Search is not available for this dataset
identifier
stringlengths 1
155
| parameters
stringlengths 2
6.09k
| docstring
stringlengths 11
63.4k
| docstring_summary
stringlengths 0
63.4k
| function
stringlengths 29
99.8k
| function_tokens
sequence | start_point
sequence | end_point
sequence | language
stringclasses 1
value | docstring_language
stringlengths 2
7
| docstring_language_predictions
stringlengths 18
23
| is_langid_reliable
stringclasses 2
values |
---|---|---|---|---|---|---|---|---|---|---|---|
OnvifFlowHandler.async_step_auth | (self, user_input=None) | Username and Password configuration for ONVIF device. | Username and Password configuration for ONVIF device. | async def async_step_auth(self, user_input=None):
"""Username and Password configuration for ONVIF device."""
if user_input:
self.onvif_config[CONF_USERNAME] = user_input[CONF_USERNAME]
self.onvif_config[CONF_PASSWORD] = user_input[CONF_PASSWORD]
return await self.async_step_profiles()
# Username and Password are optional and default empty
# due to some cameras not allowing you to change ONVIF user settings.
# See https://github.com/home-assistant/core/issues/39182
# and https://github.com/home-assistant/core/issues/35904
return self.async_show_form(
step_id="auth",
data_schema=vol.Schema(
{
vol.Optional(CONF_USERNAME, default=""): str,
vol.Optional(CONF_PASSWORD, default=""): str,
}
),
) | [
"async",
"def",
"async_step_auth",
"(",
"self",
",",
"user_input",
"=",
"None",
")",
":",
"if",
"user_input",
":",
"self",
".",
"onvif_config",
"[",
"CONF_USERNAME",
"]",
"=",
"user_input",
"[",
"CONF_USERNAME",
"]",
"self",
".",
"onvif_config",
"[",
"CONF_PASSWORD",
"]",
"=",
"user_input",
"[",
"CONF_PASSWORD",
"]",
"return",
"await",
"self",
".",
"async_step_profiles",
"(",
")",
"# Username and Password are optional and default empty",
"# due to some cameras not allowing you to change ONVIF user settings.",
"# See https://github.com/home-assistant/core/issues/39182",
"# and https://github.com/home-assistant/core/issues/35904",
"return",
"self",
".",
"async_show_form",
"(",
"step_id",
"=",
"\"auth\"",
",",
"data_schema",
"=",
"vol",
".",
"Schema",
"(",
"{",
"vol",
".",
"Optional",
"(",
"CONF_USERNAME",
",",
"default",
"=",
"\"\"",
")",
":",
"str",
",",
"vol",
".",
"Optional",
"(",
"CONF_PASSWORD",
",",
"default",
"=",
"\"\"",
")",
":",
"str",
",",
"}",
")",
",",
")"
] | [
164,
4
] | [
183,
9
] | python | en | ['en', 'en', 'en'] | True |
OnvifFlowHandler.async_step_profiles | (self, user_input=None) | Fetch ONVIF device profiles. | Fetch ONVIF device profiles. | async def async_step_profiles(self, user_input=None):
"""Fetch ONVIF device profiles."""
errors = {}
LOGGER.debug(
"Fetching profiles from ONVIF device %s", pformat(self.onvif_config)
)
device = get_device(
self.hass,
self.onvif_config[CONF_HOST],
self.onvif_config[CONF_PORT],
self.onvif_config[CONF_USERNAME],
self.onvif_config[CONF_PASSWORD],
)
try:
await device.update_xaddrs()
device_mgmt = device.create_devicemgmt_service()
# Get the MAC address to use as the unique ID for the config flow
if not self.device_id:
try:
network_interfaces = await device_mgmt.GetNetworkInterfaces()
for interface in network_interfaces:
if interface.Enabled:
self.device_id = interface.Info.HwAddress
except Fault as fault:
if "not implemented" not in fault.message:
raise fault
LOGGER.debug(
"Couldn't get network interfaces from ONVIF deivice '%s'. Error: %s",
self.onvif_config[CONF_NAME],
fault,
)
# If no network interfaces are exposed, fallback to serial number
if not self.device_id:
device_info = await device_mgmt.GetDeviceInformation()
self.device_id = device_info.SerialNumber
if not self.device_id:
return self.async_abort(reason="no_mac")
await self.async_set_unique_id(self.device_id, raise_on_progress=False)
self._abort_if_unique_id_configured(
updates={
CONF_HOST: self.onvif_config[CONF_HOST],
CONF_PORT: self.onvif_config[CONF_PORT],
CONF_NAME: self.onvif_config[CONF_NAME],
}
)
# Verify there is an H264 profile
media_service = device.create_media_service()
profiles = await media_service.GetProfiles()
h264 = any(
profile.VideoEncoderConfiguration
and profile.VideoEncoderConfiguration.Encoding == "H264"
for profile in profiles
)
if not h264:
return self.async_abort(reason="no_h264")
await device.close()
title = f"{self.onvif_config[CONF_NAME]} - {self.device_id}"
return self.async_create_entry(title=title, data=self.onvif_config)
except ONVIFError as err:
LOGGER.error(
"Couldn't setup ONVIF device '%s'. Error: %s",
self.onvif_config[CONF_NAME],
err,
)
await device.close()
return self.async_abort(reason="onvif_error")
except Fault:
errors["base"] = "cannot_connect"
await device.close()
return self.async_show_form(step_id="auth", errors=errors) | [
"async",
"def",
"async_step_profiles",
"(",
"self",
",",
"user_input",
"=",
"None",
")",
":",
"errors",
"=",
"{",
"}",
"LOGGER",
".",
"debug",
"(",
"\"Fetching profiles from ONVIF device %s\"",
",",
"pformat",
"(",
"self",
".",
"onvif_config",
")",
")",
"device",
"=",
"get_device",
"(",
"self",
".",
"hass",
",",
"self",
".",
"onvif_config",
"[",
"CONF_HOST",
"]",
",",
"self",
".",
"onvif_config",
"[",
"CONF_PORT",
"]",
",",
"self",
".",
"onvif_config",
"[",
"CONF_USERNAME",
"]",
",",
"self",
".",
"onvif_config",
"[",
"CONF_PASSWORD",
"]",
",",
")",
"try",
":",
"await",
"device",
".",
"update_xaddrs",
"(",
")",
"device_mgmt",
"=",
"device",
".",
"create_devicemgmt_service",
"(",
")",
"# Get the MAC address to use as the unique ID for the config flow",
"if",
"not",
"self",
".",
"device_id",
":",
"try",
":",
"network_interfaces",
"=",
"await",
"device_mgmt",
".",
"GetNetworkInterfaces",
"(",
")",
"for",
"interface",
"in",
"network_interfaces",
":",
"if",
"interface",
".",
"Enabled",
":",
"self",
".",
"device_id",
"=",
"interface",
".",
"Info",
".",
"HwAddress",
"except",
"Fault",
"as",
"fault",
":",
"if",
"\"not implemented\"",
"not",
"in",
"fault",
".",
"message",
":",
"raise",
"fault",
"LOGGER",
".",
"debug",
"(",
"\"Couldn't get network interfaces from ONVIF deivice '%s'. Error: %s\"",
",",
"self",
".",
"onvif_config",
"[",
"CONF_NAME",
"]",
",",
"fault",
",",
")",
"# If no network interfaces are exposed, fallback to serial number",
"if",
"not",
"self",
".",
"device_id",
":",
"device_info",
"=",
"await",
"device_mgmt",
".",
"GetDeviceInformation",
"(",
")",
"self",
".",
"device_id",
"=",
"device_info",
".",
"SerialNumber",
"if",
"not",
"self",
".",
"device_id",
":",
"return",
"self",
".",
"async_abort",
"(",
"reason",
"=",
"\"no_mac\"",
")",
"await",
"self",
".",
"async_set_unique_id",
"(",
"self",
".",
"device_id",
",",
"raise_on_progress",
"=",
"False",
")",
"self",
".",
"_abort_if_unique_id_configured",
"(",
"updates",
"=",
"{",
"CONF_HOST",
":",
"self",
".",
"onvif_config",
"[",
"CONF_HOST",
"]",
",",
"CONF_PORT",
":",
"self",
".",
"onvif_config",
"[",
"CONF_PORT",
"]",
",",
"CONF_NAME",
":",
"self",
".",
"onvif_config",
"[",
"CONF_NAME",
"]",
",",
"}",
")",
"# Verify there is an H264 profile",
"media_service",
"=",
"device",
".",
"create_media_service",
"(",
")",
"profiles",
"=",
"await",
"media_service",
".",
"GetProfiles",
"(",
")",
"h264",
"=",
"any",
"(",
"profile",
".",
"VideoEncoderConfiguration",
"and",
"profile",
".",
"VideoEncoderConfiguration",
".",
"Encoding",
"==",
"\"H264\"",
"for",
"profile",
"in",
"profiles",
")",
"if",
"not",
"h264",
":",
"return",
"self",
".",
"async_abort",
"(",
"reason",
"=",
"\"no_h264\"",
")",
"await",
"device",
".",
"close",
"(",
")",
"title",
"=",
"f\"{self.onvif_config[CONF_NAME]} - {self.device_id}\"",
"return",
"self",
".",
"async_create_entry",
"(",
"title",
"=",
"title",
",",
"data",
"=",
"self",
".",
"onvif_config",
")",
"except",
"ONVIFError",
"as",
"err",
":",
"LOGGER",
".",
"error",
"(",
"\"Couldn't setup ONVIF device '%s'. Error: %s\"",
",",
"self",
".",
"onvif_config",
"[",
"CONF_NAME",
"]",
",",
"err",
",",
")",
"await",
"device",
".",
"close",
"(",
")",
"return",
"self",
".",
"async_abort",
"(",
"reason",
"=",
"\"onvif_error\"",
")",
"except",
"Fault",
":",
"errors",
"[",
"\"base\"",
"]",
"=",
"\"cannot_connect\"",
"await",
"device",
".",
"close",
"(",
")",
"return",
"self",
".",
"async_show_form",
"(",
"step_id",
"=",
"\"auth\"",
",",
"errors",
"=",
"errors",
")"
] | [
185,
4
] | [
269,
66
] | python | de | ['de', 'mk', 'en'] | False |
OnvifFlowHandler.async_step_import | (self, user_input) | Handle import. | Handle import. | async def async_step_import(self, user_input):
"""Handle import."""
self.onvif_config = user_input
return await self.async_step_profiles() | [
"async",
"def",
"async_step_import",
"(",
"self",
",",
"user_input",
")",
":",
"self",
".",
"onvif_config",
"=",
"user_input",
"return",
"await",
"self",
".",
"async_step_profiles",
"(",
")"
] | [
271,
4
] | [
274,
47
] | python | en | ['en', 'ja', 'en'] | False |
OnvifOptionsFlowHandler.__init__ | (self, config_entry) | Initialize ONVIF options flow. | Initialize ONVIF options flow. | def __init__(self, config_entry):
"""Initialize ONVIF options flow."""
self.config_entry = config_entry
self.options = dict(config_entry.options) | [
"def",
"__init__",
"(",
"self",
",",
"config_entry",
")",
":",
"self",
".",
"config_entry",
"=",
"config_entry",
"self",
".",
"options",
"=",
"dict",
"(",
"config_entry",
".",
"options",
")"
] | [
280,
4
] | [
283,
49
] | python | en | ['en', 'en', 'en'] | True |
OnvifOptionsFlowHandler.async_step_init | (self, user_input=None) | Manage the ONVIF options. | Manage the ONVIF options. | async def async_step_init(self, user_input=None):
"""Manage the ONVIF options."""
return await self.async_step_onvif_devices() | [
"async",
"def",
"async_step_init",
"(",
"self",
",",
"user_input",
"=",
"None",
")",
":",
"return",
"await",
"self",
".",
"async_step_onvif_devices",
"(",
")"
] | [
285,
4
] | [
287,
52
] | python | en | ['en', 'en', 'en'] | True |
OnvifOptionsFlowHandler.async_step_onvif_devices | (self, user_input=None) | Manage the ONVIF devices options. | Manage the ONVIF devices options. | async def async_step_onvif_devices(self, user_input=None):
"""Manage the ONVIF devices options."""
if user_input is not None:
self.options[CONF_EXTRA_ARGUMENTS] = user_input[CONF_EXTRA_ARGUMENTS]
self.options[CONF_RTSP_TRANSPORT] = user_input[CONF_RTSP_TRANSPORT]
return self.async_create_entry(title="", data=self.options)
return self.async_show_form(
step_id="onvif_devices",
data_schema=vol.Schema(
{
vol.Optional(
CONF_EXTRA_ARGUMENTS,
default=self.config_entry.options.get(
CONF_EXTRA_ARGUMENTS, DEFAULT_ARGUMENTS
),
): str,
vol.Optional(
CONF_RTSP_TRANSPORT,
default=self.config_entry.options.get(
CONF_RTSP_TRANSPORT, RTSP_TRANS_PROTOCOLS[0]
),
): vol.In(RTSP_TRANS_PROTOCOLS),
}
),
) | [
"async",
"def",
"async_step_onvif_devices",
"(",
"self",
",",
"user_input",
"=",
"None",
")",
":",
"if",
"user_input",
"is",
"not",
"None",
":",
"self",
".",
"options",
"[",
"CONF_EXTRA_ARGUMENTS",
"]",
"=",
"user_input",
"[",
"CONF_EXTRA_ARGUMENTS",
"]",
"self",
".",
"options",
"[",
"CONF_RTSP_TRANSPORT",
"]",
"=",
"user_input",
"[",
"CONF_RTSP_TRANSPORT",
"]",
"return",
"self",
".",
"async_create_entry",
"(",
"title",
"=",
"\"\"",
",",
"data",
"=",
"self",
".",
"options",
")",
"return",
"self",
".",
"async_show_form",
"(",
"step_id",
"=",
"\"onvif_devices\"",
",",
"data_schema",
"=",
"vol",
".",
"Schema",
"(",
"{",
"vol",
".",
"Optional",
"(",
"CONF_EXTRA_ARGUMENTS",
",",
"default",
"=",
"self",
".",
"config_entry",
".",
"options",
".",
"get",
"(",
"CONF_EXTRA_ARGUMENTS",
",",
"DEFAULT_ARGUMENTS",
")",
",",
")",
":",
"str",
",",
"vol",
".",
"Optional",
"(",
"CONF_RTSP_TRANSPORT",
",",
"default",
"=",
"self",
".",
"config_entry",
".",
"options",
".",
"get",
"(",
"CONF_RTSP_TRANSPORT",
",",
"RTSP_TRANS_PROTOCOLS",
"[",
"0",
"]",
")",
",",
")",
":",
"vol",
".",
"In",
"(",
"RTSP_TRANS_PROTOCOLS",
")",
",",
"}",
")",
",",
")"
] | [
289,
4
] | [
314,
9
] | python | en | ['en', 'en', 'en'] | True |
setup_platform | (hass, config, add_entities, discovery_info=None) | Set up the Radarr platform. | Set up the Radarr platform. | def setup_platform(hass, config, add_entities, discovery_info=None):
"""Set up the Radarr platform."""
conditions = config.get(CONF_MONITORED_CONDITIONS)
add_entities([RadarrSensor(hass, config, sensor) for sensor in conditions], True) | [
"def",
"setup_platform",
"(",
"hass",
",",
"config",
",",
"add_entities",
",",
"discovery_info",
"=",
"None",
")",
":",
"conditions",
"=",
"config",
".",
"get",
"(",
"CONF_MONITORED_CONDITIONS",
")",
"add_entities",
"(",
"[",
"RadarrSensor",
"(",
"hass",
",",
"config",
",",
"sensor",
")",
"for",
"sensor",
"in",
"conditions",
"]",
",",
"True",
")"
] | [
91,
0
] | [
94,
85
] | python | en | ['en', 'pt', 'en'] | True |
get_date | (zone, offset=0) | Get date based on timezone and offset of days. | Get date based on timezone and offset of days. | def get_date(zone, offset=0):
"""Get date based on timezone and offset of days."""
day = 60 * 60 * 24
return datetime.date(datetime.fromtimestamp(time.time() + day * offset, tz=zone)) | [
"def",
"get_date",
"(",
"zone",
",",
"offset",
"=",
"0",
")",
":",
"day",
"=",
"60",
"*",
"60",
"*",
"24",
"return",
"datetime",
".",
"date",
"(",
"datetime",
".",
"fromtimestamp",
"(",
"time",
".",
"time",
"(",
")",
"+",
"day",
"*",
"offset",
",",
"tz",
"=",
"zone",
")",
")"
] | [
218,
0
] | [
221,
85
] | python | en | ['en', 'en', 'en'] | True |
get_release_date | (data) | Get release date. | Get release date. | def get_release_date(data):
"""Get release date."""
date = data.get("physicalRelease")
if not date:
date = data.get("inCinemas")
return date | [
"def",
"get_release_date",
"(",
"data",
")",
":",
"date",
"=",
"data",
".",
"get",
"(",
"\"physicalRelease\"",
")",
"if",
"not",
"date",
":",
"date",
"=",
"data",
".",
"get",
"(",
"\"inCinemas\"",
")",
"return",
"date"
] | [
224,
0
] | [
229,
15
] | python | en | ['en', 'nl', 'en'] | True |
to_unit | (value, unit) | Convert bytes to give unit. | Convert bytes to give unit. | def to_unit(value, unit):
"""Convert bytes to give unit."""
return value / 1024 ** BYTE_SIZES.index(unit) | [
"def",
"to_unit",
"(",
"value",
",",
"unit",
")",
":",
"return",
"value",
"/",
"1024",
"**",
"BYTE_SIZES",
".",
"index",
"(",
"unit",
")"
] | [
237,
0
] | [
239,
49
] | python | en | ['en', 'en', 'en'] | True |
RadarrSensor.__init__ | (self, hass, conf, sensor_type) | Create Radarr entity. | Create Radarr entity. | def __init__(self, hass, conf, sensor_type):
"""Create Radarr entity."""
self.conf = conf
self.host = conf.get(CONF_HOST)
self.port = conf.get(CONF_PORT)
self.urlbase = conf.get(CONF_URLBASE)
if self.urlbase:
self.urlbase = f"{self.urlbase.strip('/')}/"
self.apikey = conf.get(CONF_API_KEY)
self.included = conf.get(CONF_INCLUDED)
self.days = int(conf.get(CONF_DAYS))
self.ssl = "https" if conf.get(CONF_SSL) else "http"
self._state = None
self.data = []
self._tz = timezone(str(hass.config.time_zone))
self.type = sensor_type
self._name = SENSOR_TYPES[self.type][0]
if self.type == "diskspace":
self._unit = conf.get(CONF_UNIT)
else:
self._unit = SENSOR_TYPES[self.type][1]
self._icon = SENSOR_TYPES[self.type][2]
self._available = False | [
"def",
"__init__",
"(",
"self",
",",
"hass",
",",
"conf",
",",
"sensor_type",
")",
":",
"self",
".",
"conf",
"=",
"conf",
"self",
".",
"host",
"=",
"conf",
".",
"get",
"(",
"CONF_HOST",
")",
"self",
".",
"port",
"=",
"conf",
".",
"get",
"(",
"CONF_PORT",
")",
"self",
".",
"urlbase",
"=",
"conf",
".",
"get",
"(",
"CONF_URLBASE",
")",
"if",
"self",
".",
"urlbase",
":",
"self",
".",
"urlbase",
"=",
"f\"{self.urlbase.strip('/')}/\"",
"self",
".",
"apikey",
"=",
"conf",
".",
"get",
"(",
"CONF_API_KEY",
")",
"self",
".",
"included",
"=",
"conf",
".",
"get",
"(",
"CONF_INCLUDED",
")",
"self",
".",
"days",
"=",
"int",
"(",
"conf",
".",
"get",
"(",
"CONF_DAYS",
")",
")",
"self",
".",
"ssl",
"=",
"\"https\"",
"if",
"conf",
".",
"get",
"(",
"CONF_SSL",
")",
"else",
"\"http\"",
"self",
".",
"_state",
"=",
"None",
"self",
".",
"data",
"=",
"[",
"]",
"self",
".",
"_tz",
"=",
"timezone",
"(",
"str",
"(",
"hass",
".",
"config",
".",
"time_zone",
")",
")",
"self",
".",
"type",
"=",
"sensor_type",
"self",
".",
"_name",
"=",
"SENSOR_TYPES",
"[",
"self",
".",
"type",
"]",
"[",
"0",
"]",
"if",
"self",
".",
"type",
"==",
"\"diskspace\"",
":",
"self",
".",
"_unit",
"=",
"conf",
".",
"get",
"(",
"CONF_UNIT",
")",
"else",
":",
"self",
".",
"_unit",
"=",
"SENSOR_TYPES",
"[",
"self",
".",
"type",
"]",
"[",
"1",
"]",
"self",
".",
"_icon",
"=",
"SENSOR_TYPES",
"[",
"self",
".",
"type",
"]",
"[",
"2",
"]",
"self",
".",
"_available",
"=",
"False"
] | [
100,
4
] | [
123,
31
] | python | cy | ['es', 'cy', 'en'] | False |
RadarrSensor.name | (self) | Return the name of the sensor. | Return the name of the sensor. | def name(self):
"""Return the name of the sensor."""
return "{} {}".format("Radarr", self._name) | [
"def",
"name",
"(",
"self",
")",
":",
"return",
"\"{} {}\"",
".",
"format",
"(",
"\"Radarr\"",
",",
"self",
".",
"_name",
")"
] | [
126,
4
] | [
128,
51
] | python | en | ['en', 'mi', 'en'] | True |
RadarrSensor.state | (self) | Return sensor state. | Return sensor state. | def state(self):
"""Return sensor state."""
return self._state | [
"def",
"state",
"(",
"self",
")",
":",
"return",
"self",
".",
"_state"
] | [
131,
4
] | [
133,
26
] | python | en | ['en', 'bs', 'en'] | True |
RadarrSensor.available | (self) | Return sensor availability. | Return sensor availability. | def available(self):
"""Return sensor availability."""
return self._available | [
"def",
"available",
"(",
"self",
")",
":",
"return",
"self",
".",
"_available"
] | [
136,
4
] | [
138,
30
] | python | en | ['fr', 'ga', 'en'] | False |
RadarrSensor.unit_of_measurement | (self) | Return the unit of the sensor. | Return the unit of the sensor. | def unit_of_measurement(self):
"""Return the unit of the sensor."""
return self._unit | [
"def",
"unit_of_measurement",
"(",
"self",
")",
":",
"return",
"self",
".",
"_unit"
] | [
141,
4
] | [
143,
25
] | python | en | ['en', 'sq', 'en'] | True |
RadarrSensor.device_state_attributes | (self) | Return the state attributes of the sensor. | Return the state attributes of the sensor. | def device_state_attributes(self):
"""Return the state attributes of the sensor."""
attributes = {}
if self.type == "upcoming":
for movie in self.data:
attributes[to_key(movie)] = get_release_date(movie)
elif self.type == "commands":
for command in self.data:
attributes[command["name"]] = command["state"]
elif self.type == "diskspace":
for data in self.data:
free_space = to_unit(data["freeSpace"], self._unit)
total_space = to_unit(data["totalSpace"], self._unit)
percentage_used = (
0 if total_space == 0 else free_space / total_space * 100
)
attributes[data["path"]] = "{:.2f}/{:.2f}{} ({:.2f}%)".format(
free_space, total_space, self._unit, percentage_used
)
elif self.type == "movies":
for movie in self.data:
attributes[to_key(movie)] = movie["downloaded"]
elif self.type == "status":
attributes = self.data
return attributes | [
"def",
"device_state_attributes",
"(",
"self",
")",
":",
"attributes",
"=",
"{",
"}",
"if",
"self",
".",
"type",
"==",
"\"upcoming\"",
":",
"for",
"movie",
"in",
"self",
".",
"data",
":",
"attributes",
"[",
"to_key",
"(",
"movie",
")",
"]",
"=",
"get_release_date",
"(",
"movie",
")",
"elif",
"self",
".",
"type",
"==",
"\"commands\"",
":",
"for",
"command",
"in",
"self",
".",
"data",
":",
"attributes",
"[",
"command",
"[",
"\"name\"",
"]",
"]",
"=",
"command",
"[",
"\"state\"",
"]",
"elif",
"self",
".",
"type",
"==",
"\"diskspace\"",
":",
"for",
"data",
"in",
"self",
".",
"data",
":",
"free_space",
"=",
"to_unit",
"(",
"data",
"[",
"\"freeSpace\"",
"]",
",",
"self",
".",
"_unit",
")",
"total_space",
"=",
"to_unit",
"(",
"data",
"[",
"\"totalSpace\"",
"]",
",",
"self",
".",
"_unit",
")",
"percentage_used",
"=",
"(",
"0",
"if",
"total_space",
"==",
"0",
"else",
"free_space",
"/",
"total_space",
"*",
"100",
")",
"attributes",
"[",
"data",
"[",
"\"path\"",
"]",
"]",
"=",
"\"{:.2f}/{:.2f}{} ({:.2f}%)\"",
".",
"format",
"(",
"free_space",
",",
"total_space",
",",
"self",
".",
"_unit",
",",
"percentage_used",
")",
"elif",
"self",
".",
"type",
"==",
"\"movies\"",
":",
"for",
"movie",
"in",
"self",
".",
"data",
":",
"attributes",
"[",
"to_key",
"(",
"movie",
")",
"]",
"=",
"movie",
"[",
"\"downloaded\"",
"]",
"elif",
"self",
".",
"type",
"==",
"\"status\"",
":",
"attributes",
"=",
"self",
".",
"data",
"return",
"attributes"
] | [
146,
4
] | [
171,
25
] | python | en | ['en', 'en', 'en'] | True |
RadarrSensor.icon | (self) | Return the icon of the sensor. | Return the icon of the sensor. | def icon(self):
"""Return the icon of the sensor."""
return self._icon | [
"def",
"icon",
"(",
"self",
")",
":",
"return",
"self",
".",
"_icon"
] | [
174,
4
] | [
176,
25
] | python | en | ['en', 'en', 'en'] | True |
RadarrSensor.update | (self) | Update the data for the sensor. | Update the data for the sensor. | def update(self):
"""Update the data for the sensor."""
start = get_date(self._tz)
end = get_date(self._tz, self.days)
try:
res = requests.get(
ENDPOINTS[self.type].format(
self.ssl, self.host, self.port, self.urlbase, start, end
),
headers={"X-Api-Key": self.apikey},
timeout=10,
)
except OSError:
_LOGGER.warning("Host %s is not available", self.host)
self._available = False
self._state = None
return
if res.status_code == HTTP_OK:
if self.type in ["upcoming", "movies", "commands"]:
self.data = res.json()
self._state = len(self.data)
elif self.type == "diskspace":
# If included paths are not provided, use all data
if self.included == []:
self.data = res.json()
else:
# Filter to only show lists that are included
self.data = list(
filter(lambda x: x["path"] in self.included, res.json())
)
self._state = "{:.2f}".format(
to_unit(sum([data["freeSpace"] for data in self.data]), self._unit)
)
elif self.type == "status":
self.data = res.json()
self._state = self.data["version"]
self._available = True | [
"def",
"update",
"(",
"self",
")",
":",
"start",
"=",
"get_date",
"(",
"self",
".",
"_tz",
")",
"end",
"=",
"get_date",
"(",
"self",
".",
"_tz",
",",
"self",
".",
"days",
")",
"try",
":",
"res",
"=",
"requests",
".",
"get",
"(",
"ENDPOINTS",
"[",
"self",
".",
"type",
"]",
".",
"format",
"(",
"self",
".",
"ssl",
",",
"self",
".",
"host",
",",
"self",
".",
"port",
",",
"self",
".",
"urlbase",
",",
"start",
",",
"end",
")",
",",
"headers",
"=",
"{",
"\"X-Api-Key\"",
":",
"self",
".",
"apikey",
"}",
",",
"timeout",
"=",
"10",
",",
")",
"except",
"OSError",
":",
"_LOGGER",
".",
"warning",
"(",
"\"Host %s is not available\"",
",",
"self",
".",
"host",
")",
"self",
".",
"_available",
"=",
"False",
"self",
".",
"_state",
"=",
"None",
"return",
"if",
"res",
".",
"status_code",
"==",
"HTTP_OK",
":",
"if",
"self",
".",
"type",
"in",
"[",
"\"upcoming\"",
",",
"\"movies\"",
",",
"\"commands\"",
"]",
":",
"self",
".",
"data",
"=",
"res",
".",
"json",
"(",
")",
"self",
".",
"_state",
"=",
"len",
"(",
"self",
".",
"data",
")",
"elif",
"self",
".",
"type",
"==",
"\"diskspace\"",
":",
"# If included paths are not provided, use all data",
"if",
"self",
".",
"included",
"==",
"[",
"]",
":",
"self",
".",
"data",
"=",
"res",
".",
"json",
"(",
")",
"else",
":",
"# Filter to only show lists that are included",
"self",
".",
"data",
"=",
"list",
"(",
"filter",
"(",
"lambda",
"x",
":",
"x",
"[",
"\"path\"",
"]",
"in",
"self",
".",
"included",
",",
"res",
".",
"json",
"(",
")",
")",
")",
"self",
".",
"_state",
"=",
"\"{:.2f}\"",
".",
"format",
"(",
"to_unit",
"(",
"sum",
"(",
"[",
"data",
"[",
"\"freeSpace\"",
"]",
"for",
"data",
"in",
"self",
".",
"data",
"]",
")",
",",
"self",
".",
"_unit",
")",
")",
"elif",
"self",
".",
"type",
"==",
"\"status\"",
":",
"self",
".",
"data",
"=",
"res",
".",
"json",
"(",
")",
"self",
".",
"_state",
"=",
"self",
".",
"data",
"[",
"\"version\"",
"]",
"self",
".",
"_available",
"=",
"True"
] | [
178,
4
] | [
215,
34
] | python | en | ['en', 'no', 'en'] | True |
load_corpus | (name, download=True) |
Loads and wrangles the passed in text corpus by name.
If download is specified, this method will download any missing files.
Note: This function is slightly different to the `load_data` function
used above to load pandas dataframes into memory.
|
Loads and wrangles the passed in text corpus by name.
If download is specified, this method will download any missing files. | def load_corpus(name, download=True):
"""
Loads and wrangles the passed in text corpus by name.
If download is specified, this method will download any missing files.
Note: This function is slightly different to the `load_data` function
used above to load pandas dataframes into memory.
"""
# Get the path from the datasets
path = corpora[name]
# Check if the data exists, otherwise download or raise
if not os.path.exists(path):
raise ValueError((
"'{}' dataset has not been downloaded, "
"use the download.py module to fetch datasets"
).format(name))
# Read the directories in the directory as the categories.
categories = [
cat for cat in os.listdir(path)
if os.path.isdir(os.path.join(path, cat))
]
files = [] # holds the file names relative to the root
data = [] # holds the text read from the file
target = [] # holds the string of the category
# Load the data from the files in the corpus
for cat in categories:
for name in os.listdir(os.path.join(path, cat)):
files.append(os.path.join(path, cat, name))
target.append(cat)
with open(os.path.join(path, cat, name), 'r') as f:
data.append(f.read())
# Return the data bunch for use similar to the newsgroups example
return Bunch(
categories=categories,
files=files,
data=data,
target=target,
) | [
"def",
"load_corpus",
"(",
"name",
",",
"download",
"=",
"True",
")",
":",
"# Get the path from the datasets",
"path",
"=",
"corpora",
"[",
"name",
"]",
"# Check if the data exists, otherwise download or raise",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"path",
")",
":",
"raise",
"ValueError",
"(",
"(",
"\"'{}' dataset has not been downloaded, \"",
"\"use the download.py module to fetch datasets\"",
")",
".",
"format",
"(",
"name",
")",
")",
"# Read the directories in the directory as the categories.",
"categories",
"=",
"[",
"cat",
"for",
"cat",
"in",
"os",
".",
"listdir",
"(",
"path",
")",
"if",
"os",
".",
"path",
".",
"isdir",
"(",
"os",
".",
"path",
".",
"join",
"(",
"path",
",",
"cat",
")",
")",
"]",
"files",
"=",
"[",
"]",
"# holds the file names relative to the root",
"data",
"=",
"[",
"]",
"# holds the text read from the file",
"target",
"=",
"[",
"]",
"# holds the string of the category",
"# Load the data from the files in the corpus",
"for",
"cat",
"in",
"categories",
":",
"for",
"name",
"in",
"os",
".",
"listdir",
"(",
"os",
".",
"path",
".",
"join",
"(",
"path",
",",
"cat",
")",
")",
":",
"files",
".",
"append",
"(",
"os",
".",
"path",
".",
"join",
"(",
"path",
",",
"cat",
",",
"name",
")",
")",
"target",
".",
"append",
"(",
"cat",
")",
"with",
"open",
"(",
"os",
".",
"path",
".",
"join",
"(",
"path",
",",
"cat",
",",
"name",
")",
",",
"'r'",
")",
"as",
"f",
":",
"data",
".",
"append",
"(",
"f",
".",
"read",
"(",
")",
")",
"# Return the data bunch for use similar to the newsgroups example",
"return",
"Bunch",
"(",
"categories",
"=",
"categories",
",",
"files",
"=",
"files",
",",
"data",
"=",
"data",
",",
"target",
"=",
"target",
",",
")"
] | [
16,
0
] | [
60,
5
] | python | en | ['en', 'error', 'th'] | False |
HTMLCorpusReader.__init__ | (self, root, fileids=DOC_PATTERN, encoding='utf8',
tags=TAGS, **kwargs) |
Initialize the corpus reader. Categorization arguments
(``cat_pattern``, ``cat_map``, and ``cat_file``) are passed to
the ``CategorizedCorpusReader`` constructor. The remaining
arguments are passed to the ``CorpusReader`` constructor.
|
Initialize the corpus reader. Categorization arguments
(``cat_pattern``, ``cat_map``, and ``cat_file``) are passed to
the ``CategorizedCorpusReader`` constructor. The remaining
arguments are passed to the ``CorpusReader`` constructor.
| def __init__(self, root, fileids=DOC_PATTERN, encoding='utf8',
tags=TAGS, **kwargs):
"""
Initialize the corpus reader. Categorization arguments
(``cat_pattern``, ``cat_map``, and ``cat_file``) are passed to
the ``CategorizedCorpusReader`` constructor. The remaining
arguments are passed to the ``CorpusReader`` constructor.
"""
# Add the default category pattern if not passed into the class.
if not any(key.startswith('cat_') for key in kwargs.keys()):
kwargs['cat_pattern'] = CAT_PATTERN
# Initialize the NLTK corpus reader objects
CategorizedCorpusReader.__init__(self, kwargs)
CorpusReader.__init__(self, root, fileids, encoding)
# Save the tags that we specifically want to extract.
self.tags = tags | [
"def",
"__init__",
"(",
"self",
",",
"root",
",",
"fileids",
"=",
"DOC_PATTERN",
",",
"encoding",
"=",
"'utf8'",
",",
"tags",
"=",
"TAGS",
",",
"*",
"*",
"kwargs",
")",
":",
"# Add the default category pattern if not passed into the class.",
"if",
"not",
"any",
"(",
"key",
".",
"startswith",
"(",
"'cat_'",
")",
"for",
"key",
"in",
"kwargs",
".",
"keys",
"(",
")",
")",
":",
"kwargs",
"[",
"'cat_pattern'",
"]",
"=",
"CAT_PATTERN",
"# Initialize the NLTK corpus reader objects",
"CategorizedCorpusReader",
".",
"__init__",
"(",
"self",
",",
"kwargs",
")",
"CorpusReader",
".",
"__init__",
"(",
"self",
",",
"root",
",",
"fileids",
",",
"encoding",
")",
"# Save the tags that we specifically want to extract.",
"self",
".",
"tags",
"=",
"tags"
] | [
30,
4
] | [
47,
24
] | python | en | ['en', 'error', 'th'] | False |
HTMLCorpusReader.resolve | (self, fileids, categories) |
Returns a list of fileids or categories depending on what is passed
to each internal corpus reader function. Implemented similarly to
the NLTK ``CategorizedPlaintextCorpusReader``.
|
Returns a list of fileids or categories depending on what is passed
to each internal corpus reader function. Implemented similarly to
the NLTK ``CategorizedPlaintextCorpusReader``.
| def resolve(self, fileids, categories):
"""
Returns a list of fileids or categories depending on what is passed
to each internal corpus reader function. Implemented similarly to
the NLTK ``CategorizedPlaintextCorpusReader``.
"""
if fileids is not None and categories is not None:
raise ValueError("Specify fileids or categories, not both")
if categories is not None:
return self.fileids(categories)
return fileids | [
"def",
"resolve",
"(",
"self",
",",
"fileids",
",",
"categories",
")",
":",
"if",
"fileids",
"is",
"not",
"None",
"and",
"categories",
"is",
"not",
"None",
":",
"raise",
"ValueError",
"(",
"\"Specify fileids or categories, not both\"",
")",
"if",
"categories",
"is",
"not",
"None",
":",
"return",
"self",
".",
"fileids",
"(",
"categories",
")",
"return",
"fileids"
] | [
49,
4
] | [
60,
22
] | python | en | ['en', 'error', 'th'] | False |
HTMLCorpusReader.docs | (self, fileids=None, categories=None) |
Returns the complete text of an HTML document, closing the document
after we are done reading it and yielding it in a memory safe fashion.
|
Returns the complete text of an HTML document, closing the document
after we are done reading it and yielding it in a memory safe fashion.
| def docs(self, fileids=None, categories=None):
"""
Returns the complete text of an HTML document, closing the document
after we are done reading it and yielding it in a memory safe fashion.
"""
# Resolve the fileids and the categories
fileids = self.resolve(fileids, categories)
# Create a generator, loading one document into memory at a time.
for path, encoding in self.abspaths(fileids, include_encoding=True):
with codecs.open(path, 'r', encoding=encoding) as f:
yield f.read() | [
"def",
"docs",
"(",
"self",
",",
"fileids",
"=",
"None",
",",
"categories",
"=",
"None",
")",
":",
"# Resolve the fileids and the categories",
"fileids",
"=",
"self",
".",
"resolve",
"(",
"fileids",
",",
"categories",
")",
"# Create a generator, loading one document into memory at a time.",
"for",
"path",
",",
"encoding",
"in",
"self",
".",
"abspaths",
"(",
"fileids",
",",
"include_encoding",
"=",
"True",
")",
":",
"with",
"codecs",
".",
"open",
"(",
"path",
",",
"'r'",
",",
"encoding",
"=",
"encoding",
")",
"as",
"f",
":",
"yield",
"f",
".",
"read",
"(",
")"
] | [
62,
4
] | [
73,
30
] | python | en | ['en', 'error', 'th'] | False |
HTMLCorpusReader.sizes | (self, fileids=None, categories=None) |
Returns a list of tuples, the fileid and size on disk of the file.
This function is used to detect oddly large files in the corpus.
|
Returns a list of tuples, the fileid and size on disk of the file.
This function is used to detect oddly large files in the corpus.
| def sizes(self, fileids=None, categories=None):
"""
Returns a list of tuples, the fileid and size on disk of the file.
This function is used to detect oddly large files in the corpus.
"""
# Resolve the fileids and the categories
fileids = self.resolve(fileids, categories)
# Create a generator, getting every path and computing filesize
for path in self.abspaths(fileids):
yield os.path.getsize(path) | [
"def",
"sizes",
"(",
"self",
",",
"fileids",
"=",
"None",
",",
"categories",
"=",
"None",
")",
":",
"# Resolve the fileids and the categories",
"fileids",
"=",
"self",
".",
"resolve",
"(",
"fileids",
",",
"categories",
")",
"# Create a generator, getting every path and computing filesize",
"for",
"path",
"in",
"self",
".",
"abspaths",
"(",
"fileids",
")",
":",
"yield",
"os",
".",
"path",
".",
"getsize",
"(",
"path",
")"
] | [
75,
4
] | [
85,
39
] | python | en | ['en', 'error', 'th'] | False |
HTMLCorpusReader.html | (self, fileids=None, categories=None) |
Returns the HTML content of each document, cleaning it using
the readability-lxml library.
|
Returns the HTML content of each document, cleaning it using
the readability-lxml library.
| def html(self, fileids=None, categories=None):
"""
Returns the HTML content of each document, cleaning it using
the readability-lxml library.
"""
for doc in self.docs(fileids, categories):
try:
yield Paper(doc).summary()
except Unparseable as e:
print("Could not parse HTML: {}".format(e))
continue | [
"def",
"html",
"(",
"self",
",",
"fileids",
"=",
"None",
",",
"categories",
"=",
"None",
")",
":",
"for",
"doc",
"in",
"self",
".",
"docs",
"(",
"fileids",
",",
"categories",
")",
":",
"try",
":",
"yield",
"Paper",
"(",
"doc",
")",
".",
"summary",
"(",
")",
"except",
"Unparseable",
"as",
"e",
":",
"print",
"(",
"\"Could not parse HTML: {}\"",
".",
"format",
"(",
"e",
")",
")",
"continue"
] | [
87,
4
] | [
97,
24
] | python | en | ['en', 'error', 'th'] | False |
HTMLCorpusReader.paras | (self, fileids=None, categories=None) |
Uses BeautifulSoup to parse the paragraphs from the HTML.
|
Uses BeautifulSoup to parse the paragraphs from the HTML.
| def paras(self, fileids=None, categories=None):
"""
Uses BeautifulSoup to parse the paragraphs from the HTML.
"""
for html in self.html(fileids, categories):
soup = bs4.BeautifulSoup(html, 'lxml')
for element in soup.find_all(self.tags):
yield element.text
soup.decompose() | [
"def",
"paras",
"(",
"self",
",",
"fileids",
"=",
"None",
",",
"categories",
"=",
"None",
")",
":",
"for",
"html",
"in",
"self",
".",
"html",
"(",
"fileids",
",",
"categories",
")",
":",
"soup",
"=",
"bs4",
".",
"BeautifulSoup",
"(",
"html",
",",
"'lxml'",
")",
"for",
"element",
"in",
"soup",
".",
"find_all",
"(",
"self",
".",
"tags",
")",
":",
"yield",
"element",
".",
"text",
"soup",
".",
"decompose",
"(",
")"
] | [
99,
4
] | [
107,
28
] | python | en | ['en', 'error', 'th'] | False |
HTMLCorpusReader.sents | (self, fileids=None, categories=None) |
Uses the built in sentence tokenizer to extract sentences from the
paragraphs. Note that this method uses BeautifulSoup to parse HTML.
|
Uses the built in sentence tokenizer to extract sentences from the
paragraphs. Note that this method uses BeautifulSoup to parse HTML.
| def sents(self, fileids=None, categories=None):
"""
Uses the built in sentence tokenizer to extract sentences from the
paragraphs. Note that this method uses BeautifulSoup to parse HTML.
"""
for paragraph in self.paras(fileids, categories):
for sentence in sent_tokenize(paragraph):
yield sentence | [
"def",
"sents",
"(",
"self",
",",
"fileids",
"=",
"None",
",",
"categories",
"=",
"None",
")",
":",
"for",
"paragraph",
"in",
"self",
".",
"paras",
"(",
"fileids",
",",
"categories",
")",
":",
"for",
"sentence",
"in",
"sent_tokenize",
"(",
"paragraph",
")",
":",
"yield",
"sentence"
] | [
109,
4
] | [
116,
30
] | python | en | ['en', 'error', 'th'] | False |
HTMLCorpusReader.words | (self, fileids=None, categories=None) |
Uses the built in word tokenizer to extract tokens from sentences.
Note that this method uses BeautifulSoup to parse HTML content.
|
Uses the built in word tokenizer to extract tokens from sentences.
Note that this method uses BeautifulSoup to parse HTML content.
| def words(self, fileids=None, categories=None):
"""
Uses the built in word tokenizer to extract tokens from sentences.
Note that this method uses BeautifulSoup to parse HTML content.
"""
for sentence in self.sents(fileids, categories):
for token in wordpunct_tokenize(sentence):
yield token | [
"def",
"words",
"(",
"self",
",",
"fileids",
"=",
"None",
",",
"categories",
"=",
"None",
")",
":",
"for",
"sentence",
"in",
"self",
".",
"sents",
"(",
"fileids",
",",
"categories",
")",
":",
"for",
"token",
"in",
"wordpunct_tokenize",
"(",
"sentence",
")",
":",
"yield",
"token"
] | [
118,
4
] | [
125,
27
] | python | en | ['en', 'error', 'th'] | False |
HTMLCorpusReader.tokenize | (self, fileids=None, categories=None) |
Segments, tokenizes, and tags a document in the corpus.
|
Segments, tokenizes, and tags a document in the corpus.
| def tokenize(self, fileids=None, categories=None):
"""
Segments, tokenizes, and tags a document in the corpus.
"""
for paragraph in self.paras(fileids, categories):
yield [
pos_tag(wordpunct_tokenize(sent))
for sent in sent_tokenize(paragraph)
] | [
"def",
"tokenize",
"(",
"self",
",",
"fileids",
"=",
"None",
",",
"categories",
"=",
"None",
")",
":",
"for",
"paragraph",
"in",
"self",
".",
"paras",
"(",
"fileids",
",",
"categories",
")",
":",
"yield",
"[",
"pos_tag",
"(",
"wordpunct_tokenize",
"(",
"sent",
")",
")",
"for",
"sent",
"in",
"sent_tokenize",
"(",
"paragraph",
")",
"]"
] | [
127,
4
] | [
135,
13
] | python | en | ['en', 'error', 'th'] | False |
HTMLCorpusReader.describe | (self, fileids=None, categories=None) |
Performs a single pass of the corpus and
returns a dictionary with a variety of metrics
concerning the state of the corpus.
|
Performs a single pass of the corpus and
returns a dictionary with a variety of metrics
concerning the state of the corpus.
| def describe(self, fileids=None, categories=None):
"""
Performs a single pass of the corpus and
returns a dictionary with a variety of metrics
concerning the state of the corpus.
"""
started = time.time()
# Structures to perform counting.
counts = nltk.FreqDist()
tokens = nltk.FreqDist()
# Perform single pass over paragraphs, tokenize and count
for para in self.paras(fileids, categories):
counts['paras'] += 1
for sent in sent_tokenize(para):
counts['sents'] += 1
for word in wordpunct_tokenize(sent):
counts['words'] += 1
tokens[word] += 1
# Compute the number of files and categories in the corpus
n_fileids = len(self.resolve(fileids, categories) or self.fileids())
n_topics = len(self.categories(self.resolve(fileids, categories)))
# Return data structure with information
return {
'files': n_fileids,
'topics': n_topics,
'paras': counts['paras'],
'sents': counts['sents'],
'words': counts['words'],
'vocab': len(tokens),
'lexdiv': float(counts['words']) / float(len(tokens)),
'ppdoc': float(counts['paras']) / float(n_fileids),
'sppar': float(counts['sents']) / float(counts['paras']),
'secs': time.time() - started,
} | [
"def",
"describe",
"(",
"self",
",",
"fileids",
"=",
"None",
",",
"categories",
"=",
"None",
")",
":",
"started",
"=",
"time",
".",
"time",
"(",
")",
"# Structures to perform counting.",
"counts",
"=",
"nltk",
".",
"FreqDist",
"(",
")",
"tokens",
"=",
"nltk",
".",
"FreqDist",
"(",
")",
"# Perform single pass over paragraphs, tokenize and count",
"for",
"para",
"in",
"self",
".",
"paras",
"(",
"fileids",
",",
"categories",
")",
":",
"counts",
"[",
"'paras'",
"]",
"+=",
"1",
"for",
"sent",
"in",
"sent_tokenize",
"(",
"para",
")",
":",
"counts",
"[",
"'sents'",
"]",
"+=",
"1",
"for",
"word",
"in",
"wordpunct_tokenize",
"(",
"sent",
")",
":",
"counts",
"[",
"'words'",
"]",
"+=",
"1",
"tokens",
"[",
"word",
"]",
"+=",
"1",
"# Compute the number of files and categories in the corpus",
"n_fileids",
"=",
"len",
"(",
"self",
".",
"resolve",
"(",
"fileids",
",",
"categories",
")",
"or",
"self",
".",
"fileids",
"(",
")",
")",
"n_topics",
"=",
"len",
"(",
"self",
".",
"categories",
"(",
"self",
".",
"resolve",
"(",
"fileids",
",",
"categories",
")",
")",
")",
"# Return data structure with information",
"return",
"{",
"'files'",
":",
"n_fileids",
",",
"'topics'",
":",
"n_topics",
",",
"'paras'",
":",
"counts",
"[",
"'paras'",
"]",
",",
"'sents'",
":",
"counts",
"[",
"'sents'",
"]",
",",
"'words'",
":",
"counts",
"[",
"'words'",
"]",
",",
"'vocab'",
":",
"len",
"(",
"tokens",
")",
",",
"'lexdiv'",
":",
"float",
"(",
"counts",
"[",
"'words'",
"]",
")",
"/",
"float",
"(",
"len",
"(",
"tokens",
")",
")",
",",
"'ppdoc'",
":",
"float",
"(",
"counts",
"[",
"'paras'",
"]",
")",
"/",
"float",
"(",
"n_fileids",
")",
",",
"'sppar'",
":",
"float",
"(",
"counts",
"[",
"'sents'",
"]",
")",
"/",
"float",
"(",
"counts",
"[",
"'paras'",
"]",
")",
",",
"'secs'",
":",
"time",
".",
"time",
"(",
")",
"-",
"started",
",",
"}"
] | [
137,
4
] | [
176,
9
] | python | en | ['en', 'error', 'th'] | False |
PickledCorpusReader.__init__ | (self, root, fileids=PKL_PATTERN, **kwargs) |
Initialize the corpus reader. Categorization arguments
(``cat_pattern``, ``cat_map``, and ``cat_file``) are passed to
the ``CategorizedCorpusReader`` constructor. The remaining arguments
are passed to the ``CorpusReader`` constructor.
|
Initialize the corpus reader. Categorization arguments
(``cat_pattern``, ``cat_map``, and ``cat_file``) are passed to
the ``CategorizedCorpusReader`` constructor. The remaining arguments
are passed to the ``CorpusReader`` constructor.
| def __init__(self, root, fileids=PKL_PATTERN, **kwargs):
"""
Initialize the corpus reader. Categorization arguments
(``cat_pattern``, ``cat_map``, and ``cat_file``) are passed to
the ``CategorizedCorpusReader`` constructor. The remaining arguments
are passed to the ``CorpusReader`` constructor.
"""
# Add the default category pattern if not passed into the class.
if not any(key.startswith('cat_') for key in kwargs.keys()):
kwargs['cat_pattern'] = CAT_PATTERN
CategorizedCorpusReader.__init__(self, kwargs)
CorpusReader.__init__(self, root, fileids) | [
"def",
"__init__",
"(",
"self",
",",
"root",
",",
"fileids",
"=",
"PKL_PATTERN",
",",
"*",
"*",
"kwargs",
")",
":",
"# Add the default category pattern if not passed into the class.",
"if",
"not",
"any",
"(",
"key",
".",
"startswith",
"(",
"'cat_'",
")",
"for",
"key",
"in",
"kwargs",
".",
"keys",
"(",
")",
")",
":",
"kwargs",
"[",
"'cat_pattern'",
"]",
"=",
"CAT_PATTERN",
"CategorizedCorpusReader",
".",
"__init__",
"(",
"self",
",",
"kwargs",
")",
"CorpusReader",
".",
"__init__",
"(",
"self",
",",
"root",
",",
"fileids",
")"
] | [
181,
4
] | [
193,
50
] | python | en | ['en', 'error', 'th'] | False |
PickledCorpusReader.resolve | (self, fileids, categories) |
Returns a list of fileids or categories depending on what is passed
to each internal corpus reader function. This primarily bubbles up to
the high level ``docs`` method, but is implemented here similar to
the nltk ``CategorizedPlaintextCorpusReader``.
|
Returns a list of fileids or categories depending on what is passed
to each internal corpus reader function. This primarily bubbles up to
the high level ``docs`` method, but is implemented here similar to
the nltk ``CategorizedPlaintextCorpusReader``.
| def resolve(self, fileids, categories):
"""
Returns a list of fileids or categories depending on what is passed
to each internal corpus reader function. This primarily bubbles up to
the high level ``docs`` method, but is implemented here similar to
the nltk ``CategorizedPlaintextCorpusReader``.
"""
if fileids is not None and categories is not None:
raise ValueError("Specify fileids or categories, not both")
if categories is not None:
return self.fileids(categories)
return fileids | [
"def",
"resolve",
"(",
"self",
",",
"fileids",
",",
"categories",
")",
":",
"if",
"fileids",
"is",
"not",
"None",
"and",
"categories",
"is",
"not",
"None",
":",
"raise",
"ValueError",
"(",
"\"Specify fileids or categories, not both\"",
")",
"if",
"categories",
"is",
"not",
"None",
":",
"return",
"self",
".",
"fileids",
"(",
"categories",
")",
"return",
"fileids"
] | [
195,
4
] | [
207,
22
] | python | en | ['en', 'error', 'th'] | False |
PickledCorpusReader.docs | (self, fileids=None, categories=None) |
Returns the document loaded from a pickled object for every file in
the corpus. Similar to the BaleenCorpusReader, this uses a generator
to acheive memory safe iteration.
|
Returns the document loaded from a pickled object for every file in
the corpus. Similar to the BaleenCorpusReader, this uses a generator
to acheive memory safe iteration.
| def docs(self, fileids=None, categories=None):
"""
Returns the document loaded from a pickled object for every file in
the corpus. Similar to the BaleenCorpusReader, this uses a generator
to acheive memory safe iteration.
"""
# Resolve the fileids and the categories
fileids = self.resolve(fileids, categories)
# Create a generator, loading one document into memory at a time.
for path, enc, fileid in self.abspaths(fileids, True, True):
with open(path, 'rb') as f:
yield pickle.load(f) | [
"def",
"docs",
"(",
"self",
",",
"fileids",
"=",
"None",
",",
"categories",
"=",
"None",
")",
":",
"# Resolve the fileids and the categories",
"fileids",
"=",
"self",
".",
"resolve",
"(",
"fileids",
",",
"categories",
")",
"# Create a generator, loading one document into memory at a time.",
"for",
"path",
",",
"enc",
",",
"fileid",
"in",
"self",
".",
"abspaths",
"(",
"fileids",
",",
"True",
",",
"True",
")",
":",
"with",
"open",
"(",
"path",
",",
"'rb'",
")",
"as",
"f",
":",
"yield",
"pickle",
".",
"load",
"(",
"f",
")"
] | [
209,
4
] | [
221,
36
] | python | en | ['en', 'error', 'th'] | False |
PickledCorpusReader.paras | (self, fileids=None, categories=None) |
Returns a generator of paragraphs where each paragraph is a list of
sentences, which is in turn a list of (token, tag) tuples.
|
Returns a generator of paragraphs where each paragraph is a list of
sentences, which is in turn a list of (token, tag) tuples.
| def paras(self, fileids=None, categories=None):
"""
Returns a generator of paragraphs where each paragraph is a list of
sentences, which is in turn a list of (token, tag) tuples.
"""
for doc in self.docs(fileids, categories):
for paragraph in doc:
yield paragraph | [
"def",
"paras",
"(",
"self",
",",
"fileids",
"=",
"None",
",",
"categories",
"=",
"None",
")",
":",
"for",
"doc",
"in",
"self",
".",
"docs",
"(",
"fileids",
",",
"categories",
")",
":",
"for",
"paragraph",
"in",
"doc",
":",
"yield",
"paragraph"
] | [
223,
4
] | [
230,
31
] | python | en | ['en', 'error', 'th'] | False |
PickledCorpusReader.sents | (self, fileids=None, categories=None) |
Returns a generator of sentences where each sentence is a list of
(token, tag) tuples.
|
Returns a generator of sentences where each sentence is a list of
(token, tag) tuples.
| def sents(self, fileids=None, categories=None):
"""
Returns a generator of sentences where each sentence is a list of
(token, tag) tuples.
"""
for paragraph in self.paras(fileids, categories):
for sentence in paragraph:
yield sentence | [
"def",
"sents",
"(",
"self",
",",
"fileids",
"=",
"None",
",",
"categories",
"=",
"None",
")",
":",
"for",
"paragraph",
"in",
"self",
".",
"paras",
"(",
"fileids",
",",
"categories",
")",
":",
"for",
"sentence",
"in",
"paragraph",
":",
"yield",
"sentence"
] | [
232,
4
] | [
239,
30
] | python | en | ['en', 'error', 'th'] | False |
PickledCorpusReader.words | (self, fileids=None, categories=None) |
Returns a generator of (token, tag) tuples.
|
Returns a generator of (token, tag) tuples.
| def words(self, fileids=None, categories=None):
"""
Returns a generator of (token, tag) tuples.
"""
for token in self.tagged(fileids, categories):
yield token[0] | [
"def",
"words",
"(",
"self",
",",
"fileids",
"=",
"None",
",",
"categories",
"=",
"None",
")",
":",
"for",
"token",
"in",
"self",
".",
"tagged",
"(",
"fileids",
",",
"categories",
")",
":",
"yield",
"token",
"[",
"0",
"]"
] | [
246,
4
] | [
251,
26
] | python | en | ['en', 'error', 'th'] | False |
conv2d | (x_input, w_matrix) | conv2d returns a 2d convolution layer with full stride. | conv2d returns a 2d convolution layer with full stride. | def conv2d(x_input, w_matrix):
"""conv2d returns a 2d convolution layer with full stride."""
return tf.nn.conv2d(x_input, w_matrix, strides=[1, 1, 1, 1], padding='SAME'
) | [
"def",
"conv2d",
"(",
"x_input",
",",
"w_matrix",
")",
":",
"return",
"tf",
".",
"nn",
".",
"conv2d",
"(",
"x_input",
",",
"w_matrix",
",",
"strides",
"=",
"[",
"1",
",",
"1",
",",
"1",
",",
"1",
"]",
",",
"padding",
"=",
"'SAME'",
")"
] | [
104,
0
] | [
107,
9
] | python | en | ['en', 'en', 'en'] | True |
max_pool | (x_input, pool_size) | max_pool downsamples a feature map by 2X. | max_pool downsamples a feature map by 2X. | def max_pool(x_input, pool_size):
"""max_pool downsamples a feature map by 2X."""
return tf.nn.max_pool(x_input, ksize=[1, pool_size, pool_size, 1],
strides=[1, pool_size, pool_size, 1], padding='SAME') | [
"def",
"max_pool",
"(",
"x_input",
",",
"pool_size",
")",
":",
"return",
"tf",
".",
"nn",
".",
"max_pool",
"(",
"x_input",
",",
"ksize",
"=",
"[",
"1",
",",
"pool_size",
",",
"pool_size",
",",
"1",
"]",
",",
"strides",
"=",
"[",
"1",
",",
"pool_size",
",",
"pool_size",
",",
"1",
"]",
",",
"padding",
"=",
"'SAME'",
")"
] | [
110,
0
] | [
113,
61
] | python | en | ['en', 'en', 'en'] | True |
weight_variable | (shape) | weight_variable generates a weight variable of a given shape. | weight_variable generates a weight variable of a given shape. | def weight_variable(shape):
"""weight_variable generates a weight variable of a given shape."""
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) | [
"def",
"weight_variable",
"(",
"shape",
")",
":",
"initial",
"=",
"tf",
".",
"truncated_normal",
"(",
"shape",
",",
"stddev",
"=",
"0.1",
")",
"return",
"tf",
".",
"Variable",
"(",
"initial",
")"
] | [
121,
0
] | [
124,
31
] | python | en | ['en', 'en', 'en'] | True |
bias_variable | (shape) | bias_variable generates a bias variable of a given shape. | bias_variable generates a bias variable of a given shape. | def bias_variable(shape):
"""bias_variable generates a bias variable of a given shape."""
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) | [
"def",
"bias_variable",
"(",
"shape",
")",
":",
"initial",
"=",
"tf",
".",
"constant",
"(",
"0.1",
",",
"shape",
"=",
"shape",
")",
"return",
"tf",
".",
"Variable",
"(",
"initial",
")"
] | [
127,
0
] | [
130,
31
] | python | en | ['en', 'en', 'en'] | True |
download_mnist_retry | (data_dir, max_num_retries=20) | Try to download mnist dataset and avoid errors | Try to download mnist dataset and avoid errors | def download_mnist_retry(data_dir, max_num_retries=20):
"""Try to download mnist dataset and avoid errors"""
for _ in range(max_num_retries):
try:
return input_data.read_data_sets(data_dir, one_hot=True)
except tf.errors.AlreadyExistsError:
time.sleep(1)
raise Exception("Failed to download MNIST.") | [
"def",
"download_mnist_retry",
"(",
"data_dir",
",",
"max_num_retries",
"=",
"20",
")",
":",
"for",
"_",
"in",
"range",
"(",
"max_num_retries",
")",
":",
"try",
":",
"return",
"input_data",
".",
"read_data_sets",
"(",
"data_dir",
",",
"one_hot",
"=",
"True",
")",
"except",
"tf",
".",
"errors",
".",
"AlreadyExistsError",
":",
"time",
".",
"sleep",
"(",
"1",
")",
"raise",
"Exception",
"(",
"\"Failed to download MNIST.\"",
")"
] | [
132,
0
] | [
139,
48
] | python | en | ['en', 'en', 'en'] | True |
main | (params) |
Main function, build mnist network, run and send result to NNI.
|
Main function, build mnist network, run and send result to NNI.
| def main(params):
"""
Main function, build mnist network, run and send result to NNI.
""" | [
"def",
"main",
"(",
"params",
")",
":"
] | [
141,
0
] | [
144,
7
] | python | en | ['en', 'error', 'th'] | False |
generate_defualt_params | () |
Generate default parameters for mnist network.
|
Generate default parameters for mnist network.
| def generate_defualt_params():
"""
Generate default parameters for mnist network.
"""
params = {'data_dir': '/tmp/tensorflow/mnist/input_data',
'dropout_rate': 0.5, 'channel_1_num': 32, 'channel_2_num': 64,
'conv_size': 5, 'pool_size': 2, 'hidden_size': 1024,
'learning_rate': 0.0001, 'batch_num': 200}
return params | [
"def",
"generate_defualt_params",
"(",
")",
":",
"params",
"=",
"{",
"'data_dir'",
":",
"'/tmp/tensorflow/mnist/input_data'",
",",
"'dropout_rate'",
":",
"0.5",
",",
"'channel_1_num'",
":",
"32",
",",
"'channel_2_num'",
":",
"64",
",",
"'conv_size'",
":",
"5",
",",
"'pool_size'",
":",
"2",
",",
"'hidden_size'",
":",
"1024",
",",
"'learning_rate'",
":",
"0.0001",
",",
"'batch_num'",
":",
"200",
"}",
"return",
"params"
] | [
186,
0
] | [
194,
17
] | python | en | ['en', 'error', 'th'] | False |
MnistNetwork.build_network | (self) |
Building network for mnist
|
Building network for mnist
| def build_network(self):
"""
Building network for mnist
"""
with tf.name_scope('reshape'):
try:
input_dim = int(math.sqrt(self.x_dim))
except:
print('input dim cannot be sqrt and reshape. input dim: ' +
str(self.x_dim))
logger.debug(
'input dim cannot be sqrt and reshape. input dim: %s',
str(self.x_dim))
raise
x_image = tf.reshape(self.images, [-1, input_dim, input_dim, 1])
with tf.name_scope('conv1'):
w_conv1 = weight_variable([self.conv_size, self.conv_size, 1,
self.channel_1_num])
b_conv1 = bias_variable([self.channel_1_num])
h_conv1 = nni.function_choice(lambda : tf.nn.relu(conv2d(
x_image, w_conv1) + b_conv1), lambda : tf.nn.sigmoid(conv2d
(x_image, w_conv1) + b_conv1), lambda : tf.nn.tanh(conv2d(
x_image, w_conv1) + b_conv1), name='tf.nn.relu')
with tf.name_scope('pool1'):
h_pool1 = nni.function_choice(lambda : max_pool(h_conv1, self.
pool_size), lambda : avg_pool(h_conv1, self.pool_size),
name='max_pool')
with tf.name_scope('conv2'):
w_conv2 = weight_variable([self.conv_size, self.conv_size, self
.channel_1_num, self.channel_2_num])
b_conv2 = bias_variable([self.channel_2_num])
h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)
with tf.name_scope('pool2'):
h_pool2 = max_pool(h_conv2, self.pool_size)
last_dim = int(input_dim / (self.pool_size * self.pool_size))
with tf.name_scope('fc1'):
w_fc1 = weight_variable([last_dim * last_dim * self.
channel_2_num, self.hidden_size])
b_fc1 = bias_variable([self.hidden_size])
h_pool2_flat = tf.reshape(h_pool2, [-1, last_dim * last_dim * self.
channel_2_num])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)
with tf.name_scope('dropout'):
h_fc1_drop = tf.nn.dropout(h_fc1, self.keep_prob)
with tf.name_scope('fc2'):
w_fc2 = weight_variable([self.hidden_size, self.y_dim])
b_fc2 = bias_variable([self.y_dim])
y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2
with tf.name_scope('loss'):
cross_entropy = tf.reduce_mean(tf.nn.
softmax_cross_entropy_with_logits(labels=self.labels,
logits=y_conv))
with tf.name_scope('adam_optimizer'):
self.train_step = tf.train.AdamOptimizer(self.learning_rate
).minimize(cross_entropy)
with tf.name_scope('accuracy'):
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(
self.labels, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.
float32)) | [
"def",
"build_network",
"(",
"self",
")",
":",
"with",
"tf",
".",
"name_scope",
"(",
"'reshape'",
")",
":",
"try",
":",
"input_dim",
"=",
"int",
"(",
"math",
".",
"sqrt",
"(",
"self",
".",
"x_dim",
")",
")",
"except",
":",
"print",
"(",
"'input dim cannot be sqrt and reshape. input dim: '",
"+",
"str",
"(",
"self",
".",
"x_dim",
")",
")",
"logger",
".",
"debug",
"(",
"'input dim cannot be sqrt and reshape. input dim: %s'",
",",
"str",
"(",
"self",
".",
"x_dim",
")",
")",
"raise",
"x_image",
"=",
"tf",
".",
"reshape",
"(",
"self",
".",
"images",
",",
"[",
"-",
"1",
",",
"input_dim",
",",
"input_dim",
",",
"1",
"]",
")",
"with",
"tf",
".",
"name_scope",
"(",
"'conv1'",
")",
":",
"w_conv1",
"=",
"weight_variable",
"(",
"[",
"self",
".",
"conv_size",
",",
"self",
".",
"conv_size",
",",
"1",
",",
"self",
".",
"channel_1_num",
"]",
")",
"b_conv1",
"=",
"bias_variable",
"(",
"[",
"self",
".",
"channel_1_num",
"]",
")",
"h_conv1",
"=",
"nni",
".",
"function_choice",
"(",
"lambda",
":",
"tf",
".",
"nn",
".",
"relu",
"(",
"conv2d",
"(",
"x_image",
",",
"w_conv1",
")",
"+",
"b_conv1",
")",
",",
"lambda",
":",
"tf",
".",
"nn",
".",
"sigmoid",
"(",
"conv2d",
"(",
"x_image",
",",
"w_conv1",
")",
"+",
"b_conv1",
")",
",",
"lambda",
":",
"tf",
".",
"nn",
".",
"tanh",
"(",
"conv2d",
"(",
"x_image",
",",
"w_conv1",
")",
"+",
"b_conv1",
")",
",",
"name",
"=",
"'tf.nn.relu'",
")",
"with",
"tf",
".",
"name_scope",
"(",
"'pool1'",
")",
":",
"h_pool1",
"=",
"nni",
".",
"function_choice",
"(",
"lambda",
":",
"max_pool",
"(",
"h_conv1",
",",
"self",
".",
"pool_size",
")",
",",
"lambda",
":",
"avg_pool",
"(",
"h_conv1",
",",
"self",
".",
"pool_size",
")",
",",
"name",
"=",
"'max_pool'",
")",
"with",
"tf",
".",
"name_scope",
"(",
"'conv2'",
")",
":",
"w_conv2",
"=",
"weight_variable",
"(",
"[",
"self",
".",
"conv_size",
",",
"self",
".",
"conv_size",
",",
"self",
".",
"channel_1_num",
",",
"self",
".",
"channel_2_num",
"]",
")",
"b_conv2",
"=",
"bias_variable",
"(",
"[",
"self",
".",
"channel_2_num",
"]",
")",
"h_conv2",
"=",
"tf",
".",
"nn",
".",
"relu",
"(",
"conv2d",
"(",
"h_pool1",
",",
"w_conv2",
")",
"+",
"b_conv2",
")",
"with",
"tf",
".",
"name_scope",
"(",
"'pool2'",
")",
":",
"h_pool2",
"=",
"max_pool",
"(",
"h_conv2",
",",
"self",
".",
"pool_size",
")",
"last_dim",
"=",
"int",
"(",
"input_dim",
"/",
"(",
"self",
".",
"pool_size",
"*",
"self",
".",
"pool_size",
")",
")",
"with",
"tf",
".",
"name_scope",
"(",
"'fc1'",
")",
":",
"w_fc1",
"=",
"weight_variable",
"(",
"[",
"last_dim",
"*",
"last_dim",
"*",
"self",
".",
"channel_2_num",
",",
"self",
".",
"hidden_size",
"]",
")",
"b_fc1",
"=",
"bias_variable",
"(",
"[",
"self",
".",
"hidden_size",
"]",
")",
"h_pool2_flat",
"=",
"tf",
".",
"reshape",
"(",
"h_pool2",
",",
"[",
"-",
"1",
",",
"last_dim",
"*",
"last_dim",
"*",
"self",
".",
"channel_2_num",
"]",
")",
"h_fc1",
"=",
"tf",
".",
"nn",
".",
"relu",
"(",
"tf",
".",
"matmul",
"(",
"h_pool2_flat",
",",
"w_fc1",
")",
"+",
"b_fc1",
")",
"with",
"tf",
".",
"name_scope",
"(",
"'dropout'",
")",
":",
"h_fc1_drop",
"=",
"tf",
".",
"nn",
".",
"dropout",
"(",
"h_fc1",
",",
"self",
".",
"keep_prob",
")",
"with",
"tf",
".",
"name_scope",
"(",
"'fc2'",
")",
":",
"w_fc2",
"=",
"weight_variable",
"(",
"[",
"self",
".",
"hidden_size",
",",
"self",
".",
"y_dim",
"]",
")",
"b_fc2",
"=",
"bias_variable",
"(",
"[",
"self",
".",
"y_dim",
"]",
")",
"y_conv",
"=",
"tf",
".",
"matmul",
"(",
"h_fc1_drop",
",",
"w_fc2",
")",
"+",
"b_fc2",
"with",
"tf",
".",
"name_scope",
"(",
"'loss'",
")",
":",
"cross_entropy",
"=",
"tf",
".",
"reduce_mean",
"(",
"tf",
".",
"nn",
".",
"softmax_cross_entropy_with_logits",
"(",
"labels",
"=",
"self",
".",
"labels",
",",
"logits",
"=",
"y_conv",
")",
")",
"with",
"tf",
".",
"name_scope",
"(",
"'adam_optimizer'",
")",
":",
"self",
".",
"train_step",
"=",
"tf",
".",
"train",
".",
"AdamOptimizer",
"(",
"self",
".",
"learning_rate",
")",
".",
"minimize",
"(",
"cross_entropy",
")",
"with",
"tf",
".",
"name_scope",
"(",
"'accuracy'",
")",
":",
"correct_prediction",
"=",
"tf",
".",
"equal",
"(",
"tf",
".",
"argmax",
"(",
"y_conv",
",",
"1",
")",
",",
"tf",
".",
"argmax",
"(",
"self",
".",
"labels",
",",
"1",
")",
")",
"self",
".",
"accuracy",
"=",
"tf",
".",
"reduce_mean",
"(",
"tf",
".",
"cast",
"(",
"correct_prediction",
",",
"tf",
".",
"float32",
")",
")"
] | [
42,
4
] | [
101,
25
] | python | en | ['en', 'error', 'th'] | False |
async_setup_platform | (hass, config, async_add_entities, discovery_info=None) | Set up an InComfort/InTouch climate device. | Set up an InComfort/InTouch climate device. | async def async_setup_platform(hass, config, async_add_entities, discovery_info=None):
"""Set up an InComfort/InTouch climate device."""
if discovery_info is None:
return
client = hass.data[DOMAIN]["client"]
heaters = hass.data[DOMAIN]["heaters"]
async_add_entities(
[InComfortClimate(client, h, r) for h in heaters for r in h.rooms]
) | [
"async",
"def",
"async_setup_platform",
"(",
"hass",
",",
"config",
",",
"async_add_entities",
",",
"discovery_info",
"=",
"None",
")",
":",
"if",
"discovery_info",
"is",
"None",
":",
"return",
"client",
"=",
"hass",
".",
"data",
"[",
"DOMAIN",
"]",
"[",
"\"client\"",
"]",
"heaters",
"=",
"hass",
".",
"data",
"[",
"DOMAIN",
"]",
"[",
"\"heaters\"",
"]",
"async_add_entities",
"(",
"[",
"InComfortClimate",
"(",
"client",
",",
"h",
",",
"r",
")",
"for",
"h",
"in",
"heaters",
"for",
"r",
"in",
"h",
".",
"rooms",
"]",
")"
] | [
13,
0
] | [
23,
5
] | python | en | ['en', 'en', 'en'] | True |
InComfortClimate.__init__ | (self, client, heater, room) | Initialize the climate device. | Initialize the climate device. | def __init__(self, client, heater, room) -> None:
"""Initialize the climate device."""
super().__init__()
self._unique_id = f"{heater.serial_no}_{room.room_no}"
self.entity_id = f"{CLIMATE_DOMAIN}.{DOMAIN}_{room.room_no}"
self._name = f"Thermostat {room.room_no}"
self._client = client
self._room = room | [
"def",
"__init__",
"(",
"self",
",",
"client",
",",
"heater",
",",
"room",
")",
"->",
"None",
":",
"super",
"(",
")",
".",
"__init__",
"(",
")",
"self",
".",
"_unique_id",
"=",
"f\"{heater.serial_no}_{room.room_no}\"",
"self",
".",
"entity_id",
"=",
"f\"{CLIMATE_DOMAIN}.{DOMAIN}_{room.room_no}\"",
"self",
".",
"_name",
"=",
"f\"Thermostat {room.room_no}\"",
"self",
".",
"_client",
"=",
"client",
"self",
".",
"_room",
"=",
"room"
] | [
29,
4
] | [
38,
25
] | python | en | ['en', 'en', 'en'] | True |
InComfortClimate.device_state_attributes | (self) | Return the device state attributes. | Return the device state attributes. | def device_state_attributes(self) -> Dict[str, Any]:
"""Return the device state attributes."""
return {"status": self._room.status} | [
"def",
"device_state_attributes",
"(",
"self",
")",
"->",
"Dict",
"[",
"str",
",",
"Any",
"]",
":",
"return",
"{",
"\"status\"",
":",
"self",
".",
"_room",
".",
"status",
"}"
] | [
41,
4
] | [
43,
44
] | python | en | ['en', 'en', 'en'] | True |
InComfortClimate.temperature_unit | (self) | Return the unit of measurement. | Return the unit of measurement. | def temperature_unit(self) -> str:
"""Return the unit of measurement."""
return TEMP_CELSIUS | [
"def",
"temperature_unit",
"(",
"self",
")",
"->",
"str",
":",
"return",
"TEMP_CELSIUS"
] | [
46,
4
] | [
48,
27
] | python | en | ['en', 'la', 'en'] | True |
InComfortClimate.hvac_mode | (self) | Return hvac operation ie. heat, cool mode. | Return hvac operation ie. heat, cool mode. | def hvac_mode(self) -> str:
"""Return hvac operation ie. heat, cool mode."""
return HVAC_MODE_HEAT | [
"def",
"hvac_mode",
"(",
"self",
")",
"->",
"str",
":",
"return",
"HVAC_MODE_HEAT"
] | [
51,
4
] | [
53,
29
] | python | bg | ['en', 'bg', 'bg'] | True |
InComfortClimate.hvac_modes | (self) | Return the list of available hvac operation modes. | Return the list of available hvac operation modes. | def hvac_modes(self) -> List[str]:
"""Return the list of available hvac operation modes."""
return [HVAC_MODE_HEAT] | [
"def",
"hvac_modes",
"(",
"self",
")",
"->",
"List",
"[",
"str",
"]",
":",
"return",
"[",
"HVAC_MODE_HEAT",
"]"
] | [
56,
4
] | [
58,
31
] | python | en | ['en', 'en', 'en'] | True |
InComfortClimate.current_temperature | (self) | Return the current temperature. | Return the current temperature. | def current_temperature(self) -> Optional[float]:
"""Return the current temperature."""
return self._room.room_temp | [
"def",
"current_temperature",
"(",
"self",
")",
"->",
"Optional",
"[",
"float",
"]",
":",
"return",
"self",
".",
"_room",
".",
"room_temp"
] | [
61,
4
] | [
63,
35
] | python | en | ['en', 'la', 'en'] | True |
InComfortClimate.target_temperature | (self) | Return the temperature we try to reach. | Return the temperature we try to reach. | def target_temperature(self) -> Optional[float]:
"""Return the temperature we try to reach."""
return self._room.setpoint | [
"def",
"target_temperature",
"(",
"self",
")",
"->",
"Optional",
"[",
"float",
"]",
":",
"return",
"self",
".",
"_room",
".",
"setpoint"
] | [
66,
4
] | [
68,
34
] | python | en | ['en', 'en', 'en'] | True |
InComfortClimate.supported_features | (self) | Return the list of supported features. | Return the list of supported features. | def supported_features(self) -> int:
"""Return the list of supported features."""
return SUPPORT_TARGET_TEMPERATURE | [
"def",
"supported_features",
"(",
"self",
")",
"->",
"int",
":",
"return",
"SUPPORT_TARGET_TEMPERATURE"
] | [
71,
4
] | [
73,
41
] | python | en | ['en', 'en', 'en'] | True |
InComfortClimate.min_temp | (self) | Return max valid temperature that can be set. | Return max valid temperature that can be set. | def min_temp(self) -> float:
"""Return max valid temperature that can be set."""
return 5.0 | [
"def",
"min_temp",
"(",
"self",
")",
"->",
"float",
":",
"return",
"5.0"
] | [
76,
4
] | [
78,
18
] | python | en | ['en', 'en', 'en'] | True |
InComfortClimate.max_temp | (self) | Return max valid temperature that can be set. | Return max valid temperature that can be set. | def max_temp(self) -> float:
"""Return max valid temperature that can be set."""
return 30.0 | [
"def",
"max_temp",
"(",
"self",
")",
"->",
"float",
":",
"return",
"30.0"
] | [
81,
4
] | [
83,
19
] | python | en | ['en', 'en', 'en'] | True |
InComfortClimate.async_set_temperature | (self, **kwargs) | Set a new target temperature for this zone. | Set a new target temperature for this zone. | async def async_set_temperature(self, **kwargs) -> None:
"""Set a new target temperature for this zone."""
temperature = kwargs.get(ATTR_TEMPERATURE)
await self._room.set_override(temperature) | [
"async",
"def",
"async_set_temperature",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
"->",
"None",
":",
"temperature",
"=",
"kwargs",
".",
"get",
"(",
"ATTR_TEMPERATURE",
")",
"await",
"self",
".",
"_room",
".",
"set_override",
"(",
"temperature",
")"
] | [
85,
4
] | [
88,
50
] | python | en | ['en', 'en', 'en'] | True |
InComfortClimate.async_set_hvac_mode | (self, hvac_mode: str) | Set new target hvac mode. | Set new target hvac mode. | async def async_set_hvac_mode(self, hvac_mode: str) -> None:
"""Set new target hvac mode.""" | [
"async",
"def",
"async_set_hvac_mode",
"(",
"self",
",",
"hvac_mode",
":",
"str",
")",
"->",
"None",
":"
] | [
90,
4
] | [
91,
39
] | python | da | ['da', 'su', 'en'] | False |
test_matching_url | () | Test we can match urls. | Test we can match urls. | async def test_matching_url():
"""Test we can match urls."""
mocker = AiohttpClientMocker()
mocker.get("http://example.com")
await mocker.match_request("get", "http://example.com/")
mocker.clear_requests()
with pytest.raises(AssertionError):
await mocker.match_request("get", "http://example.com/")
mocker.clear_requests()
mocker.get("http://example.com?a=1")
await mocker.match_request("get", "http://example.com/", params={"a": 1, "b": 2}) | [
"async",
"def",
"test_matching_url",
"(",
")",
":",
"mocker",
"=",
"AiohttpClientMocker",
"(",
")",
"mocker",
".",
"get",
"(",
"\"http://example.com\"",
")",
"await",
"mocker",
".",
"match_request",
"(",
"\"get\"",
",",
"\"http://example.com/\"",
")",
"mocker",
".",
"clear_requests",
"(",
")",
"with",
"pytest",
".",
"raises",
"(",
"AssertionError",
")",
":",
"await",
"mocker",
".",
"match_request",
"(",
"\"get\"",
",",
"\"http://example.com/\"",
")",
"mocker",
".",
"clear_requests",
"(",
")",
"mocker",
".",
"get",
"(",
"\"http://example.com?a=1\"",
")",
"await",
"mocker",
".",
"match_request",
"(",
"\"get\"",
",",
"\"http://example.com/\"",
",",
"params",
"=",
"{",
"\"a\"",
":",
"1",
",",
"\"b\"",
":",
"2",
"}",
")"
] | [
6,
0
] | [
20,
85
] | python | en | ['en', 'lb', 'en'] | True |
validate_sql_select | (value) | Validate that value is a SQL SELECT query. | Validate that value is a SQL SELECT query. | def validate_sql_select(value):
"""Validate that value is a SQL SELECT query."""
if not value.lstrip().lower().startswith("select"):
raise vol.Invalid("Only SELECT queries allowed")
return value | [
"def",
"validate_sql_select",
"(",
"value",
")",
":",
"if",
"not",
"value",
".",
"lstrip",
"(",
")",
".",
"lower",
"(",
")",
".",
"startswith",
"(",
"\"select\"",
")",
":",
"raise",
"vol",
".",
"Invalid",
"(",
"\"Only SELECT queries allowed\"",
")",
"return",
"value"
] | [
22,
0
] | [
26,
16
] | python | en | ['en', 'en', 'en'] | True |
setup_platform | (hass, config, add_entities, discovery_info=None) | Set up the SQL sensor platform. | Set up the SQL sensor platform. | def setup_platform(hass, config, add_entities, discovery_info=None):
"""Set up the SQL sensor platform."""
db_url = config.get(CONF_DB_URL)
if not db_url:
db_url = DEFAULT_URL.format(hass_config_path=hass.config.path(DEFAULT_DB_FILE))
try:
engine = sqlalchemy.create_engine(db_url)
sessmaker = scoped_session(sessionmaker(bind=engine))
# Run a dummy query just to test the db_url
sess = sessmaker()
sess.execute("SELECT 1;")
except sqlalchemy.exc.SQLAlchemyError as err:
_LOGGER.error("Couldn't connect using %s DB_URL: %s", db_url, err)
return
finally:
sess.close()
queries = []
for query in config.get(CONF_QUERIES):
name = query.get(CONF_NAME)
query_str = query.get(CONF_QUERY)
unit = query.get(CONF_UNIT_OF_MEASUREMENT)
value_template = query.get(CONF_VALUE_TEMPLATE)
column_name = query.get(CONF_COLUMN_NAME)
if value_template is not None:
value_template.hass = hass
sensor = SQLSensor(
name, sessmaker, query_str, column_name, unit, value_template
)
queries.append(sensor)
add_entities(queries, True) | [
"def",
"setup_platform",
"(",
"hass",
",",
"config",
",",
"add_entities",
",",
"discovery_info",
"=",
"None",
")",
":",
"db_url",
"=",
"config",
".",
"get",
"(",
"CONF_DB_URL",
")",
"if",
"not",
"db_url",
":",
"db_url",
"=",
"DEFAULT_URL",
".",
"format",
"(",
"hass_config_path",
"=",
"hass",
".",
"config",
".",
"path",
"(",
"DEFAULT_DB_FILE",
")",
")",
"try",
":",
"engine",
"=",
"sqlalchemy",
".",
"create_engine",
"(",
"db_url",
")",
"sessmaker",
"=",
"scoped_session",
"(",
"sessionmaker",
"(",
"bind",
"=",
"engine",
")",
")",
"# Run a dummy query just to test the db_url",
"sess",
"=",
"sessmaker",
"(",
")",
"sess",
".",
"execute",
"(",
"\"SELECT 1;\"",
")",
"except",
"sqlalchemy",
".",
"exc",
".",
"SQLAlchemyError",
"as",
"err",
":",
"_LOGGER",
".",
"error",
"(",
"\"Couldn't connect using %s DB_URL: %s\"",
",",
"db_url",
",",
"err",
")",
"return",
"finally",
":",
"sess",
".",
"close",
"(",
")",
"queries",
"=",
"[",
"]",
"for",
"query",
"in",
"config",
".",
"get",
"(",
"CONF_QUERIES",
")",
":",
"name",
"=",
"query",
".",
"get",
"(",
"CONF_NAME",
")",
"query_str",
"=",
"query",
".",
"get",
"(",
"CONF_QUERY",
")",
"unit",
"=",
"query",
".",
"get",
"(",
"CONF_UNIT_OF_MEASUREMENT",
")",
"value_template",
"=",
"query",
".",
"get",
"(",
"CONF_VALUE_TEMPLATE",
")",
"column_name",
"=",
"query",
".",
"get",
"(",
"CONF_COLUMN_NAME",
")",
"if",
"value_template",
"is",
"not",
"None",
":",
"value_template",
".",
"hass",
"=",
"hass",
"sensor",
"=",
"SQLSensor",
"(",
"name",
",",
"sessmaker",
",",
"query_str",
",",
"column_name",
",",
"unit",
",",
"value_template",
")",
"queries",
".",
"append",
"(",
"sensor",
")",
"add_entities",
"(",
"queries",
",",
"True",
")"
] | [
44,
0
] | [
81,
31
] | python | en | ['en', 'da', 'en'] | True |
SQLSensor.__init__ | (self, name, sessmaker, query, column, unit, value_template) | Initialize the SQL sensor. | Initialize the SQL sensor. | def __init__(self, name, sessmaker, query, column, unit, value_template):
"""Initialize the SQL sensor."""
self._name = name
if "LIMIT" in query:
self._query = query
else:
self._query = query.replace(";", " LIMIT 1;")
self._unit_of_measurement = unit
self._template = value_template
self._column_name = column
self.sessionmaker = sessmaker
self._state = None
self._attributes = None | [
"def",
"__init__",
"(",
"self",
",",
"name",
",",
"sessmaker",
",",
"query",
",",
"column",
",",
"unit",
",",
"value_template",
")",
":",
"self",
".",
"_name",
"=",
"name",
"if",
"\"LIMIT\"",
"in",
"query",
":",
"self",
".",
"_query",
"=",
"query",
"else",
":",
"self",
".",
"_query",
"=",
"query",
".",
"replace",
"(",
"\";\"",
",",
"\" LIMIT 1;\"",
")",
"self",
".",
"_unit_of_measurement",
"=",
"unit",
"self",
".",
"_template",
"=",
"value_template",
"self",
".",
"_column_name",
"=",
"column",
"self",
".",
"sessionmaker",
"=",
"sessmaker",
"self",
".",
"_state",
"=",
"None",
"self",
".",
"_attributes",
"=",
"None"
] | [
87,
4
] | [
99,
31
] | python | en | ['en', 'pt', 'en'] | True |
SQLSensor.name | (self) | Return the name of the query. | Return the name of the query. | def name(self):
"""Return the name of the query."""
return self._name | [
"def",
"name",
"(",
"self",
")",
":",
"return",
"self",
".",
"_name"
] | [
102,
4
] | [
104,
25
] | python | en | ['en', 'en', 'en'] | True |
SQLSensor.state | (self) | Return the query's current state. | Return the query's current state. | def state(self):
"""Return the query's current state."""
return self._state | [
"def",
"state",
"(",
"self",
")",
":",
"return",
"self",
".",
"_state"
] | [
107,
4
] | [
109,
26
] | python | en | ['en', 'en', 'en'] | True |
SQLSensor.unit_of_measurement | (self) | Return the unit of measurement. | Return the unit of measurement. | def unit_of_measurement(self):
"""Return the unit of measurement."""
return self._unit_of_measurement | [
"def",
"unit_of_measurement",
"(",
"self",
")",
":",
"return",
"self",
".",
"_unit_of_measurement"
] | [
112,
4
] | [
114,
40
] | python | en | ['en', 'la', 'en'] | True |
SQLSensor.device_state_attributes | (self) | Return the state attributes. | Return the state attributes. | def device_state_attributes(self):
"""Return the state attributes."""
return self._attributes | [
"def",
"device_state_attributes",
"(",
"self",
")",
":",
"return",
"self",
".",
"_attributes"
] | [
117,
4
] | [
119,
31
] | python | en | ['en', 'en', 'en'] | True |
SQLSensor.update | (self) | Retrieve sensor data from the query. | Retrieve sensor data from the query. | def update(self):
"""Retrieve sensor data from the query."""
data = None
try:
sess = self.sessionmaker()
result = sess.execute(self._query)
self._attributes = {}
if not result.returns_rows or result.rowcount == 0:
_LOGGER.warning("%s returned no results", self._query)
self._state = None
return
for res in result:
_LOGGER.debug("result = %s", res.items())
data = res[self._column_name]
for key, value in res.items():
if isinstance(value, decimal.Decimal):
value = float(value)
if isinstance(value, datetime.date):
value = str(value)
self._attributes[key] = value
except sqlalchemy.exc.SQLAlchemyError as err:
_LOGGER.error("Error executing query %s: %s", self._query, err)
return
finally:
sess.close()
if data is not None and self._template is not None:
self._state = self._template.async_render_with_possible_json_value(
data, None
)
else:
self._state = data | [
"def",
"update",
"(",
"self",
")",
":",
"data",
"=",
"None",
"try",
":",
"sess",
"=",
"self",
".",
"sessionmaker",
"(",
")",
"result",
"=",
"sess",
".",
"execute",
"(",
"self",
".",
"_query",
")",
"self",
".",
"_attributes",
"=",
"{",
"}",
"if",
"not",
"result",
".",
"returns_rows",
"or",
"result",
".",
"rowcount",
"==",
"0",
":",
"_LOGGER",
".",
"warning",
"(",
"\"%s returned no results\"",
",",
"self",
".",
"_query",
")",
"self",
".",
"_state",
"=",
"None",
"return",
"for",
"res",
"in",
"result",
":",
"_LOGGER",
".",
"debug",
"(",
"\"result = %s\"",
",",
"res",
".",
"items",
"(",
")",
")",
"data",
"=",
"res",
"[",
"self",
".",
"_column_name",
"]",
"for",
"key",
",",
"value",
"in",
"res",
".",
"items",
"(",
")",
":",
"if",
"isinstance",
"(",
"value",
",",
"decimal",
".",
"Decimal",
")",
":",
"value",
"=",
"float",
"(",
"value",
")",
"if",
"isinstance",
"(",
"value",
",",
"datetime",
".",
"date",
")",
":",
"value",
"=",
"str",
"(",
"value",
")",
"self",
".",
"_attributes",
"[",
"key",
"]",
"=",
"value",
"except",
"sqlalchemy",
".",
"exc",
".",
"SQLAlchemyError",
"as",
"err",
":",
"_LOGGER",
".",
"error",
"(",
"\"Error executing query %s: %s\"",
",",
"self",
".",
"_query",
",",
"err",
")",
"return",
"finally",
":",
"sess",
".",
"close",
"(",
")",
"if",
"data",
"is",
"not",
"None",
"and",
"self",
".",
"_template",
"is",
"not",
"None",
":",
"self",
".",
"_state",
"=",
"self",
".",
"_template",
".",
"async_render_with_possible_json_value",
"(",
"data",
",",
"None",
")",
"else",
":",
"self",
".",
"_state",
"=",
"data"
] | [
121,
4
] | [
155,
30
] | python | en | ['en', 'pt', 'en'] | True |
setup_platform | (hass, config, add_entities, discovery_info=None) | Set up the sensor platform. | Set up the sensor platform. | def setup_platform(hass, config, add_entities, discovery_info=None):
"""Set up the sensor platform."""
i2c_address = config.get(CONF_I2C_ADDRESS)
sensor = SHT31(address=i2c_address)
try:
if sensor.read_status() is None:
raise ValueError("CRC error while reading SHT31 status")
except (OSError, ValueError):
_LOGGER.error("SHT31 sensor not detected at address %s", hex(i2c_address))
return
sensor_client = SHTClient(sensor)
sensor_classes = {
SENSOR_TEMPERATURE: SHTSensorTemperature,
SENSOR_HUMIDITY: SHTSensorHumidity,
}
devs = []
for sensor_type, sensor_class in sensor_classes.items():
name = "{} {}".format(config.get(CONF_NAME), sensor_type.capitalize())
devs.append(sensor_class(sensor_client, name))
add_entities(devs) | [
"def",
"setup_platform",
"(",
"hass",
",",
"config",
",",
"add_entities",
",",
"discovery_info",
"=",
"None",
")",
":",
"i2c_address",
"=",
"config",
".",
"get",
"(",
"CONF_I2C_ADDRESS",
")",
"sensor",
"=",
"SHT31",
"(",
"address",
"=",
"i2c_address",
")",
"try",
":",
"if",
"sensor",
".",
"read_status",
"(",
")",
"is",
"None",
":",
"raise",
"ValueError",
"(",
"\"CRC error while reading SHT31 status\"",
")",
"except",
"(",
"OSError",
",",
"ValueError",
")",
":",
"_LOGGER",
".",
"error",
"(",
"\"SHT31 sensor not detected at address %s\"",
",",
"hex",
"(",
"i2c_address",
")",
")",
"return",
"sensor_client",
"=",
"SHTClient",
"(",
"sensor",
")",
"sensor_classes",
"=",
"{",
"SENSOR_TEMPERATURE",
":",
"SHTSensorTemperature",
",",
"SENSOR_HUMIDITY",
":",
"SHTSensorHumidity",
",",
"}",
"devs",
"=",
"[",
"]",
"for",
"sensor_type",
",",
"sensor_class",
"in",
"sensor_classes",
".",
"items",
"(",
")",
":",
"name",
"=",
"\"{} {}\"",
".",
"format",
"(",
"config",
".",
"get",
"(",
"CONF_NAME",
")",
",",
"sensor_type",
".",
"capitalize",
"(",
")",
")",
"devs",
".",
"append",
"(",
"sensor_class",
"(",
"sensor_client",
",",
"name",
")",
")",
"add_entities",
"(",
"devs",
")"
] | [
48,
0
] | [
72,
22
] | python | en | ['en', 'da', 'en'] | True |
SHTClient.__init__ | (self, adafruit_sht) | Initialize the sensor. | Initialize the sensor. | def __init__(self, adafruit_sht):
"""Initialize the sensor."""
self.adafruit_sht = adafruit_sht
self.temperature = None
self.humidity = None | [
"def",
"__init__",
"(",
"self",
",",
"adafruit_sht",
")",
":",
"self",
".",
"adafruit_sht",
"=",
"adafruit_sht",
"self",
".",
"temperature",
"=",
"None",
"self",
".",
"humidity",
"=",
"None"
] | [
78,
4
] | [
82,
28
] | python | en | ['en', 'en', 'en'] | True |
SHTClient.update | (self) | Get the latest data from the SHT sensor. | Get the latest data from the SHT sensor. | def update(self):
"""Get the latest data from the SHT sensor."""
temperature, humidity = self.adafruit_sht.read_temperature_humidity()
if math.isnan(temperature) or math.isnan(humidity):
_LOGGER.warning("Bad sample from sensor SHT31")
return
self.temperature = temperature
self.humidity = humidity | [
"def",
"update",
"(",
"self",
")",
":",
"temperature",
",",
"humidity",
"=",
"self",
".",
"adafruit_sht",
".",
"read_temperature_humidity",
"(",
")",
"if",
"math",
".",
"isnan",
"(",
"temperature",
")",
"or",
"math",
".",
"isnan",
"(",
"humidity",
")",
":",
"_LOGGER",
".",
"warning",
"(",
"\"Bad sample from sensor SHT31\"",
")",
"return",
"self",
".",
"temperature",
"=",
"temperature",
"self",
".",
"humidity",
"=",
"humidity"
] | [
85,
4
] | [
92,
32
] | python | en | ['en', 'en', 'en'] | True |
SHTSensor.__init__ | (self, sensor, name) | Initialize the sensor. | Initialize the sensor. | def __init__(self, sensor, name):
"""Initialize the sensor."""
self._sensor = sensor
self._name = name
self._state = None | [
"def",
"__init__",
"(",
"self",
",",
"sensor",
",",
"name",
")",
":",
"self",
".",
"_sensor",
"=",
"sensor",
"self",
".",
"_name",
"=",
"name",
"self",
".",
"_state",
"=",
"None"
] | [
98,
4
] | [
102,
26
] | python | en | ['en', 'en', 'en'] | True |
SHTSensor.name | (self) | Return the name of the sensor. | Return the name of the sensor. | def name(self):
"""Return the name of the sensor."""
return self._name | [
"def",
"name",
"(",
"self",
")",
":",
"return",
"self",
".",
"_name"
] | [
105,
4
] | [
107,
25
] | python | en | ['en', 'mi', 'en'] | True |
SHTSensor.state | (self) | Return the state of the sensor. | Return the state of the sensor. | def state(self):
"""Return the state of the sensor."""
return self._state | [
"def",
"state",
"(",
"self",
")",
":",
"return",
"self",
".",
"_state"
] | [
110,
4
] | [
112,
26
] | python | en | ['en', 'en', 'en'] | True |
SHTSensor.update | (self) | Fetch temperature and humidity from the sensor. | Fetch temperature and humidity from the sensor. | def update(self):
"""Fetch temperature and humidity from the sensor."""
self._sensor.update() | [
"def",
"update",
"(",
"self",
")",
":",
"self",
".",
"_sensor",
".",
"update",
"(",
")"
] | [
114,
4
] | [
116,
29
] | python | en | ['en', 'en', 'en'] | True |
SHTSensorTemperature.unit_of_measurement | (self) | Return the unit of measurement. | Return the unit of measurement. | def unit_of_measurement(self):
"""Return the unit of measurement."""
return self.hass.config.units.temperature_unit | [
"def",
"unit_of_measurement",
"(",
"self",
")",
":",
"return",
"self",
".",
"hass",
".",
"config",
".",
"units",
".",
"temperature_unit"
] | [
123,
4
] | [
125,
54
] | python | en | ['en', 'la', 'en'] | True |
SHTSensorTemperature.update | (self) | Fetch temperature from the sensor. | Fetch temperature from the sensor. | def update(self):
"""Fetch temperature from the sensor."""
super().update()
temp_celsius = self._sensor.temperature
if temp_celsius is not None:
self._state = display_temp(
self.hass, temp_celsius, TEMP_CELSIUS, PRECISION_TENTHS
) | [
"def",
"update",
"(",
"self",
")",
":",
"super",
"(",
")",
".",
"update",
"(",
")",
"temp_celsius",
"=",
"self",
".",
"_sensor",
".",
"temperature",
"if",
"temp_celsius",
"is",
"not",
"None",
":",
"self",
".",
"_state",
"=",
"display_temp",
"(",
"self",
".",
"hass",
",",
"temp_celsius",
",",
"TEMP_CELSIUS",
",",
"PRECISION_TENTHS",
")"
] | [
127,
4
] | [
134,
13
] | python | en | ['en', 'en', 'en'] | True |
SHTSensorHumidity.unit_of_measurement | (self) | Return the unit of measurement. | Return the unit of measurement. | def unit_of_measurement(self):
"""Return the unit of measurement."""
return PERCENTAGE | [
"def",
"unit_of_measurement",
"(",
"self",
")",
":",
"return",
"PERCENTAGE"
] | [
141,
4
] | [
143,
25
] | python | en | ['en', 'la', 'en'] | True |
SHTSensorHumidity.update | (self) | Fetch humidity from the sensor. | Fetch humidity from the sensor. | def update(self):
"""Fetch humidity from the sensor."""
super().update()
humidity = self._sensor.humidity
if humidity is not None:
self._state = round(humidity) | [
"def",
"update",
"(",
"self",
")",
":",
"super",
"(",
")",
".",
"update",
"(",
")",
"humidity",
"=",
"self",
".",
"_sensor",
".",
"humidity",
"if",
"humidity",
"is",
"not",
"None",
":",
"self",
".",
"_state",
"=",
"round",
"(",
"humidity",
")"
] | [
145,
4
] | [
150,
41
] | python | en | ['en', 'en', 'en'] | True |
test_upload_image | (hass, hass_client, hass_ws_client) | Test we can upload an image. | Test we can upload an image. | async def test_upload_image(hass, hass_client, hass_ws_client):
"""Test we can upload an image."""
now = util_dt.utcnow()
test_image = pathlib.Path(__file__).parent / "logo.png"
with tempfile.TemporaryDirectory() as tempdir, patch.object(
hass.config, "path", return_value=tempdir
), patch("homeassistant.util.dt.utcnow", return_value=now):
assert await async_setup_component(hass, "image", {})
ws_client: ClientWebSocketResponse = await hass_ws_client()
client: ClientSession = await hass_client()
with test_image.open("rb") as fp:
res = await client.post("/api/image/upload", data={"file": fp})
assert res.status == 200
item = await res.json()
assert item["content_type"] == "image/png"
assert item["filesize"] == 38847
assert item["name"] == "logo.png"
assert item["uploaded_at"] == now.isoformat()
tempdir = pathlib.Path(tempdir)
item_folder: pathlib.Path = tempdir / item["id"]
assert (item_folder / "original").read_bytes() == test_image.read_bytes()
# fetch non-existing image
res = await client.get("/api/image/serve/non-existing/256x256")
assert res.status == 404
# fetch invalid sizes
for inv_size in ("256", "256x25A", "100x100", "25Ax256"):
res = await client.get(f"/api/image/serve/{item['id']}/{inv_size}")
assert res.status == 400
# fetch resized version
res = await client.get(f"/api/image/serve/{item['id']}/256x256")
assert res.status == 200
assert (item_folder / "256x256").is_file()
# List item
await ws_client.send_json({"id": 6, "type": "image/list"})
msg = await ws_client.receive_json()
assert msg["id"] == 6
assert msg["type"] == ws_const.TYPE_RESULT
assert msg["success"]
assert msg["result"] == [item]
# Delete item
await ws_client.send_json(
{"id": 7, "type": "image/delete", "image_id": item["id"]}
)
msg = await ws_client.receive_json()
assert msg["id"] == 7
assert msg["type"] == ws_const.TYPE_RESULT
assert msg["success"]
# Ensure removed from disk
assert not item_folder.is_dir() | [
"async",
"def",
"test_upload_image",
"(",
"hass",
",",
"hass_client",
",",
"hass_ws_client",
")",
":",
"now",
"=",
"util_dt",
".",
"utcnow",
"(",
")",
"test_image",
"=",
"pathlib",
".",
"Path",
"(",
"__file__",
")",
".",
"parent",
"/",
"\"logo.png\"",
"with",
"tempfile",
".",
"TemporaryDirectory",
"(",
")",
"as",
"tempdir",
",",
"patch",
".",
"object",
"(",
"hass",
".",
"config",
",",
"\"path\"",
",",
"return_value",
"=",
"tempdir",
")",
",",
"patch",
"(",
"\"homeassistant.util.dt.utcnow\"",
",",
"return_value",
"=",
"now",
")",
":",
"assert",
"await",
"async_setup_component",
"(",
"hass",
",",
"\"image\"",
",",
"{",
"}",
")",
"ws_client",
":",
"ClientWebSocketResponse",
"=",
"await",
"hass_ws_client",
"(",
")",
"client",
":",
"ClientSession",
"=",
"await",
"hass_client",
"(",
")",
"with",
"test_image",
".",
"open",
"(",
"\"rb\"",
")",
"as",
"fp",
":",
"res",
"=",
"await",
"client",
".",
"post",
"(",
"\"/api/image/upload\"",
",",
"data",
"=",
"{",
"\"file\"",
":",
"fp",
"}",
")",
"assert",
"res",
".",
"status",
"==",
"200",
"item",
"=",
"await",
"res",
".",
"json",
"(",
")",
"assert",
"item",
"[",
"\"content_type\"",
"]",
"==",
"\"image/png\"",
"assert",
"item",
"[",
"\"filesize\"",
"]",
"==",
"38847",
"assert",
"item",
"[",
"\"name\"",
"]",
"==",
"\"logo.png\"",
"assert",
"item",
"[",
"\"uploaded_at\"",
"]",
"==",
"now",
".",
"isoformat",
"(",
")",
"tempdir",
"=",
"pathlib",
".",
"Path",
"(",
"tempdir",
")",
"item_folder",
":",
"pathlib",
".",
"Path",
"=",
"tempdir",
"/",
"item",
"[",
"\"id\"",
"]",
"assert",
"(",
"item_folder",
"/",
"\"original\"",
")",
".",
"read_bytes",
"(",
")",
"==",
"test_image",
".",
"read_bytes",
"(",
")",
"# fetch non-existing image",
"res",
"=",
"await",
"client",
".",
"get",
"(",
"\"/api/image/serve/non-existing/256x256\"",
")",
"assert",
"res",
".",
"status",
"==",
"404",
"# fetch invalid sizes",
"for",
"inv_size",
"in",
"(",
"\"256\"",
",",
"\"256x25A\"",
",",
"\"100x100\"",
",",
"\"25Ax256\"",
")",
":",
"res",
"=",
"await",
"client",
".",
"get",
"(",
"f\"/api/image/serve/{item['id']}/{inv_size}\"",
")",
"assert",
"res",
".",
"status",
"==",
"400",
"# fetch resized version",
"res",
"=",
"await",
"client",
".",
"get",
"(",
"f\"/api/image/serve/{item['id']}/256x256\"",
")",
"assert",
"res",
".",
"status",
"==",
"200",
"assert",
"(",
"item_folder",
"/",
"\"256x256\"",
")",
".",
"is_file",
"(",
")",
"# List item",
"await",
"ws_client",
".",
"send_json",
"(",
"{",
"\"id\"",
":",
"6",
",",
"\"type\"",
":",
"\"image/list\"",
"}",
")",
"msg",
"=",
"await",
"ws_client",
".",
"receive_json",
"(",
")",
"assert",
"msg",
"[",
"\"id\"",
"]",
"==",
"6",
"assert",
"msg",
"[",
"\"type\"",
"]",
"==",
"ws_const",
".",
"TYPE_RESULT",
"assert",
"msg",
"[",
"\"success\"",
"]",
"assert",
"msg",
"[",
"\"result\"",
"]",
"==",
"[",
"item",
"]",
"# Delete item",
"await",
"ws_client",
".",
"send_json",
"(",
"{",
"\"id\"",
":",
"7",
",",
"\"type\"",
":",
"\"image/delete\"",
",",
"\"image_id\"",
":",
"item",
"[",
"\"id\"",
"]",
"}",
")",
"msg",
"=",
"await",
"ws_client",
".",
"receive_json",
"(",
")",
"assert",
"msg",
"[",
"\"id\"",
"]",
"==",
"7",
"assert",
"msg",
"[",
"\"type\"",
"]",
"==",
"ws_const",
".",
"TYPE_RESULT",
"assert",
"msg",
"[",
"\"success\"",
"]",
"# Ensure removed from disk",
"assert",
"not",
"item_folder",
".",
"is_dir",
"(",
")"
] | [
13,
0
] | [
75,
39
] | python | en | ['en', 'en', 'en'] | True |
do_tta_predict | (args, model, ckp_path, tta_num=4) |
return 18000x128x128 np array
|
return 18000x128x128 np array
| def do_tta_predict(args, model, ckp_path, tta_num=4):
'''
return 18000x128x128 np array
'''
model.eval()
preds = []
meta = None
# i is tta index, 0: no change, 1: horizon flip, 2: vertical flip, 3: do both
for flip_index in range(tta_num):
print('flip_index:', flip_index)
test_loader = get_test_loader(args.batch_size, index=flip_index, dev_mode=False, pad_mode=args.pad_mode)
meta = test_loader.meta
outputs = None
with torch.no_grad():
for i, img in enumerate(test_loader):
add_depth_channel(img, args.pad_mode)
img = img.cuda()
output, _ = model(img)
output = torch.sigmoid(output)
if outputs is None:
outputs = output.squeeze()
else:
outputs = torch.cat([outputs, output.squeeze()], 0)
print('{} / {}'.format(args.batch_size*(i+1), test_loader.num), end='\r')
outputs = outputs.cpu().numpy()
# flip back masks
if flip_index == 1:
outputs = np.flip(outputs, 2)
elif flip_index == 2:
outputs = np.flip(outputs, 1)
elif flip_index == 3:
outputs = np.flip(outputs, 2)
outputs = np.flip(outputs, 1)
#print(outputs.shape)
preds.append(outputs)
parent_dir = ckp_path+'_out'
if not os.path.exists(parent_dir):
os.makedirs(parent_dir)
np_file = os.path.join(parent_dir, 'pred.npy')
model_pred_result = np.mean(preds, 0)
np.save(np_file, model_pred_result)
return model_pred_result, meta | [
"def",
"do_tta_predict",
"(",
"args",
",",
"model",
",",
"ckp_path",
",",
"tta_num",
"=",
"4",
")",
":",
"model",
".",
"eval",
"(",
")",
"preds",
"=",
"[",
"]",
"meta",
"=",
"None",
"# i is tta index, 0: no change, 1: horizon flip, 2: vertical flip, 3: do both",
"for",
"flip_index",
"in",
"range",
"(",
"tta_num",
")",
":",
"print",
"(",
"'flip_index:'",
",",
"flip_index",
")",
"test_loader",
"=",
"get_test_loader",
"(",
"args",
".",
"batch_size",
",",
"index",
"=",
"flip_index",
",",
"dev_mode",
"=",
"False",
",",
"pad_mode",
"=",
"args",
".",
"pad_mode",
")",
"meta",
"=",
"test_loader",
".",
"meta",
"outputs",
"=",
"None",
"with",
"torch",
".",
"no_grad",
"(",
")",
":",
"for",
"i",
",",
"img",
"in",
"enumerate",
"(",
"test_loader",
")",
":",
"add_depth_channel",
"(",
"img",
",",
"args",
".",
"pad_mode",
")",
"img",
"=",
"img",
".",
"cuda",
"(",
")",
"output",
",",
"_",
"=",
"model",
"(",
"img",
")",
"output",
"=",
"torch",
".",
"sigmoid",
"(",
"output",
")",
"if",
"outputs",
"is",
"None",
":",
"outputs",
"=",
"output",
".",
"squeeze",
"(",
")",
"else",
":",
"outputs",
"=",
"torch",
".",
"cat",
"(",
"[",
"outputs",
",",
"output",
".",
"squeeze",
"(",
")",
"]",
",",
"0",
")",
"print",
"(",
"'{} / {}'",
".",
"format",
"(",
"args",
".",
"batch_size",
"*",
"(",
"i",
"+",
"1",
")",
",",
"test_loader",
".",
"num",
")",
",",
"end",
"=",
"'\\r'",
")",
"outputs",
"=",
"outputs",
".",
"cpu",
"(",
")",
".",
"numpy",
"(",
")",
"# flip back masks",
"if",
"flip_index",
"==",
"1",
":",
"outputs",
"=",
"np",
".",
"flip",
"(",
"outputs",
",",
"2",
")",
"elif",
"flip_index",
"==",
"2",
":",
"outputs",
"=",
"np",
".",
"flip",
"(",
"outputs",
",",
"1",
")",
"elif",
"flip_index",
"==",
"3",
":",
"outputs",
"=",
"np",
".",
"flip",
"(",
"outputs",
",",
"2",
")",
"outputs",
"=",
"np",
".",
"flip",
"(",
"outputs",
",",
"1",
")",
"#print(outputs.shape)",
"preds",
".",
"append",
"(",
"outputs",
")",
"parent_dir",
"=",
"ckp_path",
"+",
"'_out'",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"parent_dir",
")",
":",
"os",
".",
"makedirs",
"(",
"parent_dir",
")",
"np_file",
"=",
"os",
".",
"path",
".",
"join",
"(",
"parent_dir",
",",
"'pred.npy'",
")",
"model_pred_result",
"=",
"np",
".",
"mean",
"(",
"preds",
",",
"0",
")",
"np",
".",
"save",
"(",
"np_file",
",",
"model_pred_result",
")",
"return",
"model_pred_result",
",",
"meta"
] | [
36,
0
] | [
82,
34
] | python | en | ['en', 'error', 'th'] | False |
UploadCommand.status | (s) | Prints things in bold. | Prints things in bold. | def status(s):
"""Prints things in bold."""
print("\033[1m{0}\033[0m".format(s)) | [
"def",
"status",
"(",
"s",
")",
":",
"print",
"(",
"\"\\033[1m{0}\\033[0m\"",
".",
"format",
"(",
"s",
")",
")"
] | [
61,
4
] | [
63,
44
] | python | en | ['en', 'en', 'en'] | True |
register_flow_implementation | (
hass, domain, client_id, client_secret, api_key, redirect_uri, sensors
) | Register a flow implementation.
domain: Domain of the component responsible for the implementation.
client_id: Client ID.
client_secret: Client secret.
api_key: API key issued by Logitech.
redirect_uri: Auth callback redirect URI.
sensors: Sensor config.
| Register a flow implementation. | def register_flow_implementation(
hass, domain, client_id, client_secret, api_key, redirect_uri, sensors
):
"""Register a flow implementation.
domain: Domain of the component responsible for the implementation.
client_id: Client ID.
client_secret: Client secret.
api_key: API key issued by Logitech.
redirect_uri: Auth callback redirect URI.
sensors: Sensor config.
"""
if DATA_FLOW_IMPL not in hass.data:
hass.data[DATA_FLOW_IMPL] = OrderedDict()
hass.data[DATA_FLOW_IMPL][domain] = {
CONF_CLIENT_ID: client_id,
CONF_CLIENT_SECRET: client_secret,
CONF_API_KEY: api_key,
CONF_REDIRECT_URI: redirect_uri,
CONF_SENSORS: sensors,
EXTERNAL_ERRORS: None,
} | [
"def",
"register_flow_implementation",
"(",
"hass",
",",
"domain",
",",
"client_id",
",",
"client_secret",
",",
"api_key",
",",
"redirect_uri",
",",
"sensors",
")",
":",
"if",
"DATA_FLOW_IMPL",
"not",
"in",
"hass",
".",
"data",
":",
"hass",
".",
"data",
"[",
"DATA_FLOW_IMPL",
"]",
"=",
"OrderedDict",
"(",
")",
"hass",
".",
"data",
"[",
"DATA_FLOW_IMPL",
"]",
"[",
"domain",
"]",
"=",
"{",
"CONF_CLIENT_ID",
":",
"client_id",
",",
"CONF_CLIENT_SECRET",
":",
"client_secret",
",",
"CONF_API_KEY",
":",
"api_key",
",",
"CONF_REDIRECT_URI",
":",
"redirect_uri",
",",
"CONF_SENSORS",
":",
"sensors",
",",
"EXTERNAL_ERRORS",
":",
"None",
",",
"}"
] | [
30,
0
] | [
52,
5
] | python | en | ['en', 'da', 'en'] | True |
LogiCircleAuthCallbackView.get | (self, request) | Receive authorization code. | Receive authorization code. | async def get(self, request):
"""Receive authorization code."""
hass = request.app["hass"]
if "code" in request.query:
hass.async_create_task(
hass.config_entries.flow.async_init(
DOMAIN, context={"source": "code"}, data=request.query["code"]
)
)
return self.json_message("Authorisation code saved")
return self.json_message(
"Authorisation code missing from query string", status_code=HTTP_BAD_REQUEST
) | [
"async",
"def",
"get",
"(",
"self",
",",
"request",
")",
":",
"hass",
"=",
"request",
".",
"app",
"[",
"\"hass\"",
"]",
"if",
"\"code\"",
"in",
"request",
".",
"query",
":",
"hass",
".",
"async_create_task",
"(",
"hass",
".",
"config_entries",
".",
"flow",
".",
"async_init",
"(",
"DOMAIN",
",",
"context",
"=",
"{",
"\"source\"",
":",
"\"code\"",
"}",
",",
"data",
"=",
"request",
".",
"query",
"[",
"\"code\"",
"]",
")",
")",
"return",
"self",
".",
"json_message",
"(",
"\"Authorisation code saved\"",
")",
"return",
"self",
".",
"json_message",
"(",
"\"Authorisation code missing from query string\"",
",",
"status_code",
"=",
"HTTP_BAD_REQUEST",
")"
] | [
198,
4
] | [
210,
9
] | python | de | ['de', 'sr', 'en'] | False |
main | () | delete=True removes snapshots after posting | delete=True removes snapshots after posting | def main():
get_os_type()
f = Figlet(font='slant')
print(f.renderText('asleep'))
print('https://t.me/asleep_cg\n')
options = get_options()
if options.debug or options.ports:
config.logging.getLogger().setLevel(config.logging.DEBUG)
else:
config.logging.getLogger().propagate = False
utils.setup_credentials(options.logins_passes)
utils.prepare_folders_and_files()
if not options.brute_only:
masscan(options.scan_file, options.threads, options.masscan_resume)
process_cameras()
if not options.no_xml and len(config.working_hosts) > 0:
export.save_xml(config.working_hosts)
export.save_csv()
if options.dead_cams:
hosts = utils.masscan_parse(config.tmp_masscan_file)
export.dead_cams(hosts)
# Configs for Telegram Bot:
ROOM_ID = '' # Channel ID
TOKEN = '' # Bot Token
SNAPSHOT_DIR = Path.cwd() / config.snapshots_folder
""" delete=True removes snapshots after posting """
#poster = Poster(SNAPSHOT_DIR, TOKEN, ROOM_ID, delete=False)
#poster.start() ### Start posting function
if Path(config.snapshots_folder).exists():
c_error = False
if config.global_country:
try:
Path(config.snapshots_folder).rename(f'{config.global_country}_{config.start_datetime}')
except:
c_error = True
elif not config.global_country or c_error:
Path(config.snapshots_folder).rename(f'Snapshots_{config.start_datetime}') | [
"def",
"main",
"(",
")",
":",
"get_os_type",
"(",
")",
"f",
"=",
"Figlet",
"(",
"font",
"=",
"'slant'",
")",
"print",
"(",
"f",
".",
"renderText",
"(",
"'asleep'",
")",
")",
"print",
"(",
"'https://t.me/asleep_cg\\n'",
")",
"options",
"=",
"get_options",
"(",
")",
"if",
"options",
".",
"debug",
"or",
"options",
".",
"ports",
":",
"config",
".",
"logging",
".",
"getLogger",
"(",
")",
".",
"setLevel",
"(",
"config",
".",
"logging",
".",
"DEBUG",
")",
"else",
":",
"config",
".",
"logging",
".",
"getLogger",
"(",
")",
".",
"propagate",
"=",
"False",
"utils",
".",
"setup_credentials",
"(",
"options",
".",
"logins_passes",
")",
"utils",
".",
"prepare_folders_and_files",
"(",
")",
"if",
"not",
"options",
".",
"brute_only",
":",
"masscan",
"(",
"options",
".",
"scan_file",
",",
"options",
".",
"threads",
",",
"options",
".",
"masscan_resume",
")",
"process_cameras",
"(",
")",
"if",
"not",
"options",
".",
"no_xml",
"and",
"len",
"(",
"config",
".",
"working_hosts",
")",
">",
"0",
":",
"export",
".",
"save_xml",
"(",
"config",
".",
"working_hosts",
")",
"export",
".",
"save_csv",
"(",
")",
"if",
"options",
".",
"dead_cams",
":",
"hosts",
"=",
"utils",
".",
"masscan_parse",
"(",
"config",
".",
"tmp_masscan_file",
")",
"export",
".",
"dead_cams",
"(",
"hosts",
")",
"# Configs for Telegram Bot:",
"ROOM_ID",
"=",
"''",
"# Channel ID",
"TOKEN",
"=",
"''",
"# Bot Token",
"SNAPSHOT_DIR",
"=",
"Path",
".",
"cwd",
"(",
")",
"/",
"config",
".",
"snapshots_folder",
"#poster = Poster(SNAPSHOT_DIR, TOKEN, ROOM_ID, delete=False) ",
"#poster.start() ### Start posting function",
"if",
"Path",
"(",
"config",
".",
"snapshots_folder",
")",
".",
"exists",
"(",
")",
":",
"c_error",
"=",
"False",
"if",
"config",
".",
"global_country",
":",
"try",
":",
"Path",
"(",
"config",
".",
"snapshots_folder",
")",
".",
"rename",
"(",
"f'{config.global_country}_{config.start_datetime}'",
")",
"except",
":",
"c_error",
"=",
"True",
"elif",
"not",
"config",
".",
"global_country",
"or",
"c_error",
":",
"Path",
"(",
"config",
".",
"snapshots_folder",
")",
".",
"rename",
"(",
"f'Snapshots_{config.start_datetime}'",
")"
] | [
251,
0
] | [
289,
86
] | python | en | ['da', 'en', 'en'] | True |
get_engine | (hass, config, discovery_info=None) | Set up IBM Watson TTS component. | Set up IBM Watson TTS component. | def get_engine(hass, config, discovery_info=None):
"""Set up IBM Watson TTS component."""
authenticator = IAMAuthenticator(config[CONF_APIKEY])
service = TextToSpeechV1(authenticator)
service.set_service_url(config[CONF_URL])
supported_languages = list({s[:5] for s in SUPPORTED_VOICES})
default_voice = config[CONF_VOICE]
output_format = config[CONF_OUTPUT_FORMAT]
service.set_default_headers({"x-watson-learning-opt-out": "true"})
return WatsonTTSProvider(service, supported_languages, default_voice, output_format) | [
"def",
"get_engine",
"(",
"hass",
",",
"config",
",",
"discovery_info",
"=",
"None",
")",
":",
"authenticator",
"=",
"IAMAuthenticator",
"(",
"config",
"[",
"CONF_APIKEY",
"]",
")",
"service",
"=",
"TextToSpeechV1",
"(",
"authenticator",
")",
"service",
".",
"set_service_url",
"(",
"config",
"[",
"CONF_URL",
"]",
")",
"supported_languages",
"=",
"list",
"(",
"{",
"s",
"[",
":",
"5",
"]",
"for",
"s",
"in",
"SUPPORTED_VOICES",
"}",
")",
"default_voice",
"=",
"config",
"[",
"CONF_VOICE",
"]",
"output_format",
"=",
"config",
"[",
"CONF_OUTPUT_FORMAT",
"]",
"service",
".",
"set_default_headers",
"(",
"{",
"\"x-watson-learning-opt-out\"",
":",
"\"true\"",
"}",
")",
"return",
"WatsonTTSProvider",
"(",
"service",
",",
"supported_languages",
",",
"default_voice",
",",
"output_format",
")"
] | [
98,
0
] | [
110,
88
] | python | en | ['en', 'bg', 'en'] | True |
WatsonTTSProvider.__init__ | (self, service, supported_languages, default_voice, output_format) | Initialize Watson TTS provider. | Initialize Watson TTS provider. | def __init__(self, service, supported_languages, default_voice, output_format):
"""Initialize Watson TTS provider."""
self.service = service
self.supported_langs = supported_languages
self.default_lang = default_voice[:5]
self.default_voice = default_voice
self.output_format = output_format
self.name = "Watson TTS" | [
"def",
"__init__",
"(",
"self",
",",
"service",
",",
"supported_languages",
",",
"default_voice",
",",
"output_format",
")",
":",
"self",
".",
"service",
"=",
"service",
"self",
".",
"supported_langs",
"=",
"supported_languages",
"self",
".",
"default_lang",
"=",
"default_voice",
"[",
":",
"5",
"]",
"self",
".",
"default_voice",
"=",
"default_voice",
"self",
".",
"output_format",
"=",
"output_format",
"self",
".",
"name",
"=",
"\"Watson TTS\""
] | [
116,
4
] | [
123,
32
] | python | en | ['en', 'ny', 'en'] | True |
WatsonTTSProvider.supported_languages | (self) | Return a list of supported languages. | Return a list of supported languages. | def supported_languages(self):
"""Return a list of supported languages."""
return self.supported_langs | [
"def",
"supported_languages",
"(",
"self",
")",
":",
"return",
"self",
".",
"supported_langs"
] | [
126,
4
] | [
128,
35
] | python | en | ['en', 'en', 'en'] | True |
WatsonTTSProvider.default_language | (self) | Return the default language. | Return the default language. | def default_language(self):
"""Return the default language."""
return self.default_lang | [
"def",
"default_language",
"(",
"self",
")",
":",
"return",
"self",
".",
"default_lang"
] | [
131,
4
] | [
133,
32
] | python | en | ['en', 'et', 'en'] | True |
WatsonTTSProvider.default_options | (self) | Return dict include default options. | Return dict include default options. | def default_options(self):
"""Return dict include default options."""
return {CONF_VOICE: self.default_voice} | [
"def",
"default_options",
"(",
"self",
")",
":",
"return",
"{",
"CONF_VOICE",
":",
"self",
".",
"default_voice",
"}"
] | [
136,
4
] | [
138,
47
] | python | en | ['nl', 'en', 'en'] | True |
WatsonTTSProvider.supported_options | (self) | Return a list of supported options. | Return a list of supported options. | def supported_options(self):
"""Return a list of supported options."""
return [CONF_VOICE] | [
"def",
"supported_options",
"(",
"self",
")",
":",
"return",
"[",
"CONF_VOICE",
"]"
] | [
141,
4
] | [
143,
27
] | python | en | ['en', 'en', 'en'] | True |
WatsonTTSProvider.get_tts_audio | (self, message, language=None, options=None) | Request TTS file from Watson TTS. | Request TTS file from Watson TTS. | def get_tts_audio(self, message, language=None, options=None):
"""Request TTS file from Watson TTS."""
response = self.service.synthesize(
message, accept=self.output_format, voice=self.default_voice
).get_result()
return (CONTENT_TYPE_EXTENSIONS[self.output_format], response.content) | [
"def",
"get_tts_audio",
"(",
"self",
",",
"message",
",",
"language",
"=",
"None",
",",
"options",
"=",
"None",
")",
":",
"response",
"=",
"self",
".",
"service",
".",
"synthesize",
"(",
"message",
",",
"accept",
"=",
"self",
".",
"output_format",
",",
"voice",
"=",
"self",
".",
"default_voice",
")",
".",
"get_result",
"(",
")",
"return",
"(",
"CONTENT_TYPE_EXTENSIONS",
"[",
"self",
".",
"output_format",
"]",
",",
"response",
".",
"content",
")"
] | [
145,
4
] | [
151,
78
] | python | en | ['en', 'en', 'en'] | True |
accuracy | (output, target, topk=(1, 5)) | Computes the precision@k for the specified values of k | Computes the precision | def accuracy(output, target, topk=(1, 5)):
""" Computes the precision@k for the specified values of k """
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
# one-hot case
if target.ndimension() > 1:
target = target.max(1)[1]
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = dict()
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0)
res["acc{}".format(k)] = correct_k.mul_(1.0 / batch_size).item()
return res | [
"def",
"accuracy",
"(",
"output",
",",
"target",
",",
"topk",
"=",
"(",
"1",
",",
"5",
")",
")",
":",
"maxk",
"=",
"max",
"(",
"topk",
")",
"batch_size",
"=",
"target",
".",
"size",
"(",
"0",
")",
"_",
",",
"pred",
"=",
"output",
".",
"topk",
"(",
"maxk",
",",
"1",
",",
"True",
",",
"True",
")",
"pred",
"=",
"pred",
".",
"t",
"(",
")",
"# one-hot case",
"if",
"target",
".",
"ndimension",
"(",
")",
">",
"1",
":",
"target",
"=",
"target",
".",
"max",
"(",
"1",
")",
"[",
"1",
"]",
"correct",
"=",
"pred",
".",
"eq",
"(",
"target",
".",
"view",
"(",
"1",
",",
"-",
"1",
")",
".",
"expand_as",
"(",
"pred",
")",
")",
"res",
"=",
"dict",
"(",
")",
"for",
"k",
"in",
"topk",
":",
"correct_k",
"=",
"correct",
"[",
":",
"k",
"]",
".",
"reshape",
"(",
"-",
"1",
")",
".",
"float",
"(",
")",
".",
"sum",
"(",
"0",
")",
"res",
"[",
"\"acc{}\"",
".",
"format",
"(",
"k",
")",
"]",
"=",
"correct_k",
".",
"mul_",
"(",
"1.0",
"/",
"batch_size",
")",
".",
"item",
"(",
")",
"return",
"res"
] | [
23,
0
] | [
40,
14
] | python | en | ['en', 'en', 'en'] | True |
init_integration | (
hass,
*,
data: dict = ENTRY_CONFIG,
options: dict = ENTRY_OPTIONS,
) | Set up the NZBGet integration in Home Assistant. | Set up the NZBGet integration in Home Assistant. | async def init_integration(
hass,
*,
data: dict = ENTRY_CONFIG,
options: dict = ENTRY_OPTIONS,
) -> MockConfigEntry:
"""Set up the NZBGet integration in Home Assistant."""
entry = MockConfigEntry(domain=DOMAIN, data=data, options=options)
entry.add_to_hass(hass)
await hass.config_entries.async_setup(entry.entry_id)
await hass.async_block_till_done()
return entry | [
"async",
"def",
"init_integration",
"(",
"hass",
",",
"*",
",",
"data",
":",
"dict",
"=",
"ENTRY_CONFIG",
",",
"options",
":",
"dict",
"=",
"ENTRY_OPTIONS",
",",
")",
"->",
"MockConfigEntry",
":",
"entry",
"=",
"MockConfigEntry",
"(",
"domain",
"=",
"DOMAIN",
",",
"data",
"=",
"data",
",",
"options",
"=",
"options",
")",
"entry",
".",
"add_to_hass",
"(",
"hass",
")",
"await",
"hass",
".",
"config_entries",
".",
"async_setup",
"(",
"entry",
".",
"entry_id",
")",
"await",
"hass",
".",
"async_block_till_done",
"(",
")",
"return",
"entry"
] | [
70,
0
] | [
83,
16
] | python | en | ['en', 'en', 'en'] | True |
test_form | (hass) | Test we get the form. | Test we get the form. | async def test_form(hass):
"""Test we get the form."""
result = await hass.config_entries.flow.async_init(
DOMAIN, context={"source": config_entries.SOURCE_USER}
)
assert result["type"] == "form"
assert result["errors"] is None
with patch(
"homeassistant.components.coolmaster.config_flow.CoolMasterNet.status",
return_value={"test_id": "test_unit"},
), patch(
"homeassistant.components.coolmaster.async_setup", return_value=True
) as mock_setup, patch(
"homeassistant.components.coolmaster.async_setup_entry",
return_value=True,
) as mock_setup_entry:
result2 = await hass.config_entries.flow.async_configure(
result["flow_id"], _flow_data()
)
await hass.async_block_till_done()
assert result2["type"] == "create_entry"
assert result2["title"] == "1.1.1.1"
assert result2["data"] == {
"host": "1.1.1.1",
"port": 10102,
"supported_modes": AVAILABLE_MODES,
}
assert len(mock_setup.mock_calls) == 1
assert len(mock_setup_entry.mock_calls) == 1 | [
"async",
"def",
"test_form",
"(",
"hass",
")",
":",
"result",
"=",
"await",
"hass",
".",
"config_entries",
".",
"flow",
".",
"async_init",
"(",
"DOMAIN",
",",
"context",
"=",
"{",
"\"source\"",
":",
"config_entries",
".",
"SOURCE_USER",
"}",
")",
"assert",
"result",
"[",
"\"type\"",
"]",
"==",
"\"form\"",
"assert",
"result",
"[",
"\"errors\"",
"]",
"is",
"None",
"with",
"patch",
"(",
"\"homeassistant.components.coolmaster.config_flow.CoolMasterNet.status\"",
",",
"return_value",
"=",
"{",
"\"test_id\"",
":",
"\"test_unit\"",
"}",
",",
")",
",",
"patch",
"(",
"\"homeassistant.components.coolmaster.async_setup\"",
",",
"return_value",
"=",
"True",
")",
"as",
"mock_setup",
",",
"patch",
"(",
"\"homeassistant.components.coolmaster.async_setup_entry\"",
",",
"return_value",
"=",
"True",
",",
")",
"as",
"mock_setup_entry",
":",
"result2",
"=",
"await",
"hass",
".",
"config_entries",
".",
"flow",
".",
"async_configure",
"(",
"result",
"[",
"\"flow_id\"",
"]",
",",
"_flow_data",
"(",
")",
")",
"await",
"hass",
".",
"async_block_till_done",
"(",
")",
"assert",
"result2",
"[",
"\"type\"",
"]",
"==",
"\"create_entry\"",
"assert",
"result2",
"[",
"\"title\"",
"]",
"==",
"\"1.1.1.1\"",
"assert",
"result2",
"[",
"\"data\"",
"]",
"==",
"{",
"\"host\"",
":",
"\"1.1.1.1\"",
",",
"\"port\"",
":",
"10102",
",",
"\"supported_modes\"",
":",
"AVAILABLE_MODES",
",",
"}",
"assert",
"len",
"(",
"mock_setup",
".",
"mock_calls",
")",
"==",
"1",
"assert",
"len",
"(",
"mock_setup_entry",
".",
"mock_calls",
")",
"==",
"1"
] | [
14,
0
] | [
44,
48
] | python | en | ['en', 'en', 'en'] | True |
test_form_timeout | (hass) | Test we handle a connection timeout. | Test we handle a connection timeout. | async def test_form_timeout(hass):
"""Test we handle a connection timeout."""
result = await hass.config_entries.flow.async_init(
DOMAIN, context={"source": config_entries.SOURCE_USER}
)
with patch(
"homeassistant.components.coolmaster.config_flow.CoolMasterNet.status",
side_effect=TimeoutError(),
):
result2 = await hass.config_entries.flow.async_configure(
result["flow_id"], _flow_data()
)
assert result2["type"] == "form"
assert result2["errors"] == {"base": "cannot_connect"} | [
"async",
"def",
"test_form_timeout",
"(",
"hass",
")",
":",
"result",
"=",
"await",
"hass",
".",
"config_entries",
".",
"flow",
".",
"async_init",
"(",
"DOMAIN",
",",
"context",
"=",
"{",
"\"source\"",
":",
"config_entries",
".",
"SOURCE_USER",
"}",
")",
"with",
"patch",
"(",
"\"homeassistant.components.coolmaster.config_flow.CoolMasterNet.status\"",
",",
"side_effect",
"=",
"TimeoutError",
"(",
")",
",",
")",
":",
"result2",
"=",
"await",
"hass",
".",
"config_entries",
".",
"flow",
".",
"async_configure",
"(",
"result",
"[",
"\"flow_id\"",
"]",
",",
"_flow_data",
"(",
")",
")",
"assert",
"result2",
"[",
"\"type\"",
"]",
"==",
"\"form\"",
"assert",
"result2",
"[",
"\"errors\"",
"]",
"==",
"{",
"\"base\"",
":",
"\"cannot_connect\"",
"}"
] | [
47,
0
] | [
62,
58
] | python | en | ['en', 'en', 'en'] | True |
test_form_connection_refused | (hass) | Test we handle a connection error. | Test we handle a connection error. | async def test_form_connection_refused(hass):
"""Test we handle a connection error."""
result = await hass.config_entries.flow.async_init(
DOMAIN, context={"source": config_entries.SOURCE_USER}
)
with patch(
"homeassistant.components.coolmaster.config_flow.CoolMasterNet.status",
side_effect=ConnectionRefusedError(),
):
result2 = await hass.config_entries.flow.async_configure(
result["flow_id"], _flow_data()
)
assert result2["type"] == "form"
assert result2["errors"] == {"base": "cannot_connect"} | [
"async",
"def",
"test_form_connection_refused",
"(",
"hass",
")",
":",
"result",
"=",
"await",
"hass",
".",
"config_entries",
".",
"flow",
".",
"async_init",
"(",
"DOMAIN",
",",
"context",
"=",
"{",
"\"source\"",
":",
"config_entries",
".",
"SOURCE_USER",
"}",
")",
"with",
"patch",
"(",
"\"homeassistant.components.coolmaster.config_flow.CoolMasterNet.status\"",
",",
"side_effect",
"=",
"ConnectionRefusedError",
"(",
")",
",",
")",
":",
"result2",
"=",
"await",
"hass",
".",
"config_entries",
".",
"flow",
".",
"async_configure",
"(",
"result",
"[",
"\"flow_id\"",
"]",
",",
"_flow_data",
"(",
")",
")",
"assert",
"result2",
"[",
"\"type\"",
"]",
"==",
"\"form\"",
"assert",
"result2",
"[",
"\"errors\"",
"]",
"==",
"{",
"\"base\"",
":",
"\"cannot_connect\"",
"}"
] | [
65,
0
] | [
80,
58
] | python | en | ['en', 'en', 'en'] | True |
test_form_no_units | (hass) | Test we handle no units found. | Test we handle no units found. | async def test_form_no_units(hass):
"""Test we handle no units found."""
result = await hass.config_entries.flow.async_init(
DOMAIN, context={"source": config_entries.SOURCE_USER}
)
with patch(
"homeassistant.components.coolmaster.config_flow.CoolMasterNet.status",
return_value={},
):
result2 = await hass.config_entries.flow.async_configure(
result["flow_id"], _flow_data()
)
assert result2["type"] == "form"
assert result2["errors"] == {"base": "no_units"} | [
"async",
"def",
"test_form_no_units",
"(",
"hass",
")",
":",
"result",
"=",
"await",
"hass",
".",
"config_entries",
".",
"flow",
".",
"async_init",
"(",
"DOMAIN",
",",
"context",
"=",
"{",
"\"source\"",
":",
"config_entries",
".",
"SOURCE_USER",
"}",
")",
"with",
"patch",
"(",
"\"homeassistant.components.coolmaster.config_flow.CoolMasterNet.status\"",
",",
"return_value",
"=",
"{",
"}",
",",
")",
":",
"result2",
"=",
"await",
"hass",
".",
"config_entries",
".",
"flow",
".",
"async_configure",
"(",
"result",
"[",
"\"flow_id\"",
"]",
",",
"_flow_data",
"(",
")",
")",
"assert",
"result2",
"[",
"\"type\"",
"]",
"==",
"\"form\"",
"assert",
"result2",
"[",
"\"errors\"",
"]",
"==",
"{",
"\"base\"",
":",
"\"no_units\"",
"}"
] | [
83,
0
] | [
98,
52
] | python | en | ['en', 'de', 'en'] | True |
normalize_answer | (str_input) | Lower text and remove punctuation, articles and extra whitespace. | Lower text and remove punctuation, articles and extra whitespace. | def normalize_answer(str_input):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
'''
Remove "a|an|the"
'''
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
'''
Remove unnessary whitespace
'''
return ' '.join(text.split())
def remove_punc(text):
'''
Remove punc
'''
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
'''
Change string to lower form.
'''
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(str_input)))) | [
"def",
"normalize_answer",
"(",
"str_input",
")",
":",
"def",
"remove_articles",
"(",
"text",
")",
":",
"'''\n Remove \"a|an|the\"\n '''",
"return",
"re",
".",
"sub",
"(",
"r'\\b(a|an|the)\\b'",
",",
"' '",
",",
"text",
")",
"def",
"white_space_fix",
"(",
"text",
")",
":",
"'''\n Remove unnessary whitespace\n '''",
"return",
"' '",
".",
"join",
"(",
"text",
".",
"split",
"(",
")",
")",
"def",
"remove_punc",
"(",
"text",
")",
":",
"'''\n Remove punc\n '''",
"exclude",
"=",
"set",
"(",
"string",
".",
"punctuation",
")",
"return",
"''",
".",
"join",
"(",
"ch",
"for",
"ch",
"in",
"text",
"if",
"ch",
"not",
"in",
"exclude",
")",
"def",
"lower",
"(",
"text",
")",
":",
"'''\n Change string to lower form.\n '''",
"return",
"text",
".",
"lower",
"(",
")",
"return",
"white_space_fix",
"(",
"remove_articles",
"(",
"remove_punc",
"(",
"lower",
"(",
"str_input",
")",
")",
")",
")"
] | [
33,
0
] | [
60,
74
] | python | en | ['en', 'en', 'en'] | True |
f1_score | (prediction, ground_truth) |
Calculate the f1 score.
|
Calculate the f1 score.
| def f1_score(prediction, ground_truth):
'''
Calculate the f1 score.
'''
prediction_tokens = normalize_answer(prediction).split()
ground_truth_tokens = normalize_answer(ground_truth).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1_result = (2 * precision * recall) / (precision + recall)
return f1_result | [
"def",
"f1_score",
"(",
"prediction",
",",
"ground_truth",
")",
":",
"prediction_tokens",
"=",
"normalize_answer",
"(",
"prediction",
")",
".",
"split",
"(",
")",
"ground_truth_tokens",
"=",
"normalize_answer",
"(",
"ground_truth",
")",
".",
"split",
"(",
")",
"common",
"=",
"Counter",
"(",
"prediction_tokens",
")",
"&",
"Counter",
"(",
"ground_truth_tokens",
")",
"num_same",
"=",
"sum",
"(",
"common",
".",
"values",
"(",
")",
")",
"if",
"num_same",
"==",
"0",
":",
"return",
"0",
"precision",
"=",
"1.0",
"*",
"num_same",
"/",
"len",
"(",
"prediction_tokens",
")",
"recall",
"=",
"1.0",
"*",
"num_same",
"/",
"len",
"(",
"ground_truth_tokens",
")",
"f1_result",
"=",
"(",
"2",
"*",
"precision",
"*",
"recall",
")",
"/",
"(",
"precision",
"+",
"recall",
")",
"return",
"f1_result"
] | [
62,
0
] | [
75,
20
] | python | en | ['en', 'error', 'th'] | False |
exact_match_score | (prediction, ground_truth) |
Calculate the match score with prediction and ground truth.
|
Calculate the match score with prediction and ground truth.
| def exact_match_score(prediction, ground_truth):
'''
Calculate the match score with prediction and ground truth.
'''
return normalize_answer(prediction) == normalize_answer(ground_truth) | [
"def",
"exact_match_score",
"(",
"prediction",
",",
"ground_truth",
")",
":",
"return",
"normalize_answer",
"(",
"prediction",
")",
"==",
"normalize_answer",
"(",
"ground_truth",
")"
] | [
77,
0
] | [
81,
73
] | python | en | ['en', 'error', 'th'] | False |
metric_max_over_ground_truths | (metric_fn, prediction, ground_truths) |
Metric max over the ground truths.
|
Metric max over the ground truths.
| def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
'''
Metric max over the ground truths.
'''
scores_for_ground_truths = []
for ground_truth in ground_truths:
score = metric_fn(prediction, ground_truth)
scores_for_ground_truths.append(score)
return max(scores_for_ground_truths) | [
"def",
"metric_max_over_ground_truths",
"(",
"metric_fn",
",",
"prediction",
",",
"ground_truths",
")",
":",
"scores_for_ground_truths",
"=",
"[",
"]",
"for",
"ground_truth",
"in",
"ground_truths",
":",
"score",
"=",
"metric_fn",
"(",
"prediction",
",",
"ground_truth",
")",
"scores_for_ground_truths",
".",
"append",
"(",
"score",
")",
"return",
"max",
"(",
"scores_for_ground_truths",
")"
] | [
83,
0
] | [
91,
40
] | python | en | ['en', 'error', 'th'] | False |
_evaluate | (dataset, predictions) |
Evaluate function.
|
Evaluate function.
| def _evaluate(dataset, predictions):
'''
Evaluate function.
'''
f1_result = exact_match = total = 0
count = 0
for article in dataset:
for paragraph in article['paragraphs']:
for qa_pair in paragraph['qas']:
total += 1
if qa_pair['id'] not in predictions:
count += 1
continue
ground_truths = list(map(lambda x: x['text'], qa_pair['answers']))
prediction = predictions[qa_pair['id']]
exact_match += metric_max_over_ground_truths(
exact_match_score, prediction, ground_truths)
f1_result += metric_max_over_ground_truths(
f1_score, prediction, ground_truths)
print('total', total, 'exact_match', exact_match, 'unanswer_question ', count)
exact_match = 100.0 * exact_match / total
f1_result = 100.0 * f1_result / total
return {'exact_match': exact_match, 'f1': f1_result} | [
"def",
"_evaluate",
"(",
"dataset",
",",
"predictions",
")",
":",
"f1_result",
"=",
"exact_match",
"=",
"total",
"=",
"0",
"count",
"=",
"0",
"for",
"article",
"in",
"dataset",
":",
"for",
"paragraph",
"in",
"article",
"[",
"'paragraphs'",
"]",
":",
"for",
"qa_pair",
"in",
"paragraph",
"[",
"'qas'",
"]",
":",
"total",
"+=",
"1",
"if",
"qa_pair",
"[",
"'id'",
"]",
"not",
"in",
"predictions",
":",
"count",
"+=",
"1",
"continue",
"ground_truths",
"=",
"list",
"(",
"map",
"(",
"lambda",
"x",
":",
"x",
"[",
"'text'",
"]",
",",
"qa_pair",
"[",
"'answers'",
"]",
")",
")",
"prediction",
"=",
"predictions",
"[",
"qa_pair",
"[",
"'id'",
"]",
"]",
"exact_match",
"+=",
"metric_max_over_ground_truths",
"(",
"exact_match_score",
",",
"prediction",
",",
"ground_truths",
")",
"f1_result",
"+=",
"metric_max_over_ground_truths",
"(",
"f1_score",
",",
"prediction",
",",
"ground_truths",
")",
"print",
"(",
"'total'",
",",
"total",
",",
"'exact_match'",
",",
"exact_match",
",",
"'unanswer_question '",
",",
"count",
")",
"exact_match",
"=",
"100.0",
"*",
"exact_match",
"/",
"total",
"f1_result",
"=",
"100.0",
"*",
"f1_result",
"/",
"total",
"return",
"{",
"'exact_match'",
":",
"exact_match",
",",
"'f1'",
":",
"f1_result",
"}"
] | [
93,
0
] | [
115,
56
] | python | en | ['en', 'error', 'th'] | False |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.