Search is not available for this dataset
identifier
stringlengths 1
155
| parameters
stringlengths 2
6.09k
| docstring
stringlengths 11
63.4k
| docstring_summary
stringlengths 0
63.4k
| function
stringlengths 29
99.8k
| function_tokens
sequence | start_point
sequence | end_point
sequence | language
stringclasses 1
value | docstring_language
stringlengths 2
7
| docstring_language_predictions
stringlengths 18
23
| is_langid_reliable
stringclasses 2
values |
---|---|---|---|---|---|---|---|---|---|---|---|
AbstractDemoPlayer.select_sound_mode | (self, sound_mode) | Select sound mode. | Select sound mode. | def select_sound_mode(self, sound_mode):
"""Select sound mode."""
self._sound_mode = sound_mode
self.schedule_update_ha_state() | [
"def",
"select_sound_mode",
"(",
"self",
",",
"sound_mode",
")",
":",
"self",
".",
"_sound_mode",
"=",
"sound_mode",
"self",
".",
"schedule_update_ha_state",
"(",
")"
] | [
203,
4
] | [
206,
39
] | python | en | ['en', 'mk', 'en'] | True |
DemoYoutubePlayer.__init__ | (self, name, youtube_id=None, media_title=None, duration=360) | Initialize the demo device. | Initialize the demo device. | def __init__(self, name, youtube_id=None, media_title=None, duration=360):
"""Initialize the demo device."""
super().__init__(name)
self.youtube_id = youtube_id
self._media_title = media_title
self._duration = duration
self._progress = int(duration * 0.15)
self._progress_updated_at = dt_util.utcnow() | [
"def",
"__init__",
"(",
"self",
",",
"name",
",",
"youtube_id",
"=",
"None",
",",
"media_title",
"=",
"None",
",",
"duration",
"=",
"360",
")",
":",
"super",
"(",
")",
".",
"__init__",
"(",
"name",
")",
"self",
".",
"youtube_id",
"=",
"youtube_id",
"self",
".",
"_media_title",
"=",
"media_title",
"self",
".",
"_duration",
"=",
"duration",
"self",
".",
"_progress",
"=",
"int",
"(",
"duration",
"*",
"0.15",
")",
"self",
".",
"_progress_updated_at",
"=",
"dt_util",
".",
"utcnow",
"(",
")"
] | [
214,
4
] | [
221,
52
] | python | en | ['en', 'en', 'en'] | True |
DemoYoutubePlayer.media_content_id | (self) | Return the content ID of current playing media. | Return the content ID of current playing media. | def media_content_id(self):
"""Return the content ID of current playing media."""
return self.youtube_id | [
"def",
"media_content_id",
"(",
"self",
")",
":",
"return",
"self",
".",
"youtube_id"
] | [
224,
4
] | [
226,
30
] | python | en | ['en', 'en', 'en'] | True |
DemoYoutubePlayer.media_content_type | (self) | Return the content type of current playing media. | Return the content type of current playing media. | def media_content_type(self):
"""Return the content type of current playing media."""
return MEDIA_TYPE_MOVIE | [
"def",
"media_content_type",
"(",
"self",
")",
":",
"return",
"MEDIA_TYPE_MOVIE"
] | [
229,
4
] | [
231,
31
] | python | en | ['en', 'en', 'en'] | True |
DemoYoutubePlayer.media_duration | (self) | Return the duration of current playing media in seconds. | Return the duration of current playing media in seconds. | def media_duration(self):
"""Return the duration of current playing media in seconds."""
return self._duration | [
"def",
"media_duration",
"(",
"self",
")",
":",
"return",
"self",
".",
"_duration"
] | [
234,
4
] | [
236,
29
] | python | en | ['en', 'en', 'en'] | True |
DemoYoutubePlayer.media_image_url | (self) | Return the image url of current playing media. | Return the image url of current playing media. | def media_image_url(self):
"""Return the image url of current playing media."""
return f"https://img.youtube.com/vi/{self.youtube_id}/hqdefault.jpg" | [
"def",
"media_image_url",
"(",
"self",
")",
":",
"return",
"f\"https://img.youtube.com/vi/{self.youtube_id}/hqdefault.jpg\""
] | [
239,
4
] | [
241,
76
] | python | en | ['en', 'en', 'en'] | True |
DemoYoutubePlayer.media_title | (self) | Return the title of current playing media. | Return the title of current playing media. | def media_title(self):
"""Return the title of current playing media."""
return self._media_title | [
"def",
"media_title",
"(",
"self",
")",
":",
"return",
"self",
".",
"_media_title"
] | [
244,
4
] | [
246,
32
] | python | en | ['en', 'en', 'en'] | True |
DemoYoutubePlayer.app_name | (self) | Return the current running application. | Return the current running application. | def app_name(self):
"""Return the current running application."""
return "YouTube" | [
"def",
"app_name",
"(",
"self",
")",
":",
"return",
"\"YouTube\""
] | [
249,
4
] | [
251,
24
] | python | en | ['en', 'en', 'en'] | True |
DemoYoutubePlayer.supported_features | (self) | Flag media player features that are supported. | Flag media player features that are supported. | def supported_features(self):
"""Flag media player features that are supported."""
return YOUTUBE_PLAYER_SUPPORT | [
"def",
"supported_features",
"(",
"self",
")",
":",
"return",
"YOUTUBE_PLAYER_SUPPORT"
] | [
254,
4
] | [
256,
37
] | python | en | ['en', 'en', 'en'] | True |
DemoYoutubePlayer.media_position | (self) | Position of current playing media in seconds. | Position of current playing media in seconds. | def media_position(self):
"""Position of current playing media in seconds."""
if self._progress is None:
return None
position = self._progress
if self._player_state == STATE_PLAYING:
position += (dt_util.utcnow() - self._progress_updated_at).total_seconds()
return position | [
"def",
"media_position",
"(",
"self",
")",
":",
"if",
"self",
".",
"_progress",
"is",
"None",
":",
"return",
"None",
"position",
"=",
"self",
".",
"_progress",
"if",
"self",
".",
"_player_state",
"==",
"STATE_PLAYING",
":",
"position",
"+=",
"(",
"dt_util",
".",
"utcnow",
"(",
")",
"-",
"self",
".",
"_progress_updated_at",
")",
".",
"total_seconds",
"(",
")",
"return",
"position"
] | [
259,
4
] | [
269,
23
] | python | en | ['en', 'en', 'en'] | True |
DemoYoutubePlayer.media_position_updated_at | (self) | When was the position of the current playing media valid.
Returns value from homeassistant.util.dt.utcnow().
| When was the position of the current playing media valid. | def media_position_updated_at(self):
"""When was the position of the current playing media valid.
Returns value from homeassistant.util.dt.utcnow().
"""
if self._player_state == STATE_PLAYING:
return self._progress_updated_at | [
"def",
"media_position_updated_at",
"(",
"self",
")",
":",
"if",
"self",
".",
"_player_state",
"==",
"STATE_PLAYING",
":",
"return",
"self",
".",
"_progress_updated_at"
] | [
272,
4
] | [
278,
44
] | python | en | ['en', 'en', 'en'] | True |
DemoYoutubePlayer.play_media | (self, media_type, media_id, **kwargs) | Play a piece of media. | Play a piece of media. | def play_media(self, media_type, media_id, **kwargs):
"""Play a piece of media."""
self.youtube_id = media_id
self.schedule_update_ha_state() | [
"def",
"play_media",
"(",
"self",
",",
"media_type",
",",
"media_id",
",",
"*",
"*",
"kwargs",
")",
":",
"self",
".",
"youtube_id",
"=",
"media_id",
"self",
".",
"schedule_update_ha_state",
"(",
")"
] | [
280,
4
] | [
283,
39
] | python | en | ['en', 'en', 'en'] | True |
DemoYoutubePlayer.media_pause | (self) | Send pause command. | Send pause command. | def media_pause(self):
"""Send pause command."""
self._progress = self.media_position
self._progress_updated_at = dt_util.utcnow()
super().media_pause() | [
"def",
"media_pause",
"(",
"self",
")",
":",
"self",
".",
"_progress",
"=",
"self",
".",
"media_position",
"self",
".",
"_progress_updated_at",
"=",
"dt_util",
".",
"utcnow",
"(",
")",
"super",
"(",
")",
".",
"media_pause",
"(",
")"
] | [
285,
4
] | [
289,
29
] | python | en | ['en', 'en', 'en'] | True |
DemoMusicPlayer.__init__ | (self) | Initialize the demo device. | Initialize the demo device. | def __init__(self):
"""Initialize the demo device."""
super().__init__("Walkman")
self._cur_track = 0
self._repeat = REPEAT_MODE_OFF | [
"def",
"__init__",
"(",
"self",
")",
":",
"super",
"(",
")",
".",
"__init__",
"(",
"\"Walkman\"",
")",
"self",
".",
"_cur_track",
"=",
"0",
"self",
".",
"_repeat",
"=",
"REPEAT_MODE_OFF"
] | [
320,
4
] | [
324,
38
] | python | en | ['en', 'en', 'en'] | True |
DemoMusicPlayer.media_content_id | (self) | Return the content ID of current playing media. | Return the content ID of current playing media. | def media_content_id(self):
"""Return the content ID of current playing media."""
return "bounzz-1" | [
"def",
"media_content_id",
"(",
"self",
")",
":",
"return",
"\"bounzz-1\""
] | [
327,
4
] | [
329,
25
] | python | en | ['en', 'en', 'en'] | True |
DemoMusicPlayer.media_content_type | (self) | Return the content type of current playing media. | Return the content type of current playing media. | def media_content_type(self):
"""Return the content type of current playing media."""
return MEDIA_TYPE_MUSIC | [
"def",
"media_content_type",
"(",
"self",
")",
":",
"return",
"MEDIA_TYPE_MUSIC"
] | [
332,
4
] | [
334,
31
] | python | en | ['en', 'en', 'en'] | True |
DemoMusicPlayer.media_duration | (self) | Return the duration of current playing media in seconds. | Return the duration of current playing media in seconds. | def media_duration(self):
"""Return the duration of current playing media in seconds."""
return 213 | [
"def",
"media_duration",
"(",
"self",
")",
":",
"return",
"213"
] | [
337,
4
] | [
339,
18
] | python | en | ['en', 'en', 'en'] | True |
DemoMusicPlayer.media_image_url | (self) | Return the image url of current playing media. | Return the image url of current playing media. | def media_image_url(self):
"""Return the image url of current playing media."""
return "https://graph.facebook.com/v2.5/107771475912710/picture?type=large" | [
"def",
"media_image_url",
"(",
"self",
")",
":",
"return",
"\"https://graph.facebook.com/v2.5/107771475912710/picture?type=large\""
] | [
342,
4
] | [
344,
83
] | python | en | ['en', 'en', 'en'] | True |
DemoMusicPlayer.media_title | (self) | Return the title of current playing media. | Return the title of current playing media. | def media_title(self):
"""Return the title of current playing media."""
return self.tracks[self._cur_track][1] if self.tracks else "" | [
"def",
"media_title",
"(",
"self",
")",
":",
"return",
"self",
".",
"tracks",
"[",
"self",
".",
"_cur_track",
"]",
"[",
"1",
"]",
"if",
"self",
".",
"tracks",
"else",
"\"\""
] | [
347,
4
] | [
349,
69
] | python | en | ['en', 'en', 'en'] | True |
DemoMusicPlayer.media_artist | (self) | Return the artist of current playing media (Music track only). | Return the artist of current playing media (Music track only). | def media_artist(self):
"""Return the artist of current playing media (Music track only)."""
return self.tracks[self._cur_track][0] if self.tracks else "" | [
"def",
"media_artist",
"(",
"self",
")",
":",
"return",
"self",
".",
"tracks",
"[",
"self",
".",
"_cur_track",
"]",
"[",
"0",
"]",
"if",
"self",
".",
"tracks",
"else",
"\"\""
] | [
352,
4
] | [
354,
69
] | python | en | ['en', 'en', 'en'] | True |
DemoMusicPlayer.media_album_name | (self) | Return the album of current playing media (Music track only). | Return the album of current playing media (Music track only). | def media_album_name(self):
"""Return the album of current playing media (Music track only)."""
return "Bounzz" | [
"def",
"media_album_name",
"(",
"self",
")",
":",
"return",
"\"Bounzz\""
] | [
357,
4
] | [
359,
23
] | python | en | ['en', 'en', 'en'] | True |
DemoMusicPlayer.media_track | (self) | Return the track number of current media (Music track only). | Return the track number of current media (Music track only). | def media_track(self):
"""Return the track number of current media (Music track only)."""
return self._cur_track + 1 | [
"def",
"media_track",
"(",
"self",
")",
":",
"return",
"self",
".",
"_cur_track",
"+",
"1"
] | [
362,
4
] | [
364,
34
] | python | en | ['en', 'en', 'en'] | True |
DemoMusicPlayer.repeat | (self) | Return current repeat mode. | Return current repeat mode. | def repeat(self):
"""Return current repeat mode."""
return self._repeat | [
"def",
"repeat",
"(",
"self",
")",
":",
"return",
"self",
".",
"_repeat"
] | [
367,
4
] | [
369,
27
] | python | en | ['en', 'la', 'en'] | True |
DemoMusicPlayer.supported_features | (self) | Flag media player features that are supported. | Flag media player features that are supported. | def supported_features(self):
"""Flag media player features that are supported."""
return MUSIC_PLAYER_SUPPORT | [
"def",
"supported_features",
"(",
"self",
")",
":",
"return",
"MUSIC_PLAYER_SUPPORT"
] | [
372,
4
] | [
374,
35
] | python | en | ['en', 'en', 'en'] | True |
DemoMusicPlayer.media_previous_track | (self) | Send previous track command. | Send previous track command. | def media_previous_track(self):
"""Send previous track command."""
if self._cur_track > 0:
self._cur_track -= 1
self.schedule_update_ha_state() | [
"def",
"media_previous_track",
"(",
"self",
")",
":",
"if",
"self",
".",
"_cur_track",
">",
"0",
":",
"self",
".",
"_cur_track",
"-=",
"1",
"self",
".",
"schedule_update_ha_state",
"(",
")"
] | [
376,
4
] | [
380,
43
] | python | en | ['en', 'it', 'en'] | True |
DemoMusicPlayer.media_next_track | (self) | Send next track command. | Send next track command. | def media_next_track(self):
"""Send next track command."""
if self._cur_track < len(self.tracks) - 1:
self._cur_track += 1
self.schedule_update_ha_state() | [
"def",
"media_next_track",
"(",
"self",
")",
":",
"if",
"self",
".",
"_cur_track",
"<",
"len",
"(",
"self",
".",
"tracks",
")",
"-",
"1",
":",
"self",
".",
"_cur_track",
"+=",
"1",
"self",
".",
"schedule_update_ha_state",
"(",
")"
] | [
382,
4
] | [
386,
43
] | python | en | ['en', 'pt', 'en'] | True |
DemoMusicPlayer.clear_playlist | (self) | Clear players playlist. | Clear players playlist. | def clear_playlist(self):
"""Clear players playlist."""
self.tracks = []
self._cur_track = 0
self._player_state = STATE_OFF
self.schedule_update_ha_state() | [
"def",
"clear_playlist",
"(",
"self",
")",
":",
"self",
".",
"tracks",
"=",
"[",
"]",
"self",
".",
"_cur_track",
"=",
"0",
"self",
".",
"_player_state",
"=",
"STATE_OFF",
"self",
".",
"schedule_update_ha_state",
"(",
")"
] | [
388,
4
] | [
393,
39
] | python | en | ['fr', 'en', 'en'] | True |
DemoMusicPlayer.set_repeat | (self, repeat) | Enable/disable repeat mode. | Enable/disable repeat mode. | def set_repeat(self, repeat):
"""Enable/disable repeat mode."""
self._repeat = repeat
self.schedule_update_ha_state() | [
"def",
"set_repeat",
"(",
"self",
",",
"repeat",
")",
":",
"self",
".",
"_repeat",
"=",
"repeat",
"self",
".",
"schedule_update_ha_state",
"(",
")"
] | [
395,
4
] | [
398,
39
] | python | en | ['en', 'en', 'en'] | True |
DemoTVShowPlayer.__init__ | (self) | Initialize the demo device. | Initialize the demo device. | def __init__(self):
"""Initialize the demo device."""
super().__init__("Lounge room")
self._cur_episode = 1
self._episode_count = 13
self._source = "dvd"
self._source_list = ["dvd", "youtube"] | [
"def",
"__init__",
"(",
"self",
")",
":",
"super",
"(",
")",
".",
"__init__",
"(",
"\"Lounge room\"",
")",
"self",
".",
"_cur_episode",
"=",
"1",
"self",
".",
"_episode_count",
"=",
"13",
"self",
".",
"_source",
"=",
"\"dvd\"",
"self",
".",
"_source_list",
"=",
"[",
"\"dvd\"",
",",
"\"youtube\"",
"]"
] | [
406,
4
] | [
412,
46
] | python | en | ['en', 'en', 'en'] | True |
DemoTVShowPlayer.media_content_id | (self) | Return the content ID of current playing media. | Return the content ID of current playing media. | def media_content_id(self):
"""Return the content ID of current playing media."""
return "house-of-cards-1" | [
"def",
"media_content_id",
"(",
"self",
")",
":",
"return",
"\"house-of-cards-1\""
] | [
415,
4
] | [
417,
33
] | python | en | ['en', 'en', 'en'] | True |
DemoTVShowPlayer.media_content_type | (self) | Return the content type of current playing media. | Return the content type of current playing media. | def media_content_type(self):
"""Return the content type of current playing media."""
return MEDIA_TYPE_TVSHOW | [
"def",
"media_content_type",
"(",
"self",
")",
":",
"return",
"MEDIA_TYPE_TVSHOW"
] | [
420,
4
] | [
422,
32
] | python | en | ['en', 'en', 'en'] | True |
DemoTVShowPlayer.media_duration | (self) | Return the duration of current playing media in seconds. | Return the duration of current playing media in seconds. | def media_duration(self):
"""Return the duration of current playing media in seconds."""
return 3600 | [
"def",
"media_duration",
"(",
"self",
")",
":",
"return",
"3600"
] | [
425,
4
] | [
427,
19
] | python | en | ['en', 'en', 'en'] | True |
DemoTVShowPlayer.media_image_url | (self) | Return the image url of current playing media. | Return the image url of current playing media. | def media_image_url(self):
"""Return the image url of current playing media."""
return "https://graph.facebook.com/v2.5/HouseofCards/picture?width=400" | [
"def",
"media_image_url",
"(",
"self",
")",
":",
"return",
"\"https://graph.facebook.com/v2.5/HouseofCards/picture?width=400\""
] | [
430,
4
] | [
432,
79
] | python | en | ['en', 'en', 'en'] | True |
DemoTVShowPlayer.media_title | (self) | Return the title of current playing media. | Return the title of current playing media. | def media_title(self):
"""Return the title of current playing media."""
return f"Chapter {self._cur_episode}" | [
"def",
"media_title",
"(",
"self",
")",
":",
"return",
"f\"Chapter {self._cur_episode}\""
] | [
435,
4
] | [
437,
45
] | python | en | ['en', 'en', 'en'] | True |
DemoTVShowPlayer.media_series_title | (self) | Return the series title of current playing media (TV Show only). | Return the series title of current playing media (TV Show only). | def media_series_title(self):
"""Return the series title of current playing media (TV Show only)."""
return "House of Cards" | [
"def",
"media_series_title",
"(",
"self",
")",
":",
"return",
"\"House of Cards\""
] | [
440,
4
] | [
442,
31
] | python | en | ['en', 'en', 'en'] | True |
DemoTVShowPlayer.media_season | (self) | Return the season of current playing media (TV Show only). | Return the season of current playing media (TV Show only). | def media_season(self):
"""Return the season of current playing media (TV Show only)."""
return 1 | [
"def",
"media_season",
"(",
"self",
")",
":",
"return",
"1"
] | [
445,
4
] | [
447,
16
] | python | en | ['en', 'en', 'en'] | True |
DemoTVShowPlayer.media_episode | (self) | Return the episode of current playing media (TV Show only). | Return the episode of current playing media (TV Show only). | def media_episode(self):
"""Return the episode of current playing media (TV Show only)."""
return self._cur_episode | [
"def",
"media_episode",
"(",
"self",
")",
":",
"return",
"self",
".",
"_cur_episode"
] | [
450,
4
] | [
452,
32
] | python | en | ['en', 'en', 'en'] | True |
DemoTVShowPlayer.app_name | (self) | Return the current running application. | Return the current running application. | def app_name(self):
"""Return the current running application."""
return "Netflix" | [
"def",
"app_name",
"(",
"self",
")",
":",
"return",
"\"Netflix\""
] | [
455,
4
] | [
457,
24
] | python | en | ['en', 'en', 'en'] | True |
DemoTVShowPlayer.source | (self) | Return the current input source. | Return the current input source. | def source(self):
"""Return the current input source."""
return self._source | [
"def",
"source",
"(",
"self",
")",
":",
"return",
"self",
".",
"_source"
] | [
460,
4
] | [
462,
27
] | python | en | ['en', 'en', 'en'] | True |
DemoTVShowPlayer.source_list | (self) | List of available sources. | List of available sources. | def source_list(self):
"""List of available sources."""
return self._source_list | [
"def",
"source_list",
"(",
"self",
")",
":",
"return",
"self",
".",
"_source_list"
] | [
465,
4
] | [
467,
32
] | python | en | ['en', 'en', 'en'] | True |
DemoTVShowPlayer.supported_features | (self) | Flag media player features that are supported. | Flag media player features that are supported. | def supported_features(self):
"""Flag media player features that are supported."""
return NETFLIX_PLAYER_SUPPORT | [
"def",
"supported_features",
"(",
"self",
")",
":",
"return",
"NETFLIX_PLAYER_SUPPORT"
] | [
470,
4
] | [
472,
37
] | python | en | ['en', 'en', 'en'] | True |
DemoTVShowPlayer.media_previous_track | (self) | Send previous track command. | Send previous track command. | def media_previous_track(self):
"""Send previous track command."""
if self._cur_episode > 1:
self._cur_episode -= 1
self.schedule_update_ha_state() | [
"def",
"media_previous_track",
"(",
"self",
")",
":",
"if",
"self",
".",
"_cur_episode",
">",
"1",
":",
"self",
".",
"_cur_episode",
"-=",
"1",
"self",
".",
"schedule_update_ha_state",
"(",
")"
] | [
474,
4
] | [
478,
43
] | python | en | ['en', 'it', 'en'] | True |
DemoTVShowPlayer.media_next_track | (self) | Send next track command. | Send next track command. | def media_next_track(self):
"""Send next track command."""
if self._cur_episode < self._episode_count:
self._cur_episode += 1
self.schedule_update_ha_state() | [
"def",
"media_next_track",
"(",
"self",
")",
":",
"if",
"self",
".",
"_cur_episode",
"<",
"self",
".",
"_episode_count",
":",
"self",
".",
"_cur_episode",
"+=",
"1",
"self",
".",
"schedule_update_ha_state",
"(",
")"
] | [
480,
4
] | [
484,
43
] | python | en | ['en', 'pt', 'en'] | True |
DemoTVShowPlayer.select_source | (self, source) | Set the input source. | Set the input source. | def select_source(self, source):
"""Set the input source."""
self._source = source
self.schedule_update_ha_state() | [
"def",
"select_source",
"(",
"self",
",",
"source",
")",
":",
"self",
".",
"_source",
"=",
"source",
"self",
".",
"schedule_update_ha_state",
"(",
")"
] | [
486,
4
] | [
489,
39
] | python | en | ['en', 'su', 'en'] | True |
test_form | (hass, mock_simple_nws_config) | Test we get the form. | Test we get the form. | async def test_form(hass, mock_simple_nws_config):
"""Test we get the form."""
hass.config.latitude = 35
hass.config.longitude = -90
await setup.async_setup_component(hass, "persistent_notification", {})
result = await hass.config_entries.flow.async_init(
DOMAIN, context={"source": config_entries.SOURCE_USER}
)
assert result["type"] == "form"
assert result["errors"] == {}
with patch(
"homeassistant.components.nws.async_setup", return_value=True
) as mock_setup, patch(
"homeassistant.components.nws.async_setup_entry",
return_value=True,
) as mock_setup_entry:
result2 = await hass.config_entries.flow.async_configure(
result["flow_id"], {"api_key": "test"}
)
await hass.async_block_till_done()
assert result2["type"] == "create_entry"
assert result2["title"] == "ABC"
assert result2["data"] == {
"api_key": "test",
"latitude": 35,
"longitude": -90,
"station": "ABC",
}
assert len(mock_setup.mock_calls) == 1
assert len(mock_setup_entry.mock_calls) == 1 | [
"async",
"def",
"test_form",
"(",
"hass",
",",
"mock_simple_nws_config",
")",
":",
"hass",
".",
"config",
".",
"latitude",
"=",
"35",
"hass",
".",
"config",
".",
"longitude",
"=",
"-",
"90",
"await",
"setup",
".",
"async_setup_component",
"(",
"hass",
",",
"\"persistent_notification\"",
",",
"{",
"}",
")",
"result",
"=",
"await",
"hass",
".",
"config_entries",
".",
"flow",
".",
"async_init",
"(",
"DOMAIN",
",",
"context",
"=",
"{",
"\"source\"",
":",
"config_entries",
".",
"SOURCE_USER",
"}",
")",
"assert",
"result",
"[",
"\"type\"",
"]",
"==",
"\"form\"",
"assert",
"result",
"[",
"\"errors\"",
"]",
"==",
"{",
"}",
"with",
"patch",
"(",
"\"homeassistant.components.nws.async_setup\"",
",",
"return_value",
"=",
"True",
")",
"as",
"mock_setup",
",",
"patch",
"(",
"\"homeassistant.components.nws.async_setup_entry\"",
",",
"return_value",
"=",
"True",
",",
")",
"as",
"mock_setup_entry",
":",
"result2",
"=",
"await",
"hass",
".",
"config_entries",
".",
"flow",
".",
"async_configure",
"(",
"result",
"[",
"\"flow_id\"",
"]",
",",
"{",
"\"api_key\"",
":",
"\"test\"",
"}",
")",
"await",
"hass",
".",
"async_block_till_done",
"(",
")",
"assert",
"result2",
"[",
"\"type\"",
"]",
"==",
"\"create_entry\"",
"assert",
"result2",
"[",
"\"title\"",
"]",
"==",
"\"ABC\"",
"assert",
"result2",
"[",
"\"data\"",
"]",
"==",
"{",
"\"api_key\"",
":",
"\"test\"",
",",
"\"latitude\"",
":",
"35",
",",
"\"longitude\"",
":",
"-",
"90",
",",
"\"station\"",
":",
"\"ABC\"",
",",
"}",
"assert",
"len",
"(",
"mock_setup",
".",
"mock_calls",
")",
"==",
"1",
"assert",
"len",
"(",
"mock_setup_entry",
".",
"mock_calls",
")",
"==",
"1"
] | [
9,
0
] | [
41,
48
] | python | en | ['en', 'en', 'en'] | True |
test_form_cannot_connect | (hass, mock_simple_nws_config) | Test we handle cannot connect error. | Test we handle cannot connect error. | async def test_form_cannot_connect(hass, mock_simple_nws_config):
"""Test we handle cannot connect error."""
mock_instance = mock_simple_nws_config.return_value
mock_instance.set_station.side_effect = aiohttp.ClientError
result = await hass.config_entries.flow.async_init(
DOMAIN, context={"source": config_entries.SOURCE_USER}
)
result2 = await hass.config_entries.flow.async_configure(
result["flow_id"],
{"api_key": "test"},
)
assert result2["type"] == "form"
assert result2["errors"] == {"base": "cannot_connect"} | [
"async",
"def",
"test_form_cannot_connect",
"(",
"hass",
",",
"mock_simple_nws_config",
")",
":",
"mock_instance",
"=",
"mock_simple_nws_config",
".",
"return_value",
"mock_instance",
".",
"set_station",
".",
"side_effect",
"=",
"aiohttp",
".",
"ClientError",
"result",
"=",
"await",
"hass",
".",
"config_entries",
".",
"flow",
".",
"async_init",
"(",
"DOMAIN",
",",
"context",
"=",
"{",
"\"source\"",
":",
"config_entries",
".",
"SOURCE_USER",
"}",
")",
"result2",
"=",
"await",
"hass",
".",
"config_entries",
".",
"flow",
".",
"async_configure",
"(",
"result",
"[",
"\"flow_id\"",
"]",
",",
"{",
"\"api_key\"",
":",
"\"test\"",
"}",
",",
")",
"assert",
"result2",
"[",
"\"type\"",
"]",
"==",
"\"form\"",
"assert",
"result2",
"[",
"\"errors\"",
"]",
"==",
"{",
"\"base\"",
":",
"\"cannot_connect\"",
"}"
] | [
44,
0
] | [
59,
58
] | python | en | ['en', 'en', 'en'] | True |
test_form_unknown_error | (hass, mock_simple_nws_config) | Test we handle unknown error. | Test we handle unknown error. | async def test_form_unknown_error(hass, mock_simple_nws_config):
"""Test we handle unknown error."""
mock_instance = mock_simple_nws_config.return_value
mock_instance.set_station.side_effect = ValueError
result = await hass.config_entries.flow.async_init(
DOMAIN, context={"source": config_entries.SOURCE_USER}
)
result2 = await hass.config_entries.flow.async_configure(
result["flow_id"],
{"api_key": "test"},
)
assert result2["type"] == "form"
assert result2["errors"] == {"base": "unknown"} | [
"async",
"def",
"test_form_unknown_error",
"(",
"hass",
",",
"mock_simple_nws_config",
")",
":",
"mock_instance",
"=",
"mock_simple_nws_config",
".",
"return_value",
"mock_instance",
".",
"set_station",
".",
"side_effect",
"=",
"ValueError",
"result",
"=",
"await",
"hass",
".",
"config_entries",
".",
"flow",
".",
"async_init",
"(",
"DOMAIN",
",",
"context",
"=",
"{",
"\"source\"",
":",
"config_entries",
".",
"SOURCE_USER",
"}",
")",
"result2",
"=",
"await",
"hass",
".",
"config_entries",
".",
"flow",
".",
"async_configure",
"(",
"result",
"[",
"\"flow_id\"",
"]",
",",
"{",
"\"api_key\"",
":",
"\"test\"",
"}",
",",
")",
"assert",
"result2",
"[",
"\"type\"",
"]",
"==",
"\"form\"",
"assert",
"result2",
"[",
"\"errors\"",
"]",
"==",
"{",
"\"base\"",
":",
"\"unknown\"",
"}"
] | [
62,
0
] | [
77,
51
] | python | en | ['en', 'de', 'en'] | True |
test_form_already_configured | (hass, mock_simple_nws_config) | Test we handle duplicate entries. | Test we handle duplicate entries. | async def test_form_already_configured(hass, mock_simple_nws_config):
"""Test we handle duplicate entries."""
result = await hass.config_entries.flow.async_init(
DOMAIN, context={"source": config_entries.SOURCE_USER}
)
with patch(
"homeassistant.components.nws.async_setup", return_value=True
) as mock_setup, patch(
"homeassistant.components.nws.async_setup_entry",
return_value=True,
) as mock_setup_entry:
result2 = await hass.config_entries.flow.async_configure(
result["flow_id"],
{"api_key": "test"},
)
await hass.async_block_till_done()
assert result2["type"] == "create_entry"
assert len(mock_setup.mock_calls) == 1
assert len(mock_setup_entry.mock_calls) == 1
result = await hass.config_entries.flow.async_init(
DOMAIN, context={"source": config_entries.SOURCE_USER}
)
with patch(
"homeassistant.components.nws.async_setup", return_value=True
) as mock_setup, patch(
"homeassistant.components.nws.async_setup_entry",
return_value=True,
) as mock_setup_entry:
result2 = await hass.config_entries.flow.async_configure(
result["flow_id"],
{"api_key": "test"},
)
assert result2["type"] == "abort"
assert result2["reason"] == "already_configured"
await hass.async_block_till_done()
assert len(mock_setup.mock_calls) == 0
assert len(mock_setup_entry.mock_calls) == 0 | [
"async",
"def",
"test_form_already_configured",
"(",
"hass",
",",
"mock_simple_nws_config",
")",
":",
"result",
"=",
"await",
"hass",
".",
"config_entries",
".",
"flow",
".",
"async_init",
"(",
"DOMAIN",
",",
"context",
"=",
"{",
"\"source\"",
":",
"config_entries",
".",
"SOURCE_USER",
"}",
")",
"with",
"patch",
"(",
"\"homeassistant.components.nws.async_setup\"",
",",
"return_value",
"=",
"True",
")",
"as",
"mock_setup",
",",
"patch",
"(",
"\"homeassistant.components.nws.async_setup_entry\"",
",",
"return_value",
"=",
"True",
",",
")",
"as",
"mock_setup_entry",
":",
"result2",
"=",
"await",
"hass",
".",
"config_entries",
".",
"flow",
".",
"async_configure",
"(",
"result",
"[",
"\"flow_id\"",
"]",
",",
"{",
"\"api_key\"",
":",
"\"test\"",
"}",
",",
")",
"await",
"hass",
".",
"async_block_till_done",
"(",
")",
"assert",
"result2",
"[",
"\"type\"",
"]",
"==",
"\"create_entry\"",
"assert",
"len",
"(",
"mock_setup",
".",
"mock_calls",
")",
"==",
"1",
"assert",
"len",
"(",
"mock_setup_entry",
".",
"mock_calls",
")",
"==",
"1",
"result",
"=",
"await",
"hass",
".",
"config_entries",
".",
"flow",
".",
"async_init",
"(",
"DOMAIN",
",",
"context",
"=",
"{",
"\"source\"",
":",
"config_entries",
".",
"SOURCE_USER",
"}",
")",
"with",
"patch",
"(",
"\"homeassistant.components.nws.async_setup\"",
",",
"return_value",
"=",
"True",
")",
"as",
"mock_setup",
",",
"patch",
"(",
"\"homeassistant.components.nws.async_setup_entry\"",
",",
"return_value",
"=",
"True",
",",
")",
"as",
"mock_setup_entry",
":",
"result2",
"=",
"await",
"hass",
".",
"config_entries",
".",
"flow",
".",
"async_configure",
"(",
"result",
"[",
"\"flow_id\"",
"]",
",",
"{",
"\"api_key\"",
":",
"\"test\"",
"}",
",",
")",
"assert",
"result2",
"[",
"\"type\"",
"]",
"==",
"\"abort\"",
"assert",
"result2",
"[",
"\"reason\"",
"]",
"==",
"\"already_configured\"",
"await",
"hass",
".",
"async_block_till_done",
"(",
")",
"assert",
"len",
"(",
"mock_setup",
".",
"mock_calls",
")",
"==",
"0",
"assert",
"len",
"(",
"mock_setup_entry",
".",
"mock_calls",
")",
"==",
"0"
] | [
80,
0
] | [
120,
48
] | python | en | ['fr', 'en', 'en'] | True |
ModelContainer.check_bounds | (self, theta) | Step 6 check for overlapping periods (within 2.5% arbitrarily chosen) | Step 6 check for overlapping periods (within 2.5% arbitrarily chosen) | def check_bounds(self, theta):
for ii in range(0, self.ndim):
if not (self.bounds[ii, 0] < theta[ii] < self.bounds[ii, 1]):
return False
period_storage = []
period_storage_ordered = np.zeros(len(self.ordered_planets))
for model_name, model in self.common_models.items():
if model.model_class == 'planet':
""" Step 1: retrieve the planet period"""
period = model.transformation['P'](theta, model.fixed,
model.variable_index['P'])
""" Step 2: save the all planet periods into a list"""
period_storage.extend([period])
""" Step 3: save the period of the planet in the ordered list"""
if model_name in self.ordered_planets:
period_storage_ordered[self.ordered_planets[model_name]] = period
# print(' ', model_name, self.ordered_planets[model_name], period_storage_ordered)
""" Step 4: check if the eccentricity is within the given range"""
if 'e' in model.variable_index:
e = model.transformation['e'](theta,
model.fixed,
model.variable_index['e'])
if not model.bounds['e'][0] <= e < model.bounds['e'][1]:
# print('eccentricity>1')
# print()
return False
""" Step 5: check if the impact parameter is below 1 + Rp/Rs """
if 'b' in model.variable_index and 'R' in model.variable_index:
b = model.transformation['b'](theta,
model.fixed,
model.variable_index['b'])
R = model.transformation['R'](theta,
model.fixed,
model.variable_index['R'])
if not b <= 1 + R:
return False
""" Step 6 check for overlapping periods (within 2.5% arbitrarily chosen)"""
for i_n, i_v in enumerate(period_storage):
if i_n == len(period_storage) - 1:
break
if np.amin(np.abs(period_storage[i_n + 1:] - i_v)) / i_v < 0.025:
# print('overlapping periods detected')
# print()
return False
""" Step 7 check if the planet are ordered"""
for i_n, i_v in enumerate(period_storage_ordered):
if i_n == len(period_storage_ordered) - 1:
break
if np.amin(period_storage_ordered[i_n + 1:] - i_v) < 0.0:
# print('inverted order detected')
# print()
return False
return True | [
"def",
"check_bounds",
"(",
"self",
",",
"theta",
")",
":",
"for",
"ii",
"in",
"range",
"(",
"0",
",",
"self",
".",
"ndim",
")",
":",
"if",
"not",
"(",
"self",
".",
"bounds",
"[",
"ii",
",",
"0",
"]",
"<",
"theta",
"[",
"ii",
"]",
"<",
"self",
".",
"bounds",
"[",
"ii",
",",
"1",
"]",
")",
":",
"return",
"False",
"period_storage",
"=",
"[",
"]",
"period_storage_ordered",
"=",
"np",
".",
"zeros",
"(",
"len",
"(",
"self",
".",
"ordered_planets",
")",
")",
"for",
"model_name",
",",
"model",
"in",
"self",
".",
"common_models",
".",
"items",
"(",
")",
":",
"if",
"model",
".",
"model_class",
"==",
"'planet'",
":",
"\"\"\" Step 1: retrieve the planet period\"\"\"",
"period",
"=",
"model",
".",
"transformation",
"[",
"'P'",
"]",
"(",
"theta",
",",
"model",
".",
"fixed",
",",
"model",
".",
"variable_index",
"[",
"'P'",
"]",
")",
"\"\"\" Step 2: save the all planet periods into a list\"\"\"",
"period_storage",
".",
"extend",
"(",
"[",
"period",
"]",
")",
"\"\"\" Step 3: save the period of the planet in the ordered list\"\"\"",
"if",
"model_name",
"in",
"self",
".",
"ordered_planets",
":",
"period_storage_ordered",
"[",
"self",
".",
"ordered_planets",
"[",
"model_name",
"]",
"]",
"=",
"period",
"# print(' ', model_name, self.ordered_planets[model_name], period_storage_ordered)",
"\"\"\" Step 4: check if the eccentricity is within the given range\"\"\"",
"if",
"'e'",
"in",
"model",
".",
"variable_index",
":",
"e",
"=",
"model",
".",
"transformation",
"[",
"'e'",
"]",
"(",
"theta",
",",
"model",
".",
"fixed",
",",
"model",
".",
"variable_index",
"[",
"'e'",
"]",
")",
"if",
"not",
"model",
".",
"bounds",
"[",
"'e'",
"]",
"[",
"0",
"]",
"<=",
"e",
"<",
"model",
".",
"bounds",
"[",
"'e'",
"]",
"[",
"1",
"]",
":",
"# print('eccentricity>1')",
"# print()",
"return",
"False",
"\"\"\" Step 5: check if the impact parameter is below 1 + Rp/Rs \"\"\"",
"if",
"'b'",
"in",
"model",
".",
"variable_index",
"and",
"'R'",
"in",
"model",
".",
"variable_index",
":",
"b",
"=",
"model",
".",
"transformation",
"[",
"'b'",
"]",
"(",
"theta",
",",
"model",
".",
"fixed",
",",
"model",
".",
"variable_index",
"[",
"'b'",
"]",
")",
"R",
"=",
"model",
".",
"transformation",
"[",
"'R'",
"]",
"(",
"theta",
",",
"model",
".",
"fixed",
",",
"model",
".",
"variable_index",
"[",
"'R'",
"]",
")",
"if",
"not",
"b",
"<=",
"1",
"+",
"R",
":",
"return",
"False",
"for",
"i_n",
",",
"i_v",
"in",
"enumerate",
"(",
"period_storage",
")",
":",
"if",
"i_n",
"==",
"len",
"(",
"period_storage",
")",
"-",
"1",
":",
"break",
"if",
"np",
".",
"amin",
"(",
"np",
".",
"abs",
"(",
"period_storage",
"[",
"i_n",
"+",
"1",
":",
"]",
"-",
"i_v",
")",
")",
"/",
"i_v",
"<",
"0.025",
":",
"# print('overlapping periods detected')",
"# print()",
"return",
"False",
"\"\"\" Step 7 check if the planet are ordered\"\"\"",
"for",
"i_n",
",",
"i_v",
"in",
"enumerate",
"(",
"period_storage_ordered",
")",
":",
"if",
"i_n",
"==",
"len",
"(",
"period_storage_ordered",
")",
"-",
"1",
":",
"break",
"if",
"np",
".",
"amin",
"(",
"period_storage_ordered",
"[",
"i_n",
"+",
"1",
":",
"]",
"-",
"i_v",
")",
"<",
"0.0",
":",
"# print('inverted order detected')",
"# print()",
"return",
"False",
"return",
"True"
] | [
138,
4
] | [
203,
19
] | python | en | ['en', 'en', 'en'] | True |
ModelContainer.log_priors_likelihood | (self, theta, return_priors=True) |
Constant term added either by dataset.model_logchi2() or gp.log_likelihood()
|
Constant term added either by dataset.model_logchi2() or gp.log_likelihood()
| def log_priors_likelihood(self, theta, return_priors=True):
log_priors = 0.00
log_likelihood = 0.00
"""
Constant term added either by dataset.model_logchi2() or gp.log_likelihood()
"""
if not self.check_bounds(theta):
if return_priors is False:
return -np.inf
else:
return -np.inf, -np.inf
if self.dynamical_model is not None:
""" check if any keyword ahas get the output model from the dynamical tool
we must do it here because all the planet are involved"""
dynamical_output = self.dynamical_model.compute(self, theta)
for model_name, model in self.common_models.items():
log_priors += model.return_priors(theta)
delayed_lnlk_computation = []
for dataset_name, dataset in self.dataset_dict.items():
logchi2_gp_model = None
dataset.model_reset()
variable_values = dataset.convert(theta)
dataset.compute(variable_values)
log_priors += dataset.return_priors(theta)
if 'none' in dataset.models or 'None' in dataset.models:
continue
if not dataset.models:
continue
for model_name in dataset.models:
log_priors += self.models[model_name].return_priors(
theta, dataset_name)
variable_values = {}
for common_ref in self.models[model_name].common_ref:
variable_values.update(
self.common_models[common_ref].convert(theta))
# try:
# """ Taking the parameter values from the common models"""
# for common_ref in self.models[model_name].common_ref:
# variable_values.update(self.common_models[common_ref].convert(theta))
# except:
# """ This model has no common model reference, i.e., it is strictly connected to the dataset"""
# pass
variable_values.update(
self.models[model_name].convert(theta, dataset_name))
""" residuals will be computed following the definition in Dataset class
"""
if getattr(self.models[model_name], 'internal_likelihood', False):
logchi2_gp_model = model_name
continue
# if getattr(self.models[model_name], 'model_class', None) is 'common_jitter':
if getattr(self.models[model_name], 'jitter_model', False):
dataset.jitter += self.models[model_name].compute(
variable_values, dataset)
continue
if getattr(dataset, 'dynamical', False):
dataset.external_model = dynamical_output[dataset_name]
if getattr(self.models[model_name], 'unitary_model', False):
dataset.unitary_model += self.models[model_name].compute(
variable_values, dataset)
if dataset.normalization_model is None:
dataset.normalization_model = np.ones(
dataset.n, dtype=np.double)
elif getattr(self.models[model_name], 'normalization_model', False):
if dataset.normalization_model is None:
dataset.normalization_model = np.ones(
dataset.n, dtype=np.double)
dataset.normalization_model *= self.models[model_name].compute(
variable_values, dataset)
else:
dataset.additive_model += self.models[model_name].compute(
variable_values, dataset)
dataset.compute_model()
dataset.compute_residuals()
""" Gaussian Process check MUST be the last one or the program will fail
that's because for the GP to work we need to know the _deterministic_ part of the model
(i.e. the theoretical values you get when you feed your model with the parameter values) """
if logchi2_gp_model:
variable_values = {}
for common_ref in self.models[logchi2_gp_model].common_ref:
variable_values.update(
self.common_models[common_ref].convert(theta))
variable_values.update(
self.models[logchi2_gp_model].convert(theta, dataset_name))
""" GP Log-likelihood is not computed now because a single matrix must be created with
the joined dataset"""
if hasattr(self.models[logchi2_gp_model], 'delayed_lnlk_computation'):
self.models[logchi2_gp_model].add_internal_dataset(variable_values, dataset,
reset_status=delayed_lnlk_computation)
delayed_lnlk_computation.append(logchi2_gp_model)
else:
log_likelihood += self.models[logchi2_gp_model].lnlk_compute(
variable_values, dataset)
else:
log_likelihood += dataset.model_logchi2()
""" In case there is more than one GP model """
for logchi2_gp_model in delayed_lnlk_computation:
log_likelihood += self.models[logchi2_gp_model].lnlk_compute()
""" check for finite log_priors and log_likelihood"""
if np.isnan(log_priors) or np.isnan(log_likelihood):
log_likelihood = -np.inf
log_priors = -np.inf
if return_priors is False:
return log_likelihood
else:
return log_priors, log_likelihood | [
"def",
"log_priors_likelihood",
"(",
"self",
",",
"theta",
",",
"return_priors",
"=",
"True",
")",
":",
"log_priors",
"=",
"0.00",
"log_likelihood",
"=",
"0.00",
"if",
"not",
"self",
".",
"check_bounds",
"(",
"theta",
")",
":",
"if",
"return_priors",
"is",
"False",
":",
"return",
"-",
"np",
".",
"inf",
"else",
":",
"return",
"-",
"np",
".",
"inf",
",",
"-",
"np",
".",
"inf",
"if",
"self",
".",
"dynamical_model",
"is",
"not",
"None",
":",
"\"\"\" check if any keyword ahas get the output model from the dynamical tool\n we must do it here because all the planet are involved\"\"\"",
"dynamical_output",
"=",
"self",
".",
"dynamical_model",
".",
"compute",
"(",
"self",
",",
"theta",
")",
"for",
"model_name",
",",
"model",
"in",
"self",
".",
"common_models",
".",
"items",
"(",
")",
":",
"log_priors",
"+=",
"model",
".",
"return_priors",
"(",
"theta",
")",
"delayed_lnlk_computation",
"=",
"[",
"]",
"for",
"dataset_name",
",",
"dataset",
"in",
"self",
".",
"dataset_dict",
".",
"items",
"(",
")",
":",
"logchi2_gp_model",
"=",
"None",
"dataset",
".",
"model_reset",
"(",
")",
"variable_values",
"=",
"dataset",
".",
"convert",
"(",
"theta",
")",
"dataset",
".",
"compute",
"(",
"variable_values",
")",
"log_priors",
"+=",
"dataset",
".",
"return_priors",
"(",
"theta",
")",
"if",
"'none'",
"in",
"dataset",
".",
"models",
"or",
"'None'",
"in",
"dataset",
".",
"models",
":",
"continue",
"if",
"not",
"dataset",
".",
"models",
":",
"continue",
"for",
"model_name",
"in",
"dataset",
".",
"models",
":",
"log_priors",
"+=",
"self",
".",
"models",
"[",
"model_name",
"]",
".",
"return_priors",
"(",
"theta",
",",
"dataset_name",
")",
"variable_values",
"=",
"{",
"}",
"for",
"common_ref",
"in",
"self",
".",
"models",
"[",
"model_name",
"]",
".",
"common_ref",
":",
"variable_values",
".",
"update",
"(",
"self",
".",
"common_models",
"[",
"common_ref",
"]",
".",
"convert",
"(",
"theta",
")",
")",
"# try:",
"# \"\"\" Taking the parameter values from the common models\"\"\"",
"# for common_ref in self.models[model_name].common_ref:",
"# variable_values.update(self.common_models[common_ref].convert(theta))",
"# except:",
"# \"\"\" This model has no common model reference, i.e., it is strictly connected to the dataset\"\"\"",
"# pass",
"variable_values",
".",
"update",
"(",
"self",
".",
"models",
"[",
"model_name",
"]",
".",
"convert",
"(",
"theta",
",",
"dataset_name",
")",
")",
"\"\"\" residuals will be computed following the definition in Dataset class\n \"\"\"",
"if",
"getattr",
"(",
"self",
".",
"models",
"[",
"model_name",
"]",
",",
"'internal_likelihood'",
",",
"False",
")",
":",
"logchi2_gp_model",
"=",
"model_name",
"continue",
"# if getattr(self.models[model_name], 'model_class', None) is 'common_jitter':",
"if",
"getattr",
"(",
"self",
".",
"models",
"[",
"model_name",
"]",
",",
"'jitter_model'",
",",
"False",
")",
":",
"dataset",
".",
"jitter",
"+=",
"self",
".",
"models",
"[",
"model_name",
"]",
".",
"compute",
"(",
"variable_values",
",",
"dataset",
")",
"continue",
"if",
"getattr",
"(",
"dataset",
",",
"'dynamical'",
",",
"False",
")",
":",
"dataset",
".",
"external_model",
"=",
"dynamical_output",
"[",
"dataset_name",
"]",
"if",
"getattr",
"(",
"self",
".",
"models",
"[",
"model_name",
"]",
",",
"'unitary_model'",
",",
"False",
")",
":",
"dataset",
".",
"unitary_model",
"+=",
"self",
".",
"models",
"[",
"model_name",
"]",
".",
"compute",
"(",
"variable_values",
",",
"dataset",
")",
"if",
"dataset",
".",
"normalization_model",
"is",
"None",
":",
"dataset",
".",
"normalization_model",
"=",
"np",
".",
"ones",
"(",
"dataset",
".",
"n",
",",
"dtype",
"=",
"np",
".",
"double",
")",
"elif",
"getattr",
"(",
"self",
".",
"models",
"[",
"model_name",
"]",
",",
"'normalization_model'",
",",
"False",
")",
":",
"if",
"dataset",
".",
"normalization_model",
"is",
"None",
":",
"dataset",
".",
"normalization_model",
"=",
"np",
".",
"ones",
"(",
"dataset",
".",
"n",
",",
"dtype",
"=",
"np",
".",
"double",
")",
"dataset",
".",
"normalization_model",
"*=",
"self",
".",
"models",
"[",
"model_name",
"]",
".",
"compute",
"(",
"variable_values",
",",
"dataset",
")",
"else",
":",
"dataset",
".",
"additive_model",
"+=",
"self",
".",
"models",
"[",
"model_name",
"]",
".",
"compute",
"(",
"variable_values",
",",
"dataset",
")",
"dataset",
".",
"compute_model",
"(",
")",
"dataset",
".",
"compute_residuals",
"(",
")",
"\"\"\" Gaussian Process check MUST be the last one or the program will fail\n that's because for the GP to work we need to know the _deterministic_ part of the model \n (i.e. the theoretical values you get when you feed your model with the parameter values) \"\"\"",
"if",
"logchi2_gp_model",
":",
"variable_values",
"=",
"{",
"}",
"for",
"common_ref",
"in",
"self",
".",
"models",
"[",
"logchi2_gp_model",
"]",
".",
"common_ref",
":",
"variable_values",
".",
"update",
"(",
"self",
".",
"common_models",
"[",
"common_ref",
"]",
".",
"convert",
"(",
"theta",
")",
")",
"variable_values",
".",
"update",
"(",
"self",
".",
"models",
"[",
"logchi2_gp_model",
"]",
".",
"convert",
"(",
"theta",
",",
"dataset_name",
")",
")",
"\"\"\" GP Log-likelihood is not computed now because a single matrix must be created with \n the joined dataset\"\"\"",
"if",
"hasattr",
"(",
"self",
".",
"models",
"[",
"logchi2_gp_model",
"]",
",",
"'delayed_lnlk_computation'",
")",
":",
"self",
".",
"models",
"[",
"logchi2_gp_model",
"]",
".",
"add_internal_dataset",
"(",
"variable_values",
",",
"dataset",
",",
"reset_status",
"=",
"delayed_lnlk_computation",
")",
"delayed_lnlk_computation",
".",
"append",
"(",
"logchi2_gp_model",
")",
"else",
":",
"log_likelihood",
"+=",
"self",
".",
"models",
"[",
"logchi2_gp_model",
"]",
".",
"lnlk_compute",
"(",
"variable_values",
",",
"dataset",
")",
"else",
":",
"log_likelihood",
"+=",
"dataset",
".",
"model_logchi2",
"(",
")",
"\"\"\" In case there is more than one GP model \"\"\"",
"for",
"logchi2_gp_model",
"in",
"delayed_lnlk_computation",
":",
"log_likelihood",
"+=",
"self",
".",
"models",
"[",
"logchi2_gp_model",
"]",
".",
"lnlk_compute",
"(",
")",
"\"\"\" check for finite log_priors and log_likelihood\"\"\"",
"if",
"np",
".",
"isnan",
"(",
"log_priors",
")",
"or",
"np",
".",
"isnan",
"(",
"log_likelihood",
")",
":",
"log_likelihood",
"=",
"-",
"np",
".",
"inf",
"log_priors",
"=",
"-",
"np",
".",
"inf",
"if",
"return_priors",
"is",
"False",
":",
"return",
"log_likelihood",
"else",
":",
"return",
"log_priors",
",",
"log_likelihood"
] | [
213,
4
] | [
349,
45
] | python | en | ['en', 'ja', 'th'] | False |
icloud_bypass_setup_fixture | () | Mock component setup. | Mock component setup. | def icloud_bypass_setup_fixture():
"""Mock component setup."""
with patch("homeassistant.components.icloud.async_setup_entry", return_value=True):
yield | [
"def",
"icloud_bypass_setup_fixture",
"(",
")",
":",
"with",
"patch",
"(",
"\"homeassistant.components.icloud.async_setup_entry\"",
",",
"return_value",
"=",
"True",
")",
":",
"yield"
] | [
7,
0
] | [
10,
13
] | python | en | ['en', 'bg', 'en'] | True |
setup_platform | (hass, config, add_entities, discovery_info=None) | Set up the Tahoma covers. | Set up the Tahoma covers. | def setup_platform(hass, config, add_entities, discovery_info=None):
"""Set up the Tahoma covers."""
if discovery_info is None:
return
controller = hass.data[TAHOMA_DOMAIN]["controller"]
devices = []
for device in hass.data[TAHOMA_DOMAIN]["devices"]["cover"]:
devices.append(TahomaCover(device, controller))
add_entities(devices, True) | [
"def",
"setup_platform",
"(",
"hass",
",",
"config",
",",
"add_entities",
",",
"discovery_info",
"=",
"None",
")",
":",
"if",
"discovery_info",
"is",
"None",
":",
"return",
"controller",
"=",
"hass",
".",
"data",
"[",
"TAHOMA_DOMAIN",
"]",
"[",
"\"controller\"",
"]",
"devices",
"=",
"[",
"]",
"for",
"device",
"in",
"hass",
".",
"data",
"[",
"TAHOMA_DOMAIN",
"]",
"[",
"\"devices\"",
"]",
"[",
"\"cover\"",
"]",
":",
"devices",
".",
"append",
"(",
"TahomaCover",
"(",
"device",
",",
"controller",
")",
")",
"add_entities",
"(",
"devices",
",",
"True",
")"
] | [
52,
0
] | [
60,
31
] | python | en | ['en', 'en', 'en'] | True |
TahomaCover.__init__ | (self, tahoma_device, controller) | Initialize the device. | Initialize the device. | def __init__(self, tahoma_device, controller):
"""Initialize the device."""
super().__init__(tahoma_device, controller)
self._closure = 0
# 100 equals open
self._position = 100
self._closed = False
self._rssi_level = None
self._icon = None
# Can be 0 and bigger
self._lock_timer = 0
self._lock_start_ts = None
self._lock_end_ts = None
# Can be 'comfortLevel1', 'comfortLevel2', 'comfortLevel3',
# 'comfortLevel4', 'environmentProtection', 'humanProtection',
# 'userLevel1', 'userLevel2'
self._lock_level = None
# Can be 'LSC', 'SAAC', 'SFC', 'UPS', 'externalGateway', 'localUser',
# 'myself', 'rain', 'security', 'temperature', 'timer', 'user', 'wind'
self._lock_originator = None | [
"def",
"__init__",
"(",
"self",
",",
"tahoma_device",
",",
"controller",
")",
":",
"super",
"(",
")",
".",
"__init__",
"(",
"tahoma_device",
",",
"controller",
")",
"self",
".",
"_closure",
"=",
"0",
"# 100 equals open",
"self",
".",
"_position",
"=",
"100",
"self",
".",
"_closed",
"=",
"False",
"self",
".",
"_rssi_level",
"=",
"None",
"self",
".",
"_icon",
"=",
"None",
"# Can be 0 and bigger",
"self",
".",
"_lock_timer",
"=",
"0",
"self",
".",
"_lock_start_ts",
"=",
"None",
"self",
".",
"_lock_end_ts",
"=",
"None",
"# Can be 'comfortLevel1', 'comfortLevel2', 'comfortLevel3',",
"# 'comfortLevel4', 'environmentProtection', 'humanProtection',",
"# 'userLevel1', 'userLevel2'",
"self",
".",
"_lock_level",
"=",
"None",
"# Can be 'LSC', 'SAAC', 'SFC', 'UPS', 'externalGateway', 'localUser',",
"# 'myself', 'rain', 'security', 'temperature', 'timer', 'user', 'wind'",
"self",
".",
"_lock_originator",
"=",
"None"
] | [
66,
4
] | [
86,
36
] | python | en | ['en', 'en', 'en'] | True |
TahomaCover.update | (self) | Update method. | Update method. | def update(self):
"""Update method."""
self.controller.get_states([self.tahoma_device])
# For vertical covers
self._closure = self.tahoma_device.active_states.get("core:ClosureState")
# For horizontal covers
if self._closure is None:
self._closure = self.tahoma_device.active_states.get("core:DeploymentState")
# For all, if available
if "core:PriorityLockTimerState" in self.tahoma_device.active_states:
old_lock_timer = self._lock_timer
self._lock_timer = self.tahoma_device.active_states[
"core:PriorityLockTimerState"
]
# Derive timestamps from _lock_timer, only if not already set or
# something has changed
if self._lock_timer > 0:
_LOGGER.debug("Update %s, lock_timer: %d", self._name, self._lock_timer)
if self._lock_start_ts is None:
self._lock_start_ts = utcnow()
if self._lock_end_ts is None or old_lock_timer != self._lock_timer:
self._lock_end_ts = utcnow() + timedelta(seconds=self._lock_timer)
else:
self._lock_start_ts = None
self._lock_end_ts = None
else:
self._lock_timer = 0
self._lock_start_ts = None
self._lock_end_ts = None
self._lock_level = self.tahoma_device.active_states.get(
"io:PriorityLockLevelState"
)
self._lock_originator = self.tahoma_device.active_states.get(
"io:PriorityLockOriginatorState"
)
self._rssi_level = self.tahoma_device.active_states.get("core:RSSILevelState")
# Define which icon to use
if self._lock_timer > 0:
if self._lock_originator == "wind":
self._icon = "mdi:weather-windy"
else:
self._icon = "mdi:lock-alert"
else:
self._icon = None
# Define current position.
# _position: 0 is closed, 100 is fully open.
# 'core:ClosureState': 100 is closed, 0 is fully open.
if self._closure is not None:
if self.tahoma_device.type == HORIZONTAL_AWNING:
self._position = self._closure
else:
self._position = 100 - self._closure
if self._position <= 5:
self._position = 0
if self._position >= 95:
self._position = 100
self._closed = self._position == 0
else:
self._position = None
if "core:OpenClosedState" in self.tahoma_device.active_states:
self._closed = (
self.tahoma_device.active_states["core:OpenClosedState"] == "closed"
)
if "core:OpenClosedPartialState" in self.tahoma_device.active_states:
self._closed = (
self.tahoma_device.active_states["core:OpenClosedPartialState"]
== "closed"
)
else:
self._closed = False
_LOGGER.debug("Update %s, position: %d", self._name, self._position) | [
"def",
"update",
"(",
"self",
")",
":",
"self",
".",
"controller",
".",
"get_states",
"(",
"[",
"self",
".",
"tahoma_device",
"]",
")",
"# For vertical covers",
"self",
".",
"_closure",
"=",
"self",
".",
"tahoma_device",
".",
"active_states",
".",
"get",
"(",
"\"core:ClosureState\"",
")",
"# For horizontal covers",
"if",
"self",
".",
"_closure",
"is",
"None",
":",
"self",
".",
"_closure",
"=",
"self",
".",
"tahoma_device",
".",
"active_states",
".",
"get",
"(",
"\"core:DeploymentState\"",
")",
"# For all, if available",
"if",
"\"core:PriorityLockTimerState\"",
"in",
"self",
".",
"tahoma_device",
".",
"active_states",
":",
"old_lock_timer",
"=",
"self",
".",
"_lock_timer",
"self",
".",
"_lock_timer",
"=",
"self",
".",
"tahoma_device",
".",
"active_states",
"[",
"\"core:PriorityLockTimerState\"",
"]",
"# Derive timestamps from _lock_timer, only if not already set or",
"# something has changed",
"if",
"self",
".",
"_lock_timer",
">",
"0",
":",
"_LOGGER",
".",
"debug",
"(",
"\"Update %s, lock_timer: %d\"",
",",
"self",
".",
"_name",
",",
"self",
".",
"_lock_timer",
")",
"if",
"self",
".",
"_lock_start_ts",
"is",
"None",
":",
"self",
".",
"_lock_start_ts",
"=",
"utcnow",
"(",
")",
"if",
"self",
".",
"_lock_end_ts",
"is",
"None",
"or",
"old_lock_timer",
"!=",
"self",
".",
"_lock_timer",
":",
"self",
".",
"_lock_end_ts",
"=",
"utcnow",
"(",
")",
"+",
"timedelta",
"(",
"seconds",
"=",
"self",
".",
"_lock_timer",
")",
"else",
":",
"self",
".",
"_lock_start_ts",
"=",
"None",
"self",
".",
"_lock_end_ts",
"=",
"None",
"else",
":",
"self",
".",
"_lock_timer",
"=",
"0",
"self",
".",
"_lock_start_ts",
"=",
"None",
"self",
".",
"_lock_end_ts",
"=",
"None",
"self",
".",
"_lock_level",
"=",
"self",
".",
"tahoma_device",
".",
"active_states",
".",
"get",
"(",
"\"io:PriorityLockLevelState\"",
")",
"self",
".",
"_lock_originator",
"=",
"self",
".",
"tahoma_device",
".",
"active_states",
".",
"get",
"(",
"\"io:PriorityLockOriginatorState\"",
")",
"self",
".",
"_rssi_level",
"=",
"self",
".",
"tahoma_device",
".",
"active_states",
".",
"get",
"(",
"\"core:RSSILevelState\"",
")",
"# Define which icon to use",
"if",
"self",
".",
"_lock_timer",
">",
"0",
":",
"if",
"self",
".",
"_lock_originator",
"==",
"\"wind\"",
":",
"self",
".",
"_icon",
"=",
"\"mdi:weather-windy\"",
"else",
":",
"self",
".",
"_icon",
"=",
"\"mdi:lock-alert\"",
"else",
":",
"self",
".",
"_icon",
"=",
"None",
"# Define current position.",
"# _position: 0 is closed, 100 is fully open.",
"# 'core:ClosureState': 100 is closed, 0 is fully open.",
"if",
"self",
".",
"_closure",
"is",
"not",
"None",
":",
"if",
"self",
".",
"tahoma_device",
".",
"type",
"==",
"HORIZONTAL_AWNING",
":",
"self",
".",
"_position",
"=",
"self",
".",
"_closure",
"else",
":",
"self",
".",
"_position",
"=",
"100",
"-",
"self",
".",
"_closure",
"if",
"self",
".",
"_position",
"<=",
"5",
":",
"self",
".",
"_position",
"=",
"0",
"if",
"self",
".",
"_position",
">=",
"95",
":",
"self",
".",
"_position",
"=",
"100",
"self",
".",
"_closed",
"=",
"self",
".",
"_position",
"==",
"0",
"else",
":",
"self",
".",
"_position",
"=",
"None",
"if",
"\"core:OpenClosedState\"",
"in",
"self",
".",
"tahoma_device",
".",
"active_states",
":",
"self",
".",
"_closed",
"=",
"(",
"self",
".",
"tahoma_device",
".",
"active_states",
"[",
"\"core:OpenClosedState\"",
"]",
"==",
"\"closed\"",
")",
"if",
"\"core:OpenClosedPartialState\"",
"in",
"self",
".",
"tahoma_device",
".",
"active_states",
":",
"self",
".",
"_closed",
"=",
"(",
"self",
".",
"tahoma_device",
".",
"active_states",
"[",
"\"core:OpenClosedPartialState\"",
"]",
"==",
"\"closed\"",
")",
"else",
":",
"self",
".",
"_closed",
"=",
"False",
"_LOGGER",
".",
"debug",
"(",
"\"Update %s, position: %d\"",
",",
"self",
".",
"_name",
",",
"self",
".",
"_position",
")"
] | [
88,
4
] | [
166,
76
] | python | en | ['en', 'nl', 'en'] | False |
TahomaCover.current_cover_position | (self) | Return current position of cover. | Return current position of cover. | def current_cover_position(self):
"""Return current position of cover."""
return self._position | [
"def",
"current_cover_position",
"(",
"self",
")",
":",
"return",
"self",
".",
"_position"
] | [
169,
4
] | [
171,
29
] | python | en | ['en', 'en', 'en'] | True |
TahomaCover.set_cover_position | (self, **kwargs) | Move the cover to a specific position. | Move the cover to a specific position. | def set_cover_position(self, **kwargs):
"""Move the cover to a specific position."""
if self.tahoma_device.type == "io:WindowOpenerVeluxIOComponent":
command = "setClosure"
else:
command = "setPosition"
if self.tahoma_device.type == HORIZONTAL_AWNING:
self.apply_action(command, kwargs.get(ATTR_POSITION, 0))
else:
self.apply_action(command, 100 - kwargs.get(ATTR_POSITION, 0)) | [
"def",
"set_cover_position",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"self",
".",
"tahoma_device",
".",
"type",
"==",
"\"io:WindowOpenerVeluxIOComponent\"",
":",
"command",
"=",
"\"setClosure\"",
"else",
":",
"command",
"=",
"\"setPosition\"",
"if",
"self",
".",
"tahoma_device",
".",
"type",
"==",
"HORIZONTAL_AWNING",
":",
"self",
".",
"apply_action",
"(",
"command",
",",
"kwargs",
".",
"get",
"(",
"ATTR_POSITION",
",",
"0",
")",
")",
"else",
":",
"self",
".",
"apply_action",
"(",
"command",
",",
"100",
"-",
"kwargs",
".",
"get",
"(",
"ATTR_POSITION",
",",
"0",
")",
")"
] | [
173,
4
] | [
183,
74
] | python | en | ['en', 'en', 'en'] | True |
TahomaCover.is_closed | (self) | Return if the cover is closed. | Return if the cover is closed. | def is_closed(self):
"""Return if the cover is closed."""
return self._closed | [
"def",
"is_closed",
"(",
"self",
")",
":",
"return",
"self",
".",
"_closed"
] | [
186,
4
] | [
188,
27
] | python | en | ['en', 'en', 'en'] | True |
TahomaCover.device_class | (self) | Return the class of the device. | Return the class of the device. | def device_class(self):
"""Return the class of the device."""
return TAHOMA_DEVICE_CLASSES.get(self.tahoma_device.type) | [
"def",
"device_class",
"(",
"self",
")",
":",
"return",
"TAHOMA_DEVICE_CLASSES",
".",
"get",
"(",
"self",
".",
"tahoma_device",
".",
"type",
")"
] | [
191,
4
] | [
193,
65
] | python | en | ['en', 'en', 'en'] | True |
TahomaCover.device_state_attributes | (self) | Return the device state attributes. | Return the device state attributes. | def device_state_attributes(self):
"""Return the device state attributes."""
attr = {}
super_attr = super().device_state_attributes
if super_attr is not None:
attr.update(super_attr)
if "core:Memorized1PositionState" in self.tahoma_device.active_states:
attr[ATTR_MEM_POS] = self.tahoma_device.active_states[
"core:Memorized1PositionState"
]
if self._rssi_level is not None:
attr[ATTR_RSSI_LEVEL] = self._rssi_level
if self._lock_start_ts is not None:
attr[ATTR_LOCK_START_TS] = self._lock_start_ts.isoformat()
if self._lock_end_ts is not None:
attr[ATTR_LOCK_END_TS] = self._lock_end_ts.isoformat()
if self._lock_level is not None:
attr[ATTR_LOCK_LEVEL] = self._lock_level
if self._lock_originator is not None:
attr[ATTR_LOCK_ORIG] = self._lock_originator
return attr | [
"def",
"device_state_attributes",
"(",
"self",
")",
":",
"attr",
"=",
"{",
"}",
"super_attr",
"=",
"super",
"(",
")",
".",
"device_state_attributes",
"if",
"super_attr",
"is",
"not",
"None",
":",
"attr",
".",
"update",
"(",
"super_attr",
")",
"if",
"\"core:Memorized1PositionState\"",
"in",
"self",
".",
"tahoma_device",
".",
"active_states",
":",
"attr",
"[",
"ATTR_MEM_POS",
"]",
"=",
"self",
".",
"tahoma_device",
".",
"active_states",
"[",
"\"core:Memorized1PositionState\"",
"]",
"if",
"self",
".",
"_rssi_level",
"is",
"not",
"None",
":",
"attr",
"[",
"ATTR_RSSI_LEVEL",
"]",
"=",
"self",
".",
"_rssi_level",
"if",
"self",
".",
"_lock_start_ts",
"is",
"not",
"None",
":",
"attr",
"[",
"ATTR_LOCK_START_TS",
"]",
"=",
"self",
".",
"_lock_start_ts",
".",
"isoformat",
"(",
")",
"if",
"self",
".",
"_lock_end_ts",
"is",
"not",
"None",
":",
"attr",
"[",
"ATTR_LOCK_END_TS",
"]",
"=",
"self",
".",
"_lock_end_ts",
".",
"isoformat",
"(",
")",
"if",
"self",
".",
"_lock_level",
"is",
"not",
"None",
":",
"attr",
"[",
"ATTR_LOCK_LEVEL",
"]",
"=",
"self",
".",
"_lock_level",
"if",
"self",
".",
"_lock_originator",
"is",
"not",
"None",
":",
"attr",
"[",
"ATTR_LOCK_ORIG",
"]",
"=",
"self",
".",
"_lock_originator",
"return",
"attr"
] | [
196,
4
] | [
217,
19
] | python | en | ['en', 'en', 'en'] | True |
TahomaCover.icon | (self) | Return the icon to use in the frontend, if any. | Return the icon to use in the frontend, if any. | def icon(self):
"""Return the icon to use in the frontend, if any."""
return self._icon | [
"def",
"icon",
"(",
"self",
")",
":",
"return",
"self",
".",
"_icon"
] | [
220,
4
] | [
222,
25
] | python | en | ['en', 'en', 'en'] | True |
TahomaCover.open_cover | (self, **kwargs) | Open the cover. | Open the cover. | def open_cover(self, **kwargs):
"""Open the cover."""
self.apply_action("open") | [
"def",
"open_cover",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"self",
".",
"apply_action",
"(",
"\"open\"",
")"
] | [
224,
4
] | [
226,
33
] | python | en | ['en', 'en', 'en'] | True |
TahomaCover.close_cover | (self, **kwargs) | Close the cover. | Close the cover. | def close_cover(self, **kwargs):
"""Close the cover."""
self.apply_action("close") | [
"def",
"close_cover",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"self",
".",
"apply_action",
"(",
"\"close\"",
")"
] | [
228,
4
] | [
230,
34
] | python | en | ['en', 'en', 'en'] | True |
TahomaCover.stop_cover | (self, **kwargs) | Stop the cover. | Stop the cover. | def stop_cover(self, **kwargs):
"""Stop the cover."""
if (
self.tahoma_device.type
== "io:RollerShutterWithLowSpeedManagementIOComponent"
):
self.apply_action("setPosition", "secured")
elif self.tahoma_device.type in {
"io:ExteriorVenetianBlindIOComponent",
"rts:BlindRTSComponent",
"rts:DualCurtainRTSComponent",
"rts:ExteriorVenetianBlindRTSComponent",
"rts:VenetianBlindRTSComponent",
}:
self.apply_action("my")
elif self.tahoma_device.type in {
HORIZONTAL_AWNING,
"io:AwningValanceIOComponent",
"io:RollerShutterGenericIOComponent",
"io:VerticalExteriorAwningIOComponent",
"io:VerticalInteriorBlindVeluxIOComponent",
"io:WindowOpenerVeluxIOComponent",
}:
self.apply_action("stop")
else:
self.apply_action("stopIdentify") | [
"def",
"stop_cover",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"(",
"self",
".",
"tahoma_device",
".",
"type",
"==",
"\"io:RollerShutterWithLowSpeedManagementIOComponent\"",
")",
":",
"self",
".",
"apply_action",
"(",
"\"setPosition\"",
",",
"\"secured\"",
")",
"elif",
"self",
".",
"tahoma_device",
".",
"type",
"in",
"{",
"\"io:ExteriorVenetianBlindIOComponent\"",
",",
"\"rts:BlindRTSComponent\"",
",",
"\"rts:DualCurtainRTSComponent\"",
",",
"\"rts:ExteriorVenetianBlindRTSComponent\"",
",",
"\"rts:VenetianBlindRTSComponent\"",
",",
"}",
":",
"self",
".",
"apply_action",
"(",
"\"my\"",
")",
"elif",
"self",
".",
"tahoma_device",
".",
"type",
"in",
"{",
"HORIZONTAL_AWNING",
",",
"\"io:AwningValanceIOComponent\"",
",",
"\"io:RollerShutterGenericIOComponent\"",
",",
"\"io:VerticalExteriorAwningIOComponent\"",
",",
"\"io:VerticalInteriorBlindVeluxIOComponent\"",
",",
"\"io:WindowOpenerVeluxIOComponent\"",
",",
"}",
":",
"self",
".",
"apply_action",
"(",
"\"stop\"",
")",
"else",
":",
"self",
".",
"apply_action",
"(",
"\"stopIdentify\"",
")"
] | [
232,
4
] | [
257,
45
] | python | en | ['en', 'en', 'en'] | True |
setup | (hass, base_config) | Set up the Lutron component. | Set up the Lutron component. | def setup(hass, base_config):
"""Set up the Lutron component."""
hass.data[LUTRON_BUTTONS] = []
hass.data[LUTRON_CONTROLLER] = None
hass.data[LUTRON_DEVICES] = {
"light": [],
"cover": [],
"switch": [],
"scene": [],
"binary_sensor": [],
}
config = base_config.get(DOMAIN)
hass.data[LUTRON_CONTROLLER] = Lutron(
config[CONF_HOST], config[CONF_USERNAME], config[CONF_PASSWORD]
)
hass.data[LUTRON_CONTROLLER].load_xml_db()
hass.data[LUTRON_CONTROLLER].connect()
_LOGGER.info("Connected to main repeater at %s", config[CONF_HOST])
# Sort our devices into types
for area in hass.data[LUTRON_CONTROLLER].areas:
for output in area.outputs:
if output.type == "SYSTEM_SHADE":
hass.data[LUTRON_DEVICES]["cover"].append((area.name, output))
elif output.is_dimmable:
hass.data[LUTRON_DEVICES]["light"].append((area.name, output))
else:
hass.data[LUTRON_DEVICES]["switch"].append((area.name, output))
for keypad in area.keypads:
for button in keypad.buttons:
# If the button has a function assigned to it, add it as a scene
if button.name != "Unknown Button" and button.button_type in (
"SingleAction",
"Toggle",
"SingleSceneRaiseLower",
"MasterRaiseLower",
):
# Associate an LED with a button if there is one
led = next(
(led for led in keypad.leds if led.number == button.number),
None,
)
hass.data[LUTRON_DEVICES]["scene"].append(
(area.name, keypad.name, button, led)
)
hass.data[LUTRON_BUTTONS].append(
LutronButton(hass, area.name, keypad, button)
)
if area.occupancy_group is not None:
hass.data[LUTRON_DEVICES]["binary_sensor"].append(
(area.name, area.occupancy_group)
)
for component in ("light", "cover", "switch", "scene", "binary_sensor"):
discovery.load_platform(hass, component, DOMAIN, {}, base_config)
return True | [
"def",
"setup",
"(",
"hass",
",",
"base_config",
")",
":",
"hass",
".",
"data",
"[",
"LUTRON_BUTTONS",
"]",
"=",
"[",
"]",
"hass",
".",
"data",
"[",
"LUTRON_CONTROLLER",
"]",
"=",
"None",
"hass",
".",
"data",
"[",
"LUTRON_DEVICES",
"]",
"=",
"{",
"\"light\"",
":",
"[",
"]",
",",
"\"cover\"",
":",
"[",
"]",
",",
"\"switch\"",
":",
"[",
"]",
",",
"\"scene\"",
":",
"[",
"]",
",",
"\"binary_sensor\"",
":",
"[",
"]",
",",
"}",
"config",
"=",
"base_config",
".",
"get",
"(",
"DOMAIN",
")",
"hass",
".",
"data",
"[",
"LUTRON_CONTROLLER",
"]",
"=",
"Lutron",
"(",
"config",
"[",
"CONF_HOST",
"]",
",",
"config",
"[",
"CONF_USERNAME",
"]",
",",
"config",
"[",
"CONF_PASSWORD",
"]",
")",
"hass",
".",
"data",
"[",
"LUTRON_CONTROLLER",
"]",
".",
"load_xml_db",
"(",
")",
"hass",
".",
"data",
"[",
"LUTRON_CONTROLLER",
"]",
".",
"connect",
"(",
")",
"_LOGGER",
".",
"info",
"(",
"\"Connected to main repeater at %s\"",
",",
"config",
"[",
"CONF_HOST",
"]",
")",
"# Sort our devices into types",
"for",
"area",
"in",
"hass",
".",
"data",
"[",
"LUTRON_CONTROLLER",
"]",
".",
"areas",
":",
"for",
"output",
"in",
"area",
".",
"outputs",
":",
"if",
"output",
".",
"type",
"==",
"\"SYSTEM_SHADE\"",
":",
"hass",
".",
"data",
"[",
"LUTRON_DEVICES",
"]",
"[",
"\"cover\"",
"]",
".",
"append",
"(",
"(",
"area",
".",
"name",
",",
"output",
")",
")",
"elif",
"output",
".",
"is_dimmable",
":",
"hass",
".",
"data",
"[",
"LUTRON_DEVICES",
"]",
"[",
"\"light\"",
"]",
".",
"append",
"(",
"(",
"area",
".",
"name",
",",
"output",
")",
")",
"else",
":",
"hass",
".",
"data",
"[",
"LUTRON_DEVICES",
"]",
"[",
"\"switch\"",
"]",
".",
"append",
"(",
"(",
"area",
".",
"name",
",",
"output",
")",
")",
"for",
"keypad",
"in",
"area",
".",
"keypads",
":",
"for",
"button",
"in",
"keypad",
".",
"buttons",
":",
"# If the button has a function assigned to it, add it as a scene",
"if",
"button",
".",
"name",
"!=",
"\"Unknown Button\"",
"and",
"button",
".",
"button_type",
"in",
"(",
"\"SingleAction\"",
",",
"\"Toggle\"",
",",
"\"SingleSceneRaiseLower\"",
",",
"\"MasterRaiseLower\"",
",",
")",
":",
"# Associate an LED with a button if there is one",
"led",
"=",
"next",
"(",
"(",
"led",
"for",
"led",
"in",
"keypad",
".",
"leds",
"if",
"led",
".",
"number",
"==",
"button",
".",
"number",
")",
",",
"None",
",",
")",
"hass",
".",
"data",
"[",
"LUTRON_DEVICES",
"]",
"[",
"\"scene\"",
"]",
".",
"append",
"(",
"(",
"area",
".",
"name",
",",
"keypad",
".",
"name",
",",
"button",
",",
"led",
")",
")",
"hass",
".",
"data",
"[",
"LUTRON_BUTTONS",
"]",
".",
"append",
"(",
"LutronButton",
"(",
"hass",
",",
"area",
".",
"name",
",",
"keypad",
",",
"button",
")",
")",
"if",
"area",
".",
"occupancy_group",
"is",
"not",
"None",
":",
"hass",
".",
"data",
"[",
"LUTRON_DEVICES",
"]",
"[",
"\"binary_sensor\"",
"]",
".",
"append",
"(",
"(",
"area",
".",
"name",
",",
"area",
".",
"occupancy_group",
")",
")",
"for",
"component",
"in",
"(",
"\"light\"",
",",
"\"cover\"",
",",
"\"switch\"",
",",
"\"scene\"",
",",
"\"binary_sensor\"",
")",
":",
"discovery",
".",
"load_platform",
"(",
"hass",
",",
"component",
",",
"DOMAIN",
",",
"{",
"}",
",",
"base_config",
")",
"return",
"True"
] | [
38,
0
] | [
96,
15
] | python | en | ['en', 'en', 'en'] | True |
LutronDevice.__init__ | (self, area_name, lutron_device, controller) | Initialize the device. | Initialize the device. | def __init__(self, area_name, lutron_device, controller):
"""Initialize the device."""
self._lutron_device = lutron_device
self._controller = controller
self._area_name = area_name | [
"def",
"__init__",
"(",
"self",
",",
"area_name",
",",
"lutron_device",
",",
"controller",
")",
":",
"self",
".",
"_lutron_device",
"=",
"lutron_device",
"self",
".",
"_controller",
"=",
"controller",
"self",
".",
"_area_name",
"=",
"area_name"
] | [
102,
4
] | [
106,
35
] | python | en | ['en', 'en', 'en'] | True |
LutronDevice.async_added_to_hass | (self) | Register callbacks. | Register callbacks. | async def async_added_to_hass(self):
"""Register callbacks."""
self.hass.async_add_executor_job(
self._lutron_device.subscribe, self._update_callback, None
) | [
"async",
"def",
"async_added_to_hass",
"(",
"self",
")",
":",
"self",
".",
"hass",
".",
"async_add_executor_job",
"(",
"self",
".",
"_lutron_device",
".",
"subscribe",
",",
"self",
".",
"_update_callback",
",",
"None",
")"
] | [
108,
4
] | [
112,
9
] | python | en | ['en', 'no', 'en'] | False |
LutronDevice._update_callback | (self, _device, _context, _event, _params) | Run when invoked by pylutron when the device state changes. | Run when invoked by pylutron when the device state changes. | def _update_callback(self, _device, _context, _event, _params):
"""Run when invoked by pylutron when the device state changes."""
self.schedule_update_ha_state() | [
"def",
"_update_callback",
"(",
"self",
",",
"_device",
",",
"_context",
",",
"_event",
",",
"_params",
")",
":",
"self",
".",
"schedule_update_ha_state",
"(",
")"
] | [
114,
4
] | [
116,
39
] | python | en | ['en', 'en', 'en'] | True |
LutronDevice.name | (self) | Return the name of the device. | Return the name of the device. | def name(self):
"""Return the name of the device."""
return f"{self._area_name} {self._lutron_device.name}" | [
"def",
"name",
"(",
"self",
")",
":",
"return",
"f\"{self._area_name} {self._lutron_device.name}\""
] | [
119,
4
] | [
121,
62
] | python | en | ['en', 'en', 'en'] | True |
LutronDevice.should_poll | (self) | No polling needed. | No polling needed. | def should_poll(self):
"""No polling needed."""
return False | [
"def",
"should_poll",
"(",
"self",
")",
":",
"return",
"False"
] | [
124,
4
] | [
126,
20
] | python | en | ['en', 'en', 'en'] | True |
LutronButton.__init__ | (self, hass, area_name, keypad, button) | Register callback for activity on the button. | Register callback for activity on the button. | def __init__(self, hass, area_name, keypad, button):
"""Register callback for activity on the button."""
name = f"{keypad.name}: {button.name}"
self._hass = hass
self._has_release_event = (
button.button_type is not None and "RaiseLower" in button.button_type
)
self._id = slugify(name)
self._keypad = keypad
self._area_name = area_name
self._button_name = button.name
self._button = button
self._event = "lutron_event"
self._full_id = slugify(f"{area_name} {keypad.name}: {button.name}")
button.subscribe(self.button_callback, None) | [
"def",
"__init__",
"(",
"self",
",",
"hass",
",",
"area_name",
",",
"keypad",
",",
"button",
")",
":",
"name",
"=",
"f\"{keypad.name}: {button.name}\"",
"self",
".",
"_hass",
"=",
"hass",
"self",
".",
"_has_release_event",
"=",
"(",
"button",
".",
"button_type",
"is",
"not",
"None",
"and",
"\"RaiseLower\"",
"in",
"button",
".",
"button_type",
")",
"self",
".",
"_id",
"=",
"slugify",
"(",
"name",
")",
"self",
".",
"_keypad",
"=",
"keypad",
"self",
".",
"_area_name",
"=",
"area_name",
"self",
".",
"_button_name",
"=",
"button",
".",
"name",
"self",
".",
"_button",
"=",
"button",
"self",
".",
"_event",
"=",
"\"lutron_event\"",
"self",
".",
"_full_id",
"=",
"slugify",
"(",
"f\"{area_name} {keypad.name}: {button.name}\"",
")",
"button",
".",
"subscribe",
"(",
"self",
".",
"button_callback",
",",
"None",
")"
] | [
137,
4
] | [
152,
52
] | python | en | ['en', 'en', 'en'] | True |
LutronButton.button_callback | (self, button, context, event, params) | Fire an event about a button being pressed or released. | Fire an event about a button being pressed or released. | def button_callback(self, button, context, event, params):
"""Fire an event about a button being pressed or released."""
# Events per button type:
# RaiseLower -> pressed/released
# SingleAction -> single
action = None
if self._has_release_event:
if event == Button.Event.PRESSED:
action = "pressed"
else:
action = "released"
elif event == Button.Event.PRESSED:
action = "single"
if action:
data = {ATTR_ID: self._id, ATTR_ACTION: action, ATTR_FULL_ID: self._full_id}
self._hass.bus.fire(self._event, data) | [
"def",
"button_callback",
"(",
"self",
",",
"button",
",",
"context",
",",
"event",
",",
"params",
")",
":",
"# Events per button type:",
"# RaiseLower -> pressed/released",
"# SingleAction -> single",
"action",
"=",
"None",
"if",
"self",
".",
"_has_release_event",
":",
"if",
"event",
"==",
"Button",
".",
"Event",
".",
"PRESSED",
":",
"action",
"=",
"\"pressed\"",
"else",
":",
"action",
"=",
"\"released\"",
"elif",
"event",
"==",
"Button",
".",
"Event",
".",
"PRESSED",
":",
"action",
"=",
"\"single\"",
"if",
"action",
":",
"data",
"=",
"{",
"ATTR_ID",
":",
"self",
".",
"_id",
",",
"ATTR_ACTION",
":",
"action",
",",
"ATTR_FULL_ID",
":",
"self",
".",
"_full_id",
"}",
"self",
".",
"_hass",
".",
"bus",
".",
"fire",
"(",
"self",
".",
"_event",
",",
"data",
")"
] | [
154,
4
] | [
170,
50
] | python | en | ['en', 'en', 'en'] | True |
shift_tokens_right | (input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int) |
Shift input ids one token to the right.
|
Shift input ids one token to the right.
| def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined."
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids | [
"def",
"shift_tokens_right",
"(",
"input_ids",
":",
"torch",
".",
"Tensor",
",",
"pad_token_id",
":",
"int",
",",
"decoder_start_token_id",
":",
"int",
")",
":",
"shifted_input_ids",
"=",
"input_ids",
".",
"new_zeros",
"(",
"input_ids",
".",
"shape",
")",
"shifted_input_ids",
"[",
":",
",",
"1",
":",
"]",
"=",
"input_ids",
"[",
":",
",",
":",
"-",
"1",
"]",
".",
"clone",
"(",
")",
"shifted_input_ids",
"[",
":",
",",
"0",
"]",
"=",
"decoder_start_token_id",
"assert",
"pad_token_id",
"is",
"not",
"None",
",",
"\"self.model.config.pad_token_id has to be defined.\"",
"# replace possible -100 values in labels by `pad_token_id`",
"shifted_input_ids",
".",
"masked_fill_",
"(",
"shifted_input_ids",
"==",
"-",
"100",
",",
"pad_token_id",
")",
"return",
"shifted_input_ids"
] | [
58,
0
] | [
70,
28
] | python | en | ['en', 'error', 'th'] | False |
_make_causal_mask | (input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0) |
Make causal mask used for bi-directional self-attention.
|
Make causal mask used for bi-directional self-attention.
| def _make_causal_mask(input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), float("-inf"))
mask_cond = torch.arange(mask.size(-1))
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) | [
"def",
"_make_causal_mask",
"(",
"input_ids_shape",
":",
"torch",
".",
"Size",
",",
"dtype",
":",
"torch",
".",
"dtype",
",",
"past_key_values_length",
":",
"int",
"=",
"0",
")",
":",
"bsz",
",",
"tgt_len",
"=",
"input_ids_shape",
"mask",
"=",
"torch",
".",
"full",
"(",
"(",
"tgt_len",
",",
"tgt_len",
")",
",",
"float",
"(",
"\"-inf\"",
")",
")",
"mask_cond",
"=",
"torch",
".",
"arange",
"(",
"mask",
".",
"size",
"(",
"-",
"1",
")",
")",
"mask",
".",
"masked_fill_",
"(",
"mask_cond",
"<",
"(",
"mask_cond",
"+",
"1",
")",
".",
"view",
"(",
"mask",
".",
"size",
"(",
"-",
"1",
")",
",",
"1",
")",
",",
"0",
")",
"mask",
"=",
"mask",
".",
"to",
"(",
"dtype",
")",
"if",
"past_key_values_length",
">",
"0",
":",
"mask",
"=",
"torch",
".",
"cat",
"(",
"[",
"torch",
".",
"zeros",
"(",
"tgt_len",
",",
"past_key_values_length",
",",
"dtype",
"=",
"dtype",
")",
",",
"mask",
"]",
",",
"dim",
"=",
"-",
"1",
")",
"return",
"mask",
"[",
"None",
",",
"None",
",",
":",
",",
":",
"]",
".",
"expand",
"(",
"bsz",
",",
"1",
",",
"tgt_len",
",",
"tgt_len",
"+",
"past_key_values_length",
")"
] | [
74,
0
] | [
86,
91
] | python | en | ['en', 'error', 'th'] | False |
_expand_mask | (mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None) |
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
| def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.bool(), torch.finfo(dtype).min) | [
"def",
"_expand_mask",
"(",
"mask",
":",
"torch",
".",
"Tensor",
",",
"dtype",
":",
"torch",
".",
"dtype",
",",
"tgt_len",
":",
"Optional",
"[",
"int",
"]",
"=",
"None",
")",
":",
"bsz",
",",
"src_len",
"=",
"mask",
".",
"size",
"(",
")",
"tgt_len",
"=",
"tgt_len",
"if",
"tgt_len",
"is",
"not",
"None",
"else",
"src_len",
"expanded_mask",
"=",
"mask",
"[",
":",
",",
"None",
",",
"None",
",",
":",
"]",
".",
"expand",
"(",
"bsz",
",",
"1",
",",
"tgt_len",
",",
"src_len",
")",
".",
"to",
"(",
"dtype",
")",
"inverted_mask",
"=",
"1.0",
"-",
"expanded_mask",
"return",
"inverted_mask",
".",
"masked_fill",
"(",
"inverted_mask",
".",
"bool",
"(",
")",
",",
"torch",
".",
"finfo",
"(",
"dtype",
")",
".",
"min",
")"
] | [
90,
0
] | [
101,
82
] | python | en | ['en', 'error', 'th'] | False |
create_position_ids_from_input_ids | (input_ids, padding_idx, past_key_values_length=0) |
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
|
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
| def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx | [
"def",
"create_position_ids_from_input_ids",
"(",
"input_ids",
",",
"padding_idx",
",",
"past_key_values_length",
"=",
"0",
")",
":",
"# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.",
"mask",
"=",
"input_ids",
".",
"ne",
"(",
"padding_idx",
")",
".",
"int",
"(",
")",
"incremental_indices",
"=",
"(",
"torch",
".",
"cumsum",
"(",
"mask",
",",
"dim",
"=",
"1",
")",
".",
"type_as",
"(",
"mask",
")",
"+",
"past_key_values_length",
")",
"*",
"mask",
"return",
"incremental_indices",
".",
"long",
"(",
")",
"+",
"padding_idx"
] | [
104,
0
] | [
112,
51
] | python | en | ['en', 'error', 'th'] | False |
M2M100SinusoidalPositionalEmbedding.get_embedding | (num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None) |
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
"Attention Is All You Need".
|
Build sinusoidal embeddings. | def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
"""
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
"Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb | [
"def",
"get_embedding",
"(",
"num_embeddings",
":",
"int",
",",
"embedding_dim",
":",
"int",
",",
"padding_idx",
":",
"Optional",
"[",
"int",
"]",
"=",
"None",
")",
":",
"half_dim",
"=",
"embedding_dim",
"//",
"2",
"emb",
"=",
"math",
".",
"log",
"(",
"10000",
")",
"/",
"(",
"half_dim",
"-",
"1",
")",
"emb",
"=",
"torch",
".",
"exp",
"(",
"torch",
".",
"arange",
"(",
"half_dim",
",",
"dtype",
"=",
"torch",
".",
"float",
")",
"*",
"-",
"emb",
")",
"emb",
"=",
"torch",
".",
"arange",
"(",
"num_embeddings",
",",
"dtype",
"=",
"torch",
".",
"float",
")",
".",
"unsqueeze",
"(",
"1",
")",
"*",
"emb",
".",
"unsqueeze",
"(",
"0",
")",
"emb",
"=",
"torch",
".",
"cat",
"(",
"[",
"torch",
".",
"sin",
"(",
"emb",
")",
",",
"torch",
".",
"cos",
"(",
"emb",
")",
"]",
",",
"dim",
"=",
"1",
")",
".",
"view",
"(",
"num_embeddings",
",",
"-",
"1",
")",
"if",
"embedding_dim",
"%",
"2",
"==",
"1",
":",
"# zero pad",
"emb",
"=",
"torch",
".",
"cat",
"(",
"[",
"emb",
",",
"torch",
".",
"zeros",
"(",
"num_embeddings",
",",
"1",
")",
"]",
",",
"dim",
"=",
"1",
")",
"if",
"padding_idx",
"is",
"not",
"None",
":",
"emb",
"[",
"padding_idx",
",",
":",
"]",
"=",
"0",
"return",
"emb"
] | [
136,
4
] | [
154,
18
] | python | en | ['en', 'error', 'th'] | False |
M2M100SinusoidalPositionalEmbedding.create_position_ids_from_inputs_embeds | (self, inputs_embeds) |
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
|
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. | def create_position_ids_from_inputs_embeds(self, inputs_embeds):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape).contiguous() | [
"def",
"create_position_ids_from_inputs_embeds",
"(",
"self",
",",
"inputs_embeds",
")",
":",
"input_shape",
"=",
"inputs_embeds",
".",
"size",
"(",
")",
"[",
":",
"-",
"1",
"]",
"sequence_length",
"=",
"input_shape",
"[",
"1",
"]",
"position_ids",
"=",
"torch",
".",
"arange",
"(",
"self",
".",
"padding_idx",
"+",
"1",
",",
"sequence_length",
"+",
"self",
".",
"padding_idx",
"+",
"1",
",",
"dtype",
"=",
"torch",
".",
"long",
",",
"device",
"=",
"inputs_embeds",
".",
"device",
")",
"return",
"position_ids",
".",
"unsqueeze",
"(",
"0",
")",
".",
"expand",
"(",
"input_shape",
")",
".",
"contiguous",
"(",
")"
] | [
177,
4
] | [
192,
73
] | python | en | ['en', 'error', 'th'] | False |
M2M100Attention.forward | (
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) | Input shape: Batch x Time x Channel | Input shape: Batch x Time x Channel | def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, embed_dim = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
assert attn_weights.size() == (
bsz * self.num_heads,
tgt_len,
src_len,
), f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
if attention_mask is not None:
assert attention_mask.size() == (
bsz,
1,
tgt_len,
src_len,
), f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = F.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
assert layer_head_mask.size() == (
self.num_heads,
), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit akward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = F.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
assert attn_output.size() == (
bsz * self.num_heads,
tgt_len,
self.head_dim,
), f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}"
attn_output = (
attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
.transpose(1, 2)
.reshape(bsz, tgt_len, embed_dim)
)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value | [
"def",
"forward",
"(",
"self",
",",
"hidden_states",
":",
"torch",
".",
"Tensor",
",",
"key_value_states",
":",
"Optional",
"[",
"torch",
".",
"Tensor",
"]",
"=",
"None",
",",
"past_key_value",
":",
"Optional",
"[",
"Tuple",
"[",
"torch",
".",
"Tensor",
"]",
"]",
"=",
"None",
",",
"attention_mask",
":",
"Optional",
"[",
"torch",
".",
"Tensor",
"]",
"=",
"None",
",",
"layer_head_mask",
":",
"Optional",
"[",
"torch",
".",
"Tensor",
"]",
"=",
"None",
",",
"output_attentions",
":",
"bool",
"=",
"False",
",",
")",
"->",
"Tuple",
"[",
"torch",
".",
"Tensor",
",",
"Optional",
"[",
"torch",
".",
"Tensor",
"]",
",",
"Optional",
"[",
"Tuple",
"[",
"torch",
".",
"Tensor",
"]",
"]",
"]",
":",
"# if key_value_states are provided this layer is used as a cross-attention layer",
"# for the decoder",
"is_cross_attention",
"=",
"key_value_states",
"is",
"not",
"None",
"bsz",
",",
"tgt_len",
",",
"embed_dim",
"=",
"hidden_states",
".",
"size",
"(",
")",
"# get query proj",
"query_states",
"=",
"self",
".",
"q_proj",
"(",
"hidden_states",
")",
"*",
"self",
".",
"scaling",
"# get key, value proj",
"if",
"is_cross_attention",
"and",
"past_key_value",
"is",
"not",
"None",
":",
"# reuse k,v, cross_attentions",
"key_states",
"=",
"past_key_value",
"[",
"0",
"]",
"value_states",
"=",
"past_key_value",
"[",
"1",
"]",
"elif",
"is_cross_attention",
":",
"# cross_attentions",
"key_states",
"=",
"self",
".",
"_shape",
"(",
"self",
".",
"k_proj",
"(",
"key_value_states",
")",
",",
"-",
"1",
",",
"bsz",
")",
"value_states",
"=",
"self",
".",
"_shape",
"(",
"self",
".",
"v_proj",
"(",
"key_value_states",
")",
",",
"-",
"1",
",",
"bsz",
")",
"elif",
"past_key_value",
"is",
"not",
"None",
":",
"# reuse k, v, self_attention",
"key_states",
"=",
"self",
".",
"_shape",
"(",
"self",
".",
"k_proj",
"(",
"hidden_states",
")",
",",
"-",
"1",
",",
"bsz",
")",
"value_states",
"=",
"self",
".",
"_shape",
"(",
"self",
".",
"v_proj",
"(",
"hidden_states",
")",
",",
"-",
"1",
",",
"bsz",
")",
"key_states",
"=",
"torch",
".",
"cat",
"(",
"[",
"past_key_value",
"[",
"0",
"]",
",",
"key_states",
"]",
",",
"dim",
"=",
"2",
")",
"value_states",
"=",
"torch",
".",
"cat",
"(",
"[",
"past_key_value",
"[",
"1",
"]",
",",
"value_states",
"]",
",",
"dim",
"=",
"2",
")",
"else",
":",
"# self_attention",
"key_states",
"=",
"self",
".",
"_shape",
"(",
"self",
".",
"k_proj",
"(",
"hidden_states",
")",
",",
"-",
"1",
",",
"bsz",
")",
"value_states",
"=",
"self",
".",
"_shape",
"(",
"self",
".",
"v_proj",
"(",
"hidden_states",
")",
",",
"-",
"1",
",",
"bsz",
")",
"if",
"self",
".",
"is_decoder",
":",
"# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.",
"# Further calls to cross_attention layer can then reuse all cross-attention",
"# key/value_states (first \"if\" case)",
"# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of",
"# all previous decoder key/value_states. Further calls to uni-directional self-attention",
"# can concat previous decoder key/value_states to current projected key/value_states (third \"elif\" case)",
"# if encoder bi-directional self-attention `past_key_value` is always `None`",
"past_key_value",
"=",
"(",
"key_states",
",",
"value_states",
")",
"proj_shape",
"=",
"(",
"bsz",
"*",
"self",
".",
"num_heads",
",",
"-",
"1",
",",
"self",
".",
"head_dim",
")",
"query_states",
"=",
"self",
".",
"_shape",
"(",
"query_states",
",",
"tgt_len",
",",
"bsz",
")",
".",
"view",
"(",
"*",
"proj_shape",
")",
"key_states",
"=",
"key_states",
".",
"view",
"(",
"*",
"proj_shape",
")",
"value_states",
"=",
"value_states",
".",
"view",
"(",
"*",
"proj_shape",
")",
"src_len",
"=",
"key_states",
".",
"size",
"(",
"1",
")",
"attn_weights",
"=",
"torch",
".",
"bmm",
"(",
"query_states",
",",
"key_states",
".",
"transpose",
"(",
"1",
",",
"2",
")",
")",
"assert",
"attn_weights",
".",
"size",
"(",
")",
"==",
"(",
"bsz",
"*",
"self",
".",
"num_heads",
",",
"tgt_len",
",",
"src_len",
",",
")",
",",
"f\"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}\"",
"if",
"attention_mask",
"is",
"not",
"None",
":",
"assert",
"attention_mask",
".",
"size",
"(",
")",
"==",
"(",
"bsz",
",",
"1",
",",
"tgt_len",
",",
"src_len",
",",
")",
",",
"f\"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}\"",
"attn_weights",
"=",
"attn_weights",
".",
"view",
"(",
"bsz",
",",
"self",
".",
"num_heads",
",",
"tgt_len",
",",
"src_len",
")",
"+",
"attention_mask",
"attn_weights",
"=",
"attn_weights",
".",
"view",
"(",
"bsz",
"*",
"self",
".",
"num_heads",
",",
"tgt_len",
",",
"src_len",
")",
"attn_weights",
"=",
"F",
".",
"softmax",
"(",
"attn_weights",
",",
"dim",
"=",
"-",
"1",
")",
"if",
"layer_head_mask",
"is",
"not",
"None",
":",
"assert",
"layer_head_mask",
".",
"size",
"(",
")",
"==",
"(",
"self",
".",
"num_heads",
",",
")",
",",
"f\"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}\"",
"attn_weights",
"=",
"layer_head_mask",
".",
"view",
"(",
"1",
",",
"-",
"1",
",",
"1",
",",
"1",
")",
"*",
"attn_weights",
".",
"view",
"(",
"bsz",
",",
"self",
".",
"num_heads",
",",
"tgt_len",
",",
"src_len",
")",
"attn_weights",
"=",
"attn_weights",
".",
"view",
"(",
"bsz",
"*",
"self",
".",
"num_heads",
",",
"tgt_len",
",",
"src_len",
")",
"if",
"output_attentions",
":",
"# this operation is a bit akward, but it's required to",
"# make sure that attn_weights keeps its gradient.",
"# In order to do so, attn_weights have to reshaped",
"# twice and have to be reused in the following",
"attn_weights_reshaped",
"=",
"attn_weights",
".",
"view",
"(",
"bsz",
",",
"self",
".",
"num_heads",
",",
"tgt_len",
",",
"src_len",
")",
"attn_weights",
"=",
"attn_weights_reshaped",
".",
"view",
"(",
"bsz",
"*",
"self",
".",
"num_heads",
",",
"tgt_len",
",",
"src_len",
")",
"else",
":",
"attn_weights_reshaped",
"=",
"None",
"attn_probs",
"=",
"F",
".",
"dropout",
"(",
"attn_weights",
",",
"p",
"=",
"self",
".",
"dropout",
",",
"training",
"=",
"self",
".",
"training",
")",
"attn_output",
"=",
"torch",
".",
"bmm",
"(",
"attn_probs",
",",
"value_states",
")",
"assert",
"attn_output",
".",
"size",
"(",
")",
"==",
"(",
"bsz",
"*",
"self",
".",
"num_heads",
",",
"tgt_len",
",",
"self",
".",
"head_dim",
",",
")",
",",
"f\"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}\"",
"attn_output",
"=",
"(",
"attn_output",
".",
"view",
"(",
"bsz",
",",
"self",
".",
"num_heads",
",",
"tgt_len",
",",
"self",
".",
"head_dim",
")",
".",
"transpose",
"(",
"1",
",",
"2",
")",
".",
"reshape",
"(",
"bsz",
",",
"tgt_len",
",",
"embed_dim",
")",
")",
"attn_output",
"=",
"self",
".",
"out_proj",
"(",
"attn_output",
")",
"return",
"attn_output",
",",
"attn_weights_reshaped",
",",
"past_key_value"
] | [
226,
4
] | [
335,
65
] | python | en | ['en', 'pl', 'en'] | True |
M2M100EncoderLayer.forward | (
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
layer_head_mask: torch.Tensor,
output_attentions: bool = False,
) |
Args:
hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (:obj:`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (:obj:`torch.FloatTensor`): mask for attention heads in a given layer of size
`(config.encoder_attention_heads,)`.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more detail.
|
Args:
hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (:obj:`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (:obj:`torch.FloatTensor`): mask for attention heads in a given layer of size
`(config.encoder_attention_heads,)`.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more detail.
| def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
layer_head_mask: torch.Tensor,
output_attentions: bool = False,
):
"""
Args:
hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (:obj:`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (:obj:`torch.FloatTensor`): mask for attention heads in a given layer of size
`(config.encoder_attention_heads,)`.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = F.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs | [
"def",
"forward",
"(",
"self",
",",
"hidden_states",
":",
"torch",
".",
"Tensor",
",",
"attention_mask",
":",
"torch",
".",
"Tensor",
",",
"layer_head_mask",
":",
"torch",
".",
"Tensor",
",",
"output_attentions",
":",
"bool",
"=",
"False",
",",
")",
":",
"residual",
"=",
"hidden_states",
"hidden_states",
"=",
"self",
".",
"self_attn_layer_norm",
"(",
"hidden_states",
")",
"hidden_states",
",",
"attn_weights",
",",
"_",
"=",
"self",
".",
"self_attn",
"(",
"hidden_states",
"=",
"hidden_states",
",",
"attention_mask",
"=",
"attention_mask",
",",
"layer_head_mask",
"=",
"layer_head_mask",
",",
"output_attentions",
"=",
"output_attentions",
",",
")",
"hidden_states",
"=",
"F",
".",
"dropout",
"(",
"hidden_states",
",",
"p",
"=",
"self",
".",
"dropout",
",",
"training",
"=",
"self",
".",
"training",
")",
"hidden_states",
"=",
"residual",
"+",
"hidden_states",
"residual",
"=",
"hidden_states",
"hidden_states",
"=",
"self",
".",
"final_layer_norm",
"(",
"hidden_states",
")",
"hidden_states",
"=",
"self",
".",
"activation_fn",
"(",
"self",
".",
"fc1",
"(",
"hidden_states",
")",
")",
"hidden_states",
"=",
"F",
".",
"dropout",
"(",
"hidden_states",
",",
"p",
"=",
"self",
".",
"activation_dropout",
",",
"training",
"=",
"self",
".",
"training",
")",
"hidden_states",
"=",
"self",
".",
"fc2",
"(",
"hidden_states",
")",
"hidden_states",
"=",
"F",
".",
"dropout",
"(",
"hidden_states",
",",
"p",
"=",
"self",
".",
"dropout",
",",
"training",
"=",
"self",
".",
"training",
")",
"hidden_states",
"=",
"residual",
"+",
"hidden_states",
"if",
"hidden_states",
".",
"dtype",
"==",
"torch",
".",
"float16",
"and",
"(",
"torch",
".",
"isinf",
"(",
"hidden_states",
")",
".",
"any",
"(",
")",
"or",
"torch",
".",
"isnan",
"(",
"hidden_states",
")",
".",
"any",
"(",
")",
")",
":",
"clamp_value",
"=",
"torch",
".",
"finfo",
"(",
"hidden_states",
".",
"dtype",
")",
".",
"max",
"-",
"1000",
"hidden_states",
"=",
"torch",
".",
"clamp",
"(",
"hidden_states",
",",
"min",
"=",
"-",
"clamp_value",
",",
"max",
"=",
"clamp_value",
")",
"outputs",
"=",
"(",
"hidden_states",
",",
")",
"if",
"output_attentions",
":",
"outputs",
"+=",
"(",
"attn_weights",
",",
")",
"return",
"outputs"
] | [
356,
4
] | [
404,
22
] | python | en | ['en', 'error', 'th'] | False |
M2M100DecoderLayer.forward | (
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
encoder_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) |
Args:
hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (:obj:`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (:obj:`torch.FloatTensor`): cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_attention_mask (:obj:`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (:obj:`torch.FloatTensor`): mask for attention heads in a given layer of size
`(config.encoder_attention_heads,)`.
encoder_layer_head_mask (:obj:`torch.FloatTensor`): mask for encoder attention heads in a given layer of
size `(config.encoder_attention_heads,)`.
past_key_value (:obj:`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more detail.
|
Args:
hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (:obj:`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (:obj:`torch.FloatTensor`): cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_attention_mask (:obj:`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (:obj:`torch.FloatTensor`): mask for attention heads in a given layer of size
`(config.encoder_attention_heads,)`.
encoder_layer_head_mask (:obj:`torch.FloatTensor`): mask for encoder attention heads in a given layer of
size `(config.encoder_attention_heads,)`.
past_key_value (:obj:`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more detail.
| def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
encoder_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
):
"""
Args:
hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (:obj:`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (:obj:`torch.FloatTensor`): cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_attention_mask (:obj:`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (:obj:`torch.FloatTensor`): mask for attention heads in a given layer of size
`(config.encoder_attention_heads,)`.
encoder_layer_head_mask (:obj:`torch.FloatTensor`): mask for encoder attention heads in a given layer of
size `(config.encoder_attention_heads,)`.
past_key_value (:obj:`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = F.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs | [
"def",
"forward",
"(",
"self",
",",
"hidden_states",
":",
"torch",
".",
"Tensor",
",",
"attention_mask",
":",
"Optional",
"[",
"torch",
".",
"Tensor",
"]",
"=",
"None",
",",
"encoder_hidden_states",
":",
"Optional",
"[",
"torch",
".",
"Tensor",
"]",
"=",
"None",
",",
"encoder_attention_mask",
":",
"Optional",
"[",
"torch",
".",
"Tensor",
"]",
"=",
"None",
",",
"layer_head_mask",
":",
"Optional",
"[",
"torch",
".",
"Tensor",
"]",
"=",
"None",
",",
"encoder_layer_head_mask",
":",
"Optional",
"[",
"torch",
".",
"Tensor",
"]",
"=",
"None",
",",
"past_key_value",
":",
"Optional",
"[",
"Tuple",
"[",
"torch",
".",
"Tensor",
"]",
"]",
"=",
"None",
",",
"output_attentions",
":",
"Optional",
"[",
"bool",
"]",
"=",
"False",
",",
"use_cache",
":",
"Optional",
"[",
"bool",
"]",
"=",
"True",
",",
")",
":",
"residual",
"=",
"hidden_states",
"hidden_states",
"=",
"self",
".",
"self_attn_layer_norm",
"(",
"hidden_states",
")",
"# Self Attention",
"# decoder uni-directional self-attention cached key/values tuple is at positions 1,2",
"self_attn_past_key_value",
"=",
"past_key_value",
"[",
":",
"2",
"]",
"if",
"past_key_value",
"is",
"not",
"None",
"else",
"None",
"# add present self-attn cache to positions 1,2 of present_key_value tuple",
"hidden_states",
",",
"self_attn_weights",
",",
"present_key_value",
"=",
"self",
".",
"self_attn",
"(",
"hidden_states",
"=",
"hidden_states",
",",
"past_key_value",
"=",
"self_attn_past_key_value",
",",
"attention_mask",
"=",
"attention_mask",
",",
"layer_head_mask",
"=",
"layer_head_mask",
",",
"output_attentions",
"=",
"output_attentions",
",",
")",
"hidden_states",
"=",
"F",
".",
"dropout",
"(",
"hidden_states",
",",
"p",
"=",
"self",
".",
"dropout",
",",
"training",
"=",
"self",
".",
"training",
")",
"hidden_states",
"=",
"residual",
"+",
"hidden_states",
"# Cross-Attention Block",
"cross_attn_present_key_value",
"=",
"None",
"cross_attn_weights",
"=",
"None",
"if",
"encoder_hidden_states",
"is",
"not",
"None",
":",
"residual",
"=",
"hidden_states",
"hidden_states",
"=",
"self",
".",
"encoder_attn_layer_norm",
"(",
"hidden_states",
")",
"# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple",
"cross_attn_past_key_value",
"=",
"past_key_value",
"[",
"-",
"2",
":",
"]",
"if",
"past_key_value",
"is",
"not",
"None",
"else",
"None",
"hidden_states",
",",
"cross_attn_weights",
",",
"cross_attn_present_key_value",
"=",
"self",
".",
"encoder_attn",
"(",
"hidden_states",
"=",
"hidden_states",
",",
"key_value_states",
"=",
"encoder_hidden_states",
",",
"attention_mask",
"=",
"encoder_attention_mask",
",",
"layer_head_mask",
"=",
"layer_head_mask",
",",
"past_key_value",
"=",
"cross_attn_past_key_value",
",",
"output_attentions",
"=",
"output_attentions",
",",
")",
"hidden_states",
"=",
"F",
".",
"dropout",
"(",
"hidden_states",
",",
"p",
"=",
"self",
".",
"dropout",
",",
"training",
"=",
"self",
".",
"training",
")",
"hidden_states",
"=",
"residual",
"+",
"hidden_states",
"# add cross-attn to positions 3,4 of present_key_value tuple",
"present_key_value",
"=",
"present_key_value",
"+",
"cross_attn_present_key_value",
"# Fully Connected",
"residual",
"=",
"hidden_states",
"hidden_states",
"=",
"self",
".",
"final_layer_norm",
"(",
"hidden_states",
")",
"hidden_states",
"=",
"self",
".",
"activation_fn",
"(",
"self",
".",
"fc1",
"(",
"hidden_states",
")",
")",
"hidden_states",
"=",
"F",
".",
"dropout",
"(",
"hidden_states",
",",
"p",
"=",
"self",
".",
"activation_dropout",
",",
"training",
"=",
"self",
".",
"training",
")",
"hidden_states",
"=",
"self",
".",
"fc2",
"(",
"hidden_states",
")",
"hidden_states",
"=",
"F",
".",
"dropout",
"(",
"hidden_states",
",",
"p",
"=",
"self",
".",
"dropout",
",",
"training",
"=",
"self",
".",
"training",
")",
"hidden_states",
"=",
"residual",
"+",
"hidden_states",
"outputs",
"=",
"(",
"hidden_states",
",",
")",
"if",
"output_attentions",
":",
"outputs",
"+=",
"(",
"self_attn_weights",
",",
"cross_attn_weights",
")",
"if",
"use_cache",
":",
"outputs",
"+=",
"(",
"present_key_value",
",",
")",
"return",
"outputs"
] | [
435,
4
] | [
521,
22
] | python | en | ['en', 'error', 'th'] | False |
M2M100Encoder.forward | (
self,
input_ids=None,
attention_mask=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
) | r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using :class:`~transformers.M2M100Tokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__`
for details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert :obj:`input_ids` indices
into associated vectors than the model's internal embedding lookup matrix.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors
for more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
| r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it. | def forward(
self,
input_ids=None,
attention_mask=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using :class:`~transformers.M2M100Tokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__`
for details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert :obj:`input_ids` indices
into associated vectors than the model's internal embedding lookup matrix.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors
for more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input_ids, inputs_embeds)
hidden_states = inputs_embeds + embed_pos
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
assert head_mask.size()[0] == (
len(self.layers)
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
if getattr(self.config, "gradient_checkpointing", False) and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(encoder_layer),
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
) | [
"def",
"forward",
"(",
"self",
",",
"input_ids",
"=",
"None",
",",
"attention_mask",
"=",
"None",
",",
"head_mask",
"=",
"None",
",",
"inputs_embeds",
"=",
"None",
",",
"output_attentions",
"=",
"None",
",",
"output_hidden_states",
"=",
"None",
",",
"return_dict",
"=",
"None",
",",
")",
":",
"output_attentions",
"=",
"output_attentions",
"if",
"output_attentions",
"is",
"not",
"None",
"else",
"self",
".",
"config",
".",
"output_attentions",
"output_hidden_states",
"=",
"(",
"output_hidden_states",
"if",
"output_hidden_states",
"is",
"not",
"None",
"else",
"self",
".",
"config",
".",
"output_hidden_states",
")",
"return_dict",
"=",
"return_dict",
"if",
"return_dict",
"is",
"not",
"None",
"else",
"self",
".",
"config",
".",
"use_return_dict",
"# retrieve input_ids and inputs_embeds",
"if",
"input_ids",
"is",
"not",
"None",
"and",
"inputs_embeds",
"is",
"not",
"None",
":",
"raise",
"ValueError",
"(",
"\"You cannot specify both input_ids and inputs_embeds at the same time\"",
")",
"elif",
"input_ids",
"is",
"not",
"None",
":",
"input_shape",
"=",
"input_ids",
".",
"size",
"(",
")",
"input_ids",
"=",
"input_ids",
".",
"view",
"(",
"-",
"1",
",",
"input_shape",
"[",
"-",
"1",
"]",
")",
"elif",
"inputs_embeds",
"is",
"not",
"None",
":",
"input_shape",
"=",
"inputs_embeds",
".",
"size",
"(",
")",
"[",
":",
"-",
"1",
"]",
"else",
":",
"raise",
"ValueError",
"(",
"\"You have to specify either input_ids or inputs_embeds\"",
")",
"if",
"inputs_embeds",
"is",
"None",
":",
"inputs_embeds",
"=",
"self",
".",
"embed_tokens",
"(",
"input_ids",
")",
"*",
"self",
".",
"embed_scale",
"embed_pos",
"=",
"self",
".",
"embed_positions",
"(",
"input_ids",
",",
"inputs_embeds",
")",
"hidden_states",
"=",
"inputs_embeds",
"+",
"embed_pos",
"hidden_states",
"=",
"F",
".",
"dropout",
"(",
"hidden_states",
",",
"p",
"=",
"self",
".",
"dropout",
",",
"training",
"=",
"self",
".",
"training",
")",
"# expand attention_mask",
"if",
"attention_mask",
"is",
"not",
"None",
":",
"# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]",
"attention_mask",
"=",
"_expand_mask",
"(",
"attention_mask",
",",
"inputs_embeds",
".",
"dtype",
")",
"encoder_states",
"=",
"(",
")",
"if",
"output_hidden_states",
"else",
"None",
"all_attentions",
"=",
"(",
")",
"if",
"output_attentions",
"else",
"None",
"# check if head_mask has a correct number of layers specified if desired",
"if",
"head_mask",
"is",
"not",
"None",
":",
"assert",
"head_mask",
".",
"size",
"(",
")",
"[",
"0",
"]",
"==",
"(",
"len",
"(",
"self",
".",
"layers",
")",
")",
",",
"f\"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}.\"",
"for",
"idx",
",",
"encoder_layer",
"in",
"enumerate",
"(",
"self",
".",
"layers",
")",
":",
"if",
"output_hidden_states",
":",
"encoder_states",
"=",
"encoder_states",
"+",
"(",
"hidden_states",
",",
")",
"# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)",
"dropout_probability",
"=",
"random",
".",
"uniform",
"(",
"0",
",",
"1",
")",
"if",
"self",
".",
"training",
"and",
"(",
"dropout_probability",
"<",
"self",
".",
"layerdrop",
")",
":",
"# skip the layer",
"layer_outputs",
"=",
"(",
"None",
",",
"None",
")",
"else",
":",
"if",
"getattr",
"(",
"self",
".",
"config",
",",
"\"gradient_checkpointing\"",
",",
"False",
")",
"and",
"self",
".",
"training",
":",
"def",
"create_custom_forward",
"(",
"module",
")",
":",
"def",
"custom_forward",
"(",
"*",
"inputs",
")",
":",
"return",
"module",
"(",
"*",
"inputs",
",",
"output_attentions",
")",
"return",
"custom_forward",
"layer_outputs",
"=",
"torch",
".",
"utils",
".",
"checkpoint",
".",
"checkpoint",
"(",
"create_custom_forward",
"(",
"encoder_layer",
")",
",",
"hidden_states",
",",
"attention_mask",
",",
"(",
"head_mask",
"[",
"idx",
"]",
"if",
"head_mask",
"is",
"not",
"None",
"else",
"None",
")",
",",
")",
"else",
":",
"layer_outputs",
"=",
"encoder_layer",
"(",
"hidden_states",
",",
"attention_mask",
",",
"layer_head_mask",
"=",
"(",
"head_mask",
"[",
"idx",
"]",
"if",
"head_mask",
"is",
"not",
"None",
"else",
"None",
")",
",",
"output_attentions",
"=",
"output_attentions",
",",
")",
"hidden_states",
"=",
"layer_outputs",
"[",
"0",
"]",
"if",
"output_attentions",
":",
"all_attentions",
"=",
"all_attentions",
"+",
"(",
"layer_outputs",
"[",
"1",
"]",
",",
")",
"hidden_states",
"=",
"self",
".",
"layer_norm",
"(",
"hidden_states",
")",
"if",
"output_hidden_states",
":",
"encoder_states",
"=",
"encoder_states",
"+",
"(",
"hidden_states",
",",
")",
"if",
"not",
"return_dict",
":",
"return",
"tuple",
"(",
"v",
"for",
"v",
"in",
"[",
"hidden_states",
",",
"encoder_states",
",",
"all_attentions",
"]",
"if",
"v",
"is",
"not",
"None",
")",
"return",
"BaseModelOutput",
"(",
"last_hidden_state",
"=",
"hidden_states",
",",
"hidden_states",
"=",
"encoder_states",
",",
"attentions",
"=",
"all_attentions",
")"
] | [
673,
4
] | [
796,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
M2M100Decoder.forward | (
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
encoder_head_mask=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
) | r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using :class:`~transformers.M2M100Tokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__`
for details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, encoder_sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, encoder_sequence_length)`, `optional`):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
past_key_values (:obj:`Tuple[Tuple[torch.Tensor]]` of length :obj:`config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last
:obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of
shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids`` of shape :obj:`(batch_size,
sequence_length)`.
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert :obj:`input_ids` indices
into associated vectors than the model's internal embedding lookup matrix.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors
for more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
| r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it. | def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
encoder_head_mask=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using :class:`~transformers.M2M100Tokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__`
for details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, encoder_sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, encoder_sequence_length)`, `optional`):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
past_key_values (:obj:`Tuple[Tuple[torch.Tensor]]` of length :obj:`config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last
:obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of
shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids`` of shape :obj:`(batch_size,
sequence_length)`.
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert :obj:`input_ids` indices
into associated vectors than the model's internal embedding lookup matrix.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors
for more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length
).to(self.device)
if attention_mask is not None and combined_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = combined_attention_mask + _expand_mask(
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
# embed positions
positions = self.embed_positions(input_ids, inputs_embeds, past_key_values_length)
hidden_states = inputs_embeds + positions
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if output_attentions else None
next_decoder_cache = () if use_cache else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
assert head_mask.size()[0] == (
len(self.layers)
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop):
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if getattr(self.config, "gradient_checkpointing", False) and self.training:
if use_cache:
logger.warn(
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
"`use_cache=False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, use_cache)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
combined_attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
encoder_head_mask[idx] if encoder_head_mask is not None else None,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=combined_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
encoder_layer_head_mask=(encoder_head_mask[idx] if encoder_head_mask is not None else None),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
) | [
"def",
"forward",
"(",
"self",
",",
"input_ids",
"=",
"None",
",",
"attention_mask",
"=",
"None",
",",
"encoder_hidden_states",
"=",
"None",
",",
"encoder_attention_mask",
"=",
"None",
",",
"head_mask",
"=",
"None",
",",
"encoder_head_mask",
"=",
"None",
",",
"past_key_values",
"=",
"None",
",",
"inputs_embeds",
"=",
"None",
",",
"use_cache",
"=",
"None",
",",
"output_attentions",
"=",
"None",
",",
"output_hidden_states",
"=",
"None",
",",
"return_dict",
"=",
"None",
",",
")",
":",
"output_attentions",
"=",
"output_attentions",
"if",
"output_attentions",
"is",
"not",
"None",
"else",
"self",
".",
"config",
".",
"output_attentions",
"output_hidden_states",
"=",
"(",
"output_hidden_states",
"if",
"output_hidden_states",
"is",
"not",
"None",
"else",
"self",
".",
"config",
".",
"output_hidden_states",
")",
"use_cache",
"=",
"use_cache",
"if",
"use_cache",
"is",
"not",
"None",
"else",
"self",
".",
"config",
".",
"use_cache",
"return_dict",
"=",
"return_dict",
"if",
"return_dict",
"is",
"not",
"None",
"else",
"self",
".",
"config",
".",
"use_return_dict",
"# retrieve input_ids and inputs_embeds",
"if",
"input_ids",
"is",
"not",
"None",
"and",
"inputs_embeds",
"is",
"not",
"None",
":",
"raise",
"ValueError",
"(",
"\"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time\"",
")",
"elif",
"input_ids",
"is",
"not",
"None",
":",
"input_shape",
"=",
"input_ids",
".",
"size",
"(",
")",
"input_ids",
"=",
"input_ids",
".",
"view",
"(",
"-",
"1",
",",
"input_shape",
"[",
"-",
"1",
"]",
")",
"elif",
"inputs_embeds",
"is",
"not",
"None",
":",
"input_shape",
"=",
"inputs_embeds",
".",
"size",
"(",
")",
"[",
":",
"-",
"1",
"]",
"else",
":",
"raise",
"ValueError",
"(",
"\"You have to specify either decoder_input_ids or decoder_inputs_embeds\"",
")",
"# past_key_values_length",
"past_key_values_length",
"=",
"past_key_values",
"[",
"0",
"]",
"[",
"0",
"]",
".",
"shape",
"[",
"2",
"]",
"if",
"past_key_values",
"is",
"not",
"None",
"else",
"0",
"if",
"inputs_embeds",
"is",
"None",
":",
"inputs_embeds",
"=",
"self",
".",
"embed_tokens",
"(",
"input_ids",
")",
"*",
"self",
".",
"embed_scale",
"# create causal mask",
"# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]",
"combined_attention_mask",
"=",
"None",
"if",
"input_shape",
"[",
"-",
"1",
"]",
">",
"1",
":",
"combined_attention_mask",
"=",
"_make_causal_mask",
"(",
"input_shape",
",",
"inputs_embeds",
".",
"dtype",
",",
"past_key_values_length",
"=",
"past_key_values_length",
")",
".",
"to",
"(",
"self",
".",
"device",
")",
"if",
"attention_mask",
"is",
"not",
"None",
"and",
"combined_attention_mask",
"is",
"not",
"None",
":",
"# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]",
"combined_attention_mask",
"=",
"combined_attention_mask",
"+",
"_expand_mask",
"(",
"attention_mask",
",",
"inputs_embeds",
".",
"dtype",
",",
"tgt_len",
"=",
"input_shape",
"[",
"-",
"1",
"]",
")",
"# expand encoder attention mask",
"if",
"encoder_hidden_states",
"is",
"not",
"None",
"and",
"encoder_attention_mask",
"is",
"not",
"None",
":",
"# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]",
"encoder_attention_mask",
"=",
"_expand_mask",
"(",
"encoder_attention_mask",
",",
"inputs_embeds",
".",
"dtype",
",",
"tgt_len",
"=",
"input_shape",
"[",
"-",
"1",
"]",
")",
"# embed positions",
"positions",
"=",
"self",
".",
"embed_positions",
"(",
"input_ids",
",",
"inputs_embeds",
",",
"past_key_values_length",
")",
"hidden_states",
"=",
"inputs_embeds",
"+",
"positions",
"hidden_states",
"=",
"F",
".",
"dropout",
"(",
"hidden_states",
",",
"p",
"=",
"self",
".",
"dropout",
",",
"training",
"=",
"self",
".",
"training",
")",
"# decoder layers",
"all_hidden_states",
"=",
"(",
")",
"if",
"output_hidden_states",
"else",
"None",
"all_self_attns",
"=",
"(",
")",
"if",
"output_attentions",
"else",
"None",
"all_cross_attentions",
"=",
"(",
")",
"if",
"output_attentions",
"else",
"None",
"next_decoder_cache",
"=",
"(",
")",
"if",
"use_cache",
"else",
"None",
"# check if head_mask has a correct number of layers specified if desired",
"if",
"head_mask",
"is",
"not",
"None",
":",
"assert",
"head_mask",
".",
"size",
"(",
")",
"[",
"0",
"]",
"==",
"(",
"len",
"(",
"self",
".",
"layers",
")",
")",
",",
"f\"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}.\"",
"for",
"idx",
",",
"decoder_layer",
"in",
"enumerate",
"(",
"self",
".",
"layers",
")",
":",
"# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)",
"if",
"output_hidden_states",
":",
"all_hidden_states",
"+=",
"(",
"hidden_states",
",",
")",
"dropout_probability",
"=",
"random",
".",
"uniform",
"(",
"0",
",",
"1",
")",
"if",
"self",
".",
"training",
"and",
"(",
"dropout_probability",
"<",
"self",
".",
"layerdrop",
")",
":",
"continue",
"past_key_value",
"=",
"past_key_values",
"[",
"idx",
"]",
"if",
"past_key_values",
"is",
"not",
"None",
"else",
"None",
"if",
"getattr",
"(",
"self",
".",
"config",
",",
"\"gradient_checkpointing\"",
",",
"False",
")",
"and",
"self",
".",
"training",
":",
"if",
"use_cache",
":",
"logger",
".",
"warn",
"(",
"\"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting \"",
"\"`use_cache=False`...\"",
")",
"use_cache",
"=",
"False",
"def",
"create_custom_forward",
"(",
"module",
")",
":",
"def",
"custom_forward",
"(",
"*",
"inputs",
")",
":",
"# None for past_key_value",
"return",
"module",
"(",
"*",
"inputs",
",",
"output_attentions",
",",
"use_cache",
")",
"return",
"custom_forward",
"layer_outputs",
"=",
"torch",
".",
"utils",
".",
"checkpoint",
".",
"checkpoint",
"(",
"create_custom_forward",
"(",
"decoder_layer",
")",
",",
"hidden_states",
",",
"combined_attention_mask",
",",
"encoder_hidden_states",
",",
"encoder_attention_mask",
",",
"head_mask",
"[",
"idx",
"]",
"if",
"head_mask",
"is",
"not",
"None",
"else",
"None",
",",
"encoder_head_mask",
"[",
"idx",
"]",
"if",
"encoder_head_mask",
"is",
"not",
"None",
"else",
"None",
",",
"None",
",",
")",
"else",
":",
"layer_outputs",
"=",
"decoder_layer",
"(",
"hidden_states",
",",
"attention_mask",
"=",
"combined_attention_mask",
",",
"encoder_hidden_states",
"=",
"encoder_hidden_states",
",",
"encoder_attention_mask",
"=",
"encoder_attention_mask",
",",
"layer_head_mask",
"=",
"(",
"head_mask",
"[",
"idx",
"]",
"if",
"head_mask",
"is",
"not",
"None",
"else",
"None",
")",
",",
"encoder_layer_head_mask",
"=",
"(",
"encoder_head_mask",
"[",
"idx",
"]",
"if",
"encoder_head_mask",
"is",
"not",
"None",
"else",
"None",
")",
",",
"past_key_value",
"=",
"past_key_value",
",",
"output_attentions",
"=",
"output_attentions",
",",
"use_cache",
"=",
"use_cache",
",",
")",
"hidden_states",
"=",
"layer_outputs",
"[",
"0",
"]",
"if",
"use_cache",
":",
"next_decoder_cache",
"+=",
"(",
"layer_outputs",
"[",
"3",
"if",
"output_attentions",
"else",
"1",
"]",
",",
")",
"if",
"output_attentions",
":",
"all_self_attns",
"+=",
"(",
"layer_outputs",
"[",
"1",
"]",
",",
")",
"all_cross_attentions",
"+=",
"(",
"layer_outputs",
"[",
"2",
"]",
",",
")",
"hidden_states",
"=",
"self",
".",
"layer_norm",
"(",
"hidden_states",
")",
"# add hidden states from the last decoder layer",
"if",
"output_hidden_states",
":",
"all_hidden_states",
"+=",
"(",
"hidden_states",
",",
")",
"next_cache",
"=",
"next_decoder_cache",
"if",
"use_cache",
"else",
"None",
"if",
"not",
"return_dict",
":",
"return",
"tuple",
"(",
"v",
"for",
"v",
"in",
"[",
"hidden_states",
",",
"next_cache",
",",
"all_hidden_states",
",",
"all_self_attns",
",",
"all_cross_attentions",
"]",
"if",
"v",
"is",
"not",
"None",
")",
"return",
"BaseModelOutputWithPastAndCrossAttentions",
"(",
"last_hidden_state",
"=",
"hidden_states",
",",
"past_key_values",
"=",
"next_cache",
",",
"hidden_states",
"=",
"all_hidden_states",
",",
"attentions",
"=",
"all_self_attns",
",",
"cross_attentions",
"=",
"all_cross_attentions",
",",
")"
] | [
831,
4
] | [
1034,
9
] | python | cy | ['en', 'cy', 'hi'] | False |
device_reg | (hass) | Return an empty, loaded, registry. | Return an empty, loaded, registry. | def device_reg(hass):
"""Return an empty, loaded, registry."""
return mock_device_registry(hass) | [
"def",
"device_reg",
"(",
"hass",
")",
":",
"return",
"mock_device_registry",
"(",
"hass",
")"
] | [
24,
0
] | [
26,
37
] | python | en | ['en', 'fy', 'en'] | True |
entity_reg | (hass) | Return an empty, loaded, registry. | Return an empty, loaded, registry. | def entity_reg(hass):
"""Return an empty, loaded, registry."""
return mock_registry(hass) | [
"def",
"entity_reg",
"(",
"hass",
")",
":",
"return",
"mock_registry",
"(",
"hass",
")"
] | [
30,
0
] | [
32,
30
] | python | en | ['en', 'fy', 'en'] | True |
calls | (hass) | Track calls to a mock service. | Track calls to a mock service. | def calls(hass):
"""Track calls to a mock service."""
return async_mock_service(hass, "test", "automation") | [
"def",
"calls",
"(",
"hass",
")",
":",
"return",
"async_mock_service",
"(",
"hass",
",",
"\"test\"",
",",
"\"automation\"",
")"
] | [
36,
0
] | [
38,
57
] | python | en | ['en', 'en', 'en'] | True |
test_get_conditions | (hass, device_reg, entity_reg) | Test we get the expected conditions from a remote. | Test we get the expected conditions from a remote. | async def test_get_conditions(hass, device_reg, entity_reg):
"""Test we get the expected conditions from a remote."""
config_entry = MockConfigEntry(domain="test", data={})
config_entry.add_to_hass(hass)
device_entry = device_reg.async_get_or_create(
config_entry_id=config_entry.entry_id,
connections={(device_registry.CONNECTION_NETWORK_MAC, "12:34:56:AB:CD:EF")},
)
entity_reg.async_get_or_create(DOMAIN, "test", "5678", device_id=device_entry.id)
expected_conditions = [
{
"condition": "device",
"domain": DOMAIN,
"type": "is_off",
"device_id": device_entry.id,
"entity_id": f"{DOMAIN}.test_5678",
},
{
"condition": "device",
"domain": DOMAIN,
"type": "is_on",
"device_id": device_entry.id,
"entity_id": f"{DOMAIN}.test_5678",
},
]
conditions = await async_get_device_automations(hass, "condition", device_entry.id)
assert conditions == expected_conditions | [
"async",
"def",
"test_get_conditions",
"(",
"hass",
",",
"device_reg",
",",
"entity_reg",
")",
":",
"config_entry",
"=",
"MockConfigEntry",
"(",
"domain",
"=",
"\"test\"",
",",
"data",
"=",
"{",
"}",
")",
"config_entry",
".",
"add_to_hass",
"(",
"hass",
")",
"device_entry",
"=",
"device_reg",
".",
"async_get_or_create",
"(",
"config_entry_id",
"=",
"config_entry",
".",
"entry_id",
",",
"connections",
"=",
"{",
"(",
"device_registry",
".",
"CONNECTION_NETWORK_MAC",
",",
"\"12:34:56:AB:CD:EF\"",
")",
"}",
",",
")",
"entity_reg",
".",
"async_get_or_create",
"(",
"DOMAIN",
",",
"\"test\"",
",",
"\"5678\"",
",",
"device_id",
"=",
"device_entry",
".",
"id",
")",
"expected_conditions",
"=",
"[",
"{",
"\"condition\"",
":",
"\"device\"",
",",
"\"domain\"",
":",
"DOMAIN",
",",
"\"type\"",
":",
"\"is_off\"",
",",
"\"device_id\"",
":",
"device_entry",
".",
"id",
",",
"\"entity_id\"",
":",
"f\"{DOMAIN}.test_5678\"",
",",
"}",
",",
"{",
"\"condition\"",
":",
"\"device\"",
",",
"\"domain\"",
":",
"DOMAIN",
",",
"\"type\"",
":",
"\"is_on\"",
",",
"\"device_id\"",
":",
"device_entry",
".",
"id",
",",
"\"entity_id\"",
":",
"f\"{DOMAIN}.test_5678\"",
",",
"}",
",",
"]",
"conditions",
"=",
"await",
"async_get_device_automations",
"(",
"hass",
",",
"\"condition\"",
",",
"device_entry",
".",
"id",
")",
"assert",
"conditions",
"==",
"expected_conditions"
] | [
41,
0
] | [
67,
44
] | python | en | ['en', 'en', 'en'] | True |
test_get_condition_capabilities | (hass, device_reg, entity_reg) | Test we get the expected capabilities from a remote condition. | Test we get the expected capabilities from a remote condition. | async def test_get_condition_capabilities(hass, device_reg, entity_reg):
"""Test we get the expected capabilities from a remote condition."""
config_entry = MockConfigEntry(domain="test", data={})
config_entry.add_to_hass(hass)
device_entry = device_reg.async_get_or_create(
config_entry_id=config_entry.entry_id,
connections={(device_registry.CONNECTION_NETWORK_MAC, "12:34:56:AB:CD:EF")},
)
entity_reg.async_get_or_create(DOMAIN, "test", "5678", device_id=device_entry.id)
expected_capabilities = {
"extra_fields": [
{"name": "for", "optional": True, "type": "positive_time_period_dict"}
]
}
conditions = await async_get_device_automations(hass, "condition", device_entry.id)
for condition in conditions:
capabilities = await async_get_device_automation_capabilities(
hass, "condition", condition
)
assert capabilities == expected_capabilities | [
"async",
"def",
"test_get_condition_capabilities",
"(",
"hass",
",",
"device_reg",
",",
"entity_reg",
")",
":",
"config_entry",
"=",
"MockConfigEntry",
"(",
"domain",
"=",
"\"test\"",
",",
"data",
"=",
"{",
"}",
")",
"config_entry",
".",
"add_to_hass",
"(",
"hass",
")",
"device_entry",
"=",
"device_reg",
".",
"async_get_or_create",
"(",
"config_entry_id",
"=",
"config_entry",
".",
"entry_id",
",",
"connections",
"=",
"{",
"(",
"device_registry",
".",
"CONNECTION_NETWORK_MAC",
",",
"\"12:34:56:AB:CD:EF\"",
")",
"}",
",",
")",
"entity_reg",
".",
"async_get_or_create",
"(",
"DOMAIN",
",",
"\"test\"",
",",
"\"5678\"",
",",
"device_id",
"=",
"device_entry",
".",
"id",
")",
"expected_capabilities",
"=",
"{",
"\"extra_fields\"",
":",
"[",
"{",
"\"name\"",
":",
"\"for\"",
",",
"\"optional\"",
":",
"True",
",",
"\"type\"",
":",
"\"positive_time_period_dict\"",
"}",
"]",
"}",
"conditions",
"=",
"await",
"async_get_device_automations",
"(",
"hass",
",",
"\"condition\"",
",",
"device_entry",
".",
"id",
")",
"for",
"condition",
"in",
"conditions",
":",
"capabilities",
"=",
"await",
"async_get_device_automation_capabilities",
"(",
"hass",
",",
"\"condition\"",
",",
"condition",
")",
"assert",
"capabilities",
"==",
"expected_capabilities"
] | [
70,
0
] | [
89,
52
] | python | en | ['en', 'en', 'en'] | True |
test_if_state | (hass, calls) | Test for turn_on and turn_off conditions. | Test for turn_on and turn_off conditions. | async def test_if_state(hass, calls):
"""Test for turn_on and turn_off conditions."""
platform = getattr(hass.components, f"test.{DOMAIN}")
platform.init()
assert await async_setup_component(hass, DOMAIN, {DOMAIN: {CONF_PLATFORM: "test"}})
await hass.async_block_till_done()
ent1, ent2, ent3 = platform.ENTITIES
assert await async_setup_component(
hass,
automation.DOMAIN,
{
automation.DOMAIN: [
{
"trigger": {"platform": "event", "event_type": "test_event1"},
"condition": [
{
"condition": "device",
"domain": DOMAIN,
"device_id": "",
"entity_id": ent1.entity_id,
"type": "is_on",
}
],
"action": {
"service": "test.automation",
"data_template": {
"some": "is_on {{ trigger.%s }}"
% "}} - {{ trigger.".join(("platform", "event.event_type"))
},
},
},
{
"trigger": {"platform": "event", "event_type": "test_event2"},
"condition": [
{
"condition": "device",
"domain": DOMAIN,
"device_id": "",
"entity_id": ent1.entity_id,
"type": "is_off",
}
],
"action": {
"service": "test.automation",
"data_template": {
"some": "is_off {{ trigger.%s }}"
% "}} - {{ trigger.".join(("platform", "event.event_type"))
},
},
},
]
},
)
await hass.async_block_till_done()
assert hass.states.get(ent1.entity_id).state == STATE_ON
assert len(calls) == 0
hass.bus.async_fire("test_event1")
hass.bus.async_fire("test_event2")
await hass.async_block_till_done()
assert len(calls) == 1
assert calls[0].data["some"] == "is_on event - test_event1"
hass.states.async_set(ent1.entity_id, STATE_OFF)
hass.bus.async_fire("test_event1")
hass.bus.async_fire("test_event2")
await hass.async_block_till_done()
assert len(calls) == 2
assert calls[1].data["some"] == "is_off event - test_event2" | [
"async",
"def",
"test_if_state",
"(",
"hass",
",",
"calls",
")",
":",
"platform",
"=",
"getattr",
"(",
"hass",
".",
"components",
",",
"f\"test.{DOMAIN}\"",
")",
"platform",
".",
"init",
"(",
")",
"assert",
"await",
"async_setup_component",
"(",
"hass",
",",
"DOMAIN",
",",
"{",
"DOMAIN",
":",
"{",
"CONF_PLATFORM",
":",
"\"test\"",
"}",
"}",
")",
"await",
"hass",
".",
"async_block_till_done",
"(",
")",
"ent1",
",",
"ent2",
",",
"ent3",
"=",
"platform",
".",
"ENTITIES",
"assert",
"await",
"async_setup_component",
"(",
"hass",
",",
"automation",
".",
"DOMAIN",
",",
"{",
"automation",
".",
"DOMAIN",
":",
"[",
"{",
"\"trigger\"",
":",
"{",
"\"platform\"",
":",
"\"event\"",
",",
"\"event_type\"",
":",
"\"test_event1\"",
"}",
",",
"\"condition\"",
":",
"[",
"{",
"\"condition\"",
":",
"\"device\"",
",",
"\"domain\"",
":",
"DOMAIN",
",",
"\"device_id\"",
":",
"\"\"",
",",
"\"entity_id\"",
":",
"ent1",
".",
"entity_id",
",",
"\"type\"",
":",
"\"is_on\"",
",",
"}",
"]",
",",
"\"action\"",
":",
"{",
"\"service\"",
":",
"\"test.automation\"",
",",
"\"data_template\"",
":",
"{",
"\"some\"",
":",
"\"is_on {{ trigger.%s }}\"",
"%",
"\"}} - {{ trigger.\"",
".",
"join",
"(",
"(",
"\"platform\"",
",",
"\"event.event_type\"",
")",
")",
"}",
",",
"}",
",",
"}",
",",
"{",
"\"trigger\"",
":",
"{",
"\"platform\"",
":",
"\"event\"",
",",
"\"event_type\"",
":",
"\"test_event2\"",
"}",
",",
"\"condition\"",
":",
"[",
"{",
"\"condition\"",
":",
"\"device\"",
",",
"\"domain\"",
":",
"DOMAIN",
",",
"\"device_id\"",
":",
"\"\"",
",",
"\"entity_id\"",
":",
"ent1",
".",
"entity_id",
",",
"\"type\"",
":",
"\"is_off\"",
",",
"}",
"]",
",",
"\"action\"",
":",
"{",
"\"service\"",
":",
"\"test.automation\"",
",",
"\"data_template\"",
":",
"{",
"\"some\"",
":",
"\"is_off {{ trigger.%s }}\"",
"%",
"\"}} - {{ trigger.\"",
".",
"join",
"(",
"(",
"\"platform\"",
",",
"\"event.event_type\"",
")",
")",
"}",
",",
"}",
",",
"}",
",",
"]",
"}",
",",
")",
"await",
"hass",
".",
"async_block_till_done",
"(",
")",
"assert",
"hass",
".",
"states",
".",
"get",
"(",
"ent1",
".",
"entity_id",
")",
".",
"state",
"==",
"STATE_ON",
"assert",
"len",
"(",
"calls",
")",
"==",
"0",
"hass",
".",
"bus",
".",
"async_fire",
"(",
"\"test_event1\"",
")",
"hass",
".",
"bus",
".",
"async_fire",
"(",
"\"test_event2\"",
")",
"await",
"hass",
".",
"async_block_till_done",
"(",
")",
"assert",
"len",
"(",
"calls",
")",
"==",
"1",
"assert",
"calls",
"[",
"0",
"]",
".",
"data",
"[",
"\"some\"",
"]",
"==",
"\"is_on event - test_event1\"",
"hass",
".",
"states",
".",
"async_set",
"(",
"ent1",
".",
"entity_id",
",",
"STATE_OFF",
")",
"hass",
".",
"bus",
".",
"async_fire",
"(",
"\"test_event1\"",
")",
"hass",
".",
"bus",
".",
"async_fire",
"(",
"\"test_event2\"",
")",
"await",
"hass",
".",
"async_block_till_done",
"(",
")",
"assert",
"len",
"(",
"calls",
")",
"==",
"2",
"assert",
"calls",
"[",
"1",
"]",
".",
"data",
"[",
"\"some\"",
"]",
"==",
"\"is_off event - test_event2\""
] | [
92,
0
] | [
163,
64
] | python | en | ['en', 'en', 'en'] | True |
test_if_fires_on_for_condition | (hass, calls) | Test for firing if condition is on with delay. | Test for firing if condition is on with delay. | async def test_if_fires_on_for_condition(hass, calls):
"""Test for firing if condition is on with delay."""
point1 = dt_util.utcnow()
point2 = point1 + timedelta(seconds=10)
point3 = point2 + timedelta(seconds=10)
platform = getattr(hass.components, f"test.{DOMAIN}")
platform.init()
assert await async_setup_component(hass, DOMAIN, {DOMAIN: {CONF_PLATFORM: "test"}})
await hass.async_block_till_done()
ent1, ent2, ent3 = platform.ENTITIES
with patch("homeassistant.core.dt_util.utcnow") as mock_utcnow:
mock_utcnow.return_value = point1
assert await async_setup_component(
hass,
automation.DOMAIN,
{
automation.DOMAIN: [
{
"trigger": {"platform": "event", "event_type": "test_event1"},
"condition": {
"condition": "device",
"domain": DOMAIN,
"device_id": "",
"entity_id": ent1.entity_id,
"type": "is_off",
"for": {"seconds": 5},
},
"action": {
"service": "test.automation",
"data_template": {
"some": "is_off {{ trigger.%s }}"
% "}} - {{ trigger.".join(
("platform", "event.event_type")
)
},
},
}
]
},
)
await hass.async_block_till_done()
assert hass.states.get(ent1.entity_id).state == STATE_ON
assert len(calls) == 0
hass.bus.async_fire("test_event1")
await hass.async_block_till_done()
assert len(calls) == 0
# Time travel 10 secs into the future
mock_utcnow.return_value = point2
hass.bus.async_fire("test_event1")
await hass.async_block_till_done()
assert len(calls) == 0
hass.states.async_set(ent1.entity_id, STATE_OFF)
hass.bus.async_fire("test_event1")
await hass.async_block_till_done()
assert len(calls) == 0
# Time travel 20 secs into the future
mock_utcnow.return_value = point3
hass.bus.async_fire("test_event1")
await hass.async_block_till_done()
assert len(calls) == 1
assert calls[0].data["some"] == "is_off event - test_event1" | [
"async",
"def",
"test_if_fires_on_for_condition",
"(",
"hass",
",",
"calls",
")",
":",
"point1",
"=",
"dt_util",
".",
"utcnow",
"(",
")",
"point2",
"=",
"point1",
"+",
"timedelta",
"(",
"seconds",
"=",
"10",
")",
"point3",
"=",
"point2",
"+",
"timedelta",
"(",
"seconds",
"=",
"10",
")",
"platform",
"=",
"getattr",
"(",
"hass",
".",
"components",
",",
"f\"test.{DOMAIN}\"",
")",
"platform",
".",
"init",
"(",
")",
"assert",
"await",
"async_setup_component",
"(",
"hass",
",",
"DOMAIN",
",",
"{",
"DOMAIN",
":",
"{",
"CONF_PLATFORM",
":",
"\"test\"",
"}",
"}",
")",
"await",
"hass",
".",
"async_block_till_done",
"(",
")",
"ent1",
",",
"ent2",
",",
"ent3",
"=",
"platform",
".",
"ENTITIES",
"with",
"patch",
"(",
"\"homeassistant.core.dt_util.utcnow\"",
")",
"as",
"mock_utcnow",
":",
"mock_utcnow",
".",
"return_value",
"=",
"point1",
"assert",
"await",
"async_setup_component",
"(",
"hass",
",",
"automation",
".",
"DOMAIN",
",",
"{",
"automation",
".",
"DOMAIN",
":",
"[",
"{",
"\"trigger\"",
":",
"{",
"\"platform\"",
":",
"\"event\"",
",",
"\"event_type\"",
":",
"\"test_event1\"",
"}",
",",
"\"condition\"",
":",
"{",
"\"condition\"",
":",
"\"device\"",
",",
"\"domain\"",
":",
"DOMAIN",
",",
"\"device_id\"",
":",
"\"\"",
",",
"\"entity_id\"",
":",
"ent1",
".",
"entity_id",
",",
"\"type\"",
":",
"\"is_off\"",
",",
"\"for\"",
":",
"{",
"\"seconds\"",
":",
"5",
"}",
",",
"}",
",",
"\"action\"",
":",
"{",
"\"service\"",
":",
"\"test.automation\"",
",",
"\"data_template\"",
":",
"{",
"\"some\"",
":",
"\"is_off {{ trigger.%s }}\"",
"%",
"\"}} - {{ trigger.\"",
".",
"join",
"(",
"(",
"\"platform\"",
",",
"\"event.event_type\"",
")",
")",
"}",
",",
"}",
",",
"}",
"]",
"}",
",",
")",
"await",
"hass",
".",
"async_block_till_done",
"(",
")",
"assert",
"hass",
".",
"states",
".",
"get",
"(",
"ent1",
".",
"entity_id",
")",
".",
"state",
"==",
"STATE_ON",
"assert",
"len",
"(",
"calls",
")",
"==",
"0",
"hass",
".",
"bus",
".",
"async_fire",
"(",
"\"test_event1\"",
")",
"await",
"hass",
".",
"async_block_till_done",
"(",
")",
"assert",
"len",
"(",
"calls",
")",
"==",
"0",
"# Time travel 10 secs into the future",
"mock_utcnow",
".",
"return_value",
"=",
"point2",
"hass",
".",
"bus",
".",
"async_fire",
"(",
"\"test_event1\"",
")",
"await",
"hass",
".",
"async_block_till_done",
"(",
")",
"assert",
"len",
"(",
"calls",
")",
"==",
"0",
"hass",
".",
"states",
".",
"async_set",
"(",
"ent1",
".",
"entity_id",
",",
"STATE_OFF",
")",
"hass",
".",
"bus",
".",
"async_fire",
"(",
"\"test_event1\"",
")",
"await",
"hass",
".",
"async_block_till_done",
"(",
")",
"assert",
"len",
"(",
"calls",
")",
"==",
"0",
"# Time travel 20 secs into the future",
"mock_utcnow",
".",
"return_value",
"=",
"point3",
"hass",
".",
"bus",
".",
"async_fire",
"(",
"\"test_event1\"",
")",
"await",
"hass",
".",
"async_block_till_done",
"(",
")",
"assert",
"len",
"(",
"calls",
")",
"==",
"1",
"assert",
"calls",
"[",
"0",
"]",
".",
"data",
"[",
"\"some\"",
"]",
"==",
"\"is_off event - test_event1\""
] | [
166,
0
] | [
234,
68
] | python | en | ['en', 'en', 'en'] | True |
test_config_entry_not_ready | (
hass: HomeAssistant, aioclient_mock: AiohttpClientMocker
) | Test the Elgato Key Light configuration entry not ready. | Test the Elgato Key Light configuration entry not ready. | async def test_config_entry_not_ready(
hass: HomeAssistant, aioclient_mock: AiohttpClientMocker
) -> None:
"""Test the Elgato Key Light configuration entry not ready."""
aioclient_mock.get(
"http://1.2.3.4:9123/elgato/accessory-info", exc=aiohttp.ClientError
)
entry = await init_integration(hass, aioclient_mock)
assert entry.state == ENTRY_STATE_SETUP_RETRY | [
"async",
"def",
"test_config_entry_not_ready",
"(",
"hass",
":",
"HomeAssistant",
",",
"aioclient_mock",
":",
"AiohttpClientMocker",
")",
"->",
"None",
":",
"aioclient_mock",
".",
"get",
"(",
"\"http://1.2.3.4:9123/elgato/accessory-info\"",
",",
"exc",
"=",
"aiohttp",
".",
"ClientError",
")",
"entry",
"=",
"await",
"init_integration",
"(",
"hass",
",",
"aioclient_mock",
")",
"assert",
"entry",
".",
"state",
"==",
"ENTRY_STATE_SETUP_RETRY"
] | [
11,
0
] | [
20,
49
] | python | en | ['en', 'en', 'en'] | True |
test_unload_config_entry | (
hass: HomeAssistant, aioclient_mock: AiohttpClientMocker
) | Test the Elgato Key Light configuration entry unloading. | Test the Elgato Key Light configuration entry unloading. | async def test_unload_config_entry(
hass: HomeAssistant, aioclient_mock: AiohttpClientMocker
) -> None:
"""Test the Elgato Key Light configuration entry unloading."""
entry = await init_integration(hass, aioclient_mock)
assert hass.data[DOMAIN]
await hass.config_entries.async_unload(entry.entry_id)
await hass.async_block_till_done()
assert not hass.data.get(DOMAIN) | [
"async",
"def",
"test_unload_config_entry",
"(",
"hass",
":",
"HomeAssistant",
",",
"aioclient_mock",
":",
"AiohttpClientMocker",
")",
"->",
"None",
":",
"entry",
"=",
"await",
"init_integration",
"(",
"hass",
",",
"aioclient_mock",
")",
"assert",
"hass",
".",
"data",
"[",
"DOMAIN",
"]",
"await",
"hass",
".",
"config_entries",
".",
"async_unload",
"(",
"entry",
".",
"entry_id",
")",
"await",
"hass",
".",
"async_block_till_done",
"(",
")",
"assert",
"not",
"hass",
".",
"data",
".",
"get",
"(",
"DOMAIN",
")"
] | [
23,
0
] | [
32,
36
] | python | en | ['en', 'zu', 'en'] | True |
setup_platform | (hass, config, add_entities, discovery_info=None) | Set up Hikvision camera. | Set up Hikvision camera. | def setup_platform(hass, config, add_entities, discovery_info=None):
"""Set up Hikvision camera."""
host = config.get(CONF_HOST)
port = config.get(CONF_PORT)
name = config.get(CONF_NAME)
username = config.get(CONF_USERNAME)
password = config.get(CONF_PASSWORD)
try:
hikvision_cam = hikvision.api.CreateDevice(
host, port=port, username=username, password=password, is_https=False
)
except MissingParamError as param_err:
_LOGGING.error("Missing required param: %s", param_err)
return False
except HikvisionError as conn_err:
_LOGGING.error("Unable to connect: %s", conn_err)
return False
add_entities([HikvisionMotionSwitch(name, hikvision_cam)]) | [
"def",
"setup_platform",
"(",
"hass",
",",
"config",
",",
"add_entities",
",",
"discovery_info",
"=",
"None",
")",
":",
"host",
"=",
"config",
".",
"get",
"(",
"CONF_HOST",
")",
"port",
"=",
"config",
".",
"get",
"(",
"CONF_PORT",
")",
"name",
"=",
"config",
".",
"get",
"(",
"CONF_NAME",
")",
"username",
"=",
"config",
".",
"get",
"(",
"CONF_USERNAME",
")",
"password",
"=",
"config",
".",
"get",
"(",
"CONF_PASSWORD",
")",
"try",
":",
"hikvision_cam",
"=",
"hikvision",
".",
"api",
".",
"CreateDevice",
"(",
"host",
",",
"port",
"=",
"port",
",",
"username",
"=",
"username",
",",
"password",
"=",
"password",
",",
"is_https",
"=",
"False",
")",
"except",
"MissingParamError",
"as",
"param_err",
":",
"_LOGGING",
".",
"error",
"(",
"\"Missing required param: %s\"",
",",
"param_err",
")",
"return",
"False",
"except",
"HikvisionError",
"as",
"conn_err",
":",
"_LOGGING",
".",
"error",
"(",
"\"Unable to connect: %s\"",
",",
"conn_err",
")",
"return",
"False",
"add_entities",
"(",
"[",
"HikvisionMotionSwitch",
"(",
"name",
",",
"hikvision_cam",
")",
"]",
")"
] | [
39,
0
] | [
58,
62
] | python | en | ['en', 'da', 'en'] | True |
HikvisionMotionSwitch.__init__ | (self, name, hikvision_cam) | Initialize the switch. | Initialize the switch. | def __init__(self, name, hikvision_cam):
"""Initialize the switch."""
self._name = name
self._hikvision_cam = hikvision_cam
self._state = STATE_OFF | [
"def",
"__init__",
"(",
"self",
",",
"name",
",",
"hikvision_cam",
")",
":",
"self",
".",
"_name",
"=",
"name",
"self",
".",
"_hikvision_cam",
"=",
"hikvision_cam",
"self",
".",
"_state",
"=",
"STATE_OFF"
] | [
64,
4
] | [
68,
31
] | python | en | ['en', 'en', 'en'] | True |
HikvisionMotionSwitch.name | (self) | Return the name of the device if any. | Return the name of the device if any. | def name(self):
"""Return the name of the device if any."""
return self._name | [
"def",
"name",
"(",
"self",
")",
":",
"return",
"self",
".",
"_name"
] | [
71,
4
] | [
73,
25
] | python | en | ['en', 'en', 'en'] | True |
HikvisionMotionSwitch.state | (self) | Return the state of the device if any. | Return the state of the device if any. | def state(self):
"""Return the state of the device if any."""
return self._state | [
"def",
"state",
"(",
"self",
")",
":",
"return",
"self",
".",
"_state"
] | [
76,
4
] | [
78,
26
] | python | en | ['en', 'en', 'en'] | True |
HikvisionMotionSwitch.is_on | (self) | Return true if device is on. | Return true if device is on. | def is_on(self):
"""Return true if device is on."""
return self._state == STATE_ON | [
"def",
"is_on",
"(",
"self",
")",
":",
"return",
"self",
".",
"_state",
"==",
"STATE_ON"
] | [
81,
4
] | [
83,
38
] | python | en | ['en', 'fy', 'en'] | True |
HikvisionMotionSwitch.turn_on | (self, **kwargs) | Turn the device on. | Turn the device on. | def turn_on(self, **kwargs):
"""Turn the device on."""
_LOGGING.info("Turning on Motion Detection ")
self._hikvision_cam.enable_motion_detection() | [
"def",
"turn_on",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"_LOGGING",
".",
"info",
"(",
"\"Turning on Motion Detection \"",
")",
"self",
".",
"_hikvision_cam",
".",
"enable_motion_detection",
"(",
")"
] | [
85,
4
] | [
88,
53
] | python | en | ['en', 'en', 'en'] | True |
HikvisionMotionSwitch.turn_off | (self, **kwargs) | Turn the device off. | Turn the device off. | def turn_off(self, **kwargs):
"""Turn the device off."""
_LOGGING.info("Turning off Motion Detection ")
self._hikvision_cam.disable_motion_detection() | [
"def",
"turn_off",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"_LOGGING",
".",
"info",
"(",
"\"Turning off Motion Detection \"",
")",
"self",
".",
"_hikvision_cam",
".",
"disable_motion_detection",
"(",
")"
] | [
90,
4
] | [
93,
54
] | python | en | ['en', 'en', 'en'] | True |
HikvisionMotionSwitch.update | (self) | Update Motion Detection state. | Update Motion Detection state. | def update(self):
"""Update Motion Detection state."""
enabled = self._hikvision_cam.is_motion_detection_enabled()
_LOGGING.info("enabled: %s", enabled)
self._state = STATE_ON if enabled else STATE_OFF | [
"def",
"update",
"(",
"self",
")",
":",
"enabled",
"=",
"self",
".",
"_hikvision_cam",
".",
"is_motion_detection_enabled",
"(",
")",
"_LOGGING",
".",
"info",
"(",
"\"enabled: %s\"",
",",
"enabled",
")",
"self",
".",
"_state",
"=",
"STATE_ON",
"if",
"enabled",
"else",
"STATE_OFF"
] | [
95,
4
] | [
100,
56
] | python | en | ['da', 'en', 'en'] | True |
async_activate_log_queue_handler | (hass: HomeAssistant) |
Migrate the existing log handlers to use the queue.
This allows us to avoid blocking I/O and formatting messages
in the event loop as log messages are written in another thread.
|
Migrate the existing log handlers to use the queue. | def async_activate_log_queue_handler(hass: HomeAssistant) -> None:
"""
Migrate the existing log handlers to use the queue.
This allows us to avoid blocking I/O and formatting messages
in the event loop as log messages are written in another thread.
"""
simple_queue = queue.SimpleQueue() # type: ignore
queue_handler = HomeAssistantQueueHandler(simple_queue)
logging.root.addHandler(queue_handler)
migrated_handlers = []
for handler in logging.root.handlers[:]:
if handler is queue_handler:
continue
logging.root.removeHandler(handler)
migrated_handlers.append(handler)
listener = logging.handlers.QueueListener(simple_queue, *migrated_handlers)
listener.start()
@callback
def _async_stop_queue_handler(_: Any) -> None:
"""Cleanup handler."""
logging.root.removeHandler(queue_handler)
listener.stop()
hass.bus.async_listen_once(EVENT_HOMEASSISTANT_CLOSE, _async_stop_queue_handler) | [
"def",
"async_activate_log_queue_handler",
"(",
"hass",
":",
"HomeAssistant",
")",
"->",
"None",
":",
"simple_queue",
"=",
"queue",
".",
"SimpleQueue",
"(",
")",
"# type: ignore",
"queue_handler",
"=",
"HomeAssistantQueueHandler",
"(",
"simple_queue",
")",
"logging",
".",
"root",
".",
"addHandler",
"(",
"queue_handler",
")",
"migrated_handlers",
"=",
"[",
"]",
"for",
"handler",
"in",
"logging",
".",
"root",
".",
"handlers",
"[",
":",
"]",
":",
"if",
"handler",
"is",
"queue_handler",
":",
"continue",
"logging",
".",
"root",
".",
"removeHandler",
"(",
"handler",
")",
"migrated_handlers",
".",
"append",
"(",
"handler",
")",
"listener",
"=",
"logging",
".",
"handlers",
".",
"QueueListener",
"(",
"simple_queue",
",",
"*",
"migrated_handlers",
")",
"listener",
".",
"start",
"(",
")",
"@",
"callback",
"def",
"_async_stop_queue_handler",
"(",
"_",
":",
"Any",
")",
"->",
"None",
":",
"\"\"\"Cleanup handler.\"\"\"",
"logging",
".",
"root",
".",
"removeHandler",
"(",
"queue_handler",
")",
"listener",
".",
"stop",
"(",
")",
"hass",
".",
"bus",
".",
"async_listen_once",
"(",
"EVENT_HOMEASSISTANT_CLOSE",
",",
"_async_stop_queue_handler",
")"
] | [
61,
0
] | [
89,
84
] | python | en | ['en', 'error', 'th'] | False |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.