body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
def _make_fake_dataset_fn(): 'Returns a dataset that emulates a remote storage data source.\n\n Returns a dataset factory which creates a dataset with 100 elements that\n emulates the performance characteristic of a file-based dataset stored in a\n remote storage. In particular, the first element will take an order of\n magnitude longer to produce than the remaining elements (1s vs. 1ms).\n ' def fake_dataset_fn(unused): del unused def make_dataset(time_us, num_elements): return dataset_ops.Dataset.range(num_elements).apply(sleep.sleep(time_us)) return make_dataset((1000 * 1000), 0).concatenate(make_dataset(1000, 100)).take(100) return fake_dataset_fn
-4,219,913,051,384,786,400
Returns a dataset that emulates a remote storage data source. Returns a dataset factory which creates a dataset with 100 elements that emulates the performance characteristic of a file-based dataset stored in a remote storage. In particular, the first element will take an order of magnitude longer to produce than the remaining elements (1s vs. 1ms).
tensorflow/python/data/experimental/benchmarks/parallel_interleave_benchmark.py
_make_fake_dataset_fn
1244783394/tensorflow
python
def _make_fake_dataset_fn(): 'Returns a dataset that emulates a remote storage data source.\n\n Returns a dataset factory which creates a dataset with 100 elements that\n emulates the performance characteristic of a file-based dataset stored in a\n remote storage. In particular, the first element will take an order of\n magnitude longer to produce than the remaining elements (1s vs. 1ms).\n ' def fake_dataset_fn(unused): del unused def make_dataset(time_us, num_elements): return dataset_ops.Dataset.range(num_elements).apply(sleep.sleep(time_us)) return make_dataset((1000 * 1000), 0).concatenate(make_dataset(1000, 100)).take(100) return fake_dataset_fn
def benchmark_parallel_interleave_v1(self): 'Benchmark for parallel interleave that does not support autotuning.' def dataset_fn(): return dataset_ops.Dataset.range(1).repeat().apply(interleave_ops.parallel_interleave(_make_fake_dataset_fn(), cycle_length=10)) self._benchmark(dataset_fn=dataset_fn, iters=100, num_elements=1000)
6,597,294,758,033,310,000
Benchmark for parallel interleave that does not support autotuning.
tensorflow/python/data/experimental/benchmarks/parallel_interleave_benchmark.py
benchmark_parallel_interleave_v1
1244783394/tensorflow
python
def benchmark_parallel_interleave_v1(self): def dataset_fn(): return dataset_ops.Dataset.range(1).repeat().apply(interleave_ops.parallel_interleave(_make_fake_dataset_fn(), cycle_length=10)) self._benchmark(dataset_fn=dataset_fn, iters=100, num_elements=1000)
def benchmark_parallel_interleave_v2(self): 'Benchmark for parallel interleave that supports autotuning.' def dataset_fn(): return dataset_ops.Dataset.range(1).repeat().interleave(_make_fake_dataset_fn(), cycle_length=10, num_parallel_calls=dataset_ops.AUTOTUNE) self._benchmark(dataset_fn=dataset_fn, iters=100, num_elements=1000)
-5,564,878,944,003,852,000
Benchmark for parallel interleave that supports autotuning.
tensorflow/python/data/experimental/benchmarks/parallel_interleave_benchmark.py
benchmark_parallel_interleave_v2
1244783394/tensorflow
python
def benchmark_parallel_interleave_v2(self): def dataset_fn(): return dataset_ops.Dataset.range(1).repeat().interleave(_make_fake_dataset_fn(), cycle_length=10, num_parallel_calls=dataset_ops.AUTOTUNE) self._benchmark(dataset_fn=dataset_fn, iters=100, num_elements=1000)
def MA(ma, close): 'Compute Moving Average\n\n Args:\n ma (float): MA value\n close (float): Close value\n\n Returns:\n string: "BUY", "SELL", or "NEUTRAL"\n ' if (ma < close): return Recommendation.buy elif (ma > close): return Recommendation.sell else: return Recommendation.neutral
-8,902,239,209,966,890,000
Compute Moving Average Args: ma (float): MA value close (float): Close value Returns: string: "BUY", "SELL", or "NEUTRAL"
tradingview_ta/technicals.py
MA
Chizkiyahu/python-tradingview-ta
python
def MA(ma, close): 'Compute Moving Average\n\n Args:\n ma (float): MA value\n close (float): Close value\n\n Returns:\n string: "BUY", "SELL", or "NEUTRAL"\n ' if (ma < close): return Recommendation.buy elif (ma > close): return Recommendation.sell else: return Recommendation.neutral
def RSI(rsi, rsi1): 'Compute Relative Strength Index\n\n Args:\n rsi (float): RSI value\n rsi1 (float): RSI[1] value\n\n Returns:\n string: "BUY", "SELL", or "NEUTRAL"\n ' if ((rsi < 30) and (rsi1 > rsi)): return Recommendation.buy elif ((rsi > 70) and (rsi1 < rsi)): return Recommendation.sell else: return Recommendation.neutral
-4,906,149,037,489,024,000
Compute Relative Strength Index Args: rsi (float): RSI value rsi1 (float): RSI[1] value Returns: string: "BUY", "SELL", or "NEUTRAL"
tradingview_ta/technicals.py
RSI
Chizkiyahu/python-tradingview-ta
python
def RSI(rsi, rsi1): 'Compute Relative Strength Index\n\n Args:\n rsi (float): RSI value\n rsi1 (float): RSI[1] value\n\n Returns:\n string: "BUY", "SELL", or "NEUTRAL"\n ' if ((rsi < 30) and (rsi1 > rsi)): return Recommendation.buy elif ((rsi > 70) and (rsi1 < rsi)): return Recommendation.sell else: return Recommendation.neutral
def Stoch(k, d, k1, d1): 'Compute Stochastic\n\n Args:\n k (float): Stoch.K value\n d (float): Stoch.D value\n k1 (float): Stoch.K[1] value\n d1 (float): Stoch.D[1] value\n\n Returns:\n string: "BUY", "SELL", or "NEUTRAL"\n ' if ((k < 20) and (d < 20) and (k > d) and (k1 < d1)): return Recommendation.buy elif ((k > 80) and (d > 80) and (k < d) and (k1 > d1)): return Recommendation.sell else: return Recommendation.neutral
-4,613,719,220,800,345,000
Compute Stochastic Args: k (float): Stoch.K value d (float): Stoch.D value k1 (float): Stoch.K[1] value d1 (float): Stoch.D[1] value Returns: string: "BUY", "SELL", or "NEUTRAL"
tradingview_ta/technicals.py
Stoch
Chizkiyahu/python-tradingview-ta
python
def Stoch(k, d, k1, d1): 'Compute Stochastic\n\n Args:\n k (float): Stoch.K value\n d (float): Stoch.D value\n k1 (float): Stoch.K[1] value\n d1 (float): Stoch.D[1] value\n\n Returns:\n string: "BUY", "SELL", or "NEUTRAL"\n ' if ((k < 20) and (d < 20) and (k > d) and (k1 < d1)): return Recommendation.buy elif ((k > 80) and (d > 80) and (k < d) and (k1 > d1)): return Recommendation.sell else: return Recommendation.neutral
def CCI20(cci20, cci201): 'Compute Commodity Channel Index 20\n\n Args:\n cci20 (float): CCI20 value\n cci201 ([type]): CCI20[1] value\n\n Returns:\n string: "BUY", "SELL", or "NEUTRAL"\n ' if ((cci20 < (- 100)) and (cci20 > cci201)): return Recommendation.buy elif ((cci20 > 100) and (cci20 < cci201)): return Recommendation.sell else: return Recommendation.neutral
7,493,960,804,903,274,000
Compute Commodity Channel Index 20 Args: cci20 (float): CCI20 value cci201 ([type]): CCI20[1] value Returns: string: "BUY", "SELL", or "NEUTRAL"
tradingview_ta/technicals.py
CCI20
Chizkiyahu/python-tradingview-ta
python
def CCI20(cci20, cci201): 'Compute Commodity Channel Index 20\n\n Args:\n cci20 (float): CCI20 value\n cci201 ([type]): CCI20[1] value\n\n Returns:\n string: "BUY", "SELL", or "NEUTRAL"\n ' if ((cci20 < (- 100)) and (cci20 > cci201)): return Recommendation.buy elif ((cci20 > 100) and (cci20 < cci201)): return Recommendation.sell else: return Recommendation.neutral
def ADX(adx, adxpdi, adxndi, adxpdi1, adxndi1): 'Compute Average Directional Index\n\n Args:\n adx (float): ADX value\n adxpdi (float): ADX+DI value\n adxndi (float): ADX-DI value\n adxpdi1 (float): ADX+DI[1] value\n adxndi1 (float): ADX-DI[1] value\n\n Returns:\n string: "BUY", "SELL", or "NEUTRAL"\n ' if ((adx > 20) and (adxpdi1 < adxndi1) and (adxpdi > adxndi)): return Recommendation.buy elif ((adx > 20) and (adxpdi1 > adxndi1) and (adxpdi < adxndi)): return Recommendation.sell else: return Recommendation.neutral
8,872,061,564,006,650,000
Compute Average Directional Index Args: adx (float): ADX value adxpdi (float): ADX+DI value adxndi (float): ADX-DI value adxpdi1 (float): ADX+DI[1] value adxndi1 (float): ADX-DI[1] value Returns: string: "BUY", "SELL", or "NEUTRAL"
tradingview_ta/technicals.py
ADX
Chizkiyahu/python-tradingview-ta
python
def ADX(adx, adxpdi, adxndi, adxpdi1, adxndi1): 'Compute Average Directional Index\n\n Args:\n adx (float): ADX value\n adxpdi (float): ADX+DI value\n adxndi (float): ADX-DI value\n adxpdi1 (float): ADX+DI[1] value\n adxndi1 (float): ADX-DI[1] value\n\n Returns:\n string: "BUY", "SELL", or "NEUTRAL"\n ' if ((adx > 20) and (adxpdi1 < adxndi1) and (adxpdi > adxndi)): return Recommendation.buy elif ((adx > 20) and (adxpdi1 > adxndi1) and (adxpdi < adxndi)): return Recommendation.sell else: return Recommendation.neutral
def AO(ao, ao1): 'Compute Awesome Oscillator\n\n Args:\n ao (float): AO value\n ao1 (float): AO[1] value\n\n Returns:\n string: "BUY", "SELL", or "NEUTRAL"\n ' if (((ao > 0) and (ao1 < 0)) or ((ao > 0) and (ao1 > 0) and (ao > ao1))): return Recommendation.buy elif (((ao < 0) and (ao1 > 0)) or ((ao < 0) and (ao1 < 0) and (ao < ao1))): return Recommendation.sell else: return Recommendation.neutral
-6,713,277,984,516,991,000
Compute Awesome Oscillator Args: ao (float): AO value ao1 (float): AO[1] value Returns: string: "BUY", "SELL", or "NEUTRAL"
tradingview_ta/technicals.py
AO
Chizkiyahu/python-tradingview-ta
python
def AO(ao, ao1): 'Compute Awesome Oscillator\n\n Args:\n ao (float): AO value\n ao1 (float): AO[1] value\n\n Returns:\n string: "BUY", "SELL", or "NEUTRAL"\n ' if (((ao > 0) and (ao1 < 0)) or ((ao > 0) and (ao1 > 0) and (ao > ao1))): return Recommendation.buy elif (((ao < 0) and (ao1 > 0)) or ((ao < 0) and (ao1 < 0) and (ao < ao1))): return Recommendation.sell else: return Recommendation.neutral
def Mom(mom, mom1): 'Compute Momentum\n\n Args:\n mom (float): Mom value\n mom1 (float): Mom[1] value\n\n Returns:\n string: "BUY", "SELL", or "NEUTRAL"\n ' if (mom < mom1): return Recommendation.buy elif (mom > mom1): return Recommendation.sell else: return Recommendation.neutral
-8,346,860,407,921,247,000
Compute Momentum Args: mom (float): Mom value mom1 (float): Mom[1] value Returns: string: "BUY", "SELL", or "NEUTRAL"
tradingview_ta/technicals.py
Mom
Chizkiyahu/python-tradingview-ta
python
def Mom(mom, mom1): 'Compute Momentum\n\n Args:\n mom (float): Mom value\n mom1 (float): Mom[1] value\n\n Returns:\n string: "BUY", "SELL", or "NEUTRAL"\n ' if (mom < mom1): return Recommendation.buy elif (mom > mom1): return Recommendation.sell else: return Recommendation.neutral
def MACD(macd, signal): 'Compute Moving Average Convergence/Divergence\n\n Args:\n macd (float): MACD.macd value\n signal (float): MACD.signal value\n\n Returns:\n string: "BUY", "SELL", or "NEUTRAL"\n ' if (macd > signal): return Recommendation.buy elif (macd < signal): return Recommendation.sell else: return Recommendation.neutral
-7,220,129,794,616,158,000
Compute Moving Average Convergence/Divergence Args: macd (float): MACD.macd value signal (float): MACD.signal value Returns: string: "BUY", "SELL", or "NEUTRAL"
tradingview_ta/technicals.py
MACD
Chizkiyahu/python-tradingview-ta
python
def MACD(macd, signal): 'Compute Moving Average Convergence/Divergence\n\n Args:\n macd (float): MACD.macd value\n signal (float): MACD.signal value\n\n Returns:\n string: "BUY", "SELL", or "NEUTRAL"\n ' if (macd > signal): return Recommendation.buy elif (macd < signal): return Recommendation.sell else: return Recommendation.neutral
def BBBuy(close, bblower): 'Compute Bull Bear Buy\n\n Args:\n close (float): close value\n bblower (float): BB.lower value\n\n Returns:\n string: "BUY", "SELL", or "NEUTRAL"\n ' if (close < bblower): return Recommendation.buy else: return Recommendation.neutral
3,170,778,078,137,031,000
Compute Bull Bear Buy Args: close (float): close value bblower (float): BB.lower value Returns: string: "BUY", "SELL", or "NEUTRAL"
tradingview_ta/technicals.py
BBBuy
Chizkiyahu/python-tradingview-ta
python
def BBBuy(close, bblower): 'Compute Bull Bear Buy\n\n Args:\n close (float): close value\n bblower (float): BB.lower value\n\n Returns:\n string: "BUY", "SELL", or "NEUTRAL"\n ' if (close < bblower): return Recommendation.buy else: return Recommendation.neutral
def BBSell(close, bbupper): 'Compute Bull Bear Sell\n\n Args:\n close (float): close value\n bbupper (float): BB.upper value\n\n Returns:\n string: "BUY", "SELL", or "NEUTRAL"\n ' if (close > bbupper): return Recommendation.sell else: return Recommendation.neutral
-1,134,133,646,265,981,600
Compute Bull Bear Sell Args: close (float): close value bbupper (float): BB.upper value Returns: string: "BUY", "SELL", or "NEUTRAL"
tradingview_ta/technicals.py
BBSell
Chizkiyahu/python-tradingview-ta
python
def BBSell(close, bbupper): 'Compute Bull Bear Sell\n\n Args:\n close (float): close value\n bbupper (float): BB.upper value\n\n Returns:\n string: "BUY", "SELL", or "NEUTRAL"\n ' if (close > bbupper): return Recommendation.sell else: return Recommendation.neutral
def PSAR(psar, open): 'Compute Parabolic Stop-And-Reverse\n\n Args:\n psar (float): P.SAR value\n open (float): open value\n\n Returns:\n string: "BUY", "SELL", or "NEUTRAL"\n ' if (psar < open): return Recommendation.buy elif (psar > open): return Recommendation.sell else: return Recommendation.neutral
2,251,847,869,837,323,800
Compute Parabolic Stop-And-Reverse Args: psar (float): P.SAR value open (float): open value Returns: string: "BUY", "SELL", or "NEUTRAL"
tradingview_ta/technicals.py
PSAR
Chizkiyahu/python-tradingview-ta
python
def PSAR(psar, open): 'Compute Parabolic Stop-And-Reverse\n\n Args:\n psar (float): P.SAR value\n open (float): open value\n\n Returns:\n string: "BUY", "SELL", or "NEUTRAL"\n ' if (psar < open): return Recommendation.buy elif (psar > open): return Recommendation.sell else: return Recommendation.neutral
def Recommend(value): 'Compute Recommend\n\n Args:\n value (float): recommend value\n\n Returns:\n string: "STRONG_BUY", "BUY", "NEUTRAL", "SELL", "STRONG_SELL", or "ERROR"\n ' if ((value >= (- 1)) and (value < (- 0.5))): return Recommendation.strong_sell elif ((value >= (- 0.5)) and (value < 0)): return Recommendation.sell elif (value == 0): return Recommendation.neutral elif ((value > 0) and (value <= 0.5)): return Recommendation.buy elif ((value > 0.5) and (value <= 1)): return Recommendation.strong_buy else: return Recommendation.error
-4,807,892,968,998,064,000
Compute Recommend Args: value (float): recommend value Returns: string: "STRONG_BUY", "BUY", "NEUTRAL", "SELL", "STRONG_SELL", or "ERROR"
tradingview_ta/technicals.py
Recommend
Chizkiyahu/python-tradingview-ta
python
def Recommend(value): 'Compute Recommend\n\n Args:\n value (float): recommend value\n\n Returns:\n string: "STRONG_BUY", "BUY", "NEUTRAL", "SELL", "STRONG_SELL", or "ERROR"\n ' if ((value >= (- 1)) and (value < (- 0.5))): return Recommendation.strong_sell elif ((value >= (- 0.5)) and (value < 0)): return Recommendation.sell elif (value == 0): return Recommendation.neutral elif ((value > 0) and (value <= 0.5)): return Recommendation.buy elif ((value > 0.5) and (value <= 1)): return Recommendation.strong_buy else: return Recommendation.error
def Simple(value): 'Compute Simple\n\n Args:\n value (float): Rec.X value\n\n Returns:\n string: "BUY", "SELL", or "NEUTRAL"\n ' if (value == (- 1)): return Recommendation.sell elif (value == 1): return Recommendation.buy else: return Recommendation.neutral
-4,654,071,787,963,070,000
Compute Simple Args: value (float): Rec.X value Returns: string: "BUY", "SELL", or "NEUTRAL"
tradingview_ta/technicals.py
Simple
Chizkiyahu/python-tradingview-ta
python
def Simple(value): 'Compute Simple\n\n Args:\n value (float): Rec.X value\n\n Returns:\n string: "BUY", "SELL", or "NEUTRAL"\n ' if (value == (- 1)): return Recommendation.sell elif (value == 1): return Recommendation.buy else: return Recommendation.neutral
def matmul(x, y, transpose_x=False, transpose_y=False, name=None): "\n Applies matrix multiplication to two tensors. `matmul` follows\n the complete broadcast rules,\n and its behavior is consistent with `np.matmul`.\n\n Currently, the input tensors' number of dimensions can be any, `matmul` can be used to\n achieve the `dot`, `matmul` and `batchmatmul`.\n\n The actual behavior depends on the shapes of :math:`x`, :math:`y` and the\n flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:\n\n - If a transpose flag is specified, the last two dimensions of the tensor\n are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor\n is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas\n for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.\n\n The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:\n\n - If both tensors are 1-dimensional, the dot product result is obtained.\n\n - If both tensors are 2-dimensional, the matrix-matrix product is obtained.\n\n - If the `x` is 1-dimensional and the `y` is 2-dimensional,\n a `1` is prepended to its dimension in order to conduct the matrix multiply.\n After the matrix multiply, the prepended dimension is removed.\n\n - If the `x` is 2-dimensional and `y` is 1-dimensional,\n the matrix-vector product is obtained.\n\n - If both arguments are at least 1-dimensional and at least one argument\n is N-dimensional (where N > 2), then a batched matrix multiply is obtained.\n If the first argument is 1-dimensional, a 1 is prepended to its dimension\n in order to conduct the batched matrix multiply and removed after.\n If the second argument is 1-dimensional, a 1 is appended to its\n dimension for the purpose of the batched matrix multiple and removed after.\n The non-matrix (exclude the last two dimensions) dimensions are\n broadcasted according the broadcast rule.\n For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,\n out will be a (j, k, n, p) tensor.\n\n Args:\n x (Tensor): The input tensor which is a Tensor.\n y (Tensor): The input tensor which is a Tensor.\n transpose_x (bool): Whether to transpose :math:`x` before multiplication.\n transpose_y (bool): Whether to transpose :math:`y` before multiplication.\n name(str|None): A name for this layer(optional). If set None, the layer\n will be named automatically.\n\n Returns:\n Tensor: The output Tensor.\n\n Examples:\n\n .. code-block:: python\n\n import paddle\n import numpy as np\n\n # vector * vector\n x_data = np.random.random([10]).astype(np.float32)\n y_data = np.random.random([10]).astype(np.float32)\n x = paddle.to_tensor(x_data)\n y = paddle.to_tensor(y_data)\n z = paddle.matmul(x, y)\n print(z.numpy().shape)\n # [1]\n\n # matrix * vector\n x_data = np.random.random([10, 5]).astype(np.float32)\n y_data = np.random.random([5]).astype(np.float32)\n x = paddle.to_tensor(x_data)\n y = paddle.to_tensor(y_data)\n z = paddle.matmul(x, y)\n print(z.numpy().shape)\n # [10]\n\n # batched matrix * broadcasted vector\n x_data = np.random.random([10, 5, 2]).astype(np.float32)\n y_data = np.random.random([2]).astype(np.float32)\n x = paddle.to_tensor(x_data)\n y = paddle.to_tensor(y_data)\n z = paddle.matmul(x, y)\n print(z.numpy().shape)\n # [10, 5]\n\n # batched matrix * batched matrix\n x_data = np.random.random([10, 5, 2]).astype(np.float32)\n y_data = np.random.random([10, 2, 5]).astype(np.float32)\n x = paddle.to_tensor(x_data)\n y = paddle.to_tensor(y_data)\n z = paddle.matmul(x, y)\n print(z.numpy().shape)\n # [10, 5, 5]\n\n # batched matrix * broadcasted matrix\n x_data = np.random.random([10, 1, 5, 2]).astype(np.float32)\n y_data = np.random.random([1, 3, 2, 5]).astype(np.float32)\n x = paddle.to_tensor(x_data)\n y = paddle.to_tensor(y_data)\n z = paddle.matmul(x, y)\n print(z.numpy().shape)\n # [10, 3, 5, 5]\n\n " if in_dygraph_mode(): return _C_ops.final_state_matmul(x, y, transpose_x, transpose_y) if _in_legacy_dygraph(): op_type = 'matmul_v2' op = getattr(_C_ops, op_type) return op(x, y, 'trans_x', transpose_x, 'trans_y', transpose_y) attrs = {'trans_x': transpose_x, 'trans_y': transpose_y} def __check_input(x, y): var_names = {'x': x, 'y': y} for (name, val) in var_names.items(): check_variable_and_dtype(val, name, ['float16', 'float32', 'float64', 'complex64', 'complex128'], 'matmul') __check_input(x, y) helper = LayerHelper('matmul_v2', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='matmul_v2', inputs={'X': x, 'Y': y}, outputs={'Out': out}, attrs=attrs) return out
-2,043,395,450,413,527,600
Applies matrix multiplication to two tensors. `matmul` follows the complete broadcast rules, and its behavior is consistent with `np.matmul`. Currently, the input tensors' number of dimensions can be any, `matmul` can be used to achieve the `dot`, `matmul` and `batchmatmul`. The actual behavior depends on the shapes of :math:`x`, :math:`y` and the flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically: - If a transpose flag is specified, the last two dimensions of the tensor are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`. The multiplication behavior depends on the dimensions of `x` and `y`. Specifically: - If both tensors are 1-dimensional, the dot product result is obtained. - If both tensors are 2-dimensional, the matrix-matrix product is obtained. - If the `x` is 1-dimensional and the `y` is 2-dimensional, a `1` is prepended to its dimension in order to conduct the matrix multiply. After the matrix multiply, the prepended dimension is removed. - If the `x` is 2-dimensional and `y` is 1-dimensional, the matrix-vector product is obtained. - If both arguments are at least 1-dimensional and at least one argument is N-dimensional (where N > 2), then a batched matrix multiply is obtained. If the first argument is 1-dimensional, a 1 is prepended to its dimension in order to conduct the batched matrix multiply and removed after. If the second argument is 1-dimensional, a 1 is appended to its dimension for the purpose of the batched matrix multiple and removed after. The non-matrix (exclude the last two dimensions) dimensions are broadcasted according the broadcast rule. For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor, out will be a (j, k, n, p) tensor. Args: x (Tensor): The input tensor which is a Tensor. y (Tensor): The input tensor which is a Tensor. transpose_x (bool): Whether to transpose :math:`x` before multiplication. transpose_y (bool): Whether to transpose :math:`y` before multiplication. name(str|None): A name for this layer(optional). If set None, the layer will be named automatically. Returns: Tensor: The output Tensor. Examples: .. code-block:: python import paddle import numpy as np # vector * vector x_data = np.random.random([10]).astype(np.float32) y_data = np.random.random([10]).astype(np.float32) x = paddle.to_tensor(x_data) y = paddle.to_tensor(y_data) z = paddle.matmul(x, y) print(z.numpy().shape) # [1] # matrix * vector x_data = np.random.random([10, 5]).astype(np.float32) y_data = np.random.random([5]).astype(np.float32) x = paddle.to_tensor(x_data) y = paddle.to_tensor(y_data) z = paddle.matmul(x, y) print(z.numpy().shape) # [10] # batched matrix * broadcasted vector x_data = np.random.random([10, 5, 2]).astype(np.float32) y_data = np.random.random([2]).astype(np.float32) x = paddle.to_tensor(x_data) y = paddle.to_tensor(y_data) z = paddle.matmul(x, y) print(z.numpy().shape) # [10, 5] # batched matrix * batched matrix x_data = np.random.random([10, 5, 2]).astype(np.float32) y_data = np.random.random([10, 2, 5]).astype(np.float32) x = paddle.to_tensor(x_data) y = paddle.to_tensor(y_data) z = paddle.matmul(x, y) print(z.numpy().shape) # [10, 5, 5] # batched matrix * broadcasted matrix x_data = np.random.random([10, 1, 5, 2]).astype(np.float32) y_data = np.random.random([1, 3, 2, 5]).astype(np.float32) x = paddle.to_tensor(x_data) y = paddle.to_tensor(y_data) z = paddle.matmul(x, y) print(z.numpy().shape) # [10, 3, 5, 5]
python/paddle/tensor/linalg.py
matmul
DevilCarp/Paddle
python
def matmul(x, y, transpose_x=False, transpose_y=False, name=None): "\n Applies matrix multiplication to two tensors. `matmul` follows\n the complete broadcast rules,\n and its behavior is consistent with `np.matmul`.\n\n Currently, the input tensors' number of dimensions can be any, `matmul` can be used to\n achieve the `dot`, `matmul` and `batchmatmul`.\n\n The actual behavior depends on the shapes of :math:`x`, :math:`y` and the\n flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:\n\n - If a transpose flag is specified, the last two dimensions of the tensor\n are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor\n is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas\n for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.\n\n The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:\n\n - If both tensors are 1-dimensional, the dot product result is obtained.\n\n - If both tensors are 2-dimensional, the matrix-matrix product is obtained.\n\n - If the `x` is 1-dimensional and the `y` is 2-dimensional,\n a `1` is prepended to its dimension in order to conduct the matrix multiply.\n After the matrix multiply, the prepended dimension is removed.\n\n - If the `x` is 2-dimensional and `y` is 1-dimensional,\n the matrix-vector product is obtained.\n\n - If both arguments are at least 1-dimensional and at least one argument\n is N-dimensional (where N > 2), then a batched matrix multiply is obtained.\n If the first argument is 1-dimensional, a 1 is prepended to its dimension\n in order to conduct the batched matrix multiply and removed after.\n If the second argument is 1-dimensional, a 1 is appended to its\n dimension for the purpose of the batched matrix multiple and removed after.\n The non-matrix (exclude the last two dimensions) dimensions are\n broadcasted according the broadcast rule.\n For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,\n out will be a (j, k, n, p) tensor.\n\n Args:\n x (Tensor): The input tensor which is a Tensor.\n y (Tensor): The input tensor which is a Tensor.\n transpose_x (bool): Whether to transpose :math:`x` before multiplication.\n transpose_y (bool): Whether to transpose :math:`y` before multiplication.\n name(str|None): A name for this layer(optional). If set None, the layer\n will be named automatically.\n\n Returns:\n Tensor: The output Tensor.\n\n Examples:\n\n .. code-block:: python\n\n import paddle\n import numpy as np\n\n # vector * vector\n x_data = np.random.random([10]).astype(np.float32)\n y_data = np.random.random([10]).astype(np.float32)\n x = paddle.to_tensor(x_data)\n y = paddle.to_tensor(y_data)\n z = paddle.matmul(x, y)\n print(z.numpy().shape)\n # [1]\n\n # matrix * vector\n x_data = np.random.random([10, 5]).astype(np.float32)\n y_data = np.random.random([5]).astype(np.float32)\n x = paddle.to_tensor(x_data)\n y = paddle.to_tensor(y_data)\n z = paddle.matmul(x, y)\n print(z.numpy().shape)\n # [10]\n\n # batched matrix * broadcasted vector\n x_data = np.random.random([10, 5, 2]).astype(np.float32)\n y_data = np.random.random([2]).astype(np.float32)\n x = paddle.to_tensor(x_data)\n y = paddle.to_tensor(y_data)\n z = paddle.matmul(x, y)\n print(z.numpy().shape)\n # [10, 5]\n\n # batched matrix * batched matrix\n x_data = np.random.random([10, 5, 2]).astype(np.float32)\n y_data = np.random.random([10, 2, 5]).astype(np.float32)\n x = paddle.to_tensor(x_data)\n y = paddle.to_tensor(y_data)\n z = paddle.matmul(x, y)\n print(z.numpy().shape)\n # [10, 5, 5]\n\n # batched matrix * broadcasted matrix\n x_data = np.random.random([10, 1, 5, 2]).astype(np.float32)\n y_data = np.random.random([1, 3, 2, 5]).astype(np.float32)\n x = paddle.to_tensor(x_data)\n y = paddle.to_tensor(y_data)\n z = paddle.matmul(x, y)\n print(z.numpy().shape)\n # [10, 3, 5, 5]\n\n " if in_dygraph_mode(): return _C_ops.final_state_matmul(x, y, transpose_x, transpose_y) if _in_legacy_dygraph(): op_type = 'matmul_v2' op = getattr(_C_ops, op_type) return op(x, y, 'trans_x', transpose_x, 'trans_y', transpose_y) attrs = {'trans_x': transpose_x, 'trans_y': transpose_y} def __check_input(x, y): var_names = {'x': x, 'y': y} for (name, val) in var_names.items(): check_variable_and_dtype(val, name, ['float16', 'float32', 'float64', 'complex64', 'complex128'], 'matmul') __check_input(x, y) helper = LayerHelper('matmul_v2', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='matmul_v2', inputs={'X': x, 'Y': y}, outputs={'Out': out}, attrs=attrs) return out
def norm(x, p='fro', axis=None, keepdim=False, name=None): "\n\n Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean\n or 2-norm, and in general the p-norm for p > 0) of a given tensor.\n\n .. note::\n This norm API is different from `numpy.linalg.norm`.\n This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.\n But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.\n For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.\n\n Args:\n x (Tensor): The input tensor could be N-D tensor, and the input data\n type could be float32 or float64.\n p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,\n `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.\n Default value is `fro`.\n axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int\n or list(int)/tuple(int) with only one element, the vector norm is computed over the axis.\n If `axis < 0`, the dimension to norm operation is rank(input) + axis.\n If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.\n Defalut value is `None`.\n keepdim (bool, optional): Whether to reserve the reduced dimension in the\n output Tensor. The result tensor will have fewer dimension\n than the :attr:`input` unless :attr:`keepdim` is true, default\n value is False.\n name (str, optional): The default value is None. Normally there is no need for\n user to set this property. For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tensor: results of norm operation on the specified axis of input tensor,\n it's data type is the same as input's Tensor.\n\n Examples:\n .. code-block:: python\n\n import paddle\n import numpy as np\n shape=[2, 3, 4]\n np_input = np.arange(24).astype('float32') - 12\n np_input = np_input.reshape(shape)\n x = paddle.to_tensor(np_input)\n #[[[-12. -11. -10. -9.] [ -8. -7. -6. -5.] [ -4. -3. -2. -1.]]\n # [[ 0. 1. 2. 3.] [ 4. 5. 6. 7.] [ 8. 9. 10. 11.]]]\n\n # compute frobenius norm along last two dimensions.\n out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])\n # out_fro.numpy() [17.435596 16.911535 16.7332 16.911535]\n\n # compute 2-order vector norm along last dimension.\n out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)\n #out_pnorm.numpy(): [[21.118711 13.190906 5.477226]\n # [ 3.7416575 11.224972 19.131126]]\n\n # compute 2-order norm along [0,1] dimension.\n out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])\n #out_pnorm.numpy(): [17.435596 16.911535 16.7332 16.911535]\n\n # compute inf-order norm\n out_pnorm = paddle.linalg.norm(x, p=np.inf)\n #out_pnorm.numpy() = [12.]\n out_pnorm = paddle.linalg.norm(x, p=np.inf, axis=0)\n #out_pnorm.numpy(): [[12. 11. 10. 9.] [8. 7. 6. 7.] [8. 9. 10. 11.]]\n\n # compute -inf-order norm\n out_pnorm = paddle.linalg.norm(x, p=-np.inf)\n #out_pnorm.numpy(): [0.]\n out_pnorm = paddle.linalg.norm(x, p=-np.inf, axis=0)\n #out_pnorm.numpy(): [[0. 1. 2. 3.] [4. 5. 6. 5.] [4. 3. 2. 1.]]\n " def frobenius_norm(input, dim=None, keepdim=False, name=None): '\n The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.\n Args:\n input (Variable): Tensor, data type float32, float64.\n dim (list, optional): None for last two dimensions.\n keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.\n ' if ((dim is not None) and (not (isinstance(dim, list) and (len(dim) == 2)))): raise ValueError('The dim of frobenius norm op should be None or two elements list!') if paddle.in_dynamic_mode(): if (dim is None): return _C_ops.frobenius_norm(input, 'keep_dim', keepdim, 'reduce_all', True) return _C_ops.frobenius_norm(input, 'dim', dim, 'keep_dim', keepdim, 'reduce_all', False) attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False} if (dim is None): attrs['reduce_all'] = True check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'frobenius_norm') helper = LayerHelper('frobenius_norm', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) helper.append_op(type='frobenius_norm', inputs={'X': input}, outputs={'Out': out}, attrs=attrs) return out def vector_norm(input, porder=None, axis=None, keepdim=False, asvector=False, name=None): '\n Calculate the p-order vector norm for certain dimension of Tensor `input`.\n Args:\n input (Variable): Tensor, data type float32, float64.\n porder (float, optional): None for porder=2.0.\n axis (int, optional): None for last dimension.\n keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.\n ' if paddle.in_dynamic_mode(): if (axis is None): axis = (- 1) return _C_ops.p_norm(input, 'porder', porder, 'axis', axis, 'keepdim', keepdim, 'asvector', asvector) if (porder is not None): check_type(porder, 'porder', (float, int), 'p_norm') if (axis is not None): check_type(axis, 'axis', int, 'p_norm') check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'p_norm') attrs = {'axis': (axis if (axis is not None) else (- 1)), 'porder': (float(porder) if (porder is not None) else 2.0), 'keepdim': keepdim, 'asvector': asvector, 'epsilon': 1e-12} helper = LayerHelper('p_norm', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) helper.append_op(type='p_norm', inputs={'X': input}, outputs={'Out': out}, attrs=attrs) return out def inf_norm(input, porder=None, axis=axis, keepdim=False, asvector=False, name=None): helper = LayerHelper('frobenius_norm', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) helper.append_op(type='abs', inputs={'X': input}, outputs={'Out': out}) reduce_out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) reduce_all = (True if ((axis == None) or (axis == []) or (asvector == True)) else False) axis = (axis if ((axis != None) and (axis != [])) else [0]) reduce_type = ('reduce_max' if (porder == np.float('inf')) else 'reduce_min') helper.append_op(type=reduce_type, inputs={'X': out}, outputs={'Out': reduce_out}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) return reduce_out def p_matrix_norm(input, porder=1.0, axis=axis, keepdim=False, name=None): '\n NOTE:\n This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.\n ' block = LayerHelper('norm', **locals()) out = block.create_variable_for_type_inference(dtype=block.input_dtype()) abs_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) block.append_op(type='abs', inputs={'X': input}, outputs={'Out': abs_out}) pow_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) block.append_op(type='pow', inputs={'X': abs_out}, outputs={'Out': pow_out}, attrs={'factor': porder}) sum_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) block.append_op(type='reduce_sum', inputs={'X': pow_out}, outputs={'Out': sum_out}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': (True if (axis is None) else False)}) porder block.append_op(type='pow', inputs={'X': sum_out}, outputs={'Out': out}, attrs={'factor': float((1.0 / porder))}) return out if ((axis is None) and (p is not None)): if isinstance(p, str): if (p == 'fro'): return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name) else: raise ValueError("only valid string values are 'fro', found {}".format(p)) elif isinstance(p, (int, float)): return vector_norm(x, porder=p, axis=axis, keepdim=keepdim, asvector=True, name=name) else: raise ValueError('only valid p type is string or float, found {}'.format(type(p))) if isinstance(axis, tuple): axis = list(axis) if (isinstance(axis, list) and (len(axis) == 1)): axis = axis[0] if isinstance(axis, int): if isinstance(p, str): if (p == 'fro'): return vector_norm(x, porder=2, axis=axis, keepdim=keepdim, asvector=False, name=name) else: raise ValueError("only valid string values are 'fro', found {}".format(p)) elif isinstance(p, (int, float)): return vector_norm(x, axis=axis, porder=p, keepdim=keepdim, asvector=False, name=name) else: raise ValueError('unspport p for p-order vector norm. except float, found {}'.format(p)) elif (isinstance(axis, list) and (len(axis) == 2)): if (p == 'fro'): return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name) elif ((p == np.inf) or (p == (- np.inf))): return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name) elif (p == 0): raise ValueError('just suport axis type int or list (length of list <=1) if p = 0, found {}'.format(axis)) else: return p_matrix_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name) else: raise ValueError('except axis type int or list (length of list <=2), found {}'.format(axis))
2,276,984,511,793,815,300
Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean or 2-norm, and in general the p-norm for p > 0) of a given tensor. .. note:: This norm API is different from `numpy.linalg.norm`. This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm. But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor. For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM. Args: x (Tensor): The input tensor could be N-D tensor, and the input data type could be float32 or float64. p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`, `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm. Default value is `fro`. axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int or list(int)/tuple(int) with only one element, the vector norm is computed over the axis. If `axis < 0`, the dimension to norm operation is rank(input) + axis. If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis. Defalut value is `None`. keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result tensor will have fewer dimension than the :attr:`input` unless :attr:`keepdim` is true, default value is False. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: results of norm operation on the specified axis of input tensor, it's data type is the same as input's Tensor. Examples: .. code-block:: python import paddle import numpy as np shape=[2, 3, 4] np_input = np.arange(24).astype('float32') - 12 np_input = np_input.reshape(shape) x = paddle.to_tensor(np_input) #[[[-12. -11. -10. -9.] [ -8. -7. -6. -5.] [ -4. -3. -2. -1.]] # [[ 0. 1. 2. 3.] [ 4. 5. 6. 7.] [ 8. 9. 10. 11.]]] # compute frobenius norm along last two dimensions. out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1]) # out_fro.numpy() [17.435596 16.911535 16.7332 16.911535] # compute 2-order vector norm along last dimension. out_pnorm = paddle.linalg.norm(x, p=2, axis=-1) #out_pnorm.numpy(): [[21.118711 13.190906 5.477226] # [ 3.7416575 11.224972 19.131126]] # compute 2-order norm along [0,1] dimension. out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1]) #out_pnorm.numpy(): [17.435596 16.911535 16.7332 16.911535] # compute inf-order norm out_pnorm = paddle.linalg.norm(x, p=np.inf) #out_pnorm.numpy() = [12.] out_pnorm = paddle.linalg.norm(x, p=np.inf, axis=0) #out_pnorm.numpy(): [[12. 11. 10. 9.] [8. 7. 6. 7.] [8. 9. 10. 11.]] # compute -inf-order norm out_pnorm = paddle.linalg.norm(x, p=-np.inf) #out_pnorm.numpy(): [0.] out_pnorm = paddle.linalg.norm(x, p=-np.inf, axis=0) #out_pnorm.numpy(): [[0. 1. 2. 3.] [4. 5. 6. 5.] [4. 3. 2. 1.]]
python/paddle/tensor/linalg.py
norm
DevilCarp/Paddle
python
def norm(x, p='fro', axis=None, keepdim=False, name=None): "\n\n Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean\n or 2-norm, and in general the p-norm for p > 0) of a given tensor.\n\n .. note::\n This norm API is different from `numpy.linalg.norm`.\n This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.\n But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.\n For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.\n\n Args:\n x (Tensor): The input tensor could be N-D tensor, and the input data\n type could be float32 or float64.\n p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,\n `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.\n Default value is `fro`.\n axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int\n or list(int)/tuple(int) with only one element, the vector norm is computed over the axis.\n If `axis < 0`, the dimension to norm operation is rank(input) + axis.\n If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.\n Defalut value is `None`.\n keepdim (bool, optional): Whether to reserve the reduced dimension in the\n output Tensor. The result tensor will have fewer dimension\n than the :attr:`input` unless :attr:`keepdim` is true, default\n value is False.\n name (str, optional): The default value is None. Normally there is no need for\n user to set this property. For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tensor: results of norm operation on the specified axis of input tensor,\n it's data type is the same as input's Tensor.\n\n Examples:\n .. code-block:: python\n\n import paddle\n import numpy as np\n shape=[2, 3, 4]\n np_input = np.arange(24).astype('float32') - 12\n np_input = np_input.reshape(shape)\n x = paddle.to_tensor(np_input)\n #[[[-12. -11. -10. -9.] [ -8. -7. -6. -5.] [ -4. -3. -2. -1.]]\n # [[ 0. 1. 2. 3.] [ 4. 5. 6. 7.] [ 8. 9. 10. 11.]]]\n\n # compute frobenius norm along last two dimensions.\n out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])\n # out_fro.numpy() [17.435596 16.911535 16.7332 16.911535]\n\n # compute 2-order vector norm along last dimension.\n out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)\n #out_pnorm.numpy(): [[21.118711 13.190906 5.477226]\n # [ 3.7416575 11.224972 19.131126]]\n\n # compute 2-order norm along [0,1] dimension.\n out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])\n #out_pnorm.numpy(): [17.435596 16.911535 16.7332 16.911535]\n\n # compute inf-order norm\n out_pnorm = paddle.linalg.norm(x, p=np.inf)\n #out_pnorm.numpy() = [12.]\n out_pnorm = paddle.linalg.norm(x, p=np.inf, axis=0)\n #out_pnorm.numpy(): [[12. 11. 10. 9.] [8. 7. 6. 7.] [8. 9. 10. 11.]]\n\n # compute -inf-order norm\n out_pnorm = paddle.linalg.norm(x, p=-np.inf)\n #out_pnorm.numpy(): [0.]\n out_pnorm = paddle.linalg.norm(x, p=-np.inf, axis=0)\n #out_pnorm.numpy(): [[0. 1. 2. 3.] [4. 5. 6. 5.] [4. 3. 2. 1.]]\n " def frobenius_norm(input, dim=None, keepdim=False, name=None): '\n The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.\n Args:\n input (Variable): Tensor, data type float32, float64.\n dim (list, optional): None for last two dimensions.\n keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.\n ' if ((dim is not None) and (not (isinstance(dim, list) and (len(dim) == 2)))): raise ValueError('The dim of frobenius norm op should be None or two elements list!') if paddle.in_dynamic_mode(): if (dim is None): return _C_ops.frobenius_norm(input, 'keep_dim', keepdim, 'reduce_all', True) return _C_ops.frobenius_norm(input, 'dim', dim, 'keep_dim', keepdim, 'reduce_all', False) attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False} if (dim is None): attrs['reduce_all'] = True check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'frobenius_norm') helper = LayerHelper('frobenius_norm', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) helper.append_op(type='frobenius_norm', inputs={'X': input}, outputs={'Out': out}, attrs=attrs) return out def vector_norm(input, porder=None, axis=None, keepdim=False, asvector=False, name=None): '\n Calculate the p-order vector norm for certain dimension of Tensor `input`.\n Args:\n input (Variable): Tensor, data type float32, float64.\n porder (float, optional): None for porder=2.0.\n axis (int, optional): None for last dimension.\n keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.\n ' if paddle.in_dynamic_mode(): if (axis is None): axis = (- 1) return _C_ops.p_norm(input, 'porder', porder, 'axis', axis, 'keepdim', keepdim, 'asvector', asvector) if (porder is not None): check_type(porder, 'porder', (float, int), 'p_norm') if (axis is not None): check_type(axis, 'axis', int, 'p_norm') check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'p_norm') attrs = {'axis': (axis if (axis is not None) else (- 1)), 'porder': (float(porder) if (porder is not None) else 2.0), 'keepdim': keepdim, 'asvector': asvector, 'epsilon': 1e-12} helper = LayerHelper('p_norm', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) helper.append_op(type='p_norm', inputs={'X': input}, outputs={'Out': out}, attrs=attrs) return out def inf_norm(input, porder=None, axis=axis, keepdim=False, asvector=False, name=None): helper = LayerHelper('frobenius_norm', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) helper.append_op(type='abs', inputs={'X': input}, outputs={'Out': out}) reduce_out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) reduce_all = (True if ((axis == None) or (axis == []) or (asvector == True)) else False) axis = (axis if ((axis != None) and (axis != [])) else [0]) reduce_type = ('reduce_max' if (porder == np.float('inf')) else 'reduce_min') helper.append_op(type=reduce_type, inputs={'X': out}, outputs={'Out': reduce_out}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) return reduce_out def p_matrix_norm(input, porder=1.0, axis=axis, keepdim=False, name=None): '\n NOTE:\n This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.\n ' block = LayerHelper('norm', **locals()) out = block.create_variable_for_type_inference(dtype=block.input_dtype()) abs_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) block.append_op(type='abs', inputs={'X': input}, outputs={'Out': abs_out}) pow_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) block.append_op(type='pow', inputs={'X': abs_out}, outputs={'Out': pow_out}, attrs={'factor': porder}) sum_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) block.append_op(type='reduce_sum', inputs={'X': pow_out}, outputs={'Out': sum_out}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': (True if (axis is None) else False)}) porder block.append_op(type='pow', inputs={'X': sum_out}, outputs={'Out': out}, attrs={'factor': float((1.0 / porder))}) return out if ((axis is None) and (p is not None)): if isinstance(p, str): if (p == 'fro'): return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name) else: raise ValueError("only valid string values are 'fro', found {}".format(p)) elif isinstance(p, (int, float)): return vector_norm(x, porder=p, axis=axis, keepdim=keepdim, asvector=True, name=name) else: raise ValueError('only valid p type is string or float, found {}'.format(type(p))) if isinstance(axis, tuple): axis = list(axis) if (isinstance(axis, list) and (len(axis) == 1)): axis = axis[0] if isinstance(axis, int): if isinstance(p, str): if (p == 'fro'): return vector_norm(x, porder=2, axis=axis, keepdim=keepdim, asvector=False, name=name) else: raise ValueError("only valid string values are 'fro', found {}".format(p)) elif isinstance(p, (int, float)): return vector_norm(x, axis=axis, porder=p, keepdim=keepdim, asvector=False, name=name) else: raise ValueError('unspport p for p-order vector norm. except float, found {}'.format(p)) elif (isinstance(axis, list) and (len(axis) == 2)): if (p == 'fro'): return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name) elif ((p == np.inf) or (p == (- np.inf))): return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name) elif (p == 0): raise ValueError('just suport axis type int or list (length of list <=1) if p = 0, found {}'.format(axis)) else: return p_matrix_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name) else: raise ValueError('except axis type int or list (length of list <=2), found {}'.format(axis))
def dist(x, y, p=2, name=None): '\n\n This OP returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure\n of distance. The shapes of x and y must be broadcastable. The definition is as follows, for\n details, please refer to the `numpy\'s broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_:\n\n - Each input has at least one dimension.\n - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.\n\n Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be\n obtained as follows:\n\n 1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the\n tensor with fewer dimensions.\n\n For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the\n dimension of y.\n\n x (4-D Tensor): 8 x 1 x 6 x 1\n\n y (4-D Tensor): 1 x 7 x 1 x 5\n\n 2. Determine the size of each dimension of the output z: choose the maximum value from the\n two input dimensions.\n\n z (4-D Tensor): 8 x 7 x 6 x 5\n\n If the number of dimensions of the two inputs are the same, the size of the output can be\n directly determined in step 2. When p takes different values, the norm formula is as follows:\n\n When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.\n\n .. math::\n\n ||z||_{0}=\\lim_{p \\\\rightarrow 0}\\sum_{i=1}^{m}|z_i|^{p}\n\n When p = inf, the inf-norm of z is the maximum element of z.\n\n .. math::\n\n ||z||_\\infty=\\max_i |z_i|\n\n When p = -inf, the negative-inf-norm of z is the minimum element of z.\n\n .. math::\n\n ||z||_{-\\infty}=\\min_i |z_i|\n\n Otherwise, the p-norm of z follows the formula,\n\n .. math::\n\n ||z||_{p}=(\\sum_{i=1}^{m}|z_i|^p)^{\\\\frac{1}{p}}\n\n Args:\n x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.\n y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.\n p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.\n\n Returns:\n Tensor: Tensor that is the p-norm of (x - y).\n\n Examples:\n .. code-block:: python\n\n import paddle\n import numpy as np\n\n x = paddle.to_tensor(np.array([[3, 3],[3, 3]]), "float32")\n y = paddle.to_tensor(np.array([[3, 3],[3, 1]]), "float32")\n out = paddle.dist(x, y, 0)\n print(out) # out = [1.]\n\n out = paddle.dist(x, y, 2)\n print(out) # out = [2.]\n\n out = paddle.dist(x, y, float("inf"))\n print(out) # out = [2.]\n\n out = paddle.dist(x, y, float("-inf"))\n print(out) # out = [0.]\n ' check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist') check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist') check_type(p, 'p', (float, int), 'dist') helper = LayerHelper('dist', **locals()) out = helper.create_variable_for_type_inference(x.dtype) inputs = {'X': [x], 'Y': [y]} outputs = {'Out': [out]} attrs = {'p': float(p)} helper.append_op(type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs) return out
-1,655,034,432,683,055,400
This OP returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure of distance. The shapes of x and y must be broadcastable. The definition is as follows, for details, please refer to the `numpy's broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_: - Each input has at least one dimension. - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist. Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be obtained as follows: 1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the tensor with fewer dimensions. For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the dimension of y. x (4-D Tensor): 8 x 1 x 6 x 1 y (4-D Tensor): 1 x 7 x 1 x 5 2. Determine the size of each dimension of the output z: choose the maximum value from the two input dimensions. z (4-D Tensor): 8 x 7 x 6 x 5 If the number of dimensions of the two inputs are the same, the size of the output can be directly determined in step 2. When p takes different values, the norm formula is as follows: When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z. .. math:: ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p} When p = inf, the inf-norm of z is the maximum element of z. .. math:: ||z||_\infty=\max_i |z_i| When p = -inf, the negative-inf-norm of z is the minimum element of z. .. math:: ||z||_{-\infty}=\min_i |z_i| Otherwise, the p-norm of z follows the formula, .. math:: ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}} Args: x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64. y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64. p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2. Returns: Tensor: Tensor that is the p-norm of (x - y). Examples: .. code-block:: python import paddle import numpy as np x = paddle.to_tensor(np.array([[3, 3],[3, 3]]), "float32") y = paddle.to_tensor(np.array([[3, 3],[3, 1]]), "float32") out = paddle.dist(x, y, 0) print(out) # out = [1.] out = paddle.dist(x, y, 2) print(out) # out = [2.] out = paddle.dist(x, y, float("inf")) print(out) # out = [2.] out = paddle.dist(x, y, float("-inf")) print(out) # out = [0.]
python/paddle/tensor/linalg.py
dist
DevilCarp/Paddle
python
def dist(x, y, p=2, name=None): '\n\n This OP returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure\n of distance. The shapes of x and y must be broadcastable. The definition is as follows, for\n details, please refer to the `numpy\'s broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_:\n\n - Each input has at least one dimension.\n - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.\n\n Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be\n obtained as follows:\n\n 1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the\n tensor with fewer dimensions.\n\n For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the\n dimension of y.\n\n x (4-D Tensor): 8 x 1 x 6 x 1\n\n y (4-D Tensor): 1 x 7 x 1 x 5\n\n 2. Determine the size of each dimension of the output z: choose the maximum value from the\n two input dimensions.\n\n z (4-D Tensor): 8 x 7 x 6 x 5\n\n If the number of dimensions of the two inputs are the same, the size of the output can be\n directly determined in step 2. When p takes different values, the norm formula is as follows:\n\n When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.\n\n .. math::\n\n ||z||_{0}=\\lim_{p \\\\rightarrow 0}\\sum_{i=1}^{m}|z_i|^{p}\n\n When p = inf, the inf-norm of z is the maximum element of z.\n\n .. math::\n\n ||z||_\\infty=\\max_i |z_i|\n\n When p = -inf, the negative-inf-norm of z is the minimum element of z.\n\n .. math::\n\n ||z||_{-\\infty}=\\min_i |z_i|\n\n Otherwise, the p-norm of z follows the formula,\n\n .. math::\n\n ||z||_{p}=(\\sum_{i=1}^{m}|z_i|^p)^{\\\\frac{1}{p}}\n\n Args:\n x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.\n y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.\n p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.\n\n Returns:\n Tensor: Tensor that is the p-norm of (x - y).\n\n Examples:\n .. code-block:: python\n\n import paddle\n import numpy as np\n\n x = paddle.to_tensor(np.array([[3, 3],[3, 3]]), "float32")\n y = paddle.to_tensor(np.array([[3, 3],[3, 1]]), "float32")\n out = paddle.dist(x, y, 0)\n print(out) # out = [1.]\n\n out = paddle.dist(x, y, 2)\n print(out) # out = [2.]\n\n out = paddle.dist(x, y, float("inf"))\n print(out) # out = [2.]\n\n out = paddle.dist(x, y, float("-inf"))\n print(out) # out = [0.]\n ' check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist') check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist') check_type(p, 'p', (float, int), 'dist') helper = LayerHelper('dist', **locals()) out = helper.create_variable_for_type_inference(x.dtype) inputs = {'X': [x], 'Y': [y]} outputs = {'Out': [out]} attrs = {'p': float(p)} helper.append_op(type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs) return out
def cond(x, p=None, name=None): "\n\n Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.\n\n Args:\n x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions\n for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.\n And the input data type could be ``float32`` or ``float64``.\n p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,\n `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.\n name (str, optional): The default value is `None`. Normally there is no need for\n user to set this property. For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.\n\n Examples:\n .. code-block:: python\n\n import paddle\n import numpy as np\n\n x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])\n\n # compute conditional number when p is None\n out = paddle.linalg.cond(x)\n # out.numpy() [1.4142135]\n\n # compute conditional number when order of the norm is 'fro'\n out_fro = paddle.linalg.cond(x, p='fro')\n # out_fro.numpy() [3.1622777]\n\n # compute conditional number when order of the norm is 'nuc'\n out_nuc = paddle.linalg.cond(x, p='nuc')\n # out_nuc.numpy() [9.2426405]\n\n # compute conditional number when order of the norm is 1\n out_1 = paddle.linalg.cond(x, p=1)\n # out_1.numpy() [2.]\n\n # compute conditional number when order of the norm is -1\n out_minus_1 = paddle.linalg.cond(x, p=-1)\n # out_minus_1.numpy() [1.]\n\n # compute conditional number when order of the norm is 2\n out_2 = paddle.linalg.cond(x, p=2)\n # out_2.numpy() [1.4142135]\n\n # compute conditional number when order of the norm is -1\n out_minus_2 = paddle.linalg.cond(x, p=-2)\n # out_minus_2.numpy() [0.70710677]\n\n # compute conditional number when order of the norm is inf\n out_inf = paddle.linalg.cond(x, p=np.inf)\n # out_inf.numpy() [2.]\n\n # compute conditional number when order of the norm is -inf\n out_minus_inf = paddle.linalg.cond(x, p=-np.inf)\n # out_minus_inf.numpy() [1.]\n\n a = paddle.to_tensor(np.random.randn(2, 4, 4).astype('float32'))\n # a.numpy()\n # [[[ 0.14063153 -0.996288 0.7996131 -0.02571543]\n # [-0.16303636 1.5534962 -0.49919784 -0.04402903]\n # [-1.1341571 -0.6022629 0.5445269 0.29154757]\n # [-0.16816919 -0.30972657 1.7521842 -0.5402487 ]]\n # [[-0.58081484 0.12402827 0.7229862 -0.55046535]\n # [-0.15178485 -1.1604939 0.75810957 0.30971205]\n # [-0.9669573 1.0940945 -0.27363303 -0.35416734]\n # [-1.216529 2.0018666 -0.7773689 -0.17556527]]]\n a_cond_fro = paddle.linalg.cond(a, p='fro')\n # a_cond_fro.numpy() [31.572273 28.120834]\n\n b = paddle.to_tensor(np.random.randn(2, 3, 4).astype('float64'))\n # b.numpy()\n # [[[ 1.61707487 0.46829144 0.38130416 0.82546736]\n # [-1.72710298 0.08866375 -0.62518804 0.16128892]\n # [-0.02822879 -1.67764516 0.11141444 0.3220113 ]]\n # [[ 0.22524372 0.62474921 -0.85503233 -1.03960523]\n # [-0.76620689 0.56673047 0.85064753 -0.45158196]\n # [ 1.47595418 2.23646462 1.5701758 0.10497519]]]\n b_cond_2 = paddle.linalg.cond(b, p=2)\n # b_cond_2.numpy() [3.30064451 2.51976252]\n\n " def mat_norm(input, porder=1.0, axis=None): '\n NOTE:\n Calculate the matrix norm of a square matrix or batches of square matrices,\n when porder is in (1, -1, inf, -inf)\n ' reduce_all = (True if ((axis is None) or (axis == [])) else False) axis = (axis if ((axis != None) and (axis != [])) else [0]) keepdim = False if paddle.in_dynamic_mode(): abs_out = _C_ops.abs(input) sum_out = _C_ops.reduce_sum(abs_out, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) if ((porder == 1) or (porder == np.inf)): return _C_ops.reduce_max(sum_out, 'dim', [(- 1)], 'keepdim', keepdim, 'reduce_all', reduce_all) if ((porder == (- 1)) or (porder == (- np.inf))): return _C_ops.reduce_min(sum_out, 'dim', [(- 1)], 'keepdim', keepdim, 'reduce_all', reduce_all) block = LayerHelper('norm', **locals()) abs_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) sum_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) out = block.create_variable_for_type_inference(dtype=block.input_dtype()) block.append_op(type='abs', inputs={'X': input}, outputs={'Out': abs_out}) block.append_op(type='reduce_sum', inputs={'X': abs_out}, outputs={'Out': sum_out}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) if ((porder == 1) or (porder == np.inf)): block.append_op(type='reduce_max', inputs={'X': sum_out}, outputs={'Out': out}, attrs={'dim': [(- 1)], 'keep_dim': keepdim, 'reduce_all': reduce_all}) if ((porder == (- 1)) or (porder == (- np.inf))): block.append_op(type='reduce_min', inputs={'X': sum_out}, outputs={'Out': out}, attrs={'dim': [(- 1)], 'keep_dim': keepdim, 'reduce_all': reduce_all}) return out def fro_norm(input, porder=2, axis=[(- 1)]): '\n NOTE:\n Calculate the frobenius norm of a square matrix or batches of square matrices.\n ' reduce_all = (True if ((axis is None) or (axis == [])) else False) keepdim = False if paddle.in_dynamic_mode(): pow_out = _C_ops.pow(input, 'factor', porder) sum_out_1 = _C_ops.reduce_sum(pow_out, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) sum_out_2 = _C_ops.reduce_sum(sum_out_1, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) return _C_ops.pow(sum_out_2, 'factor', float((1.0 / porder))) block = LayerHelper('norm', **locals()) pow_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) sum_out_1 = block.create_variable_for_type_inference(dtype=block.input_dtype()) sum_out_2 = block.create_variable_for_type_inference(dtype=block.input_dtype()) out = block.create_variable_for_type_inference(dtype=block.input_dtype()) block.append_op(type='pow', inputs={'X': input}, outputs={'Out': pow_out}, attrs={'factor': porder}) block.append_op(type='reduce_sum', inputs={'X': pow_out}, outputs={'Out': sum_out_1}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) block.append_op(type='reduce_sum', inputs={'X': sum_out_1}, outputs={'Out': sum_out_2}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) block.append_op(type='pow', inputs={'X': sum_out_2}, outputs={'Out': out}, attrs={'factor': float((1.0 / porder))}) return out def svd_norm(input, porder, axis=[(- 1)]): '\n NOTE:\n Calculate the matrix norm, which is related to singular values, of a matrix\n or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.\n ' reduce_all = (True if ((axis is None) or (axis == [])) else False) keepdim = False (u, s, vh) = svd(input, full_matrices=False) if paddle.in_dynamic_mode(): if (porder == 'nuc'): return _C_ops.reduce_sum(s, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) max_out = _C_ops.reduce_max(s, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) min_out = _C_ops.reduce_min(s, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) if (porder == 2): return _C_ops.elementwise_div(max_out, min_out, 'aixs', axis, 'use_mkldnn', False) if (porder == (- 2)): return _C_ops.elementwise_div(min_out, max_out, 'aixs', axis, 'use_mkldnn', False) block = LayerHelper('norm', **locals()) out = block.create_variable_for_type_inference(dtype=block.input_dtype()) if (porder == 'nuc'): block.append_op(type='reduce_sum', inputs={'X': s}, outputs={'Out': out}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) return out max_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) min_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) block.append_op(type='reduce_max', inputs={'X': s}, outputs={'Out': max_out}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) block.append_op(type='reduce_min', inputs={'X': s}, outputs={'Out': min_out}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) if (porder == 2): block.append_op(type='elementwise_div', inputs={'X': max_out, 'Y': min_out}, outputs={'Out': out}, attrs={'aixs': axis, 'use_mkldnn': False}) return out if (porder == (- 2)): block.append_op(type='elementwise_div', inputs={'X': min_out, 'Y': max_out}, outputs={'Out': out}, attrs={'aixs': axis, 'use_mkldnn': False}) return out def empty_tensor(input, shape): if paddle.in_dynamic_mode(): return input.reshape(shape) raise ValueError('only support x is nonempty tensor in static mode') x_shape = list(x.shape) if (not (len(x_shape) >= 2)): raise ValueError(('input should be a matrix or batches of matrices, ' + 'but the dimention of received input is {}'.format(len(x_shape)))) if (p == None): p = 2 x_size = (0 if (0 in x_shape) else 1) if (p in ('fro', 'nuc', 1, (- 1), np.inf, (- np.inf))): if (x_shape[(len(x_shape) - 1)] == x_shape[(len(x_shape) - 2)]): if (x_size == 0): return empty_tensor(x, x_shape[:(- 2)]) x_inv = x.inverse() if (p == 'fro'): return (fro_norm(x) * fro_norm(x_inv)) if (p == 'nuc'): return (svd_norm(x, p) * svd_norm(x_inv, p)) if (p in (1, (- 1))): return (mat_norm(x, porder=p, axis=[(- 2)]) * mat_norm(x_inv, porder=p, axis=[(- 2)])) if (p in (np.inf, (- np.inf))): return (mat_norm(x, porder=p, axis=[(- 1)]) * mat_norm(x_inv, porder=p, axis=[(- 1)])) else: raise ValueError(('only support p is {} when input is a '.format(p) + 'square matrix or batches of square matrices')) elif (p in (2, (- 2))): if (x_size == 0): return empty_tensor(x, x_shape[:(- 2)]) return svd_norm(x, porder=p) else: raise ValueError(("unsupported {} for p, only supporting ('fro', 'nuc', ".format(p) + '1, -1, 2, -2, inf, -inf) or none'))
-8,999,208,571,252,141,000
Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``. Args: x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``. And the input data type could be ``float32`` or ``float64``. p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`, `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`. name (str, optional): The default value is `None`. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: computing results of condition number, its data type is the same as input Tensor ``x``. Examples: .. code-block:: python import paddle import numpy as np x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]]) # compute conditional number when p is None out = paddle.linalg.cond(x) # out.numpy() [1.4142135] # compute conditional number when order of the norm is 'fro' out_fro = paddle.linalg.cond(x, p='fro') # out_fro.numpy() [3.1622777] # compute conditional number when order of the norm is 'nuc' out_nuc = paddle.linalg.cond(x, p='nuc') # out_nuc.numpy() [9.2426405] # compute conditional number when order of the norm is 1 out_1 = paddle.linalg.cond(x, p=1) # out_1.numpy() [2.] # compute conditional number when order of the norm is -1 out_minus_1 = paddle.linalg.cond(x, p=-1) # out_minus_1.numpy() [1.] # compute conditional number when order of the norm is 2 out_2 = paddle.linalg.cond(x, p=2) # out_2.numpy() [1.4142135] # compute conditional number when order of the norm is -1 out_minus_2 = paddle.linalg.cond(x, p=-2) # out_minus_2.numpy() [0.70710677] # compute conditional number when order of the norm is inf out_inf = paddle.linalg.cond(x, p=np.inf) # out_inf.numpy() [2.] # compute conditional number when order of the norm is -inf out_minus_inf = paddle.linalg.cond(x, p=-np.inf) # out_minus_inf.numpy() [1.] a = paddle.to_tensor(np.random.randn(2, 4, 4).astype('float32')) # a.numpy() # [[[ 0.14063153 -0.996288 0.7996131 -0.02571543] # [-0.16303636 1.5534962 -0.49919784 -0.04402903] # [-1.1341571 -0.6022629 0.5445269 0.29154757] # [-0.16816919 -0.30972657 1.7521842 -0.5402487 ]] # [[-0.58081484 0.12402827 0.7229862 -0.55046535] # [-0.15178485 -1.1604939 0.75810957 0.30971205] # [-0.9669573 1.0940945 -0.27363303 -0.35416734] # [-1.216529 2.0018666 -0.7773689 -0.17556527]]] a_cond_fro = paddle.linalg.cond(a, p='fro') # a_cond_fro.numpy() [31.572273 28.120834] b = paddle.to_tensor(np.random.randn(2, 3, 4).astype('float64')) # b.numpy() # [[[ 1.61707487 0.46829144 0.38130416 0.82546736] # [-1.72710298 0.08866375 -0.62518804 0.16128892] # [-0.02822879 -1.67764516 0.11141444 0.3220113 ]] # [[ 0.22524372 0.62474921 -0.85503233 -1.03960523] # [-0.76620689 0.56673047 0.85064753 -0.45158196] # [ 1.47595418 2.23646462 1.5701758 0.10497519]]] b_cond_2 = paddle.linalg.cond(b, p=2) # b_cond_2.numpy() [3.30064451 2.51976252]
python/paddle/tensor/linalg.py
cond
DevilCarp/Paddle
python
def cond(x, p=None, name=None): "\n\n Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.\n\n Args:\n x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions\n for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.\n And the input data type could be ``float32`` or ``float64``.\n p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,\n `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.\n name (str, optional): The default value is `None`. Normally there is no need for\n user to set this property. For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.\n\n Examples:\n .. code-block:: python\n\n import paddle\n import numpy as np\n\n x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])\n\n # compute conditional number when p is None\n out = paddle.linalg.cond(x)\n # out.numpy() [1.4142135]\n\n # compute conditional number when order of the norm is 'fro'\n out_fro = paddle.linalg.cond(x, p='fro')\n # out_fro.numpy() [3.1622777]\n\n # compute conditional number when order of the norm is 'nuc'\n out_nuc = paddle.linalg.cond(x, p='nuc')\n # out_nuc.numpy() [9.2426405]\n\n # compute conditional number when order of the norm is 1\n out_1 = paddle.linalg.cond(x, p=1)\n # out_1.numpy() [2.]\n\n # compute conditional number when order of the norm is -1\n out_minus_1 = paddle.linalg.cond(x, p=-1)\n # out_minus_1.numpy() [1.]\n\n # compute conditional number when order of the norm is 2\n out_2 = paddle.linalg.cond(x, p=2)\n # out_2.numpy() [1.4142135]\n\n # compute conditional number when order of the norm is -1\n out_minus_2 = paddle.linalg.cond(x, p=-2)\n # out_minus_2.numpy() [0.70710677]\n\n # compute conditional number when order of the norm is inf\n out_inf = paddle.linalg.cond(x, p=np.inf)\n # out_inf.numpy() [2.]\n\n # compute conditional number when order of the norm is -inf\n out_minus_inf = paddle.linalg.cond(x, p=-np.inf)\n # out_minus_inf.numpy() [1.]\n\n a = paddle.to_tensor(np.random.randn(2, 4, 4).astype('float32'))\n # a.numpy()\n # [[[ 0.14063153 -0.996288 0.7996131 -0.02571543]\n # [-0.16303636 1.5534962 -0.49919784 -0.04402903]\n # [-1.1341571 -0.6022629 0.5445269 0.29154757]\n # [-0.16816919 -0.30972657 1.7521842 -0.5402487 ]]\n # [[-0.58081484 0.12402827 0.7229862 -0.55046535]\n # [-0.15178485 -1.1604939 0.75810957 0.30971205]\n # [-0.9669573 1.0940945 -0.27363303 -0.35416734]\n # [-1.216529 2.0018666 -0.7773689 -0.17556527]]]\n a_cond_fro = paddle.linalg.cond(a, p='fro')\n # a_cond_fro.numpy() [31.572273 28.120834]\n\n b = paddle.to_tensor(np.random.randn(2, 3, 4).astype('float64'))\n # b.numpy()\n # [[[ 1.61707487 0.46829144 0.38130416 0.82546736]\n # [-1.72710298 0.08866375 -0.62518804 0.16128892]\n # [-0.02822879 -1.67764516 0.11141444 0.3220113 ]]\n # [[ 0.22524372 0.62474921 -0.85503233 -1.03960523]\n # [-0.76620689 0.56673047 0.85064753 -0.45158196]\n # [ 1.47595418 2.23646462 1.5701758 0.10497519]]]\n b_cond_2 = paddle.linalg.cond(b, p=2)\n # b_cond_2.numpy() [3.30064451 2.51976252]\n\n " def mat_norm(input, porder=1.0, axis=None): '\n NOTE:\n Calculate the matrix norm of a square matrix or batches of square matrices,\n when porder is in (1, -1, inf, -inf)\n ' reduce_all = (True if ((axis is None) or (axis == [])) else False) axis = (axis if ((axis != None) and (axis != [])) else [0]) keepdim = False if paddle.in_dynamic_mode(): abs_out = _C_ops.abs(input) sum_out = _C_ops.reduce_sum(abs_out, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) if ((porder == 1) or (porder == np.inf)): return _C_ops.reduce_max(sum_out, 'dim', [(- 1)], 'keepdim', keepdim, 'reduce_all', reduce_all) if ((porder == (- 1)) or (porder == (- np.inf))): return _C_ops.reduce_min(sum_out, 'dim', [(- 1)], 'keepdim', keepdim, 'reduce_all', reduce_all) block = LayerHelper('norm', **locals()) abs_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) sum_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) out = block.create_variable_for_type_inference(dtype=block.input_dtype()) block.append_op(type='abs', inputs={'X': input}, outputs={'Out': abs_out}) block.append_op(type='reduce_sum', inputs={'X': abs_out}, outputs={'Out': sum_out}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) if ((porder == 1) or (porder == np.inf)): block.append_op(type='reduce_max', inputs={'X': sum_out}, outputs={'Out': out}, attrs={'dim': [(- 1)], 'keep_dim': keepdim, 'reduce_all': reduce_all}) if ((porder == (- 1)) or (porder == (- np.inf))): block.append_op(type='reduce_min', inputs={'X': sum_out}, outputs={'Out': out}, attrs={'dim': [(- 1)], 'keep_dim': keepdim, 'reduce_all': reduce_all}) return out def fro_norm(input, porder=2, axis=[(- 1)]): '\n NOTE:\n Calculate the frobenius norm of a square matrix or batches of square matrices.\n ' reduce_all = (True if ((axis is None) or (axis == [])) else False) keepdim = False if paddle.in_dynamic_mode(): pow_out = _C_ops.pow(input, 'factor', porder) sum_out_1 = _C_ops.reduce_sum(pow_out, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) sum_out_2 = _C_ops.reduce_sum(sum_out_1, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) return _C_ops.pow(sum_out_2, 'factor', float((1.0 / porder))) block = LayerHelper('norm', **locals()) pow_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) sum_out_1 = block.create_variable_for_type_inference(dtype=block.input_dtype()) sum_out_2 = block.create_variable_for_type_inference(dtype=block.input_dtype()) out = block.create_variable_for_type_inference(dtype=block.input_dtype()) block.append_op(type='pow', inputs={'X': input}, outputs={'Out': pow_out}, attrs={'factor': porder}) block.append_op(type='reduce_sum', inputs={'X': pow_out}, outputs={'Out': sum_out_1}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) block.append_op(type='reduce_sum', inputs={'X': sum_out_1}, outputs={'Out': sum_out_2}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) block.append_op(type='pow', inputs={'X': sum_out_2}, outputs={'Out': out}, attrs={'factor': float((1.0 / porder))}) return out def svd_norm(input, porder, axis=[(- 1)]): '\n NOTE:\n Calculate the matrix norm, which is related to singular values, of a matrix\n or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.\n ' reduce_all = (True if ((axis is None) or (axis == [])) else False) keepdim = False (u, s, vh) = svd(input, full_matrices=False) if paddle.in_dynamic_mode(): if (porder == 'nuc'): return _C_ops.reduce_sum(s, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) max_out = _C_ops.reduce_max(s, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) min_out = _C_ops.reduce_min(s, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) if (porder == 2): return _C_ops.elementwise_div(max_out, min_out, 'aixs', axis, 'use_mkldnn', False) if (porder == (- 2)): return _C_ops.elementwise_div(min_out, max_out, 'aixs', axis, 'use_mkldnn', False) block = LayerHelper('norm', **locals()) out = block.create_variable_for_type_inference(dtype=block.input_dtype()) if (porder == 'nuc'): block.append_op(type='reduce_sum', inputs={'X': s}, outputs={'Out': out}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) return out max_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) min_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) block.append_op(type='reduce_max', inputs={'X': s}, outputs={'Out': max_out}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) block.append_op(type='reduce_min', inputs={'X': s}, outputs={'Out': min_out}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) if (porder == 2): block.append_op(type='elementwise_div', inputs={'X': max_out, 'Y': min_out}, outputs={'Out': out}, attrs={'aixs': axis, 'use_mkldnn': False}) return out if (porder == (- 2)): block.append_op(type='elementwise_div', inputs={'X': min_out, 'Y': max_out}, outputs={'Out': out}, attrs={'aixs': axis, 'use_mkldnn': False}) return out def empty_tensor(input, shape): if paddle.in_dynamic_mode(): return input.reshape(shape) raise ValueError('only support x is nonempty tensor in static mode') x_shape = list(x.shape) if (not (len(x_shape) >= 2)): raise ValueError(('input should be a matrix or batches of matrices, ' + 'but the dimention of received input is {}'.format(len(x_shape)))) if (p == None): p = 2 x_size = (0 if (0 in x_shape) else 1) if (p in ('fro', 'nuc', 1, (- 1), np.inf, (- np.inf))): if (x_shape[(len(x_shape) - 1)] == x_shape[(len(x_shape) - 2)]): if (x_size == 0): return empty_tensor(x, x_shape[:(- 2)]) x_inv = x.inverse() if (p == 'fro'): return (fro_norm(x) * fro_norm(x_inv)) if (p == 'nuc'): return (svd_norm(x, p) * svd_norm(x_inv, p)) if (p in (1, (- 1))): return (mat_norm(x, porder=p, axis=[(- 2)]) * mat_norm(x_inv, porder=p, axis=[(- 2)])) if (p in (np.inf, (- np.inf))): return (mat_norm(x, porder=p, axis=[(- 1)]) * mat_norm(x_inv, porder=p, axis=[(- 1)])) else: raise ValueError(('only support p is {} when input is a '.format(p) + 'square matrix or batches of square matrices')) elif (p in (2, (- 2))): if (x_size == 0): return empty_tensor(x, x_shape[:(- 2)]) return svd_norm(x, porder=p) else: raise ValueError(("unsupported {} for p, only supporting ('fro', 'nuc', ".format(p) + '1, -1, 2, -2, inf, -inf) or none'))
def dot(x, y, name=None): "\n This operator calculates inner product for vectors.\n\n .. note::\n Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix\n is the batch dimension, which means that the vectors of multiple batches are dotted.\n\n Parameters:\n x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``\n y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``\n name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`\n\n Returns:\n Tensor: the calculated result Tensor.\n\n Examples:\n\n .. code-block:: python\n\n import paddle\n import numpy as np\n\n x_data = np.random.uniform(0.1, 1, [10]).astype(np.float32)\n y_data = np.random.uniform(1, 3, [10]).astype(np.float32)\n x = paddle.to_tensor(x_data)\n y = paddle.to_tensor(y_data)\n z = paddle.dot(x, y)\n print(z)\n\n " op_type = 'dot' if paddle.in_dynamic_mode(): op = getattr(_C_ops, op_type) return op(x, y) assert (x is not None), 'x cannot be None in {}'.format(op_type) assert (y is not None), 'y cannot be None in {}'.format(op_type) check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], op_type) check_variable_and_dtype(y, 'y', ['float32', 'float64', 'int32', 'int64'], op_type) helper = LayerHelper(op_type, **locals()) if (name is None): out = helper.create_variable_for_type_inference(dtype=x.dtype) else: out = helper.create_variable(name=name, dtype=x.dtype, persistable=False) helper.append_op(type='dot', inputs={'X': x, 'Y': y}, attrs={}, outputs={'Out': out}) return out
-8,485,889,732,085,839,000
This operator calculates inner product for vectors. .. note:: Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix is the batch dimension, which means that the vectors of multiple batches are dotted. Parameters: x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64`` y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64`` name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name` Returns: Tensor: the calculated result Tensor. Examples: .. code-block:: python import paddle import numpy as np x_data = np.random.uniform(0.1, 1, [10]).astype(np.float32) y_data = np.random.uniform(1, 3, [10]).astype(np.float32) x = paddle.to_tensor(x_data) y = paddle.to_tensor(y_data) z = paddle.dot(x, y) print(z)
python/paddle/tensor/linalg.py
dot
DevilCarp/Paddle
python
def dot(x, y, name=None): "\n This operator calculates inner product for vectors.\n\n .. note::\n Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix\n is the batch dimension, which means that the vectors of multiple batches are dotted.\n\n Parameters:\n x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``\n y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``\n name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`\n\n Returns:\n Tensor: the calculated result Tensor.\n\n Examples:\n\n .. code-block:: python\n\n import paddle\n import numpy as np\n\n x_data = np.random.uniform(0.1, 1, [10]).astype(np.float32)\n y_data = np.random.uniform(1, 3, [10]).astype(np.float32)\n x = paddle.to_tensor(x_data)\n y = paddle.to_tensor(y_data)\n z = paddle.dot(x, y)\n print(z)\n\n " op_type = 'dot' if paddle.in_dynamic_mode(): op = getattr(_C_ops, op_type) return op(x, y) assert (x is not None), 'x cannot be None in {}'.format(op_type) assert (y is not None), 'y cannot be None in {}'.format(op_type) check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], op_type) check_variable_and_dtype(y, 'y', ['float32', 'float64', 'int32', 'int64'], op_type) helper = LayerHelper(op_type, **locals()) if (name is None): out = helper.create_variable_for_type_inference(dtype=x.dtype) else: out = helper.create_variable(name=name, dtype=x.dtype, persistable=False) helper.append_op(type='dot', inputs={'X': x, 'Y': y}, attrs={}, outputs={'Out': out}) return out
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None): "\n Estimate the covariance matrix of the input variables, given data and weights.\n\n A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.\n For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix \n element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.\n\n Parameters:\n x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.\n rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True\n ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True\n fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None\n aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None\n name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`\n\n Returns:\n Tensor: The covariance matrix Tensor of the variables.\n\n Examples:\n\n .. code-block:: python\n\n import paddle\n\n xt = paddle.rand((3,4))\n paddle.linalg.cov(xt)\n\n '''\n Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,\n [[0.07918842, 0.06127326, 0.01493049],\n [0.06127326, 0.06166256, 0.00302668],\n [0.01493049, 0.00302668, 0.01632146]])\n '''\n " op_type = 'cov' if ((len(x.shape) > 2) or (len(x.shape) < 1)): raise ValueError(('Input(x) only support N-D (1<=N<=2) tensor in cov, but received length of Input(input) is %s.' % len(x.shape))) check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov') nx = x if (len(x.shape) == 1): nx = x.reshape((1, (- 1))) if ((not rowvar) and (nx.shape[0] != 1)): nx = nx.t() w = None observation_num = nx.shape[1] if (fweights is not None): w = fweights.astype(nx.dtype) if (len(w.shape) > 1): raise ValueError(('Input(fweights) only support N-D (N<=1) tensor in cov, but received shape of Input(input) is %s.' % len(fweights.shape))) if (fweights.shape[0] != observation_num): raise ValueError("The number of Input(fweights) should equal to x's dim[1]: {}, but received size of Input(fweights) is {}.".format(observation_num, fweights.shape[0])) if (fweights.min() < 0): raise ValueError('The value of Input(fweights) cannot be negtive, but received min of Input(fweights) is {}.'.format(fweights.min())) if (not paddle.all((fweights == paddle.round(fweights.astype('float64'))))): raise ValueError('Input(fweights) must be integer ') if (aweights is not None): aw = aweights.astype(nx.dtype) if (len(aw.shape) > 1): raise ValueError(('Input(aweights) only support N-D (N<=1) tensor in cov, but received length of Input(input) is %s.' % len(aweights.shape))) check_variable_and_dtype(aweights, 'dtype', ['float32', 'float64'], 'cov') if (aweights.shape[0] != observation_num): raise ValueError("The number of Input(aweights) should equal to x's dim[1]: {}, but received size of Input(aweights) is {}.".format(observation_num, aweights.shape[0])) if (aweights.min() < 0): raise ValueError('The value of Input(aweights) cannot be negtive, but received min of Input(aweights) is {}.'.format(aweights.min())) if (w is not None): w = (w * aw) else: w = aw w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype) if ((fweights is not None) or (aweights is not None)): w_sum = w.sum() if (w_sum.item() == 0): raise ValueError("The sum of weights is zero, can't be normalized.") if (w is not None): nx_w = (nx * w) avg = (nx_w.sum(axis=1) / w_sum) else: avg = (nx.sum(axis=1) / w_sum) nx_w = nx if ((w is not None) and (aweights is not None) and (ddof == True)): norm_factor = (w_sum - ((w * aweights).sum() / w_sum)) else: norm_factor = (w_sum - ddof) if (norm_factor <= 0): norm_factor = paddle.to_tensor(0, dtype=nx.dtype) nx = (nx - avg.unsqueeze(1)) xxt = paddle.mm(nx, nx_w.t().conj()) cov = paddle.divide(xxt, norm_factor).squeeze() return cov
4,961,629,382,206,763,000
Estimate the covariance matrix of the input variables, given data and weights. A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix. For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself. Parameters: x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below. rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name` Returns: Tensor: The covariance matrix Tensor of the variables. Examples: .. code-block:: python import paddle xt = paddle.rand((3,4)) paddle.linalg.cov(xt) ''' Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True, [[0.07918842, 0.06127326, 0.01493049], [0.06127326, 0.06166256, 0.00302668], [0.01493049, 0.00302668, 0.01632146]]) '''
python/paddle/tensor/linalg.py
cov
DevilCarp/Paddle
python
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None): "\n Estimate the covariance matrix of the input variables, given data and weights.\n\n A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.\n For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix \n element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.\n\n Parameters:\n x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.\n rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True\n ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True\n fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None\n aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None\n name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`\n\n Returns:\n Tensor: The covariance matrix Tensor of the variables.\n\n Examples:\n\n .. code-block:: python\n\n import paddle\n\n xt = paddle.rand((3,4))\n paddle.linalg.cov(xt)\n\n '\n Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,\n [[0.07918842, 0.06127326, 0.01493049],\n [0.06127326, 0.06166256, 0.00302668],\n [0.01493049, 0.00302668, 0.01632146]])\n '\n " op_type = 'cov' if ((len(x.shape) > 2) or (len(x.shape) < 1)): raise ValueError(('Input(x) only support N-D (1<=N<=2) tensor in cov, but received length of Input(input) is %s.' % len(x.shape))) check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov') nx = x if (len(x.shape) == 1): nx = x.reshape((1, (- 1))) if ((not rowvar) and (nx.shape[0] != 1)): nx = nx.t() w = None observation_num = nx.shape[1] if (fweights is not None): w = fweights.astype(nx.dtype) if (len(w.shape) > 1): raise ValueError(('Input(fweights) only support N-D (N<=1) tensor in cov, but received shape of Input(input) is %s.' % len(fweights.shape))) if (fweights.shape[0] != observation_num): raise ValueError("The number of Input(fweights) should equal to x's dim[1]: {}, but received size of Input(fweights) is {}.".format(observation_num, fweights.shape[0])) if (fweights.min() < 0): raise ValueError('The value of Input(fweights) cannot be negtive, but received min of Input(fweights) is {}.'.format(fweights.min())) if (not paddle.all((fweights == paddle.round(fweights.astype('float64'))))): raise ValueError('Input(fweights) must be integer ') if (aweights is not None): aw = aweights.astype(nx.dtype) if (len(aw.shape) > 1): raise ValueError(('Input(aweights) only support N-D (N<=1) tensor in cov, but received length of Input(input) is %s.' % len(aweights.shape))) check_variable_and_dtype(aweights, 'dtype', ['float32', 'float64'], 'cov') if (aweights.shape[0] != observation_num): raise ValueError("The number of Input(aweights) should equal to x's dim[1]: {}, but received size of Input(aweights) is {}.".format(observation_num, aweights.shape[0])) if (aweights.min() < 0): raise ValueError('The value of Input(aweights) cannot be negtive, but received min of Input(aweights) is {}.'.format(aweights.min())) if (w is not None): w = (w * aw) else: w = aw w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype) if ((fweights is not None) or (aweights is not None)): w_sum = w.sum() if (w_sum.item() == 0): raise ValueError("The sum of weights is zero, can't be normalized.") if (w is not None): nx_w = (nx * w) avg = (nx_w.sum(axis=1) / w_sum) else: avg = (nx.sum(axis=1) / w_sum) nx_w = nx if ((w is not None) and (aweights is not None) and (ddof == True)): norm_factor = (w_sum - ((w * aweights).sum() / w_sum)) else: norm_factor = (w_sum - ddof) if (norm_factor <= 0): norm_factor = paddle.to_tensor(0, dtype=nx.dtype) nx = (nx - avg.unsqueeze(1)) xxt = paddle.mm(nx, nx_w.t().conj()) cov = paddle.divide(xxt, norm_factor).squeeze() return cov
def t(input, name=None): "\n Transpose <=2-D tensor.\n 0-D and 1-D tensors are returned as it is and 2-D tensor is equal to\n the paddle.transpose function which perm dimensions set 0 and 1.\n\n Args:\n input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float16, float32, float64, int32.\n name(str, optional): The default value is None. Normally there is no need for\n user to set this property. For more information, please refer to :ref:`api_guide_Name`\n Returns:\n Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.\n\n For Example:\n\n .. code-block:: text\n\n # Example 1 (0-D tensor)\n x = tensor([0.79])\n paddle.t(x) = tensor([0.79])\n\n # Example 2 (1-D tensor)\n x = tensor([0.79, 0.84, 0.32])\n paddle.t(x) = tensor([0.79, 0.84, 0.32])\n\n # Example 3 (2-D tensor)\n x = tensor([0.79, 0.84, 0.32],\n [0.64, 0.14, 0.57])\n paddle.t(x) = tensor([0.79, 0.64],\n [0.84, 0.14],\n [0.32, 0.57])\n\n Examples:\n\n .. code-block:: python\n\n import paddle\n x = paddle.ones(shape=[2, 3], dtype='int32')\n x_transposed = paddle.t(x)\n print(x_transposed.shape)\n # [3, 2]\n " if (len(input.shape) > 2): raise ValueError(('Input(input) only support N-D (N<=2) tensor, but received length of Input(input) is %s. Perhaps you can use paddle.tensor.transpose() instead.' % len(input.shape))) if paddle.in_dynamic_mode(): if (len(input.shape) == 1): return input perm = [1, 0] (out, _) = _C_ops.transpose2(input, 'axis', perm) return out check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64', 'int32', 'int64'], 'transpose') helper = LayerHelper('t', **locals()) out = helper.create_variable_for_type_inference(input.dtype) input_shape = helper.create_variable_for_type_inference(input.dtype) if (len(input.shape) == 1): out = input else: helper.append_op(type='transpose2', inputs={'X': [input]}, outputs={'Out': [out], 'XShape': [input_shape]}, attrs={'axis': [1, 0]}) return out
3,878,725,866,431,119,400
Transpose <=2-D tensor. 0-D and 1-D tensors are returned as it is and 2-D tensor is equal to the paddle.transpose function which perm dimensions set 0 and 1. Args: input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float16, float32, float64, int32. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64. For Example: .. code-block:: text # Example 1 (0-D tensor) x = tensor([0.79]) paddle.t(x) = tensor([0.79]) # Example 2 (1-D tensor) x = tensor([0.79, 0.84, 0.32]) paddle.t(x) = tensor([0.79, 0.84, 0.32]) # Example 3 (2-D tensor) x = tensor([0.79, 0.84, 0.32], [0.64, 0.14, 0.57]) paddle.t(x) = tensor([0.79, 0.64], [0.84, 0.14], [0.32, 0.57]) Examples: .. code-block:: python import paddle x = paddle.ones(shape=[2, 3], dtype='int32') x_transposed = paddle.t(x) print(x_transposed.shape) # [3, 2]
python/paddle/tensor/linalg.py
t
DevilCarp/Paddle
python
def t(input, name=None): "\n Transpose <=2-D tensor.\n 0-D and 1-D tensors are returned as it is and 2-D tensor is equal to\n the paddle.transpose function which perm dimensions set 0 and 1.\n\n Args:\n input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float16, float32, float64, int32.\n name(str, optional): The default value is None. Normally there is no need for\n user to set this property. For more information, please refer to :ref:`api_guide_Name`\n Returns:\n Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.\n\n For Example:\n\n .. code-block:: text\n\n # Example 1 (0-D tensor)\n x = tensor([0.79])\n paddle.t(x) = tensor([0.79])\n\n # Example 2 (1-D tensor)\n x = tensor([0.79, 0.84, 0.32])\n paddle.t(x) = tensor([0.79, 0.84, 0.32])\n\n # Example 3 (2-D tensor)\n x = tensor([0.79, 0.84, 0.32],\n [0.64, 0.14, 0.57])\n paddle.t(x) = tensor([0.79, 0.64],\n [0.84, 0.14],\n [0.32, 0.57])\n\n Examples:\n\n .. code-block:: python\n\n import paddle\n x = paddle.ones(shape=[2, 3], dtype='int32')\n x_transposed = paddle.t(x)\n print(x_transposed.shape)\n # [3, 2]\n " if (len(input.shape) > 2): raise ValueError(('Input(input) only support N-D (N<=2) tensor, but received length of Input(input) is %s. Perhaps you can use paddle.tensor.transpose() instead.' % len(input.shape))) if paddle.in_dynamic_mode(): if (len(input.shape) == 1): return input perm = [1, 0] (out, _) = _C_ops.transpose2(input, 'axis', perm) return out check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64', 'int32', 'int64'], 'transpose') helper = LayerHelper('t', **locals()) out = helper.create_variable_for_type_inference(input.dtype) input_shape = helper.create_variable_for_type_inference(input.dtype) if (len(input.shape) == 1): out = input else: helper.append_op(type='transpose2', inputs={'X': [input]}, outputs={'Out': [out], 'XShape': [input_shape]}, attrs={'axis': [1, 0]}) return out
def cross(x, y, axis=None, name=None): '\n Computes the cross product between two tensors along an axis.\n\n Inputs must have the same shape, and the length of their axes should be equal to 3.\n If `axis` is not given, it defaults to the first axis found with the length 3.\n\n Args:\n x (Tensor): The first input tensor.\n y (Tensor): The second input tensor.\n axis (int, optional): The axis along which to compute the cross product. It defaults to the first axis found with the length 3.\n name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tensor. A Tensor with same data type as `x`.\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n x = paddle.to_tensor([[1.0, 1.0, 1.0],\n [2.0, 2.0, 2.0],\n [3.0, 3.0, 3.0]])\n y = paddle.to_tensor([[1.0, 1.0, 1.0],\n [1.0, 1.0, 1.0],\n [1.0, 1.0, 1.0]])\n\n z1 = paddle.cross(x, y)\n # [[-1. -1. -1.]\n # [ 2. 2. 2.]\n # [-1. -1. -1.]]\n\n z2 = paddle.cross(x, y, axis=1)\n # [[0. 0. 0.]\n # [0. 0. 0.]\n # [0. 0. 0.]]\n ' if in_dygraph_mode(): return _C_ops.final_state_cross(x, y, axis) elif _in_legacy_dygraph(): if (axis is not None): return _C_ops.cross(x, y, 'dim', axis) else: return _C_ops.cross(x, y) else: helper = LayerHelper('cross', **locals()) out = helper.create_variable_for_type_inference(x.dtype) attrs = dict() attrs['dim'] = axis helper.append_op(type='cross', inputs={'X': x, 'Y': y}, outputs={'Out': out}, attrs=attrs) return out
-527,705,269,943,561,300
Computes the cross product between two tensors along an axis. Inputs must have the same shape, and the length of their axes should be equal to 3. If `axis` is not given, it defaults to the first axis found with the length 3. Args: x (Tensor): The first input tensor. y (Tensor): The second input tensor. axis (int, optional): The axis along which to compute the cross product. It defaults to the first axis found with the length 3. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor. A Tensor with same data type as `x`. Examples: .. code-block:: python import paddle x = paddle.to_tensor([[1.0, 1.0, 1.0], [2.0, 2.0, 2.0], [3.0, 3.0, 3.0]]) y = paddle.to_tensor([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]) z1 = paddle.cross(x, y) # [[-1. -1. -1.] # [ 2. 2. 2.] # [-1. -1. -1.]] z2 = paddle.cross(x, y, axis=1) # [[0. 0. 0.] # [0. 0. 0.] # [0. 0. 0.]]
python/paddle/tensor/linalg.py
cross
DevilCarp/Paddle
python
def cross(x, y, axis=None, name=None): '\n Computes the cross product between two tensors along an axis.\n\n Inputs must have the same shape, and the length of their axes should be equal to 3.\n If `axis` is not given, it defaults to the first axis found with the length 3.\n\n Args:\n x (Tensor): The first input tensor.\n y (Tensor): The second input tensor.\n axis (int, optional): The axis along which to compute the cross product. It defaults to the first axis found with the length 3.\n name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tensor. A Tensor with same data type as `x`.\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n x = paddle.to_tensor([[1.0, 1.0, 1.0],\n [2.0, 2.0, 2.0],\n [3.0, 3.0, 3.0]])\n y = paddle.to_tensor([[1.0, 1.0, 1.0],\n [1.0, 1.0, 1.0],\n [1.0, 1.0, 1.0]])\n\n z1 = paddle.cross(x, y)\n # [[-1. -1. -1.]\n # [ 2. 2. 2.]\n # [-1. -1. -1.]]\n\n z2 = paddle.cross(x, y, axis=1)\n # [[0. 0. 0.]\n # [0. 0. 0.]\n # [0. 0. 0.]]\n ' if in_dygraph_mode(): return _C_ops.final_state_cross(x, y, axis) elif _in_legacy_dygraph(): if (axis is not None): return _C_ops.cross(x, y, 'dim', axis) else: return _C_ops.cross(x, y) else: helper = LayerHelper('cross', **locals()) out = helper.create_variable_for_type_inference(x.dtype) attrs = dict() attrs['dim'] = axis helper.append_op(type='cross', inputs={'X': x, 'Y': y}, outputs={'Out': out}, attrs=attrs) return out
def cholesky(x, upper=False, name=None): '\n Computes the Cholesky decomposition of one symmetric positive-definite\n matrix or batches of symmetric positive-definite matrice.\n\n If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,\n and the returned matrix :math:`U` is upper-triangular. Otherwise, the\n decomposition has the form :math:`A = LL^{T}` , and the returned matrix\n :math:`L` is lower-triangular.\n\n Args:\n x (Tensor): The input tensor. Its shape should be `[*, M, M]`,\n where * is zero or more batch dimensions, and matrices on the\n inner-most 2 dimensions all should be symmetric positive-definite.\n Its data type should be float32 or float64.\n upper (bool): The flag indicating whether to return upper or lower\n triangular matrices. Default: False.\n\n Returns:\n Tensor: A Tensor with same shape and data type as `x`. It represents \\\n triangular matrices generated by Cholesky decomposition.\n\n Examples:\n .. code-block:: python\n\n import paddle\n import numpy as np\n\n a = np.random.rand(3, 3)\n a_t = np.transpose(a, [1, 0])\n x_data = np.matmul(a, a_t) + 1e-03\n x = paddle.to_tensor(x_data)\n out = paddle.linalg.cholesky(x, upper=False)\n print(out)\n # [[1.190523 0. 0. ]\n # [0.9906703 0.27676893 0. ]\n # [1.25450498 0.05600871 0.06400121]]\n\n ' if paddle.in_dynamic_mode(): return _C_ops.cholesky(x, 'upper', upper) check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky') check_type(upper, 'upper', bool, 'cholesky') helper = LayerHelper('cholesky', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='cholesky', inputs={'X': [x]}, outputs={'Out': out}, attrs={'upper': upper}) return out
-1,156,870,987,024,628,700
Computes the Cholesky decomposition of one symmetric positive-definite matrix or batches of symmetric positive-definite matrice. If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` , and the returned matrix :math:`U` is upper-triangular. Otherwise, the decomposition has the form :math:`A = LL^{T}` , and the returned matrix :math:`L` is lower-triangular. Args: x (Tensor): The input tensor. Its shape should be `[*, M, M]`, where * is zero or more batch dimensions, and matrices on the inner-most 2 dimensions all should be symmetric positive-definite. Its data type should be float32 or float64. upper (bool): The flag indicating whether to return upper or lower triangular matrices. Default: False. Returns: Tensor: A Tensor with same shape and data type as `x`. It represents \ triangular matrices generated by Cholesky decomposition. Examples: .. code-block:: python import paddle import numpy as np a = np.random.rand(3, 3) a_t = np.transpose(a, [1, 0]) x_data = np.matmul(a, a_t) + 1e-03 x = paddle.to_tensor(x_data) out = paddle.linalg.cholesky(x, upper=False) print(out) # [[1.190523 0. 0. ] # [0.9906703 0.27676893 0. ] # [1.25450498 0.05600871 0.06400121]]
python/paddle/tensor/linalg.py
cholesky
DevilCarp/Paddle
python
def cholesky(x, upper=False, name=None): '\n Computes the Cholesky decomposition of one symmetric positive-definite\n matrix or batches of symmetric positive-definite matrice.\n\n If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,\n and the returned matrix :math:`U` is upper-triangular. Otherwise, the\n decomposition has the form :math:`A = LL^{T}` , and the returned matrix\n :math:`L` is lower-triangular.\n\n Args:\n x (Tensor): The input tensor. Its shape should be `[*, M, M]`,\n where * is zero or more batch dimensions, and matrices on the\n inner-most 2 dimensions all should be symmetric positive-definite.\n Its data type should be float32 or float64.\n upper (bool): The flag indicating whether to return upper or lower\n triangular matrices. Default: False.\n\n Returns:\n Tensor: A Tensor with same shape and data type as `x`. It represents \\\n triangular matrices generated by Cholesky decomposition.\n\n Examples:\n .. code-block:: python\n\n import paddle\n import numpy as np\n\n a = np.random.rand(3, 3)\n a_t = np.transpose(a, [1, 0])\n x_data = np.matmul(a, a_t) + 1e-03\n x = paddle.to_tensor(x_data)\n out = paddle.linalg.cholesky(x, upper=False)\n print(out)\n # [[1.190523 0. 0. ]\n # [0.9906703 0.27676893 0. ]\n # [1.25450498 0.05600871 0.06400121]]\n\n ' if paddle.in_dynamic_mode(): return _C_ops.cholesky(x, 'upper', upper) check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky') check_type(upper, 'upper', bool, 'cholesky') helper = LayerHelper('cholesky', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='cholesky', inputs={'X': [x]}, outputs={'Out': out}, attrs={'upper': upper}) return out
def matrix_rank(x, tol=None, hermitian=False, name=None): '\n Computes the rank of a matrix.\n\n The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,\n or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.\n\n Args:\n x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch\n of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.\n tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest\n singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed\n with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.\n hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,\n enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use\n the lower triangular of the matrix to compute.\n name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tensor: Rank of tensor x.\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n a = paddle.eye(10)\n b = paddle.linalg.matrix_rank(a)\n print(b)\n # b = [10]\n\n c = paddle.ones(shape=[3, 4, 5, 5])\n d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)\n print(d)\n # d = [[1, 1, 1, 1],\n # [1, 1, 1, 1],\n # [1, 1, 1, 1]]\n\n ' if paddle.in_dynamic_mode(): if (tol is None): tol_tensor = None tol_attr = 0.0 use_default_tol = True elif isinstance(tol, Variable): if (tol.dtype != x.dtype): tol_tensor = cast(tol, x.dtype) else: tol_tensor = tol tol_attr = 0.0 use_default_tol = False else: tol_tensor = None tol_attr = float(tol) use_default_tol = False return _C_ops.matrix_rank(x, tol_tensor, 'tol', tol_attr, 'hermitian', hermitian, 'use_default_tol', use_default_tol) inputs = {} attrs = {} check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank') inputs['X'] = x if (tol is None): attrs['use_default_tol'] = True elif isinstance(tol, Variable): check_variable_and_dtype(tol, 'tol', ['float32'], 'matrix_rank') attrs['use_default_tol'] = False if (tol.dtype != x.dtype): inputs['TolTensor'] = cast(tol, x.dtype) else: inputs['TolTensor'] = tol else: check_type(tol, 'tol', float, 'matrix_rank') attrs['use_default_tol'] = False attrs['tol'] = tol check_type(hermitian, 'hermitian', bool, 'matrix_rank') attrs['hermitian'] = hermitian helper = LayerHelper('matrix_rank', **locals()) out = helper.create_variable_for_type_inference(dtype='int32') helper.append_op(type='matrix_rank', inputs=inputs, outputs={'Out': out}, attrs=attrs) return out
1,160,058,177,991,084,800
Computes the rank of a matrix. The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False, or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True. Args: x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64. tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch. hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian, enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use the lower triangular of the matrix to compute. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: Rank of tensor x. Examples: .. code-block:: python import paddle a = paddle.eye(10) b = paddle.linalg.matrix_rank(a) print(b) # b = [10] c = paddle.ones(shape=[3, 4, 5, 5]) d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True) print(d) # d = [[1, 1, 1, 1], # [1, 1, 1, 1], # [1, 1, 1, 1]]
python/paddle/tensor/linalg.py
matrix_rank
DevilCarp/Paddle
python
def matrix_rank(x, tol=None, hermitian=False, name=None): '\n Computes the rank of a matrix.\n\n The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,\n or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.\n\n Args:\n x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch\n of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.\n tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest\n singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed\n with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.\n hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,\n enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use\n the lower triangular of the matrix to compute.\n name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tensor: Rank of tensor x.\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n a = paddle.eye(10)\n b = paddle.linalg.matrix_rank(a)\n print(b)\n # b = [10]\n\n c = paddle.ones(shape=[3, 4, 5, 5])\n d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)\n print(d)\n # d = [[1, 1, 1, 1],\n # [1, 1, 1, 1],\n # [1, 1, 1, 1]]\n\n ' if paddle.in_dynamic_mode(): if (tol is None): tol_tensor = None tol_attr = 0.0 use_default_tol = True elif isinstance(tol, Variable): if (tol.dtype != x.dtype): tol_tensor = cast(tol, x.dtype) else: tol_tensor = tol tol_attr = 0.0 use_default_tol = False else: tol_tensor = None tol_attr = float(tol) use_default_tol = False return _C_ops.matrix_rank(x, tol_tensor, 'tol', tol_attr, 'hermitian', hermitian, 'use_default_tol', use_default_tol) inputs = {} attrs = {} check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank') inputs['X'] = x if (tol is None): attrs['use_default_tol'] = True elif isinstance(tol, Variable): check_variable_and_dtype(tol, 'tol', ['float32'], 'matrix_rank') attrs['use_default_tol'] = False if (tol.dtype != x.dtype): inputs['TolTensor'] = cast(tol, x.dtype) else: inputs['TolTensor'] = tol else: check_type(tol, 'tol', float, 'matrix_rank') attrs['use_default_tol'] = False attrs['tol'] = tol check_type(hermitian, 'hermitian', bool, 'matrix_rank') attrs['hermitian'] = hermitian helper = LayerHelper('matrix_rank', **locals()) out = helper.create_variable_for_type_inference(dtype='int32') helper.append_op(type='matrix_rank', inputs=inputs, outputs={'Out': out}, attrs=attrs) return out
def bmm(x, y, name=None): '\n Applies batched matrix multiplication to two tensors.\n\n Both of the two input tensors must be three-dementional and share the same batch size.\n\n if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.\n\n Args:\n x (Tensor): The input Tensor.\n y (Tensor): The input Tensor.\n name(str|None): A name for this layer(optional). If set None, the layer\n will be named automatically.\n\n Returns:\n Tensor: The product Tensor.\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n # In imperative mode:\n # size x: (2, 2, 3) and y: (2, 3, 2)\n x = paddle.to_tensor([[[1.0, 1.0, 1.0],\n [2.0, 2.0, 2.0]],\n [[3.0, 3.0, 3.0],\n [4.0, 4.0, 4.0]]])\n y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],\n [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])\n out = paddle.bmm(x, y)\n #output size: (2, 2, 2)\n #output value:\n #[[[6.0, 6.0],[12.0, 12.0]],[[45.0, 45.0],[60.0, 60.0]]]\n out_np = out.numpy()\n\n ' x_shape = x.shape y_shape = y.shape if (not (len(x_shape) == len(y_shape) == 3)): raise ValueError("x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}".format(x_shape, y_shape)) if (x_shape[2] != y_shape[1]): raise ValueError("x's width must be equal with y's height. But received x's shape: {}, y's shape: {}".format(x_shape, y_shape)) if (x_shape[0] != y_shape[0]): raise ValueError("x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}".format(x_shape, y_shape)) if paddle.in_dynamic_mode(): return _C_ops.bmm(x, y) helper = LayerHelper('bmm', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out}) return out
-4,711,183,802,654,545,000
Applies batched matrix multiplication to two tensors. Both of the two input tensors must be three-dementional and share the same batch size. if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor. Args: x (Tensor): The input Tensor. y (Tensor): The input Tensor. name(str|None): A name for this layer(optional). If set None, the layer will be named automatically. Returns: Tensor: The product Tensor. Examples: .. code-block:: python import paddle # In imperative mode: # size x: (2, 2, 3) and y: (2, 3, 2) x = paddle.to_tensor([[[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]], [[3.0, 3.0, 3.0], [4.0, 4.0, 4.0]]]) y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]], [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]]) out = paddle.bmm(x, y) #output size: (2, 2, 2) #output value: #[[[6.0, 6.0],[12.0, 12.0]],[[45.0, 45.0],[60.0, 60.0]]] out_np = out.numpy()
python/paddle/tensor/linalg.py
bmm
DevilCarp/Paddle
python
def bmm(x, y, name=None): '\n Applies batched matrix multiplication to two tensors.\n\n Both of the two input tensors must be three-dementional and share the same batch size.\n\n if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.\n\n Args:\n x (Tensor): The input Tensor.\n y (Tensor): The input Tensor.\n name(str|None): A name for this layer(optional). If set None, the layer\n will be named automatically.\n\n Returns:\n Tensor: The product Tensor.\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n # In imperative mode:\n # size x: (2, 2, 3) and y: (2, 3, 2)\n x = paddle.to_tensor([[[1.0, 1.0, 1.0],\n [2.0, 2.0, 2.0]],\n [[3.0, 3.0, 3.0],\n [4.0, 4.0, 4.0]]])\n y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],\n [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])\n out = paddle.bmm(x, y)\n #output size: (2, 2, 2)\n #output value:\n #[[[6.0, 6.0],[12.0, 12.0]],[[45.0, 45.0],[60.0, 60.0]]]\n out_np = out.numpy()\n\n ' x_shape = x.shape y_shape = y.shape if (not (len(x_shape) == len(y_shape) == 3)): raise ValueError("x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}".format(x_shape, y_shape)) if (x_shape[2] != y_shape[1]): raise ValueError("x's width must be equal with y's height. But received x's shape: {}, y's shape: {}".format(x_shape, y_shape)) if (x_shape[0] != y_shape[0]): raise ValueError("x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}".format(x_shape, y_shape)) if paddle.in_dynamic_mode(): return _C_ops.bmm(x, y) helper = LayerHelper('bmm', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out}) return out
def histogram(input, bins=100, min=0, max=0, name=None): '\n Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.\n If min and max are both zero, the minimum and maximum values of the data are used.\n\n Args:\n input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor\n should be float32, float64, int32, int64.\n bins (int): number of histogram bins\n min (int): lower end of the range (inclusive)\n max (int): upper end of the range (inclusive)\n\n Returns:\n Tensor: data type is int64, shape is (nbins,).\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n inputs = paddle.to_tensor([1, 2, 1])\n result = paddle.histogram(inputs, bins=4, min=0, max=3)\n print(result) # [0, 2, 1, 0]\n ' if paddle.in_dynamic_mode(): return _C_ops.histogram(input, 'bins', bins, 'min', min, 'max', max) helper = LayerHelper('histogram', **locals()) check_variable_and_dtype(input, 'X', ['int32', 'int64', 'float32', 'float64'], 'histogram') out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64) helper.append_op(type='histogram', inputs={'X': input}, outputs={'Out': out}, attrs={'bins': bins, 'min': min, 'max': max}) return out
8,785,959,902,747,494,000
Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max. If min and max are both zero, the minimum and maximum values of the data are used. Args: input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor should be float32, float64, int32, int64. bins (int): number of histogram bins min (int): lower end of the range (inclusive) max (int): upper end of the range (inclusive) Returns: Tensor: data type is int64, shape is (nbins,). Examples: .. code-block:: python import paddle inputs = paddle.to_tensor([1, 2, 1]) result = paddle.histogram(inputs, bins=4, min=0, max=3) print(result) # [0, 2, 1, 0]
python/paddle/tensor/linalg.py
histogram
DevilCarp/Paddle
python
def histogram(input, bins=100, min=0, max=0, name=None): '\n Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.\n If min and max are both zero, the minimum and maximum values of the data are used.\n\n Args:\n input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor\n should be float32, float64, int32, int64.\n bins (int): number of histogram bins\n min (int): lower end of the range (inclusive)\n max (int): upper end of the range (inclusive)\n\n Returns:\n Tensor: data type is int64, shape is (nbins,).\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n inputs = paddle.to_tensor([1, 2, 1])\n result = paddle.histogram(inputs, bins=4, min=0, max=3)\n print(result) # [0, 2, 1, 0]\n ' if paddle.in_dynamic_mode(): return _C_ops.histogram(input, 'bins', bins, 'min', min, 'max', max) helper = LayerHelper('histogram', **locals()) check_variable_and_dtype(input, 'X', ['int32', 'int64', 'float32', 'float64'], 'histogram') out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64) helper.append_op(type='histogram', inputs={'X': input}, outputs={'Out': out}, attrs={'bins': bins, 'min': min, 'max': max}) return out
def bincount(x, weights=None, minlength=0, name=None): '\n Computes frequency of each value in the input tensor. \n\n Args:\n x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.\n weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.\n minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.\n name(str, optional): The default value is None. Normally there is no need for user to set this\n property. For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tensor: The tensor of frequency.\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n x = paddle.to_tensor([1, 2, 1, 4, 5])\n result1 = paddle.bincount(x)\n print(result1) # [0, 2, 1, 0, 1, 1]\n\n w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])\n result2 = paddle.bincount(x, weights=w)\n print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]\n ' if (x.dtype not in [paddle.int32, paddle.int64]): raise TypeError('Elements in Input(x) should all be integers') if paddle.in_dynamic_mode(): return _C_ops.bincount(x, weights, 'minlength', minlength) helper = LayerHelper('bincount', **locals()) check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount') if (weights is not None): check_variable_and_dtype(weights, 'Weights', ['int32', 'int64', 'float32', 'float64'], 'bincount') out = helper.create_variable_for_type_inference(dtype=weights.dtype) else: out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='bincount', inputs={'X': x, 'Weights': weights}, outputs={'Out': out}, attrs={'minlength': minlength}) return out
-7,411,482,120,546,404,000
Computes frequency of each value in the input tensor. Args: x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor. weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None. minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: The tensor of frequency. Examples: .. code-block:: python import paddle x = paddle.to_tensor([1, 2, 1, 4, 5]) result1 = paddle.bincount(x) print(result1) # [0, 2, 1, 0, 1, 1] w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5]) result2 = paddle.bincount(x, weights=w) print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
python/paddle/tensor/linalg.py
bincount
DevilCarp/Paddle
python
def bincount(x, weights=None, minlength=0, name=None): '\n Computes frequency of each value in the input tensor. \n\n Args:\n x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.\n weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.\n minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.\n name(str, optional): The default value is None. Normally there is no need for user to set this\n property. For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tensor: The tensor of frequency.\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n x = paddle.to_tensor([1, 2, 1, 4, 5])\n result1 = paddle.bincount(x)\n print(result1) # [0, 2, 1, 0, 1, 1]\n\n w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])\n result2 = paddle.bincount(x, weights=w)\n print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]\n ' if (x.dtype not in [paddle.int32, paddle.int64]): raise TypeError('Elements in Input(x) should all be integers') if paddle.in_dynamic_mode(): return _C_ops.bincount(x, weights, 'minlength', minlength) helper = LayerHelper('bincount', **locals()) check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount') if (weights is not None): check_variable_and_dtype(weights, 'Weights', ['int32', 'int64', 'float32', 'float64'], 'bincount') out = helper.create_variable_for_type_inference(dtype=weights.dtype) else: out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='bincount', inputs={'X': x, 'Weights': weights}, outputs={'Out': out}, attrs={'minlength': minlength}) return out
def mv(x, vec, name=None): '\n Performs a matrix-vector product of the matrix x and the vector vec.\n\n Args:\n x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x\n should be one of float32, float64.\n vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x\n should be one of float32, float64.\n name(str, optional): The default value is None. Normally there is no need for user to set this\n property. For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tensor: The tensor which is producted by x and vec.\n\n Examples:\n .. code-block:: python\n\n # x: [M, N], vec: [N]\n # paddle.mv(x, vec) # out: [M]\n\n import numpy as np\n import paddle\n\n x_data = np.array([[2, 1, 3], [3, 0, 1]]).astype("float64")\n x = paddle.to_tensor(x_data)\n vec_data = np.array([3, 5, 1])\n vec = paddle.to_tensor(vec_data).astype("float64")\n out = paddle.mv(x, vec)\n ' if in_dygraph_mode(): return _C_ops.final_state_mv(x, vec) elif _in_legacy_dygraph(): out = _C_ops.mv(x, vec) return out else: def __check_input(x, vec): var_names = {'x': x, 'vec': vec} for (name, val) in var_names.items(): check_variable_and_dtype(val, name, ['float32', 'float64'], 'mv') x_shape = list(x.shape) vec_shape = list(vec.shape) if (len(x_shape) != 2): raise ValueError("x should be 2-dimensional. But received x's dimention: {}".format(x_shape)) if (len(vec_shape) != 1): raise ValueError("vec should be 1-dimensional. But received vec's dimention: {}".format(vec_shape)) __check_input(x, vec) helper = LayerHelper('mv', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='mv', inputs={'X': x, 'Vec': vec}, outputs={'Out': out}) return out
7,252,601,793,221,310,000
Performs a matrix-vector product of the matrix x and the vector vec. Args: x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x should be one of float32, float64. vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x should be one of float32, float64. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: The tensor which is producted by x and vec. Examples: .. code-block:: python # x: [M, N], vec: [N] # paddle.mv(x, vec) # out: [M] import numpy as np import paddle x_data = np.array([[2, 1, 3], [3, 0, 1]]).astype("float64") x = paddle.to_tensor(x_data) vec_data = np.array([3, 5, 1]) vec = paddle.to_tensor(vec_data).astype("float64") out = paddle.mv(x, vec)
python/paddle/tensor/linalg.py
mv
DevilCarp/Paddle
python
def mv(x, vec, name=None): '\n Performs a matrix-vector product of the matrix x and the vector vec.\n\n Args:\n x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x\n should be one of float32, float64.\n vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x\n should be one of float32, float64.\n name(str, optional): The default value is None. Normally there is no need for user to set this\n property. For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tensor: The tensor which is producted by x and vec.\n\n Examples:\n .. code-block:: python\n\n # x: [M, N], vec: [N]\n # paddle.mv(x, vec) # out: [M]\n\n import numpy as np\n import paddle\n\n x_data = np.array([[2, 1, 3], [3, 0, 1]]).astype("float64")\n x = paddle.to_tensor(x_data)\n vec_data = np.array([3, 5, 1])\n vec = paddle.to_tensor(vec_data).astype("float64")\n out = paddle.mv(x, vec)\n ' if in_dygraph_mode(): return _C_ops.final_state_mv(x, vec) elif _in_legacy_dygraph(): out = _C_ops.mv(x, vec) return out else: def __check_input(x, vec): var_names = {'x': x, 'vec': vec} for (name, val) in var_names.items(): check_variable_and_dtype(val, name, ['float32', 'float64'], 'mv') x_shape = list(x.shape) vec_shape = list(vec.shape) if (len(x_shape) != 2): raise ValueError("x should be 2-dimensional. But received x's dimention: {}".format(x_shape)) if (len(vec_shape) != 1): raise ValueError("vec should be 1-dimensional. But received vec's dimention: {}".format(vec_shape)) __check_input(x, vec) helper = LayerHelper('mv', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='mv', inputs={'X': x, 'Vec': vec}, outputs={'Out': out}) return out
def det(x, name=None): '\n Calculates determinant value of a square matrix or batches of square matrices.\n Args:\n x (Tensor): input (Tensor): the input matrix of size `(n, n)` or the batch of matrices of size\n `(*, n, n)` where `*` is one or more batch dimensions.\n Returns:\n y (Tensor):the determinant value of a square matrix or batches of square matrices.\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n x = paddle.randn([3,3,3])\n\n A = paddle.linalg.det(x)\n\n print(A)\n\n # [ 0.02547996, 2.52317095, -6.15900707])\n\n\n ' if paddle.in_dynamic_mode(): return _C_ops.determinant(x) check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'det') input_shape = list(x.shape) assert (len(input_shape) >= 2), ("The x must be at least 2-dimensional, but received Input x's dimensional: %s.\n" % len(input_shape)) assert (input_shape[(- 1)] == input_shape[(- 2)]), ('Expect squared input,but received %s by %s matrix.\n' % (input_shape[(- 2)], input_shape[(- 1)])) helper = LayerHelper('determinant', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='determinant', inputs={'Input': [x]}, outputs={'Out': [out]}) return out
4,513,317,354,980,321,000
Calculates determinant value of a square matrix or batches of square matrices. Args: x (Tensor): input (Tensor): the input matrix of size `(n, n)` or the batch of matrices of size `(*, n, n)` where `*` is one or more batch dimensions. Returns: y (Tensor):the determinant value of a square matrix or batches of square matrices. Examples: .. code-block:: python import paddle x = paddle.randn([3,3,3]) A = paddle.linalg.det(x) print(A) # [ 0.02547996, 2.52317095, -6.15900707])
python/paddle/tensor/linalg.py
det
DevilCarp/Paddle
python
def det(x, name=None): '\n Calculates determinant value of a square matrix or batches of square matrices.\n Args:\n x (Tensor): input (Tensor): the input matrix of size `(n, n)` or the batch of matrices of size\n `(*, n, n)` where `*` is one or more batch dimensions.\n Returns:\n y (Tensor):the determinant value of a square matrix or batches of square matrices.\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n x = paddle.randn([3,3,3])\n\n A = paddle.linalg.det(x)\n\n print(A)\n\n # [ 0.02547996, 2.52317095, -6.15900707])\n\n\n ' if paddle.in_dynamic_mode(): return _C_ops.determinant(x) check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'det') input_shape = list(x.shape) assert (len(input_shape) >= 2), ("The x must be at least 2-dimensional, but received Input x's dimensional: %s.\n" % len(input_shape)) assert (input_shape[(- 1)] == input_shape[(- 2)]), ('Expect squared input,but received %s by %s matrix.\n' % (input_shape[(- 2)], input_shape[(- 1)])) helper = LayerHelper('determinant', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='determinant', inputs={'Input': [x]}, outputs={'Out': [out]}) return out
def slogdet(x, name=None): "\n Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.\n The determinant can be computed with ``sign * exp(logabsdet)\n\n Supports input of float, double\n\n Note that for matrices that have zero determinant, this returns ``(0, -inf)``\n Args:\n x (Tensor): the batch of matrices of size :math:`(*, n, n)`\n where math:`*` is one or more batch dimensions.\n\n Returns:\n y (Tensor): A tensor containing the sign of the determinant and the natural logarithm\n of the absolute value of determinant, respectively.\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n x = paddle.randn([3,3,3])\n\n A = paddle.linalg.slogdet(x)\n\n print(A)\n\n # [[ 1. , 1. , -1. ],\n # [-0.98610914, -0.43010661, -0.10872950]])\n\n " if paddle.in_dynamic_mode(): return _C_ops.slogdeterminant(x) check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet') input_shape = list(x.shape) assert (len(input_shape) >= 2), ("The x must be at least 2-dimensional, but received Input x's dimensional: %s.\n" % len(input_shape)) assert (input_shape[(- 1)] == input_shape[(- 2)]), ('Expect squared input,but received %s by %s matrix.\n' % (input_shape[(- 2)], input_shape[(- 1)])) helper = LayerHelper('slogdeterminant', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='slogdeterminant', inputs={'Input': [x]}, outputs={'Out': [out]}) return out
9,101,923,281,703,332,000
Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant. The determinant can be computed with ``sign * exp(logabsdet) Supports input of float, double Note that for matrices that have zero determinant, this returns ``(0, -inf)`` Args: x (Tensor): the batch of matrices of size :math:`(*, n, n)` where math:`*` is one or more batch dimensions. Returns: y (Tensor): A tensor containing the sign of the determinant and the natural logarithm of the absolute value of determinant, respectively. Examples: .. code-block:: python import paddle x = paddle.randn([3,3,3]) A = paddle.linalg.slogdet(x) print(A) # [[ 1. , 1. , -1. ], # [-0.98610914, -0.43010661, -0.10872950]])
python/paddle/tensor/linalg.py
slogdet
DevilCarp/Paddle
python
def slogdet(x, name=None): "\n Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.\n The determinant can be computed with ``sign * exp(logabsdet)\n\n Supports input of float, double\n\n Note that for matrices that have zero determinant, this returns ``(0, -inf)``\n Args:\n x (Tensor): the batch of matrices of size :math:`(*, n, n)`\n where math:`*` is one or more batch dimensions.\n\n Returns:\n y (Tensor): A tensor containing the sign of the determinant and the natural logarithm\n of the absolute value of determinant, respectively.\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n x = paddle.randn([3,3,3])\n\n A = paddle.linalg.slogdet(x)\n\n print(A)\n\n # [[ 1. , 1. , -1. ],\n # [-0.98610914, -0.43010661, -0.10872950]])\n\n " if paddle.in_dynamic_mode(): return _C_ops.slogdeterminant(x) check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet') input_shape = list(x.shape) assert (len(input_shape) >= 2), ("The x must be at least 2-dimensional, but received Input x's dimensional: %s.\n" % len(input_shape)) assert (input_shape[(- 1)] == input_shape[(- 2)]), ('Expect squared input,but received %s by %s matrix.\n' % (input_shape[(- 2)], input_shape[(- 1)])) helper = LayerHelper('slogdeterminant', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='slogdeterminant', inputs={'Input': [x]}, outputs={'Out': [out]}) return out
def svd(x, full_matrices=False, name=None): "\n Computes the singular value decomposition of one matrix or a batch of regular matrices.\n\n Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:\n\n .. math::\n X = U * diag(S) * VT\n\n Args:\n x (Tensor): The input tensor. Its shape should be `[..., N, M]`,\n where `...` is zero or more batch dimensions. N and M can be arbitraty\n positive number. Note that if x is sigular matrices, the grad is numerical\n instable. The data type of x should be float32 or float64.\n full_matrices (bool): A flag to control the behavor of svd.\n If full_matrices = True, svd op will compute full U and V matrics,\n which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).\n If full_matrices = False, svd op will use a economic method to store U and V.\n which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).\n name (str, optional): Name for the operation (optional, default is None).\n For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tuple of 3 tensors: (U, S, VH). VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')\n x = x.reshape([3, 2])\n u, s, vh = paddle.linalg.svd(x)\n print (u)\n #U = [[ 0.27364809, -0.21695147 ],\n # [ 0.37892198, -0.87112408 ],\n # [ 0.8840446 , 0.44053933 ]]\n\n print (s)\n #S = [8.14753743, 0.78589688]\n print (vh)\n #VT= [[ 0.51411221, 0.85772294],\n # [ 0.85772294, -0.51411221]]\n\n # one can verify : U * S * VT == X\n # U * UH == I\n # V * VH == I\n " if paddle.in_dynamic_mode(): return _C_ops.svd(x, 'full_matrices', full_matrices) check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd') check_type(full_matrices, 'full_matrices', bool, 'svd') helper = LayerHelper('svd', **locals()) u = helper.create_variable_for_type_inference(dtype=x.dtype) vh = helper.create_variable_for_type_inference(dtype=x.dtype) s = helper.create_variable_for_type_inference(dtype=x.dtype) attrs = dict() attrs['full_matrices'] = full_matrices helper.append_op(type='svd', inputs={'X': [x]}, outputs={'U': u, 'VH': vh, 'S': s}, attrs=attrs) return (u, s, vh)
7,655,087,064,594,550,000
Computes the singular value decomposition of one matrix or a batch of regular matrices. Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies: .. math:: X = U * diag(S) * VT Args: x (Tensor): The input tensor. Its shape should be `[..., N, M]`, where `...` is zero or more batch dimensions. N and M can be arbitraty positive number. Note that if x is sigular matrices, the grad is numerical instable. The data type of x should be float32 or float64. full_matrices (bool): A flag to control the behavor of svd. If full_matrices = True, svd op will compute full U and V matrics, which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N). If full_matrices = False, svd op will use a economic method to store U and V. which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N). name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tuple of 3 tensors: (U, S, VH). VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]` Examples: .. code-block:: python import paddle x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64') x = x.reshape([3, 2]) u, s, vh = paddle.linalg.svd(x) print (u) #U = [[ 0.27364809, -0.21695147 ], # [ 0.37892198, -0.87112408 ], # [ 0.8840446 , 0.44053933 ]] print (s) #S = [8.14753743, 0.78589688] print (vh) #VT= [[ 0.51411221, 0.85772294], # [ 0.85772294, -0.51411221]] # one can verify : U * S * VT == X # U * UH == I # V * VH == I
python/paddle/tensor/linalg.py
svd
DevilCarp/Paddle
python
def svd(x, full_matrices=False, name=None): "\n Computes the singular value decomposition of one matrix or a batch of regular matrices.\n\n Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:\n\n .. math::\n X = U * diag(S) * VT\n\n Args:\n x (Tensor): The input tensor. Its shape should be `[..., N, M]`,\n where `...` is zero or more batch dimensions. N and M can be arbitraty\n positive number. Note that if x is sigular matrices, the grad is numerical\n instable. The data type of x should be float32 or float64.\n full_matrices (bool): A flag to control the behavor of svd.\n If full_matrices = True, svd op will compute full U and V matrics,\n which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).\n If full_matrices = False, svd op will use a economic method to store U and V.\n which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).\n name (str, optional): Name for the operation (optional, default is None).\n For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tuple of 3 tensors: (U, S, VH). VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')\n x = x.reshape([3, 2])\n u, s, vh = paddle.linalg.svd(x)\n print (u)\n #U = [[ 0.27364809, -0.21695147 ],\n # [ 0.37892198, -0.87112408 ],\n # [ 0.8840446 , 0.44053933 ]]\n\n print (s)\n #S = [8.14753743, 0.78589688]\n print (vh)\n #VT= [[ 0.51411221, 0.85772294],\n # [ 0.85772294, -0.51411221]]\n\n # one can verify : U * S * VT == X\n # U * UH == I\n # V * VH == I\n " if paddle.in_dynamic_mode(): return _C_ops.svd(x, 'full_matrices', full_matrices) check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd') check_type(full_matrices, 'full_matrices', bool, 'svd') helper = LayerHelper('svd', **locals()) u = helper.create_variable_for_type_inference(dtype=x.dtype) vh = helper.create_variable_for_type_inference(dtype=x.dtype) s = helper.create_variable_for_type_inference(dtype=x.dtype) attrs = dict() attrs['full_matrices'] = full_matrices helper.append_op(type='svd', inputs={'X': [x]}, outputs={'U': u, 'VH': vh, 'S': s}, attrs=attrs) return (u, s, vh)
def matrix_power(x, n, name=None): "\n Computes the n-th power of a square matrix or a batch of square matrices.\n\n Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be\n an exponent, the equation should be:\n\n .. math::\n Out = X ^ {n}\n\n Specifically,\n\n - If `n > 0`, it returns the matrix or a batch of matrices raised to the power\n of `n`.\n\n - If `n = 0`, it returns the identity matrix or a batch of identity matrices.\n\n - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to\n the power of `abs(n)`.\n\n Args:\n x (Tensor): A square matrix or a batch of square matrices to be raised\n to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or\n more batch dimensions. Its data type should be float32 or float64.\n n (int): The exponent. It can be any positive, negative integer or zero.\n name (str, optional): Name for the operation (optional, default is None).\n For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tensor: The n-th power of the matrix (or the batch of matrices) `x`. Its\n data type should be the same as that of `x`.\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n x = paddle.to_tensor([[1, 2, 3],\n [1, 4, 9],\n [1, 8, 27]], dtype='float64')\n print(paddle.linalg.matrix_power(x, 2))\n # [[6. , 34. , 102.],\n # [14. , 90. , 282.],\n # [36. , 250., 804.]]\n\n print(paddle.linalg.matrix_power(x, 0))\n # [[1., 0., 0.],\n # [0., 1., 0.],\n # [0., 0., 1.]]\n\n print(paddle.linalg.matrix_power(x, -2))\n # [[ 12.91666667, -12.75000000, 2.83333333 ],\n # [-7.66666667 , 8. , -1.83333333 ],\n # [ 1.80555556 , -1.91666667 , 0.44444444 ]]\n " if paddle.in_dynamic_mode(): return _C_ops.matrix_power(x, 'n', n) check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'matrix_power') check_type(n, 'n', int, 'matrix_power') helper = LayerHelper('matrix_power', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='matrix_power', inputs={'X': x}, outputs={'Out': out}, attrs={'n': n}) return out
-4,744,617,923,970,205,000
Computes the n-th power of a square matrix or a batch of square matrices. Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be an exponent, the equation should be: .. math:: Out = X ^ {n} Specifically, - If `n > 0`, it returns the matrix or a batch of matrices raised to the power of `n`. - If `n = 0`, it returns the identity matrix or a batch of identity matrices. - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to the power of `abs(n)`. Args: x (Tensor): A square matrix or a batch of square matrices to be raised to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions. Its data type should be float32 or float64. n (int): The exponent. It can be any positive, negative integer or zero. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: The n-th power of the matrix (or the batch of matrices) `x`. Its data type should be the same as that of `x`. Examples: .. code-block:: python import paddle x = paddle.to_tensor([[1, 2, 3], [1, 4, 9], [1, 8, 27]], dtype='float64') print(paddle.linalg.matrix_power(x, 2)) # [[6. , 34. , 102.], # [14. , 90. , 282.], # [36. , 250., 804.]] print(paddle.linalg.matrix_power(x, 0)) # [[1., 0., 0.], # [0., 1., 0.], # [0., 0., 1.]] print(paddle.linalg.matrix_power(x, -2)) # [[ 12.91666667, -12.75000000, 2.83333333 ], # [-7.66666667 , 8. , -1.83333333 ], # [ 1.80555556 , -1.91666667 , 0.44444444 ]]
python/paddle/tensor/linalg.py
matrix_power
DevilCarp/Paddle
python
def matrix_power(x, n, name=None): "\n Computes the n-th power of a square matrix or a batch of square matrices.\n\n Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be\n an exponent, the equation should be:\n\n .. math::\n Out = X ^ {n}\n\n Specifically,\n\n - If `n > 0`, it returns the matrix or a batch of matrices raised to the power\n of `n`.\n\n - If `n = 0`, it returns the identity matrix or a batch of identity matrices.\n\n - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to\n the power of `abs(n)`.\n\n Args:\n x (Tensor): A square matrix or a batch of square matrices to be raised\n to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or\n more batch dimensions. Its data type should be float32 or float64.\n n (int): The exponent. It can be any positive, negative integer or zero.\n name (str, optional): Name for the operation (optional, default is None).\n For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tensor: The n-th power of the matrix (or the batch of matrices) `x`. Its\n data type should be the same as that of `x`.\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n x = paddle.to_tensor([[1, 2, 3],\n [1, 4, 9],\n [1, 8, 27]], dtype='float64')\n print(paddle.linalg.matrix_power(x, 2))\n # [[6. , 34. , 102.],\n # [14. , 90. , 282.],\n # [36. , 250., 804.]]\n\n print(paddle.linalg.matrix_power(x, 0))\n # [[1., 0., 0.],\n # [0., 1., 0.],\n # [0., 0., 1.]]\n\n print(paddle.linalg.matrix_power(x, -2))\n # [[ 12.91666667, -12.75000000, 2.83333333 ],\n # [-7.66666667 , 8. , -1.83333333 ],\n # [ 1.80555556 , -1.91666667 , 0.44444444 ]]\n " if paddle.in_dynamic_mode(): return _C_ops.matrix_power(x, 'n', n) check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'matrix_power') check_type(n, 'n', int, 'matrix_power') helper = LayerHelper('matrix_power', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='matrix_power', inputs={'X': x}, outputs={'Out': out}, attrs={'n': n}) return out
def qr(x, mode='reduced', name=None): '\n Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).\n\n Args:\n x (Tensor): The input tensor. Its shape should be `[..., M, N]`,\n where ... is zero or more batch dimensions. M and N can be arbitrary\n positive number. The data type of x should be float32 or float64. \n mode (str, optional): A flag to control the behavior of qr, the default is "reduced". \n Suppose x\'s shape is `[..., M, N]` and denoting `K = min(M, N)`:\n If mode = "reduced", qr op will return reduced Q and R matrices, \n which means Q\'s shape is `[..., M, K]` and R\'s shape is `[..., K, N]`.\n If mode = "complete", qr op will return complete Q and R matrices, \n which means Q\'s shape is `[..., M, M]` and R\'s shape is `[..., M, N]`.\n If mode = "r", qr op will only return reduced R matrix, which means\n R\'s shape is `[..., K, N]`.\n name (str, optional): Name for the operation (optional, default is None).\n For more information, please refer to :ref:`api_guide_Name`.\n \n Returns:\n If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R. \n If mode = "r", qr will return a tensor which represents R.\n \n Examples: \n .. code-block:: python\n\n import paddle \n\n x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype(\'float64\')\n q, r = paddle.linalg.qr(x)\n print (q)\n print (r)\n\n # Q = [[-0.16903085, 0.89708523],\n # [-0.50709255, 0.27602622],\n # [-0.84515425, -0.34503278]])\n\n # R = [[-5.91607978, -7.43735744],\n # [ 0. , 0.82807867]])\n \n # one can verify : X = Q * R ; \n ' if paddle.in_dynamic_mode(): (q, r) = _C_ops.qr(x, 'mode', mode) if (mode == 'r'): return r else: return (q, r) check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr') check_type(mode, 'mode', str, 'qr') helper = LayerHelper('qr', **locals()) q = helper.create_variable_for_type_inference(dtype=x.dtype) r = helper.create_variable_for_type_inference(dtype=x.dtype) attrs = dict() attrs['mode'] = mode helper.append_op(type='qr', inputs={'X': [x]}, outputs={'Q': q, 'R': r}, attrs=attrs) if (mode == 'r'): return r else: return (q, r)
-753,448,886,194,518,700
Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now). Args: x (Tensor): The input tensor. Its shape should be `[..., M, N]`, where ... is zero or more batch dimensions. M and N can be arbitrary positive number. The data type of x should be float32 or float64. mode (str, optional): A flag to control the behavior of qr, the default is "reduced". Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`: If mode = "reduced", qr op will return reduced Q and R matrices, which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`. If mode = "complete", qr op will return complete Q and R matrices, which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`. If mode = "r", qr op will only return reduced R matrix, which means R's shape is `[..., K, N]`. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R. If mode = "r", qr will return a tensor which represents R. Examples: .. code-block:: python import paddle x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64') q, r = paddle.linalg.qr(x) print (q) print (r) # Q = [[-0.16903085, 0.89708523], # [-0.50709255, 0.27602622], # [-0.84515425, -0.34503278]]) # R = [[-5.91607978, -7.43735744], # [ 0. , 0.82807867]]) # one can verify : X = Q * R ;
python/paddle/tensor/linalg.py
qr
DevilCarp/Paddle
python
def qr(x, mode='reduced', name=None): '\n Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).\n\n Args:\n x (Tensor): The input tensor. Its shape should be `[..., M, N]`,\n where ... is zero or more batch dimensions. M and N can be arbitrary\n positive number. The data type of x should be float32 or float64. \n mode (str, optional): A flag to control the behavior of qr, the default is "reduced". \n Suppose x\'s shape is `[..., M, N]` and denoting `K = min(M, N)`:\n If mode = "reduced", qr op will return reduced Q and R matrices, \n which means Q\'s shape is `[..., M, K]` and R\'s shape is `[..., K, N]`.\n If mode = "complete", qr op will return complete Q and R matrices, \n which means Q\'s shape is `[..., M, M]` and R\'s shape is `[..., M, N]`.\n If mode = "r", qr op will only return reduced R matrix, which means\n R\'s shape is `[..., K, N]`.\n name (str, optional): Name for the operation (optional, default is None).\n For more information, please refer to :ref:`api_guide_Name`.\n \n Returns:\n If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R. \n If mode = "r", qr will return a tensor which represents R.\n \n Examples: \n .. code-block:: python\n\n import paddle \n\n x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype(\'float64\')\n q, r = paddle.linalg.qr(x)\n print (q)\n print (r)\n\n # Q = [[-0.16903085, 0.89708523],\n # [-0.50709255, 0.27602622],\n # [-0.84515425, -0.34503278]])\n\n # R = [[-5.91607978, -7.43735744],\n # [ 0. , 0.82807867]])\n \n # one can verify : X = Q * R ; \n ' if paddle.in_dynamic_mode(): (q, r) = _C_ops.qr(x, 'mode', mode) if (mode == 'r'): return r else: return (q, r) check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr') check_type(mode, 'mode', str, 'qr') helper = LayerHelper('qr', **locals()) q = helper.create_variable_for_type_inference(dtype=x.dtype) r = helper.create_variable_for_type_inference(dtype=x.dtype) attrs = dict() attrs['mode'] = mode helper.append_op(type='qr', inputs={'X': [x]}, outputs={'Q': q, 'R': r}, attrs=attrs) if (mode == 'r'): return r else: return (q, r)
def lu(x, pivot=True, get_infos=False, name=None): "\n Computes the LU factorization of an N-D(N>=2) matrix x. \n\n Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and \n upper triangular matrix U are combined to a single LU matrix.\n\n Pivoting is done if pivot is set to True.\n P mat can be get by pivots:\n # ones = eye(rows) #eye matrix of rank rows\n # for i in range(cols):\n # swap(ones[i], ones[pivots[i]])\n # return ones\n\n Args:\n\n X (Tensor): the tensor to factor of N-dimensions(N>=2).\n\n pivot (bool, optional): controls whether pivoting is done. Default: True.\n\n get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.\n\n name (str, optional): Name for the operation (optional, default is None).\n For more information, please refer to :ref:`api_guide_Name`.\n \n Returns:\n factorization (Tensor): LU matrix, the factorization of input X.\n\n pivots (IntTensor): the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the \n intermediate transpositions of rows. The final permutation `perm` could be \n reconstructed by this, details refer to upper example.\n\n infos (IntTensor, optional): if `get_infos` is `True`, this is a tensor of size (∗(N-2)) \n where non-zero values indicate whether factorization for the matrix or each minibatch \n has succeeded or failed.\n\n \n Examples: \n .. code-block:: python\n\n import paddle \n\n x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')\n lu,p,info = paddle.linalg.lu(x, get_infos=True)\n\n # >>> lu:\n # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,\n # [[5. , 6. ],\n # [0.20000000, 0.80000000],\n # [0.60000000, 0.50000000]])\n # >>> p\n # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,\n # [3, 3])\n # >>> info\n # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,\n # 0)\n \n P,L,U = paddle.linalg.lu_unpack(lu,p)\n\n # >>> P\n # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,\n # [[0., 1., 0.],\n # [0., 0., 1.],\n # [1., 0., 0.]]), \n # >>> L\n # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,\n # [[1. , 0. ],\n # [0.20000000, 1. ],\n # [0.60000000, 0.50000000]]), \n # >>> U\n # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,\n # [[5. , 6. ],\n # [0. , 0.80000000]]))\n \n\n # one can verify : X = P @ L @ U ; \n " if paddle.in_dynamic_mode(): (LU, Piv, Info) = _C_ops.lu(x, 'pivots', pivot) if get_infos: return (LU, Piv, Info) else: return (LU, Piv) check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu') helper = LayerHelper('lu', **locals()) lu = helper.create_variable_for_type_inference(dtype=x.dtype) p = helper.create_variable_for_type_inference(dtype='int') info = helper.create_variable_for_type_inference(dtype='int') attrs = dict() attrs['pivots'] = pivot helper.append_op(type='lu', inputs={'X': x}, outputs={'Out': lu, 'Pivots': p, 'Infos': info}, attrs=attrs) if get_infos: return (lu, p, info) else: return (lu, p)
-1,885,591,820,543,059,200
Computes the LU factorization of an N-D(N>=2) matrix x. Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and upper triangular matrix U are combined to a single LU matrix. Pivoting is done if pivot is set to True. P mat can be get by pivots: # ones = eye(rows) #eye matrix of rank rows # for i in range(cols): # swap(ones[i], ones[pivots[i]]) # return ones Args: X (Tensor): the tensor to factor of N-dimensions(N>=2). pivot (bool, optional): controls whether pivoting is done. Default: True. get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: factorization (Tensor): LU matrix, the factorization of input X. pivots (IntTensor): the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the intermediate transpositions of rows. The final permutation `perm` could be reconstructed by this, details refer to upper example. infos (IntTensor, optional): if `get_infos` is `True`, this is a tensor of size (∗(N-2)) where non-zero values indicate whether factorization for the matrix or each minibatch has succeeded or failed. Examples: .. code-block:: python import paddle x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64') lu,p,info = paddle.linalg.lu(x, get_infos=True) # >>> lu: # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True, # [[5. , 6. ], # [0.20000000, 0.80000000], # [0.60000000, 0.50000000]]) # >>> p # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True, # [3, 3]) # >>> info # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True, # 0) P,L,U = paddle.linalg.lu_unpack(lu,p) # >>> P # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True, # [[0., 1., 0.], # [0., 0., 1.], # [1., 0., 0.]]), # >>> L # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True, # [[1. , 0. ], # [0.20000000, 1. ], # [0.60000000, 0.50000000]]), # >>> U # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True, # [[5. , 6. ], # [0. , 0.80000000]])) # one can verify : X = P @ L @ U ;
python/paddle/tensor/linalg.py
lu
DevilCarp/Paddle
python
def lu(x, pivot=True, get_infos=False, name=None): "\n Computes the LU factorization of an N-D(N>=2) matrix x. \n\n Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and \n upper triangular matrix U are combined to a single LU matrix.\n\n Pivoting is done if pivot is set to True.\n P mat can be get by pivots:\n # ones = eye(rows) #eye matrix of rank rows\n # for i in range(cols):\n # swap(ones[i], ones[pivots[i]])\n # return ones\n\n Args:\n\n X (Tensor): the tensor to factor of N-dimensions(N>=2).\n\n pivot (bool, optional): controls whether pivoting is done. Default: True.\n\n get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.\n\n name (str, optional): Name for the operation (optional, default is None).\n For more information, please refer to :ref:`api_guide_Name`.\n \n Returns:\n factorization (Tensor): LU matrix, the factorization of input X.\n\n pivots (IntTensor): the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the \n intermediate transpositions of rows. The final permutation `perm` could be \n reconstructed by this, details refer to upper example.\n\n infos (IntTensor, optional): if `get_infos` is `True`, this is a tensor of size (∗(N-2)) \n where non-zero values indicate whether factorization for the matrix or each minibatch \n has succeeded or failed.\n\n \n Examples: \n .. code-block:: python\n\n import paddle \n\n x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')\n lu,p,info = paddle.linalg.lu(x, get_infos=True)\n\n # >>> lu:\n # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,\n # [[5. , 6. ],\n # [0.20000000, 0.80000000],\n # [0.60000000, 0.50000000]])\n # >>> p\n # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,\n # [3, 3])\n # >>> info\n # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,\n # 0)\n \n P,L,U = paddle.linalg.lu_unpack(lu,p)\n\n # >>> P\n # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,\n # [[0., 1., 0.],\n # [0., 0., 1.],\n # [1., 0., 0.]]), \n # >>> L\n # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,\n # [[1. , 0. ],\n # [0.20000000, 1. ],\n # [0.60000000, 0.50000000]]), \n # >>> U\n # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,\n # [[5. , 6. ],\n # [0. , 0.80000000]]))\n \n\n # one can verify : X = P @ L @ U ; \n " if paddle.in_dynamic_mode(): (LU, Piv, Info) = _C_ops.lu(x, 'pivots', pivot) if get_infos: return (LU, Piv, Info) else: return (LU, Piv) check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu') helper = LayerHelper('lu', **locals()) lu = helper.create_variable_for_type_inference(dtype=x.dtype) p = helper.create_variable_for_type_inference(dtype='int') info = helper.create_variable_for_type_inference(dtype='int') attrs = dict() attrs['pivots'] = pivot helper.append_op(type='lu', inputs={'X': x}, outputs={'Out': lu, 'Pivots': p, 'Infos': info}, attrs=attrs) if get_infos: return (lu, p, info) else: return (lu, p)
def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None): "\n Unpack L U and P to single matrix tensor . \n unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .\n\n P mat can be get by pivots:\n # ones = eye(rows) #eye matrix of rank rows\n # for i in range(cols):\n # swap(ones[i], ones[pivots[i]])\n\n\n Args:\n x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.\n\n y (Tensor): Pivots get from paddle.linalg.lu.\n\n unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.\n\n unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.\n\n name (str, optional): Name for the operation (optional, default is None).\n For more information, please refer to :ref:`api_guide_Name`.\n \n Returns:\n P (Tensor): Permutation matrix P of lu factorization.\n\n L (Tensor): The lower triangular matrix tensor of lu factorization.\n\n U (Tensor): The upper triangular matrix tensor of lu factorization.\n\n \n Examples: \n .. code-block:: python\n\n import paddle \n\n x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')\n lu,p,info = paddle.linalg.lu(x, get_infos=True)\n\n # >>> lu:\n # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,\n # [[5. , 6. ],\n # [0.20000000, 0.80000000],\n # [0.60000000, 0.50000000]])\n # >>> p\n # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,\n # [3, 3])\n # >>> info\n # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,\n # 0)\n \n P,L,U = paddle.linalg.lu_unpack(lu,p)\n\n # >>> P\n # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,\n # [[0., 1., 0.],\n # [0., 0., 1.],\n # [1., 0., 0.]]), \n # >>> L\n # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,\n # [[1. , 0. ],\n # [0.20000000, 1. ],\n # [0.60000000, 0.50000000]]), \n # >>> U\n # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,\n # [[5. , 6. ],\n # [0. , 0.80000000]]))\n\n # one can verify : X = P @ L @ U ; \n " if paddle.in_dynamic_mode(): (P, L, U) = _C_ops.lu_unpack(x, y, 'unpack_ludata', unpack_ludata, 'unpack_pivots', unpack_pivots) return (P, L, U) check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu_unpack') helper = LayerHelper('lu_unpack', **locals()) p = helper.create_variable_for_type_inference(dtype=x.dtype) l = helper.create_variable_for_type_inference(dtype=x.dtype) u = helper.create_variable_for_type_inference(dtype=x.dtype) attrs = dict() attrs['unpack_ludata'] = unpack_ludata attrs['unpack_pivots'] = unpack_pivots helper.append_op(type='lu_unpack', inputs={'X': x, 'Pivots': y}, outputs={'Pmat': p, 'L': l, 'U': u}, attrs=attrs) return (p, l, u)
-8,822,091,043,951,989,000
Unpack L U and P to single matrix tensor . unpack L and U matrix from LU, unpack permutation matrix P from Pivtos . P mat can be get by pivots: # ones = eye(rows) #eye matrix of rank rows # for i in range(cols): # swap(ones[i], ones[pivots[i]]) Args: x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U. y (Tensor): Pivots get from paddle.linalg.lu. unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True. unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: P (Tensor): Permutation matrix P of lu factorization. L (Tensor): The lower triangular matrix tensor of lu factorization. U (Tensor): The upper triangular matrix tensor of lu factorization. Examples: .. code-block:: python import paddle x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64') lu,p,info = paddle.linalg.lu(x, get_infos=True) # >>> lu: # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True, # [[5. , 6. ], # [0.20000000, 0.80000000], # [0.60000000, 0.50000000]]) # >>> p # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True, # [3, 3]) # >>> info # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True, # 0) P,L,U = paddle.linalg.lu_unpack(lu,p) # >>> P # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True, # [[0., 1., 0.], # [0., 0., 1.], # [1., 0., 0.]]), # >>> L # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True, # [[1. , 0. ], # [0.20000000, 1. ], # [0.60000000, 0.50000000]]), # >>> U # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True, # [[5. , 6. ], # [0. , 0.80000000]])) # one can verify : X = P @ L @ U ;
python/paddle/tensor/linalg.py
lu_unpack
DevilCarp/Paddle
python
def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None): "\n Unpack L U and P to single matrix tensor . \n unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .\n\n P mat can be get by pivots:\n # ones = eye(rows) #eye matrix of rank rows\n # for i in range(cols):\n # swap(ones[i], ones[pivots[i]])\n\n\n Args:\n x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.\n\n y (Tensor): Pivots get from paddle.linalg.lu.\n\n unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.\n\n unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.\n\n name (str, optional): Name for the operation (optional, default is None).\n For more information, please refer to :ref:`api_guide_Name`.\n \n Returns:\n P (Tensor): Permutation matrix P of lu factorization.\n\n L (Tensor): The lower triangular matrix tensor of lu factorization.\n\n U (Tensor): The upper triangular matrix tensor of lu factorization.\n\n \n Examples: \n .. code-block:: python\n\n import paddle \n\n x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')\n lu,p,info = paddle.linalg.lu(x, get_infos=True)\n\n # >>> lu:\n # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,\n # [[5. , 6. ],\n # [0.20000000, 0.80000000],\n # [0.60000000, 0.50000000]])\n # >>> p\n # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,\n # [3, 3])\n # >>> info\n # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,\n # 0)\n \n P,L,U = paddle.linalg.lu_unpack(lu,p)\n\n # >>> P\n # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,\n # [[0., 1., 0.],\n # [0., 0., 1.],\n # [1., 0., 0.]]), \n # >>> L\n # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,\n # [[1. , 0. ],\n # [0.20000000, 1. ],\n # [0.60000000, 0.50000000]]), \n # >>> U\n # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,\n # [[5. , 6. ],\n # [0. , 0.80000000]]))\n\n # one can verify : X = P @ L @ U ; \n " if paddle.in_dynamic_mode(): (P, L, U) = _C_ops.lu_unpack(x, y, 'unpack_ludata', unpack_ludata, 'unpack_pivots', unpack_pivots) return (P, L, U) check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu_unpack') helper = LayerHelper('lu_unpack', **locals()) p = helper.create_variable_for_type_inference(dtype=x.dtype) l = helper.create_variable_for_type_inference(dtype=x.dtype) u = helper.create_variable_for_type_inference(dtype=x.dtype) attrs = dict() attrs['unpack_ludata'] = unpack_ludata attrs['unpack_pivots'] = unpack_pivots helper.append_op(type='lu_unpack', inputs={'X': x, 'Pivots': y}, outputs={'Pmat': p, 'L': l, 'U': u}, attrs=attrs) return (p, l, u)
def eig(x, name=None): '\n This API performs the eigenvalue decomposition of a square matrix or a batch of square matrices.\n\n .. note::\n If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.\n If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.\n If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.\n This API is only supported on CPU device.\n The output datatype is always complex for both real and complex input.\n\n Args:\n x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,\n ``float64``, ``compplex64`` or ``complex128``.\n name (str, optional): The default value is `None`. Normally there is no need for user to set \n this property. For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.\n Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.\n\n Examples:\n .. code-block:: python\n\n import paddle\n import numpy as np\n\n paddle.device.set_device("cpu")\n\n x_data = np.array([[1.6707249, 7.2249975, 6.5045543],\n [9.956216, 8.749598, 6.066444 ],\n [4.4251957, 1.7983172, 0.370647 ]]).astype("float32")\n x = paddle.to_tensor(x_data)\n w, v = paddle.linalg.eig(x)\n print(w)\n # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,\n # [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,\n # (0.18518077798279986+0j)],\n # [(-0.8308237755993192+0j) , (0.3463813401919749+0j) ,\n # (-0.6837005269141947+0j) ],\n # [(-0.23142567697893396+0j), (0.4944999840400175+0j) ,\n # (0.7058765252952796+0j) ]])\n\n print(v)\n # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,\n # [ (16.50471283351188+0j) , (-5.5034820550763515+0j) ,\n # (-0.21026087843552282+0j)])\n ' if paddle.in_dynamic_mode(): (w, v) = _C_ops.eig(x) return (w, v) check_variable_and_dtype(x, 'X', ['float32', 'float64', 'complex64', 'complex128'], 'eig') helper = LayerHelper('eig', **locals()) w = helper.create_variable_for_type_inference(x.dtype) v = helper.create_variable_for_type_inference(x.dtype) inputs = {'X': x} outputs = {'Eigenvalues': w, 'Eigenvectors': v} helper.append_op(type='eig', inputs=inputs, outputs=outputs) return (w, v)
4,681,175,119,224,986,000
This API performs the eigenvalue decomposition of a square matrix or a batch of square matrices. .. note:: If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster. If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead. If the matrix is of any shape, please use :ref:`paddle.linalg.svd`. This API is only supported on CPU device. The output datatype is always complex for both real and complex input. Args: x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``, ``float64``, ``compplex64`` or ``complex128``. name (str, optional): The default value is `None`. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values. Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors. Examples: .. code-block:: python import paddle import numpy as np paddle.device.set_device("cpu") x_data = np.array([[1.6707249, 7.2249975, 6.5045543], [9.956216, 8.749598, 6.066444 ], [4.4251957, 1.7983172, 0.370647 ]]).astype("float32") x = paddle.to_tensor(x_data) w, v = paddle.linalg.eig(x) print(w) # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False, # [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) , # (0.18518077798279986+0j)], # [(-0.8308237755993192+0j) , (0.3463813401919749+0j) , # (-0.6837005269141947+0j) ], # [(-0.23142567697893396+0j), (0.4944999840400175+0j) , # (0.7058765252952796+0j) ]]) print(v) # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False, # [ (16.50471283351188+0j) , (-5.5034820550763515+0j) , # (-0.21026087843552282+0j)])
python/paddle/tensor/linalg.py
eig
DevilCarp/Paddle
python
def eig(x, name=None): '\n This API performs the eigenvalue decomposition of a square matrix or a batch of square matrices.\n\n .. note::\n If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.\n If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.\n If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.\n This API is only supported on CPU device.\n The output datatype is always complex for both real and complex input.\n\n Args:\n x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,\n ``float64``, ``compplex64`` or ``complex128``.\n name (str, optional): The default value is `None`. Normally there is no need for user to set \n this property. For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.\n Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.\n\n Examples:\n .. code-block:: python\n\n import paddle\n import numpy as np\n\n paddle.device.set_device("cpu")\n\n x_data = np.array([[1.6707249, 7.2249975, 6.5045543],\n [9.956216, 8.749598, 6.066444 ],\n [4.4251957, 1.7983172, 0.370647 ]]).astype("float32")\n x = paddle.to_tensor(x_data)\n w, v = paddle.linalg.eig(x)\n print(w)\n # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,\n # [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,\n # (0.18518077798279986+0j)],\n # [(-0.8308237755993192+0j) , (0.3463813401919749+0j) ,\n # (-0.6837005269141947+0j) ],\n # [(-0.23142567697893396+0j), (0.4944999840400175+0j) ,\n # (0.7058765252952796+0j) ]])\n\n print(v)\n # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,\n # [ (16.50471283351188+0j) , (-5.5034820550763515+0j) ,\n # (-0.21026087843552282+0j)])\n ' if paddle.in_dynamic_mode(): (w, v) = _C_ops.eig(x) return (w, v) check_variable_and_dtype(x, 'X', ['float32', 'float64', 'complex64', 'complex128'], 'eig') helper = LayerHelper('eig', **locals()) w = helper.create_variable_for_type_inference(x.dtype) v = helper.create_variable_for_type_inference(x.dtype) inputs = {'X': x} outputs = {'Eigenvalues': w, 'Eigenvectors': v} helper.append_op(type='eig', inputs=inputs, outputs=outputs) return (w, v)
def eigvals(x, name=None): '\n Compute the eigenvalues of one or more general matrices.\n\n Warning:\n The gradient kernel of this operator does not yet developed.\n If you need back propagation through this operator, please replace it with paddle.linalg.eig.\n\n Args:\n x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.\n Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.\n Its data type should be float32, float64, complex64, or complex128.\n name (str, optional): Name for the operation (optional, default is None).\n For more information, please refer to :ref:`api_guide_Name`.\n \n Returns:\n Tensor: A tensor containing the unsorted eigenvalues which has the same batch dimensions with `x`.\n The eigenvalues are complex-valued even when `x` is real.\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n paddle.set_device("cpu")\n paddle.seed(1234)\n\n x = paddle.rand(shape=[3, 3], dtype=\'float64\')\n # [[0.02773777, 0.93004224, 0.06911496],\n # [0.24831591, 0.45733623, 0.07717843],\n # [0.48016702, 0.14235102, 0.42620817]])\n\n print(paddle.linalg.eigvals(x))\n # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128\n ' check_variable_and_dtype(x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'eigvals') x_shape = list(x.shape) if (len(x_shape) < 2): raise ValueError("The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}".format(len(x_shape), x_shape)) if (x_shape[(- 1)] != x_shape[(- 2)]): raise ValueError("The last two dimensions of Input(x) should be equal, but received x's shape = {}".format(x_shape)) if paddle.in_dynamic_mode(): return _C_ops.eigvals(x) helper = LayerHelper('eigvals', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out}) return out
-910,280,352,137,155,100
Compute the eigenvalues of one or more general matrices. Warning: The gradient kernel of this operator does not yet developed. If you need back propagation through this operator, please replace it with paddle.linalg.eig. Args: x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed. Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions. Its data type should be float32, float64, complex64, or complex128. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A tensor containing the unsorted eigenvalues which has the same batch dimensions with `x`. The eigenvalues are complex-valued even when `x` is real. Examples: .. code-block:: python import paddle paddle.set_device("cpu") paddle.seed(1234) x = paddle.rand(shape=[3, 3], dtype='float64') # [[0.02773777, 0.93004224, 0.06911496], # [0.24831591, 0.45733623, 0.07717843], # [0.48016702, 0.14235102, 0.42620817]]) print(paddle.linalg.eigvals(x)) # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
python/paddle/tensor/linalg.py
eigvals
DevilCarp/Paddle
python
def eigvals(x, name=None): '\n Compute the eigenvalues of one or more general matrices.\n\n Warning:\n The gradient kernel of this operator does not yet developed.\n If you need back propagation through this operator, please replace it with paddle.linalg.eig.\n\n Args:\n x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.\n Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.\n Its data type should be float32, float64, complex64, or complex128.\n name (str, optional): Name for the operation (optional, default is None).\n For more information, please refer to :ref:`api_guide_Name`.\n \n Returns:\n Tensor: A tensor containing the unsorted eigenvalues which has the same batch dimensions with `x`.\n The eigenvalues are complex-valued even when `x` is real.\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n paddle.set_device("cpu")\n paddle.seed(1234)\n\n x = paddle.rand(shape=[3, 3], dtype=\'float64\')\n # [[0.02773777, 0.93004224, 0.06911496],\n # [0.24831591, 0.45733623, 0.07717843],\n # [0.48016702, 0.14235102, 0.42620817]])\n\n print(paddle.linalg.eigvals(x))\n # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128\n ' check_variable_and_dtype(x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'eigvals') x_shape = list(x.shape) if (len(x_shape) < 2): raise ValueError("The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}".format(len(x_shape), x_shape)) if (x_shape[(- 1)] != x_shape[(- 2)]): raise ValueError("The last two dimensions of Input(x) should be equal, but received x's shape = {}".format(x_shape)) if paddle.in_dynamic_mode(): return _C_ops.eigvals(x) helper = LayerHelper('eigvals', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out}) return out
def multi_dot(x, name=None): '\n Multi_dot is an operator that calculates multiple matrix multiplications.\n\n Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not\n support batched inputs.\n\n The input tensor in [x] must be 2-D except for the first and last can be 1-D.\n If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector\n of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it\n is treated as a column vector of shape(n, 1).\n\n If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,\n otherwise the output is a 1-D vector.\n\n Multi_dot will select the lowest cost multiplication order for calculation. The\n cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.\n Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,\n we can calculate the cost of different multiplication orders as follows:\n - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000\n - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000\n\n In this case, multiplying B and C first, then multiply A, which is 5 times faster\n than sequential calculation.\n\n Args:\n x ([Tensor]): The input tensors which is a list Tensor.\n name(str|None): A name for this layer(optional). If set None, the layer\n will be named automatically.\n\n Returns:\n Tensor: The output Tensor.\n\n\n Examples:\n\n .. code-block:: python\n\n import paddle\n import numpy as np\n\n # A * B\n A_data = np.random.random([3, 4]).astype(np.float32)\n B_data = np.random.random([4, 5]).astype(np.float32)\n A = paddle.to_tensor(A_data)\n B = paddle.to_tensor(B_data)\n out = paddle.linalg.multi_dot([A, B])\n print(out.numpy().shape)\n # [3, 5]\n\n # A * B * C\n A_data = np.random.random([10, 5]).astype(np.float32)\n B_data = np.random.random([5, 8]).astype(np.float32)\n C_data = np.random.random([8, 7]).astype(np.float32)\n A = paddle.to_tensor(A_data)\n B = paddle.to_tensor(B_data)\n C = paddle.to_tensor(C_data)\n out = paddle.linalg.multi_dot([A, B, C])\n print(out.numpy().shape)\n # [10, 7]\n\n ' if paddle.in_dynamic_mode(): return _C_ops.multi_dot(x) check_type(x, 'x', (list, tuple), 'multi_dot') for (id, item) in enumerate(x): check_variable_and_dtype(item, (('x[' + str(id)) + ']'), ['float16', 'float32', 'float64'], 'multi_dot') if (item.dtype != x[0].dtype): raise TypeError('All the Tensors in the input must have the same data type.') helper = LayerHelper('multi_dot', **locals()) dtype = helper.input_dtype(input_param_name='x') out = helper.create_variable_for_type_inference(dtype) helper.append_op(type='multi_dot', inputs={'X': x}, outputs={'Out': out}) return out
1,592,148,319,123,424,000
Multi_dot is an operator that calculates multiple matrix multiplications. Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not support batched inputs. The input tensor in [x] must be 2-D except for the first and last can be 1-D. If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it is treated as a column vector of shape(n, 1). If the first and last tensor are 2-D matrix, then the output is also 2-D matrix, otherwise the output is a 1-D vector. Multi_dot will select the lowest cost multiplication order for calculation. The cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c. Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively, we can calculate the cost of different multiplication orders as follows: - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000 - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000 In this case, multiplying B and C first, then multiply A, which is 5 times faster than sequential calculation. Args: x ([Tensor]): The input tensors which is a list Tensor. name(str|None): A name for this layer(optional). If set None, the layer will be named automatically. Returns: Tensor: The output Tensor. Examples: .. code-block:: python import paddle import numpy as np # A * B A_data = np.random.random([3, 4]).astype(np.float32) B_data = np.random.random([4, 5]).astype(np.float32) A = paddle.to_tensor(A_data) B = paddle.to_tensor(B_data) out = paddle.linalg.multi_dot([A, B]) print(out.numpy().shape) # [3, 5] # A * B * C A_data = np.random.random([10, 5]).astype(np.float32) B_data = np.random.random([5, 8]).astype(np.float32) C_data = np.random.random([8, 7]).astype(np.float32) A = paddle.to_tensor(A_data) B = paddle.to_tensor(B_data) C = paddle.to_tensor(C_data) out = paddle.linalg.multi_dot([A, B, C]) print(out.numpy().shape) # [10, 7]
python/paddle/tensor/linalg.py
multi_dot
DevilCarp/Paddle
python
def multi_dot(x, name=None): '\n Multi_dot is an operator that calculates multiple matrix multiplications.\n\n Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not\n support batched inputs.\n\n The input tensor in [x] must be 2-D except for the first and last can be 1-D.\n If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector\n of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it\n is treated as a column vector of shape(n, 1).\n\n If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,\n otherwise the output is a 1-D vector.\n\n Multi_dot will select the lowest cost multiplication order for calculation. The\n cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.\n Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,\n we can calculate the cost of different multiplication orders as follows:\n - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000\n - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000\n\n In this case, multiplying B and C first, then multiply A, which is 5 times faster\n than sequential calculation.\n\n Args:\n x ([Tensor]): The input tensors which is a list Tensor.\n name(str|None): A name for this layer(optional). If set None, the layer\n will be named automatically.\n\n Returns:\n Tensor: The output Tensor.\n\n\n Examples:\n\n .. code-block:: python\n\n import paddle\n import numpy as np\n\n # A * B\n A_data = np.random.random([3, 4]).astype(np.float32)\n B_data = np.random.random([4, 5]).astype(np.float32)\n A = paddle.to_tensor(A_data)\n B = paddle.to_tensor(B_data)\n out = paddle.linalg.multi_dot([A, B])\n print(out.numpy().shape)\n # [3, 5]\n\n # A * B * C\n A_data = np.random.random([10, 5]).astype(np.float32)\n B_data = np.random.random([5, 8]).astype(np.float32)\n C_data = np.random.random([8, 7]).astype(np.float32)\n A = paddle.to_tensor(A_data)\n B = paddle.to_tensor(B_data)\n C = paddle.to_tensor(C_data)\n out = paddle.linalg.multi_dot([A, B, C])\n print(out.numpy().shape)\n # [10, 7]\n\n ' if paddle.in_dynamic_mode(): return _C_ops.multi_dot(x) check_type(x, 'x', (list, tuple), 'multi_dot') for (id, item) in enumerate(x): check_variable_and_dtype(item, (('x[' + str(id)) + ']'), ['float16', 'float32', 'float64'], 'multi_dot') if (item.dtype != x[0].dtype): raise TypeError('All the Tensors in the input must have the same data type.') helper = LayerHelper('multi_dot', **locals()) dtype = helper.input_dtype(input_param_name='x') out = helper.create_variable_for_type_inference(dtype) helper.append_op(type='multi_dot', inputs={'X': x}, outputs={'Out': out}) return out
def eigh(x, UPLO='L', name=None): '\n Compute the eigenvalues and eigenvectors of a\n complex Hermitian (conjugate symmetric) or a real symmetric matrix.\n\n Args:\n x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x\n should be one of float32, float64, complex64, complex128.\n UPLO(str, optional): (string, default \'L\'), \'L\' represents the lower triangular matrix,\n "\'U\' represents the upper triangular matrix.".\n name(str, optional): The default value is None. Normally there is no need for user to set this\n property. For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n\n out_value(Tensor): A Tensor with shape [*, N] and data type of float32 and float64. The eigenvalues of eigh op.\n out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,complex64 and complex128. The eigenvectors of eigh op.\n\n Examples:\n .. code-block:: python\n\n import numpy as np\n import paddle\n\n x_data = np.array([[1, -2j], [2j, 5]])\n x = paddle.to_tensor(x_data)\n out_value, out_vector = paddle.linalg.eigh(x, UPLO=\'L\')\n print(out_value)\n #[0.17157288, 5.82842712]\n print(out_vector)\n #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],\n #[ 0.3826834323650898j , -0.9238795325112867j ]]\n\n ' if paddle.in_dynamic_mode(): return _C_ops.eigh(x, 'UPLO', UPLO) def __check_input(x, UPLO): x_shape = list(x.shape) if (len(x.shape) < 2): raise ValueError(('Input(input) only support >=2 tensor, but received length of Input(input) is %s.' % len(x.shape))) if (x_shape[(- 1)] != x_shape[(- 2)]): raise ValueError("The input matrix must be batches of square matrices. But received x's dimention: {}".format(x_shape)) if ((UPLO != 'L') and (UPLO != 'U')): raise ValueError('UPLO must be L or U. But received UPLO is: {}'.format(UPLO)) __check_input(x, UPLO) helper = LayerHelper('eigh', **locals()) check_variable_and_dtype(x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'eigh') out_value = helper.create_variable_for_type_inference(dtype=x.dtype) out_vector = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='eigh', inputs={'X': x}, outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector}, attrs={'UPLO': UPLO}) return (out_value, out_vector)
-1,568,547,505,044,493,800
Compute the eigenvalues and eigenvectors of a complex Hermitian (conjugate symmetric) or a real symmetric matrix. Args: x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x should be one of float32, float64, complex64, complex128. UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix, "'U' represents the upper triangular matrix.". name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: out_value(Tensor): A Tensor with shape [*, N] and data type of float32 and float64. The eigenvalues of eigh op. out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,complex64 and complex128. The eigenvectors of eigh op. Examples: .. code-block:: python import numpy as np import paddle x_data = np.array([[1, -2j], [2j, 5]]) x = paddle.to_tensor(x_data) out_value, out_vector = paddle.linalg.eigh(x, UPLO='L') print(out_value) #[0.17157288, 5.82842712] print(out_vector) #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)], #[ 0.3826834323650898j , -0.9238795325112867j ]]
python/paddle/tensor/linalg.py
eigh
DevilCarp/Paddle
python
def eigh(x, UPLO='L', name=None): '\n Compute the eigenvalues and eigenvectors of a\n complex Hermitian (conjugate symmetric) or a real symmetric matrix.\n\n Args:\n x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x\n should be one of float32, float64, complex64, complex128.\n UPLO(str, optional): (string, default \'L\'), \'L\' represents the lower triangular matrix,\n "\'U\' represents the upper triangular matrix.".\n name(str, optional): The default value is None. Normally there is no need for user to set this\n property. For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n\n out_value(Tensor): A Tensor with shape [*, N] and data type of float32 and float64. The eigenvalues of eigh op.\n out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,complex64 and complex128. The eigenvectors of eigh op.\n\n Examples:\n .. code-block:: python\n\n import numpy as np\n import paddle\n\n x_data = np.array([[1, -2j], [2j, 5]])\n x = paddle.to_tensor(x_data)\n out_value, out_vector = paddle.linalg.eigh(x, UPLO=\'L\')\n print(out_value)\n #[0.17157288, 5.82842712]\n print(out_vector)\n #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],\n #[ 0.3826834323650898j , -0.9238795325112867j ]]\n\n ' if paddle.in_dynamic_mode(): return _C_ops.eigh(x, 'UPLO', UPLO) def __check_input(x, UPLO): x_shape = list(x.shape) if (len(x.shape) < 2): raise ValueError(('Input(input) only support >=2 tensor, but received length of Input(input) is %s.' % len(x.shape))) if (x_shape[(- 1)] != x_shape[(- 2)]): raise ValueError("The input matrix must be batches of square matrices. But received x's dimention: {}".format(x_shape)) if ((UPLO != 'L') and (UPLO != 'U')): raise ValueError('UPLO must be L or U. But received UPLO is: {}'.format(UPLO)) __check_input(x, UPLO) helper = LayerHelper('eigh', **locals()) check_variable_and_dtype(x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'eigh') out_value = helper.create_variable_for_type_inference(dtype=x.dtype) out_vector = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='eigh', inputs={'X': x}, outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector}, attrs={'UPLO': UPLO}) return (out_value, out_vector)
def pinv(x, rcond=1e-15, hermitian=False, name=None): "\n Calculate pseudo inverse via SVD(singular value decomposition)\n of one matrix or batches of regular matrix.\n\n .. math::\n\n if hermitian == False:\n x = u * s * vt (SVD)\n out = v * 1/s * ut\n else:\n x = u * s * ut (eigh)\n out = u * 1/s * u.conj().transpose(-2,-1)\n\n If x is hermitian or symmetric matrix, svd will be replaced with eigh.\n\n Args:\n x(Tensor): The input tensor. Its shape should be (*, m, n)\n where * is zero or more batch dimensions. m and n can be\n arbitraty positive number. The data type of x should be\n float32 or float64 or complex64 or complex128. When data\n type is complex64 or cpmplex128, hermitian should be set\n True.\n\n rcond(Tensor, optional): the tolerance value to determine\n when is a singular value zero. Defalut:1e-15.\n\n hermitian(bool, optional): indicates whether x is Hermitian\n if complex or symmetric if real. Default: False.\n\n name(str|None): A name for this layer(optional). If set None,\n the layer will be named automatically.\n\n Returns:\n Tensor: The tensor with same data type with x. it represents\n pseudo inverse of x. Its shape should be (*, n, m).\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n x = paddle.arange(15).reshape((3, 5)).astype('float64')\n input = paddle.to_tensor(x)\n out = paddle.linalg.pinv(input)\n print(input)\n print(out)\n\n # input:\n # [[0. , 1. , 2. , 3. , 4. ],\n # [5. , 6. , 7. , 8. , 9. ],\n # [10., 11., 12., 13., 14.]]\n\n # out:\n # [[-0.22666667, -0.06666667, 0.09333333],\n # [-0.12333333, -0.03333333, 0.05666667],\n # [-0.02000000, 0.00000000, 0.02000000],\n # [ 0.08333333, 0.03333333, -0.01666667],\n # [ 0.18666667, 0.06666667, -0.05333333]]\n\n # one can verify : x * out * x = x ;\n # or out * x * out = x ;\n " if paddle.in_dynamic_mode(): if (not hermitian): (u, s, vt) = _C_ops.svd(x, 'full_matrices', False) max_singular_val = _C_ops.reduce_max(s, 'dim', [(- 1)], 'keep_dim', True, 'reduce_all', False) rcond = paddle.to_tensor(rcond, dtype=x.dtype) cutoff = (rcond * max_singular_val) y = float('inf') y = paddle.to_tensor(y, dtype=x.dtype) condition = (s > cutoff) cond_int = layers.cast(condition, s.dtype) cond_not_int = layers.cast(layers.logical_not(condition), s.dtype) out1 = layers.elementwise_mul((1 / s), cond_int) out2 = layers.elementwise_mul((1 / y), cond_not_int) singular = layers.elementwise_add(out1, out2) (st, _) = _C_ops.unsqueeze2(singular, 'axes', [(- 2)]) dims = list(range(len(vt.shape))) perm = ((dims[:(- 2)] + [dims[(- 1)]]) + [dims[(- 2)]]) (v, _) = _C_ops.transpose2(vt, 'axis', perm) out_1 = (v * st) out_2 = _C_ops.matmul_v2(out_1, u, 'trans_x', False, 'trans_y', True) return out_2 else: (s, u) = _C_ops.eigh(x, 'UPLO', 'L') s_abs = paddle.abs(s) max_singular_val = _C_ops.reduce_max(s_abs, 'dim', [(- 1)], 'keep_dim', True, 'reduce_all', False) rcond = paddle.to_tensor(rcond, dtype=s.dtype) cutoff = (rcond * max_singular_val) y = float('inf') y = paddle.to_tensor(y, dtype=s.dtype) condition = (s_abs > cutoff) cond_int = layers.cast(condition, s.dtype) cond_not_int = layers.cast(layers.logical_not(condition), s.dtype) out1 = layers.elementwise_mul((1 / s), cond_int) out2 = layers.elementwise_mul((1 / y), cond_not_int) singular = layers.elementwise_add(out1, out2) (st, _) = _C_ops.unsqueeze2(singular, 'axes', [(- 2)]) out_1 = (u * st) u_conj = _C_ops.conj(u) out_2 = _C_ops.matmul_v2(out_1, u_conj, 'trans_x', False, 'trans_y', True) return out_2 elif (not hermitian): helper = LayerHelper('pinv', **locals()) dtype = x.dtype check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv') u = helper.create_variable_for_type_inference(dtype) s = helper.create_variable_for_type_inference(dtype) vt = helper.create_variable_for_type_inference(dtype) helper.append_op(type='svd', inputs={'X': [x]}, outputs={'U': u, 'VH': vt, 'S': s}, attrs={'full_matrices': False}) max_singular_val = helper.create_variable_for_type_inference(dtype) helper.append_op(type='reduce_max', inputs={'X': s}, outputs={'Out': max_singular_val}, attrs={'dim': [(- 1)], 'keep_dim': True, 'reduce_all': False}) rcond = layers.fill_constant(shape=[1], value=rcond, dtype=dtype) cutoff = (rcond * max_singular_val) y = float('inf') y = layers.fill_constant(shape=[1], value=y, dtype=dtype) condition = (s > cutoff) cond_int = layers.cast(condition, dtype) cond_not_int = layers.cast(layers.logical_not(condition), dtype) out1 = layers.elementwise_mul((1 / s), cond_int) out2 = layers.elementwise_mul((1 / y), cond_not_int) singular = layers.elementwise_add(out1, out2) st = helper.create_variable_for_type_inference(dtype=dtype) st_shape = helper.create_variable_for_type_inference(dtype=dtype) helper.append_op(type='unsqueeze2', inputs={'X': singular}, attrs={'axes': [(- 2)]}, outputs={'Out': st, 'XShape': st_shape}) dims = list(range(len(vt.shape))) perm = ((dims[:(- 2)] + [dims[(- 1)]]) + [dims[(- 2)]]) v = helper.create_variable_for_type_inference(dtype) v_shape = helper.create_variable_for_type_inference(dtype) helper.append_op(type='transpose2', inputs={'X': [vt]}, outputs={'Out': [v], 'XShape': [v_shape]}, attrs={'axis': perm}) out_1 = helper.create_variable_for_type_inference(dtype) helper.append_op(type='elementwise_mul', inputs={'X': v, 'Y': st}, outputs={'Out': out_1}, attrs={'axis': (- 1), 'use_mkldnn': False}) out_1 = helper.append_activation(out_1) out_2 = helper.create_variable_for_type_inference(dtype) helper.append_op(type='matmul_v2', inputs={'X': out_1, 'Y': u}, outputs={'Out': out_2}, attrs={'trans_x': False, 'trans_y': True}) return out_2 else: helper = LayerHelper('pinv', **locals()) dtype = x.dtype check_variable_and_dtype(x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'pinv') if (dtype == paddle.complex128): s_type = 'float64' elif (dtype == paddle.complex64): s_type = 'float32' else: s_type = dtype u = helper.create_variable_for_type_inference(dtype) s = helper.create_variable_for_type_inference(s_type) helper.append_op(type='eigh', inputs={'X': x}, outputs={'Eigenvalues': s, 'Eigenvectors': u}, attrs={'UPLO': 'L'}) s_abs = helper.create_variable_for_type_inference(s_type) helper.append_op(type='abs', inputs={'X': s}, outputs={'Out': s_abs}) max_singular_val = helper.create_variable_for_type_inference(s_type) helper.append_op(type='reduce_max', inputs={'X': s_abs}, outputs={'Out': max_singular_val}, attrs={'dim': [(- 1)], 'keep_dim': True, 'reduce_all': False}) rcond = layers.fill_constant(shape=[1], value=rcond, dtype=s_type) cutoff = (rcond * max_singular_val) y = float('inf') y = layers.fill_constant(shape=[1], value=y, dtype=s_type) condition = (s_abs > cutoff) cond_int = layers.cast(condition, s_type) cond_not_int = layers.cast(layers.logical_not(condition), s_type) out1 = layers.elementwise_mul((1 / s), cond_int) out2 = layers.elementwise_mul((1 / y), cond_not_int) singular = layers.elementwise_add(out1, out2) st = helper.create_variable_for_type_inference(dtype=s_type) st_shape = helper.create_variable_for_type_inference(dtype=s_type) helper.append_op(type='unsqueeze2', inputs={'X': singular}, attrs={'axes': [(- 2)]}, outputs={'Out': st, 'XShape': st_shape}) out_1 = helper.create_variable_for_type_inference(dtype) helper.append_op(type='elementwise_mul', inputs={'X': u, 'Y': st}, outputs={'Out': out_1}, attrs={'axis': (- 1), 'use_mkldnn': False}) out_1 = helper.append_activation(out_1) u_conj = helper.create_variable_for_type_inference(dtype) helper.append_op(type='conj', inputs={'X': u}, outputs={'Out': [u_conj]}) out_2 = helper.create_variable_for_type_inference(dtype) helper.append_op(type='matmul_v2', inputs={'X': out_1, 'Y': u_conj}, outputs={'Out': out_2}, attrs={'trans_x': False, 'trans_y': True}) return out_2
9,053,780,694,763,835,000
Calculate pseudo inverse via SVD(singular value decomposition) of one matrix or batches of regular matrix. .. math:: if hermitian == False: x = u * s * vt (SVD) out = v * 1/s * ut else: x = u * s * ut (eigh) out = u * 1/s * u.conj().transpose(-2,-1) If x is hermitian or symmetric matrix, svd will be replaced with eigh. Args: x(Tensor): The input tensor. Its shape should be (*, m, n) where * is zero or more batch dimensions. m and n can be arbitraty positive number. The data type of x should be float32 or float64 or complex64 or complex128. When data type is complex64 or cpmplex128, hermitian should be set True. rcond(Tensor, optional): the tolerance value to determine when is a singular value zero. Defalut:1e-15. hermitian(bool, optional): indicates whether x is Hermitian if complex or symmetric if real. Default: False. name(str|None): A name for this layer(optional). If set None, the layer will be named automatically. Returns: Tensor: The tensor with same data type with x. it represents pseudo inverse of x. Its shape should be (*, n, m). Examples: .. code-block:: python import paddle x = paddle.arange(15).reshape((3, 5)).astype('float64') input = paddle.to_tensor(x) out = paddle.linalg.pinv(input) print(input) print(out) # input: # [[0. , 1. , 2. , 3. , 4. ], # [5. , 6. , 7. , 8. , 9. ], # [10., 11., 12., 13., 14.]] # out: # [[-0.22666667, -0.06666667, 0.09333333], # [-0.12333333, -0.03333333, 0.05666667], # [-0.02000000, 0.00000000, 0.02000000], # [ 0.08333333, 0.03333333, -0.01666667], # [ 0.18666667, 0.06666667, -0.05333333]] # one can verify : x * out * x = x ; # or out * x * out = x ;
python/paddle/tensor/linalg.py
pinv
DevilCarp/Paddle
python
def pinv(x, rcond=1e-15, hermitian=False, name=None): "\n Calculate pseudo inverse via SVD(singular value decomposition)\n of one matrix or batches of regular matrix.\n\n .. math::\n\n if hermitian == False:\n x = u * s * vt (SVD)\n out = v * 1/s * ut\n else:\n x = u * s * ut (eigh)\n out = u * 1/s * u.conj().transpose(-2,-1)\n\n If x is hermitian or symmetric matrix, svd will be replaced with eigh.\n\n Args:\n x(Tensor): The input tensor. Its shape should be (*, m, n)\n where * is zero or more batch dimensions. m and n can be\n arbitraty positive number. The data type of x should be\n float32 or float64 or complex64 or complex128. When data\n type is complex64 or cpmplex128, hermitian should be set\n True.\n\n rcond(Tensor, optional): the tolerance value to determine\n when is a singular value zero. Defalut:1e-15.\n\n hermitian(bool, optional): indicates whether x is Hermitian\n if complex or symmetric if real. Default: False.\n\n name(str|None): A name for this layer(optional). If set None,\n the layer will be named automatically.\n\n Returns:\n Tensor: The tensor with same data type with x. it represents\n pseudo inverse of x. Its shape should be (*, n, m).\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n x = paddle.arange(15).reshape((3, 5)).astype('float64')\n input = paddle.to_tensor(x)\n out = paddle.linalg.pinv(input)\n print(input)\n print(out)\n\n # input:\n # [[0. , 1. , 2. , 3. , 4. ],\n # [5. , 6. , 7. , 8. , 9. ],\n # [10., 11., 12., 13., 14.]]\n\n # out:\n # [[-0.22666667, -0.06666667, 0.09333333],\n # [-0.12333333, -0.03333333, 0.05666667],\n # [-0.02000000, 0.00000000, 0.02000000],\n # [ 0.08333333, 0.03333333, -0.01666667],\n # [ 0.18666667, 0.06666667, -0.05333333]]\n\n # one can verify : x * out * x = x ;\n # or out * x * out = x ;\n " if paddle.in_dynamic_mode(): if (not hermitian): (u, s, vt) = _C_ops.svd(x, 'full_matrices', False) max_singular_val = _C_ops.reduce_max(s, 'dim', [(- 1)], 'keep_dim', True, 'reduce_all', False) rcond = paddle.to_tensor(rcond, dtype=x.dtype) cutoff = (rcond * max_singular_val) y = float('inf') y = paddle.to_tensor(y, dtype=x.dtype) condition = (s > cutoff) cond_int = layers.cast(condition, s.dtype) cond_not_int = layers.cast(layers.logical_not(condition), s.dtype) out1 = layers.elementwise_mul((1 / s), cond_int) out2 = layers.elementwise_mul((1 / y), cond_not_int) singular = layers.elementwise_add(out1, out2) (st, _) = _C_ops.unsqueeze2(singular, 'axes', [(- 2)]) dims = list(range(len(vt.shape))) perm = ((dims[:(- 2)] + [dims[(- 1)]]) + [dims[(- 2)]]) (v, _) = _C_ops.transpose2(vt, 'axis', perm) out_1 = (v * st) out_2 = _C_ops.matmul_v2(out_1, u, 'trans_x', False, 'trans_y', True) return out_2 else: (s, u) = _C_ops.eigh(x, 'UPLO', 'L') s_abs = paddle.abs(s) max_singular_val = _C_ops.reduce_max(s_abs, 'dim', [(- 1)], 'keep_dim', True, 'reduce_all', False) rcond = paddle.to_tensor(rcond, dtype=s.dtype) cutoff = (rcond * max_singular_val) y = float('inf') y = paddle.to_tensor(y, dtype=s.dtype) condition = (s_abs > cutoff) cond_int = layers.cast(condition, s.dtype) cond_not_int = layers.cast(layers.logical_not(condition), s.dtype) out1 = layers.elementwise_mul((1 / s), cond_int) out2 = layers.elementwise_mul((1 / y), cond_not_int) singular = layers.elementwise_add(out1, out2) (st, _) = _C_ops.unsqueeze2(singular, 'axes', [(- 2)]) out_1 = (u * st) u_conj = _C_ops.conj(u) out_2 = _C_ops.matmul_v2(out_1, u_conj, 'trans_x', False, 'trans_y', True) return out_2 elif (not hermitian): helper = LayerHelper('pinv', **locals()) dtype = x.dtype check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv') u = helper.create_variable_for_type_inference(dtype) s = helper.create_variable_for_type_inference(dtype) vt = helper.create_variable_for_type_inference(dtype) helper.append_op(type='svd', inputs={'X': [x]}, outputs={'U': u, 'VH': vt, 'S': s}, attrs={'full_matrices': False}) max_singular_val = helper.create_variable_for_type_inference(dtype) helper.append_op(type='reduce_max', inputs={'X': s}, outputs={'Out': max_singular_val}, attrs={'dim': [(- 1)], 'keep_dim': True, 'reduce_all': False}) rcond = layers.fill_constant(shape=[1], value=rcond, dtype=dtype) cutoff = (rcond * max_singular_val) y = float('inf') y = layers.fill_constant(shape=[1], value=y, dtype=dtype) condition = (s > cutoff) cond_int = layers.cast(condition, dtype) cond_not_int = layers.cast(layers.logical_not(condition), dtype) out1 = layers.elementwise_mul((1 / s), cond_int) out2 = layers.elementwise_mul((1 / y), cond_not_int) singular = layers.elementwise_add(out1, out2) st = helper.create_variable_for_type_inference(dtype=dtype) st_shape = helper.create_variable_for_type_inference(dtype=dtype) helper.append_op(type='unsqueeze2', inputs={'X': singular}, attrs={'axes': [(- 2)]}, outputs={'Out': st, 'XShape': st_shape}) dims = list(range(len(vt.shape))) perm = ((dims[:(- 2)] + [dims[(- 1)]]) + [dims[(- 2)]]) v = helper.create_variable_for_type_inference(dtype) v_shape = helper.create_variable_for_type_inference(dtype) helper.append_op(type='transpose2', inputs={'X': [vt]}, outputs={'Out': [v], 'XShape': [v_shape]}, attrs={'axis': perm}) out_1 = helper.create_variable_for_type_inference(dtype) helper.append_op(type='elementwise_mul', inputs={'X': v, 'Y': st}, outputs={'Out': out_1}, attrs={'axis': (- 1), 'use_mkldnn': False}) out_1 = helper.append_activation(out_1) out_2 = helper.create_variable_for_type_inference(dtype) helper.append_op(type='matmul_v2', inputs={'X': out_1, 'Y': u}, outputs={'Out': out_2}, attrs={'trans_x': False, 'trans_y': True}) return out_2 else: helper = LayerHelper('pinv', **locals()) dtype = x.dtype check_variable_and_dtype(x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'pinv') if (dtype == paddle.complex128): s_type = 'float64' elif (dtype == paddle.complex64): s_type = 'float32' else: s_type = dtype u = helper.create_variable_for_type_inference(dtype) s = helper.create_variable_for_type_inference(s_type) helper.append_op(type='eigh', inputs={'X': x}, outputs={'Eigenvalues': s, 'Eigenvectors': u}, attrs={'UPLO': 'L'}) s_abs = helper.create_variable_for_type_inference(s_type) helper.append_op(type='abs', inputs={'X': s}, outputs={'Out': s_abs}) max_singular_val = helper.create_variable_for_type_inference(s_type) helper.append_op(type='reduce_max', inputs={'X': s_abs}, outputs={'Out': max_singular_val}, attrs={'dim': [(- 1)], 'keep_dim': True, 'reduce_all': False}) rcond = layers.fill_constant(shape=[1], value=rcond, dtype=s_type) cutoff = (rcond * max_singular_val) y = float('inf') y = layers.fill_constant(shape=[1], value=y, dtype=s_type) condition = (s_abs > cutoff) cond_int = layers.cast(condition, s_type) cond_not_int = layers.cast(layers.logical_not(condition), s_type) out1 = layers.elementwise_mul((1 / s), cond_int) out2 = layers.elementwise_mul((1 / y), cond_not_int) singular = layers.elementwise_add(out1, out2) st = helper.create_variable_for_type_inference(dtype=s_type) st_shape = helper.create_variable_for_type_inference(dtype=s_type) helper.append_op(type='unsqueeze2', inputs={'X': singular}, attrs={'axes': [(- 2)]}, outputs={'Out': st, 'XShape': st_shape}) out_1 = helper.create_variable_for_type_inference(dtype) helper.append_op(type='elementwise_mul', inputs={'X': u, 'Y': st}, outputs={'Out': out_1}, attrs={'axis': (- 1), 'use_mkldnn': False}) out_1 = helper.append_activation(out_1) u_conj = helper.create_variable_for_type_inference(dtype) helper.append_op(type='conj', inputs={'X': u}, outputs={'Out': [u_conj]}) out_2 = helper.create_variable_for_type_inference(dtype) helper.append_op(type='matmul_v2', inputs={'X': out_1, 'Y': u_conj}, outputs={'Out': out_2}, attrs={'trans_x': False, 'trans_y': True}) return out_2
def solve(x, y, name=None): '\n Computes the solution of a square system of linear equations with a unique solution for input \'X\' and \'Y\'.\n Let :math: `X` be a sqaure matrix or a batch of square matrices, :math:`Y` be\n a vector/matrix or a batch of vectors/matrices, the equation should be:\n\n .. math::\n Out = X^-1 * Y\n Specifically,\n - This system of linear equations has one solution if and only if input \'X\' is invertible.\n\n Args:\n x (Tensor): A square matrix or a batch of square matrices. Its shape should be `[*, M, M]`, where `*` is zero or\n more batch dimensions. Its data type should be float32 or float64.\n y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be `[*, M, K]`, where `*` is zero or\n more batch dimensions. Its data type should be float32 or float64.\n name(str, optional): Name for the operation (optional, default is None).\n For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tensor: The solution of a square system of linear equations with a unique solution for input \'x\' and \'y\'.\n Its data type should be the same as that of `x`.\n\n Examples:\n .. code-block:: python\n\n # a square system of linear equations:\n # 2*X0 + X1 = 9\n # X0 + 2*X1 = 8\n\n import paddle\n import numpy as np\n\n np_x = np.array([[3, 1],[1, 2]])\n np_y = np.array([9, 8])\n x = paddle.to_tensor(np_x, dtype="float64")\n y = paddle.to_tensor(np_y, dtype="float64")\n out = paddle.linalg.solve(x, y)\n\n print(out)\n # [2., 3.])\n ' if paddle.in_dynamic_mode(): return _C_ops.solve(x, y) inputs = {'X': [x], 'Y': [y]} helper = LayerHelper('solve', **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve') check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve') out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='solve', inputs={'X': x, 'Y': y}, outputs={'Out': out}) return out
-3,942,150,556,993,506,300
Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'. Let :math: `X` be a sqaure matrix or a batch of square matrices, :math:`Y` be a vector/matrix or a batch of vectors/matrices, the equation should be: .. math:: Out = X^-1 * Y Specifically, - This system of linear equations has one solution if and only if input 'X' is invertible. Args: x (Tensor): A square matrix or a batch of square matrices. Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions. Its data type should be float32 or float64. y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be `[*, M, K]`, where `*` is zero or more batch dimensions. Its data type should be float32 or float64. name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'. Its data type should be the same as that of `x`. Examples: .. code-block:: python # a square system of linear equations: # 2*X0 + X1 = 9 # X0 + 2*X1 = 8 import paddle import numpy as np np_x = np.array([[3, 1],[1, 2]]) np_y = np.array([9, 8]) x = paddle.to_tensor(np_x, dtype="float64") y = paddle.to_tensor(np_y, dtype="float64") out = paddle.linalg.solve(x, y) print(out) # [2., 3.])
python/paddle/tensor/linalg.py
solve
DevilCarp/Paddle
python
def solve(x, y, name=None): '\n Computes the solution of a square system of linear equations with a unique solution for input \'X\' and \'Y\'.\n Let :math: `X` be a sqaure matrix or a batch of square matrices, :math:`Y` be\n a vector/matrix or a batch of vectors/matrices, the equation should be:\n\n .. math::\n Out = X^-1 * Y\n Specifically,\n - This system of linear equations has one solution if and only if input \'X\' is invertible.\n\n Args:\n x (Tensor): A square matrix or a batch of square matrices. Its shape should be `[*, M, M]`, where `*` is zero or\n more batch dimensions. Its data type should be float32 or float64.\n y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be `[*, M, K]`, where `*` is zero or\n more batch dimensions. Its data type should be float32 or float64.\n name(str, optional): Name for the operation (optional, default is None).\n For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tensor: The solution of a square system of linear equations with a unique solution for input \'x\' and \'y\'.\n Its data type should be the same as that of `x`.\n\n Examples:\n .. code-block:: python\n\n # a square system of linear equations:\n # 2*X0 + X1 = 9\n # X0 + 2*X1 = 8\n\n import paddle\n import numpy as np\n\n np_x = np.array([[3, 1],[1, 2]])\n np_y = np.array([9, 8])\n x = paddle.to_tensor(np_x, dtype="float64")\n y = paddle.to_tensor(np_y, dtype="float64")\n out = paddle.linalg.solve(x, y)\n\n print(out)\n # [2., 3.])\n ' if paddle.in_dynamic_mode(): return _C_ops.solve(x, y) inputs = {'X': [x], 'Y': [y]} helper = LayerHelper('solve', **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve') check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve') out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='solve', inputs={'X': x, 'Y': y}, outputs={'Out': out}) return out
def triangular_solve(x, y, upper=True, transpose=False, unitriangular=False, name=None): '\n Computes the solution of a system of equations with a triangular coefficient matrix `x` and\n multiple right-hand sides `y` .\n\n Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs\n is also batches.\n\n Args:\n x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or\n more batch dimensions. Its data type should be float32 or float64.\n y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is \n zero or more batch dimensions. Its data type should be float32 or float64.\n upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular \n system of equations. Default: True.\n transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.\n unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed \n to be 1 and not referenced from `x` . Default: False.\n name(str, optional): Name for the operation (optional, default is None).\n For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.\n\n Examples:\n .. code-block:: python\n\n # a square system of linear equations:\n # x1 + x2 + x3 = 0\n # 2*x2 + x3 = -9\n # -x3 = 5\n\n import paddle\n import numpy as np\n\n x = paddle.to_tensor([[1, 1, 1], \n [0, 2, 1],\n [0, 0,-1]], dtype="float64")\n y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")\n out = paddle.linalg.triangular_solve(x, y, upper=True)\n\n print(out)\n # [7, -2, -5]\n ' if paddle.in_dynamic_mode(): return _C_ops.triangular_solve(x, y, 'upper', upper, 'transpose', transpose, 'unitriangular', unitriangular) inputs = {'X': [x], 'Y': [y]} helper = LayerHelper('triangular_solve', **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'triangular_solve') check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'triangular_solve') out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='triangular_solve', inputs={'X': x, 'Y': y}, outputs={'Out': out}, attrs={'upper': upper, 'transpose': transpose, 'unitriangular': unitriangular}) return out
-3,320,546,878,268,656,600
Computes the solution of a system of equations with a triangular coefficient matrix `x` and multiple right-hand sides `y` . Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs is also batches. Args: x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions. Its data type should be float32 or float64. y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is zero or more batch dimensions. Its data type should be float32 or float64. upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular system of equations. Default: True. transpose (bool, optional): whether `x` should be transposed before calculation. Default: False. unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed to be 1 and not referenced from `x` . Default: False. name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: The solution of the system of equations. Its data type should be the same as that of `x`. Examples: .. code-block:: python # a square system of linear equations: # x1 + x2 + x3 = 0 # 2*x2 + x3 = -9 # -x3 = 5 import paddle import numpy as np x = paddle.to_tensor([[1, 1, 1], [0, 2, 1], [0, 0,-1]], dtype="float64") y = paddle.to_tensor([[0], [-9], [5]], dtype="float64") out = paddle.linalg.triangular_solve(x, y, upper=True) print(out) # [7, -2, -5]
python/paddle/tensor/linalg.py
triangular_solve
DevilCarp/Paddle
python
def triangular_solve(x, y, upper=True, transpose=False, unitriangular=False, name=None): '\n Computes the solution of a system of equations with a triangular coefficient matrix `x` and\n multiple right-hand sides `y` .\n\n Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs\n is also batches.\n\n Args:\n x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or\n more batch dimensions. Its data type should be float32 or float64.\n y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is \n zero or more batch dimensions. Its data type should be float32 or float64.\n upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular \n system of equations. Default: True.\n transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.\n unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed \n to be 1 and not referenced from `x` . Default: False.\n name(str, optional): Name for the operation (optional, default is None).\n For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.\n\n Examples:\n .. code-block:: python\n\n # a square system of linear equations:\n # x1 + x2 + x3 = 0\n # 2*x2 + x3 = -9\n # -x3 = 5\n\n import paddle\n import numpy as np\n\n x = paddle.to_tensor([[1, 1, 1], \n [0, 2, 1],\n [0, 0,-1]], dtype="float64")\n y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")\n out = paddle.linalg.triangular_solve(x, y, upper=True)\n\n print(out)\n # [7, -2, -5]\n ' if paddle.in_dynamic_mode(): return _C_ops.triangular_solve(x, y, 'upper', upper, 'transpose', transpose, 'unitriangular', unitriangular) inputs = {'X': [x], 'Y': [y]} helper = LayerHelper('triangular_solve', **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'triangular_solve') check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'triangular_solve') out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='triangular_solve', inputs={'X': x, 'Y': y}, outputs={'Out': out}, attrs={'upper': upper, 'transpose': transpose, 'unitriangular': unitriangular}) return out
def cholesky_solve(x, y, upper=False, name=None): '\n Solves a linear system of equations A @ X = B, given A\'s Cholesky factor matrix u and matrix B.\n\n Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs\n is also batches.\n\n Args:\n x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or\n more batch dimensions. Its data type should be float32 or float64.\n y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is \n zero or more batch dimensions. Its data type should be float32 or float64.\n upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.\n name(str, optional): Name for the operation (optional, default is None).\n For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tensor: The solution of the system of equations. Its data type is the same as that of `x`.\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n u = paddle.to_tensor([[1, 1, 1], \n [0, 2, 1],\n [0, 0,-1]], dtype="float64")\n b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")\n out = paddle.linalg.cholesky_solve(b, u, upper=True)\n\n print(out)\n # [-2.5, -7, 9.5]\n ' if paddle.in_dynamic_mode(): return _C_ops.cholesky_solve(x, y, 'upper', upper) helper = LayerHelper('cholesky_solve', **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'cholesky_solve') check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'cholesky_solve') out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='cholesky_solve', inputs={'X': x, 'Y': y}, outputs={'Out': out}, attrs={'upper': upper}) return out
-8,255,322,614,350,314,000
Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and matrix B. Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs is also batches. Args: x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions. Its data type should be float32 or float64. y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is zero or more batch dimensions. Its data type should be float32 or float64. upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False. name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: The solution of the system of equations. Its data type is the same as that of `x`. Examples: .. code-block:: python import paddle u = paddle.to_tensor([[1, 1, 1], [0, 2, 1], [0, 0,-1]], dtype="float64") b = paddle.to_tensor([[0], [-9], [5]], dtype="float64") out = paddle.linalg.cholesky_solve(b, u, upper=True) print(out) # [-2.5, -7, 9.5]
python/paddle/tensor/linalg.py
cholesky_solve
DevilCarp/Paddle
python
def cholesky_solve(x, y, upper=False, name=None): '\n Solves a linear system of equations A @ X = B, given A\'s Cholesky factor matrix u and matrix B.\n\n Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs\n is also batches.\n\n Args:\n x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or\n more batch dimensions. Its data type should be float32 or float64.\n y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is \n zero or more batch dimensions. Its data type should be float32 or float64.\n upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.\n name(str, optional): Name for the operation (optional, default is None).\n For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tensor: The solution of the system of equations. Its data type is the same as that of `x`.\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n u = paddle.to_tensor([[1, 1, 1], \n [0, 2, 1],\n [0, 0,-1]], dtype="float64")\n b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")\n out = paddle.linalg.cholesky_solve(b, u, upper=True)\n\n print(out)\n # [-2.5, -7, 9.5]\n ' if paddle.in_dynamic_mode(): return _C_ops.cholesky_solve(x, y, 'upper', upper) helper = LayerHelper('cholesky_solve', **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'cholesky_solve') check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'cholesky_solve') out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='cholesky_solve', inputs={'X': x, 'Y': y}, outputs={'Out': out}, attrs={'upper': upper}) return out
def eigvalsh(x, UPLO='L', name=None): "\n Computes the eigenvalues of a \n complex Hermitian (conjugate symmetric) or a real symmetric matrix.\n\n Args:\n x (Tensor): A tensor with shape :math:`[_, M, M]` , The data type of the input Tensor x\n should be one of float32, float64, complex64, complex128.\n UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).\n name(str, optional): The default value is None. Normally there is no need for user to set this\n property. For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tensor: The tensor eigenvalues in ascending order.\n\n Examples:\n .. code-block:: python\n\n import numpy as np\n import paddle\n\n x_data = np.array([[1, -2j], [2j, 5]])\n x = paddle.to_tensor(x_data)\n out_value = paddle.eigvalsh(x, UPLO='L')\n print(out_value)\n #[0.17157288, 5.82842712]\n " if paddle.in_dynamic_mode(): is_test = x.stop_gradient (values, _) = _C_ops.eigvalsh(x, 'UPLO', UPLO, 'is_test', is_test) return values def __check_input(x, UPLO): x_shape = list(x.shape) if (len(x.shape) < 2): raise ValueError(('Input(input) only support >=2 tensor, but received length of Input(input) is %s.' % len(x.shape))) if (x_shape[(- 1)] != x_shape[(- 2)]): raise ValueError("The input matrix must be batches of square matrices. But received x's dimention: {}".format(x_shape)) if ((UPLO != 'L') and (UPLO != 'U')): raise ValueError('UPLO must be L or U. But received UPLO is: {}'.format(UPLO)) __check_input(x, UPLO) helper = LayerHelper('eigvalsh', **locals()) check_variable_and_dtype(x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'eigvalsh') out_value = helper.create_variable_for_type_inference(dtype=x.dtype) out_vector = helper.create_variable_for_type_inference(dtype=x.dtype) is_test = x.stop_gradient helper.append_op(type='eigvalsh', inputs={'X': x}, outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector}, attrs={'UPLO': UPLO, 'is_test': is_test}) return out_value
-352,417,534,785,145,600
Computes the eigenvalues of a complex Hermitian (conjugate symmetric) or a real symmetric matrix. Args: x (Tensor): A tensor with shape :math:`[_, M, M]` , The data type of the input Tensor x should be one of float32, float64, complex64, complex128. UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’). name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: The tensor eigenvalues in ascending order. Examples: .. code-block:: python import numpy as np import paddle x_data = np.array([[1, -2j], [2j, 5]]) x = paddle.to_tensor(x_data) out_value = paddle.eigvalsh(x, UPLO='L') print(out_value) #[0.17157288, 5.82842712]
python/paddle/tensor/linalg.py
eigvalsh
DevilCarp/Paddle
python
def eigvalsh(x, UPLO='L', name=None): "\n Computes the eigenvalues of a \n complex Hermitian (conjugate symmetric) or a real symmetric matrix.\n\n Args:\n x (Tensor): A tensor with shape :math:`[_, M, M]` , The data type of the input Tensor x\n should be one of float32, float64, complex64, complex128.\n UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).\n name(str, optional): The default value is None. Normally there is no need for user to set this\n property. For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tensor: The tensor eigenvalues in ascending order.\n\n Examples:\n .. code-block:: python\n\n import numpy as np\n import paddle\n\n x_data = np.array([[1, -2j], [2j, 5]])\n x = paddle.to_tensor(x_data)\n out_value = paddle.eigvalsh(x, UPLO='L')\n print(out_value)\n #[0.17157288, 5.82842712]\n " if paddle.in_dynamic_mode(): is_test = x.stop_gradient (values, _) = _C_ops.eigvalsh(x, 'UPLO', UPLO, 'is_test', is_test) return values def __check_input(x, UPLO): x_shape = list(x.shape) if (len(x.shape) < 2): raise ValueError(('Input(input) only support >=2 tensor, but received length of Input(input) is %s.' % len(x.shape))) if (x_shape[(- 1)] != x_shape[(- 2)]): raise ValueError("The input matrix must be batches of square matrices. But received x's dimention: {}".format(x_shape)) if ((UPLO != 'L') and (UPLO != 'U')): raise ValueError('UPLO must be L or U. But received UPLO is: {}'.format(UPLO)) __check_input(x, UPLO) helper = LayerHelper('eigvalsh', **locals()) check_variable_and_dtype(x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'eigvalsh') out_value = helper.create_variable_for_type_inference(dtype=x.dtype) out_vector = helper.create_variable_for_type_inference(dtype=x.dtype) is_test = x.stop_gradient helper.append_op(type='eigvalsh', inputs={'X': x}, outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector}, attrs={'UPLO': UPLO, 'is_test': is_test}) return out_value
def lstsq(x, y, rcond=None, driver=None, name=None): '\n Computes a solution to\n the least squares problem of a system of linear equations.\n\n Args:\n x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``\n should be one of float32, float64.\n y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y`` \n should be one of float32, float64.\n rcond(float, optional): The default value is None. A float pointing number used to determine \n the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the \n machine precision of x_dtype.\n driver(str, optional): The default value is None. The name of LAPACK method to be used. For \n CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only \n valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’ \n for CUDA inputs.\n name(str, optional): The default value is None. Normally there is no need for user to set \n this property. For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``). \n ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals`` \n is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed \n when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor \n with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in \n (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with \n shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when \n ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n paddle.set_device("cpu")\n x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])\n y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])\n results = paddle.linalg.lstsq(x, y, driver="gelsd")\n print(results[0])\n # [[ 0.78350395, -0.22165027, -0.62371236],\n # [-0.11340097, 0.78866047, 1.14948535]]\n print(results[1])\n # [19.81443405, 10.43814468, 30.56185532])\n print(results[2])\n # 2\n print(results[3])\n # [9.03455734, 1.54167950]\n\n x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])\n y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])\n results = paddle.linalg.lstsq(x, y, driver="gels")\n print(results[0])\n # [[ 0.39386186, 0.10230173, 0.93606132],\n # [ 0.10741687, -0.29028133, 0.11892585],\n # [-0.05115091, 0.51918161, -0.19948854]]\n print(results[1])\n # []\n ' device = paddle.get_device() if (device == 'cpu'): if (driver not in (None, 'gels', 'gelss', 'gelsd', 'gelsy')): raise ValueError("Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}".format(driver)) driver = ('gelsy' if (driver is None) else driver) elif ('gpu' in device): if (driver not in (None, 'gels')): raise ValueError("Only support valid driver is 'gels' or None for CUDA inputs. But got {}".format(driver)) driver = ('gels' if (driver is None) else driver) else: raise RuntimeError('Only support lstsq api for CPU or CUDA device.') if ((x.dtype == y.dtype) and (x.dtype in (paddle.float32, paddle.float64))): pass else: raise ValueError("Only support x and y have the same dtype such as 'float32' and 'float64'.") if (rcond is None): if (x.dtype == paddle.float32): rcond = (1e-07 * max(x.shape[(- 2)], x.shape[(- 1)])) elif (x.dtype == paddle.float64): rcond = (1e-15 * max(x.shape[(- 2)], x.shape[(- 1)])) if paddle.in_dynamic_mode(): (solution, rank, singular_values) = _C_ops.lstsq(x, y, 'rcond', rcond, 'driver', driver) if (x.shape[(- 2)] > x.shape[(- 1)]): matmul_out = _varbase_creator(dtype=x.dtype) _C_ops.matmul(x, solution, matmul_out, 'trans_x', False, 'trans_y', False) minus_out = _C_ops.elementwise_sub(matmul_out, y) pow_out = _C_ops.pow(minus_out, 'factor', 2) residuals = _C_ops.reduce_sum(pow_out, 'dim', [(- 2)], 'keepdim', False, 'reduce_all', False) else: residuals = paddle.empty(shape=[0], dtype=x.dtype) if (driver == 'gels'): rank = paddle.empty(shape=[0], dtype=paddle.int32) singular_values = paddle.empty(shape=[0], dtype=x.dtype) elif (driver == 'gelsy'): singular_values = paddle.empty(shape=[0], dtype=x.dtype) return (solution, residuals, rank, singular_values) helper = LayerHelper('lstsq', **locals()) check_variable_and_dtype(x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'lstsq') check_variable_and_dtype(y, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'lstsq') solution = helper.create_variable_for_type_inference(dtype=x.dtype) residuals = helper.create_variable_for_type_inference(dtype=x.dtype) rank = helper.create_variable_for_type_inference(dtype=paddle.int32) singular_values = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='lstsq', inputs={'X': x, 'Y': y}, outputs={'Solution': solution, 'Rank': rank, 'SingularValues': singular_values}, attrs={'rcond': rcond, 'driver': driver}) matmul_out = helper.create_variable_for_type_inference(dtype=x.dtype) minus_out = helper.create_variable_for_type_inference(dtype=x.dtype) pow_out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='matmul_v2', inputs={'X': x, 'Y': solution}, outputs={'Out': matmul_out}, attrs={'trans_x': False, 'trans_y': False}) helper.append_op(type='elementwise_sub', inputs={'X': matmul_out, 'Y': y}, outputs={'Out': minus_out}) helper.append_op(type='pow', inputs={'X': minus_out}, outputs={'Out': pow_out}, attrs={'factor': 2}) helper.append_op(type='reduce_sum', inputs={'X': pow_out}, outputs={'Out': residuals}, attrs={'dim': [(- 2)], 'keep_dim': False, 'reduce_all': False}) if (driver == 'gels'): rank = paddle.static.data(name='rank', shape=[0]) singular_values = paddle.static.data(name='singular_values', shape=[0]) elif (driver == 'gelsy'): singular_values = paddle.static.data(name='singular_values', shape=[0]) return (solution, residuals, rank, singular_values)
7,536,901,320,083,422,000
Computes a solution to the least squares problem of a system of linear equations. Args: x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x`` should be one of float32, float64. y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y`` should be one of float32, float64. rcond(float, optional): The default value is None. A float pointing number used to determine the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the machine precision of x_dtype. driver(str, optional): The default value is None. The name of LAPACK method to be used. For CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’ for CUDA inputs. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``). ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals`` is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor. Examples: .. code-block:: python import paddle paddle.set_device("cpu") x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]]) y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]]) results = paddle.linalg.lstsq(x, y, driver="gelsd") print(results[0]) # [[ 0.78350395, -0.22165027, -0.62371236], # [-0.11340097, 0.78866047, 1.14948535]] print(results[1]) # [19.81443405, 10.43814468, 30.56185532]) print(results[2]) # 2 print(results[3]) # [9.03455734, 1.54167950] x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]]) y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]]) results = paddle.linalg.lstsq(x, y, driver="gels") print(results[0]) # [[ 0.39386186, 0.10230173, 0.93606132], # [ 0.10741687, -0.29028133, 0.11892585], # [-0.05115091, 0.51918161, -0.19948854]] print(results[1]) # []
python/paddle/tensor/linalg.py
lstsq
DevilCarp/Paddle
python
def lstsq(x, y, rcond=None, driver=None, name=None): '\n Computes a solution to\n the least squares problem of a system of linear equations.\n\n Args:\n x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``\n should be one of float32, float64.\n y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y`` \n should be one of float32, float64.\n rcond(float, optional): The default value is None. A float pointing number used to determine \n the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the \n machine precision of x_dtype.\n driver(str, optional): The default value is None. The name of LAPACK method to be used. For \n CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only \n valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’ \n for CUDA inputs.\n name(str, optional): The default value is None. Normally there is no need for user to set \n this property. For more information, please refer to :ref:`api_guide_Name`.\n\n Returns:\n Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``). \n ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals`` \n is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed \n when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor \n with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in \n (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with \n shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when \n ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.\n\n Examples:\n .. code-block:: python\n\n import paddle\n\n paddle.set_device("cpu")\n x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])\n y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])\n results = paddle.linalg.lstsq(x, y, driver="gelsd")\n print(results[0])\n # [[ 0.78350395, -0.22165027, -0.62371236],\n # [-0.11340097, 0.78866047, 1.14948535]]\n print(results[1])\n # [19.81443405, 10.43814468, 30.56185532])\n print(results[2])\n # 2\n print(results[3])\n # [9.03455734, 1.54167950]\n\n x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])\n y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])\n results = paddle.linalg.lstsq(x, y, driver="gels")\n print(results[0])\n # [[ 0.39386186, 0.10230173, 0.93606132],\n # [ 0.10741687, -0.29028133, 0.11892585],\n # [-0.05115091, 0.51918161, -0.19948854]]\n print(results[1])\n # []\n ' device = paddle.get_device() if (device == 'cpu'): if (driver not in (None, 'gels', 'gelss', 'gelsd', 'gelsy')): raise ValueError("Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}".format(driver)) driver = ('gelsy' if (driver is None) else driver) elif ('gpu' in device): if (driver not in (None, 'gels')): raise ValueError("Only support valid driver is 'gels' or None for CUDA inputs. But got {}".format(driver)) driver = ('gels' if (driver is None) else driver) else: raise RuntimeError('Only support lstsq api for CPU or CUDA device.') if ((x.dtype == y.dtype) and (x.dtype in (paddle.float32, paddle.float64))): pass else: raise ValueError("Only support x and y have the same dtype such as 'float32' and 'float64'.") if (rcond is None): if (x.dtype == paddle.float32): rcond = (1e-07 * max(x.shape[(- 2)], x.shape[(- 1)])) elif (x.dtype == paddle.float64): rcond = (1e-15 * max(x.shape[(- 2)], x.shape[(- 1)])) if paddle.in_dynamic_mode(): (solution, rank, singular_values) = _C_ops.lstsq(x, y, 'rcond', rcond, 'driver', driver) if (x.shape[(- 2)] > x.shape[(- 1)]): matmul_out = _varbase_creator(dtype=x.dtype) _C_ops.matmul(x, solution, matmul_out, 'trans_x', False, 'trans_y', False) minus_out = _C_ops.elementwise_sub(matmul_out, y) pow_out = _C_ops.pow(minus_out, 'factor', 2) residuals = _C_ops.reduce_sum(pow_out, 'dim', [(- 2)], 'keepdim', False, 'reduce_all', False) else: residuals = paddle.empty(shape=[0], dtype=x.dtype) if (driver == 'gels'): rank = paddle.empty(shape=[0], dtype=paddle.int32) singular_values = paddle.empty(shape=[0], dtype=x.dtype) elif (driver == 'gelsy'): singular_values = paddle.empty(shape=[0], dtype=x.dtype) return (solution, residuals, rank, singular_values) helper = LayerHelper('lstsq', **locals()) check_variable_and_dtype(x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'lstsq') check_variable_and_dtype(y, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'lstsq') solution = helper.create_variable_for_type_inference(dtype=x.dtype) residuals = helper.create_variable_for_type_inference(dtype=x.dtype) rank = helper.create_variable_for_type_inference(dtype=paddle.int32) singular_values = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='lstsq', inputs={'X': x, 'Y': y}, outputs={'Solution': solution, 'Rank': rank, 'SingularValues': singular_values}, attrs={'rcond': rcond, 'driver': driver}) matmul_out = helper.create_variable_for_type_inference(dtype=x.dtype) minus_out = helper.create_variable_for_type_inference(dtype=x.dtype) pow_out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='matmul_v2', inputs={'X': x, 'Y': solution}, outputs={'Out': matmul_out}, attrs={'trans_x': False, 'trans_y': False}) helper.append_op(type='elementwise_sub', inputs={'X': matmul_out, 'Y': y}, outputs={'Out': minus_out}) helper.append_op(type='pow', inputs={'X': minus_out}, outputs={'Out': pow_out}, attrs={'factor': 2}) helper.append_op(type='reduce_sum', inputs={'X': pow_out}, outputs={'Out': residuals}, attrs={'dim': [(- 2)], 'keep_dim': False, 'reduce_all': False}) if (driver == 'gels'): rank = paddle.static.data(name='rank', shape=[0]) singular_values = paddle.static.data(name='singular_values', shape=[0]) elif (driver == 'gelsy'): singular_values = paddle.static.data(name='singular_values', shape=[0]) return (solution, residuals, rank, singular_values)
def frobenius_norm(input, dim=None, keepdim=False, name=None): '\n The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.\n Args:\n input (Variable): Tensor, data type float32, float64.\n dim (list, optional): None for last two dimensions.\n keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.\n ' if ((dim is not None) and (not (isinstance(dim, list) and (len(dim) == 2)))): raise ValueError('The dim of frobenius norm op should be None or two elements list!') if paddle.in_dynamic_mode(): if (dim is None): return _C_ops.frobenius_norm(input, 'keep_dim', keepdim, 'reduce_all', True) return _C_ops.frobenius_norm(input, 'dim', dim, 'keep_dim', keepdim, 'reduce_all', False) attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False} if (dim is None): attrs['reduce_all'] = True check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'frobenius_norm') helper = LayerHelper('frobenius_norm', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) helper.append_op(type='frobenius_norm', inputs={'X': input}, outputs={'Out': out}, attrs=attrs) return out
8,133,598,796,588,167,000
The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`. Args: input (Variable): Tensor, data type float32, float64. dim (list, optional): None for last two dimensions. keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
python/paddle/tensor/linalg.py
frobenius_norm
DevilCarp/Paddle
python
def frobenius_norm(input, dim=None, keepdim=False, name=None): '\n The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.\n Args:\n input (Variable): Tensor, data type float32, float64.\n dim (list, optional): None for last two dimensions.\n keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.\n ' if ((dim is not None) and (not (isinstance(dim, list) and (len(dim) == 2)))): raise ValueError('The dim of frobenius norm op should be None or two elements list!') if paddle.in_dynamic_mode(): if (dim is None): return _C_ops.frobenius_norm(input, 'keep_dim', keepdim, 'reduce_all', True) return _C_ops.frobenius_norm(input, 'dim', dim, 'keep_dim', keepdim, 'reduce_all', False) attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False} if (dim is None): attrs['reduce_all'] = True check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'frobenius_norm') helper = LayerHelper('frobenius_norm', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) helper.append_op(type='frobenius_norm', inputs={'X': input}, outputs={'Out': out}, attrs=attrs) return out
def vector_norm(input, porder=None, axis=None, keepdim=False, asvector=False, name=None): '\n Calculate the p-order vector norm for certain dimension of Tensor `input`.\n Args:\n input (Variable): Tensor, data type float32, float64.\n porder (float, optional): None for porder=2.0.\n axis (int, optional): None for last dimension.\n keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.\n ' if paddle.in_dynamic_mode(): if (axis is None): axis = (- 1) return _C_ops.p_norm(input, 'porder', porder, 'axis', axis, 'keepdim', keepdim, 'asvector', asvector) if (porder is not None): check_type(porder, 'porder', (float, int), 'p_norm') if (axis is not None): check_type(axis, 'axis', int, 'p_norm') check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'p_norm') attrs = {'axis': (axis if (axis is not None) else (- 1)), 'porder': (float(porder) if (porder is not None) else 2.0), 'keepdim': keepdim, 'asvector': asvector, 'epsilon': 1e-12} helper = LayerHelper('p_norm', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) helper.append_op(type='p_norm', inputs={'X': input}, outputs={'Out': out}, attrs=attrs) return out
-1,317,694,213,258,792,200
Calculate the p-order vector norm for certain dimension of Tensor `input`. Args: input (Variable): Tensor, data type float32, float64. porder (float, optional): None for porder=2.0. axis (int, optional): None for last dimension. keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
python/paddle/tensor/linalg.py
vector_norm
DevilCarp/Paddle
python
def vector_norm(input, porder=None, axis=None, keepdim=False, asvector=False, name=None): '\n Calculate the p-order vector norm for certain dimension of Tensor `input`.\n Args:\n input (Variable): Tensor, data type float32, float64.\n porder (float, optional): None for porder=2.0.\n axis (int, optional): None for last dimension.\n keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.\n ' if paddle.in_dynamic_mode(): if (axis is None): axis = (- 1) return _C_ops.p_norm(input, 'porder', porder, 'axis', axis, 'keepdim', keepdim, 'asvector', asvector) if (porder is not None): check_type(porder, 'porder', (float, int), 'p_norm') if (axis is not None): check_type(axis, 'axis', int, 'p_norm') check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'p_norm') attrs = {'axis': (axis if (axis is not None) else (- 1)), 'porder': (float(porder) if (porder is not None) else 2.0), 'keepdim': keepdim, 'asvector': asvector, 'epsilon': 1e-12} helper = LayerHelper('p_norm', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) helper.append_op(type='p_norm', inputs={'X': input}, outputs={'Out': out}, attrs=attrs) return out
def p_matrix_norm(input, porder=1.0, axis=axis, keepdim=False, name=None): '\n NOTE:\n This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.\n ' block = LayerHelper('norm', **locals()) out = block.create_variable_for_type_inference(dtype=block.input_dtype()) abs_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) block.append_op(type='abs', inputs={'X': input}, outputs={'Out': abs_out}) pow_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) block.append_op(type='pow', inputs={'X': abs_out}, outputs={'Out': pow_out}, attrs={'factor': porder}) sum_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) block.append_op(type='reduce_sum', inputs={'X': pow_out}, outputs={'Out': sum_out}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': (True if (axis is None) else False)}) porder block.append_op(type='pow', inputs={'X': sum_out}, outputs={'Out': out}, attrs={'factor': float((1.0 / porder))}) return out
-4,288,087,778,360,846,000
NOTE: This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
python/paddle/tensor/linalg.py
p_matrix_norm
DevilCarp/Paddle
python
def p_matrix_norm(input, porder=1.0, axis=axis, keepdim=False, name=None): '\n NOTE:\n This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.\n ' block = LayerHelper('norm', **locals()) out = block.create_variable_for_type_inference(dtype=block.input_dtype()) abs_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) block.append_op(type='abs', inputs={'X': input}, outputs={'Out': abs_out}) pow_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) block.append_op(type='pow', inputs={'X': abs_out}, outputs={'Out': pow_out}, attrs={'factor': porder}) sum_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) block.append_op(type='reduce_sum', inputs={'X': pow_out}, outputs={'Out': sum_out}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': (True if (axis is None) else False)}) porder block.append_op(type='pow', inputs={'X': sum_out}, outputs={'Out': out}, attrs={'factor': float((1.0 / porder))}) return out
def mat_norm(input, porder=1.0, axis=None): '\n NOTE:\n Calculate the matrix norm of a square matrix or batches of square matrices,\n when porder is in (1, -1, inf, -inf)\n ' reduce_all = (True if ((axis is None) or (axis == [])) else False) axis = (axis if ((axis != None) and (axis != [])) else [0]) keepdim = False if paddle.in_dynamic_mode(): abs_out = _C_ops.abs(input) sum_out = _C_ops.reduce_sum(abs_out, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) if ((porder == 1) or (porder == np.inf)): return _C_ops.reduce_max(sum_out, 'dim', [(- 1)], 'keepdim', keepdim, 'reduce_all', reduce_all) if ((porder == (- 1)) or (porder == (- np.inf))): return _C_ops.reduce_min(sum_out, 'dim', [(- 1)], 'keepdim', keepdim, 'reduce_all', reduce_all) block = LayerHelper('norm', **locals()) abs_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) sum_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) out = block.create_variable_for_type_inference(dtype=block.input_dtype()) block.append_op(type='abs', inputs={'X': input}, outputs={'Out': abs_out}) block.append_op(type='reduce_sum', inputs={'X': abs_out}, outputs={'Out': sum_out}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) if ((porder == 1) or (porder == np.inf)): block.append_op(type='reduce_max', inputs={'X': sum_out}, outputs={'Out': out}, attrs={'dim': [(- 1)], 'keep_dim': keepdim, 'reduce_all': reduce_all}) if ((porder == (- 1)) or (porder == (- np.inf))): block.append_op(type='reduce_min', inputs={'X': sum_out}, outputs={'Out': out}, attrs={'dim': [(- 1)], 'keep_dim': keepdim, 'reduce_all': reduce_all}) return out
1,976,357,735,964,301,800
NOTE: Calculate the matrix norm of a square matrix or batches of square matrices, when porder is in (1, -1, inf, -inf)
python/paddle/tensor/linalg.py
mat_norm
DevilCarp/Paddle
python
def mat_norm(input, porder=1.0, axis=None): '\n NOTE:\n Calculate the matrix norm of a square matrix or batches of square matrices,\n when porder is in (1, -1, inf, -inf)\n ' reduce_all = (True if ((axis is None) or (axis == [])) else False) axis = (axis if ((axis != None) and (axis != [])) else [0]) keepdim = False if paddle.in_dynamic_mode(): abs_out = _C_ops.abs(input) sum_out = _C_ops.reduce_sum(abs_out, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) if ((porder == 1) or (porder == np.inf)): return _C_ops.reduce_max(sum_out, 'dim', [(- 1)], 'keepdim', keepdim, 'reduce_all', reduce_all) if ((porder == (- 1)) or (porder == (- np.inf))): return _C_ops.reduce_min(sum_out, 'dim', [(- 1)], 'keepdim', keepdim, 'reduce_all', reduce_all) block = LayerHelper('norm', **locals()) abs_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) sum_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) out = block.create_variable_for_type_inference(dtype=block.input_dtype()) block.append_op(type='abs', inputs={'X': input}, outputs={'Out': abs_out}) block.append_op(type='reduce_sum', inputs={'X': abs_out}, outputs={'Out': sum_out}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) if ((porder == 1) or (porder == np.inf)): block.append_op(type='reduce_max', inputs={'X': sum_out}, outputs={'Out': out}, attrs={'dim': [(- 1)], 'keep_dim': keepdim, 'reduce_all': reduce_all}) if ((porder == (- 1)) or (porder == (- np.inf))): block.append_op(type='reduce_min', inputs={'X': sum_out}, outputs={'Out': out}, attrs={'dim': [(- 1)], 'keep_dim': keepdim, 'reduce_all': reduce_all}) return out
def fro_norm(input, porder=2, axis=[(- 1)]): '\n NOTE:\n Calculate the frobenius norm of a square matrix or batches of square matrices.\n ' reduce_all = (True if ((axis is None) or (axis == [])) else False) keepdim = False if paddle.in_dynamic_mode(): pow_out = _C_ops.pow(input, 'factor', porder) sum_out_1 = _C_ops.reduce_sum(pow_out, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) sum_out_2 = _C_ops.reduce_sum(sum_out_1, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) return _C_ops.pow(sum_out_2, 'factor', float((1.0 / porder))) block = LayerHelper('norm', **locals()) pow_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) sum_out_1 = block.create_variable_for_type_inference(dtype=block.input_dtype()) sum_out_2 = block.create_variable_for_type_inference(dtype=block.input_dtype()) out = block.create_variable_for_type_inference(dtype=block.input_dtype()) block.append_op(type='pow', inputs={'X': input}, outputs={'Out': pow_out}, attrs={'factor': porder}) block.append_op(type='reduce_sum', inputs={'X': pow_out}, outputs={'Out': sum_out_1}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) block.append_op(type='reduce_sum', inputs={'X': sum_out_1}, outputs={'Out': sum_out_2}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) block.append_op(type='pow', inputs={'X': sum_out_2}, outputs={'Out': out}, attrs={'factor': float((1.0 / porder))}) return out
-7,539,193,297,382,894,000
NOTE: Calculate the frobenius norm of a square matrix or batches of square matrices.
python/paddle/tensor/linalg.py
fro_norm
DevilCarp/Paddle
python
def fro_norm(input, porder=2, axis=[(- 1)]): '\n NOTE:\n Calculate the frobenius norm of a square matrix or batches of square matrices.\n ' reduce_all = (True if ((axis is None) or (axis == [])) else False) keepdim = False if paddle.in_dynamic_mode(): pow_out = _C_ops.pow(input, 'factor', porder) sum_out_1 = _C_ops.reduce_sum(pow_out, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) sum_out_2 = _C_ops.reduce_sum(sum_out_1, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) return _C_ops.pow(sum_out_2, 'factor', float((1.0 / porder))) block = LayerHelper('norm', **locals()) pow_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) sum_out_1 = block.create_variable_for_type_inference(dtype=block.input_dtype()) sum_out_2 = block.create_variable_for_type_inference(dtype=block.input_dtype()) out = block.create_variable_for_type_inference(dtype=block.input_dtype()) block.append_op(type='pow', inputs={'X': input}, outputs={'Out': pow_out}, attrs={'factor': porder}) block.append_op(type='reduce_sum', inputs={'X': pow_out}, outputs={'Out': sum_out_1}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) block.append_op(type='reduce_sum', inputs={'X': sum_out_1}, outputs={'Out': sum_out_2}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) block.append_op(type='pow', inputs={'X': sum_out_2}, outputs={'Out': out}, attrs={'factor': float((1.0 / porder))}) return out
def svd_norm(input, porder, axis=[(- 1)]): '\n NOTE:\n Calculate the matrix norm, which is related to singular values, of a matrix\n or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.\n ' reduce_all = (True if ((axis is None) or (axis == [])) else False) keepdim = False (u, s, vh) = svd(input, full_matrices=False) if paddle.in_dynamic_mode(): if (porder == 'nuc'): return _C_ops.reduce_sum(s, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) max_out = _C_ops.reduce_max(s, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) min_out = _C_ops.reduce_min(s, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) if (porder == 2): return _C_ops.elementwise_div(max_out, min_out, 'aixs', axis, 'use_mkldnn', False) if (porder == (- 2)): return _C_ops.elementwise_div(min_out, max_out, 'aixs', axis, 'use_mkldnn', False) block = LayerHelper('norm', **locals()) out = block.create_variable_for_type_inference(dtype=block.input_dtype()) if (porder == 'nuc'): block.append_op(type='reduce_sum', inputs={'X': s}, outputs={'Out': out}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) return out max_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) min_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) block.append_op(type='reduce_max', inputs={'X': s}, outputs={'Out': max_out}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) block.append_op(type='reduce_min', inputs={'X': s}, outputs={'Out': min_out}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) if (porder == 2): block.append_op(type='elementwise_div', inputs={'X': max_out, 'Y': min_out}, outputs={'Out': out}, attrs={'aixs': axis, 'use_mkldnn': False}) return out if (porder == (- 2)): block.append_op(type='elementwise_div', inputs={'X': min_out, 'Y': max_out}, outputs={'Out': out}, attrs={'aixs': axis, 'use_mkldnn': False}) return out
-4,169,968,877,713,200,600
NOTE: Calculate the matrix norm, which is related to singular values, of a matrix or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
python/paddle/tensor/linalg.py
svd_norm
DevilCarp/Paddle
python
def svd_norm(input, porder, axis=[(- 1)]): '\n NOTE:\n Calculate the matrix norm, which is related to singular values, of a matrix\n or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.\n ' reduce_all = (True if ((axis is None) or (axis == [])) else False) keepdim = False (u, s, vh) = svd(input, full_matrices=False) if paddle.in_dynamic_mode(): if (porder == 'nuc'): return _C_ops.reduce_sum(s, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) max_out = _C_ops.reduce_max(s, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) min_out = _C_ops.reduce_min(s, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) if (porder == 2): return _C_ops.elementwise_div(max_out, min_out, 'aixs', axis, 'use_mkldnn', False) if (porder == (- 2)): return _C_ops.elementwise_div(min_out, max_out, 'aixs', axis, 'use_mkldnn', False) block = LayerHelper('norm', **locals()) out = block.create_variable_for_type_inference(dtype=block.input_dtype()) if (porder == 'nuc'): block.append_op(type='reduce_sum', inputs={'X': s}, outputs={'Out': out}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) return out max_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) min_out = block.create_variable_for_type_inference(dtype=block.input_dtype()) block.append_op(type='reduce_max', inputs={'X': s}, outputs={'Out': max_out}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) block.append_op(type='reduce_min', inputs={'X': s}, outputs={'Out': min_out}, attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}) if (porder == 2): block.append_op(type='elementwise_div', inputs={'X': max_out, 'Y': min_out}, outputs={'Out': out}, attrs={'aixs': axis, 'use_mkldnn': False}) return out if (porder == (- 2)): block.append_op(type='elementwise_div', inputs={'X': min_out, 'Y': max_out}, outputs={'Out': out}, attrs={'aixs': axis, 'use_mkldnn': False}) return out
def testV1ScaleIOPersistentVolumeSource(self): '\n Test V1ScaleIOPersistentVolumeSource\n ' pass
5,658,198,493,830,950,000
Test V1ScaleIOPersistentVolumeSource
kubernetes/test/test_v1_scale_io_persistent_volume_source.py
testV1ScaleIOPersistentVolumeSource
MiaoRachelYu/python
python
def testV1ScaleIOPersistentVolumeSource(self): '\n \n ' pass
def compute_positivity(dico): " This computes the positivity score of each statement. \n Takes a dictionary with each statement as liste item and the corresponding interlocutor's name in names item \n \n " dico_score = defaultdict((lambda : list())) for (name, liste) in dico.items(): neg_score = 0 pos_score = 0 for ele in liste: if (ele in negative_word_list): neg_score += 1 elif (ele in positive_word_list): pos_score += 1 else: pass if ((neg_score < 30) or (pos_score < 30)): pass else: score = ((pos_score - neg_score) / (pos_score + neg_score)) dico_score[name] = score return dico_score
1,236,163,244,579,036,700
This computes the positivity score of each statement. Takes a dictionary with each statement as liste item and the corresponding interlocutor's name in names item
RA_project/code_python/image_score_posi.py
compute_positivity
erialc-cal/NLP-FOMC
python
def compute_positivity(dico): " This computes the positivity score of each statement. \n Takes a dictionary with each statement as liste item and the corresponding interlocutor's name in names item \n \n " dico_score = defaultdict((lambda : list())) for (name, liste) in dico.items(): neg_score = 0 pos_score = 0 for ele in liste: if (ele in negative_word_list): neg_score += 1 elif (ele in positive_word_list): pos_score += 1 else: pass if ((neg_score < 30) or (pos_score < 30)): pass else: score = ((pos_score - neg_score) / (pos_score + neg_score)) dico_score[name] = score return dico_score
def __init__(self, code): 'code: int - index of macro to run' self.code = code
-4,599,207,852,549,858,300
code: int - index of macro to run
homevision_netio_controller/controller.py
__init__
jackoson/homevision-netio-controller
python
def __init__(self, code): self.code = code
def __init__(self, command): 'command: string - command to send' self.command = command
-6,435,207,489,040,474,000
command: string - command to send
homevision_netio_controller/controller.py
__init__
jackoson/homevision-netio-controller
python
def __init__(self, command): self.command = command
def __init__(self, ip_address, port, auth, on_off_appliance_codes={}, actions={}, process_actions={}, var_queries={}, flag_queries={}, flag_return_values={True: ['True', 'On', 'Yes', 'Occupied', 'Set', '1'], False: ['False', 'Off', 'No', 'Vacant', 'Clear', '0']}, on_off_commands=None): '\n Args:\n ip_address: string\n port: int\n auth: string\n - key for authenticating with netio\n on_off_appliance_codes: dict[string] => int - codes to be fed to \'on_off_commands\' for each appliance\n actions: dict[string] => Macro/Command/(_, _, ...) - named actions to be completed\n process_actions: dict[string] => {"START": X, "STOP": X} where X is Macro/Command/(_, _, ...) - named processes to be started and stopped\n var_queries: dict[string] => int - mapping of names to variable indexes\n flag_queries: dict[string] => int - mapping of names to flag indexes\n flag_return_values: {True: [string], False: [string]} - synonyms for true and false that are returned by netio \'read flag command\'. (ignore if you haven\'t set them up)\n on_off_commands: {"ON": (int) => Macro/Command/(_, _, ...), "OFF": (int) => Macro/Command} - how to handle on and off commands\n ' self.ip_address = ip_address self.port = port self.auth = auth self.on_off_appliance_codes = on_off_appliance_codes self.actions = actions self.process_actions = process_actions self.var_queries = var_queries self.flag_queries = flag_queries self.flag_return_values = flag_return_values self.on_off_commands = on_off_commands
-5,714,372,172,230,657,000
Args: ip_address: string port: int auth: string - key for authenticating with netio on_off_appliance_codes: dict[string] => int - codes to be fed to 'on_off_commands' for each appliance actions: dict[string] => Macro/Command/(_, _, ...) - named actions to be completed process_actions: dict[string] => {"START": X, "STOP": X} where X is Macro/Command/(_, _, ...) - named processes to be started and stopped var_queries: dict[string] => int - mapping of names to variable indexes flag_queries: dict[string] => int - mapping of names to flag indexes flag_return_values: {True: [string], False: [string]} - synonyms for true and false that are returned by netio 'read flag command'. (ignore if you haven't set them up) on_off_commands: {"ON": (int) => Macro/Command/(_, _, ...), "OFF": (int) => Macro/Command} - how to handle on and off commands
homevision_netio_controller/controller.py
__init__
jackoson/homevision-netio-controller
python
def __init__(self, ip_address, port, auth, on_off_appliance_codes={}, actions={}, process_actions={}, var_queries={}, flag_queries={}, flag_return_values={True: ['True', 'On', 'Yes', 'Occupied', 'Set', '1'], False: ['False', 'Off', 'No', 'Vacant', 'Clear', '0']}, on_off_commands=None): '\n Args:\n ip_address: string\n port: int\n auth: string\n - key for authenticating with netio\n on_off_appliance_codes: dict[string] => int - codes to be fed to \'on_off_commands\' for each appliance\n actions: dict[string] => Macro/Command/(_, _, ...) - named actions to be completed\n process_actions: dict[string] => {"START": X, "STOP": X} where X is Macro/Command/(_, _, ...) - named processes to be started and stopped\n var_queries: dict[string] => int - mapping of names to variable indexes\n flag_queries: dict[string] => int - mapping of names to flag indexes\n flag_return_values: {True: [string], False: [string]} - synonyms for true and false that are returned by netio \'read flag command\'. (ignore if you haven\'t set them up)\n on_off_commands: {"ON": (int) => Macro/Command/(_, _, ...), "OFF": (int) => Macro/Command} - how to handle on and off commands\n ' self.ip_address = ip_address self.port = port self.auth = auth self.on_off_appliance_codes = on_off_appliance_codes self.actions = actions self.process_actions = process_actions self.var_queries = var_queries self.flag_queries = flag_queries self.flag_return_values = flag_return_values self.on_off_commands = on_off_commands
def on_off_command(self, details): 'Send an on or off command to an appliance\n \n Sends the specified command to the homevision through netio interface to control the specified appliance.\n \n Args:\n details: {"appliance": string, "state": string} \n ' if ('appliance' not in details): raise Exception('appliance not specified') elif ('state' not in details): raise Exception('state not specified') if (details['appliance'] not in self.on_off_appliance_codes.keys()): raise Exception(('appliance not supported. Must be one of: ' + ','.join(self.on_off_appliance_codes.keys()))) appliance_code = self.on_off_appliance_codes[details['appliance']] if (details['state'] == 'ON'): self._switch_on(appliance_code) elif (details['state'] == 'OFF'): self._switch_off(appliance_code) else: raise Exception('state not supported. Must be either "ON" or "OFF".')
-79,934,147,174,809,070
Send an on or off command to an appliance Sends the specified command to the homevision through netio interface to control the specified appliance. Args: details: {"appliance": string, "state": string}
homevision_netio_controller/controller.py
on_off_command
jackoson/homevision-netio-controller
python
def on_off_command(self, details): 'Send an on or off command to an appliance\n \n Sends the specified command to the homevision through netio interface to control the specified appliance.\n \n Args:\n details: {"appliance": string, "state": string} \n ' if ('appliance' not in details): raise Exception('appliance not specified') elif ('state' not in details): raise Exception('state not specified') if (details['appliance'] not in self.on_off_appliance_codes.keys()): raise Exception(('appliance not supported. Must be one of: ' + ','.join(self.on_off_appliance_codes.keys()))) appliance_code = self.on_off_appliance_codes[details['appliance']] if (details['state'] == 'ON'): self._switch_on(appliance_code) elif (details['state'] == 'OFF'): self._switch_off(appliance_code) else: raise Exception('state not supported. Must be either "ON" or "OFF".')
def action_command(self, details): 'Send an action command\n \n Sends the specified command to the homevision through netio interface.\n \n Args:\n details: {"command": string} \n ' if ('command' not in details): raise Exception('Command not specified') if (details['command'] not in self.actions.keys()): raise Exception(('Command not supported. Must be one of: ' + ','.join(self.actions.keys()))) self._handle_action(self.actions[details['command']])
-232,058,001,206,219,100
Send an action command Sends the specified command to the homevision through netio interface. Args: details: {"command": string}
homevision_netio_controller/controller.py
action_command
jackoson/homevision-netio-controller
python
def action_command(self, details): 'Send an action command\n \n Sends the specified command to the homevision through netio interface.\n \n Args:\n details: {"command": string} \n ' if ('command' not in details): raise Exception('Command not specified') if (details['command'] not in self.actions.keys()): raise Exception(('Command not supported. Must be one of: ' + ','.join(self.actions.keys()))) self._handle_action(self.actions[details['command']])
def start_stop_command(self, details): 'Starts or stops a process\n \n Sends the specified command to the homevision through netio interface to control the specified process.\n \n Args:\n details: {"action": string, "process": string} \n ' if ('action' not in details): raise Exception('action not specified') elif ('process' not in details): raise Exception('process not specified') if (details['process'] not in self.process_actions.keys()): raise Exception(('process not supported. Must be one of: ' + ','.join(self.process_actions.keys()))) if (details['action'] == 'START'): self._handle_action(self.process_actions[details['process']]['START']) elif (details['action'] == 'STOP'): self._handle_action(self.process_actions[details['process']]['STOP']) else: raise Exception('action not supported. Must be either "START" or "STOP".')
-596,609,483,046,554,400
Starts or stops a process Sends the specified command to the homevision through netio interface to control the specified process. Args: details: {"action": string, "process": string}
homevision_netio_controller/controller.py
start_stop_command
jackoson/homevision-netio-controller
python
def start_stop_command(self, details): 'Starts or stops a process\n \n Sends the specified command to the homevision through netio interface to control the specified process.\n \n Args:\n details: {"action": string, "process": string} \n ' if ('action' not in details): raise Exception('action not specified') elif ('process' not in details): raise Exception('process not specified') if (details['process'] not in self.process_actions.keys()): raise Exception(('process not supported. Must be one of: ' + ','.join(self.process_actions.keys()))) if (details['action'] == 'START'): self._handle_action(self.process_actions[details['process']]['START']) elif (details['action'] == 'STOP'): self._handle_action(self.process_actions[details['process']]['STOP']) else: raise Exception('action not supported. Must be either "START" or "STOP".')
def var_query(self, details): 'Returns the answer to a query on variable\n \n Returns the answer to a query on the specified variable using netio\n \n Args:\n details: {"query": string} \n ' if ('query' not in details): raise Exception('query not specified') if (details['query'] not in self.var_queries.keys()): raise Exception(('query not supported. Must be one of: ' + ','.join(self.var_queries.keys()))) code = self.var_queries[details['query']] if (type(code) == int): val = self._get_var(code) elif (type(code) == tuple): val = [self._get_var(c) for c in code] else: raise Exception('Internal Exception: variable code is not valid') return val
-7,702,968,477,016,100,000
Returns the answer to a query on variable Returns the answer to a query on the specified variable using netio Args: details: {"query": string}
homevision_netio_controller/controller.py
var_query
jackoson/homevision-netio-controller
python
def var_query(self, details): 'Returns the answer to a query on variable\n \n Returns the answer to a query on the specified variable using netio\n \n Args:\n details: {"query": string} \n ' if ('query' not in details): raise Exception('query not specified') if (details['query'] not in self.var_queries.keys()): raise Exception(('query not supported. Must be one of: ' + ','.join(self.var_queries.keys()))) code = self.var_queries[details['query']] if (type(code) == int): val = self._get_var(code) elif (type(code) == tuple): val = [self._get_var(c) for c in code] else: raise Exception('Internal Exception: variable code is not valid') return val
def flag_query(self, details): 'Returns the answer to a query on flag\n \n Returns the answer to a query on the specified variable using netio\n \n Args:\n details: {"query": string} \n ' if ('query' not in details): raise Exception('query not specified') if (details['query'] not in self.flag_queries.keys()): raise Exception(('query not supported. Must be one of: ' + ','.join(self.flag_queries.keys()))) val = self._get_flag(self.flag_queries[details['query']]) return ('yes' if val else 'no')
-8,740,578,671,466,509,000
Returns the answer to a query on flag Returns the answer to a query on the specified variable using netio Args: details: {"query": string}
homevision_netio_controller/controller.py
flag_query
jackoson/homevision-netio-controller
python
def flag_query(self, details): 'Returns the answer to a query on flag\n \n Returns the answer to a query on the specified variable using netio\n \n Args:\n details: {"query": string} \n ' if ('query' not in details): raise Exception('query not specified') if (details['query'] not in self.flag_queries.keys()): raise Exception(('query not supported. Must be one of: ' + ','.join(self.flag_queries.keys()))) val = self._get_flag(self.flag_queries[details['query']]) return ('yes' if val else 'no')
def I(): 'Identity operator.' return np.identity(2)
4,501,568,749,302,991,000
Identity operator.
quantum.py
I
duboviy/misc
python
def I(): return np.identity(2)
def X(): 'X-rotation, negation operator.' return np.identity(2)[..., ::(- 1)]
-164,720,657,164,185,280
X-rotation, negation operator.
quantum.py
X
duboviy/misc
python
def X(): return np.identity(2)[..., ::(- 1)]
def H(): 'Adamara operator, superposition.' return (np.array([[1, 1], [1, (- 1)]]) / np.sqrt(2))
-3,200,611,757,409,645,600
Adamara operator, superposition.
quantum.py
H
duboviy/misc
python
def H(): return (np.array([[1, 1], [1, (- 1)]]) / np.sqrt(2))
def SWAP(): 'Swap 2 qubits' m = np.identity(4) m[[1, 2]] = m[[2, 1]] return m
-3,730,938,159,623,653,400
Swap 2 qubits
quantum.py
SWAP
duboviy/misc
python
def SWAP(): m = np.identity(4) m[[1, 2]] = m[[2, 1]] return m
def CX(): 'Controlled negation.' m = np.identity(4) m[[3, 2]] = m[[2, 3]] return m
-5,465,632,063,229,900,000
Controlled negation.
quantum.py
CX
duboviy/misc
python
def CX(): m = np.identity(4) m[[3, 2]] = m[[2, 3]] return m
@classmethod def schema(cls) -> dict: "we're overriding the schema classmethod to enable some post-processing" schema = super().schema() schema = cls.change_format_to_oneOf(schema) return cls.resolve_refs(schema)
2,795,126,804,326,684,700
we're overriding the schema classmethod to enable some post-processing
airbyte-integrations/connectors/source-tiktok-marketing/source_tiktok_marketing/spec.py
schema
99designs/airbyte
python
@classmethod def schema(cls) -> dict: schema = super().schema() schema = cls.change_format_to_oneOf(schema) return cls.resolve_refs(schema)
@javaConstructorOverload(java_imports['Long'], (make_sig(['long'], 'void'), (metaLong,)), (make_sig([java_imports['String']], 'void'), (str,))) def __init__(self, *args, **kwargs): '\n Instantiates a new Long\n\n Signatures:\n\n Long(long value)\n Long(String s)\n\n Arguments:\n\n Long(long value)\n value -- The long to wrap in the object\n Long (String s)\n s -- The string representing the long\n ' super(Long, self).__init__(*args, generic=(Long,), **kwargs)
9,194,312,380,020,609,000
Instantiates a new Long Signatures: Long(long value) Long(String s) Arguments: Long(long value) value -- The long to wrap in the object Long (String s) s -- The string representing the long
TASSELpy/java/lang/Long.py
__init__
er432/TASSELpy
python
@javaConstructorOverload(java_imports['Long'], (make_sig(['long'], 'void'), (metaLong,)), (make_sig([java_imports['String']], 'void'), (str,))) def __init__(self, *args, **kwargs): '\n Instantiates a new Long\n\n Signatures:\n\n Long(long value)\n Long(String s)\n\n Arguments:\n\n Long(long value)\n value -- The long to wrap in the object\n Long (String s)\n s -- The string representing the long\n ' super(Long, self).__init__(*args, generic=(Long,), **kwargs)
async def async_setup_entry(hass: HomeAssistant, config_entry: ConfigEntry, async_add_entities) -> None: 'Set up discovered lights.' devs = [] for dev in hass.data[AQUALINK_DOMAIN][DOMAIN]: devs.append(HassAqualinkLight(dev)) async_add_entities(devs, True)
4,148,767,531,453,222,000
Set up discovered lights.
homeassistant/components/iaqualink/light.py
async_setup_entry
0xFEEDC0DE64/homeassistant-core
python
async def async_setup_entry(hass: HomeAssistant, config_entry: ConfigEntry, async_add_entities) -> None: devs = [] for dev in hass.data[AQUALINK_DOMAIN][DOMAIN]: devs.append(HassAqualinkLight(dev)) async_add_entities(devs, True)
@property def name(self) -> str: 'Return the name of the light.' return self.dev.label
331,499,236,811,538,800
Return the name of the light.
homeassistant/components/iaqualink/light.py
name
0xFEEDC0DE64/homeassistant-core
python
@property def name(self) -> str: return self.dev.label
@property def is_on(self) -> bool: 'Return whether the light is on or off.' return self.dev.is_on
-7,804,622,775,240,501,000
Return whether the light is on or off.
homeassistant/components/iaqualink/light.py
is_on
0xFEEDC0DE64/homeassistant-core
python
@property def is_on(self) -> bool: return self.dev.is_on
@refresh_system async def async_turn_on(self, **kwargs) -> None: 'Turn on the light.\n\n This handles brightness and light effects for lights that do support\n them.\n ' brightness = kwargs.get(ATTR_BRIGHTNESS) effect = kwargs.get(ATTR_EFFECT) if effect: effect = AqualinkLightEffect[effect].value (await self.dev.set_effect(effect)) elif brightness: pct = (int(round(((brightness * 4.0) / 255))) * 25) (await self.dev.set_brightness(pct)) else: (await self.dev.turn_on())
-9,093,624,857,957,879,000
Turn on the light. This handles brightness and light effects for lights that do support them.
homeassistant/components/iaqualink/light.py
async_turn_on
0xFEEDC0DE64/homeassistant-core
python
@refresh_system async def async_turn_on(self, **kwargs) -> None: 'Turn on the light.\n\n This handles brightness and light effects for lights that do support\n them.\n ' brightness = kwargs.get(ATTR_BRIGHTNESS) effect = kwargs.get(ATTR_EFFECT) if effect: effect = AqualinkLightEffect[effect].value (await self.dev.set_effect(effect)) elif brightness: pct = (int(round(((brightness * 4.0) / 255))) * 25) (await self.dev.set_brightness(pct)) else: (await self.dev.turn_on())
@refresh_system async def async_turn_off(self, **kwargs) -> None: 'Turn off the light.' (await self.dev.turn_off())
-5,875,403,621,456,464,000
Turn off the light.
homeassistant/components/iaqualink/light.py
async_turn_off
0xFEEDC0DE64/homeassistant-core
python
@refresh_system async def async_turn_off(self, **kwargs) -> None: (await self.dev.turn_off())
@property def brightness(self) -> int: 'Return current brightness of the light.\n\n The scale needs converting between 0-100 and 0-255.\n ' return ((self.dev.brightness * 255) / 100)
-8,752,403,519,390,625,000
Return current brightness of the light. The scale needs converting between 0-100 and 0-255.
homeassistant/components/iaqualink/light.py
brightness
0xFEEDC0DE64/homeassistant-core
python
@property def brightness(self) -> int: 'Return current brightness of the light.\n\n The scale needs converting between 0-100 and 0-255.\n ' return ((self.dev.brightness * 255) / 100)
@property def effect(self) -> str: 'Return the current light effect if supported.' return AqualinkLightEffect(self.dev.effect).name
4,174,574,449,923,972,600
Return the current light effect if supported.
homeassistant/components/iaqualink/light.py
effect
0xFEEDC0DE64/homeassistant-core
python
@property def effect(self) -> str: return AqualinkLightEffect(self.dev.effect).name
@property def effect_list(self) -> list: 'Return supported light effects.' return list(AqualinkLightEffect.__members__)
9,045,013,550,262,554,000
Return supported light effects.
homeassistant/components/iaqualink/light.py
effect_list
0xFEEDC0DE64/homeassistant-core
python
@property def effect_list(self) -> list: return list(AqualinkLightEffect.__members__)
@property def supported_features(self) -> int: 'Return the list of features supported by the light.' if self.dev.is_dimmer: return SUPPORT_BRIGHTNESS if self.dev.is_color: return SUPPORT_EFFECT return 0
2,749,345,628,372,254,700
Return the list of features supported by the light.
homeassistant/components/iaqualink/light.py
supported_features
0xFEEDC0DE64/homeassistant-core
python
@property def supported_features(self) -> int: if self.dev.is_dimmer: return SUPPORT_BRIGHTNESS if self.dev.is_color: return SUPPORT_EFFECT return 0
def is_language(self, s, expected_lang): ' Check if the language of the segment cannot be reliably identified\n as another language. If another than the expected language is\n detected return False ' expected_lang = expected_lang.lower() if self.valid_languages: assert (expected_lang in self.valid_languages) if self.use_cld2: (reliable, _text_bytes, details) = cld2.detect(s.encode('utf-8'), isPlainText=True, useFullLangTables=True, bestEffort=True) if reliable: for (_lang, langcode, confidence, score) in details: if ((langcode == expected_lang) and (confidence >= 10)): return True return False else: return True else: (lang, confidence) = langid.classify(source.lower()) if ((lang != expected_lang) and (confidence > 0.9)): return False else: return True
5,011,547,454,327,538,000
Check if the language of the segment cannot be reliably identified as another language. If another than the expected language is detected return False
baseline/filter_hunalign_bitext.py
is_language
christianbuck/CorpusMining
python
def is_language(self, s, expected_lang): ' Check if the language of the segment cannot be reliably identified\n as another language. If another than the expected language is\n detected return False ' expected_lang = expected_lang.lower() if self.valid_languages: assert (expected_lang in self.valid_languages) if self.use_cld2: (reliable, _text_bytes, details) = cld2.detect(s.encode('utf-8'), isPlainText=True, useFullLangTables=True, bestEffort=True) if reliable: for (_lang, langcode, confidence, score) in details: if ((langcode == expected_lang) and (confidence >= 10)): return True return False else: return True else: (lang, confidence) = langid.classify(source.lower()) if ((lang != expected_lang) and (confidence > 0.9)): return False else: return True
@abstractmethod def find_files(self, directory: Union[(str, Path)], extensions: Optional[Union[(Sequence, str)]]=None, keywords: Optional[Union[(list, str)]]=None, hemisphere: Optional[str]=None, stimulation: Optional[str]=None, medication: Optional[str]=None, exclude: Optional[Union[(str, list)]]=None, verbose: bool=False) -> None: 'Find files in directory with optional\n keywords and extensions.'
3,752,076,389,859,590,700
Find files in directory with optional keywords and extensions.
src/pte/filetools/filefinder_abc.py
find_files
richardkoehler/pte
python
@abstractmethod def find_files(self, directory: Union[(str, Path)], extensions: Optional[Union[(Sequence, str)]]=None, keywords: Optional[Union[(list, str)]]=None, hemisphere: Optional[str]=None, stimulation: Optional[str]=None, medication: Optional[str]=None, exclude: Optional[Union[(str, list)]]=None, verbose: bool=False) -> None: 'Find files in directory with optional\n keywords and extensions.'
@abstractmethod def filter_files(self, keywords: Optional[Union[(str, list)]]=None, hemisphere: Optional[str]=None, stimulation: Optional[str]=None, medication: Optional[str]=None, exclude: Optional[Union[(str, list)]]=None, verbose: bool=False) -> None: 'Filter list of filepaths for given parameters.'
-1,411,756,026,739,772,400
Filter list of filepaths for given parameters.
src/pte/filetools/filefinder_abc.py
filter_files
richardkoehler/pte
python
@abstractmethod def filter_files(self, keywords: Optional[Union[(str, list)]]=None, hemisphere: Optional[str]=None, stimulation: Optional[str]=None, medication: Optional[str]=None, exclude: Optional[Union[(str, list)]]=None, verbose: bool=False) -> None:
def _find_files(self, directory: Union[(Path, str)], extensions: Optional[Union[(list, str)]]=None) -> None: 'Find files in directory with optional extensions.\n\n Args:\n directory (string)\n keywords (list): e.g. ["SelfpacedRota", "ButtonPress] (optional)\n extensions (list): e.g. [".json" or "tsv"] (optional)\n verbose (bool): verbosity level (optional, default=True)\n ' files = [] for (root, _, fnames) in os.walk(directory): fnames = [os.path.join(root, file) for file in fnames] fnames = self._keyword_search(fnames, extensions) if fnames: files.extend(fnames) self.files = files
56,373,943,236,067,064
Find files in directory with optional extensions. Args: directory (string) keywords (list): e.g. ["SelfpacedRota", "ButtonPress] (optional) extensions (list): e.g. [".json" or "tsv"] (optional) verbose (bool): verbosity level (optional, default=True)
src/pte/filetools/filefinder_abc.py
_find_files
richardkoehler/pte
python
def _find_files(self, directory: Union[(Path, str)], extensions: Optional[Union[(list, str)]]=None) -> None: 'Find files in directory with optional extensions.\n\n Args:\n directory (string)\n keywords (list): e.g. ["SelfpacedRota", "ButtonPress] (optional)\n extensions (list): e.g. [".json" or "tsv"] (optional)\n verbose (bool): verbosity level (optional, default=True)\n ' files = [] for (root, _, fnames) in os.walk(directory): fnames = [os.path.join(root, file) for file in fnames] fnames = self._keyword_search(fnames, extensions) if fnames: files.extend(fnames) self.files = files
def _filter_files(self, keywords: Optional[Union[(str, list[str])]]=None, hemisphere: Optional[str]=None, stimulation: Optional[str]=None, medication: Optional[str]=None, exclude: Optional[Union[(str, list[str])]]=None) -> None: 'Filter filepaths for given parameters.' filtered_files = self.files if exclude: if (not isinstance(exclude, list)): exclude = [exclude] filtered_files = [file for file in filtered_files if (not any(((item in file) for item in exclude)))] if keywords: if (not isinstance(keywords, list)): keywords = [keywords] filtered_files = self._keyword_search(filtered_files, keywords) if stimulation: if (stimulation.lower() in 'stimon'): stim = 'StimOn' elif (stimulation.lower() in 'stimoff'): stim = 'StimOff' else: raise ValueError('Keyword for stimulation not valid.') filtered_files = self._keyword_search(filtered_files, [stim]) if medication: if (medication.lower() in 'medon'): med = 'MedOn' elif (medication.lower() in 'medoff'): med = 'MedOff' else: raise ValueError('Keyword for medication not valid.') filtered_files = self._keyword_search(filtered_files, [med]) if hemisphere: matching_files = [] for file in filtered_files: subject = mne_bids.get_entities_from_fname(file)['subject'] if ((subject not in self.hemispheres) or (self.hemispheres[subject] is None)): raise HemisphereNotSpecifiedError(subject, self.hemispheres) hem = (self.hemispheres[subject] + '_') if ((hemisphere.lower() in 'ipsilateral') and (hem in file)): matching_files.append(file) if ((hemisphere.lower() in 'contralateral') and (hem not in file)): matching_files.append(file) filtered_files = matching_files self.files = filtered_files
7,211,439,597,194,100,000
Filter filepaths for given parameters.
src/pte/filetools/filefinder_abc.py
_filter_files
richardkoehler/pte
python
def _filter_files(self, keywords: Optional[Union[(str, list[str])]]=None, hemisphere: Optional[str]=None, stimulation: Optional[str]=None, medication: Optional[str]=None, exclude: Optional[Union[(str, list[str])]]=None) -> None: filtered_files = self.files if exclude: if (not isinstance(exclude, list)): exclude = [exclude] filtered_files = [file for file in filtered_files if (not any(((item in file) for item in exclude)))] if keywords: if (not isinstance(keywords, list)): keywords = [keywords] filtered_files = self._keyword_search(filtered_files, keywords) if stimulation: if (stimulation.lower() in 'stimon'): stim = 'StimOn' elif (stimulation.lower() in 'stimoff'): stim = 'StimOff' else: raise ValueError('Keyword for stimulation not valid.') filtered_files = self._keyword_search(filtered_files, [stim]) if medication: if (medication.lower() in 'medon'): med = 'MedOn' elif (medication.lower() in 'medoff'): med = 'MedOff' else: raise ValueError('Keyword for medication not valid.') filtered_files = self._keyword_search(filtered_files, [med]) if hemisphere: matching_files = [] for file in filtered_files: subject = mne_bids.get_entities_from_fname(file)['subject'] if ((subject not in self.hemispheres) or (self.hemispheres[subject] is None)): raise HemisphereNotSpecifiedError(subject, self.hemispheres) hem = (self.hemispheres[subject] + '_') if ((hemisphere.lower() in 'ipsilateral') and (hem in file)): matching_files.append(file) if ((hemisphere.lower() in 'contralateral') and (hem not in file)): matching_files.append(file) filtered_files = matching_files self.files = filtered_files
def irfft2(a, s=None, axes=((- 2), (- 1)), norm=None): '\n Compute the 2-dimensional inverse FFT of a real array.\n\n Parameters\n ----------\n a : array_like\n The input tensor\n s : sequence of ints, optional\n Shape of the inverse FFT.\n axes : sequence of ints, optional\n The axes over which to compute the inverse fft.\n Default is the last two axes.\n norm : {None, "ortho"}, optional\n Normalization mode (see `mt.fft`). Default is None.\n\n Returns\n -------\n out : Tensor\n The result of the inverse real 2-D FFT.\n\n See Also\n --------\n irfftn : Compute the inverse of the N-dimensional FFT of real input.\n\n Notes\n -----\n This is really `irfftn` with different defaults.\n For more details see `irfftn`.\n\n ' if (len(axes) != 2): raise ValueError('axes length should be 2') a = astensor(a) axes = validate_fftn(a, s=s, axes=axes, norm=norm) op = TensorIRFFT2(shape=s, axes=axes, norm=norm, dtype=np.dtype(np.float_)) return op(a)
31,699,221,590,624,984
Compute the 2-dimensional inverse FFT of a real array. Parameters ---------- a : array_like The input tensor s : sequence of ints, optional Shape of the inverse FFT. axes : sequence of ints, optional The axes over which to compute the inverse fft. Default is the last two axes. norm : {None, "ortho"}, optional Normalization mode (see `mt.fft`). Default is None. Returns ------- out : Tensor The result of the inverse real 2-D FFT. See Also -------- irfftn : Compute the inverse of the N-dimensional FFT of real input. Notes ----- This is really `irfftn` with different defaults. For more details see `irfftn`.
mars/tensor/fft/irfft2.py
irfft2
JeffroMF/mars
python
def irfft2(a, s=None, axes=((- 2), (- 1)), norm=None): '\n Compute the 2-dimensional inverse FFT of a real array.\n\n Parameters\n ----------\n a : array_like\n The input tensor\n s : sequence of ints, optional\n Shape of the inverse FFT.\n axes : sequence of ints, optional\n The axes over which to compute the inverse fft.\n Default is the last two axes.\n norm : {None, "ortho"}, optional\n Normalization mode (see `mt.fft`). Default is None.\n\n Returns\n -------\n out : Tensor\n The result of the inverse real 2-D FFT.\n\n See Also\n --------\n irfftn : Compute the inverse of the N-dimensional FFT of real input.\n\n Notes\n -----\n This is really `irfftn` with different defaults.\n For more details see `irfftn`.\n\n ' if (len(axes) != 2): raise ValueError('axes length should be 2') a = astensor(a) axes = validate_fftn(a, s=s, axes=axes, norm=norm) op = TensorIRFFT2(shape=s, axes=axes, norm=norm, dtype=np.dtype(np.float_)) return op(a)
def __init__(self, conf, router_conf, db, agent): 'Create a new Router' self.conf = conf self.router_conf = router_conf self.db = db self.agent = agent
7,695,343,446,000,534,000
Create a new Router
autopush/router/webpush.py
__init__
Acidburn0zzz/autopush
python
def __init__(self, conf, router_conf, db, agent): self.conf = conf self.router_conf = router_conf self.db = db self.agent = agent
def register(self, uaid, router_data, app_id, *args, **kwargs): 'No additional routing data'
-4,153,625,044,012,655,000
No additional routing data
autopush/router/webpush.py
register
Acidburn0zzz/autopush
python
def register(self, uaid, router_data, app_id, *args, **kwargs):
def amend_endpoint_response(self, response, router_data): 'Stubbed out for this router'
4,586,840,260,404,607,500
Stubbed out for this router
autopush/router/webpush.py
amend_endpoint_response
Acidburn0zzz/autopush
python
def amend_endpoint_response(self, response, router_data):
@inlineCallbacks def route_notification(self, notification, uaid_data): "Route a notification to an internal node, and store it if the node\n can't deliver immediately or is no longer a valid node\n " node_id = uaid_data.get('node_id') uaid = uaid_data['uaid'] router = self.db.router if node_id: result = None try: result = (yield self._send_notification(uaid, node_id, notification)) except (ConnectError, ConnectionClosed, ResponseFailed, CancelledError, PotentialDataLoss) as exc: self.metrics.increment('updates.client.host_gone') (yield deferToThread(router.clear_node, uaid_data).addErrback(self._eat_db_err)) if isinstance(exc, ConnectionRefusedError): self.log.debug('Could not route message: {exc}', exc=exc) if (result and (result.code == 200)): returnValue(self.delivered_response(notification)) try: (yield self._save_notification(uaid_data, notification)) except ClientError as e: log_exception = (e.response['Error']['Code'] != 'ProvisionedThroughputExceededException') raise RouterException('Error saving to database', status_code=503, response_body='Retry Request', log_exception=log_exception, errno=201) try: uaid_data = (yield deferToThread(router.get_uaid, uaid)) except ClientError: returnValue(self.stored_response(notification)) except ItemNotFound: self.metrics.increment('updates.client.deleted') raise RouterException('User was deleted', status_code=410, response_body='Invalid UAID', log_exception=False, errno=105) node_id = uaid_data.get('node_id') if (not node_id): returnValue(self.stored_response(notification)) try: result = (yield self._send_notification_check(uaid, node_id)) except (ConnectError, ConnectionClosed, ResponseFailed) as exc: self.metrics.increment('updates.client.host_gone') if isinstance(exc, ConnectionRefusedError): self.log.debug('Could not route message: {exc}', exc=exc) (yield deferToThread(router.clear_node, uaid_data).addErrback(self._eat_db_err)) returnValue(self.stored_response(notification)) if (result.code == 200): returnValue(self.delivered_response(notification)) else: ret_val = self.stored_response(notification) returnValue(ret_val)
3,801,602,032,211,172,400
Route a notification to an internal node, and store it if the node can't deliver immediately or is no longer a valid node
autopush/router/webpush.py
route_notification
Acidburn0zzz/autopush
python
@inlineCallbacks def route_notification(self, notification, uaid_data): "Route a notification to an internal node, and store it if the node\n can't deliver immediately or is no longer a valid node\n " node_id = uaid_data.get('node_id') uaid = uaid_data['uaid'] router = self.db.router if node_id: result = None try: result = (yield self._send_notification(uaid, node_id, notification)) except (ConnectError, ConnectionClosed, ResponseFailed, CancelledError, PotentialDataLoss) as exc: self.metrics.increment('updates.client.host_gone') (yield deferToThread(router.clear_node, uaid_data).addErrback(self._eat_db_err)) if isinstance(exc, ConnectionRefusedError): self.log.debug('Could not route message: {exc}', exc=exc) if (result and (result.code == 200)): returnValue(self.delivered_response(notification)) try: (yield self._save_notification(uaid_data, notification)) except ClientError as e: log_exception = (e.response['Error']['Code'] != 'ProvisionedThroughputExceededException') raise RouterException('Error saving to database', status_code=503, response_body='Retry Request', log_exception=log_exception, errno=201) try: uaid_data = (yield deferToThread(router.get_uaid, uaid)) except ClientError: returnValue(self.stored_response(notification)) except ItemNotFound: self.metrics.increment('updates.client.deleted') raise RouterException('User was deleted', status_code=410, response_body='Invalid UAID', log_exception=False, errno=105) node_id = uaid_data.get('node_id') if (not node_id): returnValue(self.stored_response(notification)) try: result = (yield self._send_notification_check(uaid, node_id)) except (ConnectError, ConnectionClosed, ResponseFailed) as exc: self.metrics.increment('updates.client.host_gone') if isinstance(exc, ConnectionRefusedError): self.log.debug('Could not route message: {exc}', exc=exc) (yield deferToThread(router.clear_node, uaid_data).addErrback(self._eat_db_err)) returnValue(self.stored_response(notification)) if (result.code == 200): returnValue(self.delivered_response(notification)) else: ret_val = self.stored_response(notification) returnValue(ret_val)
def _send_notification(self, uaid, node_id, notification): 'Send a notification to a specific node_id\n\n This version of the overriden method includes the necessary crypto\n headers for the notification.\n\n :type notification: autopush.utils.WebPushNotification\n\n ' payload = notification.serialize() payload['timestamp'] = int(time.time()) url = ((node_id + '/push/') + uaid) request = self.agent.request('PUT', url.encode('utf8'), bodyProducer=FileBodyProducer(StringIO(json.dumps(payload)))) request.addCallback(IgnoreBody.ignore) return request
4,112,651,449,687,784,400
Send a notification to a specific node_id This version of the overriden method includes the necessary crypto headers for the notification. :type notification: autopush.utils.WebPushNotification
autopush/router/webpush.py
_send_notification
Acidburn0zzz/autopush
python
def _send_notification(self, uaid, node_id, notification): 'Send a notification to a specific node_id\n\n This version of the overriden method includes the necessary crypto\n headers for the notification.\n\n :type notification: autopush.utils.WebPushNotification\n\n ' payload = notification.serialize() payload['timestamp'] = int(time.time()) url = ((node_id + '/push/') + uaid) request = self.agent.request('PUT', url.encode('utf8'), bodyProducer=FileBodyProducer(StringIO(json.dumps(payload)))) request.addCallback(IgnoreBody.ignore) return request
def _send_notification_check(self, uaid, node_id): 'Send a command to the node to check for notifications' url = ((node_id + '/notif/') + uaid) return self.agent.request('PUT', url.encode('utf8')).addCallback(IgnoreBody.ignore)
4,989,087,466,341,468,000
Send a command to the node to check for notifications
autopush/router/webpush.py
_send_notification_check
Acidburn0zzz/autopush
python
def _send_notification_check(self, uaid, node_id): url = ((node_id + '/notif/') + uaid) return self.agent.request('PUT', url.encode('utf8')).addCallback(IgnoreBody.ignore)
def _save_notification(self, uaid_data, notification): 'Saves a notification, returns a deferred.\n\n This version of the overridden method saves each individual message\n to the message table along with relevant request headers if\n available.\n\n :type uaid_data: dict\n\n ' month_table = uaid_data['current_month'] if (notification.ttl is None): raise RouterException('Missing TTL Header', response_body=('Missing TTL Header, see: %s' % TTL_URL), status_code=400, errno=111, log_exception=False) if (notification.ttl == 0): location = ('%s/m/%s' % (self.conf.endpoint_url, notification.version)) raise RouterException('Finished Routing', status_code=201, log_exception=False, headers={'TTL': str(notification.ttl), 'Location': location}, logged_status=204) return deferToThread(self.db.message_table(month_table).store_message, notification=notification)
-1,176,066,011,258,479,600
Saves a notification, returns a deferred. This version of the overridden method saves each individual message to the message table along with relevant request headers if available. :type uaid_data: dict
autopush/router/webpush.py
_save_notification
Acidburn0zzz/autopush
python
def _save_notification(self, uaid_data, notification): 'Saves a notification, returns a deferred.\n\n This version of the overridden method saves each individual message\n to the message table along with relevant request headers if\n available.\n\n :type uaid_data: dict\n\n ' month_table = uaid_data['current_month'] if (notification.ttl is None): raise RouterException('Missing TTL Header', response_body=('Missing TTL Header, see: %s' % TTL_URL), status_code=400, errno=111, log_exception=False) if (notification.ttl == 0): location = ('%s/m/%s' % (self.conf.endpoint_url, notification.version)) raise RouterException('Finished Routing', status_code=201, log_exception=False, headers={'TTL': str(notification.ttl), 'Location': location}, logged_status=204) return deferToThread(self.db.message_table(month_table).store_message, notification=notification)
def _eat_db_err(self, fail): 'errBack for ignoring provisioned throughput errors' fail.trap(ClientError)
-5,169,902,337,626,011,000
errBack for ignoring provisioned throughput errors
autopush/router/webpush.py
_eat_db_err
Acidburn0zzz/autopush
python
def _eat_db_err(self, fail): fail.trap(ClientError)
def save_bloguser_extra_profile(backend, user, response, *args, **kwargs): '\n see more:\n http://python-social-auth.readthedocs.io/en/latest/use_cases.html#retrieve-google-friends\n http://python-social-auth.readthedocs.io/en/latest/pipeline.html\n :param backend:\n :param user:\n :param response:\n :param args:\n :param kwargs:\n :return:\n ' if (backend.name == 'github'): image_url = response.get('avatar_url') image_file = get_image_from_url(image_url) if (image_file is not None): avatar_name = ('avatar' + uuid4().hex[:16]) if (user.image == 'bloguser/avatar.png'): user.image.save(avatar_name, image_file) user.save()
8,284,591,256,816,238,000
see more: http://python-social-auth.readthedocs.io/en/latest/use_cases.html#retrieve-google-friends http://python-social-auth.readthedocs.io/en/latest/pipeline.html :param backend: :param user: :param response: :param args: :param kwargs: :return:
apps/bloguser/pipline.py
save_bloguser_extra_profile
Jennei/MyBlog
python
def save_bloguser_extra_profile(backend, user, response, *args, **kwargs): '\n see more:\n http://python-social-auth.readthedocs.io/en/latest/use_cases.html#retrieve-google-friends\n http://python-social-auth.readthedocs.io/en/latest/pipeline.html\n :param backend:\n :param user:\n :param response:\n :param args:\n :param kwargs:\n :return:\n ' if (backend.name == 'github'): image_url = response.get('avatar_url') image_file = get_image_from_url(image_url) if (image_file is not None): avatar_name = ('avatar' + uuid4().hex[:16]) if (user.image == 'bloguser/avatar.png'): user.image.save(avatar_name, image_file) user.save()
def extractMichilunWordpressCom(item): "\n\tParser for 'michilun.wordpress.com'\n\t" bad = ['Recommendations and Reviews'] if any([(tmp in item['tags']) for tmp in bad]): return None (vol, chp, frag, postfix) = extractVolChapterFragmentPostfix(item['title']) if ((not (chp or vol)) or ('preview' in item['title'].lower())): return None tagmap = [('Side Projects - Scheme of the Official Descendant', 'Scheme of the Official Descendant', 'translated'), ('Song in the Peach Blossoms', 'Song in the Peach Blossoms', 'translated'), ('Onrain (Online - The Novel)', 'Onrain (Online - The Novel)', 'translated'), ('At the End of the Wish', 'At the End of the Wish', 'translated'), ('Bringing Calamity to the Nation', 'Bringing Calamity to the Nation', 'translated'), ("Side Projects - The Flame's Daughter", "The Flame's Daughter", 'translated'), ('PRC', 'PRC', 'translated'), ('Loiterous', 'Loiterous', 'oel')] for (tagname, name, tl_type) in tagmap: if (tagname in item['tags']): return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
2,736,643,888,499,868,000
Parser for 'michilun.wordpress.com'
WebMirror/management/rss_parser_funcs/feed_parse_extractMichilunWordpressCom.py
extractMichilunWordpressCom
fake-name/ReadableWebProxy
python
def extractMichilunWordpressCom(item): "\n\t\n\t" bad = ['Recommendations and Reviews'] if any([(tmp in item['tags']) for tmp in bad]): return None (vol, chp, frag, postfix) = extractVolChapterFragmentPostfix(item['title']) if ((not (chp or vol)) or ('preview' in item['title'].lower())): return None tagmap = [('Side Projects - Scheme of the Official Descendant', 'Scheme of the Official Descendant', 'translated'), ('Song in the Peach Blossoms', 'Song in the Peach Blossoms', 'translated'), ('Onrain (Online - The Novel)', 'Onrain (Online - The Novel)', 'translated'), ('At the End of the Wish', 'At the End of the Wish', 'translated'), ('Bringing Calamity to the Nation', 'Bringing Calamity to the Nation', 'translated'), ("Side Projects - The Flame's Daughter", "The Flame's Daughter", 'translated'), ('PRC', 'PRC', 'translated'), ('Loiterous', 'Loiterous', 'oel')] for (tagname, name, tl_type) in tagmap: if (tagname in item['tags']): return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
def _recursive_apply(self, block): '\n This function is "applied" to every child in the block. This function in turn\n registers the forward hook to each module. It helps logging the input output tensors\n of that module.\n ' if (block in self.registered_blocks): self.logger.warning(f'The hook is already registered to block {block.name}') return block.register_forward_hook(self.forward_hook) self.registered_blocks.add(block)
8,230,639,869,853,194,000
This function is "applied" to every child in the block. This function in turn registers the forward hook to each module. It helps logging the input output tensors of that module.
smdebug/mxnet/hook.py
_recursive_apply
arjkesh/sagemaker-debugger
python
def _recursive_apply(self, block): '\n This function is "applied" to every child in the block. This function in turn\n registers the forward hook to each module. It helps logging the input output tensors\n of that module.\n ' if (block in self.registered_blocks): self.logger.warning(f'The hook is already registered to block {block.name}') return block.register_forward_hook(self.forward_hook) self.registered_blocks.add(block)
@error_handling_agent.catch_smdebug_errors() def register_block(self, block): '\n This function registers the forward hook. If user wants to register the hook\n for every child in the given block, then the function calls "apply" API for\n registration of the hook.\n The hook is registered recursively, if user has specified the collections that are more than\n the default collectors viz. gradients, weight and bias\n ' if (not isinstance(block, mx.gluon.Block)): self.logger.error(f'The given block type {block.__class__.__name__} is unsupported.') return if (block in self.registered_blocks): self.logger.warning(f'The hook is already registered to block {block.name}') return if isinstance(block, mx.gluon.loss.Loss): self.logger.info(f'Registering hook for block {block.name}') block.register_forward_hook(self.forward_hook) self.registered_blocks.add(block) return else: self.model = block is_recursive = self._is_recursive_needed() block.register_forward_pre_hook(self.forward_pre_hook) if (is_recursive is True): block.apply(self._recursive_apply) else: block.register_forward_hook(self.forward_hook) self.registered_blocks.add(block)
3,938,190,178,072,743,400
This function registers the forward hook. If user wants to register the hook for every child in the given block, then the function calls "apply" API for registration of the hook. The hook is registered recursively, if user has specified the collections that are more than the default collectors viz. gradients, weight and bias
smdebug/mxnet/hook.py
register_block
arjkesh/sagemaker-debugger
python
@error_handling_agent.catch_smdebug_errors() def register_block(self, block): '\n This function registers the forward hook. If user wants to register the hook\n for every child in the given block, then the function calls "apply" API for\n registration of the hook.\n The hook is registered recursively, if user has specified the collections that are more than\n the default collectors viz. gradients, weight and bias\n ' if (not isinstance(block, mx.gluon.Block)): self.logger.error(f'The given block type {block.__class__.__name__} is unsupported.') return if (block in self.registered_blocks): self.logger.warning(f'The hook is already registered to block {block.name}') return if isinstance(block, mx.gluon.loss.Loss): self.logger.info(f'Registering hook for block {block.name}') block.register_forward_hook(self.forward_hook) self.registered_blocks.add(block) return else: self.model = block is_recursive = self._is_recursive_needed() block.register_forward_pre_hook(self.forward_pre_hook) if (is_recursive is True): block.apply(self._recursive_apply) else: block.register_forward_hook(self.forward_hook) self.registered_blocks.add(block)
def get_virtual_machine_scale_set(expand: Optional[str]=None, resource_group_name: Optional[str]=None, vm_scale_set_name: Optional[str]=None, opts: Optional[pulumi.InvokeOptions]=None) -> AwaitableGetVirtualMachineScaleSetResult: "\n Describes a Virtual Machine Scale Set.\n API Version: 2021-03-01.\n\n\n :param str expand: The expand expression to apply on the operation. 'UserData' retrieves the UserData property of the VM scale set that was provided by the user during the VM scale set Create/Update operation\n :param str resource_group_name: The name of the resource group.\n :param str vm_scale_set_name: The name of the VM scale set.\n " __args__ = dict() __args__['expand'] = expand __args__['resourceGroupName'] = resource_group_name __args__['vmScaleSetName'] = vm_scale_set_name if (opts is None): opts = pulumi.InvokeOptions() if (opts.version is None): opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:compute:getVirtualMachineScaleSet', __args__, opts=opts, typ=GetVirtualMachineScaleSetResult).value return AwaitableGetVirtualMachineScaleSetResult(additional_capabilities=__ret__.additional_capabilities, automatic_repairs_policy=__ret__.automatic_repairs_policy, do_not_run_extensions_on_overprovisioned_vms=__ret__.do_not_run_extensions_on_overprovisioned_vms, extended_location=__ret__.extended_location, host_group=__ret__.host_group, id=__ret__.id, identity=__ret__.identity, location=__ret__.location, name=__ret__.name, orchestration_mode=__ret__.orchestration_mode, overprovision=__ret__.overprovision, plan=__ret__.plan, platform_fault_domain_count=__ret__.platform_fault_domain_count, provisioning_state=__ret__.provisioning_state, proximity_placement_group=__ret__.proximity_placement_group, scale_in_policy=__ret__.scale_in_policy, single_placement_group=__ret__.single_placement_group, sku=__ret__.sku, tags=__ret__.tags, type=__ret__.type, unique_id=__ret__.unique_id, upgrade_policy=__ret__.upgrade_policy, virtual_machine_profile=__ret__.virtual_machine_profile, zone_balance=__ret__.zone_balance, zones=__ret__.zones)
-7,936,196,944,535,669,000
Describes a Virtual Machine Scale Set. API Version: 2021-03-01. :param str expand: The expand expression to apply on the operation. 'UserData' retrieves the UserData property of the VM scale set that was provided by the user during the VM scale set Create/Update operation :param str resource_group_name: The name of the resource group. :param str vm_scale_set_name: The name of the VM scale set.
sdk/python/pulumi_azure_native/compute/get_virtual_machine_scale_set.py
get_virtual_machine_scale_set
polivbr/pulumi-azure-native
python
def get_virtual_machine_scale_set(expand: Optional[str]=None, resource_group_name: Optional[str]=None, vm_scale_set_name: Optional[str]=None, opts: Optional[pulumi.InvokeOptions]=None) -> AwaitableGetVirtualMachineScaleSetResult: "\n Describes a Virtual Machine Scale Set.\n API Version: 2021-03-01.\n\n\n :param str expand: The expand expression to apply on the operation. 'UserData' retrieves the UserData property of the VM scale set that was provided by the user during the VM scale set Create/Update operation\n :param str resource_group_name: The name of the resource group.\n :param str vm_scale_set_name: The name of the VM scale set.\n " __args__ = dict() __args__['expand'] = expand __args__['resourceGroupName'] = resource_group_name __args__['vmScaleSetName'] = vm_scale_set_name if (opts is None): opts = pulumi.InvokeOptions() if (opts.version is None): opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:compute:getVirtualMachineScaleSet', __args__, opts=opts, typ=GetVirtualMachineScaleSetResult).value return AwaitableGetVirtualMachineScaleSetResult(additional_capabilities=__ret__.additional_capabilities, automatic_repairs_policy=__ret__.automatic_repairs_policy, do_not_run_extensions_on_overprovisioned_vms=__ret__.do_not_run_extensions_on_overprovisioned_vms, extended_location=__ret__.extended_location, host_group=__ret__.host_group, id=__ret__.id, identity=__ret__.identity, location=__ret__.location, name=__ret__.name, orchestration_mode=__ret__.orchestration_mode, overprovision=__ret__.overprovision, plan=__ret__.plan, platform_fault_domain_count=__ret__.platform_fault_domain_count, provisioning_state=__ret__.provisioning_state, proximity_placement_group=__ret__.proximity_placement_group, scale_in_policy=__ret__.scale_in_policy, single_placement_group=__ret__.single_placement_group, sku=__ret__.sku, tags=__ret__.tags, type=__ret__.type, unique_id=__ret__.unique_id, upgrade_policy=__ret__.upgrade_policy, virtual_machine_profile=__ret__.virtual_machine_profile, zone_balance=__ret__.zone_balance, zones=__ret__.zones)
@property @pulumi.getter(name='additionalCapabilities') def additional_capabilities(self) -> Optional['outputs.AdditionalCapabilitiesResponse']: '\n Specifies additional capabilities enabled or disabled on the Virtual Machines in the Virtual Machine Scale Set. For instance: whether the Virtual Machines have the capability to support attaching managed data disks with UltraSSD_LRS storage account type.\n ' return pulumi.get(self, 'additional_capabilities')
-4,984,097,992,721,295,000
Specifies additional capabilities enabled or disabled on the Virtual Machines in the Virtual Machine Scale Set. For instance: whether the Virtual Machines have the capability to support attaching managed data disks with UltraSSD_LRS storage account type.
sdk/python/pulumi_azure_native/compute/get_virtual_machine_scale_set.py
additional_capabilities
polivbr/pulumi-azure-native
python
@property @pulumi.getter(name='additionalCapabilities') def additional_capabilities(self) -> Optional['outputs.AdditionalCapabilitiesResponse']: '\n \n ' return pulumi.get(self, 'additional_capabilities')
@property @pulumi.getter(name='automaticRepairsPolicy') def automatic_repairs_policy(self) -> Optional['outputs.AutomaticRepairsPolicyResponse']: '\n Policy for automatic repairs.\n ' return pulumi.get(self, 'automatic_repairs_policy')
-5,255,793,026,184,793,000
Policy for automatic repairs.
sdk/python/pulumi_azure_native/compute/get_virtual_machine_scale_set.py
automatic_repairs_policy
polivbr/pulumi-azure-native
python
@property @pulumi.getter(name='automaticRepairsPolicy') def automatic_repairs_policy(self) -> Optional['outputs.AutomaticRepairsPolicyResponse']: '\n \n ' return pulumi.get(self, 'automatic_repairs_policy')