metadata
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 1k<10K
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: TweetTopicSingle
Dataset Card for "cardiff_nlp/tweet_topic_multi"
Dataset Description
- Paper: TBA
- Dataset: Tweet Topic Dataset
- Domain: Twitter
- Number of Class: 6
Dataset Summary
Topic classification dataset on Twitter with multiple labels per tweet.
- Label Types:
arts_&_culture
,business_&_entrepreneurs
,celebrity_&_pop_culture
,diaries_&_daily_life
,family
,fashion_&_style
,film_tv_&_video
,fitness_&_health
,food_&_dining
,gaming
,learning_&_educational
,music
,news_&_social_concern
,other_hobbies
,relationships
,science_&_technology
,sports
,travel_&_adventure
,youth_&_student_life
Dataset Structure
Data Instances
An example of train
looks as follows.
{
"date": "2021-03-07",
"text": "The latest The Movie theater Daily! {{URL}} Thanks to {{USERNAME}} {{USERNAME}} {{USERNAME}} #lunchtimeread #amc1000",
"id": 1368464923370676231,
"label": [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
"label_name": ["film_tv_&_video"]
}
Label ID
The label2id dictionary can be found at here.
{
"arts_&_culture": 0,
"business_&_entrepreneurs": 1,
"celebrity_&_pop_culture": 2,
"diaries_&_daily_life": 3,
"family": 4,
"fashion_&_style": 5,
"film_tv_&_video": 6,
"fitness_&_health": 7,
"food_&_dining": 8,
"gaming": 9,
"learning_&_educational": 10,
"music": 11,
"news_&_social_concern": 12,
"other_hobbies": 13,
"relationships": 14,
"science_&_technology": 15,
"sports": 16,
"travel_&_adventure": 17,
"youth_&_student_life": 18
}
Data Splits
Citation Information
TBA