []. self.global_step = tf.Variable(0, name="global_step") # Nodes to compute the nce loss w/ candidate sampling. labels_matrix = tf.reshape( tf.cast(labels, dtype=tf.int64), [opts.batch_size, 1]) # Negative sampling. sampled_ids, _, _ = (tf.nn.fixed_unigram_candidate_sampler( true_classes=labels_matrix, num_true=1, num_sampled=opts.num_samples, unique=True, range_max=opts.vocab_size, distortion=0.75, unigrams=opts.vocab_counts.tolist())) # Embeddings for examples: [batch_size, emb_dim] example_emb = tf.nn.embedding_lookup(emb, examples) # Weights for labels: [batch_size, emb_dim] true_w = tf.nn.embedding_lookup(sm_w_t, labels) # Biases for labels: [batch_size, 1] true_b = tf.nn.embedding_lookup(sm_b, labels) # Weights for sampled ids: [num_sampled, emb_dim] sampled_w = tf.nn.embedding_lookup(sm_w_t, sampled_ids) # Biases for sampled ids: [num_sampled, 1] sampled_b = tf.nn.embedding_lookup(sm_b, sampled_ids) # True logits: [batch_size, 1] true_logits = tf.reduce_sum(tf.multiply(example_emb, true_w), 1) + true_b # Sampled logits: [batch_size, num_sampled] # We replicate sampled noise labels for all examples in the batch # using the matmul. sampled_b_vec = tf.reshape(sampled_b, [opts.num_samples]) sampled_logits = tf.matmul(example_emb, sampled_w, transpose_b=True) + sampled_b_vec return true_logits, sampled_logits
[ "def", "forward", "(", "self", ",", "examples", ",", "labels", ")", ":", "opts", "=", "self", ".", "_options", "# Declare all variables we need.", "# Embedding: [vocab_size, emb_dim]", "init_width", "=", "0.5", "/", "opts", ".", "emb_dim", "emb", "=", "tf", ".", "Variable", "(", "tf", ".", "random_uniform", "(", "[", "opts", ".", "vocab_size", ",", "opts", ".", "emb_dim", "]", ",", "-", "init_width", ",", "init_width", ")", ",", "name", "=", "\"emb\"", ")", "self", ".", "_emb", "=", "emb", "# Softmax weight: [vocab_size, emb_dim]. Transposed.", "sm_w_t", "=", "tf", ".", "Variable", "(", "tf", ".", "zeros", "(", "[", "opts", ".", "vocab_size", ",", "opts", ".", "emb_dim", "]", ")", ",", "name", "=", "\"sm_w_t\"", ")", "# Softmax bias: [vocab_size].", "sm_b", "=", "tf", ".", "Variable", "(", "tf", ".", "zeros", "(", "[", "opts", ".", "vocab_size", "]", ")", ",", "name", "=", "\"sm_b\"", ")", "# Global step: scalar, i.e., shape [].", "self", ".", "global_step", "=", "tf", ".", "Variable", "(", "0", ",", "name", "=", "\"global_step\"", ")", "# Nodes to compute the nce loss w/ candidate sampling.", "labels_matrix", "=", "tf", ".", "reshape", "(", "tf", ".", "cast", "(", "labels", ",", "dtype", "=", "tf", ".", "int64", ")", ",", "[", "opts", ".", "batch_size", ",", "1", "]", ")", "# Negative sampling.", "sampled_ids", ",", "_", ",", "_", "=", "(", "tf", ".", "nn", ".", "fixed_unigram_candidate_sampler", "(", "true_classes", "=", "labels_matrix", ",", "num_true", "=", "1", ",", "num_sampled", "=", "opts", ".", "num_samples", ",", "unique", "=", "True", ",", "range_max", "=", "opts", ".", "vocab_size", ",", "distortion", "=", "0.75", ",", "unigrams", "=", "opts", ".", "vocab_counts", ".", "tolist", "(", ")", ")", ")", "# Embeddings for examples: [batch_size, emb_dim]", "example_emb", "=", "tf", ".", "nn", ".", "embedding_lookup", "(", "emb", ",", "examples", ")", "# Weights for labels: [batch_size, emb_dim]", "true_w", "=", "tf", ".", "nn", ".", "embedding_lookup", "(", "sm_w_t", ",", "labels", ")", "# Biases for labels: [batch_size, 1]", "true_b", "=", "tf", ".", "nn", ".", "embedding_lookup", "(", "sm_b", ",", "labels", ")", "# Weights for sampled ids: [num_sampled, emb_dim]", "sampled_w", "=", "tf", ".", "nn", ".", "embedding_lookup", "(", "sm_w_t", ",", "sampled_ids", ")", "# Biases for sampled ids: [num_sampled, 1]", "sampled_b", "=", "tf", ".", "nn", ".", "embedding_lookup", "(", "sm_b", ",", "sampled_ids", ")", "# True logits: [batch_size, 1]", "true_logits", "=", "tf", ".", "reduce_sum", "(", "tf", ".", "multiply", "(", "example_emb", ",", "true_w", ")", ",", "1", ")", "+", "true_b", "# Sampled logits: [batch_size, num_sampled]", "# We replicate sampled noise labels for all examples in the batch", "# using the matmul.", "sampled_b_vec", "=", "tf", ".", "reshape", "(", "sampled_b", ",", "[", "opts", ".", "num_samples", "]", ")", "sampled_logits", "=", "tf", ".", "matmul", "(", "example_emb", ",", "sampled_w", ",", "transpose_b", "=", "True", ")", "+", "sampled_b_vec", "return", "true_logits", ",", "sampled_logits" ]
[ 194, 2 ]
[ 257, 38 ]
python
en
['en', 'en', 'en']
True
Word2Vec.nce_loss
(self, true_logits, sampled_logits)
Build the graph for the NCE loss.
Build the graph for the NCE loss.
def nce_loss(self, true_logits, sampled_logits): """Build the graph for the NCE loss.""" # cross-entropy(logits, labels) opts = self._options true_xent = tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.ones_like(true_logits), logits=true_logits) sampled_xent = tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.zeros_like(sampled_logits), logits=sampled_logits) # NCE-loss is the sum of the true and noise (sampled words) # contributions, averaged over the batch. nce_loss_tensor = (tf.reduce_sum(true_xent) + tf.reduce_sum(sampled_xent)) / opts.batch_size return nce_loss_tensor
[ "def", "nce_loss", "(", "self", ",", "true_logits", ",", "sampled_logits", ")", ":", "# cross-entropy(logits, labels)", "opts", "=", "self", ".", "_options", "true_xent", "=", "tf", ".", "nn", ".", "sigmoid_cross_entropy_with_logits", "(", "labels", "=", "tf", ".", "ones_like", "(", "true_logits", ")", ",", "logits", "=", "true_logits", ")", "sampled_xent", "=", "tf", ".", "nn", ".", "sigmoid_cross_entropy_with_logits", "(", "labels", "=", "tf", ".", "zeros_like", "(", "sampled_logits", ")", ",", "logits", "=", "sampled_logits", ")", "# NCE-loss is the sum of the true and noise (sampled words)", "# contributions, averaged over the batch.", "nce_loss_tensor", "=", "(", "tf", ".", "reduce_sum", "(", "true_xent", ")", "+", "tf", ".", "reduce_sum", "(", "sampled_xent", ")", ")", "/", "opts", ".", "batch_size", "return", "nce_loss_tensor" ]
[ 259, 2 ]
[ 273, 26 ]
python
en
['en', 'en', 'en']
True
Word2Vec.optimize
(self, loss)
Build the graph to optimize the loss function.
Build the graph to optimize the loss function.
def optimize(self, loss): """Build the graph to optimize the loss function.""" # Optimizer nodes. # Linear learning rate decay. opts = self._options words_to_train = float(opts.words_per_epoch * opts.epochs_to_train) lr = opts.learning_rate * tf.maximum( 0.0001, 1.0 - tf.cast(self._words, tf.float32) / words_to_train) self._lr = lr optimizer = tf.train.GradientDescentOptimizer(lr) train = optimizer.minimize(loss, global_step=self.global_step, gate_gradients=optimizer.GATE_NONE) self._train = train
[ "def", "optimize", "(", "self", ",", "loss", ")", ":", "# Optimizer nodes.", "# Linear learning rate decay.", "opts", "=", "self", ".", "_options", "words_to_train", "=", "float", "(", "opts", ".", "words_per_epoch", "*", "opts", ".", "epochs_to_train", ")", "lr", "=", "opts", ".", "learning_rate", "*", "tf", ".", "maximum", "(", "0.0001", ",", "1.0", "-", "tf", ".", "cast", "(", "self", ".", "_words", ",", "tf", ".", "float32", ")", "/", "words_to_train", ")", "self", ".", "_lr", "=", "lr", "optimizer", "=", "tf", ".", "train", ".", "GradientDescentOptimizer", "(", "lr", ")", "train", "=", "optimizer", ".", "minimize", "(", "loss", ",", "global_step", "=", "self", ".", "global_step", ",", "gate_gradients", "=", "optimizer", ".", "GATE_NONE", ")", "self", ".", "_train", "=", "train" ]
[ 275, 2 ]
[ 289, 23 ]
python
en
['en', 'en', 'en']
True
Word2Vec.build_eval_graph
(self)
Build the eval graph.
Build the eval graph.
def build_eval_graph(self): """Build the eval graph.""" # Eval graph # Each analogy task is to predict the 4th word (d) given three # words: a, b, c. E.g., a=italy, b=rome, c=france, we should # predict d=paris. # The eval feeds three vectors of word ids for a, b, c, each of # which is of size N, where N is the number of analogies we want to # evaluate in one batch. analogy_a = tf.placeholder(dtype=tf.int32) # [N] analogy_b = tf.placeholder(dtype=tf.int32) # [N] analogy_c = tf.placeholder(dtype=tf.int32) # [N] # Normalized word embeddings of shape [vocab_size, emb_dim]. nemb = tf.nn.l2_normalize(self._emb, 1) self._nemb = nemb # Each row of a_emb, b_emb, c_emb is a word's embedding vector. # They all have the shape [N, emb_dim] a_emb = tf.gather(nemb, analogy_a) # a's embs b_emb = tf.gather(nemb, analogy_b) # b's embs c_emb = tf.gather(nemb, analogy_c) # c's embs # We expect that d's embedding vectors on the unit hyper-sphere is # near: c_emb + (b_emb - a_emb), which has the shape [N, emb_dim]. target = c_emb + (b_emb - a_emb) # Compute cosine distance between each pair of target and vocab. # dist has shape [N, vocab_size]. dist = tf.matmul(target, nemb, transpose_b=True) # For each question (row in dist), find the top 4 words. _, pred_idx = tf.nn.top_k(dist, 4) # Nodes for computing neighbors for a given word according to # their cosine distance. nearby_word = tf.placeholder(dtype=tf.int32) # word id nearby_emb = tf.gather(nemb, nearby_word) nearby_dist = tf.matmul(nearby_emb, nemb, transpose_b=True) nearby_val, nearby_idx = tf.nn.top_k(nearby_dist, min(1000, self._options.vocab_size)) # Nodes in the construct graph which are used by training and # evaluation to run/feed/fetch. self._analogy_a = analogy_a self._analogy_b = analogy_b self._analogy_c = analogy_c self._analogy_pred_idx = pred_idx self._nearby_word = nearby_word self._nearby_val = nearby_val self._nearby_idx = nearby_idx
[ "def", "build_eval_graph", "(", "self", ")", ":", "# Eval graph", "# Each analogy task is to predict the 4th word (d) given three", "# words: a, b, c. E.g., a=italy, b=rome, c=france, we should", "# predict d=paris.", "# The eval feeds three vectors of word ids for a, b, c, each of", "# which is of size N, where N is the number of analogies we want to", "# evaluate in one batch.", "analogy_a", "=", "tf", ".", "placeholder", "(", "dtype", "=", "tf", ".", "int32", ")", "# [N]", "analogy_b", "=", "tf", ".", "placeholder", "(", "dtype", "=", "tf", ".", "int32", ")", "# [N]", "analogy_c", "=", "tf", ".", "placeholder", "(", "dtype", "=", "tf", ".", "int32", ")", "# [N]", "# Normalized word embeddings of shape [vocab_size, emb_dim].", "nemb", "=", "tf", ".", "nn", ".", "l2_normalize", "(", "self", ".", "_emb", ",", "1", ")", "self", ".", "_nemb", "=", "nemb", "# Each row of a_emb, b_emb, c_emb is a word's embedding vector.", "# They all have the shape [N, emb_dim]", "a_emb", "=", "tf", ".", "gather", "(", "nemb", ",", "analogy_a", ")", "# a's embs", "b_emb", "=", "tf", ".", "gather", "(", "nemb", ",", "analogy_b", ")", "# b's embs", "c_emb", "=", "tf", ".", "gather", "(", "nemb", ",", "analogy_c", ")", "# c's embs", "# We expect that d's embedding vectors on the unit hyper-sphere is", "# near: c_emb + (b_emb - a_emb), which has the shape [N, emb_dim].", "target", "=", "c_emb", "+", "(", "b_emb", "-", "a_emb", ")", "# Compute cosine distance between each pair of target and vocab.", "# dist has shape [N, vocab_size].", "dist", "=", "tf", ".", "matmul", "(", "target", ",", "nemb", ",", "transpose_b", "=", "True", ")", "# For each question (row in dist), find the top 4 words.", "_", ",", "pred_idx", "=", "tf", ".", "nn", ".", "top_k", "(", "dist", ",", "4", ")", "# Nodes for computing neighbors for a given word according to", "# their cosine distance.", "nearby_word", "=", "tf", ".", "placeholder", "(", "dtype", "=", "tf", ".", "int32", ")", "# word id", "nearby_emb", "=", "tf", ".", "gather", "(", "nemb", ",", "nearby_word", ")", "nearby_dist", "=", "tf", ".", "matmul", "(", "nearby_emb", ",", "nemb", ",", "transpose_b", "=", "True", ")", "nearby_val", ",", "nearby_idx", "=", "tf", ".", "nn", ".", "top_k", "(", "nearby_dist", ",", "min", "(", "1000", ",", "self", ".", "_options", ".", "vocab_size", ")", ")", "# Nodes in the construct graph which are used by training and", "# evaluation to run/feed/fetch.", "self", ".", "_analogy_a", "=", "analogy_a", "self", ".", "_analogy_b", "=", "analogy_b", "self", ".", "_analogy_c", "=", "analogy_c", "self", ".", "_analogy_pred_idx", "=", "pred_idx", "self", ".", "_nearby_word", "=", "nearby_word", "self", ".", "_nearby_val", "=", "nearby_val", "self", ".", "_nearby_idx", "=", "nearby_idx" ]
[ 291, 2 ]
[ 343, 33 ]
python
en
['en', 'en', 'en']
True
Word2Vec.build_graph
(self)
Build the graph for the full model.
Build the graph for the full model.
def build_graph(self): """Build the graph for the full model.""" opts = self._options # The training data. A text file. (words, counts, words_per_epoch, self._epoch, self._words, examples, labels) = word2vec.skipgram_word2vec(filename=opts.train_data, batch_size=opts.batch_size, window_size=opts.window_size, min_count=opts.min_count, subsample=opts.subsample) (opts.vocab_words, opts.vocab_counts, opts.words_per_epoch) = self._session.run([words, counts, words_per_epoch]) opts.vocab_size = len(opts.vocab_words) print("Data file: ", opts.train_data) print("Vocab size: ", opts.vocab_size - 1, " + UNK") print("Words per epoch: ", opts.words_per_epoch) self._examples = examples self._labels = labels self._id2word = opts.vocab_words for i, w in enumerate(self._id2word): self._word2id[w] = i true_logits, sampled_logits = self.forward(examples, labels) loss = self.nce_loss(true_logits, sampled_logits) tf.summary.scalar("NCE loss", loss) self._loss = loss self.optimize(loss) # Properly initialize all variables. tf.global_variables_initializer().run() self.saver = tf.train.Saver()
[ "def", "build_graph", "(", "self", ")", ":", "opts", "=", "self", ".", "_options", "# The training data. A text file.", "(", "words", ",", "counts", ",", "words_per_epoch", ",", "self", ".", "_epoch", ",", "self", ".", "_words", ",", "examples", ",", "labels", ")", "=", "word2vec", ".", "skipgram_word2vec", "(", "filename", "=", "opts", ".", "train_data", ",", "batch_size", "=", "opts", ".", "batch_size", ",", "window_size", "=", "opts", ".", "window_size", ",", "min_count", "=", "opts", ".", "min_count", ",", "subsample", "=", "opts", ".", "subsample", ")", "(", "opts", ".", "vocab_words", ",", "opts", ".", "vocab_counts", ",", "opts", ".", "words_per_epoch", ")", "=", "self", ".", "_session", ".", "run", "(", "[", "words", ",", "counts", ",", "words_per_epoch", "]", ")", "opts", ".", "vocab_size", "=", "len", "(", "opts", ".", "vocab_words", ")", "print", "(", "\"Data file: \"", ",", "opts", ".", "train_data", ")", "print", "(", "\"Vocab size: \"", ",", "opts", ".", "vocab_size", "-", "1", ",", "\" + UNK\"", ")", "print", "(", "\"Words per epoch: \"", ",", "opts", ".", "words_per_epoch", ")", "self", ".", "_examples", "=", "examples", "self", ".", "_labels", "=", "labels", "self", ".", "_id2word", "=", "opts", ".", "vocab_words", "for", "i", ",", "w", "in", "enumerate", "(", "self", ".", "_id2word", ")", ":", "self", ".", "_word2id", "[", "w", "]", "=", "i", "true_logits", ",", "sampled_logits", "=", "self", ".", "forward", "(", "examples", ",", "labels", ")", "loss", "=", "self", ".", "nce_loss", "(", "true_logits", ",", "sampled_logits", ")", "tf", ".", "summary", ".", "scalar", "(", "\"NCE loss\"", ",", "loss", ")", "self", ".", "_loss", "=", "loss", "self", ".", "optimize", "(", "loss", ")", "# Properly initialize all variables.", "tf", ".", "global_variables_initializer", "(", ")", ".", "run", "(", ")", "self", ".", "saver", "=", "tf", ".", "train", ".", "Saver", "(", ")" ]
[ 345, 2 ]
[ 375, 33 ]
python
en
['en', 'en', 'en']
True
Word2Vec.save_vocab
(self)
Save the vocabulary to a file so the model can be reloaded.
Save the vocabulary to a file so the model can be reloaded.
def save_vocab(self): """Save the vocabulary to a file so the model can be reloaded.""" opts = self._options with open(os.path.join(opts.save_path, "vocab.txt"), "w") as f: for i in xrange(opts.vocab_size): vocab_word = tf.compat.as_text(opts.vocab_words[i]).encode("utf-8") f.write("%s %d\n" % (vocab_word, opts.vocab_counts[i])) np.savetxt(os.path.join(opts.save_path, "vectors.txt"), self._nemb.eval())
[ "def", "save_vocab", "(", "self", ")", ":", "opts", "=", "self", ".", "_options", "with", "open", "(", "os", ".", "path", ".", "join", "(", "opts", ".", "save_path", ",", "\"vocab.txt\"", ")", ",", "\"w\"", ")", "as", "f", ":", "for", "i", "in", "xrange", "(", "opts", ".", "vocab_size", ")", ":", "vocab_word", "=", "tf", ".", "compat", ".", "as_text", "(", "opts", ".", "vocab_words", "[", "i", "]", ")", ".", "encode", "(", "\"utf-8\"", ")", "f", ".", "write", "(", "\"%s %d\\n\"", "%", "(", "vocab_word", ",", "opts", ".", "vocab_counts", "[", "i", "]", ")", ")", "np", ".", "savetxt", "(", "os", ".", "path", ".", "join", "(", "opts", ".", "save_path", ",", "\"vectors.txt\"", ")", ",", "self", ".", "_nemb", ".", "eval", "(", ")", ")" ]
[ 377, 2 ]
[ 385, 78 ]
python
en
['en', 'en', 'en']
True
Word2Vec.train
(self)
Train the model.
Train the model.
def train(self): """Train the model.""" opts = self._options initial_epoch, initial_words = self._session.run([self._epoch, self._words]) summary_op = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(opts.save_path, self._session.graph) workers = [] for _ in xrange(opts.concurrent_steps): t = threading.Thread(target=self._train_thread_body) t.start() workers.append(t) last_words, last_time, last_summary_time = initial_words, time.time(), 0 last_checkpoint_time = 0 while True: time.sleep(opts.statistics_interval) # Reports our progress once a while. (epoch, step, loss, words, lr) = self._session.run( [self._epoch, self.global_step, self._loss, self._words, self._lr]) now = time.time() last_words, last_time, rate = words, now, (words - last_words) / ( now - last_time) print("Epoch %4d Step %8d: lr = %5.3f loss = %6.2f words/sec = %8.0f\r" % (epoch, step, lr, loss, rate), end="") sys.stdout.flush() if now - last_summary_time > opts.summary_interval: summary_str = self._session.run(summary_op) summary_writer.add_summary(summary_str, step) last_summary_time = now if now - last_checkpoint_time > opts.checkpoint_interval: self.saver.save(self._session, os.path.join(opts.save_path, "model.ckpt"), global_step=step.astype(int)) last_checkpoint_time = now if epoch != initial_epoch: break for t in workers: t.join() return epoch
[ "def", "train", "(", "self", ")", ":", "opts", "=", "self", ".", "_options", "initial_epoch", ",", "initial_words", "=", "self", ".", "_session", ".", "run", "(", "[", "self", ".", "_epoch", ",", "self", ".", "_words", "]", ")", "summary_op", "=", "tf", ".", "summary", ".", "merge_all", "(", ")", "summary_writer", "=", "tf", ".", "summary", ".", "FileWriter", "(", "opts", ".", "save_path", ",", "self", ".", "_session", ".", "graph", ")", "workers", "=", "[", "]", "for", "_", "in", "xrange", "(", "opts", ".", "concurrent_steps", ")", ":", "t", "=", "threading", ".", "Thread", "(", "target", "=", "self", ".", "_train_thread_body", ")", "t", ".", "start", "(", ")", "workers", ".", "append", "(", "t", ")", "last_words", ",", "last_time", ",", "last_summary_time", "=", "initial_words", ",", "time", ".", "time", "(", ")", ",", "0", "last_checkpoint_time", "=", "0", "while", "True", ":", "time", ".", "sleep", "(", "opts", ".", "statistics_interval", ")", "# Reports our progress once a while.", "(", "epoch", ",", "step", ",", "loss", ",", "words", ",", "lr", ")", "=", "self", ".", "_session", ".", "run", "(", "[", "self", ".", "_epoch", ",", "self", ".", "global_step", ",", "self", ".", "_loss", ",", "self", ".", "_words", ",", "self", ".", "_lr", "]", ")", "now", "=", "time", ".", "time", "(", ")", "last_words", ",", "last_time", ",", "rate", "=", "words", ",", "now", ",", "(", "words", "-", "last_words", ")", "/", "(", "now", "-", "last_time", ")", "print", "(", "\"Epoch %4d Step %8d: lr = %5.3f loss = %6.2f words/sec = %8.0f\\r\"", "%", "(", "epoch", ",", "step", ",", "lr", ",", "loss", ",", "rate", ")", ",", "end", "=", "\"\"", ")", "sys", ".", "stdout", ".", "flush", "(", ")", "if", "now", "-", "last_summary_time", ">", "opts", ".", "summary_interval", ":", "summary_str", "=", "self", ".", "_session", ".", "run", "(", "summary_op", ")", "summary_writer", ".", "add_summary", "(", "summary_str", ",", "step", ")", "last_summary_time", "=", "now", "if", "now", "-", "last_checkpoint_time", ">", "opts", ".", "checkpoint_interval", ":", "self", ".", "saver", ".", "save", "(", "self", ".", "_session", ",", "os", ".", "path", ".", "join", "(", "opts", ".", "save_path", ",", "\"model.ckpt\"", ")", ",", "global_step", "=", "step", ".", "astype", "(", "int", ")", ")", "last_checkpoint_time", "=", "now", "if", "epoch", "!=", "initial_epoch", ":", "break", "for", "t", "in", "workers", ":", "t", ".", "join", "(", ")", "return", "epoch" ]
[ 394, 2 ]
[ 435, 16 ]
python
en
['en', 'it', 'en']
True
Word2Vec._predict
(self, analogy)
Predict the top 4 answers for analogy questions.
Predict the top 4 answers for analogy questions.
def _predict(self, analogy): """Predict the top 4 answers for analogy questions.""" idx, = self._session.run([self._analogy_pred_idx], { self._analogy_a: analogy[:, 0], self._analogy_b: analogy[:, 1], self._analogy_c: analogy[:, 2] }) return idx
[ "def", "_predict", "(", "self", ",", "analogy", ")", ":", "idx", ",", "=", "self", ".", "_session", ".", "run", "(", "[", "self", ".", "_analogy_pred_idx", "]", ",", "{", "self", ".", "_analogy_a", ":", "analogy", "[", ":", ",", "0", "]", ",", "self", ".", "_analogy_b", ":", "analogy", "[", ":", ",", "1", "]", ",", "self", ".", "_analogy_c", ":", "analogy", "[", ":", ",", "2", "]", "}", ")", "return", "idx" ]
[ 437, 2 ]
[ 444, 14 ]
python
en
['en', 'en', 'en']
True
Word2Vec.eval
(self)
Evaluate analogy questions and reports accuracy.
Evaluate analogy questions and reports accuracy.
def eval(self): """Evaluate analogy questions and reports accuracy.""" # How many questions we get right at precision@1. correct = 0 try: total = self._analogy_questions.shape[0] except AttributeError as e: raise AttributeError("Need to read analogy questions.") start = 0 while start < total: limit = start + 2500 sub = self._analogy_questions[start:limit, :] idx = self._predict(sub) start = limit for question in xrange(sub.shape[0]): for j in xrange(4): if idx[question, j] == sub[question, 3]: # Bingo! We predicted correctly. E.g., [italy, rome, france, paris]. correct += 1 break elif idx[question, j] in sub[question, :3]: # We need to skip words already in the question. continue else: # The correct label is not the precision@1 break print() print("Eval %4d/%d accuracy = %4.1f%%" % (correct, total, correct * 100.0 / total))
[ "def", "eval", "(", "self", ")", ":", "# How many questions we get right at precision@1.", "correct", "=", "0", "try", ":", "total", "=", "self", ".", "_analogy_questions", ".", "shape", "[", "0", "]", "except", "AttributeError", "as", "e", ":", "raise", "AttributeError", "(", "\"Need to read analogy questions.\"", ")", "start", "=", "0", "while", "start", "<", "total", ":", "limit", "=", "start", "+", "2500", "sub", "=", "self", ".", "_analogy_questions", "[", "start", ":", "limit", ",", ":", "]", "idx", "=", "self", ".", "_predict", "(", "sub", ")", "start", "=", "limit", "for", "question", "in", "xrange", "(", "sub", ".", "shape", "[", "0", "]", ")", ":", "for", "j", "in", "xrange", "(", "4", ")", ":", "if", "idx", "[", "question", ",", "j", "]", "==", "sub", "[", "question", ",", "3", "]", ":", "# Bingo! We predicted correctly. E.g., [italy, rome, france, paris].", "correct", "+=", "1", "break", "elif", "idx", "[", "question", ",", "j", "]", "in", "sub", "[", "question", ",", ":", "3", "]", ":", "# We need to skip words already in the question.", "continue", "else", ":", "# The correct label is not the precision@1", "break", "print", "(", ")", "print", "(", "\"Eval %4d/%d accuracy = %4.1f%%\"", "%", "(", "correct", ",", "total", ",", "correct", "*", "100.0", "/", "total", ")", ")" ]
[ 446, 2 ]
[ 477, 71 ]
python
en
['en', 'en', 'en']
True
Word2Vec.analogy
(self, w0, w1, w2)
Predict word w3 as in w0:w1 vs w2:w3.
Predict word w3 as in w0:w1 vs w2:w3.
def analogy(self, w0, w1, w2): """Predict word w3 as in w0:w1 vs w2:w3.""" wid = np.array([[self._word2id.get(w, 0) for w in [w0, w1, w2]]]) idx = self._predict(wid) for c in [self._id2word[i] for i in idx[0, :]]: if c not in [w0, w1, w2]: print(c) return print("unknown")
[ "def", "analogy", "(", "self", ",", "w0", ",", "w1", ",", "w2", ")", ":", "wid", "=", "np", ".", "array", "(", "[", "[", "self", ".", "_word2id", ".", "get", "(", "w", ",", "0", ")", "for", "w", "in", "[", "w0", ",", "w1", ",", "w2", "]", "]", "]", ")", "idx", "=", "self", ".", "_predict", "(", "wid", ")", "for", "c", "in", "[", "self", ".", "_id2word", "[", "i", "]", "for", "i", "in", "idx", "[", "0", ",", ":", "]", "]", ":", "if", "c", "not", "in", "[", "w0", ",", "w1", ",", "w2", "]", ":", "print", "(", "c", ")", "return", "print", "(", "\"unknown\"", ")" ]
[ 479, 2 ]
[ 487, 20 ]
python
pl
['en', 'pl', 'pl']
True
Word2Vec.nearby
(self, words, num=20)
Prints out nearby words given a list of words.
Prints out nearby words given a list of words.
def nearby(self, words, num=20): """Prints out nearby words given a list of words.""" ids = np.array([self._word2id.get(x, 0) for x in words]) vals, idx = self._session.run( [self._nearby_val, self._nearby_idx], {self._nearby_word: ids}) for i in xrange(len(words)): print("\n%s\n=====================================" % (words[i])) for (neighbor, distance) in zip(idx[i, :num], vals[i, :num]): print("%-20s %6.4f" % (self._id2word[neighbor], distance))
[ "def", "nearby", "(", "self", ",", "words", ",", "num", "=", "20", ")", ":", "ids", "=", "np", ".", "array", "(", "[", "self", ".", "_word2id", ".", "get", "(", "x", ",", "0", ")", "for", "x", "in", "words", "]", ")", "vals", ",", "idx", "=", "self", ".", "_session", ".", "run", "(", "[", "self", ".", "_nearby_val", ",", "self", ".", "_nearby_idx", "]", ",", "{", "self", ".", "_nearby_word", ":", "ids", "}", ")", "for", "i", "in", "xrange", "(", "len", "(", "words", ")", ")", ":", "print", "(", "\"\\n%s\\n=====================================\"", "%", "(", "words", "[", "i", "]", ")", ")", "for", "(", "neighbor", ",", "distance", ")", "in", "zip", "(", "idx", "[", "i", ",", ":", "num", "]", ",", "vals", "[", "i", ",", ":", "num", "]", ")", ":", "print", "(", "\"%-20s %6.4f\"", "%", "(", "self", ".", "_id2word", "[", "neighbor", "]", ",", "distance", ")", ")" ]
[ 489, 2 ]
[ 497, 66 ]
python
en
['en', 'en', 'en']
True
_dump_arg_defaults
(kwargs)
Inject default arguments for dump functions.
Inject default arguments for dump functions.
def _dump_arg_defaults(kwargs): """Inject default arguments for dump functions.""" if current_app: kwargs.setdefault('cls', current_app.json_encoder) if not current_app.config['JSON_AS_ASCII']: kwargs.setdefault('ensure_ascii', False) kwargs.setdefault('sort_keys', current_app.config['JSON_SORT_KEYS']) else: kwargs.setdefault('sort_keys', True) kwargs.setdefault('cls', JSONEncoder)
[ "def", "_dump_arg_defaults", "(", "kwargs", ")", ":", "if", "current_app", ":", "kwargs", ".", "setdefault", "(", "'cls'", ",", "current_app", ".", "json_encoder", ")", "if", "not", "current_app", ".", "config", "[", "'JSON_AS_ASCII'", "]", ":", "kwargs", ".", "setdefault", "(", "'ensure_ascii'", ",", "False", ")", "kwargs", ".", "setdefault", "(", "'sort_keys'", ",", "current_app", ".", "config", "[", "'JSON_SORT_KEYS'", "]", ")", "else", ":", "kwargs", ".", "setdefault", "(", "'sort_keys'", ",", "True", ")", "kwargs", ".", "setdefault", "(", "'cls'", ",", "JSONEncoder", ")" ]
[ 90, 0 ]
[ 99, 45 ]
python
da
['da', 'fr', 'en']
False
_load_arg_defaults
(kwargs)
Inject default arguments for load functions.
Inject default arguments for load functions.
def _load_arg_defaults(kwargs): """Inject default arguments for load functions.""" if current_app: kwargs.setdefault('cls', current_app.json_decoder) else: kwargs.setdefault('cls', JSONDecoder)
[ "def", "_load_arg_defaults", "(", "kwargs", ")", ":", "if", "current_app", ":", "kwargs", ".", "setdefault", "(", "'cls'", ",", "current_app", ".", "json_decoder", ")", "else", ":", "kwargs", ".", "setdefault", "(", "'cls'", ",", "JSONDecoder", ")" ]
[ 102, 0 ]
[ 107, 45 ]
python
en
['da', 'en', 'en']
True
dumps
(obj, **kwargs)
Serialize ``obj`` to a JSON formatted ``str`` by using the application's configured encoder (:attr:`~flask.Flask.json_encoder`) if there is an application on the stack. This function can return ``unicode`` strings or ascii-only bytestrings by default which coerce into unicode strings automatically. That behavior by default is controlled by the ``JSON_AS_ASCII`` configuration variable and can be overridden by the simplejson ``ensure_ascii`` parameter.
Serialize ``obj`` to a JSON formatted ``str`` by using the application's configured encoder (:attr:`~flask.Flask.json_encoder`) if there is an application on the stack.
def dumps(obj, **kwargs): """Serialize ``obj`` to a JSON formatted ``str`` by using the application's configured encoder (:attr:`~flask.Flask.json_encoder`) if there is an application on the stack. This function can return ``unicode`` strings or ascii-only bytestrings by default which coerce into unicode strings automatically. That behavior by default is controlled by the ``JSON_AS_ASCII`` configuration variable and can be overridden by the simplejson ``ensure_ascii`` parameter. """ _dump_arg_defaults(kwargs) encoding = kwargs.pop('encoding', None) rv = _json.dumps(obj, **kwargs) if encoding is not None and isinstance(rv, text_type): rv = rv.encode(encoding) return rv
[ "def", "dumps", "(", "obj", ",", "*", "*", "kwargs", ")", ":", "_dump_arg_defaults", "(", "kwargs", ")", "encoding", "=", "kwargs", ".", "pop", "(", "'encoding'", ",", "None", ")", "rv", "=", "_json", ".", "dumps", "(", "obj", ",", "*", "*", "kwargs", ")", "if", "encoding", "is", "not", "None", "and", "isinstance", "(", "rv", ",", "text_type", ")", ":", "rv", "=", "rv", ".", "encode", "(", "encoding", ")", "return", "rv" ]
[ 110, 0 ]
[ 125, 13 ]
python
en
['en', 'en', 'en']
True
dump
(obj, fp, **kwargs)
Like :func:`dumps` but writes into a file object.
Like :func:`dumps` but writes into a file object.
def dump(obj, fp, **kwargs): """Like :func:`dumps` but writes into a file object.""" _dump_arg_defaults(kwargs) encoding = kwargs.pop('encoding', None) if encoding is not None: fp = _wrap_writer_for_text(fp, encoding) _json.dump(obj, fp, **kwargs)
[ "def", "dump", "(", "obj", ",", "fp", ",", "*", "*", "kwargs", ")", ":", "_dump_arg_defaults", "(", "kwargs", ")", "encoding", "=", "kwargs", ".", "pop", "(", "'encoding'", ",", "None", ")", "if", "encoding", "is", "not", "None", ":", "fp", "=", "_wrap_writer_for_text", "(", "fp", ",", "encoding", ")", "_json", ".", "dump", "(", "obj", ",", "fp", ",", "*", "*", "kwargs", ")" ]
[ 128, 0 ]
[ 134, 33 ]
python
en
['en', 'haw', 'en']
True
loads
(s, **kwargs)
Unserialize a JSON object from a string ``s`` by using the application's configured decoder (:attr:`~flask.Flask.json_decoder`) if there is an application on the stack.
Unserialize a JSON object from a string ``s`` by using the application's configured decoder (:attr:`~flask.Flask.json_decoder`) if there is an application on the stack.
def loads(s, **kwargs): """Unserialize a JSON object from a string ``s`` by using the application's configured decoder (:attr:`~flask.Flask.json_decoder`) if there is an application on the stack. """ _load_arg_defaults(kwargs) if isinstance(s, bytes): s = s.decode(kwargs.pop('encoding', None) or 'utf-8') return _json.loads(s, **kwargs)
[ "def", "loads", "(", "s", ",", "*", "*", "kwargs", ")", ":", "_load_arg_defaults", "(", "kwargs", ")", "if", "isinstance", "(", "s", ",", "bytes", ")", ":", "s", "=", "s", ".", "decode", "(", "kwargs", ".", "pop", "(", "'encoding'", ",", "None", ")", "or", "'utf-8'", ")", "return", "_json", ".", "loads", "(", "s", ",", "*", "*", "kwargs", ")" ]
[ 137, 0 ]
[ 145, 35 ]
python
en
['en', 'en', 'en']
True
load
(fp, **kwargs)
Like :func:`loads` but reads from a file object.
Like :func:`loads` but reads from a file object.
def load(fp, **kwargs): """Like :func:`loads` but reads from a file object. """ _load_arg_defaults(kwargs) if not PY2: fp = _wrap_reader_for_text(fp, kwargs.pop('encoding', None) or 'utf-8') return _json.load(fp, **kwargs)
[ "def", "load", "(", "fp", ",", "*", "*", "kwargs", ")", ":", "_load_arg_defaults", "(", "kwargs", ")", "if", "not", "PY2", ":", "fp", "=", "_wrap_reader_for_text", "(", "fp", ",", "kwargs", ".", "pop", "(", "'encoding'", ",", "None", ")", "or", "'utf-8'", ")", "return", "_json", ".", "load", "(", "fp", ",", "*", "*", "kwargs", ")" ]
[ 148, 0 ]
[ 154, 35 ]
python
en
['en', 'en', 'en']
True
htmlsafe_dumps
(obj, **kwargs)
Works exactly like :func:`dumps` but is safe for use in ``<script>`` tags. It accepts the same arguments and returns a JSON string. Note that this is available in templates through the ``|tojson`` filter which will also mark the result as safe. Due to how this function escapes certain characters this is safe even if used outside of ``<script>`` tags. The following characters are escaped in strings: - ``<`` - ``>`` - ``&`` - ``'`` This makes it safe to embed such strings in any place in HTML with the notable exception of double quoted attributes. In that case single quote your attributes or HTML escape it in addition. .. versionchanged:: 0.10 This function's return value is now always safe for HTML usage, even if outside of script tags or if used in XHTML. This rule does not hold true when using this function in HTML attributes that are double quoted. Always single quote attributes if you use the ``|tojson`` filter. Alternatively use ``|tojson|forceescape``.
Works exactly like :func:`dumps` but is safe for use in ``<script>`` tags. It accepts the same arguments and returns a JSON string. Note that this is available in templates through the ``|tojson`` filter which will also mark the result as safe. Due to how this function escapes certain characters this is safe even if used outside of ``<script>`` tags.
def htmlsafe_dumps(obj, **kwargs): """Works exactly like :func:`dumps` but is safe for use in ``<script>`` tags. It accepts the same arguments and returns a JSON string. Note that this is available in templates through the ``|tojson`` filter which will also mark the result as safe. Due to how this function escapes certain characters this is safe even if used outside of ``<script>`` tags. The following characters are escaped in strings: - ``<`` - ``>`` - ``&`` - ``'`` This makes it safe to embed such strings in any place in HTML with the notable exception of double quoted attributes. In that case single quote your attributes or HTML escape it in addition. .. versionchanged:: 0.10 This function's return value is now always safe for HTML usage, even if outside of script tags or if used in XHTML. This rule does not hold true when using this function in HTML attributes that are double quoted. Always single quote attributes if you use the ``|tojson`` filter. Alternatively use ``|tojson|forceescape``. """ rv = dumps(obj, **kwargs) \ .replace(u'<', u'\\u003c') \ .replace(u'>', u'\\u003e') \ .replace(u'&', u'\\u0026') \ .replace(u"'", u'\\u0027') if not _slash_escape: rv = rv.replace('\\/', '/') return rv
[ "def", "htmlsafe_dumps", "(", "obj", ",", "*", "*", "kwargs", ")", ":", "rv", "=", "dumps", "(", "obj", ",", "*", "*", "kwargs", ")", ".", "replace", "(", "u'<'", ",", "u'\\\\u003c'", ")", ".", "replace", "(", "u'>'", ",", "u'\\\\u003e'", ")", ".", "replace", "(", "u'&'", ",", "u'\\\\u0026'", ")", ".", "replace", "(", "u\"'\"", ",", "u'\\\\u0027'", ")", "if", "not", "_slash_escape", ":", "rv", "=", "rv", ".", "replace", "(", "'\\\\/'", ",", "'/'", ")", "return", "rv" ]
[ 157, 0 ]
[ 189, 13 ]
python
en
['en', 'en', 'en']
True
htmlsafe_dump
(obj, fp, **kwargs)
Like :func:`htmlsafe_dumps` but writes into a file object.
Like :func:`htmlsafe_dumps` but writes into a file object.
def htmlsafe_dump(obj, fp, **kwargs): """Like :func:`htmlsafe_dumps` but writes into a file object.""" fp.write(text_type(htmlsafe_dumps(obj, **kwargs)))
[ "def", "htmlsafe_dump", "(", "obj", ",", "fp", ",", "*", "*", "kwargs", ")", ":", "fp", ".", "write", "(", "text_type", "(", "htmlsafe_dumps", "(", "obj", ",", "*", "*", "kwargs", ")", ")", ")" ]
[ 192, 0 ]
[ 194, 54 ]
python
en
['en', 'en', 'en']
True
jsonify
(*args, **kwargs)
This function wraps :func:`dumps` to add a few enhancements that make life easier. It turns the JSON output into a :class:`~flask.Response` object with the :mimetype:`application/json` mimetype. For convenience, it also converts multiple arguments into an array or multiple keyword arguments into a dict. This means that both ``jsonify(1,2,3)`` and ``jsonify([1,2,3])`` serialize to ``[1,2,3]``. For clarity, the JSON serialization behavior has the following differences from :func:`dumps`: 1. Single argument: Passed straight through to :func:`dumps`. 2. Multiple arguments: Converted to an array before being passed to :func:`dumps`. 3. Multiple keyword arguments: Converted to a dict before being passed to :func:`dumps`. 4. Both args and kwargs: Behavior undefined and will throw an exception. Example usage:: from flask import jsonify @app.route('/_get_current_user') def get_current_user(): return jsonify(username=g.user.username, email=g.user.email, id=g.user.id) This will send a JSON response like this to the browser:: { "username": "admin", "email": "admin@localhost", "id": 42 } .. versionchanged:: 0.11 Added support for serializing top-level arrays. This introduces a security risk in ancient browsers. See :ref:`json-security` for details. This function's response will be pretty printed if it was not requested with ``X-Requested-With: XMLHttpRequest`` to simplify debugging unless the ``JSONIFY_PRETTYPRINT_REGULAR`` config parameter is set to false. Compressed (not pretty) formatting currently means no indents and no spaces after separators. .. versionadded:: 0.2
This function wraps :func:`dumps` to add a few enhancements that make life easier. It turns the JSON output into a :class:`~flask.Response` object with the :mimetype:`application/json` mimetype. For convenience, it also converts multiple arguments into an array or multiple keyword arguments into a dict. This means that both ``jsonify(1,2,3)`` and ``jsonify([1,2,3])`` serialize to ``[1,2,3]``.
def jsonify(*args, **kwargs): """This function wraps :func:`dumps` to add a few enhancements that make life easier. It turns the JSON output into a :class:`~flask.Response` object with the :mimetype:`application/json` mimetype. For convenience, it also converts multiple arguments into an array or multiple keyword arguments into a dict. This means that both ``jsonify(1,2,3)`` and ``jsonify([1,2,3])`` serialize to ``[1,2,3]``. For clarity, the JSON serialization behavior has the following differences from :func:`dumps`: 1. Single argument: Passed straight through to :func:`dumps`. 2. Multiple arguments: Converted to an array before being passed to :func:`dumps`. 3. Multiple keyword arguments: Converted to a dict before being passed to :func:`dumps`. 4. Both args and kwargs: Behavior undefined and will throw an exception. Example usage:: from flask import jsonify @app.route('/_get_current_user') def get_current_user(): return jsonify(username=g.user.username, email=g.user.email, id=g.user.id) This will send a JSON response like this to the browser:: { "username": "admin", "email": "admin@localhost", "id": 42 } .. versionchanged:: 0.11 Added support for serializing top-level arrays. This introduces a security risk in ancient browsers. See :ref:`json-security` for details. This function's response will be pretty printed if it was not requested with ``X-Requested-With: XMLHttpRequest`` to simplify debugging unless the ``JSONIFY_PRETTYPRINT_REGULAR`` config parameter is set to false. Compressed (not pretty) formatting currently means no indents and no spaces after separators. .. versionadded:: 0.2 """ indent = None separators = (',', ':') if current_app.config['JSONIFY_PRETTYPRINT_REGULAR'] and not request.is_xhr: indent = 2 separators = (', ', ': ') if args and kwargs: raise TypeError('jsonify() behavior undefined when passed both args and kwargs') elif len(args) == 1: # single args are passed directly to dumps() data = args[0] else: data = args or kwargs return current_app.response_class( (dumps(data, indent=indent, separators=separators), '\n'), mimetype=current_app.config['JSONIFY_MIMETYPE'] )
[ "def", "jsonify", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "indent", "=", "None", "separators", "=", "(", "','", ",", "':'", ")", "if", "current_app", ".", "config", "[", "'JSONIFY_PRETTYPRINT_REGULAR'", "]", "and", "not", "request", ".", "is_xhr", ":", "indent", "=", "2", "separators", "=", "(", "', '", ",", "': '", ")", "if", "args", "and", "kwargs", ":", "raise", "TypeError", "(", "'jsonify() behavior undefined when passed both args and kwargs'", ")", "elif", "len", "(", "args", ")", "==", "1", ":", "# single args are passed directly to dumps()", "data", "=", "args", "[", "0", "]", "else", ":", "data", "=", "args", "or", "kwargs", "return", "current_app", ".", "response_class", "(", "(", "dumps", "(", "data", ",", "indent", "=", "indent", ",", "separators", "=", "separators", ")", ",", "'\\n'", ")", ",", "mimetype", "=", "current_app", ".", "config", "[", "'JSONIFY_MIMETYPE'", "]", ")" ]
[ 197, 0 ]
[ 264, 5 ]
python
en
['en', 'en', 'en']
True
JSONEncoder.default
(self, o)
Implement this method in a subclass such that it returns a serializable object for ``o``, or calls the base implementation (to raise a :exc:`TypeError`). For example, to support arbitrary iterators, you could implement default like this:: def default(self, o): try: iterable = iter(o) except TypeError: pass else: return list(iterable) return JSONEncoder.default(self, o)
Implement this method in a subclass such that it returns a serializable object for ``o``, or calls the base implementation (to raise a :exc:`TypeError`).
def default(self, o): """Implement this method in a subclass such that it returns a serializable object for ``o``, or calls the base implementation (to raise a :exc:`TypeError`). For example, to support arbitrary iterators, you could implement default like this:: def default(self, o): try: iterable = iter(o) except TypeError: pass else: return list(iterable) return JSONEncoder.default(self, o) """ if isinstance(o, date): return http_date(o.timetuple()) if isinstance(o, uuid.UUID): return str(o) if hasattr(o, '__html__'): return text_type(o.__html__()) return _json.JSONEncoder.default(self, o)
[ "def", "default", "(", "self", ",", "o", ")", ":", "if", "isinstance", "(", "o", ",", "date", ")", ":", "return", "http_date", "(", "o", ".", "timetuple", "(", ")", ")", "if", "isinstance", "(", "o", ",", "uuid", ".", "UUID", ")", ":", "return", "str", "(", "o", ")", "if", "hasattr", "(", "o", ",", "'__html__'", ")", ":", "return", "text_type", "(", "o", ".", "__html__", "(", ")", ")", "return", "_json", ".", "JSONEncoder", ".", "default", "(", "self", ",", "o", ")" ]
[ 56, 4 ]
[ 79, 49 ]
python
en
['en', 'en', 'en']
True
_group_matching
(tlist, cls)
Groups Tokens that have beginning and end.
Groups Tokens that have beginning and end.
def _group_matching(tlist, cls): """Groups Tokens that have beginning and end.""" opens = [] tidx_offset = 0 for idx, token in enumerate(list(tlist)): tidx = idx - tidx_offset if token.is_whitespace: # ~50% of tokens will be whitespace. Will checking early # for them avoid 3 comparisons, but then add 1 more comparison # for the other ~50% of tokens... continue if token.is_group and not isinstance(token, cls): # Check inside previously grouped (i.e. parenthesis) if group # of different type is inside (i.e., case). though ideally should # should check for all open/close tokens at once to avoid recursion _group_matching(token, cls) continue if token.match(*cls.M_OPEN): opens.append(tidx) elif token.match(*cls.M_CLOSE): try: open_idx = opens.pop() except IndexError: # this indicates invalid sql and unbalanced tokens. # instead of break, continue in case other "valid" groups exist continue close_idx = tidx tlist.group_tokens(cls, open_idx, close_idx) tidx_offset += close_idx - open_idx
[ "def", "_group_matching", "(", "tlist", ",", "cls", ")", ":", "opens", "=", "[", "]", "tidx_offset", "=", "0", "for", "idx", ",", "token", "in", "enumerate", "(", "list", "(", "tlist", ")", ")", ":", "tidx", "=", "idx", "-", "tidx_offset", "if", "token", ".", "is_whitespace", ":", "# ~50% of tokens will be whitespace. Will checking early", "# for them avoid 3 comparisons, but then add 1 more comparison", "# for the other ~50% of tokens...", "continue", "if", "token", ".", "is_group", "and", "not", "isinstance", "(", "token", ",", "cls", ")", ":", "# Check inside previously grouped (i.e. parenthesis) if group", "# of different type is inside (i.e., case). though ideally should", "# should check for all open/close tokens at once to avoid recursion", "_group_matching", "(", "token", ",", "cls", ")", "continue", "if", "token", ".", "match", "(", "*", "cls", ".", "M_OPEN", ")", ":", "opens", ".", "append", "(", "tidx", ")", "elif", "token", ".", "match", "(", "*", "cls", ".", "M_CLOSE", ")", ":", "try", ":", "open_idx", "=", "opens", ".", "pop", "(", ")", "except", "IndexError", ":", "# this indicates invalid sql and unbalanced tokens.", "# instead of break, continue in case other \"valid\" groups exist", "continue", "close_idx", "=", "tidx", "tlist", ".", "group_tokens", "(", "cls", ",", "open_idx", ",", "close_idx", ")", "tidx_offset", "+=", "close_idx", "-", "open_idx" ]
[ 16, 0 ]
[ 48, 47 ]
python
en
['en', 'en', 'en']
True
group_order
(tlist)
Group together Identifier and Asc/Desc token
Group together Identifier and Asc/Desc token
def group_order(tlist): """Group together Identifier and Asc/Desc token""" tidx, token = tlist.token_next_by(t=T.Keyword.Order) while token: pidx, prev_ = tlist.token_prev(tidx) if imt(prev_, i=sql.Identifier, t=T.Number): tlist.group_tokens(sql.Identifier, pidx, tidx) tidx = pidx tidx, token = tlist.token_next_by(t=T.Keyword.Order, idx=tidx)
[ "def", "group_order", "(", "tlist", ")", ":", "tidx", ",", "token", "=", "tlist", ".", "token_next_by", "(", "t", "=", "T", ".", "Keyword", ".", "Order", ")", "while", "token", ":", "pidx", ",", "prev_", "=", "tlist", ".", "token_prev", "(", "tidx", ")", "if", "imt", "(", "prev_", ",", "i", "=", "sql", ".", "Identifier", ",", "t", "=", "T", ".", "Number", ")", ":", "tlist", ".", "group_tokens", "(", "sql", ".", "Identifier", ",", "pidx", ",", "tidx", ")", "tidx", "=", "pidx", "tidx", ",", "token", "=", "tlist", ".", "token_next_by", "(", "t", "=", "T", ".", "Keyword", ".", "Order", ",", "idx", "=", "tidx", ")" ]
[ 352, 0 ]
[ 360, 70 ]
python
en
['en', 'en', 'en']
True
_group
(tlist, cls, match, valid_prev=lambda t: True, valid_next=lambda t: True, post=None, extend=True, recurse=True )
Groups together tokens that are joined by a middle token. i.e. x < y
Groups together tokens that are joined by a middle token. i.e. x < y
def _group(tlist, cls, match, valid_prev=lambda t: True, valid_next=lambda t: True, post=None, extend=True, recurse=True ): """Groups together tokens that are joined by a middle token. i.e. x < y""" tidx_offset = 0 pidx, prev_ = None, None for idx, token in enumerate(list(tlist)): tidx = idx - tidx_offset if tidx < 0: # tidx shouldn't get negative continue if token.is_whitespace: continue if recurse and token.is_group and not isinstance(token, cls): _group(token, cls, match, valid_prev, valid_next, post, extend) if match(token): nidx, next_ = tlist.token_next(tidx) if prev_ and valid_prev(prev_) and valid_next(next_): from_idx, to_idx = post(tlist, pidx, tidx, nidx) grp = tlist.group_tokens(cls, from_idx, to_idx, extend=extend) tidx_offset += to_idx - from_idx pidx, prev_ = from_idx, grp continue pidx, prev_ = tidx, token
[ "def", "_group", "(", "tlist", ",", "cls", ",", "match", ",", "valid_prev", "=", "lambda", "t", ":", "True", ",", "valid_next", "=", "lambda", "t", ":", "True", ",", "post", "=", "None", ",", "extend", "=", "True", ",", "recurse", "=", "True", ")", ":", "tidx_offset", "=", "0", "pidx", ",", "prev_", "=", "None", ",", "None", "for", "idx", ",", "token", "in", "enumerate", "(", "list", "(", "tlist", ")", ")", ":", "tidx", "=", "idx", "-", "tidx_offset", "if", "tidx", "<", "0", ":", "# tidx shouldn't get negative", "continue", "if", "token", ".", "is_whitespace", ":", "continue", "if", "recurse", "and", "token", ".", "is_group", "and", "not", "isinstance", "(", "token", ",", "cls", ")", ":", "_group", "(", "token", ",", "cls", ",", "match", ",", "valid_prev", ",", "valid_next", ",", "post", ",", "extend", ")", "if", "match", "(", "token", ")", ":", "nidx", ",", "next_", "=", "tlist", ".", "token_next", "(", "tidx", ")", "if", "prev_", "and", "valid_prev", "(", "prev_", ")", "and", "valid_next", "(", "next_", ")", ":", "from_idx", ",", "to_idx", "=", "post", "(", "tlist", ",", "pidx", ",", "tidx", ",", "nidx", ")", "grp", "=", "tlist", ".", "group_tokens", "(", "cls", ",", "from_idx", ",", "to_idx", ",", "extend", "=", "extend", ")", "tidx_offset", "+=", "to_idx", "-", "from_idx", "pidx", ",", "prev_", "=", "from_idx", ",", "grp", "continue", "pidx", ",", "prev_", "=", "tidx", ",", "token" ]
[ 421, 0 ]
[ 453, 33 ]
python
en
['en', 'en', 'en']
True
CookieStorage._get
(self, *args, **kwargs)
Retrieve a list of messages from the messages cookie. If the not_finished sentinel value is found at the end of the message list, remove it and return a result indicating that not all messages were retrieved by this storage.
Retrieve a list of messages from the messages cookie. If the not_finished sentinel value is found at the end of the message list, remove it and return a result indicating that not all messages were retrieved by this storage.
def _get(self, *args, **kwargs): """ Retrieve a list of messages from the messages cookie. If the not_finished sentinel value is found at the end of the message list, remove it and return a result indicating that not all messages were retrieved by this storage. """ data = self.request.COOKIES.get(self.cookie_name) messages = self._decode(data) all_retrieved = not (messages and messages[-1] == self.not_finished) if messages and not all_retrieved: # remove the sentinel value messages.pop() return messages, all_retrieved
[ "def", "_get", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "data", "=", "self", ".", "request", ".", "COOKIES", ".", "get", "(", "self", ".", "cookie_name", ")", "messages", "=", "self", ".", "_decode", "(", "data", ")", "all_retrieved", "=", "not", "(", "messages", "and", "messages", "[", "-", "1", "]", "==", "self", ".", "not_finished", ")", "if", "messages", "and", "not", "all_retrieved", ":", "# remove the sentinel value", "messages", ".", "pop", "(", ")", "return", "messages", ",", "all_retrieved" ]
[ 78, 4 ]
[ 91, 38 ]
python
en
['en', 'error', 'th']
False
CookieStorage._update_cookie
(self, encoded_data, response)
Either set the cookie with the encoded data if there is any data to store, or delete the cookie.
Either set the cookie with the encoded data if there is any data to store, or delete the cookie.
def _update_cookie(self, encoded_data, response): """ Either set the cookie with the encoded data if there is any data to store, or delete the cookie. """ if encoded_data: response.set_cookie( self.cookie_name, encoded_data, domain=settings.SESSION_COOKIE_DOMAIN, secure=settings.SESSION_COOKIE_SECURE or None, httponly=settings.SESSION_COOKIE_HTTPONLY or None, samesite=settings.SESSION_COOKIE_SAMESITE, ) else: response.delete_cookie( self.cookie_name, domain=settings.SESSION_COOKIE_DOMAIN, samesite=settings.SESSION_COOKIE_SAMESITE, )
[ "def", "_update_cookie", "(", "self", ",", "encoded_data", ",", "response", ")", ":", "if", "encoded_data", ":", "response", ".", "set_cookie", "(", "self", ".", "cookie_name", ",", "encoded_data", ",", "domain", "=", "settings", ".", "SESSION_COOKIE_DOMAIN", ",", "secure", "=", "settings", ".", "SESSION_COOKIE_SECURE", "or", "None", ",", "httponly", "=", "settings", ".", "SESSION_COOKIE_HTTPONLY", "or", "None", ",", "samesite", "=", "settings", ".", "SESSION_COOKIE_SAMESITE", ",", ")", "else", ":", "response", ".", "delete_cookie", "(", "self", ".", "cookie_name", ",", "domain", "=", "settings", ".", "SESSION_COOKIE_DOMAIN", ",", "samesite", "=", "settings", ".", "SESSION_COOKIE_SAMESITE", ",", ")" ]
[ 93, 4 ]
[ 111, 13 ]
python
en
['en', 'error', 'th']
False
CookieStorage._store
(self, messages, response, remove_oldest=True, *args, **kwargs)
Store the messages to a cookie and return a list of any messages which could not be stored. If the encoded data is larger than ``max_cookie_size``, remove messages until the data fits (these are the messages which are returned), and add the not_finished sentinel value to indicate as much.
Store the messages to a cookie and return a list of any messages which could not be stored.
def _store(self, messages, response, remove_oldest=True, *args, **kwargs): """ Store the messages to a cookie and return a list of any messages which could not be stored. If the encoded data is larger than ``max_cookie_size``, remove messages until the data fits (these are the messages which are returned), and add the not_finished sentinel value to indicate as much. """ unstored_messages = [] encoded_data = self._encode(messages) if self.max_cookie_size: # data is going to be stored eventually by SimpleCookie, which # adds its own overhead, which we must account for. cookie = SimpleCookie() # create outside the loop def stored_length(val): return len(cookie.value_encode(val)[1]) while encoded_data and stored_length(encoded_data) > self.max_cookie_size: if remove_oldest: unstored_messages.append(messages.pop(0)) else: unstored_messages.insert(0, messages.pop()) encoded_data = self._encode(messages + [self.not_finished], encode_empty=unstored_messages) self._update_cookie(encoded_data, response) return unstored_messages
[ "def", "_store", "(", "self", ",", "messages", ",", "response", ",", "remove_oldest", "=", "True", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "unstored_messages", "=", "[", "]", "encoded_data", "=", "self", ".", "_encode", "(", "messages", ")", "if", "self", ".", "max_cookie_size", ":", "# data is going to be stored eventually by SimpleCookie, which", "# adds its own overhead, which we must account for.", "cookie", "=", "SimpleCookie", "(", ")", "# create outside the loop", "def", "stored_length", "(", "val", ")", ":", "return", "len", "(", "cookie", ".", "value_encode", "(", "val", ")", "[", "1", "]", ")", "while", "encoded_data", "and", "stored_length", "(", "encoded_data", ")", ">", "self", ".", "max_cookie_size", ":", "if", "remove_oldest", ":", "unstored_messages", ".", "append", "(", "messages", ".", "pop", "(", "0", ")", ")", "else", ":", "unstored_messages", ".", "insert", "(", "0", ",", "messages", ".", "pop", "(", ")", ")", "encoded_data", "=", "self", ".", "_encode", "(", "messages", "+", "[", "self", ".", "not_finished", "]", ",", "encode_empty", "=", "unstored_messages", ")", "self", ".", "_update_cookie", "(", "encoded_data", ",", "response", ")", "return", "unstored_messages" ]
[ 113, 4 ]
[ 140, 32 ]
python
en
['en', 'error', 'th']
False
CookieStorage._legacy_hash
(self, value)
# RemovedInDjango40Warning: pre-Django 3.1 hashes will be invalid. Create an HMAC/SHA1 hash based on the value and the project setting's SECRET_KEY, modified to make it unique for the present purpose.
# RemovedInDjango40Warning: pre-Django 3.1 hashes will be invalid. Create an HMAC/SHA1 hash based on the value and the project setting's SECRET_KEY, modified to make it unique for the present purpose.
def _legacy_hash(self, value): """ # RemovedInDjango40Warning: pre-Django 3.1 hashes will be invalid. Create an HMAC/SHA1 hash based on the value and the project setting's SECRET_KEY, modified to make it unique for the present purpose. """ # The class wide key salt is not reused here since older Django # versions had it fixed and making it dynamic would break old hashes if # self.key_salt is changed. key_salt = 'django.contrib.messages' return salted_hmac(key_salt, value).hexdigest()
[ "def", "_legacy_hash", "(", "self", ",", "value", ")", ":", "# The class wide key salt is not reused here since older Django", "# versions had it fixed and making it dynamic would break old hashes if", "# self.key_salt is changed.", "key_salt", "=", "'django.contrib.messages'", "return", "salted_hmac", "(", "key_salt", ",", "value", ")", ".", "hexdigest", "(", ")" ]
[ 142, 4 ]
[ 152, 55 ]
python
en
['en', 'error', 'th']
False
CookieStorage._encode
(self, messages, encode_empty=False)
Return an encoded version of the messages list which can be stored as plain text. Since the data will be retrieved from the client-side, the encoded data also contains a hash to ensure that the data was not tampered with.
Return an encoded version of the messages list which can be stored as plain text.
def _encode(self, messages, encode_empty=False): """ Return an encoded version of the messages list which can be stored as plain text. Since the data will be retrieved from the client-side, the encoded data also contains a hash to ensure that the data was not tampered with. """ if messages or encode_empty: return self.signer.sign_object(messages, serializer=MessageSerializer, compress=True)
[ "def", "_encode", "(", "self", ",", "messages", ",", "encode_empty", "=", "False", ")", ":", "if", "messages", "or", "encode_empty", ":", "return", "self", ".", "signer", ".", "sign_object", "(", "messages", ",", "serializer", "=", "MessageSerializer", ",", "compress", "=", "True", ")" ]
[ 154, 4 ]
[ 163, 97 ]
python
en
['en', 'error', 'th']
False
CookieStorage._decode
(self, data)
Safely decode an encoded text stream back into a list of messages. If the encoded text stream contained an invalid hash or was in an invalid format, return None.
Safely decode an encoded text stream back into a list of messages.
def _decode(self, data): """ Safely decode an encoded text stream back into a list of messages. If the encoded text stream contained an invalid hash or was in an invalid format, return None. """ if not data: return None try: return self.signer.unsign_object(data, serializer=MessageSerializer) # RemovedInDjango41Warning: when the deprecation ends, replace with: # # except (signing.BadSignature, json.JSONDecodeError): # pass except signing.BadSignature: # RemovedInDjango40Warning: when the deprecation ends, replace # with: # decoded = None. decoded = self._legacy_decode(data) except (binascii.Error, json.JSONDecodeError): decoded = self.signer.unsign(data) if decoded: # RemovedInDjango41Warning. try: return json.loads(decoded, cls=MessageDecoder) except json.JSONDecodeError: pass # Mark the data as used (so it gets removed) since something was wrong # with the data. self.used = True return None
[ "def", "_decode", "(", "self", ",", "data", ")", ":", "if", "not", "data", ":", "return", "None", "try", ":", "return", "self", ".", "signer", ".", "unsign_object", "(", "data", ",", "serializer", "=", "MessageSerializer", ")", "# RemovedInDjango41Warning: when the deprecation ends, replace with:", "#", "# except (signing.BadSignature, json.JSONDecodeError):", "# pass", "except", "signing", ".", "BadSignature", ":", "# RemovedInDjango40Warning: when the deprecation ends, replace", "# with:", "# decoded = None.", "decoded", "=", "self", ".", "_legacy_decode", "(", "data", ")", "except", "(", "binascii", ".", "Error", ",", "json", ".", "JSONDecodeError", ")", ":", "decoded", "=", "self", ".", "signer", ".", "unsign", "(", "data", ")", "if", "decoded", ":", "# RemovedInDjango41Warning.", "try", ":", "return", "json", ".", "loads", "(", "decoded", ",", "cls", "=", "MessageDecoder", ")", "except", "json", ".", "JSONDecodeError", ":", "pass", "# Mark the data as used (so it gets removed) since something was wrong", "# with the data.", "self", ".", "used", "=", "True", "return", "None" ]
[ 165, 4 ]
[ 197, 19 ]
python
en
['en', 'error', 'th']
False
_make_flow
(request, scopes, return_url=None)
Creates a Web Server Flow Args: request: A Django request object. scopes: the request oauth2 scopes. return_url: The URL to return to after the flow is complete. Defaults to the path of the current request. Returns: An OAuth2 flow object that has been stored in the session.
Creates a Web Server Flow
def _make_flow(request, scopes, return_url=None): """Creates a Web Server Flow Args: request: A Django request object. scopes: the request oauth2 scopes. return_url: The URL to return to after the flow is complete. Defaults to the path of the current request. Returns: An OAuth2 flow object that has been stored in the session. """ # Generate a CSRF token to prevent malicious requests. csrf_token = hashlib.sha256(os.urandom(1024)).hexdigest() request.session[_CSRF_KEY] = csrf_token state = json.dumps({ 'csrf_token': csrf_token, 'return_url': return_url, }) flow = client.OAuth2WebServerFlow( client_id=django_util.oauth2_settings.client_id, client_secret=django_util.oauth2_settings.client_secret, scope=scopes, state=state, redirect_uri=request.build_absolute_uri( urlresolvers.reverse("google_oauth:callback"))) flow_key = _FLOW_KEY.format(csrf_token) request.session[flow_key] = jsonpickle.encode(flow) return flow
[ "def", "_make_flow", "(", "request", ",", "scopes", ",", "return_url", "=", "None", ")", ":", "# Generate a CSRF token to prevent malicious requests.", "csrf_token", "=", "hashlib", ".", "sha256", "(", "os", ".", "urandom", "(", "1024", ")", ")", ".", "hexdigest", "(", ")", "request", ".", "session", "[", "_CSRF_KEY", "]", "=", "csrf_token", "state", "=", "json", ".", "dumps", "(", "{", "'csrf_token'", ":", "csrf_token", ",", "'return_url'", ":", "return_url", ",", "}", ")", "flow", "=", "client", ".", "OAuth2WebServerFlow", "(", "client_id", "=", "django_util", ".", "oauth2_settings", ".", "client_id", ",", "client_secret", "=", "django_util", ".", "oauth2_settings", ".", "client_secret", ",", "scope", "=", "scopes", ",", "state", "=", "state", ",", "redirect_uri", "=", "request", ".", "build_absolute_uri", "(", "urlresolvers", ".", "reverse", "(", "\"google_oauth:callback\"", ")", ")", ")", "flow_key", "=", "_FLOW_KEY", ".", "format", "(", "csrf_token", ")", "request", ".", "session", "[", "flow_key", "]", "=", "jsonpickle", ".", "encode", "(", "flow", ")", "return", "flow" ]
[ 43, 0 ]
[ 75, 15 ]
python
en
['en', 'hu', 'en']
True
_get_flow_for_token
(csrf_token, request)
Looks up the flow in session to recover information about requested scopes. Args: csrf_token: The token passed in the callback request that should match the one previously generated and stored in the request on the initial authorization view. Returns: The OAuth2 Flow object associated with this flow based on the CSRF token.
Looks up the flow in session to recover information about requested scopes.
def _get_flow_for_token(csrf_token, request): """ Looks up the flow in session to recover information about requested scopes. Args: csrf_token: The token passed in the callback request that should match the one previously generated and stored in the request on the initial authorization view. Returns: The OAuth2 Flow object associated with this flow based on the CSRF token. """ flow_pickle = request.session.get(_FLOW_KEY.format(csrf_token), None) return None if flow_pickle is None else jsonpickle.decode(flow_pickle)
[ "def", "_get_flow_for_token", "(", "csrf_token", ",", "request", ")", ":", "flow_pickle", "=", "request", ".", "session", ".", "get", "(", "_FLOW_KEY", ".", "format", "(", "csrf_token", ")", ",", "None", ")", "return", "None", "if", "flow_pickle", "is", "None", "else", "jsonpickle", ".", "decode", "(", "flow_pickle", ")" ]
[ 78, 0 ]
[ 92, 74 ]
python
en
['en', 'en', 'en']
True
oauth2_callback
(request)
View that handles the user's return from OAuth2 provider. This view verifies the CSRF state and OAuth authorization code, and on success stores the credentials obtained in the storage provider, and redirects to the return_url specified in the authorize view and stored in the session. Args: request: Django request. Returns: A redirect response back to the return_url.
View that handles the user's return from OAuth2 provider.
def oauth2_callback(request): """ View that handles the user's return from OAuth2 provider. This view verifies the CSRF state and OAuth authorization code, and on success stores the credentials obtained in the storage provider, and redirects to the return_url specified in the authorize view and stored in the session. Args: request: Django request. Returns: A redirect response back to the return_url. """ if 'error' in request.GET: reason = request.GET.get( 'error_description', request.GET.get('error', '')) reason = html.escape(reason) return http.HttpResponseBadRequest( 'Authorization failed {0}'.format(reason)) try: encoded_state = request.GET['state'] code = request.GET['code'] except KeyError: return http.HttpResponseBadRequest( 'Request missing state or authorization code') try: server_csrf = request.session[_CSRF_KEY] except KeyError: return http.HttpResponseBadRequest( 'No existing session for this flow.') try: state = json.loads(encoded_state) client_csrf = state['csrf_token'] return_url = state['return_url'] except (ValueError, KeyError): return http.HttpResponseBadRequest('Invalid state parameter.') if client_csrf != server_csrf: return http.HttpResponseBadRequest('Invalid CSRF token.') flow = _get_flow_for_token(client_csrf, request) if not flow: return http.HttpResponseBadRequest('Missing Oauth2 flow.') try: credentials = flow.step2_exchange(code) except client.FlowExchangeError as exchange_error: return http.HttpResponseBadRequest( 'An error has occurred: {0}'.format(exchange_error)) get_storage(request).put(credentials) signals.oauth2_authorized.send(sender=signals.oauth2_authorized, request=request, credentials=credentials) return shortcuts.redirect(return_url)
[ "def", "oauth2_callback", "(", "request", ")", ":", "if", "'error'", "in", "request", ".", "GET", ":", "reason", "=", "request", ".", "GET", ".", "get", "(", "'error_description'", ",", "request", ".", "GET", ".", "get", "(", "'error'", ",", "''", ")", ")", "reason", "=", "html", ".", "escape", "(", "reason", ")", "return", "http", ".", "HttpResponseBadRequest", "(", "'Authorization failed {0}'", ".", "format", "(", "reason", ")", ")", "try", ":", "encoded_state", "=", "request", ".", "GET", "[", "'state'", "]", "code", "=", "request", ".", "GET", "[", "'code'", "]", "except", "KeyError", ":", "return", "http", ".", "HttpResponseBadRequest", "(", "'Request missing state or authorization code'", ")", "try", ":", "server_csrf", "=", "request", ".", "session", "[", "_CSRF_KEY", "]", "except", "KeyError", ":", "return", "http", ".", "HttpResponseBadRequest", "(", "'No existing session for this flow.'", ")", "try", ":", "state", "=", "json", ".", "loads", "(", "encoded_state", ")", "client_csrf", "=", "state", "[", "'csrf_token'", "]", "return_url", "=", "state", "[", "'return_url'", "]", "except", "(", "ValueError", ",", "KeyError", ")", ":", "return", "http", ".", "HttpResponseBadRequest", "(", "'Invalid state parameter.'", ")", "if", "client_csrf", "!=", "server_csrf", ":", "return", "http", ".", "HttpResponseBadRequest", "(", "'Invalid CSRF token.'", ")", "flow", "=", "_get_flow_for_token", "(", "client_csrf", ",", "request", ")", "if", "not", "flow", ":", "return", "http", ".", "HttpResponseBadRequest", "(", "'Missing Oauth2 flow.'", ")", "try", ":", "credentials", "=", "flow", ".", "step2_exchange", "(", "code", ")", "except", "client", ".", "FlowExchangeError", "as", "exchange_error", ":", "return", "http", ".", "HttpResponseBadRequest", "(", "'An error has occurred: {0}'", ".", "format", "(", "exchange_error", ")", ")", "get_storage", "(", "request", ")", ".", "put", "(", "credentials", ")", "signals", ".", "oauth2_authorized", ".", "send", "(", "sender", "=", "signals", ".", "oauth2_authorized", ",", "request", "=", "request", ",", "credentials", "=", "credentials", ")", "return", "shortcuts", ".", "redirect", "(", "return_url", ")" ]
[ 95, 0 ]
[ 155, 41 ]
python
en
['en', 'en', 'en']
True
oauth2_authorize
(request)
View to start the OAuth2 Authorization flow. This view starts the OAuth2 authorization flow. If scopes is passed in as a GET URL parameter, it will authorize those scopes, otherwise the default scopes specified in settings. The return_url can also be specified as a GET parameter, otherwise the referer header will be checked, and if that isn't found it will return to the root path. Args: request: The Django request object. Returns: A redirect to Google OAuth2 Authorization.
View to start the OAuth2 Authorization flow.
def oauth2_authorize(request): """ View to start the OAuth2 Authorization flow. This view starts the OAuth2 authorization flow. If scopes is passed in as a GET URL parameter, it will authorize those scopes, otherwise the default scopes specified in settings. The return_url can also be specified as a GET parameter, otherwise the referer header will be checked, and if that isn't found it will return to the root path. Args: request: The Django request object. Returns: A redirect to Google OAuth2 Authorization. """ return_url = request.GET.get('return_url', None) if not return_url: return_url = request.META.get('HTTP_REFERER', '/') scopes = request.GET.getlist('scopes', django_util.oauth2_settings.scopes) # Model storage (but not session storage) requires a logged in user if django_util.oauth2_settings.storage_model: if not request.user.is_authenticated(): return redirect('{0}?next={1}'.format( settings.LOGIN_URL, parse.quote(request.get_full_path()))) # This checks for the case where we ended up here because of a logged # out user but we had credentials for it in the first place else: user_oauth = django_util.UserOAuth2(request, scopes, return_url) if user_oauth.has_credentials(): return redirect(return_url) flow = _make_flow(request=request, scopes=scopes, return_url=return_url) auth_url = flow.step1_get_authorize_url() return shortcuts.redirect(auth_url)
[ "def", "oauth2_authorize", "(", "request", ")", ":", "return_url", "=", "request", ".", "GET", ".", "get", "(", "'return_url'", ",", "None", ")", "if", "not", "return_url", ":", "return_url", "=", "request", ".", "META", ".", "get", "(", "'HTTP_REFERER'", ",", "'/'", ")", "scopes", "=", "request", ".", "GET", ".", "getlist", "(", "'scopes'", ",", "django_util", ".", "oauth2_settings", ".", "scopes", ")", "# Model storage (but not session storage) requires a logged in user", "if", "django_util", ".", "oauth2_settings", ".", "storage_model", ":", "if", "not", "request", ".", "user", ".", "is_authenticated", "(", ")", ":", "return", "redirect", "(", "'{0}?next={1}'", ".", "format", "(", "settings", ".", "LOGIN_URL", ",", "parse", ".", "quote", "(", "request", ".", "get_full_path", "(", ")", ")", ")", ")", "# This checks for the case where we ended up here because of a logged", "# out user but we had credentials for it in the first place", "else", ":", "user_oauth", "=", "django_util", ".", "UserOAuth2", "(", "request", ",", "scopes", ",", "return_url", ")", "if", "user_oauth", ".", "has_credentials", "(", ")", ":", "return", "redirect", "(", "return_url", ")", "flow", "=", "_make_flow", "(", "request", "=", "request", ",", "scopes", "=", "scopes", ",", "return_url", "=", "return_url", ")", "auth_url", "=", "flow", ".", "step1_get_authorize_url", "(", ")", "return", "shortcuts", ".", "redirect", "(", "auth_url", ")" ]
[ 158, 0 ]
[ 192, 39 ]
python
en
['en', 'en', 'en']
True
URIVariable.parse
(self)
Parse the variable. This finds the: - operator, - set of safe characters, - variables, and - defaults.
Parse the variable.
def parse(self): """Parse the variable. This finds the: - operator, - set of safe characters, - variables, and - defaults. """ var_list = self.original if self.original[0] in URIVariable.operators: self.operator = self.original[0] var_list = self.original[1:] if self.operator in URIVariable.operators[:2]: self.safe = URIVariable.reserved var_list = var_list.split(',') for var in var_list: default_val = None name = var if '=' in var: name, default_val = tuple(var.split('=', 1)) explode = False if name.endswith('*'): explode = True name = name[:-1] prefix = None if ':' in name: name, prefix = tuple(name.split(':', 1)) prefix = int(prefix) if default_val: self.defaults[name] = default_val self.variables.append( (name, {'explode': explode, 'prefix': prefix}) ) self.variable_names = [varname for (varname, _) in self.variables]
[ "def", "parse", "(", "self", ")", ":", "var_list", "=", "self", ".", "original", "if", "self", ".", "original", "[", "0", "]", "in", "URIVariable", ".", "operators", ":", "self", ".", "operator", "=", "self", ".", "original", "[", "0", "]", "var_list", "=", "self", ".", "original", "[", "1", ":", "]", "if", "self", ".", "operator", "in", "URIVariable", ".", "operators", "[", ":", "2", "]", ":", "self", ".", "safe", "=", "URIVariable", ".", "reserved", "var_list", "=", "var_list", ".", "split", "(", "','", ")", "for", "var", "in", "var_list", ":", "default_val", "=", "None", "name", "=", "var", "if", "'='", "in", "var", ":", "name", ",", "default_val", "=", "tuple", "(", "var", ".", "split", "(", "'='", ",", "1", ")", ")", "explode", "=", "False", "if", "name", ".", "endswith", "(", "'*'", ")", ":", "explode", "=", "True", "name", "=", "name", "[", ":", "-", "1", "]", "prefix", "=", "None", "if", "':'", "in", "name", ":", "name", ",", "prefix", "=", "tuple", "(", "name", ".", "split", "(", "':'", ",", "1", ")", ")", "prefix", "=", "int", "(", "prefix", ")", "if", "default_val", ":", "self", ".", "defaults", "[", "name", "]", "=", "default_val", "self", ".", "variables", ".", "append", "(", "(", "name", ",", "{", "'explode'", ":", "explode", ",", "'prefix'", ":", "prefix", "}", ")", ")", "self", ".", "variable_names", "=", "[", "varname", "for", "(", "varname", ",", "_", ")", "in", "self", ".", "variables", "]" ]
[ 72, 4 ]
[ 115, 74 ]
python
en
['en', 'en', 'en']
True
URIVariable.post_parse
(self)
Set ``start``, ``join_str`` and ``safe`` attributes. After parsing the variable, we need to set up these attributes and it only makes sense to do it in a more easily testable way.
Set ``start``, ``join_str`` and ``safe`` attributes.
def post_parse(self): """Set ``start``, ``join_str`` and ``safe`` attributes. After parsing the variable, we need to set up these attributes and it only makes sense to do it in a more easily testable way. """ self.safe = '' self.start = self.join_str = self.operator if self.operator == '+': self.start = '' if self.operator in ('+', '#', ''): self.join_str = ',' if self.operator == '#': self.start = '#' if self.operator == '?': self.start = '?' self.join_str = '&' if self.operator in ('+', '#'): self.safe = URIVariable.reserved
[ "def", "post_parse", "(", "self", ")", ":", "self", ".", "safe", "=", "''", "self", ".", "start", "=", "self", ".", "join_str", "=", "self", ".", "operator", "if", "self", ".", "operator", "==", "'+'", ":", "self", ".", "start", "=", "''", "if", "self", ".", "operator", "in", "(", "'+'", ",", "'#'", ",", "''", ")", ":", "self", ".", "join_str", "=", "','", "if", "self", ".", "operator", "==", "'#'", ":", "self", ".", "start", "=", "'#'", "if", "self", ".", "operator", "==", "'?'", ":", "self", ".", "start", "=", "'?'", "self", ".", "join_str", "=", "'&'", "if", "self", ".", "operator", "in", "(", "'+'", ",", "'#'", ")", ":", "self", ".", "safe", "=", "URIVariable", ".", "reserved" ]
[ 117, 4 ]
[ 136, 44 ]
python
en
['en', 'da', 'en']
True
URIVariable._query_expansion
(self, name, value, explode, prefix)
Expansion method for the '?' and '&' operators.
Expansion method for the '?' and '&' operators.
def _query_expansion(self, name, value, explode, prefix): """Expansion method for the '?' and '&' operators.""" if value is None: return None tuples, items = is_list_of_tuples(value) safe = self.safe if list_test(value) and not tuples: if not value: return None if explode: return self.join_str.join( '%s=%s' % (name, quote(v, safe)) for v in value ) else: value = ','.join(quote(v, safe) for v in value) return '%s=%s' % (name, value) if dict_test(value) or tuples: if not value: return None items = items or sorted(value.items()) if explode: return self.join_str.join( '%s=%s' % ( quote(k, safe), quote(v, safe) ) for k, v in items ) else: value = ','.join( '%s,%s' % ( quote(k, safe), quote(v, safe) ) for k, v in items ) return '%s=%s' % (name, value) if value: value = value[:prefix] if prefix else value return '%s=%s' % (name, quote(value, safe)) return name + '='
[ "def", "_query_expansion", "(", "self", ",", "name", ",", "value", ",", "explode", ",", "prefix", ")", ":", "if", "value", "is", "None", ":", "return", "None", "tuples", ",", "items", "=", "is_list_of_tuples", "(", "value", ")", "safe", "=", "self", ".", "safe", "if", "list_test", "(", "value", ")", "and", "not", "tuples", ":", "if", "not", "value", ":", "return", "None", "if", "explode", ":", "return", "self", ".", "join_str", ".", "join", "(", "'%s=%s'", "%", "(", "name", ",", "quote", "(", "v", ",", "safe", ")", ")", "for", "v", "in", "value", ")", "else", ":", "value", "=", "','", ".", "join", "(", "quote", "(", "v", ",", "safe", ")", "for", "v", "in", "value", ")", "return", "'%s=%s'", "%", "(", "name", ",", "value", ")", "if", "dict_test", "(", "value", ")", "or", "tuples", ":", "if", "not", "value", ":", "return", "None", "items", "=", "items", "or", "sorted", "(", "value", ".", "items", "(", ")", ")", "if", "explode", ":", "return", "self", ".", "join_str", ".", "join", "(", "'%s=%s'", "%", "(", "quote", "(", "k", ",", "safe", ")", ",", "quote", "(", "v", ",", "safe", ")", ")", "for", "k", ",", "v", "in", "items", ")", "else", ":", "value", "=", "','", ".", "join", "(", "'%s,%s'", "%", "(", "quote", "(", "k", ",", "safe", ")", ",", "quote", "(", "v", ",", "safe", ")", ")", "for", "k", ",", "v", "in", "items", ")", "return", "'%s=%s'", "%", "(", "name", ",", "value", ")", "if", "value", ":", "value", "=", "value", "[", ":", "prefix", "]", "if", "prefix", "else", "value", "return", "'%s=%s'", "%", "(", "name", ",", "quote", "(", "value", ",", "safe", ")", ")", "return", "name", "+", "'='" ]
[ 138, 4 ]
[ 178, 25 ]
python
en
['en', 'en', 'en']
True
URIVariable._label_path_expansion
(self, name, value, explode, prefix)
Label and path expansion method. Expands for operators: '/', '.'
Label and path expansion method.
def _label_path_expansion(self, name, value, explode, prefix): """Label and path expansion method. Expands for operators: '/', '.' """ join_str = self.join_str safe = self.safe if value is None or (len(value) == 0 and value != ''): return None tuples, items = is_list_of_tuples(value) if list_test(value) and not tuples: if not explode: join_str = ',' expanded = join_str.join( quote(v, safe) for v in value if value is not None ) return expanded if expanded else None if dict_test(value) or tuples: items = items or sorted(value.items()) format_str = '%s=%s' if not explode: format_str = '%s,%s' join_str = ',' expanded = join_str.join( format_str % ( quote(k, safe), quote(v, safe) ) for k, v in items if v is not None ) return expanded if expanded else None value = value[:prefix] if prefix else value return quote(value, safe)
[ "def", "_label_path_expansion", "(", "self", ",", "name", ",", "value", ",", "explode", ",", "prefix", ")", ":", "join_str", "=", "self", ".", "join_str", "safe", "=", "self", ".", "safe", "if", "value", "is", "None", "or", "(", "len", "(", "value", ")", "==", "0", "and", "value", "!=", "''", ")", ":", "return", "None", "tuples", ",", "items", "=", "is_list_of_tuples", "(", "value", ")", "if", "list_test", "(", "value", ")", "and", "not", "tuples", ":", "if", "not", "explode", ":", "join_str", "=", "','", "expanded", "=", "join_str", ".", "join", "(", "quote", "(", "v", ",", "safe", ")", "for", "v", "in", "value", "if", "value", "is", "not", "None", ")", "return", "expanded", "if", "expanded", "else", "None", "if", "dict_test", "(", "value", ")", "or", "tuples", ":", "items", "=", "items", "or", "sorted", "(", "value", ".", "items", "(", ")", ")", "format_str", "=", "'%s=%s'", "if", "not", "explode", ":", "format_str", "=", "'%s,%s'", "join_str", "=", "','", "expanded", "=", "join_str", ".", "join", "(", "format_str", "%", "(", "quote", "(", "k", ",", "safe", ")", ",", "quote", "(", "v", ",", "safe", ")", ")", "for", "k", ",", "v", "in", "items", "if", "v", "is", "not", "None", ")", "return", "expanded", "if", "expanded", "else", "None", "value", "=", "value", "[", ":", "prefix", "]", "if", "prefix", "else", "value", "return", "quote", "(", "value", ",", "safe", ")" ]
[ 180, 4 ]
[ 218, 33 ]
python
en
['en', 'en', 'en']
True
URIVariable._semi_path_expansion
(self, name, value, explode, prefix)
Expansion method for ';' operator.
Expansion method for ';' operator.
def _semi_path_expansion(self, name, value, explode, prefix): """Expansion method for ';' operator.""" join_str = self.join_str safe = self.safe if value is None: return None if self.operator == '?': join_str = '&' tuples, items = is_list_of_tuples(value) if list_test(value) and not tuples: if explode: expanded = join_str.join( '%s=%s' % ( name, quote(v, safe) ) for v in value if v is not None ) return expanded if expanded else None else: value = ','.join(quote(v, safe) for v in value) return '%s=%s' % (name, value) if dict_test(value) or tuples: items = items or sorted(value.items()) if explode: return join_str.join( '%s=%s' % ( quote(k, safe), quote(v, safe) ) for k, v in items if v is not None ) else: expanded = ','.join( '%s,%s' % ( quote(k, safe), quote(v, safe) ) for k, v in items if v is not None ) return '%s=%s' % (name, expanded) value = value[:prefix] if prefix else value if value: return '%s=%s' % (name, quote(value, safe)) return name
[ "def", "_semi_path_expansion", "(", "self", ",", "name", ",", "value", ",", "explode", ",", "prefix", ")", ":", "join_str", "=", "self", ".", "join_str", "safe", "=", "self", ".", "safe", "if", "value", "is", "None", ":", "return", "None", "if", "self", ".", "operator", "==", "'?'", ":", "join_str", "=", "'&'", "tuples", ",", "items", "=", "is_list_of_tuples", "(", "value", ")", "if", "list_test", "(", "value", ")", "and", "not", "tuples", ":", "if", "explode", ":", "expanded", "=", "join_str", ".", "join", "(", "'%s=%s'", "%", "(", "name", ",", "quote", "(", "v", ",", "safe", ")", ")", "for", "v", "in", "value", "if", "v", "is", "not", "None", ")", "return", "expanded", "if", "expanded", "else", "None", "else", ":", "value", "=", "','", ".", "join", "(", "quote", "(", "v", ",", "safe", ")", "for", "v", "in", "value", ")", "return", "'%s=%s'", "%", "(", "name", ",", "value", ")", "if", "dict_test", "(", "value", ")", "or", "tuples", ":", "items", "=", "items", "or", "sorted", "(", "value", ".", "items", "(", ")", ")", "if", "explode", ":", "return", "join_str", ".", "join", "(", "'%s=%s'", "%", "(", "quote", "(", "k", ",", "safe", ")", ",", "quote", "(", "v", ",", "safe", ")", ")", "for", "k", ",", "v", "in", "items", "if", "v", "is", "not", "None", ")", "else", ":", "expanded", "=", "','", ".", "join", "(", "'%s,%s'", "%", "(", "quote", "(", "k", ",", "safe", ")", ",", "quote", "(", "v", ",", "safe", ")", ")", "for", "k", ",", "v", "in", "items", "if", "v", "is", "not", "None", ")", "return", "'%s=%s'", "%", "(", "name", ",", "expanded", ")", "value", "=", "value", "[", ":", "prefix", "]", "if", "prefix", "else", "value", "if", "value", ":", "return", "'%s=%s'", "%", "(", "name", ",", "quote", "(", "value", ",", "safe", ")", ")", "return", "name" ]
[ 220, 4 ]
[ 266, 19 ]
python
en
['en', 'en', 'en']
True
URIVariable.expand
(self, var_dict=None)
Expand the variable in question. Using ``var_dict`` and the previously parsed defaults, expand this variable and subvariables. :param dict var_dict: dictionary of key-value pairs to be used during expansion :returns: dict(variable=value) Examples:: # (1) v = URIVariable('/var') expansion = v.expand({'var': 'value'}) print(expansion) # => {'/var': '/value'} # (2) v = URIVariable('?var,hello,x,y') expansion = v.expand({'var': 'value', 'hello': 'Hello World!', 'x': '1024', 'y': '768'}) print(expansion) # => {'?var,hello,x,y': # '?var=value&hello=Hello%20World%21&x=1024&y=768'}
Expand the variable in question.
def expand(self, var_dict=None): """Expand the variable in question. Using ``var_dict`` and the previously parsed defaults, expand this variable and subvariables. :param dict var_dict: dictionary of key-value pairs to be used during expansion :returns: dict(variable=value) Examples:: # (1) v = URIVariable('/var') expansion = v.expand({'var': 'value'}) print(expansion) # => {'/var': '/value'} # (2) v = URIVariable('?var,hello,x,y') expansion = v.expand({'var': 'value', 'hello': 'Hello World!', 'x': '1024', 'y': '768'}) print(expansion) # => {'?var,hello,x,y': # '?var=value&hello=Hello%20World%21&x=1024&y=768'} """ return_values = [] for name, opts in self.variables: value = var_dict.get(name, None) if not value and value != '' and name in self.defaults: value = self.defaults[name] if value is None: continue expanded = None if self.operator in ('/', '.'): expansion = self._label_path_expansion elif self.operator in ('?', '&'): expansion = self._query_expansion elif self.operator == ';': expansion = self._semi_path_expansion else: expansion = self._string_expansion expanded = expansion(name, value, opts['explode'], opts['prefix']) if expanded is not None: return_values.append(expanded) value = '' if return_values: value = self.start + self.join_str.join(return_values) return {self.original: value}
[ "def", "expand", "(", "self", ",", "var_dict", "=", "None", ")", ":", "return_values", "=", "[", "]", "for", "name", ",", "opts", "in", "self", ".", "variables", ":", "value", "=", "var_dict", ".", "get", "(", "name", ",", "None", ")", "if", "not", "value", "and", "value", "!=", "''", "and", "name", "in", "self", ".", "defaults", ":", "value", "=", "self", ".", "defaults", "[", "name", "]", "if", "value", "is", "None", ":", "continue", "expanded", "=", "None", "if", "self", ".", "operator", "in", "(", "'/'", ",", "'.'", ")", ":", "expansion", "=", "self", ".", "_label_path_expansion", "elif", "self", ".", "operator", "in", "(", "'?'", ",", "'&'", ")", ":", "expansion", "=", "self", ".", "_query_expansion", "elif", "self", ".", "operator", "==", "';'", ":", "expansion", "=", "self", ".", "_semi_path_expansion", "else", ":", "expansion", "=", "self", ".", "_string_expansion", "expanded", "=", "expansion", "(", "name", ",", "value", ",", "opts", "[", "'explode'", "]", ",", "opts", "[", "'prefix'", "]", ")", "if", "expanded", "is", "not", "None", ":", "return_values", ".", "append", "(", "expanded", ")", "value", "=", "''", "if", "return_values", ":", "value", "=", "self", ".", "start", "+", "self", ".", "join_str", ".", "join", "(", "return_values", ")", "return", "{", "self", ".", "original", ":", "value", "}" ]
[ 290, 4 ]
[ 345, 37 ]
python
en
['en', 'en', 'en']
True
FileField.generate_filename
(self, instance, filename)
Apply (if callable) or prepend (if a string) upload_to to the filename, then delegate further processing of the name to the storage backend. Until the storage layer, all file paths are expected to be Unix style (with forward slashes).
Apply (if callable) or prepend (if a string) upload_to to the filename, then delegate further processing of the name to the storage backend. Until the storage layer, all file paths are expected to be Unix style (with forward slashes).
def generate_filename(self, instance, filename): """ Apply (if callable) or prepend (if a string) upload_to to the filename, then delegate further processing of the name to the storage backend. Until the storage layer, all file paths are expected to be Unix style (with forward slashes). """ if callable(self.upload_to): filename = self.upload_to(instance, filename) else: dirname = datetime.datetime.now().strftime(str(self.upload_to)) filename = posixpath.join(dirname, filename) filename = validate_file_name(filename, allow_relative_path=True) return self.storage.generate_filename(filename)
[ "def", "generate_filename", "(", "self", ",", "instance", ",", "filename", ")", ":", "if", "callable", "(", "self", ".", "upload_to", ")", ":", "filename", "=", "self", ".", "upload_to", "(", "instance", ",", "filename", ")", "else", ":", "dirname", "=", "datetime", ".", "datetime", ".", "now", "(", ")", ".", "strftime", "(", "str", "(", "self", ".", "upload_to", ")", ")", "filename", "=", "posixpath", ".", "join", "(", "dirname", ",", "filename", ")", "filename", "=", "validate_file_name", "(", "filename", ",", "allow_relative_path", "=", "True", ")", "return", "self", ".", "storage", ".", "generate_filename", "(", "filename", ")" ]
[ 308, 4 ]
[ 321, 55 ]
python
en
['en', 'error', 'th']
False
ImageField.update_dimension_fields
(self, instance, force=False, *args, **kwargs)
Update field's width and height fields, if defined. This method is hooked up to model's post_init signal to update dimensions after instantiating a model instance. However, dimensions won't be updated if the dimensions fields are already populated. This avoids unnecessary recalculation when loading an object from the database. Dimensions can be forced to update with force=True, which is how ImageFileDescriptor.__set__ calls this method.
Update field's width and height fields, if defined.
def update_dimension_fields(self, instance, force=False, *args, **kwargs): """ Update field's width and height fields, if defined. This method is hooked up to model's post_init signal to update dimensions after instantiating a model instance. However, dimensions won't be updated if the dimensions fields are already populated. This avoids unnecessary recalculation when loading an object from the database. Dimensions can be forced to update with force=True, which is how ImageFileDescriptor.__set__ calls this method. """ # Nothing to update if the field doesn't have dimension fields or if # the field is deferred. has_dimension_fields = self.width_field or self.height_field if not has_dimension_fields or self.attname not in instance.__dict__: return # getattr will call the ImageFileDescriptor's __get__ method, which # coerces the assigned value into an instance of self.attr_class # (ImageFieldFile in this case). file = getattr(instance, self.attname) # Nothing to update if we have no file and not being forced to update. if not file and not force: return dimension_fields_filled = not( (self.width_field and not getattr(instance, self.width_field)) or (self.height_field and not getattr(instance, self.height_field)) ) # When both dimension fields have values, we are most likely loading # data from the database or updating an image field that already had # an image stored. In the first case, we don't want to update the # dimension fields because we are already getting their values from the # database. In the second case, we do want to update the dimensions # fields and will skip this return because force will be True since we # were called from ImageFileDescriptor.__set__. if dimension_fields_filled and not force: return # file should be an instance of ImageFieldFile or should be None. if file: width = file.width height = file.height else: # No file, so clear dimensions fields. width = None height = None # Update the width and height fields. if self.width_field: setattr(instance, self.width_field, width) if self.height_field: setattr(instance, self.height_field, height)
[ "def", "update_dimension_fields", "(", "self", ",", "instance", ",", "force", "=", "False", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "# Nothing to update if the field doesn't have dimension fields or if", "# the field is deferred.", "has_dimension_fields", "=", "self", ".", "width_field", "or", "self", ".", "height_field", "if", "not", "has_dimension_fields", "or", "self", ".", "attname", "not", "in", "instance", ".", "__dict__", ":", "return", "# getattr will call the ImageFileDescriptor's __get__ method, which", "# coerces the assigned value into an instance of self.attr_class", "# (ImageFieldFile in this case).", "file", "=", "getattr", "(", "instance", ",", "self", ".", "attname", ")", "# Nothing to update if we have no file and not being forced to update.", "if", "not", "file", "and", "not", "force", ":", "return", "dimension_fields_filled", "=", "not", "(", "(", "self", ".", "width_field", "and", "not", "getattr", "(", "instance", ",", "self", ".", "width_field", ")", ")", "or", "(", "self", ".", "height_field", "and", "not", "getattr", "(", "instance", ",", "self", ".", "height_field", ")", ")", ")", "# When both dimension fields have values, we are most likely loading", "# data from the database or updating an image field that already had", "# an image stored. In the first case, we don't want to update the", "# dimension fields because we are already getting their values from the", "# database. In the second case, we do want to update the dimensions", "# fields and will skip this return because force will be True since we", "# were called from ImageFileDescriptor.__set__.", "if", "dimension_fields_filled", "and", "not", "force", ":", "return", "# file should be an instance of ImageFieldFile or should be None.", "if", "file", ":", "width", "=", "file", ".", "width", "height", "=", "file", ".", "height", "else", ":", "# No file, so clear dimensions fields.", "width", "=", "None", "height", "=", "None", "# Update the width and height fields.", "if", "self", ".", "width_field", ":", "setattr", "(", "instance", ",", "self", ".", "width_field", ",", "width", ")", "if", "self", ".", "height_field", ":", "setattr", "(", "instance", ",", "self", ".", "height_field", ",", "height", ")" ]
[ 419, 4 ]
[ 474, 56 ]
python
en
['en', 'error', 'th']
False
sensitive_variables
(*variables)
Indicate which variables used in the decorated function are sensitive so that those variables can later be treated in a special way, for example by hiding them when logging unhandled exceptions. Accept two forms: * with specified variable names: @sensitive_variables('user', 'password', 'credit_card') def my_function(user): password = user.pass_word credit_card = user.credit_card_number ... * without any specified variable names, in which case consider all variables are sensitive: @sensitive_variables() def my_function() ...
Indicate which variables used in the decorated function are sensitive so that those variables can later be treated in a special way, for example by hiding them when logging unhandled exceptions.
def sensitive_variables(*variables): """ Indicate which variables used in the decorated function are sensitive so that those variables can later be treated in a special way, for example by hiding them when logging unhandled exceptions. Accept two forms: * with specified variable names: @sensitive_variables('user', 'password', 'credit_card') def my_function(user): password = user.pass_word credit_card = user.credit_card_number ... * without any specified variable names, in which case consider all variables are sensitive: @sensitive_variables() def my_function() ... """ if len(variables) == 1 and callable(variables[0]): raise TypeError( 'sensitive_variables() must be called to use it as a decorator, ' 'e.g., use @sensitive_variables(), not @sensitive_variables.' ) def decorator(func): @functools.wraps(func) def sensitive_variables_wrapper(*func_args, **func_kwargs): if variables: sensitive_variables_wrapper.sensitive_variables = variables else: sensitive_variables_wrapper.sensitive_variables = '__ALL__' return func(*func_args, **func_kwargs) return sensitive_variables_wrapper return decorator
[ "def", "sensitive_variables", "(", "*", "variables", ")", ":", "if", "len", "(", "variables", ")", "==", "1", "and", "callable", "(", "variables", "[", "0", "]", ")", ":", "raise", "TypeError", "(", "'sensitive_variables() must be called to use it as a decorator, '", "'e.g., use @sensitive_variables(), not @sensitive_variables.'", ")", "def", "decorator", "(", "func", ")", ":", "@", "functools", ".", "wraps", "(", "func", ")", "def", "sensitive_variables_wrapper", "(", "*", "func_args", ",", "*", "*", "func_kwargs", ")", ":", "if", "variables", ":", "sensitive_variables_wrapper", ".", "sensitive_variables", "=", "variables", "else", ":", "sensitive_variables_wrapper", ".", "sensitive_variables", "=", "'__ALL__'", "return", "func", "(", "*", "func_args", ",", "*", "*", "func_kwargs", ")", "return", "sensitive_variables_wrapper", "return", "decorator" ]
[ 5, 0 ]
[ 43, 20 ]
python
en
['en', 'error', 'th']
False
sensitive_post_parameters
(*parameters)
Indicate which POST parameters used in the decorated view are sensitive, so that those parameters can later be treated in a special way, for example by hiding them when logging unhandled exceptions. Accept two forms: * with specified parameters: @sensitive_post_parameters('password', 'credit_card') def my_view(request): pw = request.POST['password'] cc = request.POST['credit_card'] ... * without any specified parameters, in which case consider all variables are sensitive: @sensitive_post_parameters() def my_view(request) ...
Indicate which POST parameters used in the decorated view are sensitive, so that those parameters can later be treated in a special way, for example by hiding them when logging unhandled exceptions.
def sensitive_post_parameters(*parameters): """ Indicate which POST parameters used in the decorated view are sensitive, so that those parameters can later be treated in a special way, for example by hiding them when logging unhandled exceptions. Accept two forms: * with specified parameters: @sensitive_post_parameters('password', 'credit_card') def my_view(request): pw = request.POST['password'] cc = request.POST['credit_card'] ... * without any specified parameters, in which case consider all variables are sensitive: @sensitive_post_parameters() def my_view(request) ... """ if len(parameters) == 1 and callable(parameters[0]): raise TypeError( 'sensitive_post_parameters() must be called to use it as a ' 'decorator, e.g., use @sensitive_post_parameters(), not ' '@sensitive_post_parameters.' ) def decorator(view): @functools.wraps(view) def sensitive_post_parameters_wrapper(request, *args, **kwargs): assert isinstance(request, HttpRequest), ( "sensitive_post_parameters didn't receive an HttpRequest. " "If you are decorating a classmethod, be sure to use " "@method_decorator." ) if parameters: request.sensitive_post_parameters = parameters else: request.sensitive_post_parameters = '__ALL__' return view(request, *args, **kwargs) return sensitive_post_parameters_wrapper return decorator
[ "def", "sensitive_post_parameters", "(", "*", "parameters", ")", ":", "if", "len", "(", "parameters", ")", "==", "1", "and", "callable", "(", "parameters", "[", "0", "]", ")", ":", "raise", "TypeError", "(", "'sensitive_post_parameters() must be called to use it as a '", "'decorator, e.g., use @sensitive_post_parameters(), not '", "'@sensitive_post_parameters.'", ")", "def", "decorator", "(", "view", ")", ":", "@", "functools", ".", "wraps", "(", "view", ")", "def", "sensitive_post_parameters_wrapper", "(", "request", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "assert", "isinstance", "(", "request", ",", "HttpRequest", ")", ",", "(", "\"sensitive_post_parameters didn't receive an HttpRequest. \"", "\"If you are decorating a classmethod, be sure to use \"", "\"@method_decorator.\"", ")", "if", "parameters", ":", "request", ".", "sensitive_post_parameters", "=", "parameters", "else", ":", "request", ".", "sensitive_post_parameters", "=", "'__ALL__'", "return", "view", "(", "request", ",", "*", "args", ",", "*", "*", "kwargs", ")", "return", "sensitive_post_parameters_wrapper", "return", "decorator" ]
[ 46, 0 ]
[ 90, 20 ]
python
en
['en', 'error', 'th']
False
Operation.deconstruct
(self)
Return a 3-tuple of class import path (or just name if it lives under django.db.migrations), positional arguments, and keyword arguments.
Return a 3-tuple of class import path (or just name if it lives under django.db.migrations), positional arguments, and keyword arguments.
def deconstruct(self): """ Return a 3-tuple of class import path (or just name if it lives under django.db.migrations), positional arguments, and keyword arguments. """ return ( self.__class__.__name__, self._constructor_args[0], self._constructor_args[1], )
[ "def", "deconstruct", "(", "self", ")", ":", "return", "(", "self", ".", "__class__", ".", "__name__", ",", "self", ".", "_constructor_args", "[", "0", "]", ",", "self", ".", "_constructor_args", "[", "1", "]", ",", ")" ]
[ 41, 4 ]
[ 51, 9 ]
python
en
['en', 'error', 'th']
False
Operation.state_forwards
(self, app_label, state)
Take the state from the previous migration, and mutate it so that it matches what this migration would perform.
Take the state from the previous migration, and mutate it so that it matches what this migration would perform.
def state_forwards(self, app_label, state): """ Take the state from the previous migration, and mutate it so that it matches what this migration would perform. """ raise NotImplementedError('subclasses of Operation must provide a state_forwards() method')
[ "def", "state_forwards", "(", "self", ",", "app_label", ",", "state", ")", ":", "raise", "NotImplementedError", "(", "'subclasses of Operation must provide a state_forwards() method'", ")" ]
[ 53, 4 ]
[ 58, 99 ]
python
en
['en', 'error', 'th']
False
Operation.database_forwards
(self, app_label, schema_editor, from_state, to_state)
Perform the mutation on the database schema in the normal (forwards) direction.
Perform the mutation on the database schema in the normal (forwards) direction.
def database_forwards(self, app_label, schema_editor, from_state, to_state): """ Perform the mutation on the database schema in the normal (forwards) direction. """ raise NotImplementedError('subclasses of Operation must provide a database_forwards() method')
[ "def", "database_forwards", "(", "self", ",", "app_label", ",", "schema_editor", ",", "from_state", ",", "to_state", ")", ":", "raise", "NotImplementedError", "(", "'subclasses of Operation must provide a database_forwards() method'", ")" ]
[ 60, 4 ]
[ 65, 102 ]
python
en
['en', 'error', 'th']
False
Operation.database_backwards
(self, app_label, schema_editor, from_state, to_state)
Perform the mutation on the database schema in the reverse direction - e.g. if this were CreateModel, it would in fact drop the model's table.
Perform the mutation on the database schema in the reverse direction - e.g. if this were CreateModel, it would in fact drop the model's table.
def database_backwards(self, app_label, schema_editor, from_state, to_state): """ Perform the mutation on the database schema in the reverse direction - e.g. if this were CreateModel, it would in fact drop the model's table. """ raise NotImplementedError('subclasses of Operation must provide a database_backwards() method')
[ "def", "database_backwards", "(", "self", ",", "app_label", ",", "schema_editor", ",", "from_state", ",", "to_state", ")", ":", "raise", "NotImplementedError", "(", "'subclasses of Operation must provide a database_backwards() method'", ")" ]
[ 67, 4 ]
[ 73, 103 ]
python
en
['en', 'error', 'th']
False
Operation.describe
(self)
Output a brief summary of what the action does.
Output a brief summary of what the action does.
def describe(self): """ Output a brief summary of what the action does. """ return "%s: %s" % (self.__class__.__name__, self._constructor_args)
[ "def", "describe", "(", "self", ")", ":", "return", "\"%s: %s\"", "%", "(", "self", ".", "__class__", ".", "__name__", ",", "self", ".", "_constructor_args", ")" ]
[ 75, 4 ]
[ 79, 75 ]
python
en
['en', 'error', 'th']
False
Operation.migration_name_fragment
(self)
A filename part suitable for automatically naming a migration containing this operation, or None if not applicable.
A filename part suitable for automatically naming a migration containing this operation, or None if not applicable.
def migration_name_fragment(self): """ A filename part suitable for automatically naming a migration containing this operation, or None if not applicable. """ return None
[ "def", "migration_name_fragment", "(", "self", ")", ":", "return", "None" ]
[ 82, 4 ]
[ 87, 19 ]
python
en
['en', 'error', 'th']
False
Operation.references_model
(self, name, app_label)
Return True if there is a chance this operation references the given model name (as a string), with an app label for accuracy. Used for optimization. If in doubt, return True; returning a false positive will merely make the optimizer a little less efficient, while returning a false negative may result in an unusable optimized migration.
Return True if there is a chance this operation references the given model name (as a string), with an app label for accuracy.
def references_model(self, name, app_label): """ Return True if there is a chance this operation references the given model name (as a string), with an app label for accuracy. Used for optimization. If in doubt, return True; returning a false positive will merely make the optimizer a little less efficient, while returning a false negative may result in an unusable optimized migration. """ return True
[ "def", "references_model", "(", "self", ",", "name", ",", "app_label", ")", ":", "return", "True" ]
[ 89, 4 ]
[ 99, 19 ]
python
en
['en', 'error', 'th']
False
Operation.references_field
(self, model_name, name, app_label)
Return True if there is a chance this operation references the given field name, with an app label for accuracy. Used for optimization. If in doubt, return True.
Return True if there is a chance this operation references the given field name, with an app label for accuracy.
def references_field(self, model_name, name, app_label): """ Return True if there is a chance this operation references the given field name, with an app label for accuracy. Used for optimization. If in doubt, return True. """ return self.references_model(model_name, app_label)
[ "def", "references_field", "(", "self", ",", "model_name", ",", "name", ",", "app_label", ")", ":", "return", "self", ".", "references_model", "(", "model_name", ",", "app_label", ")" ]
[ 101, 4 ]
[ 108, 59 ]
python
en
['en', 'error', 'th']
False
Operation.allow_migrate_model
(self, connection_alias, model)
Return whether or not a model may be migrated. This is a thin wrapper around router.allow_migrate_model() that preemptively rejects any proxy, swapped out, or unmanaged model.
Return whether or not a model may be migrated.
def allow_migrate_model(self, connection_alias, model): """ Return whether or not a model may be migrated. This is a thin wrapper around router.allow_migrate_model() that preemptively rejects any proxy, swapped out, or unmanaged model. """ if not model._meta.can_migrate(connection_alias): return False return router.allow_migrate_model(connection_alias, model)
[ "def", "allow_migrate_model", "(", "self", ",", "connection_alias", ",", "model", ")", ":", "if", "not", "model", ".", "_meta", ".", "can_migrate", "(", "connection_alias", ")", ":", "return", "False", "return", "router", ".", "allow_migrate_model", "(", "connection_alias", ",", "model", ")" ]
[ 110, 4 ]
[ 120, 66 ]
python
en
['en', 'error', 'th']
False
Operation.reduce
(self, operation, app_label)
Return either a list of operations the actual operation should be replaced with or a boolean that indicates whether or not the specified operation can be optimized across.
Return either a list of operations the actual operation should be replaced with or a boolean that indicates whether or not the specified operation can be optimized across.
def reduce(self, operation, app_label): """ Return either a list of operations the actual operation should be replaced with or a boolean that indicates whether or not the specified operation can be optimized across. """ if self.elidable: return [operation] elif operation.elidable: return [self] return False
[ "def", "reduce", "(", "self", ",", "operation", ",", "app_label", ")", ":", "if", "self", ".", "elidable", ":", "return", "[", "operation", "]", "elif", "operation", ".", "elidable", ":", "return", "[", "self", "]", "return", "False" ]
[ 122, 4 ]
[ 132, 20 ]
python
en
['en', 'error', 'th']
False
BatchPreprocessing.prepare_for_batch
(self, image, labels, bboxes, image_id=-1)
All inputs have different dimensions, we need to update them in order to fit the batch, Image: Depending on the config, we rescale image to the batch image size (and it will stay the same) or maximum batch image size, which is then transformed to randomly selected size in preprocess_batch() method. Labels, bounding boxes: We either cut them to maximal size or fill to fit the maximum size. Returned mask tells us, which values are valid. :param image: 3-D Tensor of shape [height, width, channels] :param labels: 1-D Tensor with labels for every object :param bboxes: 2-D Tensor of shape (objects, 4) containing bounding boxes in format [ymin, xmin, ymin, xmax] in relative coordinates :param image_id: Id of image, requirement for coco evaluation :return: (image, bboxes, labels, mask)
All inputs have different dimensions, we need to update them in order to fit the batch,
def prepare_for_batch(self, image, labels, bboxes, image_id=-1): """ All inputs have different dimensions, we need to update them in order to fit the batch, Image: Depending on the config, we rescale image to the batch image size (and it will stay the same) or maximum batch image size, which is then transformed to randomly selected size in preprocess_batch() method. Labels, bounding boxes: We either cut them to maximal size or fill to fit the maximum size. Returned mask tells us, which values are valid. :param image: 3-D Tensor of shape [height, width, channels] :param labels: 1-D Tensor with labels for every object :param bboxes: 2-D Tensor of shape (objects, 4) containing bounding boxes in format [ymin, xmin, ymin, xmax] in relative coordinates :param image_id: Id of image, requirement for coco evaluation :return: (image, bboxes, labels, mask) """ labels = labels[0 : self.model_config.max_objects] bboxes = bboxes[0 : self.model_config.max_objects] bboxes = tf.reshape(bboxes, (-1, 4)) # always keep the second dimension to be 4, even if there are no objects # make sure labels and boxes have the correct data type labels = tf.cast(labels, dtype=tf.float32) bboxes = tf.cast(bboxes, dtype=tf.float32) # we resize for the max size to form a batch. Afterwards, we can resize the whole batch image_size = ( self.model_config.image_size + self.model_config.image_size_variation if self.train else self.model_config.image_size ) height, width = tf.shape(image)[0], tf.shape(image)[1] # make some augmentations if self.augmentations: if self.resize_before_augmenting: additional_space = 1.2 # so that we have something to clip pre_resize = tf.cast(image_size, dtype=tf.float32) * additional_space ratio = tf.math.minimum( tf.cast(height, dtype=tf.float32) / pre_resize, tf.cast(width, dtype=tf.float32) / pre_resize ) def _preresize(): return resize( image, bboxes, tf.cast(tf.cast(height, dtype=tf.float32) / ratio, dtype=tf.int32), tf.cast(tf.cast(width, dtype=tf.float32) / ratio, dtype=tf.int32), keep_aspect_ratio=False, random_method=True, ) # when the image is just slightly better, there is not need to pre-resize image, bboxes = tf.cond(tf.math.greater(ratio, 1.2), lambda: _preresize(), lambda: (image, bboxes)) # probabilities for random.categorical() are unscaled probabilities = [tf.cast(aug.probability, dtype=tf.float32) for aug in self.augmentations] selected = tf.random.categorical(tf.math.log([probabilities]), 1, dtype=tf.int32)[0][0] # perform augmentation with selected id (nice tf.switch_case() was not working for an unknown reason) for idx, aug in enumerate(self.augmentations): image, bboxes = tf.cond(selected == idx, lambda: aug.augment(image, bboxes), lambda: (image, bboxes)) if self.train and not self.model_config.keep_aspect_ratio: # randomly chose to keep the image size or spread it out to take the full available space image, bboxes = self.resize_train(image, bboxes, image_size, prob=0.5) else: # always keep the size or spread depending on the settings image, bboxes = resize( image, bboxes, image_size, image_size, keep_aspect_ratio=self.model_config.keep_aspect_ratio, random_method=self.train, ) # calculate mask (one when there is a detected object) mask = tf.range(self.model_config.max_objects) < tf.shape(labels)[0] mask = tf.cast(mask, dtype=tf.float32) # update bounding boxes to the correct shape padding_add = self.model_config.max_objects - tf.shape(bboxes)[0] bboxes = tf.pad(bboxes, tf.stack([[0, padding_add], [0, 0]])) # update labels to correct shape labels = tf.pad(labels, tf.stack([[0, padding_add]])) labels = tf.cast(labels, dtype=tf.int32) return image, bboxes, labels, mask, image_id, height, width
[ "def", "prepare_for_batch", "(", "self", ",", "image", ",", "labels", ",", "bboxes", ",", "image_id", "=", "-", "1", ")", ":", "labels", "=", "labels", "[", "0", ":", "self", ".", "model_config", ".", "max_objects", "]", "bboxes", "=", "bboxes", "[", "0", ":", "self", ".", "model_config", ".", "max_objects", "]", "bboxes", "=", "tf", ".", "reshape", "(", "bboxes", ",", "(", "-", "1", ",", "4", ")", ")", "# always keep the second dimension to be 4, even if there are no objects", "# make sure labels and boxes have the correct data type", "labels", "=", "tf", ".", "cast", "(", "labels", ",", "dtype", "=", "tf", ".", "float32", ")", "bboxes", "=", "tf", ".", "cast", "(", "bboxes", ",", "dtype", "=", "tf", ".", "float32", ")", "# we resize for the max size to form a batch. Afterwards, we can resize the whole batch", "image_size", "=", "(", "self", ".", "model_config", ".", "image_size", "+", "self", ".", "model_config", ".", "image_size_variation", "if", "self", ".", "train", "else", "self", ".", "model_config", ".", "image_size", ")", "height", ",", "width", "=", "tf", ".", "shape", "(", "image", ")", "[", "0", "]", ",", "tf", ".", "shape", "(", "image", ")", "[", "1", "]", "# make some augmentations", "if", "self", ".", "augmentations", ":", "if", "self", ".", "resize_before_augmenting", ":", "additional_space", "=", "1.2", "# so that we have something to clip", "pre_resize", "=", "tf", ".", "cast", "(", "image_size", ",", "dtype", "=", "tf", ".", "float32", ")", "*", "additional_space", "ratio", "=", "tf", ".", "math", ".", "minimum", "(", "tf", ".", "cast", "(", "height", ",", "dtype", "=", "tf", ".", "float32", ")", "/", "pre_resize", ",", "tf", ".", "cast", "(", "width", ",", "dtype", "=", "tf", ".", "float32", ")", "/", "pre_resize", ")", "def", "_preresize", "(", ")", ":", "return", "resize", "(", "image", ",", "bboxes", ",", "tf", ".", "cast", "(", "tf", ".", "cast", "(", "height", ",", "dtype", "=", "tf", ".", "float32", ")", "/", "ratio", ",", "dtype", "=", "tf", ".", "int32", ")", ",", "tf", ".", "cast", "(", "tf", ".", "cast", "(", "width", ",", "dtype", "=", "tf", ".", "float32", ")", "/", "ratio", ",", "dtype", "=", "tf", ".", "int32", ")", ",", "keep_aspect_ratio", "=", "False", ",", "random_method", "=", "True", ",", ")", "# when the image is just slightly better, there is not need to pre-resize", "image", ",", "bboxes", "=", "tf", ".", "cond", "(", "tf", ".", "math", ".", "greater", "(", "ratio", ",", "1.2", ")", ",", "lambda", ":", "_preresize", "(", ")", ",", "lambda", ":", "(", "image", ",", "bboxes", ")", ")", "# probabilities for random.categorical() are unscaled", "probabilities", "=", "[", "tf", ".", "cast", "(", "aug", ".", "probability", ",", "dtype", "=", "tf", ".", "float32", ")", "for", "aug", "in", "self", ".", "augmentations", "]", "selected", "=", "tf", ".", "random", ".", "categorical", "(", "tf", ".", "math", ".", "log", "(", "[", "probabilities", "]", ")", ",", "1", ",", "dtype", "=", "tf", ".", "int32", ")", "[", "0", "]", "[", "0", "]", "# perform augmentation with selected id (nice tf.switch_case() was not working for an unknown reason)", "for", "idx", ",", "aug", "in", "enumerate", "(", "self", ".", "augmentations", ")", ":", "image", ",", "bboxes", "=", "tf", ".", "cond", "(", "selected", "==", "idx", ",", "lambda", ":", "aug", ".", "augment", "(", "image", ",", "bboxes", ")", ",", "lambda", ":", "(", "image", ",", "bboxes", ")", ")", "if", "self", ".", "train", "and", "not", "self", ".", "model_config", ".", "keep_aspect_ratio", ":", "# randomly chose to keep the image size or spread it out to take the full available space", "image", ",", "bboxes", "=", "self", ".", "resize_train", "(", "image", ",", "bboxes", ",", "image_size", ",", "prob", "=", "0.5", ")", "else", ":", "# always keep the size or spread depending on the settings", "image", ",", "bboxes", "=", "resize", "(", "image", ",", "bboxes", ",", "image_size", ",", "image_size", ",", "keep_aspect_ratio", "=", "self", ".", "model_config", ".", "keep_aspect_ratio", ",", "random_method", "=", "self", ".", "train", ",", ")", "# calculate mask (one when there is a detected object)", "mask", "=", "tf", ".", "range", "(", "self", ".", "model_config", ".", "max_objects", ")", "<", "tf", ".", "shape", "(", "labels", ")", "[", "0", "]", "mask", "=", "tf", ".", "cast", "(", "mask", ",", "dtype", "=", "tf", ".", "float32", ")", "# update bounding boxes to the correct shape", "padding_add", "=", "self", ".", "model_config", ".", "max_objects", "-", "tf", ".", "shape", "(", "bboxes", ")", "[", "0", "]", "bboxes", "=", "tf", ".", "pad", "(", "bboxes", ",", "tf", ".", "stack", "(", "[", "[", "0", ",", "padding_add", "]", ",", "[", "0", ",", "0", "]", "]", ")", ")", "# update labels to correct shape", "labels", "=", "tf", ".", "pad", "(", "labels", ",", "tf", ".", "stack", "(", "[", "[", "0", ",", "padding_add", "]", "]", ")", ")", "labels", "=", "tf", ".", "cast", "(", "labels", ",", "dtype", "=", "tf", ".", "int32", ")", "return", "image", ",", "bboxes", ",", "labels", ",", "mask", ",", "image_id", ",", "height", ",", "width" ]
[ 24, 4 ]
[ 114, 67 ]
python
en
['en', 'error', 'th']
False
BatchPreprocessing.preprocess_batch
(self, images, bboxes, labels, mask, image_ids, heights, widths)
We have the all the inputs in batches, uniformly sized. Images/bounding boxes are augmented if this was required. First, the images are resized to a random size (from given range) if this is allowed. If we use neural network with layers independent on image size, like convolutional ones, we could resize the whole batch randomly to further improve our augmentation and prevent overfitting. After, inputs for our network are prepared. :param image_ids: Id of images, requirement for coco evaluation :param heights: original heights of images (not resized) :param widths: original widths of images (not resized)
We have the all the inputs in batches, uniformly sized. Images/bounding boxes are augmented if this was required.
def preprocess_batch(self, images, bboxes, labels, mask, image_ids, heights, widths): """ We have the all the inputs in batches, uniformly sized. Images/bounding boxes are augmented if this was required. First, the images are resized to a random size (from given range) if this is allowed. If we use neural network with layers independent on image size, like convolutional ones, we could resize the whole batch randomly to further improve our augmentation and prevent overfitting. After, inputs for our network are prepared. :param image_ids: Id of images, requirement for coco evaluation :param heights: original heights of images (not resized) :param widths: original widths of images (not resized) """ images = tf.cast(images, tf.float32) # select the current batch size, if the variation is greater than 0 image_size = self.model_config.image_size if self.model_config.image_size_variation > 0 and self.train: add = tf.random.uniform( [], minval=-self.model_config.image_size_variation, maxval=self.model_config.image_size_variation, dtype=tf.int32, ) # TODO 32 depends on network and downsampling image_size = ((self.model_config.image_size + add) // 32) * 32 # resize and pad image to current batch size (aspect ratios are already solved) images = random_resize(images, image_size, image_size) # transform bounding boxes from relative to absolute coordinates bboxes *= tf.cast(image_size, tf.float32) # calculate bounding box properties size, local_offset, indices = self.decompose_bounding_boxes(bboxes, image_size, self.model_config.downsample) # create heatmap bboxes /= self.model_config.downsample heatmap_size = image_size // self.model_config.downsample heatmap_shape = [tf.shape(images)[0], heatmap_size, heatmap_size, self.model_config.labels] if self.model_config.model_type == XModelType.CENTERNET: heatmap_dense = tf.numpy_function(func=draw_heatmaps, inp=[heatmap_shape, bboxes, labels], Tout=tf.float32) heatmap_dense = tf.reshape(heatmap_dense, heatmap_shape) return ( {"input": images}, {"heatmap": heatmap_dense, "size": size, "offset": local_offset}, { "indices": indices, "mask": mask, "bboxes": bboxes, "labels": labels, "ids": image_ids, "heights": heights, "widths": widths, }, ) else: # otherwise we are fittint TTF net heatmap_dense, box_target, reg_weight, _ = tf.numpy_function( func=draw_heatmaps_ttf, inp=[heatmap_shape, bboxes, labels], Tout=[tf.float32, tf.float32, tf.float32, tf.float32], ) heatmap_dense = tf.reshape(heatmap_dense, heatmap_shape) box_target = tf.reshape(box_target, [tf.shape(images)[0], heatmap_size, heatmap_size, 4]) reg_weight = tf.reshape(reg_weight, [tf.shape(images)[0], heatmap_size, heatmap_size, 1]) return ( {"input": images}, {"heatmap": heatmap_dense, "size": size, "offset": local_offset}, { "indices": indices, "mask": mask, "bboxes": bboxes, "labels": labels, "box_target": box_target, "reg_weight": reg_weight, "ids": image_ids, "heights": heights, "widths": widths, }, )
[ "def", "preprocess_batch", "(", "self", ",", "images", ",", "bboxes", ",", "labels", ",", "mask", ",", "image_ids", ",", "heights", ",", "widths", ")", ":", "images", "=", "tf", ".", "cast", "(", "images", ",", "tf", ".", "float32", ")", "# select the current batch size, if the variation is greater than 0", "image_size", "=", "self", ".", "model_config", ".", "image_size", "if", "self", ".", "model_config", ".", "image_size_variation", ">", "0", "and", "self", ".", "train", ":", "add", "=", "tf", ".", "random", ".", "uniform", "(", "[", "]", ",", "minval", "=", "-", "self", ".", "model_config", ".", "image_size_variation", ",", "maxval", "=", "self", ".", "model_config", ".", "image_size_variation", ",", "dtype", "=", "tf", ".", "int32", ",", ")", "# TODO 32 depends on network and downsampling", "image_size", "=", "(", "(", "self", ".", "model_config", ".", "image_size", "+", "add", ")", "//", "32", ")", "*", "32", "# resize and pad image to current batch size (aspect ratios are already solved)", "images", "=", "random_resize", "(", "images", ",", "image_size", ",", "image_size", ")", "# transform bounding boxes from relative to absolute coordinates", "bboxes", "*=", "tf", ".", "cast", "(", "image_size", ",", "tf", ".", "float32", ")", "# calculate bounding box properties", "size", ",", "local_offset", ",", "indices", "=", "self", ".", "decompose_bounding_boxes", "(", "bboxes", ",", "image_size", ",", "self", ".", "model_config", ".", "downsample", ")", "# create heatmap", "bboxes", "/=", "self", ".", "model_config", ".", "downsample", "heatmap_size", "=", "image_size", "//", "self", ".", "model_config", ".", "downsample", "heatmap_shape", "=", "[", "tf", ".", "shape", "(", "images", ")", "[", "0", "]", ",", "heatmap_size", ",", "heatmap_size", ",", "self", ".", "model_config", ".", "labels", "]", "if", "self", ".", "model_config", ".", "model_type", "==", "XModelType", ".", "CENTERNET", ":", "heatmap_dense", "=", "tf", ".", "numpy_function", "(", "func", "=", "draw_heatmaps", ",", "inp", "=", "[", "heatmap_shape", ",", "bboxes", ",", "labels", "]", ",", "Tout", "=", "tf", ".", "float32", ")", "heatmap_dense", "=", "tf", ".", "reshape", "(", "heatmap_dense", ",", "heatmap_shape", ")", "return", "(", "{", "\"input\"", ":", "images", "}", ",", "{", "\"heatmap\"", ":", "heatmap_dense", ",", "\"size\"", ":", "size", ",", "\"offset\"", ":", "local_offset", "}", ",", "{", "\"indices\"", ":", "indices", ",", "\"mask\"", ":", "mask", ",", "\"bboxes\"", ":", "bboxes", ",", "\"labels\"", ":", "labels", ",", "\"ids\"", ":", "image_ids", ",", "\"heights\"", ":", "heights", ",", "\"widths\"", ":", "widths", ",", "}", ",", ")", "else", ":", "# otherwise we are fittint TTF net", "heatmap_dense", ",", "box_target", ",", "reg_weight", ",", "_", "=", "tf", ".", "numpy_function", "(", "func", "=", "draw_heatmaps_ttf", ",", "inp", "=", "[", "heatmap_shape", ",", "bboxes", ",", "labels", "]", ",", "Tout", "=", "[", "tf", ".", "float32", ",", "tf", ".", "float32", ",", "tf", ".", "float32", ",", "tf", ".", "float32", "]", ",", ")", "heatmap_dense", "=", "tf", ".", "reshape", "(", "heatmap_dense", ",", "heatmap_shape", ")", "box_target", "=", "tf", ".", "reshape", "(", "box_target", ",", "[", "tf", ".", "shape", "(", "images", ")", "[", "0", "]", ",", "heatmap_size", ",", "heatmap_size", ",", "4", "]", ")", "reg_weight", "=", "tf", ".", "reshape", "(", "reg_weight", ",", "[", "tf", ".", "shape", "(", "images", ")", "[", "0", "]", ",", "heatmap_size", ",", "heatmap_size", ",", "1", "]", ")", "return", "(", "{", "\"input\"", ":", "images", "}", ",", "{", "\"heatmap\"", ":", "heatmap_dense", ",", "\"size\"", ":", "size", ",", "\"offset\"", ":", "local_offset", "}", ",", "{", "\"indices\"", ":", "indices", ",", "\"mask\"", ":", "mask", ",", "\"bboxes\"", ":", "bboxes", ",", "\"labels\"", ":", "labels", ",", "\"box_target\"", ":", "box_target", ",", "\"reg_weight\"", ":", "reg_weight", ",", "\"ids\"", ":", "image_ids", ",", "\"heights\"", ":", "heights", ",", "\"widths\"", ":", "widths", ",", "}", ",", ")" ]
[ 127, 4 ]
[ 212, 13 ]
python
en
['en', 'error', 'th']
False
_add_doc
(func, doc)
Add documentation to a function.
Add documentation to a function.
def _add_doc(func, doc): """Add documentation to a function.""" func.__doc__ = doc
[ "def", "_add_doc", "(", "func", ",", "doc", ")", ":", "func", ".", "__doc__", "=", "doc" ]
[ 74, 0 ]
[ 76, 22 ]
python
en
['en', 'en', 'en']
True
_import_module
(name)
Import module, returning the module after the last dot.
Import module, returning the module after the last dot.
def _import_module(name): """Import module, returning the module after the last dot.""" __import__(name) return sys.modules[name]
[ "def", "_import_module", "(", "name", ")", ":", "__import__", "(", "name", ")", "return", "sys", ".", "modules", "[", "name", "]" ]
[ 79, 0 ]
[ 82, 28 ]
python
en
['en', 'en', 'en']
True
add_move
(move)
Add an item to six.moves.
Add an item to six.moves.
def add_move(move): """Add an item to six.moves.""" setattr(_MovedItems, move.name, move)
[ "def", "add_move", "(", "move", ")", ":", "setattr", "(", "_MovedItems", ",", "move", ".", "name", ",", "move", ")" ]
[ 485, 0 ]
[ 487, 41 ]
python
en
['en', 'en', 'en']
True
remove_move
(name)
Remove item from six.moves.
Remove item from six.moves.
def remove_move(name): """Remove item from six.moves.""" try: delattr(_MovedItems, name) except AttributeError: try: del moves.__dict__[name] except KeyError: raise AttributeError("no such move, %r" % (name,))
[ "def", "remove_move", "(", "name", ")", ":", "try", ":", "delattr", "(", "_MovedItems", ",", "name", ")", "except", "AttributeError", ":", "try", ":", "del", "moves", ".", "__dict__", "[", "name", "]", "except", "KeyError", ":", "raise", "AttributeError", "(", "\"no such move, %r\"", "%", "(", "name", ",", ")", ")" ]
[ 490, 0 ]
[ 498, 62 ]
python
en
['en', 'en', 'en']
True
with_metaclass
(meta, *bases)
Create a base class with a metaclass.
Create a base class with a metaclass.
def with_metaclass(meta, *bases): """Create a base class with a metaclass.""" # This requires a bit of explanation: the basic idea is to make a dummy # metaclass for one level of class instantiation that replaces itself with # the actual metaclass. class metaclass(meta): def __new__(cls, name, this_bases, d): return meta(name, bases, d) return type.__new__(metaclass, 'temporary_class', (), {})
[ "def", "with_metaclass", "(", "meta", ",", "*", "bases", ")", ":", "# This requires a bit of explanation: the basic idea is to make a dummy", "# metaclass for one level of class instantiation that replaces itself with", "# the actual metaclass.", "class", "metaclass", "(", "meta", ")", ":", "def", "__new__", "(", "cls", ",", "name", ",", "this_bases", ",", "d", ")", ":", "return", "meta", "(", "name", ",", "bases", ",", "d", ")", "return", "type", ".", "__new__", "(", "metaclass", ",", "'temporary_class'", ",", "(", ")", ",", "{", "}", ")" ]
[ 799, 0 ]
[ 808, 61 ]
python
en
['en', 'en', 'en']
True
add_metaclass
(metaclass)
Class decorator for creating a class with a metaclass.
Class decorator for creating a class with a metaclass.
def add_metaclass(metaclass): """Class decorator for creating a class with a metaclass.""" def wrapper(cls): orig_vars = cls.__dict__.copy() slots = orig_vars.get('__slots__') if slots is not None: if isinstance(slots, str): slots = [slots] for slots_var in slots: orig_vars.pop(slots_var) orig_vars.pop('__dict__', None) orig_vars.pop('__weakref__', None) return metaclass(cls.__name__, cls.__bases__, orig_vars) return wrapper
[ "def", "add_metaclass", "(", "metaclass", ")", ":", "def", "wrapper", "(", "cls", ")", ":", "orig_vars", "=", "cls", ".", "__dict__", ".", "copy", "(", ")", "slots", "=", "orig_vars", ".", "get", "(", "'__slots__'", ")", "if", "slots", "is", "not", "None", ":", "if", "isinstance", "(", "slots", ",", "str", ")", ":", "slots", "=", "[", "slots", "]", "for", "slots_var", "in", "slots", ":", "orig_vars", ".", "pop", "(", "slots_var", ")", "orig_vars", ".", "pop", "(", "'__dict__'", ",", "None", ")", "orig_vars", ".", "pop", "(", "'__weakref__'", ",", "None", ")", "return", "metaclass", "(", "cls", ".", "__name__", ",", "cls", ".", "__bases__", ",", "orig_vars", ")", "return", "wrapper" ]
[ 811, 0 ]
[ 824, 18 ]
python
en
['en', 'en', 'en']
True
python_2_unicode_compatible
(klass)
A decorator that defines __unicode__ and __str__ methods under Python 2. Under Python 3 it does nothing. To support Python 2 and 3 with a single code base, define a __str__ method returning text and apply this decorator to the class.
A decorator that defines __unicode__ and __str__ methods under Python 2. Under Python 3 it does nothing.
def python_2_unicode_compatible(klass): """ A decorator that defines __unicode__ and __str__ methods under Python 2. Under Python 3 it does nothing. To support Python 2 and 3 with a single code base, define a __str__ method returning text and apply this decorator to the class. """ if PY2: if '__str__' not in klass.__dict__: raise ValueError("@python_2_unicode_compatible cannot be applied " "to %s because it doesn't define __str__()." % klass.__name__) klass.__unicode__ = klass.__str__ klass.__str__ = lambda self: self.__unicode__().encode('utf-8') return klass
[ "def", "python_2_unicode_compatible", "(", "klass", ")", ":", "if", "PY2", ":", "if", "'__str__'", "not", "in", "klass", ".", "__dict__", ":", "raise", "ValueError", "(", "\"@python_2_unicode_compatible cannot be applied \"", "\"to %s because it doesn't define __str__().\"", "%", "klass", ".", "__name__", ")", "klass", ".", "__unicode__", "=", "klass", ".", "__str__", "klass", ".", "__str__", "=", "lambda", "self", ":", "self", ".", "__unicode__", "(", ")", ".", "encode", "(", "'utf-8'", ")", "return", "klass" ]
[ 827, 0 ]
[ 842, 16 ]
python
en
['en', 'error', 'th']
False
_SixMetaPathImporter.is_package
(self, fullname)
Return true, if the named module is a package. We need this method to get correct spec objects with Python 3.4 (see PEP451)
Return true, if the named module is a package.
def is_package(self, fullname): """ Return true, if the named module is a package. We need this method to get correct spec objects with Python 3.4 (see PEP451) """ return hasattr(self.__get_module(fullname), "__path__")
[ "def", "is_package", "(", "self", ",", "fullname", ")", ":", "return", "hasattr", "(", "self", ".", "__get_module", "(", "fullname", ")", ",", "\"__path__\"", ")" ]
[ 208, 4 ]
[ 215, 63 ]
python
en
['en', 'error', 'th']
False