Search is not available for this dataset
identifier
stringlengths
1
155
parameters
stringlengths
2
6.09k
docstring
stringlengths
11
63.4k
docstring_summary
stringlengths
0
63.4k
function
stringlengths
29
99.8k
function_tokens
sequence
start_point
sequence
end_point
sequence
language
stringclasses
1 value
docstring_language
stringlengths
2
7
docstring_language_predictions
stringlengths
18
23
is_langid_reliable
stringclasses
2 values
IndentingFormatter.get_message_start
(self, formatted, levelno)
Return the start of the formatted log message (not counting the prefix to add to each line).
Return the start of the formatted log message (not counting the prefix to add to each line).
def get_message_start(self, formatted, levelno): # type: (str, int) -> str """ Return the start of the formatted log message (not counting the prefix to add to each line). """ if levelno < logging.WARNING: return "" if formatted.startswith(DEPRECATION_MSG_PREFIX): # Then the message already has a prefix. We don't want it to # look like "WARNING: DEPRECATION: ...." return "" if levelno < logging.ERROR: return "WARNING: " return "ERROR: "
[ "def", "get_message_start", "(", "self", ",", "formatted", ",", "levelno", ")", ":", "# type: (str, int) -> str", "if", "levelno", "<", "logging", ".", "WARNING", ":", "return", "\"\"", "if", "formatted", ".", "startswith", "(", "DEPRECATION_MSG_PREFIX", ")", ":", "# Then the message already has a prefix. We don't want it to", "# look like \"WARNING: DEPRECATION: ....\"", "return", "\"\"", "if", "levelno", "<", "logging", ".", "ERROR", ":", "return", "\"WARNING: \"", "return", "\"ERROR: \"" ]
[ 107, 4 ]
[ 122, 24 ]
python
en
['en', 'error', 'th']
False
IndentingFormatter.format
(self, record)
Calls the standard formatter, but will indent all of the log message lines by our current indentation level.
Calls the standard formatter, but will indent all of the log message lines by our current indentation level.
def format(self, record): # type: (logging.LogRecord) -> str """ Calls the standard formatter, but will indent all of the log message lines by our current indentation level. """ formatted = super().format(record) message_start = self.get_message_start(formatted, record.levelno) formatted = message_start + formatted prefix = "" if self.add_timestamp: prefix = f"{self.formatTime(record)} " prefix += " " * get_indentation() formatted = "".join([prefix + line for line in formatted.splitlines(True)]) return formatted
[ "def", "format", "(", "self", ",", "record", ")", ":", "# type: (logging.LogRecord) -> str", "formatted", "=", "super", "(", ")", ".", "format", "(", "record", ")", "message_start", "=", "self", ".", "get_message_start", "(", "formatted", ",", "record", ".", "levelno", ")", "formatted", "=", "message_start", "+", "formatted", "prefix", "=", "\"\"", "if", "self", ".", "add_timestamp", ":", "prefix", "=", "f\"{self.formatTime(record)} \"", "prefix", "+=", "\" \"", "*", "get_indentation", "(", ")", "formatted", "=", "\"\"", ".", "join", "(", "[", "prefix", "+", "line", "for", "line", "in", "formatted", ".", "splitlines", "(", "True", ")", "]", ")", "return", "formatted" ]
[ 124, 4 ]
[ 139, 24 ]
python
en
['en', 'error', 'th']
False
ColorizedStreamHandler._using_stdout
(self)
Return whether the handler is using sys.stdout.
Return whether the handler is using sys.stdout.
def _using_stdout(self): # type: () -> bool """ Return whether the handler is using sys.stdout. """ if WINDOWS and colorama: # Then self.stream is an AnsiToWin32 object. stream = cast(colorama.AnsiToWin32, self.stream) return stream.wrapped is sys.stdout return self.stream is sys.stdout
[ "def", "_using_stdout", "(", "self", ")", ":", "# type: () -> bool", "if", "WINDOWS", "and", "colorama", ":", "# Then self.stream is an AnsiToWin32 object.", "stream", "=", "cast", "(", "colorama", ".", "AnsiToWin32", ",", "self", ".", "stream", ")", "return", "stream", ".", "wrapped", "is", "sys", ".", "stdout", "return", "self", ".", "stream", "is", "sys", ".", "stdout" ]
[ 171, 4 ]
[ 181, 40 ]
python
en
['en', 'error', 'th']
False
RequirementSet.__init__
(self, check_supported_wheels: bool = True)
Create a RequirementSet.
Create a RequirementSet.
def __init__(self, check_supported_wheels: bool = True) -> None: """Create a RequirementSet. """ self.requirements: Dict[str, InstallRequirement] = OrderedDict() self.check_supported_wheels = check_supported_wheels self.unnamed_requirements: List[InstallRequirement] = []
[ "def", "__init__", "(", "self", ",", "check_supported_wheels", ":", "bool", "=", "True", ")", "->", "None", ":", "self", ".", "requirements", ":", "Dict", "[", "str", ",", "InstallRequirement", "]", "=", "OrderedDict", "(", ")", "self", ".", "check_supported_wheels", "=", "check_supported_wheels", "self", ".", "unnamed_requirements", ":", "List", "[", "InstallRequirement", "]", "=", "[", "]" ]
[ 16, 4 ]
[ 23, 64 ]
python
en
['en', 'en', 'en']
True
RequirementSet.add_requirement
( self, install_req: InstallRequirement, parent_req_name: Optional[str] = None, extras_requested: Optional[Iterable[str]] = None )
Add install_req as a requirement to install. :param parent_req_name: The name of the requirement that needed this added. The name is used because when multiple unnamed requirements resolve to the same name, we could otherwise end up with dependency links that point outside the Requirements set. parent_req must already be added. Note that None implies that this is a user supplied requirement, vs an inferred one. :param extras_requested: an iterable of extras used to evaluate the environment markers. :return: Additional requirements to scan. That is either [] if the requirement is not applicable, or [install_req] if the requirement is applicable and has just been added.
Add install_req as a requirement to install.
def add_requirement( self, install_req: InstallRequirement, parent_req_name: Optional[str] = None, extras_requested: Optional[Iterable[str]] = None ) -> Tuple[List[InstallRequirement], Optional[InstallRequirement]]: """Add install_req as a requirement to install. :param parent_req_name: The name of the requirement that needed this added. The name is used because when multiple unnamed requirements resolve to the same name, we could otherwise end up with dependency links that point outside the Requirements set. parent_req must already be added. Note that None implies that this is a user supplied requirement, vs an inferred one. :param extras_requested: an iterable of extras used to evaluate the environment markers. :return: Additional requirements to scan. That is either [] if the requirement is not applicable, or [install_req] if the requirement is applicable and has just been added. """ # If the markers do not match, ignore this requirement. if not install_req.match_markers(extras_requested): logger.info( "Ignoring %s: markers '%s' don't match your environment", install_req.name, install_req.markers, ) return [], None # If the wheel is not supported, raise an error. # Should check this after filtering out based on environment markers to # allow specifying different wheels based on the environment/OS, in a # single requirements file. if install_req.link and install_req.link.is_wheel: wheel = Wheel(install_req.link.filename) tags = compatibility_tags.get_supported() if (self.check_supported_wheels and not wheel.supported(tags)): raise InstallationError( "{} is not a supported wheel on this platform.".format( wheel.filename) ) # This next bit is really a sanity check. assert not install_req.user_supplied or parent_req_name is None, ( "a user supplied req shouldn't have a parent" ) # Unnamed requirements are scanned again and the requirement won't be # added as a dependency until after scanning. if not install_req.name: self.add_unnamed_requirement(install_req) return [install_req], None try: existing_req: Optional[InstallRequirement] = self.get_requirement( install_req.name) except KeyError: existing_req = None has_conflicting_requirement = ( parent_req_name is None and existing_req and not existing_req.constraint and existing_req.extras == install_req.extras and existing_req.req and install_req.req and existing_req.req.specifier != install_req.req.specifier ) if has_conflicting_requirement: raise InstallationError( "Double requirement given: {} (already in {}, name={!r})" .format(install_req, existing_req, install_req.name) ) # When no existing requirement exists, add the requirement as a # dependency and it will be scanned again after. if not existing_req: self.add_named_requirement(install_req) # We'd want to rescan this requirement later return [install_req], install_req # Assume there's no need to scan, and that we've already # encountered this for scanning. if install_req.constraint or not existing_req.constraint: return [], existing_req does_not_satisfy_constraint = ( install_req.link and not ( existing_req.link and install_req.link.path == existing_req.link.path ) ) if does_not_satisfy_constraint: raise InstallationError( "Could not satisfy constraints for '{}': " "installation from path or url cannot be " "constrained to a version".format(install_req.name) ) # If we're now installing a constraint, mark the existing # object for real installation. existing_req.constraint = False # If we're now installing a user supplied requirement, # mark the existing object as such. if install_req.user_supplied: existing_req.user_supplied = True existing_req.extras = tuple(sorted( set(existing_req.extras) | set(install_req.extras) )) logger.debug( "Setting %s extras to: %s", existing_req, existing_req.extras, ) # Return the existing requirement for addition to the parent and # scanning again. return [existing_req], existing_req
[ "def", "add_requirement", "(", "self", ",", "install_req", ":", "InstallRequirement", ",", "parent_req_name", ":", "Optional", "[", "str", "]", "=", "None", ",", "extras_requested", ":", "Optional", "[", "Iterable", "[", "str", "]", "]", "=", "None", ")", "->", "Tuple", "[", "List", "[", "InstallRequirement", "]", ",", "Optional", "[", "InstallRequirement", "]", "]", ":", "# If the markers do not match, ignore this requirement.", "if", "not", "install_req", ".", "match_markers", "(", "extras_requested", ")", ":", "logger", ".", "info", "(", "\"Ignoring %s: markers '%s' don't match your environment\"", ",", "install_req", ".", "name", ",", "install_req", ".", "markers", ",", ")", "return", "[", "]", ",", "None", "# If the wheel is not supported, raise an error.", "# Should check this after filtering out based on environment markers to", "# allow specifying different wheels based on the environment/OS, in a", "# single requirements file.", "if", "install_req", ".", "link", "and", "install_req", ".", "link", ".", "is_wheel", ":", "wheel", "=", "Wheel", "(", "install_req", ".", "link", ".", "filename", ")", "tags", "=", "compatibility_tags", ".", "get_supported", "(", ")", "if", "(", "self", ".", "check_supported_wheels", "and", "not", "wheel", ".", "supported", "(", "tags", ")", ")", ":", "raise", "InstallationError", "(", "\"{} is not a supported wheel on this platform.\"", ".", "format", "(", "wheel", ".", "filename", ")", ")", "# This next bit is really a sanity check.", "assert", "not", "install_req", ".", "user_supplied", "or", "parent_req_name", "is", "None", ",", "(", "\"a user supplied req shouldn't have a parent\"", ")", "# Unnamed requirements are scanned again and the requirement won't be", "# added as a dependency until after scanning.", "if", "not", "install_req", ".", "name", ":", "self", ".", "add_unnamed_requirement", "(", "install_req", ")", "return", "[", "install_req", "]", ",", "None", "try", ":", "existing_req", ":", "Optional", "[", "InstallRequirement", "]", "=", "self", ".", "get_requirement", "(", "install_req", ".", "name", ")", "except", "KeyError", ":", "existing_req", "=", "None", "has_conflicting_requirement", "=", "(", "parent_req_name", "is", "None", "and", "existing_req", "and", "not", "existing_req", ".", "constraint", "and", "existing_req", ".", "extras", "==", "install_req", ".", "extras", "and", "existing_req", ".", "req", "and", "install_req", ".", "req", "and", "existing_req", ".", "req", ".", "specifier", "!=", "install_req", ".", "req", ".", "specifier", ")", "if", "has_conflicting_requirement", ":", "raise", "InstallationError", "(", "\"Double requirement given: {} (already in {}, name={!r})\"", ".", "format", "(", "install_req", ",", "existing_req", ",", "install_req", ".", "name", ")", ")", "# When no existing requirement exists, add the requirement as a", "# dependency and it will be scanned again after.", "if", "not", "existing_req", ":", "self", ".", "add_named_requirement", "(", "install_req", ")", "# We'd want to rescan this requirement later", "return", "[", "install_req", "]", ",", "install_req", "# Assume there's no need to scan, and that we've already", "# encountered this for scanning.", "if", "install_req", ".", "constraint", "or", "not", "existing_req", ".", "constraint", ":", "return", "[", "]", ",", "existing_req", "does_not_satisfy_constraint", "=", "(", "install_req", ".", "link", "and", "not", "(", "existing_req", ".", "link", "and", "install_req", ".", "link", ".", "path", "==", "existing_req", ".", "link", ".", "path", ")", ")", "if", "does_not_satisfy_constraint", ":", "raise", "InstallationError", "(", "\"Could not satisfy constraints for '{}': \"", "\"installation from path or url cannot be \"", "\"constrained to a version\"", ".", "format", "(", "install_req", ".", "name", ")", ")", "# If we're now installing a constraint, mark the existing", "# object for real installation.", "existing_req", ".", "constraint", "=", "False", "# If we're now installing a user supplied requirement,", "# mark the existing object as such.", "if", "install_req", ".", "user_supplied", ":", "existing_req", ".", "user_supplied", "=", "True", "existing_req", ".", "extras", "=", "tuple", "(", "sorted", "(", "set", "(", "existing_req", ".", "extras", ")", "|", "set", "(", "install_req", ".", "extras", ")", ")", ")", "logger", ".", "debug", "(", "\"Setting %s extras to: %s\"", ",", "existing_req", ",", "existing_req", ".", "extras", ",", ")", "# Return the existing requirement for addition to the parent and", "# scanning again.", "return", "[", "existing_req", "]", ",", "existing_req" ]
[ 55, 4 ]
[ 169, 43 ]
python
en
['en', 'en', 'en']
True
MailHandler.get_opt
(self, option, optiontype=str)
Parse an option from config.ini
Parse an option from config.ini
def get_opt(self, option, optiontype=str): "Parse an option from config.ini" log.debug("Querying option: {}.".format(option)) section = self.account if not self.config.has_section(section): section = "DEFAULT" log.debug("Section {} not found. Using DEFAULT".format(section)) if optiontype == int: return self.config.getint(section, option) elif optiontype == float: return self.config.getfloat(section, option) elif optiontype == bool: return self.config.getboolean(section, option) elif optiontype == str: return self.config.get(section, option) else: log.error("Invalid option type: {} ({}).".format(option, optiontype))
[ "def", "get_opt", "(", "self", ",", "option", ",", "optiontype", "=", "str", ")", ":", "log", ".", "debug", "(", "\"Querying option: {}.\"", ".", "format", "(", "option", ")", ")", "section", "=", "self", ".", "account", "if", "not", "self", ".", "config", ".", "has_section", "(", "section", ")", ":", "section", "=", "\"DEFAULT\"", "log", ".", "debug", "(", "\"Section {} not found. Using DEFAULT\"", ".", "format", "(", "section", ")", ")", "if", "optiontype", "==", "int", ":", "return", "self", ".", "config", ".", "getint", "(", "section", ",", "option", ")", "elif", "optiontype", "==", "float", ":", "return", "self", ".", "config", ".", "getfloat", "(", "section", ",", "option", ")", "elif", "optiontype", "==", "bool", ":", "return", "self", ".", "config", ".", "getboolean", "(", "section", ",", "option", ")", "elif", "optiontype", "==", "str", ":", "return", "self", ".", "config", ".", "get", "(", "section", ",", "option", ")", "else", ":", "log", ".", "error", "(", "\"Invalid option type: {} ({}).\"", ".", "format", "(", "option", ",", "optiontype", ")", ")" ]
[ 67, 4 ]
[ 84, 73 ]
python
en
['en', 'en', 'en']
True
MailHandler.print_options
(self)
Print all available options. For debugging purposes.
Print all available options. For debugging purposes.
def print_options(self): "Print all available options. For debugging purposes." for i in self.config.options(self.account): print i + ":", self.config.get(self.account, i)
[ "def", "print_options", "(", "self", ")", ":", "for", "i", "in", "self", ".", "config", ".", "options", "(", "self", ".", "account", ")", ":", "print", "i", "+", "\":\"", ",", "self", ".", "config", ".", "get", "(", "self", ".", "account", ",", "i", ")" ]
[ 86, 4 ]
[ 89, 59 ]
python
en
['en', 'en', 'en']
True
MailHandler.get_mail
(self)
Get the mail. Uses poplib as GMX Freemail does not allow imap.
Get the mail. Uses poplib as GMX Freemail does not allow imap.
def get_mail(self): "Get the mail. Uses poplib as GMX Freemail does not allow imap." log.info("Getting mail for {}".format(self.account)) if not self.username: self.username = self.account password = getpass("Password for {}: ".format(self.username)) server = self.get_opt("incserver") port = self.get_opt("incport", int) # Unnecessarily check if we'll use SSL. if self.get_opt("incsecurity") == "SSL": session = poplib.POP3_SSL(server, port) else: session = poplib.POP3(server, port) # If the loglevel is DEBUG (10), enable verbose logging. if logging.getLogger().getEffectiveLevel() == 10: session.set_debuglevel(1) try: session.user(self.username) session.pass_(password) except poplib.error_proto: log.error("Authentification for {} failed. Wrong credentials?" .format(self.account)) sys.exit(1) messages = [session.retr(i) for i in range(1, len(session.list()[1]))] messages = ["\n".join(msg[1]) for msg in messages] messages = [parser.Parser().parsestr(msg) for msg in messages] # TODO: Make this prettier. Example: # http://g33k.wordpress.com/2009/02/04/check-gmail-the-python-way/ print "You have {} new messages.".format(len(messages)) for m in messages: print "{}, [{}], ({})".format(m["From"], m["Subject"], m["Date"]) session.quit()
[ "def", "get_mail", "(", "self", ")", ":", "log", ".", "info", "(", "\"Getting mail for {}\"", ".", "format", "(", "self", ".", "account", ")", ")", "if", "not", "self", ".", "username", ":", "self", ".", "username", "=", "self", ".", "account", "password", "=", "getpass", "(", "\"Password for {}: \"", ".", "format", "(", "self", ".", "username", ")", ")", "server", "=", "self", ".", "get_opt", "(", "\"incserver\"", ")", "port", "=", "self", ".", "get_opt", "(", "\"incport\"", ",", "int", ")", "# Unnecessarily check if we'll use SSL.", "if", "self", ".", "get_opt", "(", "\"incsecurity\"", ")", "==", "\"SSL\"", ":", "session", "=", "poplib", ".", "POP3_SSL", "(", "server", ",", "port", ")", "else", ":", "session", "=", "poplib", ".", "POP3", "(", "server", ",", "port", ")", "# If the loglevel is DEBUG (10), enable verbose logging.", "if", "logging", ".", "getLogger", "(", ")", ".", "getEffectiveLevel", "(", ")", "==", "10", ":", "session", ".", "set_debuglevel", "(", "1", ")", "try", ":", "session", ".", "user", "(", "self", ".", "username", ")", "session", ".", "pass_", "(", "password", ")", "except", "poplib", ".", "error_proto", ":", "log", ".", "error", "(", "\"Authentification for {} failed. Wrong credentials?\"", ".", "format", "(", "self", ".", "account", ")", ")", "sys", ".", "exit", "(", "1", ")", "messages", "=", "[", "session", ".", "retr", "(", "i", ")", "for", "i", "in", "range", "(", "1", ",", "len", "(", "session", ".", "list", "(", ")", "[", "1", "]", ")", ")", "]", "messages", "=", "[", "\"\\n\"", ".", "join", "(", "msg", "[", "1", "]", ")", "for", "msg", "in", "messages", "]", "messages", "=", "[", "parser", ".", "Parser", "(", ")", ".", "parsestr", "(", "msg", ")", "for", "msg", "in", "messages", "]", "# TODO: Make this prettier. Example:", "# http://g33k.wordpress.com/2009/02/04/check-gmail-the-python-way/", "print", "\"You have {} new messages.\"", ".", "format", "(", "len", "(", "messages", ")", ")", "for", "m", "in", "messages", ":", "print", "\"{}, [{}], ({})\"", ".", "format", "(", "m", "[", "\"From\"", "]", ",", "m", "[", "\"Subject\"", "]", ",", "m", "[", "\"Date\"", "]", ")", "session", ".", "quit", "(", ")" ]
[ 91, 4 ]
[ 129, 22 ]
python
en
['en', 'en', 'en']
True
MailHandler.send_mail
(self, recipient, header, message, sign, encrypt, attachkey, dryrun)
Sends a mail via SMTP.
Sends a mail via SMTP.
def send_mail(self, recipient, header, message, sign, encrypt, attachkey, dryrun): "Sends a mail via SMTP." log.info("Sending mail to {} ({}). Sign/Encrypt/AttachKey: {}/{}/{}." .format(recipient, header, sign, encrypt, attachkey)) recipients = {i for i in recipient.split(",") if "@" in i} if not recipients: log.error("No valid recipients in {}.".format(recipients)) return # TODO: Hash the password with sha256+salt and only ask once at start- # up, if we implement a curse UI. if not self.username: self.username = self.account password = getpass("Password for {}: ".format(self.username)) server = self.get_opt("outserver") port = self.get_opt("outport", int) # Split header into CC, BCC and Subject. cc, bcc = "", "" header = header.split("::") if len(header) == 3: cc, bcc, subject = header[0], header[1], header[2] elif len(header) == 2: cc, subject = header[0], header[1] else: subject = header[0] cc = {i for i in cc.split(",") if "@" in i} bcc = {i for i in bcc.split(",") if "@" in i} # Initialize our message to attach signatures/keyfiles, body etc to. msg = MIMEMultipart() if sign or encrypt: gpg = gnupg.GPG() keyid = self.get_opt("keyid") keyfp = self.get_opt("keyfp") for i in gpg.list_keys(): if keyid in i["keyid"]: break else: log.error("{} not found in gpg.list_keys().".format(keyid)) sys.exit(1) if sign and encrypt: encrypted = str(gpg.encrypt(message, self.FPs["MaxDemian"], sign=keyfp)) if encrypted: encryptedtext = MIMEText( _text=encrypted, _subtype=self.content_subtype, _charset=self.content_charset ) msg.attach(encryptedtext) else: log.error("Failed to encrypt the message.") sys.exit(1) elif sign: # message = msg.as_string().replace('\n', '\r\n') signed = str(gpg.sign(message, keyid=keyid)) if signed: signedtext = MIMEText( _text=signed, _subtype=self.content_subtype, _charset=self.content_charset ) msg.attach(signedtext) else: log.error("Failed to sign the message.") sys.exit(1) elif encrypt: encrypted = str(gpg.encrypt(message, self.FPs["MaxDemian"])) if encrypted: encryptedtext = MIMEText( _text=encrypted, _subtype=self.content_subtype, _charset=self.content_charset ) msg.attach(encryptedtext) else: log.error("Failed to encrypt the message.") sys.exit(1) else: log.error("No GPG keys found.") pubkeyloc = None if attachkey: # Attach GPG Public attachkey. pubkeyfile = self.get_opt("keyfile") if os.path.isfile(pubkeyfile): pubkeyloc = pubkeyfile elif os.path.isfile(os.path.join(self.configdir, pubkeyfile)): pubkeyloc = os.path.join(self.configdir, pubkeyfile) else: log.error("Public attachkey '{}' could not be found." .format(pubkeyfile)) if pubkeyloc: ctype, encoding = mimetypes.guess_type(pubkeyloc) if ctype is None or encoding is not None: ctype = 'application/octet-stream' maintype, subtype = ctype.split('/', 1) if maintype == 'text': with open(pubkeyloc) as f: # keyatt = f.read() keyatt = MIMEText( f.read(), _subtype=subtype, _charset=self.content_charset) keyatt.add_header( 'Content-Disposition', 'attachment', filename=pubkeyfile ) msg.attach(keyatt) log.info("Attached public attachkey {} to message." .format(pubkeyfile)) else: log.error("{} is not a textfile. Sure it's a GPG Key?" .format(pubkeyloc)) # Add Mime infos to the message. msg["From"] = self.account msg["To"] = ", ".join(recipients) if cc: msg["Cc"] = ", ".join(cc) msg["Date"] = formatdate(time.time()) msg["User-Agent"] = self.user_agent msg["Subject"] = subject # If --dryrun is enabled, we exit here. if dryrun: print msg sys.exit() session = smtplib.SMTP(server, port) # If the loglevel is DEBUG (10), enable verbose logging. # if logging.getLogger().getEffectiveLevel() == 10: # session.set_debuglevel(1) if self.get_opt("outsecurity"): session.ehlo() session.starttls() session.ehlo() # Union of the three sets. recipients = recipients | cc | bcc try: session.login(self.username, password) except smtplib.SMTPAuthenticationError: log.error("Authentication failed. Wrong credentials?") sys.exit(1) # TODO: Add footer (with user-agent, timestamp?) session.sendmail(self.account, recipients, msg.as_string()) log.info("Mail sent from {} to {} ({}).".format(self.account, recipients, subject)) session.quit()
[ "def", "send_mail", "(", "self", ",", "recipient", ",", "header", ",", "message", ",", "sign", ",", "encrypt", ",", "attachkey", ",", "dryrun", ")", ":", "log", ".", "info", "(", "\"Sending mail to {} ({}). Sign/Encrypt/AttachKey: {}/{}/{}.\"", ".", "format", "(", "recipient", ",", "header", ",", "sign", ",", "encrypt", ",", "attachkey", ")", ")", "recipients", "=", "{", "i", "for", "i", "in", "recipient", ".", "split", "(", "\",\"", ")", "if", "\"@\"", "in", "i", "}", "if", "not", "recipients", ":", "log", ".", "error", "(", "\"No valid recipients in {}.\"", ".", "format", "(", "recipients", ")", ")", "return", "# TODO: Hash the password with sha256+salt and only ask once at start-", "# up, if we implement a curse UI.", "if", "not", "self", ".", "username", ":", "self", ".", "username", "=", "self", ".", "account", "password", "=", "getpass", "(", "\"Password for {}: \"", ".", "format", "(", "self", ".", "username", ")", ")", "server", "=", "self", ".", "get_opt", "(", "\"outserver\"", ")", "port", "=", "self", ".", "get_opt", "(", "\"outport\"", ",", "int", ")", "# Split header into CC, BCC and Subject.", "cc", ",", "bcc", "=", "\"\"", ",", "\"\"", "header", "=", "header", ".", "split", "(", "\"::\"", ")", "if", "len", "(", "header", ")", "==", "3", ":", "cc", ",", "bcc", ",", "subject", "=", "header", "[", "0", "]", ",", "header", "[", "1", "]", ",", "header", "[", "2", "]", "elif", "len", "(", "header", ")", "==", "2", ":", "cc", ",", "subject", "=", "header", "[", "0", "]", ",", "header", "[", "1", "]", "else", ":", "subject", "=", "header", "[", "0", "]", "cc", "=", "{", "i", "for", "i", "in", "cc", ".", "split", "(", "\",\"", ")", "if", "\"@\"", "in", "i", "}", "bcc", "=", "{", "i", "for", "i", "in", "bcc", ".", "split", "(", "\",\"", ")", "if", "\"@\"", "in", "i", "}", "# Initialize our message to attach signatures/keyfiles, body etc to.", "msg", "=", "MIMEMultipart", "(", ")", "if", "sign", "or", "encrypt", ":", "gpg", "=", "gnupg", ".", "GPG", "(", ")", "keyid", "=", "self", ".", "get_opt", "(", "\"keyid\"", ")", "keyfp", "=", "self", ".", "get_opt", "(", "\"keyfp\"", ")", "for", "i", "in", "gpg", ".", "list_keys", "(", ")", ":", "if", "keyid", "in", "i", "[", "\"keyid\"", "]", ":", "break", "else", ":", "log", ".", "error", "(", "\"{} not found in gpg.list_keys().\"", ".", "format", "(", "keyid", ")", ")", "sys", ".", "exit", "(", "1", ")", "if", "sign", "and", "encrypt", ":", "encrypted", "=", "str", "(", "gpg", ".", "encrypt", "(", "message", ",", "self", ".", "FPs", "[", "\"MaxDemian\"", "]", ",", "sign", "=", "keyfp", ")", ")", "if", "encrypted", ":", "encryptedtext", "=", "MIMEText", "(", "_text", "=", "encrypted", ",", "_subtype", "=", "self", ".", "content_subtype", ",", "_charset", "=", "self", ".", "content_charset", ")", "msg", ".", "attach", "(", "encryptedtext", ")", "else", ":", "log", ".", "error", "(", "\"Failed to encrypt the message.\"", ")", "sys", ".", "exit", "(", "1", ")", "elif", "sign", ":", "# message = msg.as_string().replace('\\n', '\\r\\n')", "signed", "=", "str", "(", "gpg", ".", "sign", "(", "message", ",", "keyid", "=", "keyid", ")", ")", "if", "signed", ":", "signedtext", "=", "MIMEText", "(", "_text", "=", "signed", ",", "_subtype", "=", "self", ".", "content_subtype", ",", "_charset", "=", "self", ".", "content_charset", ")", "msg", ".", "attach", "(", "signedtext", ")", "else", ":", "log", ".", "error", "(", "\"Failed to sign the message.\"", ")", "sys", ".", "exit", "(", "1", ")", "elif", "encrypt", ":", "encrypted", "=", "str", "(", "gpg", ".", "encrypt", "(", "message", ",", "self", ".", "FPs", "[", "\"MaxDemian\"", "]", ")", ")", "if", "encrypted", ":", "encryptedtext", "=", "MIMEText", "(", "_text", "=", "encrypted", ",", "_subtype", "=", "self", ".", "content_subtype", ",", "_charset", "=", "self", ".", "content_charset", ")", "msg", ".", "attach", "(", "encryptedtext", ")", "else", ":", "log", ".", "error", "(", "\"Failed to encrypt the message.\"", ")", "sys", ".", "exit", "(", "1", ")", "else", ":", "log", ".", "error", "(", "\"No GPG keys found.\"", ")", "pubkeyloc", "=", "None", "if", "attachkey", ":", "# Attach GPG Public attachkey.", "pubkeyfile", "=", "self", ".", "get_opt", "(", "\"keyfile\"", ")", "if", "os", ".", "path", ".", "isfile", "(", "pubkeyfile", ")", ":", "pubkeyloc", "=", "pubkeyfile", "elif", "os", ".", "path", ".", "isfile", "(", "os", ".", "path", ".", "join", "(", "self", ".", "configdir", ",", "pubkeyfile", ")", ")", ":", "pubkeyloc", "=", "os", ".", "path", ".", "join", "(", "self", ".", "configdir", ",", "pubkeyfile", ")", "else", ":", "log", ".", "error", "(", "\"Public attachkey '{}' could not be found.\"", ".", "format", "(", "pubkeyfile", ")", ")", "if", "pubkeyloc", ":", "ctype", ",", "encoding", "=", "mimetypes", ".", "guess_type", "(", "pubkeyloc", ")", "if", "ctype", "is", "None", "or", "encoding", "is", "not", "None", ":", "ctype", "=", "'application/octet-stream'", "maintype", ",", "subtype", "=", "ctype", ".", "split", "(", "'/'", ",", "1", ")", "if", "maintype", "==", "'text'", ":", "with", "open", "(", "pubkeyloc", ")", "as", "f", ":", "# keyatt = f.read()", "keyatt", "=", "MIMEText", "(", "f", ".", "read", "(", ")", ",", "_subtype", "=", "subtype", ",", "_charset", "=", "self", ".", "content_charset", ")", "keyatt", ".", "add_header", "(", "'Content-Disposition'", ",", "'attachment'", ",", "filename", "=", "pubkeyfile", ")", "msg", ".", "attach", "(", "keyatt", ")", "log", ".", "info", "(", "\"Attached public attachkey {} to message.\"", ".", "format", "(", "pubkeyfile", ")", ")", "else", ":", "log", ".", "error", "(", "\"{} is not a textfile. Sure it's a GPG Key?\"", ".", "format", "(", "pubkeyloc", ")", ")", "# Add Mime infos to the message.", "msg", "[", "\"From\"", "]", "=", "self", ".", "account", "msg", "[", "\"To\"", "]", "=", "\", \"", ".", "join", "(", "recipients", ")", "if", "cc", ":", "msg", "[", "\"Cc\"", "]", "=", "\", \"", ".", "join", "(", "cc", ")", "msg", "[", "\"Date\"", "]", "=", "formatdate", "(", "time", ".", "time", "(", ")", ")", "msg", "[", "\"User-Agent\"", "]", "=", "self", ".", "user_agent", "msg", "[", "\"Subject\"", "]", "=", "subject", "# If --dryrun is enabled, we exit here.", "if", "dryrun", ":", "print", "msg", "sys", ".", "exit", "(", ")", "session", "=", "smtplib", ".", "SMTP", "(", "server", ",", "port", ")", "# If the loglevel is DEBUG (10), enable verbose logging.", "# if logging.getLogger().getEffectiveLevel() == 10:", "# session.set_debuglevel(1)", "if", "self", ".", "get_opt", "(", "\"outsecurity\"", ")", ":", "session", ".", "ehlo", "(", ")", "session", ".", "starttls", "(", ")", "session", ".", "ehlo", "(", ")", "# Union of the three sets.", "recipients", "=", "recipients", "|", "cc", "|", "bcc", "try", ":", "session", ".", "login", "(", "self", ".", "username", ",", "password", ")", "except", "smtplib", ".", "SMTPAuthenticationError", ":", "log", ".", "error", "(", "\"Authentication failed. Wrong credentials?\"", ")", "sys", ".", "exit", "(", "1", ")", "# TODO: Add footer (with user-agent, timestamp?)", "session", ".", "sendmail", "(", "self", ".", "account", ",", "recipients", ",", "msg", ".", "as_string", "(", ")", ")", "log", ".", "info", "(", "\"Mail sent from {} to {} ({}).\"", ".", "format", "(", "self", ".", "account", ",", "recipients", ",", "subject", ")", ")", "session", ".", "quit", "(", ")" ]
[ 132, 4 ]
[ 289, 22 ]
python
en
['en', 'pt', 'en']
True
FallbackStorage._get
(self, *args, **kwargs)
Get a single list of messages from all storage backends.
Get a single list of messages from all storage backends.
def _get(self, *args, **kwargs): """ Get a single list of messages from all storage backends. """ all_messages = [] for storage in self.storages: messages, all_retrieved = storage._get() # If the backend hasn't been used, no more retrieval is necessary. if messages is None: break if messages: self._used_storages.add(storage) all_messages.extend(messages) # If this storage class contained all the messages, no further # retrieval is necessary if all_retrieved: break return all_messages, all_retrieved
[ "def", "_get", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "all_messages", "=", "[", "]", "for", "storage", "in", "self", ".", "storages", ":", "messages", ",", "all_retrieved", "=", "storage", ".", "_get", "(", ")", "# If the backend hasn't been used, no more retrieval is necessary.", "if", "messages", "is", "None", ":", "break", "if", "messages", ":", "self", ".", "_used_storages", ".", "add", "(", "storage", ")", "all_messages", ".", "extend", "(", "messages", ")", "# If this storage class contained all the messages, no further", "# retrieval is necessary", "if", "all_retrieved", ":", "break", "return", "all_messages", ",", "all_retrieved" ]
[ 18, 4 ]
[ 35, 42 ]
python
en
['en', 'error', 'th']
False
FallbackStorage._store
(self, messages, response, *args, **kwargs)
Store the messages and return any unstored messages after trying all backends. For each storage backend, any messages not stored are passed on to the next backend.
Store the messages and return any unstored messages after trying all backends.
def _store(self, messages, response, *args, **kwargs): """ Store the messages and return any unstored messages after trying all backends. For each storage backend, any messages not stored are passed on to the next backend. """ for storage in self.storages: if messages: messages = storage._store(messages, response, remove_oldest=False) # Even if there are no more messages, continue iterating to ensure # storages which contained messages are flushed. elif storage in self._used_storages: storage._store([], response) self._used_storages.remove(storage) return messages
[ "def", "_store", "(", "self", ",", "messages", ",", "response", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "for", "storage", "in", "self", ".", "storages", ":", "if", "messages", ":", "messages", "=", "storage", ".", "_store", "(", "messages", ",", "response", ",", "remove_oldest", "=", "False", ")", "# Even if there are no more messages, continue iterating to ensure", "# storages which contained messages are flushed.", "elif", "storage", "in", "self", ".", "_used_storages", ":", "storage", ".", "_store", "(", "[", "]", ",", "response", ")", "self", ".", "_used_storages", ".", "remove", "(", "storage", ")", "return", "messages" ]
[ 37, 4 ]
[ 53, 23 ]
python
en
['en', 'error', 'th']
False
check_for_occlusions
(task, user_input, keep_space_around_bodies=True)
Returns true if user_input occludes scene objects.
Returns true if user_input occludes scene objects.
def check_for_occlusions(task, user_input, keep_space_around_bodies=True): """Returns true if user_input occludes scene objects.""" if not isinstance(task, bytes): task = serialize(task) if isinstance(user_input, scene_if.UserInput): return simulator_bindings.check_for_occlusions_general( task, serialize(user_input), keep_space_around_bodies) else: points, rectangulars, balls = _prepare_user_input(*user_input) return simulator_bindings.check_for_occlusions( task, points, rectangulars, balls, keep_space_around_bodies)
[ "def", "check_for_occlusions", "(", "task", ",", "user_input", ",", "keep_space_around_bodies", "=", "True", ")", ":", "if", "not", "isinstance", "(", "task", ",", "bytes", ")", ":", "task", "=", "serialize", "(", "task", ")", "if", "isinstance", "(", "user_input", ",", "scene_if", ".", "UserInput", ")", ":", "return", "simulator_bindings", ".", "check_for_occlusions_general", "(", "task", ",", "serialize", "(", "user_input", ")", ",", "keep_space_around_bodies", ")", "else", ":", "points", ",", "rectangulars", ",", "balls", "=", "_prepare_user_input", "(", "*", "user_input", ")", "return", "simulator_bindings", ".", "check_for_occlusions", "(", "task", ",", "points", ",", "rectangulars", ",", "balls", ",", "keep_space_around_bodies", ")" ]
[ 80, 0 ]
[ 90, 72 ]
python
en
['it', 'fy', 'en']
False
add_user_input_to_scene
(scene, user_input, keep_space_around_bodies=True, allow_occlusions=False)
Converts user input to objects in the scene. Args: scene: scene_if.Scene. user_input: scene_if.UserInput or a triple (points, rectangulars, balls). keep_space_around_bodies: bool, if True extra empty space will be enforced around scene bodies. Returns: task_simulation: task_if.TaskSimulation.
Converts user input to objects in the scene.
def add_user_input_to_scene(scene, user_input, keep_space_around_bodies=True, allow_occlusions=False): """Converts user input to objects in the scene. Args: scene: scene_if.Scene. user_input: scene_if.UserInput or a triple (points, rectangulars, balls). keep_space_around_bodies: bool, if True extra empty space will be enforced around scene bodies. Returns: task_simulation: task_if.TaskSimulation. """ if not isinstance(user_input, scene_if.UserInput): user_input = build_user_input(*user_input) return deserialize( scene_if.Scene(), simulator_bindings.add_user_input_to_scene(serialize(scene), serialize(user_input), keep_space_around_bodies, allow_occlusions))
[ "def", "add_user_input_to_scene", "(", "scene", ",", "user_input", ",", "keep_space_around_bodies", "=", "True", ",", "allow_occlusions", "=", "False", ")", ":", "if", "not", "isinstance", "(", "user_input", ",", "scene_if", ".", "UserInput", ")", ":", "user_input", "=", "build_user_input", "(", "*", "user_input", ")", "return", "deserialize", "(", "scene_if", ".", "Scene", "(", ")", ",", "simulator_bindings", ".", "add_user_input_to_scene", "(", "serialize", "(", "scene", ")", ",", "serialize", "(", "user_input", ")", ",", "keep_space_around_bodies", ",", "allow_occlusions", ")", ")" ]
[ 93, 0 ]
[ 116, 69 ]
python
en
['en', 'en', 'en']
True
simulate_task_with_input
(task, user_input, steps=DEFAULT_MAX_STEPS, stride=DEFAULT_STRIDE, keep_space_around_bodies=True)
Check a solution for a task and return SimulationResult. This is un-optimized version of magic_ponies that should be used for debugging or vizualization purposes only.
Check a solution for a task and return SimulationResult.
def simulate_task_with_input(task, user_input, steps=DEFAULT_MAX_STEPS, stride=DEFAULT_STRIDE, keep_space_around_bodies=True): """Check a solution for a task and return SimulationResult. This is un-optimized version of magic_ponies that should be used for debugging or vizualization purposes only. """ if not isinstance(user_input, scene_if.UserInput): user_input = build_user_input(*user_input) # Creating a shallow copy. task = copy.copy(task) task.scene = add_user_input_to_scene(task.scene, user_input, keep_space_around_bodies) return simulate_task(task, steps, stride)
[ "def", "simulate_task_with_input", "(", "task", ",", "user_input", ",", "steps", "=", "DEFAULT_MAX_STEPS", ",", "stride", "=", "DEFAULT_STRIDE", ",", "keep_space_around_bodies", "=", "True", ")", ":", "if", "not", "isinstance", "(", "user_input", ",", "scene_if", ".", "UserInput", ")", ":", "user_input", "=", "build_user_input", "(", "*", "user_input", ")", "# Creating a shallow copy.", "task", "=", "copy", ".", "copy", "(", "task", ")", "task", ".", "scene", "=", "add_user_input_to_scene", "(", "task", ".", "scene", ",", "user_input", ",", "keep_space_around_bodies", ")", "return", "simulate_task", "(", "task", ",", "steps", ",", "stride", ")" ]
[ 119, 0 ]
[ 136, 45 ]
python
en
['en', 'en', 'en']
True
scene_to_raster
(scene)
Convert scene to a integer array height x width containing color codes.
Convert scene to a integer array height x width containing color codes.
def scene_to_raster(scene): """Convert scene to a integer array height x width containing color codes. """ pixels = simulator_bindings.render(serialize(scene)) return np.array(pixels).reshape((scene.height, scene.width))
[ "def", "scene_to_raster", "(", "scene", ")", ":", "pixels", "=", "simulator_bindings", ".", "render", "(", "serialize", "(", "scene", ")", ")", "return", "np", ".", "array", "(", "pixels", ")", ".", "reshape", "(", "(", "scene", ".", "height", ",", "scene", ".", "width", ")", ")" ]
[ 139, 0 ]
[ 143, 64 ]
python
en
['en', 'en', 'en']
True
scene_to_featurized_objects
(scene)
Convert scene to a FeaturizedObjects containing featurs of size num_objects x OBJECT_FEATURE_SIZE.
Convert scene to a FeaturizedObjects containing featurs of size num_objects x OBJECT_FEATURE_SIZE.
def scene_to_featurized_objects(scene): """Convert scene to a FeaturizedObjects containing featurs of size num_objects x OBJECT_FEATURE_SIZE.""" object_vector = simulator_bindings.featurize_scene(serialize(scene)) object_vector = np.array(object_vector, dtype=np.float32).reshape( (-1, OBJECT_FEATURE_SIZE)) return phyre.simulation.FeaturizedObjects( phyre.simulation.finalize_featurized_objects( np.expand_dims(object_vector, axis=0)))
[ "def", "scene_to_featurized_objects", "(", "scene", ")", ":", "object_vector", "=", "simulator_bindings", ".", "featurize_scene", "(", "serialize", "(", "scene", ")", ")", "object_vector", "=", "np", ".", "array", "(", "object_vector", ",", "dtype", "=", "np", ".", "float32", ")", ".", "reshape", "(", "(", "-", "1", ",", "OBJECT_FEATURE_SIZE", ")", ")", "return", "phyre", ".", "simulation", ".", "FeaturizedObjects", "(", "phyre", ".", "simulation", ".", "finalize_featurized_objects", "(", "np", ".", "expand_dims", "(", "object_vector", ",", "axis", "=", "0", ")", ")", ")" ]
[ 146, 0 ]
[ 154, 51 ]
python
en
['en', 'en', 'en']
True
magic_ponies
(task, user_input, steps=DEFAULT_MAX_STEPS, stride=DEFAULT_STRIDE, keep_space_around_bodies=True, with_times=False, need_images=False, need_featurized_objects=False, perturb_step=-1, stop_after_solved=True)
Check a solution for a task and return intermidiate images. Args: task: task_if.Task or bytes, in the latter case a serialzed task is expected. user_input: scene_if.UserInput or a triple(points, rectangulars, balls) points: None or a list or an array of points. Should be of shape (N, 2). In the latter case is assumed to be in row-major format. rectangulars: A list of lists of 4 verticies. Each vertix should be a pair of floats. Vertices must be on positive order and must form a convex polygon. Otherwise the input will be deemed invalid. balls: A list of triples (x, y, radius). steps: Maximum number of steps to simulate for. stride: Stride for the returned image array. Negative values will produce not images. keep_space_around_bodies: bool, if True extra empty space will be enforced around scene bodies. with_times: A boolean flag indicating whether timing info is required. need_images: A boolean flag indicating whether images should be returned. need_featurized_objects: A boolean flag indicating whether objects should be returned. perturb_step: Perturb the simulation at that time step. Set to -1 to not perturb at all. stop_after_solved: Stop the simulation once solved. Set to False to keep it running, for training forward models better. Returns: A tuple (is_solved, had_occlusions, images, objects) if with_times is False. is_solved: bool. had_occlusions: bool. images a numpy arrays of shape (num_steps, height, width). objects is a numpy array of shape (num_steps, num_objects, feature_size). A tuple (is_solved, had_occlusions, images, scenes, simulation_time, pack_time) if with_times is set. simulation_time: time spent inside C++ code to unpack and simulate. pack_time: time spent inside C++ code to pack the result.
Check a solution for a task and return intermidiate images.
def magic_ponies(task, user_input, steps=DEFAULT_MAX_STEPS, stride=DEFAULT_STRIDE, keep_space_around_bodies=True, with_times=False, need_images=False, need_featurized_objects=False, perturb_step=-1, stop_after_solved=True): """Check a solution for a task and return intermidiate images. Args: task: task_if.Task or bytes, in the latter case a serialzed task is expected. user_input: scene_if.UserInput or a triple(points, rectangulars, balls) points: None or a list or an array of points. Should be of shape (N, 2). In the latter case is assumed to be in row-major format. rectangulars: A list of lists of 4 verticies. Each vertix should be a pair of floats. Vertices must be on positive order and must form a convex polygon. Otherwise the input will be deemed invalid. balls: A list of triples (x, y, radius). steps: Maximum number of steps to simulate for. stride: Stride for the returned image array. Negative values will produce not images. keep_space_around_bodies: bool, if True extra empty space will be enforced around scene bodies. with_times: A boolean flag indicating whether timing info is required. need_images: A boolean flag indicating whether images should be returned. need_featurized_objects: A boolean flag indicating whether objects should be returned. perturb_step: Perturb the simulation at that time step. Set to -1 to not perturb at all. stop_after_solved: Stop the simulation once solved. Set to False to keep it running, for training forward models better. Returns: A tuple (is_solved, had_occlusions, images, objects) if with_times is False. is_solved: bool. had_occlusions: bool. images a numpy arrays of shape (num_steps, height, width). objects is a numpy array of shape (num_steps, num_objects, feature_size). A tuple (is_solved, had_occlusions, images, scenes, simulation_time, pack_time) if with_times is set. simulation_time: time spent inside C++ code to unpack and simulate. pack_time: time spent inside C++ code to pack the result. """ if isinstance(task, bytes): serialized_task = task height, width = creator.SCENE_HEIGHT, creator.SCENE_WIDTH else: serialized_task = serialize(task) height, width = task.scene.height, task.scene.width if isinstance(user_input, scene_if.UserInput): is_solved, had_occlusions, packed_images, packed_featurized_objects, number_objects, sim_time, pack_time = ( simulator_bindings.magic_ponies_general(serialized_task, serialize(user_input), keep_space_around_bodies, steps, stride, need_images, need_featurized_objects, perturb_step, stop_after_solved)) else: points, rectangulars, balls = _prepare_user_input(*user_input) is_solved, had_occlusions, packed_images, packed_featurized_objects, number_objects, sim_time, pack_time = ( simulator_bindings.magic_ponies(serialized_task, points, rectangulars, balls, keep_space_around_bodies, steps, stride, need_images, need_featurized_objects, perturb_step, stop_after_solved)) packed_images = np.array(packed_images, dtype=np.uint8) images = packed_images.reshape((-1, height, width)) packed_featurized_objects = np.array(packed_featurized_objects, dtype=np.float32) packed_featurized_objects = packed_featurized_objects.reshape( (-1, number_objects, OBJECT_FEATURE_SIZE)) packed_featurized_objects = phyre.simulation.finalize_featurized_objects( packed_featurized_objects) if with_times: return is_solved, had_occlusions, images, packed_featurized_objects, sim_time, pack_time else: return is_solved, had_occlusions, images, packed_featurized_objects
[ "def", "magic_ponies", "(", "task", ",", "user_input", ",", "steps", "=", "DEFAULT_MAX_STEPS", ",", "stride", "=", "DEFAULT_STRIDE", ",", "keep_space_around_bodies", "=", "True", ",", "with_times", "=", "False", ",", "need_images", "=", "False", ",", "need_featurized_objects", "=", "False", ",", "perturb_step", "=", "-", "1", ",", "stop_after_solved", "=", "True", ")", ":", "if", "isinstance", "(", "task", ",", "bytes", ")", ":", "serialized_task", "=", "task", "height", ",", "width", "=", "creator", ".", "SCENE_HEIGHT", ",", "creator", ".", "SCENE_WIDTH", "else", ":", "serialized_task", "=", "serialize", "(", "task", ")", "height", ",", "width", "=", "task", ".", "scene", ".", "height", ",", "task", ".", "scene", ".", "width", "if", "isinstance", "(", "user_input", ",", "scene_if", ".", "UserInput", ")", ":", "is_solved", ",", "had_occlusions", ",", "packed_images", ",", "packed_featurized_objects", ",", "number_objects", ",", "sim_time", ",", "pack_time", "=", "(", "simulator_bindings", ".", "magic_ponies_general", "(", "serialized_task", ",", "serialize", "(", "user_input", ")", ",", "keep_space_around_bodies", ",", "steps", ",", "stride", ",", "need_images", ",", "need_featurized_objects", ",", "perturb_step", ",", "stop_after_solved", ")", ")", "else", ":", "points", ",", "rectangulars", ",", "balls", "=", "_prepare_user_input", "(", "*", "user_input", ")", "is_solved", ",", "had_occlusions", ",", "packed_images", ",", "packed_featurized_objects", ",", "number_objects", ",", "sim_time", ",", "pack_time", "=", "(", "simulator_bindings", ".", "magic_ponies", "(", "serialized_task", ",", "points", ",", "rectangulars", ",", "balls", ",", "keep_space_around_bodies", ",", "steps", ",", "stride", ",", "need_images", ",", "need_featurized_objects", ",", "perturb_step", ",", "stop_after_solved", ")", ")", "packed_images", "=", "np", ".", "array", "(", "packed_images", ",", "dtype", "=", "np", ".", "uint8", ")", "images", "=", "packed_images", ".", "reshape", "(", "(", "-", "1", ",", "height", ",", "width", ")", ")", "packed_featurized_objects", "=", "np", ".", "array", "(", "packed_featurized_objects", ",", "dtype", "=", "np", ".", "float32", ")", "packed_featurized_objects", "=", "packed_featurized_objects", ".", "reshape", "(", "(", "-", "1", ",", "number_objects", ",", "OBJECT_FEATURE_SIZE", ")", ")", "packed_featurized_objects", "=", "phyre", ".", "simulation", ".", "finalize_featurized_objects", "(", "packed_featurized_objects", ")", "if", "with_times", ":", "return", "is_solved", ",", "had_occlusions", ",", "images", ",", "packed_featurized_objects", ",", "sim_time", ",", "pack_time", "else", ":", "return", "is_solved", ",", "had_occlusions", ",", "images", ",", "packed_featurized_objects" ]
[ 187, 0 ]
[ 273, 75 ]
python
en
['en', 'en', 'en']
True
_default_key_normalizer
(key_class, request_context)
Create a pool key out of a request context dictionary. According to RFC 3986, both the scheme and host are case-insensitive. Therefore, this function normalizes both before constructing the pool key for an HTTPS request. If you wish to change this behaviour, provide alternate callables to ``key_fn_by_scheme``. :param key_class: The class to use when constructing the key. This should be a namedtuple with the ``scheme`` and ``host`` keys at a minimum. :type key_class: namedtuple :param request_context: A dictionary-like object that contain the context for a request. :type request_context: dict :return: A namedtuple that can be used as a connection pool key. :rtype: PoolKey
Create a pool key out of a request context dictionary.
def _default_key_normalizer(key_class, request_context): """ Create a pool key out of a request context dictionary. According to RFC 3986, both the scheme and host are case-insensitive. Therefore, this function normalizes both before constructing the pool key for an HTTPS request. If you wish to change this behaviour, provide alternate callables to ``key_fn_by_scheme``. :param key_class: The class to use when constructing the key. This should be a namedtuple with the ``scheme`` and ``host`` keys at a minimum. :type key_class: namedtuple :param request_context: A dictionary-like object that contain the context for a request. :type request_context: dict :return: A namedtuple that can be used as a connection pool key. :rtype: PoolKey """ # Since we mutate the dictionary, make a copy first context = request_context.copy() context["scheme"] = context["scheme"].lower() context["host"] = context["host"].lower() # These are both dictionaries and need to be transformed into frozensets for key in ("headers", "_proxy_headers", "_socks_options"): if key in context and context[key] is not None: context[key] = frozenset(context[key].items()) # The socket_options key may be a list and needs to be transformed into a # tuple. socket_opts = context.get("socket_options") if socket_opts is not None: context["socket_options"] = tuple(socket_opts) # Map the kwargs to the names in the namedtuple - this is necessary since # namedtuples can't have fields starting with '_'. for key in list(context.keys()): context["key_" + key] = context.pop(key) # Default to ``None`` for keys missing from the context for field in key_class._fields: if field not in context: context[field] = None return key_class(**context)
[ "def", "_default_key_normalizer", "(", "key_class", ",", "request_context", ")", ":", "# Since we mutate the dictionary, make a copy first", "context", "=", "request_context", ".", "copy", "(", ")", "context", "[", "\"scheme\"", "]", "=", "context", "[", "\"scheme\"", "]", ".", "lower", "(", ")", "context", "[", "\"host\"", "]", "=", "context", "[", "\"host\"", "]", ".", "lower", "(", ")", "# These are both dictionaries and need to be transformed into frozensets", "for", "key", "in", "(", "\"headers\"", ",", "\"_proxy_headers\"", ",", "\"_socks_options\"", ")", ":", "if", "key", "in", "context", "and", "context", "[", "key", "]", "is", "not", "None", ":", "context", "[", "key", "]", "=", "frozenset", "(", "context", "[", "key", "]", ".", "items", "(", ")", ")", "# The socket_options key may be a list and needs to be transformed into a", "# tuple.", "socket_opts", "=", "context", ".", "get", "(", "\"socket_options\"", ")", "if", "socket_opts", "is", "not", "None", ":", "context", "[", "\"socket_options\"", "]", "=", "tuple", "(", "socket_opts", ")", "# Map the kwargs to the names in the namedtuple - this is necessary since", "# namedtuples can't have fields starting with '_'.", "for", "key", "in", "list", "(", "context", ".", "keys", "(", ")", ")", ":", "context", "[", "\"key_\"", "+", "key", "]", "=", "context", ".", "pop", "(", "key", ")", "# Default to ``None`` for keys missing from the context", "for", "field", "in", "key_class", ".", "_fields", ":", "if", "field", "not", "in", "context", ":", "context", "[", "field", "]", "=", "None", "return", "key_class", "(", "*", "*", "context", ")" ]
[ 77, 0 ]
[ 123, 31 ]
python
en
['en', 'error', 'th']
False
PoolManager._new_pool
(self, scheme, host, port, request_context=None)
Create a new :class:`urllib3.connectionpool.ConnectionPool` based on host, port, scheme, and any additional pool keyword arguments. If ``request_context`` is provided, it is provided as keyword arguments to the pool class used. This method is used to actually create the connection pools handed out by :meth:`connection_from_url` and companion methods. It is intended to be overridden for customization.
Create a new :class:`urllib3.connectionpool.ConnectionPool` based on host, port, scheme, and any additional pool keyword arguments.
def _new_pool(self, scheme, host, port, request_context=None): """ Create a new :class:`urllib3.connectionpool.ConnectionPool` based on host, port, scheme, and any additional pool keyword arguments. If ``request_context`` is provided, it is provided as keyword arguments to the pool class used. This method is used to actually create the connection pools handed out by :meth:`connection_from_url` and companion methods. It is intended to be overridden for customization. """ pool_cls = self.pool_classes_by_scheme[scheme] if request_context is None: request_context = self.connection_pool_kw.copy() # Although the context has everything necessary to create the pool, # this function has historically only used the scheme, host, and port # in the positional args. When an API change is acceptable these can # be removed. for key in ("scheme", "host", "port"): request_context.pop(key, None) if scheme == "http": for kw in SSL_KEYWORDS: request_context.pop(kw, None) return pool_cls(host, port, **request_context)
[ "def", "_new_pool", "(", "self", ",", "scheme", ",", "host", ",", "port", ",", "request_context", "=", "None", ")", ":", "pool_cls", "=", "self", ".", "pool_classes_by_scheme", "[", "scheme", "]", "if", "request_context", "is", "None", ":", "request_context", "=", "self", ".", "connection_pool_kw", ".", "copy", "(", ")", "# Although the context has everything necessary to create the pool,", "# this function has historically only used the scheme, host, and port", "# in the positional args. When an API change is acceptable these can", "# be removed.", "for", "key", "in", "(", "\"scheme\"", ",", "\"host\"", ",", "\"port\"", ")", ":", "request_context", ".", "pop", "(", "key", ",", "None", ")", "if", "scheme", "==", "\"http\"", ":", "for", "kw", "in", "SSL_KEYWORDS", ":", "request_context", ".", "pop", "(", "kw", ",", "None", ")", "return", "pool_cls", "(", "host", ",", "port", ",", "*", "*", "request_context", ")" ]
[ 187, 4 ]
[ 212, 54 ]
python
en
['en', 'error', 'th']
False
PoolManager.clear
(self)
Empty our store of pools and direct them all to close. This will not affect in-flight connections, but they will not be re-used after completion.
Empty our store of pools and direct them all to close.
def clear(self): """ Empty our store of pools and direct them all to close. This will not affect in-flight connections, but they will not be re-used after completion. """ self.pools.clear()
[ "def", "clear", "(", "self", ")", ":", "self", ".", "pools", ".", "clear", "(", ")" ]
[ 214, 4 ]
[ 221, 26 ]
python
en
['en', 'error', 'th']
False
PoolManager.connection_from_host
(self, host, port=None, scheme="http", pool_kwargs=None)
Get a :class:`urllib3.connectionpool.ConnectionPool` based on the host, port, and scheme. If ``port`` isn't given, it will be derived from the ``scheme`` using ``urllib3.connectionpool.port_by_scheme``. If ``pool_kwargs`` is provided, it is merged with the instance's ``connection_pool_kw`` variable and used to create the new connection pool, if one is needed.
Get a :class:`urllib3.connectionpool.ConnectionPool` based on the host, port, and scheme.
def connection_from_host(self, host, port=None, scheme="http", pool_kwargs=None): """ Get a :class:`urllib3.connectionpool.ConnectionPool` based on the host, port, and scheme. If ``port`` isn't given, it will be derived from the ``scheme`` using ``urllib3.connectionpool.port_by_scheme``. If ``pool_kwargs`` is provided, it is merged with the instance's ``connection_pool_kw`` variable and used to create the new connection pool, if one is needed. """ if not host: raise LocationValueError("No host specified.") request_context = self._merge_pool_kwargs(pool_kwargs) request_context["scheme"] = scheme or "http" if not port: port = port_by_scheme.get(request_context["scheme"].lower(), 80) request_context["port"] = port request_context["host"] = host return self.connection_from_context(request_context)
[ "def", "connection_from_host", "(", "self", ",", "host", ",", "port", "=", "None", ",", "scheme", "=", "\"http\"", ",", "pool_kwargs", "=", "None", ")", ":", "if", "not", "host", ":", "raise", "LocationValueError", "(", "\"No host specified.\"", ")", "request_context", "=", "self", ".", "_merge_pool_kwargs", "(", "pool_kwargs", ")", "request_context", "[", "\"scheme\"", "]", "=", "scheme", "or", "\"http\"", "if", "not", "port", ":", "port", "=", "port_by_scheme", ".", "get", "(", "request_context", "[", "\"scheme\"", "]", ".", "lower", "(", ")", ",", "80", ")", "request_context", "[", "\"port\"", "]", "=", "port", "request_context", "[", "\"host\"", "]", "=", "host", "return", "self", ".", "connection_from_context", "(", "request_context", ")" ]
[ 223, 4 ]
[ 244, 60 ]
python
en
['en', 'error', 'th']
False
PoolManager.connection_from_context
(self, request_context)
Get a :class:`urllib3.connectionpool.ConnectionPool` based on the request context. ``request_context`` must at least contain the ``scheme`` key and its value must be a key in ``key_fn_by_scheme`` instance variable.
Get a :class:`urllib3.connectionpool.ConnectionPool` based on the request context.
def connection_from_context(self, request_context): """ Get a :class:`urllib3.connectionpool.ConnectionPool` based on the request context. ``request_context`` must at least contain the ``scheme`` key and its value must be a key in ``key_fn_by_scheme`` instance variable. """ scheme = request_context["scheme"].lower() pool_key_constructor = self.key_fn_by_scheme.get(scheme) if not pool_key_constructor: raise URLSchemeUnknown(scheme) pool_key = pool_key_constructor(request_context) return self.connection_from_pool_key(pool_key, request_context=request_context)
[ "def", "connection_from_context", "(", "self", ",", "request_context", ")", ":", "scheme", "=", "request_context", "[", "\"scheme\"", "]", ".", "lower", "(", ")", "pool_key_constructor", "=", "self", ".", "key_fn_by_scheme", ".", "get", "(", "scheme", ")", "if", "not", "pool_key_constructor", ":", "raise", "URLSchemeUnknown", "(", "scheme", ")", "pool_key", "=", "pool_key_constructor", "(", "request_context", ")", "return", "self", ".", "connection_from_pool_key", "(", "pool_key", ",", "request_context", "=", "request_context", ")" ]
[ 246, 4 ]
[ 259, 87 ]
python
en
['en', 'error', 'th']
False
PoolManager.connection_from_pool_key
(self, pool_key, request_context=None)
Get a :class:`urllib3.connectionpool.ConnectionPool` based on the provided pool key. ``pool_key`` should be a namedtuple that only contains immutable objects. At a minimum it must have the ``scheme``, ``host``, and ``port`` fields.
Get a :class:`urllib3.connectionpool.ConnectionPool` based on the provided pool key.
def connection_from_pool_key(self, pool_key, request_context=None): """ Get a :class:`urllib3.connectionpool.ConnectionPool` based on the provided pool key. ``pool_key`` should be a namedtuple that only contains immutable objects. At a minimum it must have the ``scheme``, ``host``, and ``port`` fields. """ with self.pools.lock: # If the scheme, host, or port doesn't match existing open # connections, open a new ConnectionPool. pool = self.pools.get(pool_key) if pool: return pool # Make a fresh ConnectionPool of the desired type scheme = request_context["scheme"] host = request_context["host"] port = request_context["port"] pool = self._new_pool(scheme, host, port, request_context=request_context) self.pools[pool_key] = pool return pool
[ "def", "connection_from_pool_key", "(", "self", ",", "pool_key", ",", "request_context", "=", "None", ")", ":", "with", "self", ".", "pools", ".", "lock", ":", "# If the scheme, host, or port doesn't match existing open", "# connections, open a new ConnectionPool.", "pool", "=", "self", ".", "pools", ".", "get", "(", "pool_key", ")", "if", "pool", ":", "return", "pool", "# Make a fresh ConnectionPool of the desired type", "scheme", "=", "request_context", "[", "\"scheme\"", "]", "host", "=", "request_context", "[", "\"host\"", "]", "port", "=", "request_context", "[", "\"port\"", "]", "pool", "=", "self", ".", "_new_pool", "(", "scheme", ",", "host", ",", "port", ",", "request_context", "=", "request_context", ")", "self", ".", "pools", "[", "pool_key", "]", "=", "pool", "return", "pool" ]
[ 261, 4 ]
[ 283, 19 ]
python
en
['en', 'error', 'th']
False
PoolManager.connection_from_url
(self, url, pool_kwargs=None)
Similar to :func:`urllib3.connectionpool.connection_from_url`. If ``pool_kwargs`` is not provided and a new pool needs to be constructed, ``self.connection_pool_kw`` is used to initialize the :class:`urllib3.connectionpool.ConnectionPool`. If ``pool_kwargs`` is provided, it is used instead. Note that if a new pool does not need to be created for the request, the provided ``pool_kwargs`` are not used.
Similar to :func:`urllib3.connectionpool.connection_from_url`.
def connection_from_url(self, url, pool_kwargs=None): """ Similar to :func:`urllib3.connectionpool.connection_from_url`. If ``pool_kwargs`` is not provided and a new pool needs to be constructed, ``self.connection_pool_kw`` is used to initialize the :class:`urllib3.connectionpool.ConnectionPool`. If ``pool_kwargs`` is provided, it is used instead. Note that if a new pool does not need to be created for the request, the provided ``pool_kwargs`` are not used. """ u = parse_url(url) return self.connection_from_host( u.host, port=u.port, scheme=u.scheme, pool_kwargs=pool_kwargs )
[ "def", "connection_from_url", "(", "self", ",", "url", ",", "pool_kwargs", "=", "None", ")", ":", "u", "=", "parse_url", "(", "url", ")", "return", "self", ".", "connection_from_host", "(", "u", ".", "host", ",", "port", "=", "u", ".", "port", ",", "scheme", "=", "u", ".", "scheme", ",", "pool_kwargs", "=", "pool_kwargs", ")" ]
[ 285, 4 ]
[ 299, 9 ]
python
en
['en', 'error', 'th']
False
PoolManager._merge_pool_kwargs
(self, override)
Merge a dictionary of override values for self.connection_pool_kw. This does not modify self.connection_pool_kw and returns a new dict. Any keys in the override dictionary with a value of ``None`` are removed from the merged dictionary.
Merge a dictionary of override values for self.connection_pool_kw.
def _merge_pool_kwargs(self, override): """ Merge a dictionary of override values for self.connection_pool_kw. This does not modify self.connection_pool_kw and returns a new dict. Any keys in the override dictionary with a value of ``None`` are removed from the merged dictionary. """ base_pool_kwargs = self.connection_pool_kw.copy() if override: for key, value in override.items(): if value is None: try: del base_pool_kwargs[key] except KeyError: pass else: base_pool_kwargs[key] = value return base_pool_kwargs
[ "def", "_merge_pool_kwargs", "(", "self", ",", "override", ")", ":", "base_pool_kwargs", "=", "self", ".", "connection_pool_kw", ".", "copy", "(", ")", "if", "override", ":", "for", "key", ",", "value", "in", "override", ".", "items", "(", ")", ":", "if", "value", "is", "None", ":", "try", ":", "del", "base_pool_kwargs", "[", "key", "]", "except", "KeyError", ":", "pass", "else", ":", "base_pool_kwargs", "[", "key", "]", "=", "value", "return", "base_pool_kwargs" ]
[ 301, 4 ]
[ 319, 31 ]
python
en
['en', 'error', 'th']
False
PoolManager._proxy_requires_url_absolute_form
(self, parsed_url)
Indicates if the proxy requires the complete destination URL in the request. Normally this is only needed when not using an HTTP CONNECT tunnel.
Indicates if the proxy requires the complete destination URL in the request. Normally this is only needed when not using an HTTP CONNECT tunnel.
def _proxy_requires_url_absolute_form(self, parsed_url): """ Indicates if the proxy requires the complete destination URL in the request. Normally this is only needed when not using an HTTP CONNECT tunnel. """ if self.proxy is None: return False return not connection_requires_http_tunnel( self.proxy, self.proxy_config, parsed_url.scheme )
[ "def", "_proxy_requires_url_absolute_form", "(", "self", ",", "parsed_url", ")", ":", "if", "self", ".", "proxy", "is", "None", ":", "return", "False", "return", "not", "connection_requires_http_tunnel", "(", "self", ".", "proxy", ",", "self", ".", "proxy_config", ",", "parsed_url", ".", "scheme", ")" ]
[ 321, 4 ]
[ 332, 9 ]
python
en
['en', 'error', 'th']
False
PoolManager._validate_proxy_scheme_url_selection
(self, url_scheme)
Validates that were not attempting to do TLS in TLS connections on Python2 or with unsupported SSL implementations.
Validates that were not attempting to do TLS in TLS connections on Python2 or with unsupported SSL implementations.
def _validate_proxy_scheme_url_selection(self, url_scheme): """ Validates that were not attempting to do TLS in TLS connections on Python2 or with unsupported SSL implementations. """ if self.proxy is None or url_scheme != "https": return if self.proxy.scheme != "https": return if six.PY2 and not self.proxy_config.use_forwarding_for_https: raise ProxySchemeUnsupported( "Contacting HTTPS destinations through HTTPS proxies " "'via CONNECT tunnels' is not supported in Python 2" )
[ "def", "_validate_proxy_scheme_url_selection", "(", "self", ",", "url_scheme", ")", ":", "if", "self", ".", "proxy", "is", "None", "or", "url_scheme", "!=", "\"https\"", ":", "return", "if", "self", ".", "proxy", ".", "scheme", "!=", "\"https\"", ":", "return", "if", "six", ".", "PY2", "and", "not", "self", ".", "proxy_config", ".", "use_forwarding_for_https", ":", "raise", "ProxySchemeUnsupported", "(", "\"Contacting HTTPS destinations through HTTPS proxies \"", "\"'via CONNECT tunnels' is not supported in Python 2\"", ")" ]
[ 334, 4 ]
[ 349, 13 ]
python
en
['en', 'error', 'th']
False
PoolManager.urlopen
(self, method, url, redirect=True, **kw)
Same as :meth:`urllib3.HTTPConnectionPool.urlopen` with custom cross-host redirect logic and only sends the request-uri portion of the ``url``. The given ``url`` parameter must be absolute, such that an appropriate :class:`urllib3.connectionpool.ConnectionPool` can be chosen for it.
Same as :meth:`urllib3.HTTPConnectionPool.urlopen` with custom cross-host redirect logic and only sends the request-uri portion of the ``url``.
def urlopen(self, method, url, redirect=True, **kw): """ Same as :meth:`urllib3.HTTPConnectionPool.urlopen` with custom cross-host redirect logic and only sends the request-uri portion of the ``url``. The given ``url`` parameter must be absolute, such that an appropriate :class:`urllib3.connectionpool.ConnectionPool` can be chosen for it. """ u = parse_url(url) self._validate_proxy_scheme_url_selection(u.scheme) conn = self.connection_from_host(u.host, port=u.port, scheme=u.scheme) kw["assert_same_host"] = False kw["redirect"] = False if "headers" not in kw: kw["headers"] = self.headers.copy() if self._proxy_requires_url_absolute_form(u): response = conn.urlopen(method, url, **kw) else: response = conn.urlopen(method, u.request_uri, **kw) redirect_location = redirect and response.get_redirect_location() if not redirect_location: return response # Support relative URLs for redirecting. redirect_location = urljoin(url, redirect_location) # RFC 7231, Section 6.4.4 if response.status == 303: method = "GET" retries = kw.get("retries") if not isinstance(retries, Retry): retries = Retry.from_int(retries, redirect=redirect) # Strip headers marked as unsafe to forward to the redirected location. # Check remove_headers_on_redirect to avoid a potential network call within # conn.is_same_host() which may use socket.gethostbyname() in the future. if retries.remove_headers_on_redirect and not conn.is_same_host( redirect_location ): headers = list(six.iterkeys(kw["headers"])) for header in headers: if header.lower() in retries.remove_headers_on_redirect: kw["headers"].pop(header, None) try: retries = retries.increment(method, url, response=response, _pool=conn) except MaxRetryError: if retries.raise_on_redirect: response.drain_conn() raise return response kw["retries"] = retries kw["redirect"] = redirect log.info("Redirecting %s -> %s", url, redirect_location) response.drain_conn() return self.urlopen(method, redirect_location, **kw)
[ "def", "urlopen", "(", "self", ",", "method", ",", "url", ",", "redirect", "=", "True", ",", "*", "*", "kw", ")", ":", "u", "=", "parse_url", "(", "url", ")", "self", ".", "_validate_proxy_scheme_url_selection", "(", "u", ".", "scheme", ")", "conn", "=", "self", ".", "connection_from_host", "(", "u", ".", "host", ",", "port", "=", "u", ".", "port", ",", "scheme", "=", "u", ".", "scheme", ")", "kw", "[", "\"assert_same_host\"", "]", "=", "False", "kw", "[", "\"redirect\"", "]", "=", "False", "if", "\"headers\"", "not", "in", "kw", ":", "kw", "[", "\"headers\"", "]", "=", "self", ".", "headers", ".", "copy", "(", ")", "if", "self", ".", "_proxy_requires_url_absolute_form", "(", "u", ")", ":", "response", "=", "conn", ".", "urlopen", "(", "method", ",", "url", ",", "*", "*", "kw", ")", "else", ":", "response", "=", "conn", ".", "urlopen", "(", "method", ",", "u", ".", "request_uri", ",", "*", "*", "kw", ")", "redirect_location", "=", "redirect", "and", "response", ".", "get_redirect_location", "(", ")", "if", "not", "redirect_location", ":", "return", "response", "# Support relative URLs for redirecting.", "redirect_location", "=", "urljoin", "(", "url", ",", "redirect_location", ")", "# RFC 7231, Section 6.4.4", "if", "response", ".", "status", "==", "303", ":", "method", "=", "\"GET\"", "retries", "=", "kw", ".", "get", "(", "\"retries\"", ")", "if", "not", "isinstance", "(", "retries", ",", "Retry", ")", ":", "retries", "=", "Retry", ".", "from_int", "(", "retries", ",", "redirect", "=", "redirect", ")", "# Strip headers marked as unsafe to forward to the redirected location.", "# Check remove_headers_on_redirect to avoid a potential network call within", "# conn.is_same_host() which may use socket.gethostbyname() in the future.", "if", "retries", ".", "remove_headers_on_redirect", "and", "not", "conn", ".", "is_same_host", "(", "redirect_location", ")", ":", "headers", "=", "list", "(", "six", ".", "iterkeys", "(", "kw", "[", "\"headers\"", "]", ")", ")", "for", "header", "in", "headers", ":", "if", "header", ".", "lower", "(", ")", "in", "retries", ".", "remove_headers_on_redirect", ":", "kw", "[", "\"headers\"", "]", ".", "pop", "(", "header", ",", "None", ")", "try", ":", "retries", "=", "retries", ".", "increment", "(", "method", ",", "url", ",", "response", "=", "response", ",", "_pool", "=", "conn", ")", "except", "MaxRetryError", ":", "if", "retries", ".", "raise_on_redirect", ":", "response", ".", "drain_conn", "(", ")", "raise", "return", "response", "kw", "[", "\"retries\"", "]", "=", "retries", "kw", "[", "\"redirect\"", "]", "=", "redirect", "log", ".", "info", "(", "\"Redirecting %s -> %s\"", ",", "url", ",", "redirect_location", ")", "response", ".", "drain_conn", "(", ")", "return", "self", ".", "urlopen", "(", "method", ",", "redirect_location", ",", "*", "*", "kw", ")" ]
[ 351, 4 ]
[ 416, 60 ]
python
en
['en', 'error', 'th']
False
ProxyManager._set_proxy_headers
(self, url, headers=None)
Sets headers needed by proxies: specifically, the Accept and Host headers. Only sets headers not provided by the user.
Sets headers needed by proxies: specifically, the Accept and Host headers. Only sets headers not provided by the user.
def _set_proxy_headers(self, url, headers=None): """ Sets headers needed by proxies: specifically, the Accept and Host headers. Only sets headers not provided by the user. """ headers_ = {"Accept": "*/*"} netloc = parse_url(url).netloc if netloc: headers_["Host"] = netloc if headers: headers_.update(headers) return headers_
[ "def", "_set_proxy_headers", "(", "self", ",", "url", ",", "headers", "=", "None", ")", ":", "headers_", "=", "{", "\"Accept\"", ":", "\"*/*\"", "}", "netloc", "=", "parse_url", "(", "url", ")", ".", "netloc", "if", "netloc", ":", "headers_", "[", "\"Host\"", "]", "=", "netloc", "if", "headers", ":", "headers_", ".", "update", "(", "headers", ")", "return", "headers_" ]
[ 506, 4 ]
[ 519, 23 ]
python
en
['en', 'error', 'th']
False
ProxyManager.urlopen
(self, method, url, redirect=True, **kw)
Same as HTTP(S)ConnectionPool.urlopen, ``url`` must be absolute.
Same as HTTP(S)ConnectionPool.urlopen, ``url`` must be absolute.
def urlopen(self, method, url, redirect=True, **kw): "Same as HTTP(S)ConnectionPool.urlopen, ``url`` must be absolute." u = parse_url(url) if not connection_requires_http_tunnel(self.proxy, self.proxy_config, u.scheme): # For connections using HTTP CONNECT, httplib sets the necessary # headers on the CONNECT to the proxy. If we're not using CONNECT, # we'll definitely need to set 'Host' at the very least. headers = kw.get("headers", self.headers) kw["headers"] = self._set_proxy_headers(url, headers) return super(ProxyManager, self).urlopen(method, url, redirect=redirect, **kw)
[ "def", "urlopen", "(", "self", ",", "method", ",", "url", ",", "redirect", "=", "True", ",", "*", "*", "kw", ")", ":", "u", "=", "parse_url", "(", "url", ")", "if", "not", "connection_requires_http_tunnel", "(", "self", ".", "proxy", ",", "self", ".", "proxy_config", ",", "u", ".", "scheme", ")", ":", "# For connections using HTTP CONNECT, httplib sets the necessary", "# headers on the CONNECT to the proxy. If we're not using CONNECT,", "# we'll definitely need to set 'Host' at the very least.", "headers", "=", "kw", ".", "get", "(", "\"headers\"", ",", "self", ".", "headers", ")", "kw", "[", "\"headers\"", "]", "=", "self", ".", "_set_proxy_headers", "(", "url", ",", "headers", ")", "return", "super", "(", "ProxyManager", ",", "self", ")", ".", "urlopen", "(", "method", ",", "url", ",", "redirect", "=", "redirect", ",", "*", "*", "kw", ")" ]
[ 521, 4 ]
[ 531, 86 ]
python
en
['en', 'en', 'nl']
True
BaseUserManager.normalize_email
(cls, email)
Normalize the email address by lowercasing the domain part of it.
Normalize the email address by lowercasing the domain part of it.
def normalize_email(cls, email): """ Normalize the email address by lowercasing the domain part of it. """ email = email or '' try: email_name, domain_part = email.strip().rsplit('@', 1) except ValueError: pass else: email = email_name + '@' + domain_part.lower() return email
[ "def", "normalize_email", "(", "cls", ",", "email", ")", ":", "email", "=", "email", "or", "''", "try", ":", "email_name", ",", "domain_part", "=", "email", ".", "strip", "(", ")", ".", "rsplit", "(", "'@'", ",", "1", ")", "except", "ValueError", ":", "pass", "else", ":", "email", "=", "email_name", "+", "'@'", "+", "domain_part", ".", "lower", "(", ")", "return", "email" ]
[ 19, 4 ]
[ 30, 20 ]
python
en
['en', 'error', 'th']
False
BaseUserManager.make_random_password
(self, length=10, allowed_chars='abcdefghjkmnpqrstuvwxyz' 'ABCDEFGHJKLMNPQRSTUVWXYZ' '23456789')
Generate a random password with the given length and given allowed_chars. The default value of allowed_chars does not have "I" or "O" or letters and digits that look similar -- just to avoid confusion.
Generate a random password with the given length and given allowed_chars. The default value of allowed_chars does not have "I" or "O" or letters and digits that look similar -- just to avoid confusion.
def make_random_password(self, length=10, allowed_chars='abcdefghjkmnpqrstuvwxyz' 'ABCDEFGHJKLMNPQRSTUVWXYZ' '23456789'): """ Generate a random password with the given length and given allowed_chars. The default value of allowed_chars does not have "I" or "O" or letters and digits that look similar -- just to avoid confusion. """ return get_random_string(length, allowed_chars)
[ "def", "make_random_password", "(", "self", ",", "length", "=", "10", ",", "allowed_chars", "=", "'abcdefghjkmnpqrstuvwxyz'", "'ABCDEFGHJKLMNPQRSTUVWXYZ'", "'23456789'", ")", ":", "return", "get_random_string", "(", "length", ",", "allowed_chars", ")" ]
[ 32, 4 ]
[ 41, 55 ]
python
en
['en', 'error', 'th']
False
AbstractBaseUser.get_username
(self)
Return the username for this User.
Return the username for this User.
def get_username(self): """Return the username for this User.""" return getattr(self, self.USERNAME_FIELD)
[ "def", "get_username", "(", "self", ")", ":", "return", "getattr", "(", "self", ",", "self", ".", "USERNAME_FIELD", ")" ]
[ 71, 4 ]
[ 73, 49 ]
python
en
['en', 'en', 'en']
True
AbstractBaseUser.is_anonymous
(self)
Always return False. This is a way of comparing User objects to anonymous users.
Always return False. This is a way of comparing User objects to anonymous users.
def is_anonymous(self): """ Always return False. This is a way of comparing User objects to anonymous users. """ return False
[ "def", "is_anonymous", "(", "self", ")", ":", "return", "False" ]
[ 82, 4 ]
[ 87, 20 ]
python
en
['en', 'error', 'th']
False
AbstractBaseUser.is_authenticated
(self)
Always return True. This is a way to tell if the user has been authenticated in templates.
Always return True. This is a way to tell if the user has been authenticated in templates.
def is_authenticated(self): """ Always return True. This is a way to tell if the user has been authenticated in templates. """ return True
[ "def", "is_authenticated", "(", "self", ")", ":", "return", "True" ]
[ 90, 4 ]
[ 95, 19 ]
python
en
['en', 'error', 'th']
False
AbstractBaseUser.check_password
(self, raw_password)
Return a boolean of whether the raw_password was correct. Handles hashing formats behind the scenes.
Return a boolean of whether the raw_password was correct. Handles hashing formats behind the scenes.
def check_password(self, raw_password): """ Return a boolean of whether the raw_password was correct. Handles hashing formats behind the scenes. """ def setter(raw_password): self.set_password(raw_password) # Password hash upgrades shouldn't be considered password changes. self._password = None self.save(update_fields=["password"]) return check_password(raw_password, self.password, setter)
[ "def", "check_password", "(", "self", ",", "raw_password", ")", ":", "def", "setter", "(", "raw_password", ")", ":", "self", ".", "set_password", "(", "raw_password", ")", "# Password hash upgrades shouldn't be considered password changes.", "self", ".", "_password", "=", "None", "self", ".", "save", "(", "update_fields", "=", "[", "\"password\"", "]", ")", "return", "check_password", "(", "raw_password", ",", "self", ".", "password", ",", "setter", ")" ]
[ 101, 4 ]
[ 111, 66 ]
python
en
['en', 'error', 'th']
False
AbstractBaseUser.has_usable_password
(self)
Return False if set_unusable_password() has been called for this user.
Return False if set_unusable_password() has been called for this user.
def has_usable_password(self): """ Return False if set_unusable_password() has been called for this user. """ return is_password_usable(self.password)
[ "def", "has_usable_password", "(", "self", ")", ":", "return", "is_password_usable", "(", "self", ".", "password", ")" ]
[ 117, 4 ]
[ 121, 48 ]
python
en
['en', 'error', 'th']
False
AbstractBaseUser.get_session_auth_hash
(self)
Return an HMAC of the password field.
Return an HMAC of the password field.
def get_session_auth_hash(self): """ Return an HMAC of the password field. """ key_salt = "django.contrib.auth.models.AbstractBaseUser.get_session_auth_hash" return salted_hmac( key_salt, self.password, # RemovedInDjango40Warning: when the deprecation ends, replace # with: # algorithm='sha256', algorithm=settings.DEFAULT_HASHING_ALGORITHM, ).hexdigest()
[ "def", "get_session_auth_hash", "(", "self", ")", ":", "key_salt", "=", "\"django.contrib.auth.models.AbstractBaseUser.get_session_auth_hash\"", "return", "salted_hmac", "(", "key_salt", ",", "self", ".", "password", ",", "# RemovedInDjango40Warning: when the deprecation ends, replace", "# with:", "# algorithm='sha256',", "algorithm", "=", "settings", ".", "DEFAULT_HASHING_ALGORITHM", ",", ")", ".", "hexdigest", "(", ")" ]
[ 128, 4 ]
[ 140, 21 ]
python
en
['en', 'error', 'th']
False
gen_ccl_spectra
(cosmo, n_of_zs, l_max=1001)
Generates the theoretical weak lensing power spectra for a given cosmology. :param cosmo: 1D array of cosmological parameters ordered as (Om, Ob, h, ns, sigma8, w0) :param n_of_zs: 3D array of redshift distributions. The first axis enumerates the different distributions, the second the redshift values and the last the actual number counts :param l_max: maximum l value to calculate :return: The theoretical power spectra of the survey and all cross spectra, the ordering is (11, 12, ..., 1n, 22, .., 2n, ..., nn)
Generates the theoretical weak lensing power spectra for a given cosmology. :param cosmo: 1D array of cosmological parameters ordered as (Om, Ob, h, ns, sigma8, w0) :param n_of_zs: 3D array of redshift distributions. The first axis enumerates the different distributions, the second the redshift values and the last the actual number counts :param l_max: maximum l value to calculate :return: The theoretical power spectra of the survey and all cross spectra, the ordering is (11, 12, ..., 1n, 22, .., 2n, ..., nn)
def gen_ccl_spectra(cosmo, n_of_zs, l_max=1001): """ Generates the theoretical weak lensing power spectra for a given cosmology. :param cosmo: 1D array of cosmological parameters ordered as (Om, Ob, h, ns, sigma8, w0) :param n_of_zs: 3D array of redshift distributions. The first axis enumerates the different distributions, the second the redshift values and the last the actual number counts :param l_max: maximum l value to calculate :return: The theoretical power spectra of the survey and all cross spectra, the ordering is (11, 12, ..., 1n, 22, .., 2n, ..., nn) """ # cosmo needs to be double cosmo = cosmo.astype(np.float64) # get the ccl cosmo = ccl.Cosmology(Omega_c=cosmo[0] - cosmo[1], Omega_b=cosmo[1], h=cosmo[2], n_s=cosmo[3], sigma8=cosmo[4], w0=cosmo[5]) # Create objects to represent tracers of the weak lensing signal with this # number density (with has_intrinsic_alignment=False) tracer = [] for i in range(4): tracer.append(ccl.WeakLensingTracer(cosmo, dndz=(n_of_zs[i][:, 0], n_of_zs[i][:, 1]))) # Calculate the angular cross-spectrum of the two tracers as a function of ell print("Calculating spectra...", flush=True) ell = np.arange(2, l_max) all_cl = [] for i in range(4): for j in range(4): if j >= i: cl = ccl.angular_cl(cosmo, tracer[i], tracer[j], ell) # append zeros cl = np.concatenate([np.zeros(2), cl]) # append no binning all_cl.append(cl) # stack cl = np.stack(all_cl, axis=0) return cl
[ "def", "gen_ccl_spectra", "(", "cosmo", ",", "n_of_zs", ",", "l_max", "=", "1001", ")", ":", "# cosmo needs to be double", "cosmo", "=", "cosmo", ".", "astype", "(", "np", ".", "float64", ")", "# get the ccl", "cosmo", "=", "ccl", ".", "Cosmology", "(", "Omega_c", "=", "cosmo", "[", "0", "]", "-", "cosmo", "[", "1", "]", ",", "Omega_b", "=", "cosmo", "[", "1", "]", ",", "h", "=", "cosmo", "[", "2", "]", ",", "n_s", "=", "cosmo", "[", "3", "]", ",", "sigma8", "=", "cosmo", "[", "4", "]", ",", "w0", "=", "cosmo", "[", "5", "]", ")", "# Create objects to represent tracers of the weak lensing signal with this", "# number density (with has_intrinsic_alignment=False)", "tracer", "=", "[", "]", "for", "i", "in", "range", "(", "4", ")", ":", "tracer", ".", "append", "(", "ccl", ".", "WeakLensingTracer", "(", "cosmo", ",", "dndz", "=", "(", "n_of_zs", "[", "i", "]", "[", ":", ",", "0", "]", ",", "n_of_zs", "[", "i", "]", "[", ":", ",", "1", "]", ")", ")", ")", "# Calculate the angular cross-spectrum of the two tracers as a function of ell", "print", "(", "\"Calculating spectra...\"", ",", "flush", "=", "True", ")", "ell", "=", "np", ".", "arange", "(", "2", ",", "l_max", ")", "all_cl", "=", "[", "]", "for", "i", "in", "range", "(", "4", ")", ":", "for", "j", "in", "range", "(", "4", ")", ":", "if", "j", ">=", "i", ":", "cl", "=", "ccl", ".", "angular_cl", "(", "cosmo", ",", "tracer", "[", "i", "]", ",", "tracer", "[", "j", "]", ",", "ell", ")", "# append zeros", "cl", "=", "np", ".", "concatenate", "(", "[", "np", ".", "zeros", "(", "2", ")", ",", "cl", "]", ")", "# append no binning", "all_cl", ".", "append", "(", "cl", ")", "# stack", "cl", "=", "np", ".", "stack", "(", "all_cl", ",", "axis", "=", "0", ")", "return", "cl" ]
[ 6, 0 ]
[ 49, 13 ]
python
en
['en', 'error', 'th']
False
create_GRF_samples
(spectra, data_mask, data_mask_pad, seed, pixwin=False, fwhm=0.0, lmax=1000, return_fidu_spec=False, verbose=0)
Creates a sample of GRF maps of given spectra that can be saved for later training. :param spectra: A list of power spectra used to generate the GRF samples, if the shape of the spectra is [n_bins, N] a tomographic sample is generated and the returned samples have the shape [N_pix, n_bins] :param data_mask: a boolian array (or int) representing the observational mask on the sphere :param data_mask_pad: a boolian mask of the observation includeing padding :param seed: the random seed for ALL samples :param pixwin: Convolve alm with pixel window function (default: False) :param fwhm: Full width half maximum of the Gaussian smoothing applied to each sample, defaults to no smoothing :param lmax: The maximum l used to generate the maps (default: 1000) :param return_fidu_spec: return the numerically measured Cl of the map generated with spectra[0] :param verbose: verbosity parameter forwarded to synfast, defaults to no output :return: A list of maps the same length as spectra each containing sum(data_mask_pad) entries, if return_fidu_spec is True, the power and cross spectra of the first entry in spectra will be returned.
Creates a sample of GRF maps of given spectra that can be saved for later training. :param spectra: A list of power spectra used to generate the GRF samples, if the shape of the spectra is [n_bins, N] a tomographic sample is generated and the returned samples have the shape [N_pix, n_bins] :param data_mask: a boolian array (or int) representing the observational mask on the sphere :param data_mask_pad: a boolian mask of the observation includeing padding :param seed: the random seed for ALL samples :param pixwin: Convolve alm with pixel window function (default: False) :param fwhm: Full width half maximum of the Gaussian smoothing applied to each sample, defaults to no smoothing :param lmax: The maximum l used to generate the maps (default: 1000) :param return_fidu_spec: return the numerically measured Cl of the map generated with spectra[0] :param verbose: verbosity parameter forwarded to synfast, defaults to no output :return: A list of maps the same length as spectra each containing sum(data_mask_pad) entries, if return_fidu_spec is True, the power and cross spectra of the first entry in spectra will be returned.
def create_GRF_samples(spectra, data_mask, data_mask_pad, seed, pixwin=False, fwhm=0.0, lmax=1000, return_fidu_spec=False, verbose=0): """ Creates a sample of GRF maps of given spectra that can be saved for later training. :param spectra: A list of power spectra used to generate the GRF samples, if the shape of the spectra is [n_bins, N] a tomographic sample is generated and the returned samples have the shape [N_pix, n_bins] :param data_mask: a boolian array (or int) representing the observational mask on the sphere :param data_mask_pad: a boolian mask of the observation includeing padding :param seed: the random seed for ALL samples :param pixwin: Convolve alm with pixel window function (default: False) :param fwhm: Full width half maximum of the Gaussian smoothing applied to each sample, defaults to no smoothing :param lmax: The maximum l used to generate the maps (default: 1000) :param return_fidu_spec: return the numerically measured Cl of the map generated with spectra[0] :param verbose: verbosity parameter forwarded to synfast, defaults to no output :return: A list of maps the same length as spectra each containing sum(data_mask_pad) entries, if return_fidu_spec is True, the power and cross spectra of the first entry in spectra will be returned. """ # get the nside nside = hp.npix2nside(len(data_mask)) # invert the data mask inv_mask = np.logical_not(data_mask) ext_indices = np.arange(len(inv_mask))[data_mask_pad] # cycle maps_out = [] for num, spectrum in enumerate(spectra): # set seed np.random.seed(seed) # non tomographic case if spectrum.ndim == 1: # get map m = hp.synfast(cls=spectrum, fwhm=fwhm, nside=nside, pixwin=pixwin, lmax=lmax, verbose=verbose) # reorder m = hp.reorder(map_in=m, r2n=True) # set sourrounding to zero m[inv_mask] = 0.0 # get the measurement if necessary if return_fidu_spec and num == 0: m_ring = hp.reorder(map_in=m, n2r=True) cl_fidu = hp.anafast(m_ring) # append only wanted values maps_out.append(m[ext_indices]) # tomographic case else: # get the number of bins n_bins = (-1 + int(np.sqrt(1 + 8 * len(spectrum)))) // 2 if n_bins * (n_bins + 1) // 2 != len(spectrum): raise ValueError("The number of spectra does not seem to be valid!") # generate the maps following Raphael's paper T_ij_s = [] for i in range(n_bins): for j in range(n_bins): if i == j: index = utils.ij_to_list_index(i, j, n_bins) T_ij = spectrum[index].copy() for k in range(j): index = utils.ij_to_list_index(k, i, n_bins) T_ij -= T_ij_s[index] ** 2 T_ij_s.append(np.sqrt(T_ij)) elif j > i: index = utils.ij_to_list_index(i, j, n_bins) T_ij = spectrum[index].copy() for k in range(i): index_1 = utils.ij_to_list_index(k, j, n_bins) index_2 = utils.ij_to_list_index(k, i, n_bins) T_ij -= T_ij_s[index_1] * T_ij_s[index_2] index = utils.ij_to_list_index(i, i, n_bins) # set division through 0 to 0 T_ij = np.divide(T_ij, T_ij_s[index], out=np.zeros_like(T_ij), where=T_ij_s[index] != 0) T_ij_s.append(T_ij) # now we generate the maps with the right states T_ij_maps = [] counter = 0 for i in range(n_bins): current_state = np.random.get_state() for j in range(n_bins): if j >= i: np.random.set_state(current_state) m = hp.synfast(cls=T_ij_s[counter] ** 2, fwhm=fwhm, nside=nside, pixwin=pixwin, lmax=lmax, verbose=verbose) T_ij_maps.append(m) counter += 1 # list for maps maps = [] # and now the output maps for i in range(n_bins): m = np.zeros(hp.nside2npix(nside=nside)) for j in range(n_bins): if i >= j: index = utils.ij_to_list_index(j, i, n_bins) m += T_ij_maps[index] # reorder m = hp.reorder(map_in=m, r2n=True) # set sourrounding to zero m[inv_mask] = 0.0 # append only wanted values maps.append(m[ext_indices]) # calculate all spectra and cross spectra if num == 0 and return_fidu_spec: # get the alms alms = [] for i in range(n_bins): # make the map m = np.zeros(hp.nside2npix(nside=nside)) m[ext_indices] = maps[i] # reorder and alm m = hp.reorder(m, n2r=True) alms.append(hp.map2alm(m)) # get the cl cl_fidu = [] for i in range(n_bins): for j in range(n_bins): if j >= i: cl_fidu.append(hp.alm2cl(alms1=alms[i], alms2=alms[j])) # stack cl_fidu = np.stack(cl_fidu, axis=-1) # stack maps_out.append(np.stack(maps, axis=-1)) # return the maps if return_fidu_spec: return maps_out, cl_fidu else: return maps_out
[ "def", "create_GRF_samples", "(", "spectra", ",", "data_mask", ",", "data_mask_pad", ",", "seed", ",", "pixwin", "=", "False", ",", "fwhm", "=", "0.0", ",", "lmax", "=", "1000", ",", "return_fidu_spec", "=", "False", ",", "verbose", "=", "0", ")", ":", "# get the nside", "nside", "=", "hp", ".", "npix2nside", "(", "len", "(", "data_mask", ")", ")", "# invert the data mask", "inv_mask", "=", "np", ".", "logical_not", "(", "data_mask", ")", "ext_indices", "=", "np", ".", "arange", "(", "len", "(", "inv_mask", ")", ")", "[", "data_mask_pad", "]", "# cycle", "maps_out", "=", "[", "]", "for", "num", ",", "spectrum", "in", "enumerate", "(", "spectra", ")", ":", "# set seed", "np", ".", "random", ".", "seed", "(", "seed", ")", "# non tomographic case", "if", "spectrum", ".", "ndim", "==", "1", ":", "# get map", "m", "=", "hp", ".", "synfast", "(", "cls", "=", "spectrum", ",", "fwhm", "=", "fwhm", ",", "nside", "=", "nside", ",", "pixwin", "=", "pixwin", ",", "lmax", "=", "lmax", ",", "verbose", "=", "verbose", ")", "# reorder", "m", "=", "hp", ".", "reorder", "(", "map_in", "=", "m", ",", "r2n", "=", "True", ")", "# set sourrounding to zero", "m", "[", "inv_mask", "]", "=", "0.0", "# get the measurement if necessary", "if", "return_fidu_spec", "and", "num", "==", "0", ":", "m_ring", "=", "hp", ".", "reorder", "(", "map_in", "=", "m", ",", "n2r", "=", "True", ")", "cl_fidu", "=", "hp", ".", "anafast", "(", "m_ring", ")", "# append only wanted values", "maps_out", ".", "append", "(", "m", "[", "ext_indices", "]", ")", "# tomographic case", "else", ":", "# get the number of bins", "n_bins", "=", "(", "-", "1", "+", "int", "(", "np", ".", "sqrt", "(", "1", "+", "8", "*", "len", "(", "spectrum", ")", ")", ")", ")", "//", "2", "if", "n_bins", "*", "(", "n_bins", "+", "1", ")", "//", "2", "!=", "len", "(", "spectrum", ")", ":", "raise", "ValueError", "(", "\"The number of spectra does not seem to be valid!\"", ")", "# generate the maps following Raphael's paper", "T_ij_s", "=", "[", "]", "for", "i", "in", "range", "(", "n_bins", ")", ":", "for", "j", "in", "range", "(", "n_bins", ")", ":", "if", "i", "==", "j", ":", "index", "=", "utils", ".", "ij_to_list_index", "(", "i", ",", "j", ",", "n_bins", ")", "T_ij", "=", "spectrum", "[", "index", "]", ".", "copy", "(", ")", "for", "k", "in", "range", "(", "j", ")", ":", "index", "=", "utils", ".", "ij_to_list_index", "(", "k", ",", "i", ",", "n_bins", ")", "T_ij", "-=", "T_ij_s", "[", "index", "]", "**", "2", "T_ij_s", ".", "append", "(", "np", ".", "sqrt", "(", "T_ij", ")", ")", "elif", "j", ">", "i", ":", "index", "=", "utils", ".", "ij_to_list_index", "(", "i", ",", "j", ",", "n_bins", ")", "T_ij", "=", "spectrum", "[", "index", "]", ".", "copy", "(", ")", "for", "k", "in", "range", "(", "i", ")", ":", "index_1", "=", "utils", ".", "ij_to_list_index", "(", "k", ",", "j", ",", "n_bins", ")", "index_2", "=", "utils", ".", "ij_to_list_index", "(", "k", ",", "i", ",", "n_bins", ")", "T_ij", "-=", "T_ij_s", "[", "index_1", "]", "*", "T_ij_s", "[", "index_2", "]", "index", "=", "utils", ".", "ij_to_list_index", "(", "i", ",", "i", ",", "n_bins", ")", "# set division through 0 to 0", "T_ij", "=", "np", ".", "divide", "(", "T_ij", ",", "T_ij_s", "[", "index", "]", ",", "out", "=", "np", ".", "zeros_like", "(", "T_ij", ")", ",", "where", "=", "T_ij_s", "[", "index", "]", "!=", "0", ")", "T_ij_s", ".", "append", "(", "T_ij", ")", "# now we generate the maps with the right states", "T_ij_maps", "=", "[", "]", "counter", "=", "0", "for", "i", "in", "range", "(", "n_bins", ")", ":", "current_state", "=", "np", ".", "random", ".", "get_state", "(", ")", "for", "j", "in", "range", "(", "n_bins", ")", ":", "if", "j", ">=", "i", ":", "np", ".", "random", ".", "set_state", "(", "current_state", ")", "m", "=", "hp", ".", "synfast", "(", "cls", "=", "T_ij_s", "[", "counter", "]", "**", "2", ",", "fwhm", "=", "fwhm", ",", "nside", "=", "nside", ",", "pixwin", "=", "pixwin", ",", "lmax", "=", "lmax", ",", "verbose", "=", "verbose", ")", "T_ij_maps", ".", "append", "(", "m", ")", "counter", "+=", "1", "# list for maps", "maps", "=", "[", "]", "# and now the output maps", "for", "i", "in", "range", "(", "n_bins", ")", ":", "m", "=", "np", ".", "zeros", "(", "hp", ".", "nside2npix", "(", "nside", "=", "nside", ")", ")", "for", "j", "in", "range", "(", "n_bins", ")", ":", "if", "i", ">=", "j", ":", "index", "=", "utils", ".", "ij_to_list_index", "(", "j", ",", "i", ",", "n_bins", ")", "m", "+=", "T_ij_maps", "[", "index", "]", "# reorder", "m", "=", "hp", ".", "reorder", "(", "map_in", "=", "m", ",", "r2n", "=", "True", ")", "# set sourrounding to zero", "m", "[", "inv_mask", "]", "=", "0.0", "# append only wanted values", "maps", ".", "append", "(", "m", "[", "ext_indices", "]", ")", "# calculate all spectra and cross spectra", "if", "num", "==", "0", "and", "return_fidu_spec", ":", "# get the alms", "alms", "=", "[", "]", "for", "i", "in", "range", "(", "n_bins", ")", ":", "# make the map", "m", "=", "np", ".", "zeros", "(", "hp", ".", "nside2npix", "(", "nside", "=", "nside", ")", ")", "m", "[", "ext_indices", "]", "=", "maps", "[", "i", "]", "# reorder and alm", "m", "=", "hp", ".", "reorder", "(", "m", ",", "n2r", "=", "True", ")", "alms", ".", "append", "(", "hp", ".", "map2alm", "(", "m", ")", ")", "# get the cl", "cl_fidu", "=", "[", "]", "for", "i", "in", "range", "(", "n_bins", ")", ":", "for", "j", "in", "range", "(", "n_bins", ")", ":", "if", "j", ">=", "i", ":", "cl_fidu", ".", "append", "(", "hp", ".", "alm2cl", "(", "alms1", "=", "alms", "[", "i", "]", ",", "alms2", "=", "alms", "[", "j", "]", ")", ")", "# stack", "cl_fidu", "=", "np", ".", "stack", "(", "cl_fidu", ",", "axis", "=", "-", "1", ")", "# stack", "maps_out", ".", "append", "(", "np", ".", "stack", "(", "maps", ",", "axis", "=", "-", "1", ")", ")", "# return the maps", "if", "return_fidu_spec", ":", "return", "maps_out", ",", "cl_fidu", "else", ":", "return", "maps_out" ]
[ 51, 0 ]
[ 193, 23 ]
python
en
['en', 'error', 'th']
False
anti_fleet
(log)
logs will print multi-times when calling Fleet API. Only display single log and ignore the others.
logs will print multi-times when calling Fleet API. Only display single log and ignore the others.
def anti_fleet(log): """ logs will print multi-times when calling Fleet API. Only display single log and ignore the others. """ def wrapper(fmt, *args): if int(os.getenv("PADDLE_TRAINER_ID", 0)) == 0: log(fmt, *args) return wrapper
[ "def", "anti_fleet", "(", "log", ")", ":", "def", "wrapper", "(", "fmt", ",", "*", "args", ")", ":", "if", "int", "(", "os", ".", "getenv", "(", "\"PADDLE_TRAINER_ID\"", ",", "0", ")", ")", "==", "0", ":", "log", "(", "fmt", ",", "*", "args", ")", "return", "wrapper" ]
[ 52, 0 ]
[ 62, 18 ]
python
en
['en', 'error', 'th']
False
scaler
(name, value, step, writer)
This function will draw a scalar curve generated by the visualdl. Usage: Install visualdl: pip3 install visualdl==2.0.0b4 and then: visualdl --logdir ./scalar --host 0.0.0.0 --port 8830 to preview loss corve in real time.
This function will draw a scalar curve generated by the visualdl. Usage: Install visualdl: pip3 install visualdl==2.0.0b4 and then: visualdl --logdir ./scalar --host 0.0.0.0 --port 8830 to preview loss corve in real time.
def scaler(name, value, step, writer): """ This function will draw a scalar curve generated by the visualdl. Usage: Install visualdl: pip3 install visualdl==2.0.0b4 and then: visualdl --logdir ./scalar --host 0.0.0.0 --port 8830 to preview loss corve in real time. """ writer.add_scalar(name, value, step)
[ "def", "scaler", "(", "name", ",", "value", ",", "step", ",", "writer", ")", ":", "writer", ".", "add_scalar", "(", "name", ",", "value", ",", "step", ")" ]
[ 80, 0 ]
[ 88, 40 ]
python
en
['en', 'error', 'th']
False
advertise
()
Show the advertising message like the following: =========================================================== == PaddleClas is powered by PaddlePaddle ! == =========================================================== == == == For more info please go to the following website. == == == == https://github.com/PaddlePaddle/PaddleClas == ===========================================================
Show the advertising message like the following:
def advertise(): """ Show the advertising message like the following: =========================================================== == PaddleClas is powered by PaddlePaddle ! == =========================================================== == == == For more info please go to the following website. == == == == https://github.com/PaddlePaddle/PaddleClas == =========================================================== """ copyright = "PaddleClas is powered by PaddlePaddle !" ad = "For more info please go to the following website." website = "https://github.com/PaddlePaddle/PaddleClas" AD_LEN = 6 + len(max([copyright, ad, website], key=len)) info( coloring("\n{0}\n{1}\n{2}\n{3}\n{4}\n{5}\n{6}\n{7}\n".format( "=" * (AD_LEN + 4), "=={}==".format(copyright.center(AD_LEN)), "=" * (AD_LEN + 4), "=={}==".format(' ' * AD_LEN), "=={}==".format(ad.center(AD_LEN)), "=={}==".format(' ' * AD_LEN), "=={}==".format(website.center(AD_LEN)), "=" * (AD_LEN + 4), ), "RED"))
[ "def", "advertise", "(", ")", ":", "copyright", "=", "\"PaddleClas is powered by PaddlePaddle !\"", "ad", "=", "\"For more info please go to the following website.\"", "website", "=", "\"https://github.com/PaddlePaddle/PaddleClas\"", "AD_LEN", "=", "6", "+", "len", "(", "max", "(", "[", "copyright", ",", "ad", ",", "website", "]", ",", "key", "=", "len", ")", ")", "info", "(", "coloring", "(", "\"\\n{0}\\n{1}\\n{2}\\n{3}\\n{4}\\n{5}\\n{6}\\n{7}\\n\"", ".", "format", "(", "\"=\"", "*", "(", "AD_LEN", "+", "4", ")", ",", "\"=={}==\"", ".", "format", "(", "copyright", ".", "center", "(", "AD_LEN", ")", ")", ",", "\"=\"", "*", "(", "AD_LEN", "+", "4", ")", ",", "\"=={}==\"", ".", "format", "(", "' '", "*", "AD_LEN", ")", ",", "\"=={}==\"", ".", "format", "(", "ad", ".", "center", "(", "AD_LEN", ")", ")", ",", "\"=={}==\"", ".", "format", "(", "' '", "*", "AD_LEN", ")", ",", "\"=={}==\"", ".", "format", "(", "website", ".", "center", "(", "AD_LEN", ")", ")", ",", "\"=\"", "*", "(", "AD_LEN", "+", "4", ")", ",", ")", ",", "\"RED\"", ")", ")" ]
[ 91, 0 ]
[ 119, 42 ]
python
en
['en', 'error', 'th']
False
VGP_Emu.__init__
(self, objective=None, space=None, N_init=20, X_init=None, Y_init=None, normalize_Y=True, mean_only=False, alpha=0.01, kern="matern52", num_restarts=10, verbosity=0, max_opt_iter=1000, full_restart=False, ARD=False, learning_rate=1e-4, parameter_noise_scale=0.1, minimum_variance=1e-3)
An class that fits a Gaussian process to a given objective function :param objective: function used for the fitting (needs to estimate the noise as well!) :param space: a GPy space for the prior :param N_init: number of initial points :param X_init: initial points in space (if set N_init is ignored) :param Y_init: optionial with set with X_init the objective is not called on X_init :param normalize_Y: normalize the Y coordinate to have zero mean and unit variance (standard) :param mean_only: normalize Y only such that it has zero mean but leave std as is :param alpha: alpha value in the acquisition function of Raul's paper :param kern: kernel type, currently only Matern52 or Exponential :param num_restarts: number of restarts for each GP optimization :param verbosity: 0 -> print minimal output, higher value = more output :param max_opt_iter: maximum iteration for a single GP optimization :param full_restart: ignore the current kernel values for the next optimization :param ARD: Auto Relevance Determination, use a lengthscale in the kernel for each dimension of the problem :param learning_rate: learning rate for the Adam optimizer used for the optimization :param parameter_noise_scale: noise std that is added to the parameter for optimization :param minimum_variance: minimum of the allowed variance estimate, choosing this too small leads to numerical instabilities.
An class that fits a Gaussian process to a given objective function :param objective: function used for the fitting (needs to estimate the noise as well!) :param space: a GPy space for the prior :param N_init: number of initial points :param X_init: initial points in space (if set N_init is ignored) :param Y_init: optionial with set with X_init the objective is not called on X_init :param normalize_Y: normalize the Y coordinate to have zero mean and unit variance (standard) :param mean_only: normalize Y only such that it has zero mean but leave std as is :param alpha: alpha value in the acquisition function of Raul's paper :param kern: kernel type, currently only Matern52 or Exponential :param num_restarts: number of restarts for each GP optimization :param verbosity: 0 -> print minimal output, higher value = more output :param max_opt_iter: maximum iteration for a single GP optimization :param full_restart: ignore the current kernel values for the next optimization :param ARD: Auto Relevance Determination, use a lengthscale in the kernel for each dimension of the problem :param learning_rate: learning rate for the Adam optimizer used for the optimization :param parameter_noise_scale: noise std that is added to the parameter for optimization :param minimum_variance: minimum of the allowed variance estimate, choosing this too small leads to numerical instabilities.
def __init__(self, objective=None, space=None, N_init=20, X_init=None, Y_init=None, normalize_Y=True, mean_only=False, alpha=0.01, kern="matern52", num_restarts=10, verbosity=0, max_opt_iter=1000, full_restart=False, ARD=False, learning_rate=1e-4, parameter_noise_scale=0.1, minimum_variance=1e-3): """ An class that fits a Gaussian process to a given objective function :param objective: function used for the fitting (needs to estimate the noise as well!) :param space: a GPy space for the prior :param N_init: number of initial points :param X_init: initial points in space (if set N_init is ignored) :param Y_init: optionial with set with X_init the objective is not called on X_init :param normalize_Y: normalize the Y coordinate to have zero mean and unit variance (standard) :param mean_only: normalize Y only such that it has zero mean but leave std as is :param alpha: alpha value in the acquisition function of Raul's paper :param kern: kernel type, currently only Matern52 or Exponential :param num_restarts: number of restarts for each GP optimization :param verbosity: 0 -> print minimal output, higher value = more output :param max_opt_iter: maximum iteration for a single GP optimization :param full_restart: ignore the current kernel values for the next optimization :param ARD: Auto Relevance Determination, use a lengthscale in the kernel for each dimension of the problem :param learning_rate: learning rate for the Adam optimizer used for the optimization :param parameter_noise_scale: noise std that is added to the parameter for optimization :param minimum_variance: minimum of the allowed variance estimate, choosing this too small leads to numerical instabilities. """ # some sanity checks if (objective is None or space is None) and (X_init is None and Y_init is None): raise ValueError("If there is no initial dataset, one has to provide an objective function and a space!") self.objective = objective self.verbosity = verbosity # how to start if X_init is None: initial_design = GPyOpt.experiment_design.initial_design('latin', space, N_init) initial_Y = objective(initial_design) elif Y_init is None: initial_design = X_init initial_Y = objective(initial_design) else: initial_design = X_init initial_Y = Y_init # we need to split off the variance estimates initial_Y, initial_var = np.split(initial_Y, axis=1, indices_or_sections=2) # tfp prior self.space = space if self.space is not None: a_min = np.asarray(self.space.get_bounds(), dtype=self.default_np_float).T[0] a_max = np.asarray(self.space.get_bounds(), dtype=self.default_np_float).T[1] self.tfp_prior = tfp.distributions.Uniform(low=a_min, high=a_max) # normalize if normalize_Y: self.Y_mean = np.mean(initial_Y) if mean_only: self.Y_std = 1.0 else: self.Y_std = np.std(initial_Y) self.Y_all = (initial_Y - self.Y_mean) / self.Y_std else: self.Y_mean = 0.0 self.Y_std = 1.0 self.Y_all = initial_Y self.normalize_Y = normalize_Y self.mean_only = mean_only # now we need to take care of the variance estimates self.var_estimates = initial_var / self.Y_std ** 2 # normalization self.params, self.rot_mat, self.rot_mean, self.rot_std = self.normalize_params(initial_design) # kernel self.dims = int(X_init.shape[-1]) self.kern_type = kern if ARD: lengthscales = [1.0 for _ in range(self.dims)] else: lengthscales = 1.0 if kern == "matern52": self.kern = gpflow.kernels.Matern52(lengthscales=lengthscales) elif kern == "exponential": self.kern = gpflow.kernels.Exponential(lengthscales=lengthscales) else: raise IOError("Unkown kernel") self.lengthscale_shape = self.kern.lengthscales.shape if num_restarts is None or num_restarts < 1: print("Number of restarts is set to 1!") self.num_restarts = self.default_np_int(1) else: self.num_restarts = self.default_np_int(num_restarts) # get the likelihood self.likelihood = HeteroskedasticGaussian() # model (if you get a matrix inversion error here increase number of initial params) self.minimum_variance = minimum_variance data = np.concatenate([self.Y_all, np.maximum(self.var_estimates, self.minimum_variance)], axis=1) self.model = gpflow.models.VGP((self.params.astype(self.default_np_float), data.astype(self.default_np_float)), kernel=self.kern, likelihood=self.likelihood, num_latent_gps=1) # We turn off training for q as it is trained with natgrad gpflow.utilities.set_trainable(self.model.q_mu, False) gpflow.utilities.set_trainable(self.model.q_sqrt, False) # summary print_summary(self.model) # save params self.learning_rate = learning_rate self.parameter_noise_scale = parameter_noise_scale self.max_opt_iter = max_opt_iter self.full_restart = full_restart self.optimize_model() # for acquisition self.current_transform = lambda x: self.transform_params(x, self.rot_mat, self.rot_mean, self.rot_std) self.alpha = alpha
[ "def", "__init__", "(", "self", ",", "objective", "=", "None", ",", "space", "=", "None", ",", "N_init", "=", "20", ",", "X_init", "=", "None", ",", "Y_init", "=", "None", ",", "normalize_Y", "=", "True", ",", "mean_only", "=", "False", ",", "alpha", "=", "0.01", ",", "kern", "=", "\"matern52\"", ",", "num_restarts", "=", "10", ",", "verbosity", "=", "0", ",", "max_opt_iter", "=", "1000", ",", "full_restart", "=", "False", ",", "ARD", "=", "False", ",", "learning_rate", "=", "1e-4", ",", "parameter_noise_scale", "=", "0.1", ",", "minimum_variance", "=", "1e-3", ")", ":", "# some sanity checks", "if", "(", "objective", "is", "None", "or", "space", "is", "None", ")", "and", "(", "X_init", "is", "None", "and", "Y_init", "is", "None", ")", ":", "raise", "ValueError", "(", "\"If there is no initial dataset, one has to provide an objective function and a space!\"", ")", "self", ".", "objective", "=", "objective", "self", ".", "verbosity", "=", "verbosity", "# how to start", "if", "X_init", "is", "None", ":", "initial_design", "=", "GPyOpt", ".", "experiment_design", ".", "initial_design", "(", "'latin'", ",", "space", ",", "N_init", ")", "initial_Y", "=", "objective", "(", "initial_design", ")", "elif", "Y_init", "is", "None", ":", "initial_design", "=", "X_init", "initial_Y", "=", "objective", "(", "initial_design", ")", "else", ":", "initial_design", "=", "X_init", "initial_Y", "=", "Y_init", "# we need to split off the variance estimates", "initial_Y", ",", "initial_var", "=", "np", ".", "split", "(", "initial_Y", ",", "axis", "=", "1", ",", "indices_or_sections", "=", "2", ")", "# tfp prior", "self", ".", "space", "=", "space", "if", "self", ".", "space", "is", "not", "None", ":", "a_min", "=", "np", ".", "asarray", "(", "self", ".", "space", ".", "get_bounds", "(", ")", ",", "dtype", "=", "self", ".", "default_np_float", ")", ".", "T", "[", "0", "]", "a_max", "=", "np", ".", "asarray", "(", "self", ".", "space", ".", "get_bounds", "(", ")", ",", "dtype", "=", "self", ".", "default_np_float", ")", ".", "T", "[", "1", "]", "self", ".", "tfp_prior", "=", "tfp", ".", "distributions", ".", "Uniform", "(", "low", "=", "a_min", ",", "high", "=", "a_max", ")", "# normalize", "if", "normalize_Y", ":", "self", ".", "Y_mean", "=", "np", ".", "mean", "(", "initial_Y", ")", "if", "mean_only", ":", "self", ".", "Y_std", "=", "1.0", "else", ":", "self", ".", "Y_std", "=", "np", ".", "std", "(", "initial_Y", ")", "self", ".", "Y_all", "=", "(", "initial_Y", "-", "self", ".", "Y_mean", ")", "/", "self", ".", "Y_std", "else", ":", "self", ".", "Y_mean", "=", "0.0", "self", ".", "Y_std", "=", "1.0", "self", ".", "Y_all", "=", "initial_Y", "self", ".", "normalize_Y", "=", "normalize_Y", "self", ".", "mean_only", "=", "mean_only", "# now we need to take care of the variance estimates", "self", ".", "var_estimates", "=", "initial_var", "/", "self", ".", "Y_std", "**", "2", "# normalization", "self", ".", "params", ",", "self", ".", "rot_mat", ",", "self", ".", "rot_mean", ",", "self", ".", "rot_std", "=", "self", ".", "normalize_params", "(", "initial_design", ")", "# kernel", "self", ".", "dims", "=", "int", "(", "X_init", ".", "shape", "[", "-", "1", "]", ")", "self", ".", "kern_type", "=", "kern", "if", "ARD", ":", "lengthscales", "=", "[", "1.0", "for", "_", "in", "range", "(", "self", ".", "dims", ")", "]", "else", ":", "lengthscales", "=", "1.0", "if", "kern", "==", "\"matern52\"", ":", "self", ".", "kern", "=", "gpflow", ".", "kernels", ".", "Matern52", "(", "lengthscales", "=", "lengthscales", ")", "elif", "kern", "==", "\"exponential\"", ":", "self", ".", "kern", "=", "gpflow", ".", "kernels", ".", "Exponential", "(", "lengthscales", "=", "lengthscales", ")", "else", ":", "raise", "IOError", "(", "\"Unkown kernel\"", ")", "self", ".", "lengthscale_shape", "=", "self", ".", "kern", ".", "lengthscales", ".", "shape", "if", "num_restarts", "is", "None", "or", "num_restarts", "<", "1", ":", "print", "(", "\"Number of restarts is set to 1!\"", ")", "self", ".", "num_restarts", "=", "self", ".", "default_np_int", "(", "1", ")", "else", ":", "self", ".", "num_restarts", "=", "self", ".", "default_np_int", "(", "num_restarts", ")", "# get the likelihood", "self", ".", "likelihood", "=", "HeteroskedasticGaussian", "(", ")", "# model (if you get a matrix inversion error here increase number of initial params)", "self", ".", "minimum_variance", "=", "minimum_variance", "data", "=", "np", ".", "concatenate", "(", "[", "self", ".", "Y_all", ",", "np", ".", "maximum", "(", "self", ".", "var_estimates", ",", "self", ".", "minimum_variance", ")", "]", ",", "axis", "=", "1", ")", "self", ".", "model", "=", "gpflow", ".", "models", ".", "VGP", "(", "(", "self", ".", "params", ".", "astype", "(", "self", ".", "default_np_float", ")", ",", "data", ".", "astype", "(", "self", ".", "default_np_float", ")", ")", ",", "kernel", "=", "self", ".", "kern", ",", "likelihood", "=", "self", ".", "likelihood", ",", "num_latent_gps", "=", "1", ")", "# We turn off training for q as it is trained with natgrad", "gpflow", ".", "utilities", ".", "set_trainable", "(", "self", ".", "model", ".", "q_mu", ",", "False", ")", "gpflow", ".", "utilities", ".", "set_trainable", "(", "self", ".", "model", ".", "q_sqrt", ",", "False", ")", "# summary", "print_summary", "(", "self", ".", "model", ")", "# save params", "self", ".", "learning_rate", "=", "learning_rate", "self", ".", "parameter_noise_scale", "=", "parameter_noise_scale", "self", ".", "max_opt_iter", "=", "max_opt_iter", "self", ".", "full_restart", "=", "full_restart", "self", ".", "optimize_model", "(", ")", "# for acquisition", "self", ".", "current_transform", "=", "lambda", "x", ":", "self", ".", "transform_params", "(", "x", ",", "self", ".", "rot_mat", ",", "self", ".", "rot_mean", ",", "self", ".", "rot_std", ")", "self", ".", "alpha", "=", "alpha" ]
[ 68, 4 ]
[ 188, 26 ]
python
en
['en', 'error', 'th']
False
VGP_Emu.acquisition_function
(self, x)
Raul's acquisition function
Raul's acquisition function
def acquisition_function(self, x): """ Raul's acquisition function """ if self.current_transform is not None: x = self.current_transform(x) mean, var = self.model.predict_f(x) if self.normalize_Y: mean = mean * self.Y_std + self.Y_mean var *= self.Y_std ** 2 return -(tf.exp(mean) + self.alpha * (tf.exp(var) - 1.0) * tf.exp(2 * mean + var))
[ "def", "acquisition_function", "(", "self", ",", "x", ")", ":", "if", "self", ".", "current_transform", "is", "not", "None", ":", "x", "=", "self", ".", "current_transform", "(", "x", ")", "mean", ",", "var", "=", "self", ".", "model", ".", "predict_f", "(", "x", ")", "if", "self", ".", "normalize_Y", ":", "mean", "=", "mean", "*", "self", ".", "Y_std", "+", "self", ".", "Y_mean", "var", "*=", "self", ".", "Y_std", "**", "2", "return", "-", "(", "tf", ".", "exp", "(", "mean", ")", "+", "self", ".", "alpha", "*", "(", "tf", ".", "exp", "(", "var", ")", "-", "1.0", ")", "*", "tf", ".", "exp", "(", "2", "*", "mean", "+", "var", ")", ")" ]
[ 190, 4 ]
[ 203, 90 ]
python
en
['en', 'error', 'th']
False
VGP_Emu.train_model
(self, n_iters)
Optimizes the model for n_iters :param n_iters: number of iterations for optimization :return: a list of losses of each step with length n_iters
Optimizes the model for n_iters :param n_iters: number of iterations for optimization :return: a list of losses of each step with length n_iters
def train_model(self, n_iters): """ Optimizes the model for n_iters :param n_iters: number of iterations for optimization :return: a list of losses of each step with length n_iters """ @tf.function def objective_closure(): return self.model.training_loss() natgrad = NaturalGradient(gamma=1.0) adam = tf.optimizers.Adam(self.learning_rate) print("Training the VGP model params...", flush=True) losses = [] with tqdm(range(n_iters), total=n_iters) as pbar: for _ in pbar: natgrad.minimize(objective_closure, [(self.model.q_mu, self.model.q_sqrt)]) adam.minimize(objective_closure, self.model.trainable_variables) loss = objective_closure().numpy() losses.append(loss) pbar.set_postfix(loss_val=loss, refresh=False) return losses
[ "def", "train_model", "(", "self", ",", "n_iters", ")", ":", "@", "tf", ".", "function", "def", "objective_closure", "(", ")", ":", "return", "self", ".", "model", ".", "training_loss", "(", ")", "natgrad", "=", "NaturalGradient", "(", "gamma", "=", "1.0", ")", "adam", "=", "tf", ".", "optimizers", ".", "Adam", "(", "self", ".", "learning_rate", ")", "print", "(", "\"Training the VGP model params...\"", ",", "flush", "=", "True", ")", "losses", "=", "[", "]", "with", "tqdm", "(", "range", "(", "n_iters", ")", ",", "total", "=", "n_iters", ")", "as", "pbar", ":", "for", "_", "in", "pbar", ":", "natgrad", ".", "minimize", "(", "objective_closure", ",", "[", "(", "self", ".", "model", ".", "q_mu", ",", "self", ".", "model", ".", "q_sqrt", ")", "]", ")", "adam", ".", "minimize", "(", "objective_closure", ",", "self", ".", "model", ".", "trainable_variables", ")", "loss", "=", "objective_closure", "(", ")", ".", "numpy", "(", ")", "losses", ".", "append", "(", "loss", ")", "pbar", ".", "set_postfix", "(", "loss_val", "=", "loss", ",", "refresh", "=", "False", ")", "return", "losses" ]
[ 205, 4 ]
[ 229, 21 ]
python
en
['en', 'error', 'th']
False
VGP_Emu._readout_params
(self)
Reads out the params of the model and returns them as tupel of arrays :return: tupel of params
Reads out the params of the model and returns them as tupel of arrays :return: tupel of params
def _readout_params(self): """ Reads out the params of the model and returns them as tupel of arrays :return: tupel of params """ params = (self.model.kernel.variance.numpy(), self.model.kernel.lengthscales.numpy(), self.model.q_mu.numpy(), self.model.q_sqrt.numpy()) return params
[ "def", "_readout_params", "(", "self", ")", ":", "params", "=", "(", "self", ".", "model", ".", "kernel", ".", "variance", ".", "numpy", "(", ")", ",", "self", ".", "model", ".", "kernel", ".", "lengthscales", ".", "numpy", "(", ")", ",", "self", ".", "model", ".", "q_mu", ".", "numpy", "(", ")", ",", "self", ".", "model", ".", "q_sqrt", ".", "numpy", "(", ")", ")", "return", "params" ]
[ 231, 4 ]
[ 240, 21 ]
python
en
['en', 'error', 'th']
False
VGP_Emu._set_params
(self, params)
Sets the model params to a given tupel of array :param params: params (tupel of arrays)
Sets the model params to a given tupel of array :param params: params (tupel of arrays)
def _set_params(self, params): """ Sets the model params to a given tupel of array :param params: params (tupel of arrays) """ self.model.kernel.variance.assign(params[0]) self.model.kernel.lengthscales.assign(params[1]) self.model.q_mu.assign(params[2]) self.model.q_sqrt.assign(params[3])
[ "def", "_set_params", "(", "self", ",", "params", ")", ":", "self", ".", "model", ".", "kernel", ".", "variance", ".", "assign", "(", "params", "[", "0", "]", ")", "self", ".", "model", ".", "kernel", ".", "lengthscales", ".", "assign", "(", "params", "[", "1", "]", ")", "self", ".", "model", ".", "q_mu", ".", "assign", "(", "params", "[", "2", "]", ")", "self", ".", "model", ".", "q_sqrt", ".", "assign", "(", "params", "[", "3", "]", ")" ]
[ 242, 4 ]
[ 250, 43 ]
python
en
['en', 'error', 'th']
False
VGP_Emu.optimize_model
(self, scale=1.0)
Optimizes the model for a given number of restarts and chooses the best result :param scale: std of the normal distribution used to draw new params
Optimizes the model for a given number of restarts and chooses the best result :param scale: std of the normal distribution used to draw new params
def optimize_model(self, scale=1.0): """ Optimizes the model for a given number of restarts and chooses the best result :param scale: std of the normal distribution used to draw new params """ func_vals = [] model_params = [] # read out the original params original_params = self._readout_params() for i in range(self.num_restarts): # we need to create a new optimizer since Adam has params itself self.opt = tf.optimizers.Adam(self.learning_rate) try: # assign new staring vals if self.full_restart: # This is used in GPy opt if no prior is specified (see model.randomize() defined in paramz pack) self.model.kernel.variance.assign( tf.maximum(tf.random.normal(shape=(), dtype=self.default_tf_float, mean=scale, stddev=self.parameter_noise_scale), tf.constant(0.1, dtype=self.default_tf_float))) self.model.kernel.lengthscales.assign( tf.maximum(tf.random.normal(shape=self.lengthscale_shape, dtype=self.default_tf_float, mean=scale, stddev=self.parameter_noise_scale), tf.constant(0.1, dtype=self.default_tf_float))) self.model.q_mu.assign(tf.zeros_like(self.model.q_mu)) self.model.q_sqrt.assign(tf.eye(len(original_params[2]), batch_shape=[1], dtype=self.default_tf_float)) else: self.model.kernel.variance.assign(tf.maximum(original_params[0] + tf.random.normal(shape=(), dtype=self.default_tf_float, stddev=self.parameter_noise_scale), tf.constant(0.1, dtype=self.default_tf_float, ))) self.model.kernel.lengthscales.assign(tf.maximum(original_params[1] + tf.random.normal(shape=self.lengthscale_shape, dtype=self.default_tf_float, stddev=self.parameter_noise_scale), tf.constant(0.1, dtype=self.default_tf_float))) self.model.q_mu.assign(original_params[2]) self.model.q_sqrt.assign(original_params[3]) # now we optimize losses = self.train_model(self.max_opt_iter) # we append the final loss value func_vals.append(losses[-1]) model_params.append(self._readout_params()) if self.verbosity > 0: print("Optimization {}: achieved {} with params {}".format(i, func_vals[-1], model_params[-1])) except: print("Failed Optimization {}".format(i)) # set to minimum min_index = np.argmin(func_vals) self._set_params(model_params[min_index])
[ "def", "optimize_model", "(", "self", ",", "scale", "=", "1.0", ")", ":", "func_vals", "=", "[", "]", "model_params", "=", "[", "]", "# read out the original params", "original_params", "=", "self", ".", "_readout_params", "(", ")", "for", "i", "in", "range", "(", "self", ".", "num_restarts", ")", ":", "# we need to create a new optimizer since Adam has params itself", "self", ".", "opt", "=", "tf", ".", "optimizers", ".", "Adam", "(", "self", ".", "learning_rate", ")", "try", ":", "# assign new staring vals", "if", "self", ".", "full_restart", ":", "# This is used in GPy opt if no prior is specified (see model.randomize() defined in paramz pack)", "self", ".", "model", ".", "kernel", ".", "variance", ".", "assign", "(", "tf", ".", "maximum", "(", "tf", ".", "random", ".", "normal", "(", "shape", "=", "(", ")", ",", "dtype", "=", "self", ".", "default_tf_float", ",", "mean", "=", "scale", ",", "stddev", "=", "self", ".", "parameter_noise_scale", ")", ",", "tf", ".", "constant", "(", "0.1", ",", "dtype", "=", "self", ".", "default_tf_float", ")", ")", ")", "self", ".", "model", ".", "kernel", ".", "lengthscales", ".", "assign", "(", "tf", ".", "maximum", "(", "tf", ".", "random", ".", "normal", "(", "shape", "=", "self", ".", "lengthscale_shape", ",", "dtype", "=", "self", ".", "default_tf_float", ",", "mean", "=", "scale", ",", "stddev", "=", "self", ".", "parameter_noise_scale", ")", ",", "tf", ".", "constant", "(", "0.1", ",", "dtype", "=", "self", ".", "default_tf_float", ")", ")", ")", "self", ".", "model", ".", "q_mu", ".", "assign", "(", "tf", ".", "zeros_like", "(", "self", ".", "model", ".", "q_mu", ")", ")", "self", ".", "model", ".", "q_sqrt", ".", "assign", "(", "tf", ".", "eye", "(", "len", "(", "original_params", "[", "2", "]", ")", ",", "batch_shape", "=", "[", "1", "]", ",", "dtype", "=", "self", ".", "default_tf_float", ")", ")", "else", ":", "self", ".", "model", ".", "kernel", ".", "variance", ".", "assign", "(", "tf", ".", "maximum", "(", "original_params", "[", "0", "]", "+", "tf", ".", "random", ".", "normal", "(", "shape", "=", "(", ")", ",", "dtype", "=", "self", ".", "default_tf_float", ",", "stddev", "=", "self", ".", "parameter_noise_scale", ")", ",", "tf", ".", "constant", "(", "0.1", ",", "dtype", "=", "self", ".", "default_tf_float", ",", ")", ")", ")", "self", ".", "model", ".", "kernel", ".", "lengthscales", ".", "assign", "(", "tf", ".", "maximum", "(", "original_params", "[", "1", "]", "+", "tf", ".", "random", ".", "normal", "(", "shape", "=", "self", ".", "lengthscale_shape", ",", "dtype", "=", "self", ".", "default_tf_float", ",", "stddev", "=", "self", ".", "parameter_noise_scale", ")", ",", "tf", ".", "constant", "(", "0.1", ",", "dtype", "=", "self", ".", "default_tf_float", ")", ")", ")", "self", ".", "model", ".", "q_mu", ".", "assign", "(", "original_params", "[", "2", "]", ")", "self", ".", "model", ".", "q_sqrt", ".", "assign", "(", "original_params", "[", "3", "]", ")", "# now we optimize", "losses", "=", "self", ".", "train_model", "(", "self", ".", "max_opt_iter", ")", "# we append the final loss value", "func_vals", ".", "append", "(", "losses", "[", "-", "1", "]", ")", "model_params", ".", "append", "(", "self", ".", "_readout_params", "(", ")", ")", "if", "self", ".", "verbosity", ">", "0", ":", "print", "(", "\"Optimization {}: achieved {} with params {}\"", ".", "format", "(", "i", ",", "func_vals", "[", "-", "1", "]", ",", "model_params", "[", "-", "1", "]", ")", ")", "except", ":", "print", "(", "\"Failed Optimization {}\"", ".", "format", "(", "i", ")", ")", "# set to minimum", "min_index", "=", "np", ".", "argmin", "(", "func_vals", ")", "self", ".", "_set_params", "(", "model_params", "[", "min_index", "]", ")" ]
[ 252, 4 ]
[ 312, 49 ]
python
en
['en', 'error', 'th']
False
VGP_Emu.optimize
(self, n_draw=5, max_iters=100, rel_tol=0.5, n_convergence=1000, sampler_burn_in=1000, save_path=None, save_iter=5, **kwargs)
Optimizes the initiated GP emulator for at most max_iters iterations :param n_draw: number of draws in each step :param max_iters: maximum number of iterations :param rel_tol: relative tolarance of the Bhattacharyya distance, the optimization will stop if the relative change is smaller than rel_tol for 5 consecutive steps :param n_convergence: number of sample points for the convergence test :param sampler_burn_in: number of burn in steps for the MCMC that draws new samples :param save_path: path where to save the intermediate results :param save_iter: save itermediate results very so often :param kwargs: additional arguments passed to the sample_new routine (e.g. MCMC type etc.)
Optimizes the initiated GP emulator for at most max_iters iterations :param n_draw: number of draws in each step :param max_iters: maximum number of iterations :param rel_tol: relative tolarance of the Bhattacharyya distance, the optimization will stop if the relative change is smaller than rel_tol for 5 consecutive steps :param n_convergence: number of sample points for the convergence test :param sampler_burn_in: number of burn in steps for the MCMC that draws new samples :param save_path: path where to save the intermediate results :param save_iter: save itermediate results very so often :param kwargs: additional arguments passed to the sample_new routine (e.g. MCMC type etc.)
def optimize(self, n_draw=5, max_iters=100, rel_tol=0.5, n_convergence=1000, sampler_burn_in=1000, save_path=None, save_iter=5, **kwargs): """ Optimizes the initiated GP emulator for at most max_iters iterations :param n_draw: number of draws in each step :param max_iters: maximum number of iterations :param rel_tol: relative tolarance of the Bhattacharyya distance, the optimization will stop if the relative change is smaller than rel_tol for 5 consecutive steps :param n_convergence: number of sample points for the convergence test :param sampler_burn_in: number of burn in steps for the MCMC that draws new samples :param save_path: path where to save the intermediate results :param save_iter: save itermediate results very so often :param kwargs: additional arguments passed to the sample_new routine (e.g. MCMC type etc.) """ if self.objective is None or self.space is None: raise ValueError("Iterative optimization is only possible when the GP emulator was initialized with an " "objective function and a design space!") # convergence samples convergence_samples = self.tfp_prior.sample(n_convergence) new_preds = None old_coef = None changes = [] for i in range(max_iters): old_preds = new_preds # get new samples t0 = time() new_samples = self.sample_new(n_draw, burn_in=sampler_burn_in, **kwargs) t1 = time() print("Drawn {} new samples in {} sec...".format(n_draw, t1 - t0)) # eval objective t0 = time() Y_new, var_new = np.split(self.objective(new_samples), axis=1, indices_or_sections=2) t1 = time() print("Objective evaluation took {} sec...".format(t1 - t0)) # normalize if self.normalize_Y: self.Y_all = self.Y_all * self.Y_std + self.Y_mean self.var_estimates *= self.Y_std ** 2 self.Y_all = np.concatenate([self.Y_all, Y_new], axis=0) self.var_estimates = np.concatenate([self.var_estimates, var_new], axis=0) if self.normalize_Y: self.Y_mean = np.mean(self.Y_all) if not self.mean_only: self.Y_std = np.std(self.Y_all) self.Y_all = (self.Y_all - self.Y_mean) / self.Y_std self.var_estimates /= self.Y_std ** 2 # stack self.params = self.unnormalize_params(self.params, self.rot_mat, self.rot_mean, self.rot_std) self.params = np.concatenate([self.params, new_samples], axis=0) self.params, self.rot_mat, self.rot_mean, self.rot_std = self.normalize_params(self.params) # model print("N params: ", len(self.params)) data = np.concatenate([self.Y_all, np.maximum(self.var_estimates, self.minimum_variance)], axis=1) self.model = gpflow.models.VGP((self.params.astype(self.default_np_float), data.astype(self.default_np_float)), kernel=self.kern, likelihood=self.likelihood, num_latent_gps=1) t0 = time() self.optimize_model() t1 = time() print("GP optimization took {} sec with {} restarts...".format(t1 - t0, self.num_restarts)) # new acqui self.current_transform = lambda x: self.transform_params(x, self.rot_mat, self.rot_mean, self.rot_std) # TESTING # ======= # TODO: implement this better current_samples = self.transform_params(convergence_samples, self.rot_mat, self.rot_mean, self.rot_std) current_samples = current_samples.astype(self.default_np_float) # get new preds (unnorm) new_preds = np.exp(self.model.predict_f(current_samples)[0].numpy().ravel() * self.Y_std + self.Y_mean) if old_preds is not None: # Bhattacharyya distance new_coef = np.mean(np.sqrt(old_preds * new_preds)) print(new_coef) if old_coef is not None: rel_change = 100 * np.abs(old_coef - new_coef) / new_coef print("Relavitve change: ", rel_change) changes.append(rel_change) old_coef = new_coef if len(changes) > 5 and not np.any(np.asarray(changes)[-5:] > rel_tol): break # Save stuff if save_path is not None and i > 0 and i % save_iter == 0: current_path = os.path.join(save_path, "iter_%i" % (i)) if not os.path.exists(current_path): os.mkdir(current_path) self.save_model(current_path) print("Saved intermediate model at <{}>".format(current_path)) else: print("Save path <{}> exists, " "skipping save model in order to avoid overwriting...".format(current_path)) print("Done...")
[ "def", "optimize", "(", "self", ",", "n_draw", "=", "5", ",", "max_iters", "=", "100", ",", "rel_tol", "=", "0.5", ",", "n_convergence", "=", "1000", ",", "sampler_burn_in", "=", "1000", ",", "save_path", "=", "None", ",", "save_iter", "=", "5", ",", "*", "*", "kwargs", ")", ":", "if", "self", ".", "objective", "is", "None", "or", "self", ".", "space", "is", "None", ":", "raise", "ValueError", "(", "\"Iterative optimization is only possible when the GP emulator was initialized with an \"", "\"objective function and a design space!\"", ")", "# convergence samples", "convergence_samples", "=", "self", ".", "tfp_prior", ".", "sample", "(", "n_convergence", ")", "new_preds", "=", "None", "old_coef", "=", "None", "changes", "=", "[", "]", "for", "i", "in", "range", "(", "max_iters", ")", ":", "old_preds", "=", "new_preds", "# get new samples", "t0", "=", "time", "(", ")", "new_samples", "=", "self", ".", "sample_new", "(", "n_draw", ",", "burn_in", "=", "sampler_burn_in", ",", "*", "*", "kwargs", ")", "t1", "=", "time", "(", ")", "print", "(", "\"Drawn {} new samples in {} sec...\"", ".", "format", "(", "n_draw", ",", "t1", "-", "t0", ")", ")", "# eval objective", "t0", "=", "time", "(", ")", "Y_new", ",", "var_new", "=", "np", ".", "split", "(", "self", ".", "objective", "(", "new_samples", ")", ",", "axis", "=", "1", ",", "indices_or_sections", "=", "2", ")", "t1", "=", "time", "(", ")", "print", "(", "\"Objective evaluation took {} sec...\"", ".", "format", "(", "t1", "-", "t0", ")", ")", "# normalize", "if", "self", ".", "normalize_Y", ":", "self", ".", "Y_all", "=", "self", ".", "Y_all", "*", "self", ".", "Y_std", "+", "self", ".", "Y_mean", "self", ".", "var_estimates", "*=", "self", ".", "Y_std", "**", "2", "self", ".", "Y_all", "=", "np", ".", "concatenate", "(", "[", "self", ".", "Y_all", ",", "Y_new", "]", ",", "axis", "=", "0", ")", "self", ".", "var_estimates", "=", "np", ".", "concatenate", "(", "[", "self", ".", "var_estimates", ",", "var_new", "]", ",", "axis", "=", "0", ")", "if", "self", ".", "normalize_Y", ":", "self", ".", "Y_mean", "=", "np", ".", "mean", "(", "self", ".", "Y_all", ")", "if", "not", "self", ".", "mean_only", ":", "self", ".", "Y_std", "=", "np", ".", "std", "(", "self", ".", "Y_all", ")", "self", ".", "Y_all", "=", "(", "self", ".", "Y_all", "-", "self", ".", "Y_mean", ")", "/", "self", ".", "Y_std", "self", ".", "var_estimates", "/=", "self", ".", "Y_std", "**", "2", "# stack", "self", ".", "params", "=", "self", ".", "unnormalize_params", "(", "self", ".", "params", ",", "self", ".", "rot_mat", ",", "self", ".", "rot_mean", ",", "self", ".", "rot_std", ")", "self", ".", "params", "=", "np", ".", "concatenate", "(", "[", "self", ".", "params", ",", "new_samples", "]", ",", "axis", "=", "0", ")", "self", ".", "params", ",", "self", ".", "rot_mat", ",", "self", ".", "rot_mean", ",", "self", ".", "rot_std", "=", "self", ".", "normalize_params", "(", "self", ".", "params", ")", "# model", "print", "(", "\"N params: \"", ",", "len", "(", "self", ".", "params", ")", ")", "data", "=", "np", ".", "concatenate", "(", "[", "self", ".", "Y_all", ",", "np", ".", "maximum", "(", "self", ".", "var_estimates", ",", "self", ".", "minimum_variance", ")", "]", ",", "axis", "=", "1", ")", "self", ".", "model", "=", "gpflow", ".", "models", ".", "VGP", "(", "(", "self", ".", "params", ".", "astype", "(", "self", ".", "default_np_float", ")", ",", "data", ".", "astype", "(", "self", ".", "default_np_float", ")", ")", ",", "kernel", "=", "self", ".", "kern", ",", "likelihood", "=", "self", ".", "likelihood", ",", "num_latent_gps", "=", "1", ")", "t0", "=", "time", "(", ")", "self", ".", "optimize_model", "(", ")", "t1", "=", "time", "(", ")", "print", "(", "\"GP optimization took {} sec with {} restarts...\"", ".", "format", "(", "t1", "-", "t0", ",", "self", ".", "num_restarts", ")", ")", "# new acqui", "self", ".", "current_transform", "=", "lambda", "x", ":", "self", ".", "transform_params", "(", "x", ",", "self", ".", "rot_mat", ",", "self", ".", "rot_mean", ",", "self", ".", "rot_std", ")", "# TESTING", "# =======", "# TODO: implement this better", "current_samples", "=", "self", ".", "transform_params", "(", "convergence_samples", ",", "self", ".", "rot_mat", ",", "self", ".", "rot_mean", ",", "self", ".", "rot_std", ")", "current_samples", "=", "current_samples", ".", "astype", "(", "self", ".", "default_np_float", ")", "# get new preds (unnorm)", "new_preds", "=", "np", ".", "exp", "(", "self", ".", "model", ".", "predict_f", "(", "current_samples", ")", "[", "0", "]", ".", "numpy", "(", ")", ".", "ravel", "(", ")", "*", "self", ".", "Y_std", "+", "self", ".", "Y_mean", ")", "if", "old_preds", "is", "not", "None", ":", "# Bhattacharyya distance", "new_coef", "=", "np", ".", "mean", "(", "np", ".", "sqrt", "(", "old_preds", "*", "new_preds", ")", ")", "print", "(", "new_coef", ")", "if", "old_coef", "is", "not", "None", ":", "rel_change", "=", "100", "*", "np", ".", "abs", "(", "old_coef", "-", "new_coef", ")", "/", "new_coef", "print", "(", "\"Relavitve change: \"", ",", "rel_change", ")", "changes", ".", "append", "(", "rel_change", ")", "old_coef", "=", "new_coef", "if", "len", "(", "changes", ")", ">", "5", "and", "not", "np", ".", "any", "(", "np", ".", "asarray", "(", "changes", ")", "[", "-", "5", ":", "]", ">", "rel_tol", ")", ":", "break", "# Save stuff", "if", "save_path", "is", "not", "None", "and", "i", ">", "0", "and", "i", "%", "save_iter", "==", "0", ":", "current_path", "=", "os", ".", "path", ".", "join", "(", "save_path", ",", "\"iter_%i\"", "%", "(", "i", ")", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "current_path", ")", ":", "os", ".", "mkdir", "(", "current_path", ")", "self", ".", "save_model", "(", "current_path", ")", "print", "(", "\"Saved intermediate model at <{}>\"", ".", "format", "(", "current_path", ")", ")", "else", ":", "print", "(", "\"Save path <{}> exists, \"", "\"skipping save model in order to avoid overwriting...\"", ".", "format", "(", "current_path", ")", ")", "print", "(", "\"Done...\"", ")" ]
[ 314, 4 ]
[ 420, 24 ]
python
en
['en', 'error', 'th']
False
VGP_Emu.sample_new
(self, n_draw, burn_in=1000, n_leap=10, step_size=0.05, MCMC_type="Hasting", parallel_iterations=10, start_type="prior", num_results=250, n_chains=None, replace_post=False, min_dist=1e-3, hasting_scale=0.05)
Draws new samples from the aquisition function :param n_draw: number of samples to draw :param burn_in: number of burn in steps :param n_leap: number of leap frog steps if MCMC_type==HMC :param step_size: step size for the HMC algorithm :param MCMC_type: type of MCMC (either HMC or Hasting) :param parallel_iterations: parallel iterations of the sample chain procedure :param start_type: select MCMC initial state by sampling from prior or from the sample of the objective funtion (posterior) weighted by their probability :param num_results: number of results to draw (has to be large enough such that accepted > n_draw) :param n_chains: number of parallel chains :param replace_post: if start_type == posterior, draw with replacement or not :param min_dist: minimum distance accepted samples need to be appart to count as "new" :param hasting_scale: scale of the Gaussian noise used for the Hastings proposals :return: the new samples as numpy array with default float type
Draws new samples from the aquisition function :param n_draw: number of samples to draw :param burn_in: number of burn in steps :param n_leap: number of leap frog steps if MCMC_type==HMC :param step_size: step size for the HMC algorithm :param MCMC_type: type of MCMC (either HMC or Hasting) :param parallel_iterations: parallel iterations of the sample chain procedure :param start_type: select MCMC initial state by sampling from prior or from the sample of the objective funtion (posterior) weighted by their probability :param num_results: number of results to draw (has to be large enough such that accepted > n_draw) :param n_chains: number of parallel chains :param replace_post: if start_type == posterior, draw with replacement or not :param min_dist: minimum distance accepted samples need to be appart to count as "new" :param hasting_scale: scale of the Gaussian noise used for the Hastings proposals :return: the new samples as numpy array with default float type
def sample_new(self, n_draw, burn_in=1000, n_leap=10, step_size=0.05, MCMC_type="Hasting", parallel_iterations=10, start_type="prior", num_results=250, n_chains=None, replace_post=False, min_dist=1e-3, hasting_scale=0.05): """ Draws new samples from the aquisition function :param n_draw: number of samples to draw :param burn_in: number of burn in steps :param n_leap: number of leap frog steps if MCMC_type==HMC :param step_size: step size for the HMC algorithm :param MCMC_type: type of MCMC (either HMC or Hasting) :param parallel_iterations: parallel iterations of the sample chain procedure :param start_type: select MCMC initial state by sampling from prior or from the sample of the objective funtion (posterior) weighted by their probability :param num_results: number of results to draw (has to be large enough such that accepted > n_draw) :param n_chains: number of parallel chains :param replace_post: if start_type == posterior, draw with replacement or not :param min_dist: minimum distance accepted samples need to be appart to count as "new" :param hasting_scale: scale of the Gaussian noise used for the Hastings proposals :return: the new samples as numpy array with default float type """ # set number of chains to at least 2*ndim if not defines if n_chains is None: n_chains = 2 * self.dims # starting points if start_type == "prior": start = self.tfp_prior.sample(n_chains) elif start_type == "posterior": probs = np.ravel(self.Y_all * self.Y_std + self.Y_mean) probs = probs - np.max(probs) probs = np.exp(probs) param = self.unnormalize_params(self.params, self.rot_mat, self.rot_mean, self.rot_std) choices = np.random.choice(a=len(param), size=n_chains, p=probs / np.sum(probs), replace=replace_post) start = tf.convert_to_tensor(param[choices], dtype=self.default_tf_float) else: raise IOError("Unknown start_type: {}".format(start_type)) # predictor (with alpha value) rot_mat = tf.constant(self.rot_mat, dtype=self.default_tf_float) rot_mean = tf.constant(self.rot_mean, dtype=self.default_tf_float) rot_std = tf.constant(self.rot_std, dtype=self.default_tf_float) Y_mean = tf.constant(self.Y_mean, dtype=self.default_tf_float) Y_std = tf.constant(self.Y_std, dtype=self.default_tf_float) @tf.function def log_prob_no_prior(X): rot_params = tf.einsum("ij,aj->ai", rot_mat, X) X = (rot_params - rot_mean) / rot_std mean, var = self.model.predict_f(X) if self.normalize_Y: mean = mean * Y_std + Y_mean var *= Y_std ** 2 if self.alpha < 1e-8: return mean else: return tf.math.log(tf.exp(mean) + self.alpha * (tf.exp(var) - 1.0) * tf.exp(2 * mean + var)) # def log prob @tf.function def log_prob(x): # log prob returns -inf if not in prior condition = tf.reduce_any(self.tfp_prior.log_prob(x) < -1000, axis=-1) if_true = tf.ones_like(condition, dtype=self.default_tf_float) * -np.inf if_false = tf.squeeze(log_prob_no_prior(x), axis=-1) return tf.where(condition, if_true, if_false) if MCMC_type == "HMC": kernel = tfp.mcmc.HamiltonianMonteCarlo(target_log_prob_fn=log_prob, num_leapfrog_steps=n_leap, step_size=step_size) kernel = tfp.mcmc.SimpleStepSizeAdaptation(inner_kernel=kernel, num_adaptation_steps=int(burn_in * 0.8)) # Run the chain (with burn-in). @tf.function def run_chain(): # Run the chain (with burn-in). samples, accepted = tfp.mcmc.sample_chain( num_results=num_results, num_burnin_steps=burn_in, current_state=start, kernel=kernel, parallel_iterations=parallel_iterations, trace_fn=lambda _, pkr: pkr.inner_results.is_accepted) return samples, accepted samples, accepted = run_chain() elif MCMC_type == "Hasting": @tf.function def run_chain(): samples, accepted = tfp.mcmc.sample_chain( num_results=num_results, current_state=start, kernel=tfp.mcmc.RandomWalkMetropolis( target_log_prob_fn=log_prob, new_state_fn=tfp.mcmc.random_walk_normal_fn(scale=hasting_scale, name=None)), num_burnin_steps=burn_in, # Thinning. num_steps_between_results=1, parallel_iterations=parallel_iterations, trace_fn=lambda _, pkr: pkr.is_accepted) return samples, accepted samples, accepted = run_chain() else: raise IOError("Unkown MCMC_type: {}".format(MCMC_type)) samples = samples.numpy() accepted = accepted.numpy() n_accepted = np.sum(accepted) if self.verbosity > 0: print("Accepted {} samples with burn in {} and num results {}".format(n_accepted, burn_in, num_results)) if n_accepted < n_draw: raise ValueError("Not enough samples where accecpted with the given burn in and num result," "try to increase these values to avoid this error.") samples = samples.reshape((-1, self.dims)) np.random.shuffle(samples) # we want n_draw samples that are at least min_dist apart new_samples = np.zeros((n_draw, self.dims), dtype=self.default_np_float) new_samples[0] = samples[0] count = 1 for samp in samples[1:]: if np.all((np.linalg.norm(new_samples - samp, axis=1) > min_dist)[:count]): new_samples[count] = samp count += 1 if count == n_draw: break if count != n_draw: raise ValueError("Number of samples whose distance is large than min_dist is less than n_draw. " "Either increase num_results or decrease min_dist!") # return n_draws return new_samples
[ "def", "sample_new", "(", "self", ",", "n_draw", ",", "burn_in", "=", "1000", ",", "n_leap", "=", "10", ",", "step_size", "=", "0.05", ",", "MCMC_type", "=", "\"Hasting\"", ",", "parallel_iterations", "=", "10", ",", "start_type", "=", "\"prior\"", ",", "num_results", "=", "250", ",", "n_chains", "=", "None", ",", "replace_post", "=", "False", ",", "min_dist", "=", "1e-3", ",", "hasting_scale", "=", "0.05", ")", ":", "# set number of chains to at least 2*ndim if not defines", "if", "n_chains", "is", "None", ":", "n_chains", "=", "2", "*", "self", ".", "dims", "# starting points", "if", "start_type", "==", "\"prior\"", ":", "start", "=", "self", ".", "tfp_prior", ".", "sample", "(", "n_chains", ")", "elif", "start_type", "==", "\"posterior\"", ":", "probs", "=", "np", ".", "ravel", "(", "self", ".", "Y_all", "*", "self", ".", "Y_std", "+", "self", ".", "Y_mean", ")", "probs", "=", "probs", "-", "np", ".", "max", "(", "probs", ")", "probs", "=", "np", ".", "exp", "(", "probs", ")", "param", "=", "self", ".", "unnormalize_params", "(", "self", ".", "params", ",", "self", ".", "rot_mat", ",", "self", ".", "rot_mean", ",", "self", ".", "rot_std", ")", "choices", "=", "np", ".", "random", ".", "choice", "(", "a", "=", "len", "(", "param", ")", ",", "size", "=", "n_chains", ",", "p", "=", "probs", "/", "np", ".", "sum", "(", "probs", ")", ",", "replace", "=", "replace_post", ")", "start", "=", "tf", ".", "convert_to_tensor", "(", "param", "[", "choices", "]", ",", "dtype", "=", "self", ".", "default_tf_float", ")", "else", ":", "raise", "IOError", "(", "\"Unknown start_type: {}\"", ".", "format", "(", "start_type", ")", ")", "# predictor (with alpha value)", "rot_mat", "=", "tf", ".", "constant", "(", "self", ".", "rot_mat", ",", "dtype", "=", "self", ".", "default_tf_float", ")", "rot_mean", "=", "tf", ".", "constant", "(", "self", ".", "rot_mean", ",", "dtype", "=", "self", ".", "default_tf_float", ")", "rot_std", "=", "tf", ".", "constant", "(", "self", ".", "rot_std", ",", "dtype", "=", "self", ".", "default_tf_float", ")", "Y_mean", "=", "tf", ".", "constant", "(", "self", ".", "Y_mean", ",", "dtype", "=", "self", ".", "default_tf_float", ")", "Y_std", "=", "tf", ".", "constant", "(", "self", ".", "Y_std", ",", "dtype", "=", "self", ".", "default_tf_float", ")", "@", "tf", ".", "function", "def", "log_prob_no_prior", "(", "X", ")", ":", "rot_params", "=", "tf", ".", "einsum", "(", "\"ij,aj->ai\"", ",", "rot_mat", ",", "X", ")", "X", "=", "(", "rot_params", "-", "rot_mean", ")", "/", "rot_std", "mean", ",", "var", "=", "self", ".", "model", ".", "predict_f", "(", "X", ")", "if", "self", ".", "normalize_Y", ":", "mean", "=", "mean", "*", "Y_std", "+", "Y_mean", "var", "*=", "Y_std", "**", "2", "if", "self", ".", "alpha", "<", "1e-8", ":", "return", "mean", "else", ":", "return", "tf", ".", "math", ".", "log", "(", "tf", ".", "exp", "(", "mean", ")", "+", "self", ".", "alpha", "*", "(", "tf", ".", "exp", "(", "var", ")", "-", "1.0", ")", "*", "tf", ".", "exp", "(", "2", "*", "mean", "+", "var", ")", ")", "# def log prob", "@", "tf", ".", "function", "def", "log_prob", "(", "x", ")", ":", "# log prob returns -inf if not in prior", "condition", "=", "tf", ".", "reduce_any", "(", "self", ".", "tfp_prior", ".", "log_prob", "(", "x", ")", "<", "-", "1000", ",", "axis", "=", "-", "1", ")", "if_true", "=", "tf", ".", "ones_like", "(", "condition", ",", "dtype", "=", "self", ".", "default_tf_float", ")", "*", "-", "np", ".", "inf", "if_false", "=", "tf", ".", "squeeze", "(", "log_prob_no_prior", "(", "x", ")", ",", "axis", "=", "-", "1", ")", "return", "tf", ".", "where", "(", "condition", ",", "if_true", ",", "if_false", ")", "if", "MCMC_type", "==", "\"HMC\"", ":", "kernel", "=", "tfp", ".", "mcmc", ".", "HamiltonianMonteCarlo", "(", "target_log_prob_fn", "=", "log_prob", ",", "num_leapfrog_steps", "=", "n_leap", ",", "step_size", "=", "step_size", ")", "kernel", "=", "tfp", ".", "mcmc", ".", "SimpleStepSizeAdaptation", "(", "inner_kernel", "=", "kernel", ",", "num_adaptation_steps", "=", "int", "(", "burn_in", "*", "0.8", ")", ")", "# Run the chain (with burn-in).", "@", "tf", ".", "function", "def", "run_chain", "(", ")", ":", "# Run the chain (with burn-in).", "samples", ",", "accepted", "=", "tfp", ".", "mcmc", ".", "sample_chain", "(", "num_results", "=", "num_results", ",", "num_burnin_steps", "=", "burn_in", ",", "current_state", "=", "start", ",", "kernel", "=", "kernel", ",", "parallel_iterations", "=", "parallel_iterations", ",", "trace_fn", "=", "lambda", "_", ",", "pkr", ":", "pkr", ".", "inner_results", ".", "is_accepted", ")", "return", "samples", ",", "accepted", "samples", ",", "accepted", "=", "run_chain", "(", ")", "elif", "MCMC_type", "==", "\"Hasting\"", ":", "@", "tf", ".", "function", "def", "run_chain", "(", ")", ":", "samples", ",", "accepted", "=", "tfp", ".", "mcmc", ".", "sample_chain", "(", "num_results", "=", "num_results", ",", "current_state", "=", "start", ",", "kernel", "=", "tfp", ".", "mcmc", ".", "RandomWalkMetropolis", "(", "target_log_prob_fn", "=", "log_prob", ",", "new_state_fn", "=", "tfp", ".", "mcmc", ".", "random_walk_normal_fn", "(", "scale", "=", "hasting_scale", ",", "name", "=", "None", ")", ")", ",", "num_burnin_steps", "=", "burn_in", ",", "# Thinning.", "num_steps_between_results", "=", "1", ",", "parallel_iterations", "=", "parallel_iterations", ",", "trace_fn", "=", "lambda", "_", ",", "pkr", ":", "pkr", ".", "is_accepted", ")", "return", "samples", ",", "accepted", "samples", ",", "accepted", "=", "run_chain", "(", ")", "else", ":", "raise", "IOError", "(", "\"Unkown MCMC_type: {}\"", ".", "format", "(", "MCMC_type", ")", ")", "samples", "=", "samples", ".", "numpy", "(", ")", "accepted", "=", "accepted", ".", "numpy", "(", ")", "n_accepted", "=", "np", ".", "sum", "(", "accepted", ")", "if", "self", ".", "verbosity", ">", "0", ":", "print", "(", "\"Accepted {} samples with burn in {} and num results {}\"", ".", "format", "(", "n_accepted", ",", "burn_in", ",", "num_results", ")", ")", "if", "n_accepted", "<", "n_draw", ":", "raise", "ValueError", "(", "\"Not enough samples where accecpted with the given burn in and num result,\"", "\"try to increase these values to avoid this error.\"", ")", "samples", "=", "samples", ".", "reshape", "(", "(", "-", "1", ",", "self", ".", "dims", ")", ")", "np", ".", "random", ".", "shuffle", "(", "samples", ")", "# we want n_draw samples that are at least min_dist apart", "new_samples", "=", "np", ".", "zeros", "(", "(", "n_draw", ",", "self", ".", "dims", ")", ",", "dtype", "=", "self", ".", "default_np_float", ")", "new_samples", "[", "0", "]", "=", "samples", "[", "0", "]", "count", "=", "1", "for", "samp", "in", "samples", "[", "1", ":", "]", ":", "if", "np", ".", "all", "(", "(", "np", ".", "linalg", ".", "norm", "(", "new_samples", "-", "samp", ",", "axis", "=", "1", ")", ">", "min_dist", ")", "[", ":", "count", "]", ")", ":", "new_samples", "[", "count", "]", "=", "samp", "count", "+=", "1", "if", "count", "==", "n_draw", ":", "break", "if", "count", "!=", "n_draw", ":", "raise", "ValueError", "(", "\"Number of samples whose distance is large than min_dist is less than n_draw. \"", "\"Either increase num_results or decrease min_dist!\"", ")", "# return n_draws", "return", "new_samples" ]
[ 422, 4 ]
[ 561, 26 ]
python
en
['en', 'error', 'th']
False
VGP_Emu.normalize_params
(self, params)
normalizes params to unit variance
normalizes params to unit variance
def normalize_params(self, params): """ normalizes params to unit variance """ # make the params linearly uncorrelated cov = np.cov(params, rowvar=False) # eigenvals and vecs w, v = np.linalg.eig(cov) # rot mat is v.T rot_mat = v.T # dot prod rot_params = np.einsum("ij,aj->ai", rot_mat, params) # mean rot_mean = np.mean(rot_params, axis=0, keepdims=True) # std (ddof of np.cov for consistency) rot_std = np.std(rot_params, axis=0, keepdims=True, ddof=1) # normalize new_params = (rot_params - rot_mean) / rot_std return new_params, rot_mat, rot_mean, rot_std
[ "def", "normalize_params", "(", "self", ",", "params", ")", ":", "# make the params linearly uncorrelated", "cov", "=", "np", ".", "cov", "(", "params", ",", "rowvar", "=", "False", ")", "# eigenvals and vecs", "w", ",", "v", "=", "np", ".", "linalg", ".", "eig", "(", "cov", ")", "# rot mat is v.T", "rot_mat", "=", "v", ".", "T", "# dot prod", "rot_params", "=", "np", ".", "einsum", "(", "\"ij,aj->ai\"", ",", "rot_mat", ",", "params", ")", "# mean", "rot_mean", "=", "np", ".", "mean", "(", "rot_params", ",", "axis", "=", "0", ",", "keepdims", "=", "True", ")", "# std (ddof of np.cov for consistency)", "rot_std", "=", "np", ".", "std", "(", "rot_params", ",", "axis", "=", "0", ",", "keepdims", "=", "True", ",", "ddof", "=", "1", ")", "# normalize", "new_params", "=", "(", "rot_params", "-", "rot_mean", ")", "/", "rot_std", "return", "new_params", ",", "rot_mat", ",", "rot_mean", ",", "rot_std" ]
[ 564, 4 ]
[ 583, 53 ]
python
en
['en', 'error', 'th']
False
VGP_Emu.transform_params
(self, params, rot_mat, rot_mean, rot_std)
Normalizes params given the rot, shift and scale
Normalizes params given the rot, shift and scale
def transform_params(self, params, rot_mat, rot_mean, rot_std): """ Normalizes params given the rot, shift and scale """ rot_params = np.einsum("ij,aj->ai", rot_mat, params) new_params = (rot_params - rot_mean) / rot_std return new_params
[ "def", "transform_params", "(", "self", ",", "params", ",", "rot_mat", ",", "rot_mean", ",", "rot_std", ")", ":", "rot_params", "=", "np", ".", "einsum", "(", "\"ij,aj->ai\"", ",", "rot_mat", ",", "params", ")", "new_params", "=", "(", "rot_params", "-", "rot_mean", ")", "/", "rot_std", "return", "new_params" ]
[ 586, 4 ]
[ 592, 25 ]
python
en
['en', 'error', 'th']
False
VGP_Emu.reverse_transform_params
(self, params, rot_mat, rot_mean, rot_std)
Makes the transformation in reverse
Makes the transformation in reverse
def reverse_transform_params(self, params, rot_mat, rot_mean, rot_std): """ Makes the transformation in reverse """ new_params = params * rot_std + rot_mean new_params = np.einsum("ij,aj->ai", rot_mat.T, new_params) return new_params
[ "def", "reverse_transform_params", "(", "self", ",", "params", ",", "rot_mat", ",", "rot_mean", ",", "rot_std", ")", ":", "new_params", "=", "params", "*", "rot_std", "+", "rot_mean", "new_params", "=", "np", ".", "einsum", "(", "\"ij,aj->ai\"", ",", "rot_mat", ".", "T", ",", "new_params", ")", "return", "new_params" ]
[ 595, 4 ]
[ 602, 25 ]
python
en
['en', 'error', 'th']
False
VGP_Emu.unnormalize_params
(self, params, rot_mat, rot_mean, rot_std)
Removes normalization
Removes normalization
def unnormalize_params(self, params, rot_mat, rot_mean, rot_std): """ Removes normalization """ new_params = params * rot_std + rot_mean # inverse rotation new_params = np.einsum("ij,aj->ai", rot_mat.T, new_params) return new_params
[ "def", "unnormalize_params", "(", "self", ",", "params", ",", "rot_mat", ",", "rot_mean", ",", "rot_std", ")", ":", "new_params", "=", "params", "*", "rot_std", "+", "rot_mean", "# inverse rotation", "new_params", "=", "np", ".", "einsum", "(", "\"ij,aj->ai\"", ",", "rot_mat", ".", "T", ",", "new_params", ")", "return", "new_params" ]
[ 605, 4 ]
[ 612, 25 ]
python
en
['en', 'error', 'th']
False
L_star_fun
(L_star)
This calcualtes the zero of the optimal well spacing, L_star.
This calcualtes the zero of the optimal well spacing, L_star.
def L_star_fun(L_star): """ This calcualtes the zero of the optimal well spacing, L_star. """ import numpy as np return L_star**2.0*np.log(L_star/D) - \ 2.0*np.pi*rho_w*permeability_/viscosity * \ ((alphaII*rho_r-rho_w)*gravity*reservoir_depth) * \ Cpw*t_inj/((rho_w*Cpw*porosity+rho_r*Cpr*(1.0-porosity)))
[ "def", "L_star_fun", "(", "L_star", ")", ":", "import", "numpy", "as", "np", "return", "L_star", "**", "2.0", "*", "np", ".", "log", "(", "L_star", "/", "D", ")", "-", "2.0", "*", "np", ".", "pi", "*", "rho_w", "*", "permeability_", "/", "viscosity", "*", "(", "(", "alphaII", "*", "rho_r", "-", "rho_w", ")", "*", "gravity", "*", "reservoir_depth", ")", "*", "Cpw", "*", "t_inj", "/", "(", "(", "rho_w", "*", "Cpw", "*", "porosity", "+", "rho_r", "*", "Cpr", "*", "(", "1.0", "-", "porosity", ")", ")", ")" ]
[ 19, 0 ]
[ 27, 68 ]
python
en
['en', 'error', 'th']
False
L_star_fun2
(L_star)
This calcualtes the optimal well spacing, L_star, if the reservoir constraints imply a flow rate that is higher than the flow rate that would minimize the LCOH. define capital_costs and CRF externally
This calcualtes the optimal well spacing, L_star, if the reservoir constraints imply a flow rate that is higher than the flow rate that would minimize the LCOH.
def L_star_fun2(L_star): """ This calcualtes the optimal well spacing, L_star, if the reservoir constraints imply a flow rate that is higher than the flow rate that would minimize the LCOH. define capital_costs and CRF externally """ import numpy as np return (capital_cost_internal*CRF*rho_w*rho_w * np.pi * permeability_*b_ / (2.0*dollars_per_kWhth*joule_to_kWh*t_inj*viscosity * np.log(L_star/D)))**0.5 - \ (rho_w*Cpw*porosity + rho_r*Cpr*(1.0-porosity)) * \ (L_star**2 * b_)/ (Cpw*t_inj)
[ "def", "L_star_fun2", "(", "L_star", ")", ":", "import", "numpy", "as", "np", "return", "(", "capital_cost_internal", "*", "CRF", "*", "rho_w", "*", "rho_w", "*", "np", ".", "pi", "*", "permeability_", "*", "b_", "/", "(", "2.0", "*", "dollars_per_kWhth", "*", "joule_to_kWh", "*", "t_inj", "*", "viscosity", "*", "np", ".", "log", "(", "L_star", "/", "D", ")", ")", ")", "**", "0.5", "-", "(", "rho_w", "*", "Cpw", "*", "porosity", "+", "rho_r", "*", "Cpr", "*", "(", "1.0", "-", "porosity", ")", ")", "*", "(", "L_star", "**", "2", "*", "b_", ")", "/", "(", "Cpw", "*", "t_inj", ")" ]
[ 29, 0 ]
[ 43, 40 ]
python
en
['en', 'error', 'th']
False
Serializer.prepare_response
(self, request, cached)
Verify our vary headers match and construct a real urllib3 HTTPResponse object.
Verify our vary headers match and construct a real urllib3 HTTPResponse object.
def prepare_response(self, request, cached): """Verify our vary headers match and construct a real urllib3 HTTPResponse object. """ # Special case the '*' Vary value as it means we cannot actually # determine if the cached response is suitable for this request. # This case is also handled in the controller code when creating # a cache entry, but is left here for backwards compatibility. if "*" in cached.get("vary", {}): return # Ensure that the Vary headers for the cached response match our # request for header, value in cached.get("vary", {}).items(): if request.headers.get(header, None) != value: return body_raw = cached["response"].pop("body") headers = CaseInsensitiveDict(data=cached["response"]["headers"]) if headers.get("transfer-encoding", "") == "chunked": headers.pop("transfer-encoding") cached["response"]["headers"] = headers try: body = io.BytesIO(body_raw) except TypeError: # This can happen if cachecontrol serialized to v1 format (pickle) # using Python 2. A Python 2 str(byte string) will be unpickled as # a Python 3 str (unicode string), which will cause the above to # fail with: # # TypeError: 'str' does not support the buffer interface body = io.BytesIO(body_raw.encode("utf8")) return HTTPResponse(body=body, preload_content=False, **cached["response"])
[ "def", "prepare_response", "(", "self", ",", "request", ",", "cached", ")", ":", "# Special case the '*' Vary value as it means we cannot actually", "# determine if the cached response is suitable for this request.", "# This case is also handled in the controller code when creating", "# a cache entry, but is left here for backwards compatibility.", "if", "\"*\"", "in", "cached", ".", "get", "(", "\"vary\"", ",", "{", "}", ")", ":", "return", "# Ensure that the Vary headers for the cached response match our", "# request", "for", "header", ",", "value", "in", "cached", ".", "get", "(", "\"vary\"", ",", "{", "}", ")", ".", "items", "(", ")", ":", "if", "request", ".", "headers", ".", "get", "(", "header", ",", "None", ")", "!=", "value", ":", "return", "body_raw", "=", "cached", "[", "\"response\"", "]", ".", "pop", "(", "\"body\"", ")", "headers", "=", "CaseInsensitiveDict", "(", "data", "=", "cached", "[", "\"response\"", "]", "[", "\"headers\"", "]", ")", "if", "headers", ".", "get", "(", "\"transfer-encoding\"", ",", "\"\"", ")", "==", "\"chunked\"", ":", "headers", ".", "pop", "(", "\"transfer-encoding\"", ")", "cached", "[", "\"response\"", "]", "[", "\"headers\"", "]", "=", "headers", "try", ":", "body", "=", "io", ".", "BytesIO", "(", "body_raw", ")", "except", "TypeError", ":", "# This can happen if cachecontrol serialized to v1 format (pickle)", "# using Python 2. A Python 2 str(byte string) will be unpickled as", "# a Python 3 str (unicode string), which will cause the above to", "# fail with:", "#", "# TypeError: 'str' does not support the buffer interface", "body", "=", "io", ".", "BytesIO", "(", "body_raw", ".", "encode", "(", "\"utf8\"", ")", ")", "return", "HTTPResponse", "(", "body", "=", "body", ",", "preload_content", "=", "False", ",", "*", "*", "cached", "[", "\"response\"", "]", ")" ]
[ 103, 4 ]
[ 139, 83 ]
python
en
['en', 'en', 'en']
True
validate_system
(system)
Ensure build system has the requisite fields.
Ensure build system has the requisite fields.
def validate_system(system): """ Ensure build system has the requisite fields. """ required = {'requires', 'build-backend'} if not (required <= set(system)): message = "Missing required fields: {missing}".format( missing=required-set(system), ) raise ValueError(message)
[ "def", "validate_system", "(", "system", ")", ":", "required", "=", "{", "'requires'", ",", "'build-backend'", "}", "if", "not", "(", "required", "<=", "set", "(", "system", ")", ")", ":", "message", "=", "\"Missing required fields: {missing}\"", ".", "format", "(", "missing", "=", "required", "-", "set", "(", "system", ")", ",", ")", "raise", "ValueError", "(", "message", ")" ]
[ 16, 0 ]
[ 25, 33 ]
python
en
['en', 'error', 'th']
False
load_system
(source_dir)
Load the build system from a source dir (pyproject.toml).
Load the build system from a source dir (pyproject.toml).
def load_system(source_dir): """ Load the build system from a source dir (pyproject.toml). """ pyproject = os.path.join(source_dir, 'pyproject.toml') with io.open(pyproject, encoding="utf-8") as f: pyproject_data = toml_load(f) return pyproject_data['build-system']
[ "def", "load_system", "(", "source_dir", ")", ":", "pyproject", "=", "os", ".", "path", ".", "join", "(", "source_dir", ",", "'pyproject.toml'", ")", "with", "io", ".", "open", "(", "pyproject", ",", "encoding", "=", "\"utf-8\"", ")", "as", "f", ":", "pyproject_data", "=", "toml_load", "(", "f", ")", "return", "pyproject_data", "[", "'build-system'", "]" ]
[ 28, 0 ]
[ 35, 41 ]
python
en
['en', 'error', 'th']
False
compat_system
(source_dir)
Given a source dir, attempt to get a build system backend and requirements from pyproject.toml. Fallback to setuptools but only if the file was not found or a build system was not indicated.
Given a source dir, attempt to get a build system backend and requirements from pyproject.toml. Fallback to setuptools but only if the file was not found or a build system was not indicated.
def compat_system(source_dir): """ Given a source dir, attempt to get a build system backend and requirements from pyproject.toml. Fallback to setuptools but only if the file was not found or a build system was not indicated. """ try: system = load_system(source_dir) except (FileNotFoundError, KeyError): system = {} system.setdefault( 'build-backend', 'setuptools.build_meta:__legacy__', ) system.setdefault('requires', ['setuptools', 'wheel']) return system
[ "def", "compat_system", "(", "source_dir", ")", ":", "try", ":", "system", "=", "load_system", "(", "source_dir", ")", "except", "(", "FileNotFoundError", ",", "KeyError", ")", ":", "system", "=", "{", "}", "system", ".", "setdefault", "(", "'build-backend'", ",", "'setuptools.build_meta:__legacy__'", ",", ")", "system", ".", "setdefault", "(", "'requires'", ",", "[", "'setuptools'", ",", "'wheel'", "]", ")", "return", "system" ]
[ 38, 0 ]
[ 54, 17 ]
python
en
['en', 'error', 'th']
False
_Enhance.enhance
(self, factor)
Returns an enhanced image. :param factor: A floating point value controlling the enhancement. Factor 1.0 always returns a copy of the original image, lower factors mean less color (brightness, contrast, etc), and higher values more. There are no restrictions on this value. :rtype: :py:class:`~PIL.Image.Image`
Returns an enhanced image.
def enhance(self, factor): """ Returns an enhanced image. :param factor: A floating point value controlling the enhancement. Factor 1.0 always returns a copy of the original image, lower factors mean less color (brightness, contrast, etc), and higher values more. There are no restrictions on this value. :rtype: :py:class:`~PIL.Image.Image` """ return Image.blend(self.degenerate, self.image, factor)
[ "def", "enhance", "(", "self", ",", "factor", ")", ":", "return", "Image", ".", "blend", "(", "self", ".", "degenerate", ",", "self", ".", "image", ",", "factor", ")" ]
[ 24, 4 ]
[ 35, 63 ]
python
en
['en', 'error', 'th']
False
Ghostscript
(tile, size, fp, scale=1)
Render an image using Ghostscript
Render an image using Ghostscript
def Ghostscript(tile, size, fp, scale=1): """Render an image using Ghostscript""" # Unpack decoder tile decoder, tile, offset, data = tile[0] length, bbox = data # Hack to support hi-res rendering scale = int(scale) or 1 # orig_size = size # orig_bbox = bbox size = (size[0] * scale, size[1] * scale) # resolution is dependent on bbox and size res = ( 72.0 * size[0] / (bbox[2] - bbox[0]), 72.0 * size[1] / (bbox[3] - bbox[1]), ) out_fd, outfile = tempfile.mkstemp() os.close(out_fd) infile_temp = None if hasattr(fp, "name") and os.path.exists(fp.name): infile = fp.name else: in_fd, infile_temp = tempfile.mkstemp() os.close(in_fd) infile = infile_temp # Ignore length and offset! # Ghostscript can read it # Copy whole file to read in Ghostscript with open(infile_temp, "wb") as f: # fetch length of fp fp.seek(0, io.SEEK_END) fsize = fp.tell() # ensure start position # go back fp.seek(0) lengthfile = fsize while lengthfile > 0: s = fp.read(min(lengthfile, 100 * 1024)) if not s: break lengthfile -= len(s) f.write(s) # Build Ghostscript command command = [ "gs", "-q", # quiet mode "-g%dx%d" % size, # set output geometry (pixels) "-r%fx%f" % res, # set input DPI (dots per inch) "-dBATCH", # exit after processing "-dNOPAUSE", # don't pause between pages "-dSAFER", # safe mode "-sDEVICE=ppmraw", # ppm driver f"-sOutputFile={outfile}", # output file # adjust for image origin "-c", f"{-bbox[0]} {-bbox[1]} translate", "-f", infile, # input file # showpage (see https://bugs.ghostscript.com/show_bug.cgi?id=698272) "-c", "showpage", ] if gs_windows_binary is not None: if not gs_windows_binary: raise OSError("Unable to locate Ghostscript on paths") command[0] = gs_windows_binary # push data through Ghostscript try: startupinfo = None if sys.platform.startswith("win"): startupinfo = subprocess.STARTUPINFO() startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW subprocess.check_call(command, startupinfo=startupinfo) out_im = Image.open(outfile) out_im.load() finally: try: os.unlink(outfile) if infile_temp: os.unlink(infile_temp) except OSError: pass im = out_im.im.copy() out_im.close() return im
[ "def", "Ghostscript", "(", "tile", ",", "size", ",", "fp", ",", "scale", "=", "1", ")", ":", "# Unpack decoder tile", "decoder", ",", "tile", ",", "offset", ",", "data", "=", "tile", "[", "0", "]", "length", ",", "bbox", "=", "data", "# Hack to support hi-res rendering", "scale", "=", "int", "(", "scale", ")", "or", "1", "# orig_size = size", "# orig_bbox = bbox", "size", "=", "(", "size", "[", "0", "]", "*", "scale", ",", "size", "[", "1", "]", "*", "scale", ")", "# resolution is dependent on bbox and size", "res", "=", "(", "72.0", "*", "size", "[", "0", "]", "/", "(", "bbox", "[", "2", "]", "-", "bbox", "[", "0", "]", ")", ",", "72.0", "*", "size", "[", "1", "]", "/", "(", "bbox", "[", "3", "]", "-", "bbox", "[", "1", "]", ")", ",", ")", "out_fd", ",", "outfile", "=", "tempfile", ".", "mkstemp", "(", ")", "os", ".", "close", "(", "out_fd", ")", "infile_temp", "=", "None", "if", "hasattr", "(", "fp", ",", "\"name\"", ")", "and", "os", ".", "path", ".", "exists", "(", "fp", ".", "name", ")", ":", "infile", "=", "fp", ".", "name", "else", ":", "in_fd", ",", "infile_temp", "=", "tempfile", ".", "mkstemp", "(", ")", "os", ".", "close", "(", "in_fd", ")", "infile", "=", "infile_temp", "# Ignore length and offset!", "# Ghostscript can read it", "# Copy whole file to read in Ghostscript", "with", "open", "(", "infile_temp", ",", "\"wb\"", ")", "as", "f", ":", "# fetch length of fp", "fp", ".", "seek", "(", "0", ",", "io", ".", "SEEK_END", ")", "fsize", "=", "fp", ".", "tell", "(", ")", "# ensure start position", "# go back", "fp", ".", "seek", "(", "0", ")", "lengthfile", "=", "fsize", "while", "lengthfile", ">", "0", ":", "s", "=", "fp", ".", "read", "(", "min", "(", "lengthfile", ",", "100", "*", "1024", ")", ")", "if", "not", "s", ":", "break", "lengthfile", "-=", "len", "(", "s", ")", "f", ".", "write", "(", "s", ")", "# Build Ghostscript command", "command", "=", "[", "\"gs\"", ",", "\"-q\"", ",", "# quiet mode", "\"-g%dx%d\"", "%", "size", ",", "# set output geometry (pixels)", "\"-r%fx%f\"", "%", "res", ",", "# set input DPI (dots per inch)", "\"-dBATCH\"", ",", "# exit after processing", "\"-dNOPAUSE\"", ",", "# don't pause between pages", "\"-dSAFER\"", ",", "# safe mode", "\"-sDEVICE=ppmraw\"", ",", "# ppm driver", "f\"-sOutputFile={outfile}\"", ",", "# output file", "# adjust for image origin", "\"-c\"", ",", "f\"{-bbox[0]} {-bbox[1]} translate\"", ",", "\"-f\"", ",", "infile", ",", "# input file", "# showpage (see https://bugs.ghostscript.com/show_bug.cgi?id=698272)", "\"-c\"", ",", "\"showpage\"", ",", "]", "if", "gs_windows_binary", "is", "not", "None", ":", "if", "not", "gs_windows_binary", ":", "raise", "OSError", "(", "\"Unable to locate Ghostscript on paths\"", ")", "command", "[", "0", "]", "=", "gs_windows_binary", "# push data through Ghostscript", "try", ":", "startupinfo", "=", "None", "if", "sys", ".", "platform", ".", "startswith", "(", "\"win\"", ")", ":", "startupinfo", "=", "subprocess", ".", "STARTUPINFO", "(", ")", "startupinfo", ".", "dwFlags", "|=", "subprocess", ".", "STARTF_USESHOWWINDOW", "subprocess", ".", "check_call", "(", "command", ",", "startupinfo", "=", "startupinfo", ")", "out_im", "=", "Image", ".", "open", "(", "outfile", ")", "out_im", ".", "load", "(", ")", "finally", ":", "try", ":", "os", ".", "unlink", "(", "outfile", ")", "if", "infile_temp", ":", "os", ".", "unlink", "(", "infile_temp", ")", "except", "OSError", ":", "pass", "im", "=", "out_im", ".", "im", ".", "copy", "(", ")", "out_im", ".", "close", "(", ")", "return", "im" ]
[ 63, 0 ]
[ 155, 13 ]
python
af
['de', 'af', 'en']
False
_save
(im, fp, filename, eps=1)
EPS Writer for the Python Imaging Library.
EPS Writer for the Python Imaging Library.
def _save(im, fp, filename, eps=1): """EPS Writer for the Python Imaging Library.""" # # make sure image data is available im.load() # # determine PostScript image mode if im.mode == "L": operator = (8, 1, b"image") elif im.mode == "RGB": operator = (8, 3, b"false 3 colorimage") elif im.mode == "CMYK": operator = (8, 4, b"false 4 colorimage") else: raise ValueError("image mode is not supported") if eps: # # write EPS header fp.write(b"%!PS-Adobe-3.0 EPSF-3.0\n") fp.write(b"%%Creator: PIL 0.1 EpsEncode\n") # fp.write("%%CreationDate: %s"...) fp.write(b"%%%%BoundingBox: 0 0 %d %d\n" % im.size) fp.write(b"%%Pages: 1\n") fp.write(b"%%EndComments\n") fp.write(b"%%Page: 1 1\n") fp.write(b"%%ImageData: %d %d " % im.size) fp.write(b'%d %d 0 1 1 "%s"\n' % operator) # # image header fp.write(b"gsave\n") fp.write(b"10 dict begin\n") fp.write(b"/buf %d string def\n" % (im.size[0] * operator[1])) fp.write(b"%d %d scale\n" % im.size) fp.write(b"%d %d 8\n" % im.size) # <= bits fp.write(b"[%d 0 0 -%d 0 %d]\n" % (im.size[0], im.size[1], im.size[1])) fp.write(b"{ currentfile buf readhexstring pop } bind\n") fp.write(operator[2] + b"\n") if hasattr(fp, "flush"): fp.flush() ImageFile._save(im, fp, [("eps", (0, 0) + im.size, 0, None)]) fp.write(b"\n%%%%EndBinary\n") fp.write(b"grestore end\n") if hasattr(fp, "flush"): fp.flush()
[ "def", "_save", "(", "im", ",", "fp", ",", "filename", ",", "eps", "=", "1", ")", ":", "#", "# make sure image data is available", "im", ".", "load", "(", ")", "#", "# determine PostScript image mode", "if", "im", ".", "mode", "==", "\"L\"", ":", "operator", "=", "(", "8", ",", "1", ",", "b\"image\"", ")", "elif", "im", ".", "mode", "==", "\"RGB\"", ":", "operator", "=", "(", "8", ",", "3", ",", "b\"false 3 colorimage\"", ")", "elif", "im", ".", "mode", "==", "\"CMYK\"", ":", "operator", "=", "(", "8", ",", "4", ",", "b\"false 4 colorimage\"", ")", "else", ":", "raise", "ValueError", "(", "\"image mode is not supported\"", ")", "if", "eps", ":", "#", "# write EPS header", "fp", ".", "write", "(", "b\"%!PS-Adobe-3.0 EPSF-3.0\\n\"", ")", "fp", ".", "write", "(", "b\"%%Creator: PIL 0.1 EpsEncode\\n\"", ")", "# fp.write(\"%%CreationDate: %s\"...)", "fp", ".", "write", "(", "b\"%%%%BoundingBox: 0 0 %d %d\\n\"", "%", "im", ".", "size", ")", "fp", ".", "write", "(", "b\"%%Pages: 1\\n\"", ")", "fp", ".", "write", "(", "b\"%%EndComments\\n\"", ")", "fp", ".", "write", "(", "b\"%%Page: 1 1\\n\"", ")", "fp", ".", "write", "(", "b\"%%ImageData: %d %d \"", "%", "im", ".", "size", ")", "fp", ".", "write", "(", "b'%d %d 0 1 1 \"%s\"\\n'", "%", "operator", ")", "#", "# image header", "fp", ".", "write", "(", "b\"gsave\\n\"", ")", "fp", ".", "write", "(", "b\"10 dict begin\\n\"", ")", "fp", ".", "write", "(", "b\"/buf %d string def\\n\"", "%", "(", "im", ".", "size", "[", "0", "]", "*", "operator", "[", "1", "]", ")", ")", "fp", ".", "write", "(", "b\"%d %d scale\\n\"", "%", "im", ".", "size", ")", "fp", ".", "write", "(", "b\"%d %d 8\\n\"", "%", "im", ".", "size", ")", "# <= bits", "fp", ".", "write", "(", "b\"[%d 0 0 -%d 0 %d]\\n\"", "%", "(", "im", ".", "size", "[", "0", "]", ",", "im", ".", "size", "[", "1", "]", ",", "im", ".", "size", "[", "1", "]", ")", ")", "fp", ".", "write", "(", "b\"{ currentfile buf readhexstring pop } bind\\n\"", ")", "fp", ".", "write", "(", "operator", "[", "2", "]", "+", "b\"\\n\"", ")", "if", "hasattr", "(", "fp", ",", "\"flush\"", ")", ":", "fp", ".", "flush", "(", ")", "ImageFile", ".", "_save", "(", "im", ",", "fp", ",", "[", "(", "\"eps\"", ",", "(", "0", ",", "0", ")", "+", "im", ".", "size", ",", "0", ",", "None", ")", "]", ")", "fp", ".", "write", "(", "b\"\\n%%%%EndBinary\\n\"", ")", "fp", ".", "write", "(", "b\"grestore end\\n\"", ")", "if", "hasattr", "(", "fp", ",", "\"flush\"", ")", ":", "fp", ".", "flush", "(", ")" ]
[ 346, 0 ]
[ 395, 18 ]
python
en
['en', 'en', 'en']
True
escape
(text)
Return the given text with ampersands, quotes and angle brackets encoded for use in HTML. Always escape input, even if it's already escaped and marked as such. This may result in double-escaping. If this is a concern, use conditional_escape() instead.
Return the given text with ampersands, quotes and angle brackets encoded for use in HTML.
def escape(text): """ Return the given text with ampersands, quotes and angle brackets encoded for use in HTML. Always escape input, even if it's already escaped and marked as such. This may result in double-escaping. If this is a concern, use conditional_escape() instead. """ return mark_safe(html.escape(str(text)))
[ "def", "escape", "(", "text", ")", ":", "return", "mark_safe", "(", "html", ".", "escape", "(", "str", "(", "text", ")", ")", ")" ]
[ 33, 0 ]
[ 42, 44 ]
python
en
['en', 'error', 'th']
False
escapejs
(value)
Hex encode characters for use in JavaScript strings.
Hex encode characters for use in JavaScript strings.
def escapejs(value): """Hex encode characters for use in JavaScript strings.""" return mark_safe(str(value).translate(_js_escapes))
[ "def", "escapejs", "(", "value", ")", ":", "return", "mark_safe", "(", "str", "(", "value", ")", ".", "translate", "(", "_js_escapes", ")", ")" ]
[ 65, 0 ]
[ 67, 55 ]
python
en
['en', 'en', 'en']
True
json_script
(value, element_id)
Escape all the HTML/XML special characters with their unicode escapes, so value is safe to be output anywhere except for inside a tag attribute. Wrap the escaped JSON in a script tag.
Escape all the HTML/XML special characters with their unicode escapes, so value is safe to be output anywhere except for inside a tag attribute. Wrap the escaped JSON in a script tag.
def json_script(value, element_id): """ Escape all the HTML/XML special characters with their unicode escapes, so value is safe to be output anywhere except for inside a tag attribute. Wrap the escaped JSON in a script tag. """ from django.core.serializers.json import DjangoJSONEncoder json_str = json.dumps(value, cls=DjangoJSONEncoder).translate(_json_script_escapes) return format_html( '<script id="{}" type="application/json">{}</script>', element_id, mark_safe(json_str) )
[ "def", "json_script", "(", "value", ",", "element_id", ")", ":", "from", "django", ".", "core", ".", "serializers", ".", "json", "import", "DjangoJSONEncoder", "json_str", "=", "json", ".", "dumps", "(", "value", ",", "cls", "=", "DjangoJSONEncoder", ")", ".", "translate", "(", "_json_script_escapes", ")", "return", "format_html", "(", "'<script id=\"{}\" type=\"application/json\">{}</script>'", ",", "element_id", ",", "mark_safe", "(", "json_str", ")", ")" ]
[ 77, 0 ]
[ 88, 5 ]
python
en
['en', 'error', 'th']
False
conditional_escape
(text)
Similar to escape(), except that it doesn't operate on pre-escaped strings. This function relies on the __html__ convention used both by Django's SafeData class and by third-party libraries like markupsafe.
Similar to escape(), except that it doesn't operate on pre-escaped strings.
def conditional_escape(text): """ Similar to escape(), except that it doesn't operate on pre-escaped strings. This function relies on the __html__ convention used both by Django's SafeData class and by third-party libraries like markupsafe. """ if isinstance(text, Promise): text = str(text) if hasattr(text, '__html__'): return text.__html__() else: return escape(text)
[ "def", "conditional_escape", "(", "text", ")", ":", "if", "isinstance", "(", "text", ",", "Promise", ")", ":", "text", "=", "str", "(", "text", ")", "if", "hasattr", "(", "text", ",", "'__html__'", ")", ":", "return", "text", ".", "__html__", "(", ")", "else", ":", "return", "escape", "(", "text", ")" ]
[ 91, 0 ]
[ 103, 27 ]
python
en
['en', 'error', 'th']
False
format_html
(format_string, *args, **kwargs)
Similar to str.format, but pass all arguments through conditional_escape(), and call mark_safe() on the result. This function should be used instead of str.format or % interpolation to build up small HTML fragments.
Similar to str.format, but pass all arguments through conditional_escape(), and call mark_safe() on the result. This function should be used instead of str.format or % interpolation to build up small HTML fragments.
def format_html(format_string, *args, **kwargs): """ Similar to str.format, but pass all arguments through conditional_escape(), and call mark_safe() on the result. This function should be used instead of str.format or % interpolation to build up small HTML fragments. """ args_safe = map(conditional_escape, args) kwargs_safe = {k: conditional_escape(v) for (k, v) in kwargs.items()} return mark_safe(format_string.format(*args_safe, **kwargs_safe))
[ "def", "format_html", "(", "format_string", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "args_safe", "=", "map", "(", "conditional_escape", ",", "args", ")", "kwargs_safe", "=", "{", "k", ":", "conditional_escape", "(", "v", ")", "for", "(", "k", ",", "v", ")", "in", "kwargs", ".", "items", "(", ")", "}", "return", "mark_safe", "(", "format_string", ".", "format", "(", "*", "args_safe", ",", "*", "*", "kwargs_safe", ")", ")" ]
[ 106, 0 ]
[ 114, 69 ]
python
en
['en', 'error', 'th']
False
format_html_join
(sep, format_string, args_generator)
A wrapper of format_html, for the common case of a group of arguments that need to be formatted using the same format string, and then joined using 'sep'. 'sep' is also passed through conditional_escape. 'args_generator' should be an iterator that returns the sequence of 'args' that will be passed to format_html. Example: format_html_join('\n', "<li>{} {}</li>", ((u.first_name, u.last_name) for u in users))
A wrapper of format_html, for the common case of a group of arguments that need to be formatted using the same format string, and then joined using 'sep'. 'sep' is also passed through conditional_escape.
def format_html_join(sep, format_string, args_generator): """ A wrapper of format_html, for the common case of a group of arguments that need to be formatted using the same format string, and then joined using 'sep'. 'sep' is also passed through conditional_escape. 'args_generator' should be an iterator that returns the sequence of 'args' that will be passed to format_html. Example: format_html_join('\n', "<li>{} {}</li>", ((u.first_name, u.last_name) for u in users)) """ return mark_safe(conditional_escape(sep).join( format_html(format_string, *args) for args in args_generator ))
[ "def", "format_html_join", "(", "sep", ",", "format_string", ",", "args_generator", ")", ":", "return", "mark_safe", "(", "conditional_escape", "(", "sep", ")", ".", "join", "(", "format_html", "(", "format_string", ",", "*", "args", ")", "for", "args", "in", "args_generator", ")", ")" ]
[ 117, 0 ]
[ 134, 6 ]
python
en
['en', 'error', 'th']
False
linebreaks
(value, autoescape=False)
Convert newlines into <p> and <br>s.
Convert newlines into <p> and <br>s.
def linebreaks(value, autoescape=False): """Convert newlines into <p> and <br>s.""" value = normalize_newlines(value) paras = re.split('\n{2,}', str(value)) if autoescape: paras = ['<p>%s</p>' % escape(p).replace('\n', '<br>') for p in paras] else: paras = ['<p>%s</p>' % p.replace('\n', '<br>') for p in paras] return '\n\n'.join(paras)
[ "def", "linebreaks", "(", "value", ",", "autoescape", "=", "False", ")", ":", "value", "=", "normalize_newlines", "(", "value", ")", "paras", "=", "re", ".", "split", "(", "'\\n{2,}'", ",", "str", "(", "value", ")", ")", "if", "autoescape", ":", "paras", "=", "[", "'<p>%s</p>'", "%", "escape", "(", "p", ")", ".", "replace", "(", "'\\n'", ",", "'<br>'", ")", "for", "p", "in", "paras", "]", "else", ":", "paras", "=", "[", "'<p>%s</p>'", "%", "p", ".", "replace", "(", "'\\n'", ",", "'<br>'", ")", "for", "p", "in", "paras", "]", "return", "'\\n\\n'", ".", "join", "(", "paras", ")" ]
[ 138, 0 ]
[ 146, 29 ]
python
en
['en', 'en', 'en']
True
_strip_once
(value)
Internal tag stripping utility used by strip_tags.
Internal tag stripping utility used by strip_tags.
def _strip_once(value): """ Internal tag stripping utility used by strip_tags. """ s = MLStripper() s.feed(value) s.close() return s.get_data()
[ "def", "_strip_once", "(", "value", ")", ":", "s", "=", "MLStripper", "(", ")", "s", ".", "feed", "(", "value", ")", "s", ".", "close", "(", ")", "return", "s", ".", "get_data", "(", ")" ]
[ 168, 0 ]
[ 175, 23 ]
python
en
['en', 'error', 'th']
False
strip_tags
(value)
Return the given HTML with all tags stripped.
Return the given HTML with all tags stripped.
def strip_tags(value): """Return the given HTML with all tags stripped.""" # Note: in typical case this loop executes _strip_once once. Loop condition # is redundant, but helps to reduce number of executions of _strip_once. value = str(value) while '<' in value and '>' in value: new_value = _strip_once(value) if value.count('<') == new_value.count('<'): # _strip_once wasn't able to detect more tags. break value = new_value return value
[ "def", "strip_tags", "(", "value", ")", ":", "# Note: in typical case this loop executes _strip_once once. Loop condition", "# is redundant, but helps to reduce number of executions of _strip_once.", "value", "=", "str", "(", "value", ")", "while", "'<'", "in", "value", "and", "'>'", "in", "value", ":", "new_value", "=", "_strip_once", "(", "value", ")", "if", "value", ".", "count", "(", "'<'", ")", "==", "new_value", ".", "count", "(", "'<'", ")", ":", "# _strip_once wasn't able to detect more tags.", "break", "value", "=", "new_value", "return", "value" ]
[ 179, 0 ]
[ 190, 16 ]
python
en
['en', 'en', 'en']
True
strip_spaces_between_tags
(value)
Return the given HTML with spaces between tags removed.
Return the given HTML with spaces between tags removed.
def strip_spaces_between_tags(value): """Return the given HTML with spaces between tags removed.""" return re.sub(r'>\s+<', '><', str(value))
[ "def", "strip_spaces_between_tags", "(", "value", ")", ":", "return", "re", ".", "sub", "(", "r'>\\s+<'", ",", "'><'", ",", "str", "(", "value", ")", ")" ]
[ 194, 0 ]
[ 196, 45 ]
python
en
['en', 'en', 'en']
True
smart_urlquote
(url)
Quote a URL if it isn't already quoted.
Quote a URL if it isn't already quoted.
def smart_urlquote(url): """Quote a URL if it isn't already quoted.""" def unquote_quote(segment): segment = unquote(segment) # Tilde is part of RFC3986 Unreserved Characters # https://tools.ietf.org/html/rfc3986#section-2.3 # See also https://bugs.python.org/issue16285 return quote(segment, safe=RFC3986_SUBDELIMS + RFC3986_GENDELIMS + '~') # Handle IDN before quoting. try: scheme, netloc, path, query, fragment = urlsplit(url) except ValueError: # invalid IPv6 URL (normally square brackets in hostname part). return unquote_quote(url) try: netloc = punycode(netloc) # IDN -> ACE except UnicodeError: # invalid domain part return unquote_quote(url) if query: # Separately unquoting key/value, so as to not mix querystring separators # included in query values. See #22267. query_parts = [(unquote(q[0]), unquote(q[1])) for q in parse_qsl(query, keep_blank_values=True)] # urlencode will take care of quoting query = urlencode(query_parts) path = unquote_quote(path) fragment = unquote_quote(fragment) return urlunsplit((scheme, netloc, path, query, fragment))
[ "def", "smart_urlquote", "(", "url", ")", ":", "def", "unquote_quote", "(", "segment", ")", ":", "segment", "=", "unquote", "(", "segment", ")", "# Tilde is part of RFC3986 Unreserved Characters", "# https://tools.ietf.org/html/rfc3986#section-2.3", "# See also https://bugs.python.org/issue16285", "return", "quote", "(", "segment", ",", "safe", "=", "RFC3986_SUBDELIMS", "+", "RFC3986_GENDELIMS", "+", "'~'", ")", "# Handle IDN before quoting.", "try", ":", "scheme", ",", "netloc", ",", "path", ",", "query", ",", "fragment", "=", "urlsplit", "(", "url", ")", "except", "ValueError", ":", "# invalid IPv6 URL (normally square brackets in hostname part).", "return", "unquote_quote", "(", "url", ")", "try", ":", "netloc", "=", "punycode", "(", "netloc", ")", "# IDN -> ACE", "except", "UnicodeError", ":", "# invalid domain part", "return", "unquote_quote", "(", "url", ")", "if", "query", ":", "# Separately unquoting key/value, so as to not mix querystring separators", "# included in query values. See #22267.", "query_parts", "=", "[", "(", "unquote", "(", "q", "[", "0", "]", ")", ",", "unquote", "(", "q", "[", "1", "]", ")", ")", "for", "q", "in", "parse_qsl", "(", "query", ",", "keep_blank_values", "=", "True", ")", "]", "# urlencode will take care of quoting", "query", "=", "urlencode", "(", "query_parts", ")", "path", "=", "unquote_quote", "(", "path", ")", "fragment", "=", "unquote_quote", "(", "fragment", ")", "return", "urlunsplit", "(", "(", "scheme", ",", "netloc", ",", "path", ",", "query", ",", "fragment", ")", ")" ]
[ 199, 0 ]
[ 231, 62 ]
python
en
['en', 'en', 'en']
True
urlize
(text, trim_url_limit=None, nofollow=False, autoescape=False)
Convert any URLs in text into clickable links. Works on http://, https://, www. links, and also on links ending in one of the original seven gTLDs (.com, .edu, .gov, .int, .mil, .net, and .org). Links can have trailing punctuation (periods, commas, close-parens) and leading punctuation (opening parens) and it'll still do the right thing. If trim_url_limit is not None, truncate the URLs in the link text longer than this limit to trim_url_limit - 1 characters and append an ellipsis. If nofollow is True, give the links a rel="nofollow" attribute. If autoescape is True, autoescape the link text and URLs.
Convert any URLs in text into clickable links.
def urlize(text, trim_url_limit=None, nofollow=False, autoescape=False): """ Convert any URLs in text into clickable links. Works on http://, https://, www. links, and also on links ending in one of the original seven gTLDs (.com, .edu, .gov, .int, .mil, .net, and .org). Links can have trailing punctuation (periods, commas, close-parens) and leading punctuation (opening parens) and it'll still do the right thing. If trim_url_limit is not None, truncate the URLs in the link text longer than this limit to trim_url_limit - 1 characters and append an ellipsis. If nofollow is True, give the links a rel="nofollow" attribute. If autoescape is True, autoescape the link text and URLs. """ safe_input = isinstance(text, SafeData) def trim_url(x, limit=trim_url_limit): if limit is None or len(x) <= limit: return x return '%s…' % x[:max(0, limit - 1)] def trim_punctuation(lead, middle, trail): """ Trim trailing and wrapping punctuation from `middle`. Return the items of the new state. """ # Continue trimming until middle remains unchanged. trimmed_something = True while trimmed_something: trimmed_something = False # Trim wrapping punctuation. for opening, closing in WRAPPING_PUNCTUATION: if middle.startswith(opening): middle = middle[len(opening):] lead += opening trimmed_something = True # Keep parentheses at the end only if they're balanced. if (middle.endswith(closing) and middle.count(closing) == middle.count(opening) + 1): middle = middle[:-len(closing)] trail = closing + trail trimmed_something = True # Trim trailing punctuation (after trimming wrapping punctuation, # as encoded entities contain ';'). Unescape entities to avoid # breaking them by removing ';'. middle_unescaped = html.unescape(middle) stripped = middle_unescaped.rstrip(TRAILING_PUNCTUATION_CHARS) if middle_unescaped != stripped: trail = middle[len(stripped):] + trail middle = middle[:len(stripped) - len(middle_unescaped)] trimmed_something = True return lead, middle, trail def is_email_simple(value): """Return True if value looks like an email address.""" # An @ must be in the middle of the value. if '@' not in value or value.startswith('@') or value.endswith('@'): return False try: p1, p2 = value.split('@') except ValueError: # value contains more than one @. return False # Dot must be in p2 (e.g. example.com) if '.' not in p2 or p2.startswith('.'): return False return True words = word_split_re.split(str(text)) for i, word in enumerate(words): if '.' in word or '@' in word or ':' in word: # lead: Current punctuation trimmed from the beginning of the word. # middle: Current state of the word. # trail: Current punctuation trimmed from the end of the word. lead, middle, trail = '', word, '' # Deal with punctuation. lead, middle, trail = trim_punctuation(lead, middle, trail) # Make URL we want to point to. url = None nofollow_attr = ' rel="nofollow"' if nofollow else '' if simple_url_re.match(middle): url = smart_urlquote(html.unescape(middle)) elif simple_url_2_re.match(middle): url = smart_urlquote('http://%s' % html.unescape(middle)) elif ':' not in middle and is_email_simple(middle): local, domain = middle.rsplit('@', 1) try: domain = punycode(domain) except UnicodeError: continue url = 'mailto:%s@%s' % (local, domain) nofollow_attr = '' # Make link. if url: trimmed = trim_url(middle) if autoescape and not safe_input: lead, trail = escape(lead), escape(trail) trimmed = escape(trimmed) middle = '<a href="%s"%s>%s</a>' % (escape(url), nofollow_attr, trimmed) words[i] = mark_safe('%s%s%s' % (lead, middle, trail)) else: if safe_input: words[i] = mark_safe(word) elif autoescape: words[i] = escape(word) elif safe_input: words[i] = mark_safe(word) elif autoescape: words[i] = escape(word) return ''.join(words)
[ "def", "urlize", "(", "text", ",", "trim_url_limit", "=", "None", ",", "nofollow", "=", "False", ",", "autoescape", "=", "False", ")", ":", "safe_input", "=", "isinstance", "(", "text", ",", "SafeData", ")", "def", "trim_url", "(", "x", ",", "limit", "=", "trim_url_limit", ")", ":", "if", "limit", "is", "None", "or", "len", "(", "x", ")", "<=", "limit", ":", "return", "x", "return", "'%s…' %", "x", ":", "m", "a", "x(0", ",", " ", "l", "mit -", "1", "]", "", "", "def", "trim_punctuation", "(", "lead", ",", "middle", ",", "trail", ")", ":", "\"\"\"\n Trim trailing and wrapping punctuation from `middle`. Return the items\n of the new state.\n \"\"\"", "# Continue trimming until middle remains unchanged.", "trimmed_something", "=", "True", "while", "trimmed_something", ":", "trimmed_something", "=", "False", "# Trim wrapping punctuation.", "for", "opening", ",", "closing", "in", "WRAPPING_PUNCTUATION", ":", "if", "middle", ".", "startswith", "(", "opening", ")", ":", "middle", "=", "middle", "[", "len", "(", "opening", ")", ":", "]", "lead", "+=", "opening", "trimmed_something", "=", "True", "# Keep parentheses at the end only if they're balanced.", "if", "(", "middle", ".", "endswith", "(", "closing", ")", "and", "middle", ".", "count", "(", "closing", ")", "==", "middle", ".", "count", "(", "opening", ")", "+", "1", ")", ":", "middle", "=", "middle", "[", ":", "-", "len", "(", "closing", ")", "]", "trail", "=", "closing", "+", "trail", "trimmed_something", "=", "True", "# Trim trailing punctuation (after trimming wrapping punctuation,", "# as encoded entities contain ';'). Unescape entities to avoid", "# breaking them by removing ';'.", "middle_unescaped", "=", "html", ".", "unescape", "(", "middle", ")", "stripped", "=", "middle_unescaped", ".", "rstrip", "(", "TRAILING_PUNCTUATION_CHARS", ")", "if", "middle_unescaped", "!=", "stripped", ":", "trail", "=", "middle", "[", "len", "(", "stripped", ")", ":", "]", "+", "trail", "middle", "=", "middle", "[", ":", "len", "(", "stripped", ")", "-", "len", "(", "middle_unescaped", ")", "]", "trimmed_something", "=", "True", "return", "lead", ",", "middle", ",", "trail", "def", "is_email_simple", "(", "value", ")", ":", "\"\"\"Return True if value looks like an email address.\"\"\"", "# An @ must be in the middle of the value.", "if", "'@'", "not", "in", "value", "or", "value", ".", "startswith", "(", "'@'", ")", "or", "value", ".", "endswith", "(", "'@'", ")", ":", "return", "False", "try", ":", "p1", ",", "p2", "=", "value", ".", "split", "(", "'@'", ")", "except", "ValueError", ":", "# value contains more than one @.", "return", "False", "# Dot must be in p2 (e.g. example.com)", "if", "'.'", "not", "in", "p2", "or", "p2", ".", "startswith", "(", "'.'", ")", ":", "return", "False", "return", "True", "words", "=", "word_split_re", ".", "split", "(", "str", "(", "text", ")", ")", "for", "i", ",", "word", "in", "enumerate", "(", "words", ")", ":", "if", "'.'", "in", "word", "or", "'@'", "in", "word", "or", "':'", "in", "word", ":", "# lead: Current punctuation trimmed from the beginning of the word.", "# middle: Current state of the word.", "# trail: Current punctuation trimmed from the end of the word.", "lead", ",", "middle", ",", "trail", "=", "''", ",", "word", ",", "''", "# Deal with punctuation.", "lead", ",", "middle", ",", "trail", "=", "trim_punctuation", "(", "lead", ",", "middle", ",", "trail", ")", "# Make URL we want to point to.", "url", "=", "None", "nofollow_attr", "=", "' rel=\"nofollow\"'", "if", "nofollow", "else", "''", "if", "simple_url_re", ".", "match", "(", "middle", ")", ":", "url", "=", "smart_urlquote", "(", "html", ".", "unescape", "(", "middle", ")", ")", "elif", "simple_url_2_re", ".", "match", "(", "middle", ")", ":", "url", "=", "smart_urlquote", "(", "'http://%s'", "%", "html", ".", "unescape", "(", "middle", ")", ")", "elif", "':'", "not", "in", "middle", "and", "is_email_simple", "(", "middle", ")", ":", "local", ",", "domain", "=", "middle", ".", "rsplit", "(", "'@'", ",", "1", ")", "try", ":", "domain", "=", "punycode", "(", "domain", ")", "except", "UnicodeError", ":", "continue", "url", "=", "'mailto:%s@%s'", "%", "(", "local", ",", "domain", ")", "nofollow_attr", "=", "''", "# Make link.", "if", "url", ":", "trimmed", "=", "trim_url", "(", "middle", ")", "if", "autoescape", "and", "not", "safe_input", ":", "lead", ",", "trail", "=", "escape", "(", "lead", ")", ",", "escape", "(", "trail", ")", "trimmed", "=", "escape", "(", "trimmed", ")", "middle", "=", "'<a href=\"%s\"%s>%s</a>'", "%", "(", "escape", "(", "url", ")", ",", "nofollow_attr", ",", "trimmed", ")", "words", "[", "i", "]", "=", "mark_safe", "(", "'%s%s%s'", "%", "(", "lead", ",", "middle", ",", "trail", ")", ")", "else", ":", "if", "safe_input", ":", "words", "[", "i", "]", "=", "mark_safe", "(", "word", ")", "elif", "autoescape", ":", "words", "[", "i", "]", "=", "escape", "(", "word", ")", "elif", "safe_input", ":", "words", "[", "i", "]", "=", "mark_safe", "(", "word", ")", "elif", "autoescape", ":", "words", "[", "i", "]", "=", "escape", "(", "word", ")", "return", "''", ".", "join", "(", "words", ")" ]
[ 235, 0 ]
[ 348, 25 ]
python
en
['en', 'error', 'th']
False
avoid_wrapping
(value)
Avoid text wrapping in the middle of a phrase by adding non-breaking spaces where there previously were normal spaces.
Avoid text wrapping in the middle of a phrase by adding non-breaking spaces where there previously were normal spaces.
def avoid_wrapping(value): """ Avoid text wrapping in the middle of a phrase by adding non-breaking spaces where there previously were normal spaces. """ return value.replace(" ", "\xa0")
[ "def", "avoid_wrapping", "(", "value", ")", ":", "return", "value", ".", "replace", "(", "\" \"", ",", "\"\\xa0\"", ")" ]
[ 351, 0 ]
[ 356, 37 ]
python
en
['en', 'error', 'th']
False
html_safe
(klass)
A decorator that defines the __html__ method. This helps non-Django templates to detect classes whose __str__ methods return SafeString.
A decorator that defines the __html__ method. This helps non-Django templates to detect classes whose __str__ methods return SafeString.
def html_safe(klass): """ A decorator that defines the __html__ method. This helps non-Django templates to detect classes whose __str__ methods return SafeString. """ if '__html__' in klass.__dict__: raise ValueError( "can't apply @html_safe to %s because it defines " "__html__()." % klass.__name__ ) if '__str__' not in klass.__dict__: raise ValueError( "can't apply @html_safe to %s because it doesn't " "define __str__()." % klass.__name__ ) klass_str = klass.__str__ klass.__str__ = lambda self: mark_safe(klass_str(self)) klass.__html__ = lambda self: str(self) return klass
[ "def", "html_safe", "(", "klass", ")", ":", "if", "'__html__'", "in", "klass", ".", "__dict__", ":", "raise", "ValueError", "(", "\"can't apply @html_safe to %s because it defines \"", "\"__html__().\"", "%", "klass", ".", "__name__", ")", "if", "'__str__'", "not", "in", "klass", ".", "__dict__", ":", "raise", "ValueError", "(", "\"can't apply @html_safe to %s because it doesn't \"", "\"define __str__().\"", "%", "klass", ".", "__name__", ")", "klass_str", "=", "klass", ".", "__str__", "klass", ".", "__str__", "=", "lambda", "self", ":", "mark_safe", "(", "klass_str", "(", "self", ")", ")", "klass", ".", "__html__", "=", "lambda", "self", ":", "str", "(", "self", ")", "return", "klass" ]
[ 359, 0 ]
[ 377, 16 ]
python
en
['en', 'error', 'th']
False
parse_config
(cfg_file)
Load a config file into AttrDict
Load a config file into AttrDict
def parse_config(cfg_file): """Load a config file into AttrDict""" with open(cfg_file, 'r') as fopen: yaml_config = AttrDict(yaml.load(fopen, Loader=yaml.SafeLoader)) create_attr_dict(yaml_config) return yaml_config
[ "def", "parse_config", "(", "cfg_file", ")", ":", "with", "open", "(", "cfg_file", ",", "'r'", ")", "as", "fopen", ":", "yaml_config", "=", "AttrDict", "(", "yaml", ".", "load", "(", "fopen", ",", "Loader", "=", "yaml", ".", "SafeLoader", ")", ")", "create_attr_dict", "(", "yaml_config", ")", "return", "yaml_config" ]
[ 50, 0 ]
[ 55, 22 ]
python
en
['en', 'es', 'en']
True
print_dict
(d, delimiter=0)
Recursively visualize a dict and indenting acrrording by the relationship of keys.
Recursively visualize a dict and indenting acrrording by the relationship of keys.
def print_dict(d, delimiter=0): """ Recursively visualize a dict and indenting acrrording by the relationship of keys. """ placeholder = "-" * 60 for k, v in sorted(d.items()): if isinstance(v, dict): logger.info("{}{} : ".format(delimiter * " ", logger.coloring(k, "HEADER"))) print_dict(v, delimiter + 4) elif isinstance(v, list) and len(v) >= 1 and isinstance(v[0], dict): logger.info("{}{} : ".format(delimiter * " ", logger.coloring(str(k), "HEADER"))) for value in v: print_dict(value, delimiter + 4) else: logger.info("{}{} : {}".format(delimiter * " ", logger.coloring(k, "HEADER"), logger.coloring(v, "OKGREEN"))) if k.isupper(): logger.info(placeholder)
[ "def", "print_dict", "(", "d", ",", "delimiter", "=", "0", ")", ":", "placeholder", "=", "\"-\"", "*", "60", "for", "k", ",", "v", "in", "sorted", "(", "d", ".", "items", "(", ")", ")", ":", "if", "isinstance", "(", "v", ",", "dict", ")", ":", "logger", ".", "info", "(", "\"{}{} : \"", ".", "format", "(", "delimiter", "*", "\" \"", ",", "logger", ".", "coloring", "(", "k", ",", "\"HEADER\"", ")", ")", ")", "print_dict", "(", "v", ",", "delimiter", "+", "4", ")", "elif", "isinstance", "(", "v", ",", "list", ")", "and", "len", "(", "v", ")", ">=", "1", "and", "isinstance", "(", "v", "[", "0", "]", ",", "dict", ")", ":", "logger", ".", "info", "(", "\"{}{} : \"", ".", "format", "(", "delimiter", "*", "\" \"", ",", "logger", ".", "coloring", "(", "str", "(", "k", ")", ",", "\"HEADER\"", ")", ")", ")", "for", "value", "in", "v", ":", "print_dict", "(", "value", ",", "delimiter", "+", "4", ")", "else", ":", "logger", ".", "info", "(", "\"{}{} : {}\"", ".", "format", "(", "delimiter", "*", "\" \"", ",", "logger", ".", "coloring", "(", "k", ",", "\"HEADER\"", ")", ",", "logger", ".", "coloring", "(", "v", ",", "\"OKGREEN\"", ")", ")", ")", "if", "k", ".", "isupper", "(", ")", ":", "logger", ".", "info", "(", "placeholder", ")" ]
[ 58, 0 ]
[ 80, 36 ]
python
en
['en', 'error', 'th']
False
print_config
(config)
visualize configs Arguments: config: configs
visualize configs
def print_config(config): """ visualize configs Arguments: config: configs """ logger.advertise() print_dict(config)
[ "def", "print_config", "(", "config", ")", ":", "logger", ".", "advertise", "(", ")", "print_dict", "(", "config", ")" ]
[ 83, 0 ]
[ 91, 22 ]
python
en
['en', 'error', 'th']
False
check_config
(config)
Check config
Check config
def check_config(config): """ Check config """ check.check_version() use_gpu = config.get('use_gpu', True) if use_gpu: check.check_gpu() architecture = config.get('ARCHITECTURE') check.check_architecture(architecture) use_mix = config.get('use_mix', False) check.check_mix(architecture, use_mix) classes_num = config.get('classes_num') check.check_classes_num(classes_num) mode = config.get('mode', 'train') if mode.lower() == 'train': check.check_function_params(config, 'LEARNING_RATE') check.check_function_params(config, 'OPTIMIZER')
[ "def", "check_config", "(", "config", ")", ":", "check", ".", "check_version", "(", ")", "use_gpu", "=", "config", ".", "get", "(", "'use_gpu'", ",", "True", ")", "if", "use_gpu", ":", "check", ".", "check_gpu", "(", ")", "architecture", "=", "config", ".", "get", "(", "'ARCHITECTURE'", ")", "check", ".", "check_architecture", "(", "architecture", ")", "use_mix", "=", "config", ".", "get", "(", "'use_mix'", ",", "False", ")", "check", ".", "check_mix", "(", "architecture", ",", "use_mix", ")", "classes_num", "=", "config", ".", "get", "(", "'classes_num'", ")", "check", ".", "check_classes_num", "(", "classes_num", ")", "mode", "=", "config", ".", "get", "(", "'mode'", ",", "'train'", ")", "if", "mode", ".", "lower", "(", ")", "==", "'train'", ":", "check", ".", "check_function_params", "(", "config", ",", "'LEARNING_RATE'", ")", "check", ".", "check_function_params", "(", "config", ",", "'OPTIMIZER'", ")" ]
[ 94, 0 ]
[ 116, 56 ]
python
en
['en', 'error', 'th']
False
override
(dl, ks, v)
Recursively replace dict of list Args: dl(dict or list): dict or list to be replaced ks(list): list of keys v(str): value to be replaced
Recursively replace dict of list
def override(dl, ks, v): """ Recursively replace dict of list Args: dl(dict or list): dict or list to be replaced ks(list): list of keys v(str): value to be replaced """ def str2num(v): try: return eval(v) except Exception: return v assert isinstance(dl, (list, dict)), ("{} should be a list or a dict") assert len(ks) > 0, ('lenght of keys should larger than 0') if isinstance(dl, list): k = str2num(ks[0]) if len(ks) == 1: assert k < len(dl), ('index({}) out of range({})'.format(k, dl)) dl[k] = str2num(v) else: override(dl[k], ks[1:], v) else: if len(ks) == 1: # assert ks[0] in dl, ('{} is not exist in {}'.format(ks[0], dl)) if not ks[0] in dl: logger.warning('A new filed ({}) detected!'.format(ks[0], dl)) dl[ks[0]] = str2num(v) else: override(dl[ks[0]], ks[1:], v)
[ "def", "override", "(", "dl", ",", "ks", ",", "v", ")", ":", "def", "str2num", "(", "v", ")", ":", "try", ":", "return", "eval", "(", "v", ")", "except", "Exception", ":", "return", "v", "assert", "isinstance", "(", "dl", ",", "(", "list", ",", "dict", ")", ")", ",", "(", "\"{} should be a list or a dict\"", ")", "assert", "len", "(", "ks", ")", ">", "0", ",", "(", "'lenght of keys should larger than 0'", ")", "if", "isinstance", "(", "dl", ",", "list", ")", ":", "k", "=", "str2num", "(", "ks", "[", "0", "]", ")", "if", "len", "(", "ks", ")", "==", "1", ":", "assert", "k", "<", "len", "(", "dl", ")", ",", "(", "'index({}) out of range({})'", ".", "format", "(", "k", ",", "dl", ")", ")", "dl", "[", "k", "]", "=", "str2num", "(", "v", ")", "else", ":", "override", "(", "dl", "[", "k", "]", ",", "ks", "[", "1", ":", "]", ",", "v", ")", "else", ":", "if", "len", "(", "ks", ")", "==", "1", ":", "# assert ks[0] in dl, ('{} is not exist in {}'.format(ks[0], dl))", "if", "not", "ks", "[", "0", "]", "in", "dl", ":", "logger", ".", "warning", "(", "'A new filed ({}) detected!'", ".", "format", "(", "ks", "[", "0", "]", ",", "dl", ")", ")", "dl", "[", "ks", "[", "0", "]", "]", "=", "str2num", "(", "v", ")", "else", ":", "override", "(", "dl", "[", "ks", "[", "0", "]", "]", ",", "ks", "[", "1", ":", "]", ",", "v", ")" ]
[ 119, 0 ]
[ 151, 42 ]
python
en
['en', 'error', 'th']
False
override_config
(config, options=None)
Recursively override the config Args: config(dict): dict to be replaced options(list): list of pairs(key0.key1.idx.key2=value) such as: [ 'topk=2', 'VALID.transforms.1.ResizeImage.resize_short=300' ] Returns: config(dict): replaced config
Recursively override the config
def override_config(config, options=None): """ Recursively override the config Args: config(dict): dict to be replaced options(list): list of pairs(key0.key1.idx.key2=value) such as: [ 'topk=2', 'VALID.transforms.1.ResizeImage.resize_short=300' ] Returns: config(dict): replaced config """ if options is not None: for opt in options: assert isinstance(opt, str), ( "option({}) should be a str".format(opt)) assert "=" in opt, ( "option({}) should contain a =" "to distinguish between key and value".format(opt)) pair = opt.split('=') assert len(pair) == 2, ("there can be only a = in the option") key, value = pair keys = key.split('.') override(config, keys, value) return config
[ "def", "override_config", "(", "config", ",", "options", "=", "None", ")", ":", "if", "options", "is", "not", "None", ":", "for", "opt", "in", "options", ":", "assert", "isinstance", "(", "opt", ",", "str", ")", ",", "(", "\"option({}) should be a str\"", ".", "format", "(", "opt", ")", ")", "assert", "\"=\"", "in", "opt", ",", "(", "\"option({}) should contain a =\"", "\"to distinguish between key and value\"", ".", "format", "(", "opt", ")", ")", "pair", "=", "opt", ".", "split", "(", "'='", ")", "assert", "len", "(", "pair", ")", "==", "2", ",", "(", "\"there can be only a = in the option\"", ")", "key", ",", "value", "=", "pair", "keys", "=", "key", ".", "split", "(", "'.'", ")", "override", "(", "config", ",", "keys", ",", "value", ")", "return", "config" ]
[ 154, 0 ]
[ 182, 17 ]
python
en
['en', 'error', 'th']
False
get_config
(fname, overrides=None, show=True)
Read config from file
Read config from file
def get_config(fname, overrides=None, show=True): """ Read config from file """ assert os.path.exists(fname), ( 'config file({}) is not exist'.format(fname)) config = parse_config(fname) override_config(config, overrides) if show: print_config(config) check_config(config) return config
[ "def", "get_config", "(", "fname", ",", "overrides", "=", "None", ",", "show", "=", "True", ")", ":", "assert", "os", ".", "path", ".", "exists", "(", "fname", ")", ",", "(", "'config file({}) is not exist'", ".", "format", "(", "fname", ")", ")", "config", "=", "parse_config", "(", "fname", ")", "override_config", "(", "config", ",", "overrides", ")", "if", "show", ":", "print_config", "(", "config", ")", "check_config", "(", "config", ")", "return", "config" ]
[ 185, 0 ]
[ 196, 17 ]
python
en
['en', 'error', 'th']
False
format
(number, decimal_sep, decimal_pos=None, grouping=0, thousand_sep='', force_grouping=False, use_l10n=None)
Get a number (as a number or string), and return it as a string, using formats defined as arguments: * decimal_sep: Decimal separator symbol (for example ".") * decimal_pos: Number of decimal positions * grouping: Number of digits in every group limited by thousand separator. For non-uniform digit grouping, it can be a sequence with the number of digit group sizes following the format used by the Python locale module in locale.localeconv() LC_NUMERIC grouping (e.g. (3, 2, 0)). * thousand_sep: Thousand separator symbol (for example ",")
Get a number (as a number or string), and return it as a string, using formats defined as arguments:
def format(number, decimal_sep, decimal_pos=None, grouping=0, thousand_sep='', force_grouping=False, use_l10n=None): """ Get a number (as a number or string), and return it as a string, using formats defined as arguments: * decimal_sep: Decimal separator symbol (for example ".") * decimal_pos: Number of decimal positions * grouping: Number of digits in every group limited by thousand separator. For non-uniform digit grouping, it can be a sequence with the number of digit group sizes following the format used by the Python locale module in locale.localeconv() LC_NUMERIC grouping (e.g. (3, 2, 0)). * thousand_sep: Thousand separator symbol (for example ",") """ use_grouping = (use_l10n or (use_l10n is None and settings.USE_L10N)) and settings.USE_THOUSAND_SEPARATOR use_grouping = use_grouping or force_grouping use_grouping = use_grouping and grouping != 0 # Make the common case fast if isinstance(number, int) and not use_grouping and not decimal_pos: return mark_safe(number) # sign sign = '' # Treat potentially very large/small floats as Decimals. if isinstance(number, float) and 'e' in str(number).lower(): number = Decimal(str(number)) if isinstance(number, Decimal): if decimal_pos is not None: # If the provided number is too small to affect any of the visible # decimal places, consider it equal to '0'. cutoff = Decimal('0.' + '1'.rjust(decimal_pos, '0')) if abs(number) < cutoff: number = Decimal('0') # Format values with more than 200 digits (an arbitrary cutoff) using # scientific notation to avoid high memory usage in {:f}'.format(). _, digits, exponent = number.as_tuple() if abs(exponent) + len(digits) > 200: number = '{:e}'.format(number) coefficient, exponent = number.split('e') # Format the coefficient. coefficient = format( coefficient, decimal_sep, decimal_pos, grouping, thousand_sep, force_grouping, use_l10n, ) return '{}e{}'.format(coefficient, exponent) else: str_number = '{:f}'.format(number) else: str_number = str(number) if str_number[0] == '-': sign = '-' str_number = str_number[1:] # decimal part if '.' in str_number: int_part, dec_part = str_number.split('.') if decimal_pos is not None: dec_part = dec_part[:decimal_pos] else: int_part, dec_part = str_number, '' if decimal_pos is not None: dec_part = dec_part + ('0' * (decimal_pos - len(dec_part))) dec_part = dec_part and decimal_sep + dec_part # grouping if use_grouping: try: # if grouping is a sequence intervals = list(grouping) except TypeError: # grouping is a single value intervals = [grouping, 0] active_interval = intervals.pop(0) int_part_gd = '' cnt = 0 for digit in int_part[::-1]: if cnt and cnt == active_interval: if intervals: active_interval = intervals.pop(0) or active_interval int_part_gd += thousand_sep[::-1] cnt = 0 int_part_gd += digit cnt += 1 int_part = int_part_gd[::-1] return sign + int_part + dec_part
[ "def", "format", "(", "number", ",", "decimal_sep", ",", "decimal_pos", "=", "None", ",", "grouping", "=", "0", ",", "thousand_sep", "=", "''", ",", "force_grouping", "=", "False", ",", "use_l10n", "=", "None", ")", ":", "use_grouping", "=", "(", "use_l10n", "or", "(", "use_l10n", "is", "None", "and", "settings", ".", "USE_L10N", ")", ")", "and", "settings", ".", "USE_THOUSAND_SEPARATOR", "use_grouping", "=", "use_grouping", "or", "force_grouping", "use_grouping", "=", "use_grouping", "and", "grouping", "!=", "0", "# Make the common case fast", "if", "isinstance", "(", "number", ",", "int", ")", "and", "not", "use_grouping", "and", "not", "decimal_pos", ":", "return", "mark_safe", "(", "number", ")", "# sign", "sign", "=", "''", "# Treat potentially very large/small floats as Decimals.", "if", "isinstance", "(", "number", ",", "float", ")", "and", "'e'", "in", "str", "(", "number", ")", ".", "lower", "(", ")", ":", "number", "=", "Decimal", "(", "str", "(", "number", ")", ")", "if", "isinstance", "(", "number", ",", "Decimal", ")", ":", "if", "decimal_pos", "is", "not", "None", ":", "# If the provided number is too small to affect any of the visible", "# decimal places, consider it equal to '0'.", "cutoff", "=", "Decimal", "(", "'0.'", "+", "'1'", ".", "rjust", "(", "decimal_pos", ",", "'0'", ")", ")", "if", "abs", "(", "number", ")", "<", "cutoff", ":", "number", "=", "Decimal", "(", "'0'", ")", "# Format values with more than 200 digits (an arbitrary cutoff) using", "# scientific notation to avoid high memory usage in {:f}'.format().", "_", ",", "digits", ",", "exponent", "=", "number", ".", "as_tuple", "(", ")", "if", "abs", "(", "exponent", ")", "+", "len", "(", "digits", ")", ">", "200", ":", "number", "=", "'{:e}'", ".", "format", "(", "number", ")", "coefficient", ",", "exponent", "=", "number", ".", "split", "(", "'e'", ")", "# Format the coefficient.", "coefficient", "=", "format", "(", "coefficient", ",", "decimal_sep", ",", "decimal_pos", ",", "grouping", ",", "thousand_sep", ",", "force_grouping", ",", "use_l10n", ",", ")", "return", "'{}e{}'", ".", "format", "(", "coefficient", ",", "exponent", ")", "else", ":", "str_number", "=", "'{:f}'", ".", "format", "(", "number", ")", "else", ":", "str_number", "=", "str", "(", "number", ")", "if", "str_number", "[", "0", "]", "==", "'-'", ":", "sign", "=", "'-'", "str_number", "=", "str_number", "[", "1", ":", "]", "# decimal part", "if", "'.'", "in", "str_number", ":", "int_part", ",", "dec_part", "=", "str_number", ".", "split", "(", "'.'", ")", "if", "decimal_pos", "is", "not", "None", ":", "dec_part", "=", "dec_part", "[", ":", "decimal_pos", "]", "else", ":", "int_part", ",", "dec_part", "=", "str_number", ",", "''", "if", "decimal_pos", "is", "not", "None", ":", "dec_part", "=", "dec_part", "+", "(", "'0'", "*", "(", "decimal_pos", "-", "len", "(", "dec_part", ")", ")", ")", "dec_part", "=", "dec_part", "and", "decimal_sep", "+", "dec_part", "# grouping", "if", "use_grouping", ":", "try", ":", "# if grouping is a sequence", "intervals", "=", "list", "(", "grouping", ")", "except", "TypeError", ":", "# grouping is a single value", "intervals", "=", "[", "grouping", ",", "0", "]", "active_interval", "=", "intervals", ".", "pop", "(", "0", ")", "int_part_gd", "=", "''", "cnt", "=", "0", "for", "digit", "in", "int_part", "[", ":", ":", "-", "1", "]", ":", "if", "cnt", "and", "cnt", "==", "active_interval", ":", "if", "intervals", ":", "active_interval", "=", "intervals", ".", "pop", "(", "0", ")", "or", "active_interval", "int_part_gd", "+=", "thousand_sep", "[", ":", ":", "-", "1", "]", "cnt", "=", "0", "int_part_gd", "+=", "digit", "cnt", "+=", "1", "int_part", "=", "int_part_gd", "[", ":", ":", "-", "1", "]", "return", "sign", "+", "int_part", "+", "dec_part" ]
[ 6, 0 ]
[ 89, 37 ]
python
en
['en', 'error', 'th']
False
DatabaseCreation._maindb_connection
(self)
This is analogous to other backends' `_nodb_connection` property, which allows access to an "administrative" connection which can be used to manage the test databases. For Oracle, the only connection that can be used for that purpose is the main (non-test) connection.
This is analogous to other backends' `_nodb_connection` property, which allows access to an "administrative" connection which can be used to manage the test databases. For Oracle, the only connection that can be used for that purpose is the main (non-test) connection.
def _maindb_connection(self): """ This is analogous to other backends' `_nodb_connection` property, which allows access to an "administrative" connection which can be used to manage the test databases. For Oracle, the only connection that can be used for that purpose is the main (non-test) connection. """ settings_dict = settings.DATABASES[self.connection.alias] user = settings_dict.get('SAVED_USER') or settings_dict['USER'] password = settings_dict.get('SAVED_PASSWORD') or settings_dict['PASSWORD'] settings_dict = {**settings_dict, 'USER': user, 'PASSWORD': password} DatabaseWrapper = type(self.connection) return DatabaseWrapper(settings_dict, alias=self.connection.alias)
[ "def", "_maindb_connection", "(", "self", ")", ":", "settings_dict", "=", "settings", ".", "DATABASES", "[", "self", ".", "connection", ".", "alias", "]", "user", "=", "settings_dict", ".", "get", "(", "'SAVED_USER'", ")", "or", "settings_dict", "[", "'USER'", "]", "password", "=", "settings_dict", ".", "get", "(", "'SAVED_PASSWORD'", ")", "or", "settings_dict", "[", "'PASSWORD'", "]", "settings_dict", "=", "{", "*", "*", "settings_dict", ",", "'USER'", ":", "user", ",", "'PASSWORD'", ":", "password", "}", "DatabaseWrapper", "=", "type", "(", "self", ".", "connection", ")", "return", "DatabaseWrapper", "(", "settings_dict", ",", "alias", "=", "self", ".", "connection", ".", "alias", ")" ]
[ 14, 4 ]
[ 27, 74 ]
python
en
['en', 'error', 'th']
False
DatabaseCreation._switch_to_test_user
(self, parameters)
Switch to the user that's used for creating the test database. Oracle doesn't have the concept of separate databases under the same user, so a separate user is used; see _create_test_db(). The main user is also needed for cleanup when testing is completed, so save its credentials in the SAVED_USER/SAVED_PASSWORD key in the settings dict.
Switch to the user that's used for creating the test database.
def _switch_to_test_user(self, parameters): """ Switch to the user that's used for creating the test database. Oracle doesn't have the concept of separate databases under the same user, so a separate user is used; see _create_test_db(). The main user is also needed for cleanup when testing is completed, so save its credentials in the SAVED_USER/SAVED_PASSWORD key in the settings dict. """ real_settings = settings.DATABASES[self.connection.alias] real_settings['SAVED_USER'] = self.connection.settings_dict['SAVED_USER'] = \ self.connection.settings_dict['USER'] real_settings['SAVED_PASSWORD'] = self.connection.settings_dict['SAVED_PASSWORD'] = \ self.connection.settings_dict['PASSWORD'] real_test_settings = real_settings['TEST'] test_settings = self.connection.settings_dict['TEST'] real_test_settings['USER'] = real_settings['USER'] = test_settings['USER'] = \ self.connection.settings_dict['USER'] = parameters['user'] real_settings['PASSWORD'] = self.connection.settings_dict['PASSWORD'] = parameters['password']
[ "def", "_switch_to_test_user", "(", "self", ",", "parameters", ")", ":", "real_settings", "=", "settings", ".", "DATABASES", "[", "self", ".", "connection", ".", "alias", "]", "real_settings", "[", "'SAVED_USER'", "]", "=", "self", ".", "connection", ".", "settings_dict", "[", "'SAVED_USER'", "]", "=", "self", ".", "connection", ".", "settings_dict", "[", "'USER'", "]", "real_settings", "[", "'SAVED_PASSWORD'", "]", "=", "self", ".", "connection", ".", "settings_dict", "[", "'SAVED_PASSWORD'", "]", "=", "self", ".", "connection", ".", "settings_dict", "[", "'PASSWORD'", "]", "real_test_settings", "=", "real_settings", "[", "'TEST'", "]", "test_settings", "=", "self", ".", "connection", ".", "settings_dict", "[", "'TEST'", "]", "real_test_settings", "[", "'USER'", "]", "=", "real_settings", "[", "'USER'", "]", "=", "test_settings", "[", "'USER'", "]", "=", "self", ".", "connection", ".", "settings_dict", "[", "'USER'", "]", "=", "parameters", "[", "'user'", "]", "real_settings", "[", "'PASSWORD'", "]", "=", "self", ".", "connection", ".", "settings_dict", "[", "'PASSWORD'", "]", "=", "parameters", "[", "'password'", "]" ]
[ 101, 4 ]
[ 119, 102 ]
python
en
['en', 'error', 'th']
False
DatabaseCreation.set_as_test_mirror
(self, primary_settings_dict)
Set this database up to be used in testing as a mirror of a primary database whose settings are given.
Set this database up to be used in testing as a mirror of a primary database whose settings are given.
def set_as_test_mirror(self, primary_settings_dict): """ Set this database up to be used in testing as a mirror of a primary database whose settings are given. """ self.connection.settings_dict['USER'] = primary_settings_dict['USER'] self.connection.settings_dict['PASSWORD'] = primary_settings_dict['PASSWORD']
[ "def", "set_as_test_mirror", "(", "self", ",", "primary_settings_dict", ")", ":", "self", ".", "connection", ".", "settings_dict", "[", "'USER'", "]", "=", "primary_settings_dict", "[", "'USER'", "]", "self", ".", "connection", ".", "settings_dict", "[", "'PASSWORD'", "]", "=", "primary_settings_dict", "[", "'PASSWORD'", "]" ]
[ 121, 4 ]
[ 127, 85 ]
python
en
['en', 'error', 'th']
False
DatabaseCreation._destroy_test_db
(self, test_database_name, verbosity=1)
Destroy a test database, prompting the user for confirmation if the database already exists. Return the name of the test database created.
Destroy a test database, prompting the user for confirmation if the database already exists. Return the name of the test database created.
def _destroy_test_db(self, test_database_name, verbosity=1): """ Destroy a test database, prompting the user for confirmation if the database already exists. Return the name of the test database created. """ self.connection.settings_dict['USER'] = self.connection.settings_dict['SAVED_USER'] self.connection.settings_dict['PASSWORD'] = self.connection.settings_dict['SAVED_PASSWORD'] self.connection.close() parameters = self._get_test_db_params() with self._maindb_connection.cursor() as cursor: if self._test_user_create(): if verbosity >= 1: self.log('Destroying test user...') self._destroy_test_user(cursor, parameters, verbosity) if self._test_database_create(): if verbosity >= 1: self.log('Destroying test database tables...') self._execute_test_db_destruction(cursor, parameters, verbosity) self._maindb_connection.close()
[ "def", "_destroy_test_db", "(", "self", ",", "test_database_name", ",", "verbosity", "=", "1", ")", ":", "self", ".", "connection", ".", "settings_dict", "[", "'USER'", "]", "=", "self", ".", "connection", ".", "settings_dict", "[", "'SAVED_USER'", "]", "self", ".", "connection", ".", "settings_dict", "[", "'PASSWORD'", "]", "=", "self", ".", "connection", ".", "settings_dict", "[", "'SAVED_PASSWORD'", "]", "self", ".", "connection", ".", "close", "(", ")", "parameters", "=", "self", ".", "_get_test_db_params", "(", ")", "with", "self", ".", "_maindb_connection", ".", "cursor", "(", ")", "as", "cursor", ":", "if", "self", ".", "_test_user_create", "(", ")", ":", "if", "verbosity", ">=", "1", ":", "self", ".", "log", "(", "'Destroying test user...'", ")", "self", ".", "_destroy_test_user", "(", "cursor", ",", "parameters", ",", "verbosity", ")", "if", "self", ".", "_test_database_create", "(", ")", ":", "if", "verbosity", ">=", "1", ":", "self", ".", "log", "(", "'Destroying test database tables...'", ")", "self", ".", "_execute_test_db_destruction", "(", "cursor", ",", "parameters", ",", "verbosity", ")", "self", ".", "_maindb_connection", ".", "close", "(", ")" ]
[ 166, 4 ]
[ 184, 39 ]
python
en
['en', 'error', 'th']
False
DatabaseCreation._execute_allow_fail_statements
(self, cursor, statements, parameters, verbosity, acceptable_ora_err)
Execute statements which are allowed to fail silently if the Oracle error code given by `acceptable_ora_err` is raised. Return True if the statements execute without an exception, or False otherwise.
Execute statements which are allowed to fail silently if the Oracle error code given by `acceptable_ora_err` is raised. Return True if the statements execute without an exception, or False otherwise.
def _execute_allow_fail_statements(self, cursor, statements, parameters, verbosity, acceptable_ora_err): """ Execute statements which are allowed to fail silently if the Oracle error code given by `acceptable_ora_err` is raised. Return True if the statements execute without an exception, or False otherwise. """ try: # Statement can fail when acceptable_ora_err is not None allow_quiet_fail = acceptable_ora_err is not None and len(acceptable_ora_err) > 0 self._execute_statements(cursor, statements, parameters, verbosity, allow_quiet_fail=allow_quiet_fail) return True except DatabaseError as err: description = str(err) if acceptable_ora_err is None or acceptable_ora_err not in description: raise return False
[ "def", "_execute_allow_fail_statements", "(", "self", ",", "cursor", ",", "statements", ",", "parameters", ",", "verbosity", ",", "acceptable_ora_err", ")", ":", "try", ":", "# Statement can fail when acceptable_ora_err is not None", "allow_quiet_fail", "=", "acceptable_ora_err", "is", "not", "None", "and", "len", "(", "acceptable_ora_err", ")", ">", "0", "self", ".", "_execute_statements", "(", "cursor", ",", "statements", ",", "parameters", ",", "verbosity", ",", "allow_quiet_fail", "=", "allow_quiet_fail", ")", "return", "True", "except", "DatabaseError", "as", "err", ":", "description", "=", "str", "(", "err", ")", "if", "acceptable_ora_err", "is", "None", "or", "acceptable_ora_err", "not", "in", "description", ":", "raise", "return", "False" ]
[ 282, 4 ]
[ 297, 24 ]
python
en
['en', 'error', 'th']
False
DatabaseCreation._test_settings_get
(self, key, default=None, prefixed=None)
Return a value from the test settings dict, or a given default, or a prefixed entry from the main settings dict.
Return a value from the test settings dict, or a given default, or a prefixed entry from the main settings dict.
def _test_settings_get(self, key, default=None, prefixed=None): """ Return a value from the test settings dict, or a given default, or a prefixed entry from the main settings dict. """ settings_dict = self.connection.settings_dict val = settings_dict['TEST'].get(key, default) if val is None and prefixed: val = TEST_DATABASE_PREFIX + settings_dict[prefixed] return val
[ "def", "_test_settings_get", "(", "self", ",", "key", ",", "default", "=", "None", ",", "prefixed", "=", "None", ")", ":", "settings_dict", "=", "self", ".", "connection", ".", "settings_dict", "val", "=", "settings_dict", "[", "'TEST'", "]", ".", "get", "(", "key", ",", "default", ")", "if", "val", "is", "None", "and", "prefixed", ":", "val", "=", "TEST_DATABASE_PREFIX", "+", "settings_dict", "[", "prefixed", "]", "return", "val" ]
[ 316, 4 ]
[ 325, 18 ]
python
en
['en', 'error', 'th']
False
DatabaseCreation._get_test_db_name
(self)
Return the 'production' DB name to get the test DB creation machinery to work. This isn't a great deal in this case because DB names as handled by Django don't have real counterparts in Oracle.
Return the 'production' DB name to get the test DB creation machinery to work. This isn't a great deal in this case because DB names as handled by Django don't have real counterparts in Oracle.
def _get_test_db_name(self): """ Return the 'production' DB name to get the test DB creation machinery to work. This isn't a great deal in this case because DB names as handled by Django don't have real counterparts in Oracle. """ return self.connection.settings_dict['NAME']
[ "def", "_get_test_db_name", "(", "self", ")", ":", "return", "self", ".", "connection", ".", "settings_dict", "[", "'NAME'", "]" ]
[ 383, 4 ]
[ 389, 52 ]
python
en
['en', 'error', 'th']
False
autocomplete
()
Entry Point for completion of main and subcommand options.
Entry Point for completion of main and subcommand options.
def autocomplete() -> None: """Entry Point for completion of main and subcommand options.""" # Don't complete if user hasn't sourced bash_completion file. if "PIP_AUTO_COMPLETE" not in os.environ: return cwords = os.environ["COMP_WORDS"].split()[1:] cword = int(os.environ["COMP_CWORD"]) try: current = cwords[cword - 1] except IndexError: current = "" parser = create_main_parser() subcommands = list(commands_dict) options = [] # subcommand subcommand_name: Optional[str] = None for word in cwords: if word in subcommands: subcommand_name = word break # subcommand options if subcommand_name is not None: # special case: 'help' subcommand has no options if subcommand_name == "help": sys.exit(1) # special case: list locally installed dists for show and uninstall should_list_installed = not current.startswith("-") and subcommand_name in [ "show", "uninstall", ] if should_list_installed: env = get_default_environment() lc = current.lower() installed = [ dist.canonical_name for dist in env.iter_installed_distributions(local_only=True) if dist.canonical_name.startswith(lc) and dist.canonical_name not in cwords[1:] ] # if there are no dists installed, fall back to option completion if installed: for dist in installed: print(dist) sys.exit(1) subcommand = create_command(subcommand_name) for opt in subcommand.parser.option_list_all: if opt.help != optparse.SUPPRESS_HELP: for opt_str in opt._long_opts + opt._short_opts: options.append((opt_str, opt.nargs)) # filter out previously specified options from available options prev_opts = [x.split("=")[0] for x in cwords[1 : cword - 1]] options = [(x, v) for (x, v) in options if x not in prev_opts] # filter options by current input options = [(k, v) for k, v in options if k.startswith(current)] # get completion type given cwords and available subcommand options completion_type = get_path_completion_type( cwords, cword, subcommand.parser.option_list_all, ) # get completion files and directories if ``completion_type`` is # ``<file>``, ``<dir>`` or ``<path>`` if completion_type: paths = auto_complete_paths(current, completion_type) options = [(path, 0) for path in paths] for option in options: opt_label = option[0] # append '=' to options which require args if option[1] and option[0][:2] == "--": opt_label += "=" print(opt_label) else: # show main parser options only when necessary opts = [i.option_list for i in parser.option_groups] opts.append(parser.option_list) flattened_opts = chain.from_iterable(opts) if current.startswith("-"): for opt in flattened_opts: if opt.help != optparse.SUPPRESS_HELP: subcommands += opt._long_opts + opt._short_opts else: # get completion type given cwords and all available options completion_type = get_path_completion_type(cwords, cword, flattened_opts) if completion_type: subcommands = list(auto_complete_paths(current, completion_type)) print(" ".join([x for x in subcommands if x.startswith(current)])) sys.exit(1)
[ "def", "autocomplete", "(", ")", "->", "None", ":", "# Don't complete if user hasn't sourced bash_completion file.", "if", "\"PIP_AUTO_COMPLETE\"", "not", "in", "os", ".", "environ", ":", "return", "cwords", "=", "os", ".", "environ", "[", "\"COMP_WORDS\"", "]", ".", "split", "(", ")", "[", "1", ":", "]", "cword", "=", "int", "(", "os", ".", "environ", "[", "\"COMP_CWORD\"", "]", ")", "try", ":", "current", "=", "cwords", "[", "cword", "-", "1", "]", "except", "IndexError", ":", "current", "=", "\"\"", "parser", "=", "create_main_parser", "(", ")", "subcommands", "=", "list", "(", "commands_dict", ")", "options", "=", "[", "]", "# subcommand", "subcommand_name", ":", "Optional", "[", "str", "]", "=", "None", "for", "word", "in", "cwords", ":", "if", "word", "in", "subcommands", ":", "subcommand_name", "=", "word", "break", "# subcommand options", "if", "subcommand_name", "is", "not", "None", ":", "# special case: 'help' subcommand has no options", "if", "subcommand_name", "==", "\"help\"", ":", "sys", ".", "exit", "(", "1", ")", "# special case: list locally installed dists for show and uninstall", "should_list_installed", "=", "not", "current", ".", "startswith", "(", "\"-\"", ")", "and", "subcommand_name", "in", "[", "\"show\"", ",", "\"uninstall\"", ",", "]", "if", "should_list_installed", ":", "env", "=", "get_default_environment", "(", ")", "lc", "=", "current", ".", "lower", "(", ")", "installed", "=", "[", "dist", ".", "canonical_name", "for", "dist", "in", "env", ".", "iter_installed_distributions", "(", "local_only", "=", "True", ")", "if", "dist", ".", "canonical_name", ".", "startswith", "(", "lc", ")", "and", "dist", ".", "canonical_name", "not", "in", "cwords", "[", "1", ":", "]", "]", "# if there are no dists installed, fall back to option completion", "if", "installed", ":", "for", "dist", "in", "installed", ":", "print", "(", "dist", ")", "sys", ".", "exit", "(", "1", ")", "subcommand", "=", "create_command", "(", "subcommand_name", ")", "for", "opt", "in", "subcommand", ".", "parser", ".", "option_list_all", ":", "if", "opt", ".", "help", "!=", "optparse", ".", "SUPPRESS_HELP", ":", "for", "opt_str", "in", "opt", ".", "_long_opts", "+", "opt", ".", "_short_opts", ":", "options", ".", "append", "(", "(", "opt_str", ",", "opt", ".", "nargs", ")", ")", "# filter out previously specified options from available options", "prev_opts", "=", "[", "x", ".", "split", "(", "\"=\"", ")", "[", "0", "]", "for", "x", "in", "cwords", "[", "1", ":", "cword", "-", "1", "]", "]", "options", "=", "[", "(", "x", ",", "v", ")", "for", "(", "x", ",", "v", ")", "in", "options", "if", "x", "not", "in", "prev_opts", "]", "# filter options by current input", "options", "=", "[", "(", "k", ",", "v", ")", "for", "k", ",", "v", "in", "options", "if", "k", ".", "startswith", "(", "current", ")", "]", "# get completion type given cwords and available subcommand options", "completion_type", "=", "get_path_completion_type", "(", "cwords", ",", "cword", ",", "subcommand", ".", "parser", ".", "option_list_all", ",", ")", "# get completion files and directories if ``completion_type`` is", "# ``<file>``, ``<dir>`` or ``<path>``", "if", "completion_type", ":", "paths", "=", "auto_complete_paths", "(", "current", ",", "completion_type", ")", "options", "=", "[", "(", "path", ",", "0", ")", "for", "path", "in", "paths", "]", "for", "option", "in", "options", ":", "opt_label", "=", "option", "[", "0", "]", "# append '=' to options which require args", "if", "option", "[", "1", "]", "and", "option", "[", "0", "]", "[", ":", "2", "]", "==", "\"--\"", ":", "opt_label", "+=", "\"=\"", "print", "(", "opt_label", ")", "else", ":", "# show main parser options only when necessary", "opts", "=", "[", "i", ".", "option_list", "for", "i", "in", "parser", ".", "option_groups", "]", "opts", ".", "append", "(", "parser", ".", "option_list", ")", "flattened_opts", "=", "chain", ".", "from_iterable", "(", "opts", ")", "if", "current", ".", "startswith", "(", "\"-\"", ")", ":", "for", "opt", "in", "flattened_opts", ":", "if", "opt", ".", "help", "!=", "optparse", ".", "SUPPRESS_HELP", ":", "subcommands", "+=", "opt", ".", "_long_opts", "+", "opt", ".", "_short_opts", "else", ":", "# get completion type given cwords and all available options", "completion_type", "=", "get_path_completion_type", "(", "cwords", ",", "cword", ",", "flattened_opts", ")", "if", "completion_type", ":", "subcommands", "=", "list", "(", "auto_complete_paths", "(", "current", ",", "completion_type", ")", ")", "print", "(", "\" \"", ".", "join", "(", "[", "x", "for", "x", "in", "subcommands", "if", "x", ".", "startswith", "(", "current", ")", "]", ")", ")", "sys", ".", "exit", "(", "1", ")" ]
[ 14, 0 ]
[ 107, 15 ]
python
en
['en', 'en', 'en']
True
get_path_completion_type
( cwords: List[str], cword: int, opts: Iterable[Any] )
Get the type of path completion (``file``, ``dir``, ``path`` or None) :param cwords: same as the environmental variable ``COMP_WORDS`` :param cword: same as the environmental variable ``COMP_CWORD`` :param opts: The available options to check :return: path completion type (``file``, ``dir``, ``path`` or None)
Get the type of path completion (``file``, ``dir``, ``path`` or None)
def get_path_completion_type( cwords: List[str], cword: int, opts: Iterable[Any] ) -> Optional[str]: """Get the type of path completion (``file``, ``dir``, ``path`` or None) :param cwords: same as the environmental variable ``COMP_WORDS`` :param cword: same as the environmental variable ``COMP_CWORD`` :param opts: The available options to check :return: path completion type (``file``, ``dir``, ``path`` or None) """ if cword < 2 or not cwords[cword - 2].startswith("-"): return None for opt in opts: if opt.help == optparse.SUPPRESS_HELP: continue for o in str(opt).split("/"): if cwords[cword - 2].split("=")[0] == o: if not opt.metavar or any( x in ("path", "file", "dir") for x in opt.metavar.split("/") ): return opt.metavar return None
[ "def", "get_path_completion_type", "(", "cwords", ":", "List", "[", "str", "]", ",", "cword", ":", "int", ",", "opts", ":", "Iterable", "[", "Any", "]", ")", "->", "Optional", "[", "str", "]", ":", "if", "cword", "<", "2", "or", "not", "cwords", "[", "cword", "-", "2", "]", ".", "startswith", "(", "\"-\"", ")", ":", "return", "None", "for", "opt", "in", "opts", ":", "if", "opt", ".", "help", "==", "optparse", ".", "SUPPRESS_HELP", ":", "continue", "for", "o", "in", "str", "(", "opt", ")", ".", "split", "(", "\"/\"", ")", ":", "if", "cwords", "[", "cword", "-", "2", "]", ".", "split", "(", "\"=\"", ")", "[", "0", "]", "==", "o", ":", "if", "not", "opt", ".", "metavar", "or", "any", "(", "x", "in", "(", "\"path\"", ",", "\"file\"", ",", "\"dir\"", ")", "for", "x", "in", "opt", ".", "metavar", ".", "split", "(", "\"/\"", ")", ")", ":", "return", "opt", ".", "metavar", "return", "None" ]
[ 110, 0 ]
[ 131, 15 ]
python
en
['en', 'en', 'en']
True
auto_complete_paths
(current: str, completion_type: str)
If ``completion_type`` is ``file`` or ``path``, list all regular files and directories starting with ``current``; otherwise only list directories starting with ``current``. :param current: The word to be completed :param completion_type: path completion type(`file`, `path` or `dir`)i :return: A generator of regular files and/or directories
If ``completion_type`` is ``file`` or ``path``, list all regular files and directories starting with ``current``; otherwise only list directories starting with ``current``.
def auto_complete_paths(current: str, completion_type: str) -> Iterable[str]: """If ``completion_type`` is ``file`` or ``path``, list all regular files and directories starting with ``current``; otherwise only list directories starting with ``current``. :param current: The word to be completed :param completion_type: path completion type(`file`, `path` or `dir`)i :return: A generator of regular files and/or directories """ directory, filename = os.path.split(current) current_path = os.path.abspath(directory) # Don't complete paths if they can't be accessed if not os.access(current_path, os.R_OK): return filename = os.path.normcase(filename) # list all files that start with ``filename`` file_list = ( x for x in os.listdir(current_path) if os.path.normcase(x).startswith(filename) ) for f in file_list: opt = os.path.join(current_path, f) comp_file = os.path.normcase(os.path.join(directory, f)) # complete regular files when there is not ``<dir>`` after option # complete directories when there is ``<file>``, ``<path>`` or # ``<dir>``after option if completion_type != "dir" and os.path.isfile(opt): yield comp_file elif os.path.isdir(opt): yield os.path.join(comp_file, "")
[ "def", "auto_complete_paths", "(", "current", ":", "str", ",", "completion_type", ":", "str", ")", "->", "Iterable", "[", "str", "]", ":", "directory", ",", "filename", "=", "os", ".", "path", ".", "split", "(", "current", ")", "current_path", "=", "os", ".", "path", ".", "abspath", "(", "directory", ")", "# Don't complete paths if they can't be accessed", "if", "not", "os", ".", "access", "(", "current_path", ",", "os", ".", "R_OK", ")", ":", "return", "filename", "=", "os", ".", "path", ".", "normcase", "(", "filename", ")", "# list all files that start with ``filename``", "file_list", "=", "(", "x", "for", "x", "in", "os", ".", "listdir", "(", "current_path", ")", "if", "os", ".", "path", ".", "normcase", "(", "x", ")", ".", "startswith", "(", "filename", ")", ")", "for", "f", "in", "file_list", ":", "opt", "=", "os", ".", "path", ".", "join", "(", "current_path", ",", "f", ")", "comp_file", "=", "os", ".", "path", ".", "normcase", "(", "os", ".", "path", ".", "join", "(", "directory", ",", "f", ")", ")", "# complete regular files when there is not ``<dir>`` after option", "# complete directories when there is ``<file>``, ``<path>`` or", "# ``<dir>``after option", "if", "completion_type", "!=", "\"dir\"", "and", "os", ".", "path", ".", "isfile", "(", "opt", ")", ":", "yield", "comp_file", "elif", "os", ".", "path", ".", "isdir", "(", "opt", ")", ":", "yield", "os", ".", "path", ".", "join", "(", "comp_file", ",", "\"\"", ")" ]
[ 134, 0 ]
[ 162, 45 ]
python
en
['en', 'en', 'en']
True
move_to_completion_bucket
(target_bucket, target_infix, **kwargs)
A utility method to move an object to a target location in GCS.
A utility method to move an object to a target location in GCS.
def move_to_completion_bucket(target_bucket, target_infix, **kwargs): """A utility method to move an object to a target location in GCS.""" # Here we establish a connection hook to GoogleCloudStorage. # Google Cloud Composer automatically provides a google_cloud_storage_default # connection id that is used by this hook. conn = gcs_hook.GoogleCloudStorageHook() # The external trigger (Google Cloud Function) that initiates this DAG # provides a dag_run.conf dictionary with event attributes that specify # the information about the GCS object that triggered this DAG. # We extract the bucket and object name from this dictionary. source_bucket = kwargs['dag_run'].conf['bucket'] source_object = kwargs['dag_run'].conf['name'] completion_ds = kwargs['ds'] target_object = os.path.join(target_infix, completion_ds, source_object) logging.info('Copying %s to %s', os.path.join(source_bucket, source_object), os.path.join(target_bucket, target_object)) conn.copy(source_bucket, source_object, target_bucket, target_object) logging.info('Deleting %s', os.path.join(source_bucket, source_object)) conn.delete(source_bucket, source_object)
[ "def", "move_to_completion_bucket", "(", "target_bucket", ",", "target_infix", ",", "*", "*", "kwargs", ")", ":", "# Here we establish a connection hook to GoogleCloudStorage.", "# Google Cloud Composer automatically provides a google_cloud_storage_default", "# connection id that is used by this hook.", "conn", "=", "gcs_hook", ".", "GoogleCloudStorageHook", "(", ")", "# The external trigger (Google Cloud Function) that initiates this DAG", "# provides a dag_run.conf dictionary with event attributes that specify", "# the information about the GCS object that triggered this DAG.", "# We extract the bucket and object name from this dictionary.", "source_bucket", "=", "kwargs", "[", "'dag_run'", "]", ".", "conf", "[", "'bucket'", "]", "source_object", "=", "kwargs", "[", "'dag_run'", "]", ".", "conf", "[", "'name'", "]", "completion_ds", "=", "kwargs", "[", "'ds'", "]", "target_object", "=", "os", ".", "path", ".", "join", "(", "target_infix", ",", "completion_ds", ",", "source_object", ")", "logging", ".", "info", "(", "'Copying %s to %s'", ",", "os", ".", "path", ".", "join", "(", "source_bucket", ",", "source_object", ")", ",", "os", ".", "path", ".", "join", "(", "target_bucket", ",", "target_object", ")", ")", "conn", ".", "copy", "(", "source_bucket", ",", "source_object", ",", "target_bucket", ",", "target_object", ")", "logging", ".", "info", "(", "'Deleting %s'", ",", "os", ".", "path", ".", "join", "(", "source_bucket", ",", "source_object", ")", ")", "conn", ".", "delete", "(", "source_bucket", ",", "source_object", ")" ]
[ 77, 0 ]
[ 101, 45 ]
python
en
['en', 'en', 'en']
True
train_and_deploy
( project='cloud-training-demos', bucket='cloud-training-demos-ml', startYear='2000' )
Pipeline to train babyweight model
Pipeline to train babyweight model
def train_and_deploy( project='cloud-training-demos', bucket='cloud-training-demos-ml', startYear='2000' ): """Pipeline to train babyweight model""" start_step = 1 # Step 1: create training dataset using Apache Beam on Cloud Dataflow if start_step <= 1: preprocess = dsl.ContainerOp( name='preprocess', # image needs to be a compile-time string image='gcr.io/cloud-training-demos/babyweight-pipeline-bqtocsv:latest', arguments=[ '--project', project, '--mode', 'cloud', '--bucket', bucket, '--start_year', startYear ], file_outputs={'bucket': '/output.txt'} ) else: preprocess = ObjectDict({ 'outputs': { 'bucket': bucket } }) # Step 2: Do hyperparameter tuning of the model on Cloud ML Engine if start_step <= 2: hparam_train = dsl.ContainerOp( name='hypertrain', # image needs to be a compile-time string image='gcr.io/cloud-training-demos/babyweight-pipeline-hypertrain:latest', arguments=[ preprocess.outputs['bucket'] ], file_outputs={'jobname': '/output.txt'} ) else: hparam_train = ObjectDict({ 'outputs': { 'jobname': 'babyweight_181008_210829' } }) # Step 3: Train the model some more, but on the pipelines cluster itself if start_step <= 3: train_tuned = dsl.ContainerOp( name='traintuned', # image needs to be a compile-time string image='gcr.io/cloud-training-demos/babyweight-pipeline-traintuned-trainer:latest', #image='gcr.io/cloud-training-demos/babyweight-pipeline-traintuned-trainer@sha256:3d73c805430a16d0675aeafa9819d6d2cfbad0f0f34cff5fb9ed4e24493bc9a8', arguments=[ hparam_train.outputs['jobname'], bucket ], file_outputs={'train': '/output.txt'} ) train_tuned.set_memory_request('2G') train_tuned.set_cpu_request('1') else: train_tuned = ObjectDict({ 'outputs': { 'train': 'gs://cloud-training-demos-ml/babyweight/hyperparam/15' } }) # Step 4: Deploy the trained model to Cloud ML Engine if start_step <= 4: deploy_cmle = dsl.ContainerOp( name='deploycmle', # image needs to be a compile-time string image='gcr.io/cloud-training-demos/babyweight-pipeline-deploycmle:latest', arguments=[ train_tuned.outputs['train'], # modeldir 'babyweight', 'mlp' ], file_outputs={ 'model': '/model.txt', 'version': '/version.txt' } ) else: deploy_cmle = ObjectDict({ 'outputs': { 'model': 'babyweight', 'version': 'mlp' } }) # Step 5: Deploy the trained model to AppEngine if start_step <= 5: deploy_cmle = dsl.ContainerOp( name='deployapp', # image needs to be a compile-time string image='gcr.io/cloud-training-demos/babyweight-pipeline-deployapp:latest', arguments=[ deploy_cmle.outputs['model'], deploy_cmle.outputs['version'] ], file_outputs={ 'appurl': '/appurl.txt' } ) else: deploy_cmle = ObjectDict({ 'outputs': { 'appurl': 'https://cloud-training-demos.appspot.com/' } })
[ "def", "train_and_deploy", "(", "project", "=", "'cloud-training-demos'", ",", "bucket", "=", "'cloud-training-demos-ml'", ",", "startYear", "=", "'2000'", ")", ":", "start_step", "=", "1", "# Step 1: create training dataset using Apache Beam on Cloud Dataflow", "if", "start_step", "<=", "1", ":", "preprocess", "=", "dsl", ".", "ContainerOp", "(", "name", "=", "'preprocess'", ",", "# image needs to be a compile-time string", "image", "=", "'gcr.io/cloud-training-demos/babyweight-pipeline-bqtocsv:latest'", ",", "arguments", "=", "[", "'--project'", ",", "project", ",", "'--mode'", ",", "'cloud'", ",", "'--bucket'", ",", "bucket", ",", "'--start_year'", ",", "startYear", "]", ",", "file_outputs", "=", "{", "'bucket'", ":", "'/output.txt'", "}", ")", "else", ":", "preprocess", "=", "ObjectDict", "(", "{", "'outputs'", ":", "{", "'bucket'", ":", "bucket", "}", "}", ")", "# Step 2: Do hyperparameter tuning of the model on Cloud ML Engine", "if", "start_step", "<=", "2", ":", "hparam_train", "=", "dsl", ".", "ContainerOp", "(", "name", "=", "'hypertrain'", ",", "# image needs to be a compile-time string", "image", "=", "'gcr.io/cloud-training-demos/babyweight-pipeline-hypertrain:latest'", ",", "arguments", "=", "[", "preprocess", ".", "outputs", "[", "'bucket'", "]", "]", ",", "file_outputs", "=", "{", "'jobname'", ":", "'/output.txt'", "}", ")", "else", ":", "hparam_train", "=", "ObjectDict", "(", "{", "'outputs'", ":", "{", "'jobname'", ":", "'babyweight_181008_210829'", "}", "}", ")", "# Step 3: Train the model some more, but on the pipelines cluster itself", "if", "start_step", "<=", "3", ":", "train_tuned", "=", "dsl", ".", "ContainerOp", "(", "name", "=", "'traintuned'", ",", "# image needs to be a compile-time string", "image", "=", "'gcr.io/cloud-training-demos/babyweight-pipeline-traintuned-trainer:latest'", ",", "#image='gcr.io/cloud-training-demos/babyweight-pipeline-traintuned-trainer@sha256:3d73c805430a16d0675aeafa9819d6d2cfbad0f0f34cff5fb9ed4e24493bc9a8',", "arguments", "=", "[", "hparam_train", ".", "outputs", "[", "'jobname'", "]", ",", "bucket", "]", ",", "file_outputs", "=", "{", "'train'", ":", "'/output.txt'", "}", ")", "train_tuned", ".", "set_memory_request", "(", "'2G'", ")", "train_tuned", ".", "set_cpu_request", "(", "'1'", ")", "else", ":", "train_tuned", "=", "ObjectDict", "(", "{", "'outputs'", ":", "{", "'train'", ":", "'gs://cloud-training-demos-ml/babyweight/hyperparam/15'", "}", "}", ")", "# Step 4: Deploy the trained model to Cloud ML Engine", "if", "start_step", "<=", "4", ":", "deploy_cmle", "=", "dsl", ".", "ContainerOp", "(", "name", "=", "'deploycmle'", ",", "# image needs to be a compile-time string", "image", "=", "'gcr.io/cloud-training-demos/babyweight-pipeline-deploycmle:latest'", ",", "arguments", "=", "[", "train_tuned", ".", "outputs", "[", "'train'", "]", ",", "# modeldir", "'babyweight'", ",", "'mlp'", "]", ",", "file_outputs", "=", "{", "'model'", ":", "'/model.txt'", ",", "'version'", ":", "'/version.txt'", "}", ")", "else", ":", "deploy_cmle", "=", "ObjectDict", "(", "{", "'outputs'", ":", "{", "'model'", ":", "'babyweight'", ",", "'version'", ":", "'mlp'", "}", "}", ")", "# Step 5: Deploy the trained model to AppEngine", "if", "start_step", "<=", "5", ":", "deploy_cmle", "=", "dsl", ".", "ContainerOp", "(", "name", "=", "'deployapp'", ",", "# image needs to be a compile-time string", "image", "=", "'gcr.io/cloud-training-demos/babyweight-pipeline-deployapp:latest'", ",", "arguments", "=", "[", "deploy_cmle", ".", "outputs", "[", "'model'", "]", ",", "deploy_cmle", ".", "outputs", "[", "'version'", "]", "]", ",", "file_outputs", "=", "{", "'appurl'", ":", "'/appurl.txt'", "}", ")", "else", ":", "deploy_cmle", "=", "ObjectDict", "(", "{", "'outputs'", ":", "{", "'appurl'", ":", "'https://cloud-training-demos.appspot.com/'", "}", "}", ")" ]
[ 30, 0 ]
[ 143, 6 ]
python
en
['en', 'en', 'en']
True
xclProbe
()
xclProbe() - Enumerate devices found in the system :return: count of devices found
xclProbe() - Enumerate devices found in the system :return: count of devices found
def xclProbe(): """ xclProbe() - Enumerate devices found in the system :return: count of devices found """ return libc.xclProbe()
[ "def", "xclProbe", "(", ")", ":", "return", "libc", ".", "xclProbe", "(", ")" ]
[ 157, 0 ]
[ 162, 26 ]
python
en
['en', 'error', 'th']
False
xclVersion
()
:return: the version number. 1 => Hal1 ; 2 => Hal2
:return: the version number. 1 => Hal1 ; 2 => Hal2
def xclVersion(): """ :return: the version number. 1 => Hal1 ; 2 => Hal2 """ return libc.xclVersion()
[ "def", "xclVersion", "(", ")", ":", "return", "libc", ".", "xclVersion", "(", ")" ]
[ 164, 0 ]
[ 168, 28 ]
python
en
['en', 'error', 'th']
False