File size: 13,865 Bytes
96273e4 2aa3c1d f634679 2aa3c1d f634679 96273e4 2aa3c1d f634679 2aa3c1d f634679 434617d f634679 b9282b5 652106c 67a7627 88460aa 0724ce9 1507e55 f422b4b 10298a5 0bd6f95 b5534fd 317feb1 ead797d 0fcacee f634679 b9282b5 f634679 b9282b5 652106c 67a7627 88460aa 0724ce9 1507e55 f422b4b 10298a5 0bd6f95 b5534fd 317feb1 ead797d 0fcacee 315beb3 b2a85bd 315beb3 2aa3c1d bfe852a 2aa3c1d 315beb3 2aa3c1d bc92390 2aa3c1d 315beb3 2aa3c1d 315beb3 bc92390 315beb3 2aa3c1d 315beb3 2aa3c1d 315beb3 2aa3c1d 315beb3 bfe852a bc92390 bfe852a 315beb3 bc92390 315beb3 bc92390 315beb3 bc92390 315beb3 bc92390 315beb3 bc92390 315beb3 bc92390 315beb3 bc92390 315beb3 bc92390 315beb3 bc92390 315beb3 2aa3c1d 315beb3 bc92390 315beb3 2aa3c1d 315beb3 bc92390 315beb3 bc92390 315beb3 bc92390 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 |
---
license: cc-by-4.0
task_categories:
- summarization
- text-generation
annotations_creators:
- found
language_creators:
- found
language:
- am
- az
- bn
- bo
- bs
- ku
- zh
- el
- en
- fa
- fr
- ht
- ha
- hy
- id
- ka
- km
- rw
- ko
- lo
- mk
- my
- nd
- pt
- ps
- ru
- sn
- so
- es
- sq
- sr
- sw
- th
- ti
- tr
- uk
- ur
- uz
- vi
pretty_name: LR-Sum
size_categories:
- 100K<n<1M
multilinguality:
- multilingual
tags:
- conditional-text-generation
viewer: true
configs:
- config_name: amh
data_files:
- split: test
path: amh/test-*
- config_name: aze
data_files:
- split: test
path: aze/test-*
- split: train
path: aze/train-*
- split: validation
path: aze/validation-*
- config_name: ben
data_files:
- split: test
path: ben/test-*
- config_name: bod
data_files:
- split: test
path: bod/test-*
- config_name: bos
data_files:
- split: test
path: bos/test-*
- split: train
path: bos/train-*
- split: validation
path: bos/validation-*
- config_name: ckb
data_files:
- split: test
path: ckb/test-*
- split: train
path: ckb/train-*
- split: validation
path: ckb/validation-*
- config_name: cmn_s
data_files:
- split: test
path: cmn_s/test-*
- split: train
path: cmn_s/train-*
- split: validation
path: cmn_s/validation-*
- config_name: cmn_t
data_files:
- split: test
path: cmn_t/test-*
- split: train
path: cmn_t/train-*
- split: validation
path: cmn_t/validation-*
- config_name: ell
data_files:
- split: test
path: ell/test-*
- config_name: eng
data_files:
- split: test
path: eng/test-*
- split: train
path: eng/train-*
- split: validation
path: eng/validation-*
- config_name: fas
data_files:
- split: test
path: fas/test-*
- split: train
path: fas/train-*
- split: validation
path: fas/validation-*
- config_name: fra
data_files:
- split: test
path: fra/test-*
- split: train
path: fra/train-*
- split: validation
path: fra/validation-*
- config_name: hat
data_files:
- split: test
path: hat/test-*
- split: train
path: hat/train-*
- split: validation
path: hat/validation-*
- config_name: hau
data_files:
- split: test
path: hau/test-*
dataset_info:
- config_name: amh
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: summary
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 661238
num_examples: 154
download_size: 336803
dataset_size: 661238
- config_name: aze
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: summary
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 2690777
num_examples: 811
- name: train
num_bytes: 21683595
num_examples: 6487
- name: validation
num_bytes: 2653949
num_examples: 810
download_size: 15117096
dataset_size: 27028321
- config_name: ben
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: summary
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 4111932
num_examples: 715
download_size: 1597837
dataset_size: 4111932
- config_name: bod
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: summary
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 2423126
num_examples: 182
download_size: 694122
dataset_size: 2423126
- config_name: bos
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: summary
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 4793400
num_examples: 1456
- name: train
num_bytes: 37692878
num_examples: 11648
- name: validation
num_bytes: 4674155
num_examples: 1455
download_size: 30934781
dataset_size: 47160433
- config_name: ckb
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: summary
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 3073172
num_examples: 500
- name: train
num_bytes: 7492985
num_examples: 1230
- name: validation
num_bytes: 3251806
num_examples: 500
download_size: 6054129
dataset_size: 13817963
- config_name: cmn_s
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: summary
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 2444203
num_examples: 500
- name: train
num_bytes: 2324426
num_examples: 483
- name: validation
num_bytes: 2452904
num_examples: 500
download_size: 4786850
dataset_size: 7221533
- config_name: cmn_t
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: summary
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 1926008
num_examples: 500
- name: train
num_bytes: 7969758
num_examples: 2103
- name: validation
num_bytes: 1938286
num_examples: 500
download_size: 7934145
dataset_size: 11834052
- config_name: ell
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: summary
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 3244069
num_examples: 583
download_size: 1557990
dataset_size: 3244069
- config_name: eng
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: summary
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 10021562
num_examples: 2622
- name: train
num_bytes: 79349108
num_examples: 20976
- name: validation
num_bytes: 9859201
num_examples: 2621
download_size: 60141163
dataset_size: 99229871
- config_name: fas
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: summary
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 7011820
num_examples: 1343
- name: train
num_bytes: 54763383
num_examples: 10744
- name: validation
num_bytes: 7039991
num_examples: 1342
download_size: 32366005
dataset_size: 68815194
- config_name: fra
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: summary
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 1363784
num_examples: 500
- name: train
num_bytes: 3139247
num_examples: 1126
- name: validation
num_bytes: 1394751
num_examples: 500
download_size: 3525857
dataset_size: 5897782
- config_name: hat
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: summary
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 1269965
num_examples: 500
- name: train
num_bytes: 1132879
num_examples: 452
- name: validation
num_bytes: 1291910
num_examples: 500
download_size: 2243949
dataset_size: 3694754
- config_name: hau
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: summary
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 895424
num_examples: 390
download_size: 519692
dataset_size: 895424
---
# Dataset Card for LR-Sum
LR-Sum is a automatic summarization dataset of newswire text with a focus on less resourced languages with a cc-by 4.0 license.
## Dataset Details
### Dataset Description
LR-Sum is a permissively-licensed dataset created with the goal of enabling further research in automatic summarization for less-resourced languages.
LR-Sum contains human-written summaries for 39 languages, many of which are less-resourced.
The data is based on the collection of the Multilingual Open Text corpus where the source data is public domain newswire collected from from Voice of America websites.
LR-Sum is released under a Creative Commons license (CC BY 4.0), making it one of the most openly-licensed multilingual summarization datasets.
- **Curated by:** BLT Lab: Chester Palen-Michel and Constantine Lignos
- **Shared by:** Chester Palen-Michel
- **Language(s) (NLP):** Albanian, Amharic, Armenian, Azerbaijani, Bengali, Bosnian, Burmese, Chinese, English, French, Georgian, Greek, Haitian Creole, Hausa, Indonesian, Khmer, Kinyarwanda, Korean, Kurdish, Lao, Macedonian, Northern Ndebele, Pashto, Persian, Portuguese, Russian, Serbian, Shona, Somali, Spanish, Swahili, Thai, Tibetan, Tigrinya, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese
- **License:** CC-BY 4.0
### Dataset Sources [optional]
Multilingual Open Text v1.6
which is a collection of newswire text from Voice of America (VOA).
- **Paper:** [https://aclanthology.org/2023.findings-acl.427/](https://aclanthology.org/2023.findings-acl.427/)
- **Repository:** [https://github.com/bltlab/lr-sum](https://github.com/bltlab/lr-sum)
## Uses
The dataset is intended for research in automatic summarization in various languages, especially for less resourced languages.
### Direct Use
The data can be used for training text generation models to generate short summaries of news articles in many languages.
Automatic evaluation of automatic summarization is another use case, though we encourage also conducting human evaluation of any model trained for summarization.
### Out-of-Scope Use
This dataset only includes newswire text, so models trained on the data may not be effective for out of domain summarization.
## Dataset Structure
Each field is a string:
```
{
'id': Article unique id
'url': URL for the news article
'title': The title of the news article
'summary': The summary of the article
'text': The full text of the news article not including title
}
```
## Dataset Creation
### Curation Rationale
Research in automatic summarization for less resourced languages.
### Source Data
Voice of America (VOA)
#### Data Collection and Processing
See our [paper](https://aclanthology.org/2023.findings-acl.427/) for details on collection and processing.
#### Who are the source data producers?
Voice of America (VOA)
#### Annotation process
The summaries are found in news article meta data. More detail about the curation process can be found in our paper.
#### Who are the annotators?
The summaries are found in the news article meta data. The authors of the summaries are authors and staff for VOA.
#### Personal and Sensitive Information
The only sensative personal information would be information already published in news articles on VOA.
See [VOA's mission and values](https://www.insidevoa.com/p/5831.html#:~:text=VOA%20has%20a%20legal%20obligation,sites%20at%20the%20earliest%20opportunity.)
## Bias, Risks, and Limitations
The content in this dataset is newswire.
See [VOA's mission and values](https://www.insidevoa.com/p/5831.html#:~:text=VOA%20has%20a%20legal%20obligation,sites%20at%20the%20earliest%20opportunity.) for more detail about the journalistic integrity and policy.
### Recommendations
The data is newswire text. Training text generation models on this dataset will have similar risks and limitations to other text generation models including hallucinations and potentially inaccurate statements.
For some languages that have fewer examples, issues with text generation models are likely to be more pronounced.
The dataset is primarily released for research despite having a permissive license.
We encourage users to thoroughly test and evaluate any models trained using this data before putting them into production environments.
## Citation
If you make use of this dataset, please cite our paper using this bibtex:
**BibTeX:**
```
@inproceedings{palen-michel-lignos-2023-lr,
title = "{LR}-Sum: Summarization for Less-Resourced Languages",
author = "Palen-Michel, Chester and
Lignos, Constantine",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-acl.427",
doi = "10.18653/v1/2023.findings-acl.427",
pages = "6829--6844",
abstract = "We introduce LR-Sum, a new permissively-licensed dataset created with the goal of enabling further research in automatic summarization for less-resourced languages.LR-Sum contains human-written summaries for 40 languages, many of which are less-resourced. We describe our process for extracting and filtering the dataset from the Multilingual Open Text corpus (Palen-Michel et al., 2022).The source data is public domain newswire collected from from Voice of America websites, and LR-Sum is released under a Creative Commons license (CC BY 4.0), making it one of the most openly-licensed multilingual summarization datasets. We describe abstractive and extractive summarization experiments to establish baselines and discuss the limitations of this dataset.",
}
```
## Dataset Card Authors
Chester Palen-Michel [@cpalenmichel](https://github.com/cpalenmichel)
## Dataset Card Contact
Chester Palen-Michel [@cpalenmichel](https://github.com/cpalenmichel) |