Datasets:

File size: 13,865 Bytes
96273e4
 
 
 
2aa3c1d
 
f634679
2aa3c1d
f634679
96273e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2aa3c1d
f634679
2aa3c1d
f634679
434617d
f634679
 
 
 
 
b9282b5
 
 
 
 
 
 
 
652106c
 
 
 
67a7627
 
 
 
88460aa
 
 
 
 
 
 
 
0724ce9
 
 
 
 
 
 
 
1507e55
 
 
 
 
 
 
 
f422b4b
 
 
 
 
 
 
 
10298a5
 
 
 
0bd6f95
 
 
 
 
 
 
 
b5534fd
 
 
 
 
 
 
 
317feb1
 
 
 
 
 
 
 
ead797d
 
 
 
 
 
 
 
0fcacee
 
 
 
f634679
b9282b5
f634679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9282b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
652106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67a7627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88460aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0724ce9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1507e55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f422b4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10298a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bd6f95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5534fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
317feb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ead797d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fcacee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315beb3
 
 
b2a85bd
315beb3
 
 
 
 
 
2aa3c1d
bfe852a
2aa3c1d
 
315beb3
2aa3c1d
 
bc92390
2aa3c1d
315beb3
 
 
2aa3c1d
 
315beb3
bc92390
 
 
315beb3
 
 
2aa3c1d
315beb3
 
 
2aa3c1d
 
315beb3
 
 
2aa3c1d
315beb3
 
 
 
bfe852a
 
 
bc92390
 
 
 
 
bfe852a
 
 
315beb3
 
 
 
 
bc92390
315beb3
 
 
bc92390
315beb3
 
 
bc92390
315beb3
 
 
 
bc92390
315beb3
 
 
bc92390
315beb3
 
 
bc92390
315beb3
 
 
 
bc92390
 
315beb3
 
 
bc92390
 
315beb3
 
 
 
bc92390
 
 
 
315beb3
2aa3c1d
315beb3
bc92390
 
315beb3
2aa3c1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315beb3
bc92390
315beb3
bc92390
315beb3
 
 
bc92390
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
---
license: cc-by-4.0
task_categories:
- summarization
- text-generation
annotations_creators:
- found
language_creators:
- found
language:
- am
- az
- bn
- bo
- bs
- ku
- zh
- el
- en
- fa
- fr
- ht
- ha
- hy
- id
- ka
- km
- rw
- ko
- lo
- mk
- my
- nd
- pt
- ps
- ru
- sn
- so
- es
- sq
- sr
- sw
- th
- ti
- tr
- uk
- ur
- uz
- vi
pretty_name: LR-Sum
size_categories:
- 100K<n<1M
multilinguality:
- multilingual
tags:
- conditional-text-generation
viewer: true
configs:
- config_name: amh
  data_files:
  - split: test
    path: amh/test-*
- config_name: aze
  data_files:
  - split: test
    path: aze/test-*
  - split: train
    path: aze/train-*
  - split: validation
    path: aze/validation-*
- config_name: ben
  data_files:
  - split: test
    path: ben/test-*
- config_name: bod
  data_files:
  - split: test
    path: bod/test-*
- config_name: bos
  data_files:
  - split: test
    path: bos/test-*
  - split: train
    path: bos/train-*
  - split: validation
    path: bos/validation-*
- config_name: ckb
  data_files:
  - split: test
    path: ckb/test-*
  - split: train
    path: ckb/train-*
  - split: validation
    path: ckb/validation-*
- config_name: cmn_s
  data_files:
  - split: test
    path: cmn_s/test-*
  - split: train
    path: cmn_s/train-*
  - split: validation
    path: cmn_s/validation-*
- config_name: cmn_t
  data_files:
  - split: test
    path: cmn_t/test-*
  - split: train
    path: cmn_t/train-*
  - split: validation
    path: cmn_t/validation-*
- config_name: ell
  data_files:
  - split: test
    path: ell/test-*
- config_name: eng
  data_files:
  - split: test
    path: eng/test-*
  - split: train
    path: eng/train-*
  - split: validation
    path: eng/validation-*
- config_name: fas
  data_files:
  - split: test
    path: fas/test-*
  - split: train
    path: fas/train-*
  - split: validation
    path: fas/validation-*
- config_name: fra
  data_files:
  - split: test
    path: fra/test-*
  - split: train
    path: fra/train-*
  - split: validation
    path: fra/validation-*
- config_name: hat
  data_files:
  - split: test
    path: hat/test-*
  - split: train
    path: hat/train-*
  - split: validation
    path: hat/validation-*
- config_name: hau
  data_files:
  - split: test
    path: hau/test-*
dataset_info:
- config_name: amh
  features:
  - name: id
    dtype: string
  - name: url
    dtype: string
  - name: title
    dtype: string
  - name: summary
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: test
    num_bytes: 661238
    num_examples: 154
  download_size: 336803
  dataset_size: 661238
- config_name: aze
  features:
  - name: id
    dtype: string
  - name: url
    dtype: string
  - name: title
    dtype: string
  - name: summary
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: test
    num_bytes: 2690777
    num_examples: 811
  - name: train
    num_bytes: 21683595
    num_examples: 6487
  - name: validation
    num_bytes: 2653949
    num_examples: 810
  download_size: 15117096
  dataset_size: 27028321
- config_name: ben
  features:
  - name: id
    dtype: string
  - name: url
    dtype: string
  - name: title
    dtype: string
  - name: summary
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: test
    num_bytes: 4111932
    num_examples: 715
  download_size: 1597837
  dataset_size: 4111932
- config_name: bod
  features:
  - name: id
    dtype: string
  - name: url
    dtype: string
  - name: title
    dtype: string
  - name: summary
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: test
    num_bytes: 2423126
    num_examples: 182
  download_size: 694122
  dataset_size: 2423126
- config_name: bos
  features:
  - name: id
    dtype: string
  - name: url
    dtype: string
  - name: title
    dtype: string
  - name: summary
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: test
    num_bytes: 4793400
    num_examples: 1456
  - name: train
    num_bytes: 37692878
    num_examples: 11648
  - name: validation
    num_bytes: 4674155
    num_examples: 1455
  download_size: 30934781
  dataset_size: 47160433
- config_name: ckb
  features:
  - name: id
    dtype: string
  - name: url
    dtype: string
  - name: title
    dtype: string
  - name: summary
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: test
    num_bytes: 3073172
    num_examples: 500
  - name: train
    num_bytes: 7492985
    num_examples: 1230
  - name: validation
    num_bytes: 3251806
    num_examples: 500
  download_size: 6054129
  dataset_size: 13817963
- config_name: cmn_s
  features:
  - name: id
    dtype: string
  - name: url
    dtype: string
  - name: title
    dtype: string
  - name: summary
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: test
    num_bytes: 2444203
    num_examples: 500
  - name: train
    num_bytes: 2324426
    num_examples: 483
  - name: validation
    num_bytes: 2452904
    num_examples: 500
  download_size: 4786850
  dataset_size: 7221533
- config_name: cmn_t
  features:
  - name: id
    dtype: string
  - name: url
    dtype: string
  - name: title
    dtype: string
  - name: summary
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: test
    num_bytes: 1926008
    num_examples: 500
  - name: train
    num_bytes: 7969758
    num_examples: 2103
  - name: validation
    num_bytes: 1938286
    num_examples: 500
  download_size: 7934145
  dataset_size: 11834052
- config_name: ell
  features:
  - name: id
    dtype: string
  - name: url
    dtype: string
  - name: title
    dtype: string
  - name: summary
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: test
    num_bytes: 3244069
    num_examples: 583
  download_size: 1557990
  dataset_size: 3244069
- config_name: eng
  features:
  - name: id
    dtype: string
  - name: url
    dtype: string
  - name: title
    dtype: string
  - name: summary
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: test
    num_bytes: 10021562
    num_examples: 2622
  - name: train
    num_bytes: 79349108
    num_examples: 20976
  - name: validation
    num_bytes: 9859201
    num_examples: 2621
  download_size: 60141163
  dataset_size: 99229871
- config_name: fas
  features:
  - name: id
    dtype: string
  - name: url
    dtype: string
  - name: title
    dtype: string
  - name: summary
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: test
    num_bytes: 7011820
    num_examples: 1343
  - name: train
    num_bytes: 54763383
    num_examples: 10744
  - name: validation
    num_bytes: 7039991
    num_examples: 1342
  download_size: 32366005
  dataset_size: 68815194
- config_name: fra
  features:
  - name: id
    dtype: string
  - name: url
    dtype: string
  - name: title
    dtype: string
  - name: summary
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: test
    num_bytes: 1363784
    num_examples: 500
  - name: train
    num_bytes: 3139247
    num_examples: 1126
  - name: validation
    num_bytes: 1394751
    num_examples: 500
  download_size: 3525857
  dataset_size: 5897782
- config_name: hat
  features:
  - name: id
    dtype: string
  - name: url
    dtype: string
  - name: title
    dtype: string
  - name: summary
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: test
    num_bytes: 1269965
    num_examples: 500
  - name: train
    num_bytes: 1132879
    num_examples: 452
  - name: validation
    num_bytes: 1291910
    num_examples: 500
  download_size: 2243949
  dataset_size: 3694754
- config_name: hau
  features:
  - name: id
    dtype: string
  - name: url
    dtype: string
  - name: title
    dtype: string
  - name: summary
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: test
    num_bytes: 895424
    num_examples: 390
  download_size: 519692
  dataset_size: 895424
---
# Dataset Card for LR-Sum

LR-Sum is a automatic summarization dataset of newswire text with a focus on less resourced languages with a cc-by 4.0 license.


## Dataset Details

### Dataset Description

LR-Sum is a permissively-licensed dataset created with the goal of enabling further research in automatic summarization for less-resourced languages.
LR-Sum contains human-written summaries for 39 languages, many of which are less-resourced. 
The data is based on the collection of the Multilingual Open Text corpus where the source data is public domain newswire collected from from Voice of America websites.
LR-Sum is released under a Creative Commons license (CC BY 4.0), making it one of the most openly-licensed multilingual summarization datasets. 

- **Curated by:** BLT Lab: Chester Palen-Michel and Constantine Lignos
- **Shared by:** Chester Palen-Michel
- **Language(s) (NLP):** Albanian, Amharic, Armenian, Azerbaijani, Bengali, Bosnian, Burmese, Chinese, English, French, Georgian, Greek, Haitian Creole, Hausa, Indonesian, Khmer, Kinyarwanda, Korean, Kurdish, Lao, Macedonian, Northern Ndebele, Pashto, Persian, Portuguese, Russian, Serbian, Shona, Somali, Spanish, Swahili, Thai, Tibetan, Tigrinya, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese
- **License:** CC-BY 4.0

### Dataset Sources [optional]

Multilingual Open Text v1.6
which is a collection of newswire text from Voice of America (VOA).

- **Paper:** [https://aclanthology.org/2023.findings-acl.427/](https://aclanthology.org/2023.findings-acl.427/)
- **Repository:** [https://github.com/bltlab/lr-sum](https://github.com/bltlab/lr-sum)


## Uses

The dataset is intended for research in automatic summarization in various languages, especially for less resourced languages.

### Direct Use

The data can be used for training text generation models to generate short summaries of news articles in many languages.
Automatic evaluation of automatic summarization is another use case, though we encourage also conducting human evaluation of any model trained for summarization.

### Out-of-Scope Use

This dataset only includes newswire text, so models trained on the data may not be effective for out of domain summarization. 


## Dataset Structure

Each field is a string: 
```
{
  'id': Article unique id
  'url': URL for the news article
  'title': The title of the news article
  'summary': The summary of the article
  'text': The full text of the news article not including title
}
```


## Dataset Creation

### Curation Rationale

Research in automatic summarization for less resourced languages.

### Source Data

Voice of America (VOA)

#### Data Collection and Processing

See our [paper](https://aclanthology.org/2023.findings-acl.427/) for details on collection and processing. 


#### Who are the source data producers?

Voice of America (VOA)

#### Annotation process

The summaries are found in news article meta data. More detail about the curation process can be found in our paper.

#### Who are the annotators?

The summaries are found in the news article meta data. The authors of the summaries are authors and staff for VOA.


#### Personal and Sensitive Information

The only sensative personal information would be information already published in news articles on VOA. 
See [VOA's mission and values](https://www.insidevoa.com/p/5831.html#:~:text=VOA%20has%20a%20legal%20obligation,sites%20at%20the%20earliest%20opportunity.)

## Bias, Risks, and Limitations

The content in this dataset is newswire.
See [VOA's mission and values](https://www.insidevoa.com/p/5831.html#:~:text=VOA%20has%20a%20legal%20obligation,sites%20at%20the%20earliest%20opportunity.) for more detail about the journalistic integrity and policy. 


### Recommendations

The data is newswire text. Training text generation models on this dataset will have similar risks and limitations to other text generation models including hallucinations and potentially inaccurate statements. 
For some languages that have fewer examples, issues with text generation models are likely to be more pronounced.
The dataset is primarily released for research despite having a permissive license. 
We encourage users to thoroughly test and evaluate any models trained using this data before putting them into production environments. 

## Citation

If you make use of this dataset, please cite our paper using this bibtex: 

**BibTeX:**
```
@inproceedings{palen-michel-lignos-2023-lr,
    title = "{LR}-Sum: Summarization for Less-Resourced Languages",
    author = "Palen-Michel, Chester  and
      Lignos, Constantine",
    editor = "Rogers, Anna  and
      Boyd-Graber, Jordan  and
      Okazaki, Naoaki",
    booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
    month = jul,
    year = "2023",
    address = "Toronto, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.findings-acl.427",
    doi = "10.18653/v1/2023.findings-acl.427",
    pages = "6829--6844",
    abstract = "We introduce LR-Sum, a new permissively-licensed dataset created with the goal of enabling further research in automatic summarization for less-resourced languages.LR-Sum contains human-written summaries for 40 languages, many of which are less-resourced. We describe our process for extracting and filtering the dataset from the Multilingual Open Text corpus (Palen-Michel et al., 2022).The source data is public domain newswire collected from from Voice of America websites, and LR-Sum is released under a Creative Commons license (CC BY 4.0), making it one of the most openly-licensed multilingual summarization datasets. We describe abstractive and extractive summarization experiments to establish baselines and discuss the limitations of this dataset.",
}
```

## Dataset Card Authors

Chester Palen-Michel [@cpalenmichel](https://github.com/cpalenmichel)

## Dataset Card Contact

Chester Palen-Michel [@cpalenmichel](https://github.com/cpalenmichel)