|
|
|
"""IVA_MT_WSLOT""" |
|
|
|
|
|
import datasets |
|
import json |
|
|
|
|
|
_DESCRIPTION = """\ |
|
""" |
|
|
|
_URL = "https://github.com/cartesinus/iva_mt/raw/main/release/0.2/iva_mt_wslot-dataset-0.2.1.tar.gz" |
|
|
|
_LANGUAGE_PAIRS = ["en-pl", "en-de", "en-es", "en-sv"] |
|
|
|
class IVA_MTConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for IVA_MT""" |
|
|
|
def __init__(self, language_pair, **kwargs): |
|
super().__init__(**kwargs) |
|
""" |
|
|
|
Args: |
|
language_pair: language pair, you want to load |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
self.language_pair = language_pair |
|
|
|
|
|
class IVA_MT(datasets.GeneratorBasedBuilder): |
|
"""OPUS-100 is English-centric, meaning that all training pairs include English on either the source or target side.""" |
|
|
|
VERSION = datasets.Version("0.2.1") |
|
|
|
BUILDER_CONFIG_CLASS = IVA_MTConfig |
|
BUILDER_CONFIGS = [ |
|
IVA_MTConfig(name=pair, description=_DESCRIPTION, language_pair=pair) |
|
for pair in _LANGUAGE_PAIRS |
|
] |
|
|
|
def _info(self): |
|
src_tag, tgt_tag = self.config.language_pair.split("-") |
|
return datasets.DatasetInfo( |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("int64"), |
|
"locale": datasets.Value("string"), |
|
"origin": datasets.Value("string"), |
|
"partition": datasets.Value("string"), |
|
"translation_utt": datasets.features.Translation(languages=(src_tag, tgt_tag)), |
|
"translation_xml": datasets.features.Translation(languages=(src_tag, tgt_tag)), |
|
"src_bio": datasets.Value("string"), |
|
"tgt_bio": datasets.Value("string") |
|
} |
|
), |
|
supervised_keys=(src_tag, tgt_tag), |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
lang_pair = self.config.language_pair |
|
src_tag, tgt_tag = lang_pair.split("-") |
|
|
|
archive = dl_manager.download(_URL) |
|
|
|
data_dir = "/".join(["iva_mt_wslot-dataset", "0.2.1", lang_pair]) |
|
output = [] |
|
|
|
test = datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": f"{data_dir}/iva_mt_wslot-{lang_pair}-test.jsonl", |
|
"files": dl_manager.iter_archive(archive), |
|
"split": "test", |
|
}, |
|
) |
|
|
|
output.append(test) |
|
|
|
train = datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": f"{data_dir}/iva_mt_wslot-{lang_pair}-train.jsonl", |
|
"files": dl_manager.iter_archive(archive), |
|
"split": "train", |
|
}, |
|
) |
|
|
|
output.append(train) |
|
|
|
valid = datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepath": f"{data_dir}/iva_mt_wslot-{lang_pair}-valid.jsonl", |
|
"files": dl_manager.iter_archive(archive), |
|
"split": "valid", |
|
}, |
|
) |
|
|
|
output.append(valid) |
|
|
|
return output |
|
|
|
def _generate_examples(self, filepath, files, split): |
|
"""Yields examples.""" |
|
src_tag, tgt_tag = self.config.language_pair.split("-") |
|
key_ = 0 |
|
lang = _LANGUAGE_PAIRS.copy() |
|
|
|
for path, f in files: |
|
l = path.split("/")[-1].split("-")[1].replace('2', '-') |
|
|
|
if l != self.config.language_pair: |
|
continue |
|
|
|
|
|
lines = f.read().decode(encoding="utf-8").split("\n") |
|
|
|
for line in lines: |
|
if not line: |
|
continue |
|
|
|
data = json.loads(line) |
|
|
|
if data["partition"] != split: |
|
continue |
|
|
|
yield key_, { |
|
"id": data["id"], |
|
"locale": data["locale"], |
|
"origin": data["origin"], |
|
"partition": data["partition"], |
|
"translation_utt": {src_tag: str(data['src_utt']), tgt_tag: str(data['tgt_utt'])}, |
|
"translation_xml": {src_tag: str(data['src_xml']), tgt_tag: str(data['tgt_xml'])}, |
|
"src_bio": str(data['src_bio']), |
|
"tgt_bio": str(data['tgt_bio']) |
|
} |
|
|
|
key_ += 1 |
|
|