post_href
stringlengths 57
213
| python_solutions
stringlengths 71
22.3k
| slug
stringlengths 3
77
| post_title
stringlengths 1
100
| user
stringlengths 3
29
| upvotes
int64 -20
1.2k
| views
int64 0
60.9k
| problem_title
stringlengths 3
77
| number
int64 1
2.48k
| acceptance
float64 0.14
0.91
| difficulty
stringclasses 3
values | __index_level_0__
int64 0
34k
|
---|---|---|---|---|---|---|---|---|---|---|---|
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/1979011/Python-solution-40ms | class Solution:
def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
if(root==None):
return []
stack=[]
stack.append(root)
ans=[]
while stack:
curr=stack.pop()
ans.append(curr.val)
if(curr.left):
stack.append(curr.left)
if(curr.right):
stack.append(curr.right)
return ans[::-1] | binary-tree-postorder-traversal | Python solution 40ms | bad_karma25 | 2 | 130 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,100 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/867376/Iterative-solution-using-1-stack-with-explanation | class Solution:
def postorderTraversal(self, root: TreeNode) -> List[int]:
ans, s = [], []
curr = root
while curr or s:
while curr:
s.append((curr, curr.right))
curr = curr.left
p = s.pop()
# right child is none for popped node - it means we have either
# explored right subtree or it never existed. In both cases,
# we can simply visit popped node i.e. add its val to ans list
if not p[1]:
ans.append(p[0].val)
else:
# Add popped node back in stack with its right child as None.
# None right child denotes that when we pop this node in future,
# we already explored its right subtree as we are going to do
# that by setting curr to right child in the next step.
s.append((p[0], None))
# Explore right subtree
curr = p[1]
return ans | binary-tree-postorder-traversal | Iterative solution using 1 stack with explanation | ivmarkp | 2 | 398 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,101 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/2084279/Python3-DFS-Recursive-Solution | class Solution:
def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
if not root:
return []
res=[]
def dfs(root):
if not root:
return
dfs(root.left)
dfs(root.right)
res.append(root.val)
dfs(root)
return(res) | binary-tree-postorder-traversal | Python3 DFS Recursive Solution | rohith4pr | 1 | 71 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,102 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/1994763/Python-solution | class Solution:
def postorderTraversal(self, root):
traversal, stack = [], [root]
while stack:
node = stack.pop()
if node:
traversal.append(node.val)
stack.append(node.left)
stack.append(node.right)
return traversal[::-1] | binary-tree-postorder-traversal | Python solution | nomanaasif9 | 1 | 87 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,103 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/1430634/Python3-Pre-Order-Post-Order-Inorder-Solution-through-recursion | class Solution:
def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
res = []
self.dfs(root, res)
return res
def dfs(self, root, res):
if root:
self.dfs(root.left, res)
self.dfs(root.right, res)
res.append(root.val) | binary-tree-postorder-traversal | Python3 Pre Order, Post Order, Inorder Solution through recursion | Sanyamx1x | 1 | 287 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,104 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/1430634/Python3-Pre-Order-Post-Order-Inorder-Solution-through-recursion | class Solution:
def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
res = []
self.dfs(root, res)
return res
def dfs(self, root, res):
if root:
self.dfs(root.left, res)
res.append(root.val)
self.dfs(root.right, res) | binary-tree-postorder-traversal | Python3 Pre Order, Post Order, Inorder Solution through recursion | Sanyamx1x | 1 | 287 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,105 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/251415/clean-python-both-recursive-and-iterative-solutions | class Solution(object):
def postorderTraversal(self, root):
"""
:type root: TreeNode
:rtype: List[int]
"""
rst = []
self.helper(root, rst)
return rst
def helper(self, node, rst):
if node:
self.helper(node.left, rst)
self.helper(node.right, rst)
rst.append(node.val) | binary-tree-postorder-traversal | clean python both recursive and iterative solutions | mazheng | 1 | 138 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,106 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/251415/clean-python-both-recursive-and-iterative-solutions | class Solution(object):
def postorderTraversal(self, root):
"""
:type root: TreeNode
:rtype: List[int]
"""
rst = []
stack = []
while root or stack:
if root:
rst.insert(0, root.val)
stack.append(root)
root = root.right
else:
root = stack.pop().left
return rst | binary-tree-postorder-traversal | clean python both recursive and iterative solutions | mazheng | 1 | 138 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,107 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/2837835/python-beats-97.37 | class Solution:
def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
if not root:
return []
left = right = []
if root.left:
left = self.postorderTraversal(root.left)
if root.right:
right = self.postorderTraversal(root.right)
return *left, *right, root.val | binary-tree-postorder-traversal | [python] - beats 97.37% | ceolantir | 0 | 4 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,108 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/2828864/python-oror-simple-solution-oror-recursion | class Solution:
def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
# if tree empty
if not root:
return []
# answer list
ans = []
def traverse(node: Optional[TreeNode]) -> None:
# if empty node
if not node:
return
# first, check left child
traverse(node.left)
# second, check right child
traverse(node.right)
# third, check cur val
ans.append(node.val)
# fill ans
traverse(root)
return ans | binary-tree-postorder-traversal | python || simple solution || recursion | wduf | 0 | 2 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,109 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/2789117/Python-one-liner | class Solution:
def postorderTraversal(self, root):
return self.postorderTraversal(root.left) + self.postorderTraversal(root.right) + [root.val] if root else [] | binary-tree-postorder-traversal | Python one-liner | Pirmil | 0 | 3 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,110 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/2647141/Python-PostOrder-Recursion | class Solution:
def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
lst = []
return self.helper(root, lst)
def helper(self, root, lst):
if root:
self.helper(root.left, lst)
self.helper(root.right, lst)
lst.append(root.val)
return lst | binary-tree-postorder-traversal | Python PostOrder Recursion | axce1 | 0 | 31 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,111 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/2646457/Ans-to-follow-up%3A-Iterative-straight-forward-Python-solution-same-logic-as-recursion | class Solution:
def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
if not root:
return []
stack = [root]
result = []
while stack:
node = stack.pop()
if node.left:
stack.append(node.left)
if node.right:
stack.append(node.right)
result.append(node.val)
# Importat to Reverse the result
return result[::-1] | binary-tree-postorder-traversal | Ans to follow-up: Iterative straight-forward Python solution, same logic as recursion π«£ | saadbash | 0 | 3 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,112 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/2502131/python3-recursive-with-comments | class Solution:
'''
Postorder traversal is left to right, bottom to top, visiting root last
1. recursively traverse left subtree
2. recursively traverse right subtree
3. visit root node
'''
def recursivetraverse(self, root, output):
if root:
self.recursivetraverse(root.left, output)
self.recursivetraverse(root.right, output)
output.append(root.val)
return output
def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
return self.recursivetraverse(root, output = []) | binary-tree-postorder-traversal | python3 recursive with comments | shwetachandole | 0 | 14 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,113 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/2502128/Python3-iterativerecursive-with-comment | class Solution:
# Postorder traversal is left to right, bottom to top, visiting root last
def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
self.output = []
def check_node(node):
if node.left:
check_node(node.left)
if node.right:
check_node(node.right)
self.output.append(node.val)
if root:
check_node(root)
return self.output | binary-tree-postorder-traversal | Python3 iterative/recursive with comment | shwetachandole | 0 | 34 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,114 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/2352724/Python-simple-iterative-with-explanation | class Solution:
def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
# Init store
ans = deque()
# Init stack
stack = [root]
# Iterate through stack
while stack:
node = stack.pop()
# Base case
if not node:
continue
else: print(node.val)
# Log value
ans.appendleft(node.val)
# Add right and left nodes to the stack
stack.append(node.left)
stack.append(node.right)
return ans | binary-tree-postorder-traversal | Python simple iterative with explanation | drblessing | 0 | 66 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,115 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/2314230/Python-Time%3A-69-ms-oror-Mem%3A-13.8MB-oror-Recursive-Easy-Understand | class Solution:
def __init__(self):
self.mylist: List[int] = []
def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
if root:
self.postorderTraversal(root.left)
self.postorderTraversal(root.right)
self.mylist.append(root.val)
return self.mylist | binary-tree-postorder-traversal | [Python] Time: 69 ms || Mem: 13.8MB || Recursive Easy Understand | Buntynara | 0 | 37 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,116 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/2294305/python3-oror-easy-oror-2-stack-iterative-approach | class Solution:
def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
if root is None:
return root
stack=[root]
stack2=[]
ans=[]
while stack!=[]:
node=stack.pop()
stack2.append(node.val)
if node.left is not None:
stack.append(node.left)
if node.right is not None:
stack.append(node.right)
while stack2!=[]:
ans.append(stack2.pop())
return ans | binary-tree-postorder-traversal | python3 || easy || 2 stack iterative approach | _soninirav | 0 | 85 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,117 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/1930210/Python-Functional-or-Stack-or-Morris-Traversal-Multiple-Solutions! | class Solution:
def postorderTraversal(self, root):
self.res = []
self.helper(root)
return self.res
def helper(self, root):
if root:
self.helper(root.left)
self.helper(root.right)
self.res.append(root.val) | binary-tree-postorder-traversal | Python - Functional | Stack | Morris Traversal - Multiple Solutions! | domthedeveloper | 0 | 96 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,118 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/1930210/Python-Functional-or-Stack-or-Morris-Traversal-Multiple-Solutions! | class Solution:
def postorderTraversal(self, root):
return self.postorderTraversal(root.left) + self.postorderTraversal(root.right) + [root.val] if root else [] | binary-tree-postorder-traversal | Python - Functional | Stack | Morris Traversal - Multiple Solutions! | domthedeveloper | 0 | 96 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,119 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/1930210/Python-Functional-or-Stack-or-Morris-Traversal-Multiple-Solutions! | class Solution:
def postorderTraversal(self, root):
return [*self.postorderTraversal(root.left), *self.postorderTraversal(root.right), root.val] if root else [] | binary-tree-postorder-traversal | Python - Functional | Stack | Morris Traversal - Multiple Solutions! | domthedeveloper | 0 | 96 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,120 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/1930210/Python-Functional-or-Stack-or-Morris-Traversal-Multiple-Solutions! | class Solution:
def postorderTraversal(self, root):
res, stack = deque(), [root]
while stack:
node = stack.pop()
if node:
res.appendleft(node.val)
stack.append(node.left)
stack.append(node.right)
return res | binary-tree-postorder-traversal | Python - Functional | Stack | Morris Traversal - Multiple Solutions! | domthedeveloper | 0 | 96 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,121 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/1930210/Python-Functional-or-Stack-or-Morris-Traversal-Multiple-Solutions! | class Solution:
def postorderTraversal(self, root):
res = deque()
while root:
if root.right:
temp = root.right
while temp.left and temp.left != root:
temp = temp.left
if not temp.left:
res.appendleft(root.val)
temp.left = root
root = root.right
else:
temp.left = None
root = root.left
else:
res.appendleft(root.val)
root = root.left
return res | binary-tree-postorder-traversal | Python - Functional | Stack | Morris Traversal - Multiple Solutions! | domthedeveloper | 0 | 96 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,122 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/1856712/Iterative-Simple-Solution-using-stack-and-deque-in-Python | class Solution:
def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
stack = []
result = deque()
if root:
stack.append(root)
while len(stack):
node = stack.pop()
result.appendleft(node.val)
if node.left:
stack.append(node.left)
if node.right:
stack.append(node.right)
return list(result) | binary-tree-postorder-traversal | Iterative Simple Solution using stack and deque in Python | anmolg | 0 | 49 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,123 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/1803481/Python-Simple-Python-Solution-Using-Recursion | class Solution:
def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
self.result = []
def PostOrder(node):
if node == None:
return None
PostOrder(node.left)
PostOrder(node.right)
self.result.append(node.val)
PostOrder(root)
return self.result | binary-tree-postorder-traversal | [ Python ] ββ Simple Python Solution Using Recursion π₯β | ASHOK_KUMAR_MEGHVANSHI | 0 | 74 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,124 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/1790591/Faster-then-64-of-speed | class Solution:
def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
result = []
def dfs(root,result):
if root != None:
dfs(root.left,result)
dfs(root.right,result)
result.append(root.val)
return result
return dfs(root,result) | binary-tree-postorder-traversal | Faster then 64% of speed | xevb | 0 | 19 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,125 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/1743949/textbook-solution-actually-the-definition-why-it-is-post-order | class Solution:
def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
res = []
def helper(root, res):
if not root:
return
helper(root.left, res)
helper(root.right, res)
res.append(root.val)
helper(root, res)
return res | binary-tree-postorder-traversal | textbook solution, actually the definition why it is post-order | 752937603 | 0 | 49 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,126 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/1508475/Python3-simple-recursive-approach | class Solution:
def __init__(self):
self.ans = []
def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
if not root:
return
if root.left:
self.postorderTraversal(root.left)
if root.right:
self.postorderTraversal(root.right)
self.ans.append(root.val)
return self.ans | binary-tree-postorder-traversal | Python3 simple recursive approach | EklavyaJoshi | 0 | 42 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,127 |
https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/1398447/Java-%2B-Python3 | class Solution:
def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
res = []
if not root:
return res
def dfs(node):
if not node:
return
dfs(node.left)
dfs(node.right)
res.append(node.val)
pass
dfs(root)
return res | binary-tree-postorder-traversal | Java + Python3 | jlee9077 | 0 | 72 | binary tree postorder traversal | 145 | 0.668 | Easy | 2,128 |
https://leetcode.com/problems/lru-cache/discuss/442751/Python3-hashmap-and-doubly-linked-list | class ListNode:
def __init__(self, key=0, val=0, prev=None, next=None):
self.key = key
self.val = val
self.prev = prev
self.next = next
class LRUCache:
def __init__(self, capacity: int):
"""Initialize hash table & dll"""
self.cpty = capacity
self.htab = dict() #hash table
self.head = ListNode() #doubly linked list
self.tail = ListNode()
self.head.next = self.tail
self.tail.prev = self.head
def _del(self, key: int) -> int:
"""Delete given key from hash table & dll"""
node = self.htab.pop(key)
node.prev.next = node.next
node.next.prev = node.prev
return node.val
def _ins(self, key: int, value: int) -> None:
"""Insert at tail"""
node = ListNode(key, value, self.tail.prev, self.tail)
self.tail.prev.next = self.tail.prev = node
self.htab[key] = node
def get(self, key: int) -> int:
if key not in self.htab: return -1
value = self._del(key)
self._ins(key, value)
return value
def put(self, key: int, value: int) -> None:
if key in self.htab: self._del(key)
self._ins(key, value)
if len(self.htab) > self.cpty:
self._del(self.head.next.key)
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value) | lru-cache | [Python3] hashmap & doubly-linked list | ye15 | 8 | 457 | lru cache | 146 | 0.405 | Medium | 2,129 |
https://leetcode.com/problems/lru-cache/discuss/442751/Python3-hashmap-and-doubly-linked-list | class LRUCache:
def __init__(self, capacity: int):
self.cpty = capacity
self.data = dict()
def get(self, key: int) -> int:
if key not in self.data: return -1
value = self.data.pop(key)
self.data[key] = value
return value
def put(self, key: int, value: int) -> None:
if key in self.data: self.data.pop(key)
self.data[key] = value
if len(self.data) > self.cpty:
self.data.pop(next(iter(self.data.keys()))) | lru-cache | [Python3] hashmap & doubly-linked list | ye15 | 8 | 457 | lru cache | 146 | 0.405 | Medium | 2,130 |
https://leetcode.com/problems/lru-cache/discuss/442751/Python3-hashmap-and-doubly-linked-list | class LRUCache:
def __init__(self, capacity: int):
self.cpty = capacity
self.data = OrderedDict()
def get(self, key: int) -> int:
if key not in self.data: return -1
self.data.move_to_end(key)
return self.data[key]
def put(self, key: int, value: int) -> None:
if key in self.data: self.data.pop(key)
self.data[key] = value
if len(self.data) > self.cpty:
self.data.popitem(last=False) | lru-cache | [Python3] hashmap & doubly-linked list | ye15 | 8 | 457 | lru cache | 146 | 0.405 | Medium | 2,131 |
https://leetcode.com/problems/lru-cache/discuss/1677936/Python-Dict-Only | class LRUCache:
def __init__(self, capacity: int):
self.cache = {}
self.capacity = capacity
self.items = 0
def get(self, key: int) -> int:
if key in self.cache:
val = self.cache[key] # get value of key and delete the key - value
del self.cache[key]
self.cache[key] = val # Puts the key - value to end of cache
return self.cache[key]
return -1
def put(self, key: int, value: int) -> None:
if key in self.cache:
del self.cache[key] # delete key
self.cache[key] = value #place the key - value pair in the end of cache
elif self.items == self.capacity:
del self.cache[next(iter(self.cache))] #delete the first key - value pair which is the LRU
self.cache[key] = value
else:
self.cache[key] = value
self.items += 1 | lru-cache | Python Dict Only | Kenchir | 7 | 338 | lru cache | 146 | 0.405 | Medium | 2,132 |
https://leetcode.com/problems/lru-cache/discuss/1374660/Python-Guys-NextIter | class LRUCache:
def __init__(self, capacity: int):
self.return1={}
self.capacity=capacity
def get(self, key: int) -> int:
if key in self.return1:
get = self.return1[key]
del self.return1[key]
self.return1[key]=get
return get
return -1
def put(self, key: int, value: int) -> None:
if key in self.return1:
del self.return1[key]
self.return1[key]=value
else:
if len(self.return1)<self.capacity:
self.return1[key]=value
else:
del self.return1[next(iter(self.return1))] ###This Guy Here is super important, Learn what this is in python
self.return1[key]=value
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value) | lru-cache | Python Guys #NextIter | peanuts092 | 6 | 697 | lru cache | 146 | 0.405 | Medium | 2,133 |
https://leetcode.com/problems/lru-cache/discuss/1655397/Python3-Dictionary-%2B-LinkedList-or-Clean-%2B-Detailed-Explanation-or-O(1)-Time-For-All-Operations | class Node:
def __init__(self, key=-1, val=-1, nxt=None, prv=None):
self.key, self.val, self.next, self.prev = key, val, nxt, prv
class LinkedList:
def __init__(self):
# Head is the Most Recently Used -- Tail is the Least Recently Used
self.head = self.tail = None
def appendleft(self, node):
# Makes node the new head (appends left)
if self.head:
node.next, self.head.prev, self.head = self.head, node, node
else:
self.head = self.tail = node
def remove(self, node):
# Removes node from linkedlist (if statements are necessary to take care of edge cases)
if node == self.head == self.tail:
self.head = self.tail = None
elif node == self.head:
self.popleft()
elif node == self.tail:
self.pop()
else:
node.prev.next, node.next.prev = node.next, node.prev
def pop(self):
# Removing tail and reassigning tail to the previous node, then we return the old tail
oldTail, self.tail, self.tail.next = self.tail, self.tail.prev, None
return oldTail
def popleft(self):
# Removing head and reassigning head to the next node
self.head, self.head.prev = self.head.next, None
class LRUCache:
def __init__(self, capacity: int):
# Linkedlist will hold nodes in the following order: Most recent -> ... -> Least recent
self.cap, self.elems, self.l = capacity, {}, LinkedList()
def get(self, key: int) -> int:
if key in self.elems:
# Before returning the value, we update position of the element in the linkedlist
self.l.remove(self.elems[key])
self.l.appendleft(self.elems[key])
return self.elems[key].val
return -1
def put(self, key: int, value: int) -> None:
# Remove from linked list if node exists, because we will later appendleft the NEW node
if key in self.elems: self.l.remove(self.elems[key])
# Create new node, then add and appenleft
self.elems[key] = Node(key, value)
self.l.appendleft(self.elems[key])
# Check if we have more elements than capacity, delete LRU from linked list and dictionary
if len(self.elems) > self.cap: del self.elems[self.l.pop().key] | lru-cache | [Python3] Dictionary + LinkedList | Clean + Detailed Explanation | O(1) Time For All Operations | PatrickOweijane | 5 | 539 | lru cache | 146 | 0.405 | Medium | 2,134 |
https://leetcode.com/problems/lru-cache/discuss/2090397/Brute-Force-greater-Optimized-Approach-O(1)-Time-Solution-Easy-To-Understand | class LRUCache:
def __init__(self, capacity):
self.capacity = capacity
self.dic = {}
self.arr = []
def get(self, key):
if key in self.arr:
i = self.arr.index(key)
res = self.arr[i]
self.arr.pop(i)
self.arr.append(res)
return self.dic[res]
else: return - 1
def put(self, key, value):
if key in self.arr:
i = self.arr.index(key)
self.arr.pop(i)
self.arr.append(key)
self.dic[key] = value
else:
if len(self.arr) >= self.capacity:
self.arr.pop(0)
self.arr.append(key)
self.dic[key] = value
# Time Complexity: O(N) ; as O(N) for searching in array and O(N) for rearranging the indexing after popping. so time = O(N) + O(N) = O(N)
# Space Complexity: O(N) ; for making the array and dictionary to store key and value | lru-cache | Brute Force => Optimized Approach O(1) Time Solution Easy To Understand⨠| samirpaul1 | 3 | 291 | lru cache | 146 | 0.405 | Medium | 2,135 |
https://leetcode.com/problems/lru-cache/discuss/2090397/Brute-Force-greater-Optimized-Approach-O(1)-Time-Solution-Easy-To-Understand | class LRUCache:
def __init__(self, capacity):
self.dic = collections.OrderedDict()
self.capacity = capacity
self.cacheLen = 0
def get(self, key):
if key in self.dic:
ans = self.dic.pop(key)
self.dic[key] = ans # set this this key as new one (most recently used)
return ans
else:
return -1
def put(self, key, value):
if key in self.dic:
ans = self.dic.pop(key)
self.dic[key] = ans
else:
if self.cacheLen >= self.capacity: # self.dic is full
self.dic.popitem(last = False) # pop the last recently used element (lru)
self.cacheLen -= 1
self.dic[key] = value
self.cacheLen += 1
# Time Complexity = O(1) ; as search and pop operation from dictionary is of O(1)
# Space Complexity = O(N) ; for making the dictionary | lru-cache | Brute Force => Optimized Approach O(1) Time Solution Easy To Understand⨠| samirpaul1 | 3 | 291 | lru cache | 146 | 0.405 | Medium | 2,136 |
https://leetcode.com/problems/lru-cache/discuss/2090397/Brute-Force-greater-Optimized-Approach-O(1)-Time-Solution-Easy-To-Understand | class Node(object):
def __init__(self, key, x):
self.key = key
self.value = x
self.next = None
self.prev = None
class LRUCache(object):
def __init__(self, capacity):
"""
:type capacity: int
"""
self.capacity = capacity
self.dic = {}
self.head = None
self.tail = None
def get(self, key):
"""
:type key: int
:rtype: int
"""
if key in self.dic:
node = self.dic[key]
self.makeMostRecent(node)
return node.value
else:
return -1
def put(self, key, value):
"""
:type key: int
:type value: int
:rtype: None
"""
if key not in self.dic:
# Invalidate oldest if required:
if len(self.dic) == self.capacity:
del self.dic[self.head.key]
self.removeHead()
node = Node(key, value)
self.dic[key] = node
else:
# Update the value:
node = self.dic[key]
node.value = value
self.makeMostRecent(node)
def makeMostRecent(self, node):
if self.head and self.head.key == node.key:
self.removeHead()
# Make this item the most recently accessed (tail):
if self.tail and not self.tail.key == node.key:
if node.prev:
node.prev.next = node.next
if node.next:
node.next.prev = node.prev
node.next = None
self.tail.next = node # Old tail's next is the node.
node.prev = self.tail # Node's previous is the old tail.
self.tail = node # New tail is the node.
if not self.head:
self.head = node # If this is the first item make it the head as well as tail.
def removeHead(self):
self.head = self.head.next
if self.head:
self.head.prev = None
# Time Complexity = O(1) ; as search and pop operation from dictionary is of O(1) and deleting and adding links in double linkedlist also takes O(1) time.
# Space Complexity = O(N) ; for making the dictionary and double linkedlist | lru-cache | Brute Force => Optimized Approach O(1) Time Solution Easy To Understand⨠| samirpaul1 | 3 | 291 | lru cache | 146 | 0.405 | Medium | 2,137 |
https://leetcode.com/problems/lru-cache/discuss/2075556/Python3-oror-faster-86.25-oror-memory-83.75 | class LRUCache:
def __init__(self, capacity: int):
self.capacity = capacity
self.items = dict()
def get(self, key: int) -> int:
result = self.items.pop(key, -1)
if result == -1:
return -1
else:
self.items[key] = result
return result
def put(self, key: int, value: int) -> None:
result = self.items.pop(key, -1)
if result == -1 and len(self.items) == self.capacity:
del self.items[next(iter(self.items))]
self.items[key] = value | lru-cache | Python3 || faster 86.25% || memory 83.75% | grivabo | 3 | 171 | lru cache | 146 | 0.405 | Medium | 2,138 |
https://leetcode.com/problems/lru-cache/discuss/2656078/Python3-Dict-solution-or-No-Doubly-linked-List-or-No-OrderedDict | class LRUCache:
def __init__(self, capacity):
self.dic = {}
self.remain = capacity
def get(self, key):
if key not in self.dic:
return -1
v = self.dic.pop(key)
self.dic[key] = v # set key as the newest one
return v
def put(self, key, value):
if key in self.dic:
self.dic.pop(key)
else:
if self.remain > 0:
self.remain -= 1
else: # self.dic is full
left_key = next(iter(self.dic))
self.dic.pop(left_key)
self.dic[key] = value | lru-cache | Python3 Dict solution | No Doubly linked List | No OrderedDict | ivan_shelonik | 2 | 164 | lru cache | 146 | 0.405 | Medium | 2,139 |
https://leetcode.com/problems/lru-cache/discuss/1970603/python-3-oror-ordered-map | class LRUCache:
def __init__(self, capacity: int):
self.capacity = capacity
self.cache = collections.OrderedDict()
def get(self, key: int) -> int:
if key in self.cache:
self.cache.move_to_end(key)
return self.cache[key]
return -1
def put(self, key: int, value: int) -> None:
if key in self.cache:
self.cache.move_to_end(key)
elif len(self.cache) == self.capacity:
self.cache.popitem(last=False)
self.cache[key] = value | lru-cache | python 3 || ordered map | dereky4 | 2 | 236 | lru cache | 146 | 0.405 | Medium | 2,140 |
https://leetcode.com/problems/lru-cache/discuss/1950628/OrderedDict-simple | class LRUCache:
def __init__(self, capacity: int):
self._ordered_dict = collections.OrderedDict()
self._capacity = capacity
def get(self, key: int) -> int:
if key in self._ordered_dict:
self._ordered_dict[key] = self._ordered_dict.pop(key)
return self._ordered_dict[key]
else:
return -1
def put(self, key: int, value: int) -> None:
if key in self._ordered_dict:
_ = self.get(key) # put the key on top
elif len(self._ordered_dict) == self._capacity:
self._ordered_dict.popitem(last=False) # evict LRU element
self._ordered_dict[key] = value | lru-cache | OrderedDict simple | ismaj | 2 | 98 | lru cache | 146 | 0.405 | Medium | 2,141 |
https://leetcode.com/problems/lru-cache/discuss/2676308/Python-or-DLL-or-Hashmap-or-Beats-95-Memory | class Node:
def __init__(self, key, value):
self.key = key
self.value = value
self.next = None
self.prev = None
class LRUCache:
def __init__(self, capacity: int):
self.head = None
self.tail = None
self.hash_map = {}
self.capacity = capacity
def prepend(self, new_node: Node):
if self.head:
self.head.prev = new_node
new_node.next = self.head
if not self.tail:
self.tail = new_node
self.head = new_node
def unlink_node(self, node: Node) -> None:
# Unlink the node from cache
if not node: return None
prev_node = node.prev
next_node = node.next
if prev_node: prev_node.next = next_node
if next_node: next_node.prev = prev_node
if self.head == node:
self.head = next_node
if self.tail == node:
self.tail = prev_node
node.prev = None
node.next = None
def delete_node(self, node: Node):
self.unlink_node(node)
del self.hash_map[node.key]
del node
def evict_lru_node(self) -> Node or None:
if not self.tail: return None
lru_node = self.tail
self.delete_node(lru_node)
def get(self, key: int) -> int:
if key not in self.hash_map: return -1
node = self.hash_map[key]
if self.head != node:
self.unlink_node(node)
self.prepend(node)
return node.value
def put(self, key: int, value: int) -> None:
new_node = Node(key, value)
if key in self.hash_map:
self.delete_node(self.hash_map[key])
if len(self.hash_map) >= self.capacity:
self.evict_lru_node()
self.prepend(new_node)
self.hash_map[key] = new_node
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value) | lru-cache | Python | DLL | Hashmap | Beats 95% Memory | gurubalanh | 1 | 33 | lru cache | 146 | 0.405 | Medium | 2,142 |
https://leetcode.com/problems/lru-cache/discuss/2654152/Python-using-default-dict() | class LRUCache:
def __init__(self, capacity: int):
self.capacity = capacity
self.cache = dict() # using default dict in Python
def get(self, key: int) -> int:
if key not in self.cache.keys():
return -1
data = self.cache.pop(key)
self.cache[key] = data
return data
def put(self, key: int, value: int) -> None:
if key in self.cache.keys():
self.cache.pop(key)
self.cache[key] = value
if self.capacity < len(self.cache):
# Pop first index key in dict()
# I know dict() does not have index inside it
# i mean ...
# example: {'1': 1, '2': 2, '3': 3} -> '1'
key = next(iter(self.cache))
self.cache.pop(key) | lru-cache | Pythonηγγusing default dict() | namashin | 1 | 106 | lru cache | 146 | 0.405 | Medium | 2,143 |
https://leetcode.com/problems/lru-cache/discuss/2115259/Python-oror-Easy-Double-Linked-List-solution | class Node:
def __init__(self, key, val):
self.key, self.val = key, val
self.prev = self.next = None
class LRUCache:
def __init__(self, capacity: int):
self.cap = capacity
self.cache = {}
# left helps to find LRU and right helps to find MRU
self.left, self.right = Node(0, 0), Node(0, 0)
self.left.next, self.right.prev = self.right, self.left
# remove any node from any place
def remove(self, node):
prev, nxt = node.prev, node.next
prev.next, nxt.prev = nxt, prev
# insert into right most node
def insert(self, node):
prev = self.right.prev
self.right.prev = prev.next = node
node.next, node.prev = self.right, prev
def get(self, key: int) -> int:
if key in self.cache:
self.remove(self.cache[key])
self.insert(self.cache[key])
return self.cache[key].val
return -1
def put(self, key: int, value: int) -> None:
if key in self.cache:
self.remove(self.cache[key])
self.cache[key] = Node(key, value)
self.insert(self.cache[key])
if len(self.cache) > self.cap:
lru_node = self.left.next
self.remove(lru_node)
del self.cache[lru_node.key] | lru-cache | Python || Easy Double Linked List solution | sagarhasan273 | 1 | 125 | lru cache | 146 | 0.405 | Medium | 2,144 |
https://leetcode.com/problems/lru-cache/discuss/1959893/Easy-to-Understand-Python-code-that-beats-90-solutions. | class LRUCache:
def __init__(self, capacity: int):
self.capacity = capacity
self.dic = dict()
self.head = Node(0, 0)
self.tail = Node(0, 0)
self.head.next = self.tail
self.tail.prev = self.head
def get(self, key: int) -> int:
if key in self.dic:
n = self.dic[key]
self.remove(n)
self.add(n)
return n.val
return -1
def put(self, key: int, value: int) -> None:
if key in self.dic:
self.remove(self.dic[key])
n = Node(key, value)
self.add(n)
self.dic[key] = n
if len(self.dic) > self.capacity:
n = self.head.next
self.remove(n)
del self.dic[n.key]
def remove(self,node):
p = node.prev
n = node.next
p.next = n
n.prev = p
def add(self,node):
p = self.tail.prev
p.next = node
self.tail.prev = node
node.prev = p
node.next = self.tail
class Node:
def __init__(self, k, v):
self.key = k
self.val = v
self.prev = None
self.next = None | lru-cache | Easy to Understand Python code that beats 90% solutions. | tkdhimanshusingh | 1 | 194 | lru cache | 146 | 0.405 | Medium | 2,145 |
https://leetcode.com/problems/lru-cache/discuss/1766553/Simple-Python3-solution-using-dict-beats-89 | class LRUCache:
"""
1. Python's dictionaries support insertion order by default.
2. You can grab access to the first key in a dictionary using either next(iter(dict)) or
list(dict[0])
"""
def __init__(self, capacity: int):
self.cache = dict()
self.capacity = capacity
def get(self, key: int) -> int:
if key not in self.cache:
return -1
else:
value = self.cache[key]
self.cache.pop(key)
self.cache[key] = value
return value
def put(self, key: int, value: int) -> None:
if key in self.cache:
self.cache.pop(key)
else:
if len(self.cache) >= self.capacity:
self.cache.pop(next(iter(self.cache)))
self.cache[key] = value | lru-cache | Simple Python3 solution using dict beats 89% | kunalnarang | 1 | 237 | lru cache | 146 | 0.405 | Medium | 2,146 |
https://leetcode.com/problems/lru-cache/discuss/1707041/Python-Solution | class Node:
def __init__(s, key, value):
s.key = key
s.value = value
s.next = None
s.prev = None
class LRUCache:
def __init__(self, capacity: int):
self.mru = Node(-1, -1)
self.lru = Node(-1, -1)
self.mru.next = self.lru
self.lru.prev = self.mru
self.hash = {}
self.size = capacity
def get(self, key: int) -> int:
if key not in self.hash:
return -1
node = self.hash[key]
self.delete(node)
self.insert(node)
return node.value
def put(self, key: int, value: int) -> None:
if key in self.hash:
node = self.hash[key]
self.delete(node)
if self.size == len(self.hash):
self.delete(self.lru.prev)
self.insert(Node(key, value))
def insert(self, node):
self.mru.next.prev = node
node.next = self.mru.next
self.mru.next = node
node.prev = self.mru
self.hash[node.key] = node
def delete(self, node):
self.hash.pop(node.key)
node.next.prev = node.prev
node.prev.next = node.next | lru-cache | Python Solution | ayush_kushwaha | 1 | 191 | lru cache | 146 | 0.405 | Medium | 2,147 |
https://leetcode.com/problems/lru-cache/discuss/554251/Python3-O(1)-solution-using-doubly-linked-list | class LRUCache:
class Node:
'''
A class that represents a cache-access node in the doubly-linked list
'''
def __init__(self, key, value, prev_n = None, next_n = None):
self.key = key
self.value = value
self.prev_n = prev_n
self.next_n = next_n
def __init__(self, capacity):
self.capacity = capacity
self.cache = {}
self.lru_head = None # cache-access list head
self.lru_tail = None # cache-access list tail
def _add_node(self, key, value):
'''
Add cache-access node to the tail of the list. Basic doubly-linked wizardy
'''
node = LRUCache.Node(key, value, self.lru_tail)
if self.lru_tail:
self.lru_tail.next_n = node
self.lru_tail = node
if not self.lru_head:
self.lru_head = node
return node
def _remove_node(self, node):
'''
Remove specified cache-access node from the list. Basic doubly-linked wizardy
'''
if node.prev_n:
node.prev_n.next_n = node.next_n
if node.next_n:
node.next_n.prev_n = node.prev_n
if self.lru_head == node:
self.lru_head = node.next_n
if self.lru_tail == node:
self.lru_tail = node.prev_n
def get(self, key):
if key in self.cache:
node = self.cache[key]
self._remove_node(node) # remove existing cache-access entry
# add new node representing 'get' cache-access
new_node = self._add_node(key, node.value)
self.cache[key] = new_node
return node.value
else:
return -1
def put(self, key, value):
if key in self.cache:
# remove existing cache-access entry
self._remove_node(self.cache[key])
# add new node representing 'update' or 'insert' cache-access
node = self._add_node(key, value)
self.cache[key] = node
if len(self.cache) > self.capacity:
# capacity exceeded, time to pop the latest item from the front
del self.cache[self.lru_head.key]
self._remove_node(self.lru_head) | lru-cache | Python3 O(1) solution using doubly-linked list | coolhazcker | 1 | 220 | lru cache | 146 | 0.405 | Medium | 2,148 |
https://leetcode.com/problems/lru-cache/discuss/517055/Clear-Logic-Details-Explained-Python-beats-93 | class Node:
def __init__(self, key, val):
self.val = val
self.key = key
self.prev = None
self.nxt_ = None
# use a DL
class DLinked:
def __init__(self):
self.head = None
self.tail = None
def remove(self, node):
""" return the deleted node key
"""
# 3 basic postion cases
prev = node.prev
nxt_ = node.nxt_
# if the removing node is the single node in the list
if prev is None and nxt_ is None:
# eariler termination
self.head = None
self.tail = None
return node.key
# head node and not single, happy 2.14's day !
if prev is None:
self.head = nxt_
nxt_.prev = None
# tail node not single
elif nxt_ is None:
self.tail = prev
prev.nxt_ = None
else:
# mid node
prev.nxt_ = nxt_
nxt_.prev = prev
# either way you should return the old key
return node.key
def add(self, node):
""" return the node ref if added
"""
# when head is None
if self.head is None:
self.head = node
if self.tail is None:
self.tail = node
else:
node.nxt_ = self.head
node.prev = None
self.head.prev = node
self.head = node
return self.head
class LRUCache:
def __init__(self, capacity):
self.cap = capacity
self.table = {}
self.dlinked = DLinked()
def get(self, key):
# also check key first
node = self.table.get(key, None)
if node is not None:
# update hit
self.dlinked.remove(node)
self.dlinked.add(node)
return node.val
else:
return -1
def put(self, key, val):
# let Dlinked class to handle add / remove
# let cache class to handle capacity cases
# use forward logic to make thing clear
# no need to check cap first, instead, we need to check key in table or not.
# becase if key exist, there is nothing to deal with the capacity
node = self.table.get(key, None)
if node is not None:
# update key hit
self.dlinked.remove(node)
node.val = val # same key overwrite
self.dlinked.add(node)
# return as soon as possible to prevent logic twists
return
# if key not in table, then we need to add key, hence we need to check capacity
if len(self.table) == self.cap:
# cache full, kill the tail and add to head
# seperating the operations by returning the old key
old_key = self.dlinked.remove(self.dlinked.tail)
del self.table[old_key]
node = self.dlinked.add(Node(key, val))
self.table[key] = node
else:
# cache not full, add directly
node = self.dlinked.add(Node(key, val))
self.table[key] = node
return | lru-cache | Clear Logic, Details Explained, Python beats 93% | xia50 | 1 | 144 | lru cache | 146 | 0.405 | Medium | 2,149 |
https://leetcode.com/problems/lru-cache/discuss/469599/Python3-O(n)-time-complexity-using-a-list()-and-a-hash-table | class LRUCache:
def __init__(self, capacity: int):
self.capacity=capacity
self.frequency = []
self.cache = {}
def get(self, key: int) -> int:
if key not in self.frequency:
return -1
index = self.frequency.index(key)
del self.frequency[index]
self.frequency.append(key)
return self.cache[key]
def put(self, key: int, value: int) -> None:
if key in self.frequency:
index = self.frequency.index(key)
del self.frequency[index]
elif len(self.frequency) == self.capacity:
self.frequency.pop(0)
self.frequency.append(key)
self.cache[key] = value
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value) | lru-cache | Python3 O(n) time complexity using a list() and a hash table | jb07 | 1 | 269 | lru cache | 146 | 0.405 | Medium | 2,150 |
https://leetcode.com/problems/lru-cache/discuss/2845990/Using-Pythons-ordered-dict-property | class LRUCache:
def __init__(self, capacity: int):
self.orderedDict = {}
self.cap = capacity
def updateToTop(self, key):
v = self.orderedDict[key]
del self.orderedDict[key]
self.orderedDict[key] = v
def get(self, key: int) -> int:
if key in self.orderedDict:
self.updateToTop(key)
return self.orderedDict[key]
else:
return -1
def put(self, key: int, value: int) -> None:
if key in self.orderedDict:
self.updateToTop(key)
self.orderedDict[key] = value
if len(self.orderedDict) > self.cap:
del self.orderedDict[next(iter(self.orderedDict))]
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value) | lru-cache | Using Pythons ordered dict property | Jacomatt | 0 | 4 | lru cache | 146 | 0.405 | Medium | 2,151 |
https://leetcode.com/problems/lru-cache/discuss/2839753/Python-solution-with-no-Ordered-Dict-nor-linked-list | class LRUCache:
def __init__(self, capacity: int):
self.capacity = capacity
self.cache = {}
def get(self, key: int) -> int:
if key in self.cache:
v = self.cache.pop(key)
self.cache[key] = v
return v
else:
return -1
def put(self, key: int, value: int) -> None:
if key in self.cache:
self.cache.pop(key)
else:
if len(self.cache) == self.capacity:
# get the first key in thie cache dict and pop.
k = next(iter(self.cache))
self.cache.pop(k)
self.cache[key] = value
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value) | lru-cache | Python solution with no Ordered Dict nor linked list | woaying | 0 | 2 | lru cache | 146 | 0.405 | Medium | 2,152 |
https://leetcode.com/problems/lru-cache/discuss/2838553/Hashmap-%2B-Doubly-LinkedList | class Node:
def __init__(self, key: Optional[int] = None, value: Optional[int] = None) -> None:
self.key = key
self.val = value
self.next = None
self.prev = None
class DoublyLinkedList:
def __init__(self) -> None:
self.head = Node() # dummy head. The real head actually starts from head.next
self.tail = Node() # dummy tail. The real tail actually starts from tail.prev
self.head.next = self.tail
self.tail.prev = self.head
def add_to_head(self, node: Node) -> None:
"""Moves a node to the head."""
tmp = self.head.next
self.head.next = node
node.prev = self.head
node.next = tmp
tmp.prev = node
def remove_node(self, node: Node) -> None:
"""Removes a node from the list."""
prev = node.prev
next = node.next
prev.next = next
next.prev = prev
node.prev = None
node.next = None
def move_to_head(self, node: Node) -> None:
"""Moves a node to the head."""
self.remove_node(node)
self.add_to_head(node)
def remove_tail(self) -> int:
"""Removes tail and returns the key."""
node = self.tail.prev
self.remove_node(node)
return node.key
class LRUCache:
def __init__(self, capacity: int):
self.hashmap: Dict[int, Node] = {} # stores the key-node pair
self.capacity = capacity
self.ddl = DoublyLinkedList()
def get(self, key: int) -> int:
if key in self.hashmap:
node = self.hashmap[key]
self.ddl.move_to_head(node)
return node.val
else:
return -1
def put(self, key: int, value: int) -> None:
if key in self.hashmap:
node = self.hashmap[key]
node.val = value
self.ddl.move_to_head(node)
else:
if len(self.hashmap) == self.capacity:
tail_key = self.ddl.remove_tail()
del self.hashmap[tail_key]
node = Node(key=key, value=value)
self.ddl.add_to_head(node)
self.hashmap[key] = node
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value) | lru-cache | Hashmap + Doubly LinkedList | fengdi2020 | 0 | 5 | lru cache | 146 | 0.405 | Medium | 2,153 |
https://leetcode.com/problems/lru-cache/discuss/2836402/PYTHON3-EASY-EXPLANATION-ONLY-1-DICTor-99.71 | class LRUCache:
def __init__(self, capacity: int):
self.cap, self.cache = capacity, {}
def get(self, key: int) -> int:
if key in self.cache:
temp = self.cache[key]
del self.cache[key]
self.cache[key] = temp
return self.cache[key]
return -1
def put(self, key: int, value: int) -> None:
# IF key is in cache delete it and re-enter making it the most recently used.
if key in self.cache:
del self.cache[key]
self.cache[key] = value
else:
#If we have more capacity keep appendings keys : values.
if len(self.cache) < self.cap:
self.cache[key] = value
else:
# If we go over the capacity . Delete the FIRST KEY and append the new key.
# Here we loop through the keys and we immediately stop after we remove the first key.
for k in self.cache:
del self.cache[k]
break
self.cache[key] = value
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value) | lru-cache | [PYTHON3] EASY EXPLANATION π₯ ONLY 1 DICT| 99.71% | papaggalos | 0 | 3 | lru cache | 146 | 0.405 | Medium | 2,154 |
https://leetcode.com/problems/lru-cache/discuss/2834061/Python-Use-a-single-dict-for-keyvalues-and-doubly-linked-list | class LRUCache:
def __init__(self, capacity: int):
self.n = capacity
self.byKey = {}
self.head = None
self.tail = None
def extract(self, key, new):
if new[1] is not None:
self.byKey[new[1]][2] = new[2]
if new[2] is not None:
self.byKey[new[2]][1] = new[1]
if self.head == key:
self.head = new[2]
if self.tail == key:
self.tail = new[1]
new[1] = self.tail
new[2] = None
def get(self, key: int) -> int:
new = self.byKey.pop(key, None)
if not new:
return -1
# need to move
self.extract(key, new)
self.byKey[key] = new
if self.head is None:
self.head = key
if self.tail is not None:
self.byKey[self.tail][2] = key
self.tail = key
return new[0]
def put(self, key: int, value: int) -> None:
new = self.byKey.pop(key, None)
if new:
# need to move
self.extract(key, new)
new[0] = value
else:
if len(self.byKey) == self.n:
# need to evict
old = self.byKey.pop(self.head, None)
if old[1] is not None:
self.byKey[old[1]][2] = old[2]
if old[2] is not None:
self.byKey[old[2]][1] = old[1]
if self.tail == self.head:
self.tail = None
self.head = old[2]
new = [value, self.tail, None]
self.byKey[key] = new
if self.head is None:
self.head = key
if self.tail is not None:
self.byKey[self.tail][2] = key
self.tail = key | lru-cache | [Python] Use a single dict for key/values and doubly linked list | constantstranger | 0 | 2 | lru cache | 146 | 0.405 | Medium | 2,155 |
https://leetcode.com/problems/lru-cache/discuss/2832485/Python3-98-faster-with-explanation | class LRUCache:
def __init__(self, capacity: int):
self.cap = capacity
self.imap = {}
def get(self, key: int) -> int:
if key in self.imap:
tmp = self.imap[key]
del self.imap[key]
self.imap[key] = tmp
return self.imap[key]
else:
return -1
def put(self, key: int, value: int) -> None:
if len(self.imap) >= self.cap and not key in self.imap:
for item in self.imap:
del self.imap[item]
break
elif key in self.imap:
del self.imap[key]
self.imap[key] = value
return
self.imap[key] = value
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value) | lru-cache | Python3, 98% faster with explanation | cvelazquez322 | 0 | 6 | lru cache | 146 | 0.405 | Medium | 2,156 |
https://leetcode.com/problems/lru-cache/discuss/2830129/Python3.7%2B-or-No-OrderedDict-Short-Python-Solution-using-DictionaryHashmap | class LRUCache:
def __init__(self, capacity: int):
self.d = {}
self.size = capacity
def get(self, key: int) -> int:
if key not in self.d: return -1
self.d[key] = self.d.pop(key)
return self.d[key]
def put(self, key: int, value: int) -> None:
if key in self.d: self.d.pop(key)
self.d[key] = value
if len(self.d) > self.size:
self.d.pop(next(iter(self.d))) | lru-cache | Python3.7+ | No OrderedDict Short Python Solution using Dictionary/Hashmap | Aleph-Null | 0 | 1 | lru cache | 146 | 0.405 | Medium | 2,157 |
https://leetcode.com/problems/lru-cache/discuss/2810727/Python-or-Simple-or-HashTable-or-LinkedList-or-Fast | class Node:
def __init__(self, key = -1, val = -1):
self.key, self.val = key, val
self.prev, self.next = None, None
class LRUCache:
def __init__(self, capacity: int):
self.size = capacity
self.cache = {}
self.head, self.tail = Node(), Node()
self.head.next, self.tail.prev = self.tail, self.head
def get(self, key: int) -> int:
if key in self.cache:
node = self.cache[key]
self.remove(node)
self.insert(node)
return node.val
return -1
def put(self, key: int, value: int) -> None:
if self.size == 0:
return
if key in self.cache:
node = self.cache[key]
node.val = value
self.remove(node)
self.insert(node)
return
node = Node(key, value)
if len(self.cache) == self.size:
node_to_be_deleted = self.tail.prev
self.remove(node_to_be_deleted)
del self.cache[node_to_be_deleted.key]
self.insert(node)
self.cache[key] = node
def remove(self, node):
prev, next = node.prev, node.next
prev.next, next.prev = next, prev
def insert(self, node):
next_node = self.head.next
self.head.next, node.prev = node, self.head
node.next, next_node.prev = next_node, node
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value) | lru-cache | Python | Simple | HashTable | LinkedList | Fast | david-cobbina | 0 | 5 | lru cache | 146 | 0.405 | Medium | 2,158 |
https://leetcode.com/problems/lru-cache/discuss/2759827/Python-orderedict | class LRUCache:
def __init__(self, capacity: int):
self.cache = collections.OrderedDict()
self.capacity = capacity
def get(self, key: int) -> int:
if key not in self.cache:
return -1
value = self.cache.get(key)
self.cache.move_to_end(key)
return value
def put(self, key: int, value: int) -> None:
if key in self.cache:
self.cache[key] = value
self.cache.move_to_end(key)
else:
if self.capacity == 0:
self.cache.popitem(last=False)
else:
self.capacity -= 1
self.cache[key] = value
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value) | lru-cache | Python orderedict | ychhhen | 0 | 7 | lru cache | 146 | 0.405 | Medium | 2,159 |
https://leetcode.com/problems/lru-cache/discuss/2756623/Python%3A-dict()%2BDoubly-linkedList | class node:
def __init__(self, key: int, val: int, pre = None, nxt = None):
self.key = key
self.val = val
self.pre = pre
self.nxt = nxt
class LRUCache:
def __init__(self, capacity: int):
self.key2val = dict()
self.MAXLEN = capacity
self.size = 0
self.head = None
self.tail = None
def get(self, key: int) -> int:
if key in self.key2val:
value = self.key2val[key].val
# Move to head
self.__del(self.key2val[key])
self.__ins_head(key, value)
return value
return -1
def put(self, key: int, value: int) -> None:
# 1.if key exists, update map value, move to head, then return
if key in self.key2val:
self.__del(self.key2val[key])
self.__ins_head(key, value)
return
# 2. if not in, check if LRU is full
# Remove LRU item from hash map and list
if self.size == self.MAXLEN:
self.__del(self.tail)
# add item
self.__ins_head(key, value)
'''
Del tail of list
'''
def __del(self, v: node):
## Remove from dict
self.key2val.pop(v.key)
## Del from list
# if v is the only node
if v.nxt == v:
self.head = None
self.tail = None
else:
v.nxt.pre = v.pre
v.pre.nxt = v.nxt
if v == self.tail: self.tail = v.pre
if v == self.head: self.head = v.nxt
# detach v from list
v.nxt = None
v.pre = None
# Update cnt
self.size -= 1
'''
Insert new node at the head of the list
'''
def __ins_head(self, key: int, val: int):
# Create node
v = node(key, val)
## Add to dict
self.key2val[key] = v
## Insert to list head
# if empty list
if self.size == 0:
self.head = v
self.tail = v
v.nxt = v
v.pre = v
else:
self.tail.nxt = v
v.nxt = self.head
self.head.pre = v
v.pre = self.tail
self.head = v
# Update cnt
self.size += 1
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value) | lru-cache | Python: dict()+Doubly-linkedList | KKCrush | 0 | 4 | lru cache | 146 | 0.405 | Medium | 2,160 |
https://leetcode.com/problems/lru-cache/discuss/2756622/Python%3A-dict()%2BDoubly-linkedList | class node:
def __init__(self, key: int, val: int, pre = None, nxt = None):
self.key = key
self.val = val
self.pre = pre
self.nxt = nxt
class LRUCache:
def __init__(self, capacity: int):
self.key2val = dict()
self.MAXLEN = capacity
self.size = 0
self.head = None
self.tail = None
def get(self, key: int) -> int:
if key in self.key2val:
value = self.key2val[key].val
# Move to head
self.__del(self.key2val[key])
self.__ins_head(key, value)
return value
return -1
def put(self, key: int, value: int) -> None:
# 1.if key exists, update map value, move to head, then return
if key in self.key2val:
self.__del(self.key2val[key])
self.__ins_head(key, value)
return
# 2. if not in, check if LRU is full
# Remove LRU item from hash map and list
if self.size == self.MAXLEN:
self.__del(self.tail)
# add item
self.__ins_head(key, value)
'''
Del tail of list
'''
def __del(self, v: node):
## Remove from dict
self.key2val.pop(v.key)
## Del from list
# if v is the only node
if v.nxt == v:
self.head = None
self.tail = None
else:
v.nxt.pre = v.pre
v.pre.nxt = v.nxt
if v == self.tail: self.tail = v.pre
if v == self.head: self.head = v.nxt
# detach v from list
v.nxt = None
v.pre = None
# Update cnt
self.size -= 1
'''
Insert new node at the head of the list
'''
def __ins_head(self, key: int, val: int):
# Create node
v = node(key, val)
## Add to dict
self.key2val[key] = v
## Insert to list head
# if empty list
if self.size == 0:
self.head = v
self.tail = v
v.nxt = v
v.pre = v
else:
self.tail.nxt = v
v.nxt = self.head
self.head.pre = v
v.pre = self.tail
self.head = v
# Update cnt
self.size += 1
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value) | lru-cache | Python: dict()+Doubly-linkedList | KKCrush | 0 | 3 | lru cache | 146 | 0.405 | Medium | 2,161 |
https://leetcode.com/problems/lru-cache/discuss/2690470/LRU-Cache | class ListNode:
def __init__(self, key = 0, val = 0):
self.key = key
self.val = val
self.prev = None
self.next = None
class LRUCache:
def __init__(self, capacity: int):
self.capacity = capacity
self.hashmap = {}
self.head = ListNode()
self.tail = ListNode()
self.head.next = self.tail
self.tail.prev = self.head
def remove_node(self, node):
node.prev.next = node.next
node.next.prev = node.prev
def add_node_to_last(self, node):
self.tail.prev.next = node
node.prev = self.tail.prev
node.next = self.tail
self.tail.prev = node
def move_node_to_last(self, node):
self.remove_node(node)
self.add_node_to_last(node)
def get(self, key: int) -> int:
if key not in self.hashmap:
return -1
node = self.hashmap[key]
self.move_node_to_last(node)
return node.val
def put(self, key: int, value: int) -> None:
if key in self.hashmap:
node = self.hashmap[key]
node.val = value
self.move_node_to_last(node)
return
if len(self.hashmap) == self.capacity:
del self.hashmap[self.head.next.key]
self.remove_node(self.head.next)
node = ListNode(key, value)
self.hashmap[key] = node
self.add_node_to_last(node) | lru-cache | LRU Cache | Erika_v | 0 | 7 | lru cache | 146 | 0.405 | Medium | 2,162 |
https://leetcode.com/problems/lru-cache/discuss/2669692/Python-or-Easy-way-or-Ordered-Dictionary | class LRUCache:
def __init__(self, capacity: int):
self.lru_cache = collections.OrderedDict()
self.capacity = capacity
def get(self, key: int) -> int:
if key not in self.lru_cache: return -1
self.lru_cache.move_to_end(key)
return self.lru_cache[key]
def put(self, key: int, value: int) -> None:
if key in self.lru_cache:
self.lru_cache[key] = value
self.lru_cache.move_to_end(key)
return
if len(self.lru_cache) >= self.capacity:
lru_key = next(iter(self.lru_cache))
del self.lru_cache[lru_key]
self.lru_cache[key] = value
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value) | lru-cache | Python | Easy way | Ordered Dictionary | gurubalanh | 0 | 10 | lru cache | 146 | 0.405 | Medium | 2,163 |
https://leetcode.com/problems/lru-cache/discuss/2636368/LRU-or-three-solutions | class LinkedNode:
def __init__(self, key = None, value = None, next = None):
self.key = key
self.value = value
self.next = next
class LRUCache:
def __init__(self, capacity: int):
self.capacity = capacity
self.dummy = LinkedNode()
self.tail = self.dummy
self.added_precious_dict = dict()
def get(self, key: int) -> int:
if key not in self.added_precious_dict:
return -1
self.setLRU(key)
return self.tail.value
def put(self, key: int, value: int) -> None:
if key in self.added_precious_dict:
self.setLRU(key)
self.tail.value = value
return
node = LinkedNode(key, value)
self.modifyLRU(node)
if len(self.added_precious_dict) > self.capacity:
self.removeNotLRU()
# print(self.dummy.next.key, self.tail.value, node.key, node.value)
def modifyLRU(self, node):
self.added_precious_dict[node.key] = self.tail
self.tail.next = node
self.tail = node
def removeNotLRU(self):
head = self.dummy.next
del self.added_precious_dict[head.key]
self.dummy.next = head.next
self.added_precious_dict[head.next.key] = self.dummy
def setLRU(self, key):
pre_node = self.added_precious_dict[key]
target_node = pre_node.next
if target_node == self.tail:
return
pre_node.next = target_node.next
self.added_precious_dict[target_node.next.key] = pre_node
target_node.next = None
self.modifyLRU(target_node) | lru-cache | LRU | three solutions | MichelleZou | 0 | 50 | lru cache | 146 | 0.405 | Medium | 2,164 |
https://leetcode.com/problems/lru-cache/discuss/2626540/Python-simple-solution-with-DoubleLinkedList | class Node:
def __init__(self, key, value):
self.key = key
self.value = value
self.prev = None
self.next = None
class LRUCache:
def __init__(self, capacity: int):
self.cap = capacity
self.cache = {} #key : key, value: node
self.head, self.tail = Node(0,0), Node(0, 0)
self.head.next = self.tail
self.tail.prev = self.head
def insert(self, node):
node.next = self.tail
node.prev = self.tail.prev
self.tail.prev.next = node
self.tail.prev = node
def remove(self, node):
node.prev.next = node.next
node.next.prev = node.prev
def get(self, key: int) -> int:
if key in self.cache:
self.remove(self.cache[key])
self.insert(self.cache[key])
return self.cache[key].value
else:
return -1
def put(self, key: int, value: int) -> None:
if key in self.cache:
self.remove(self.cache[key])
self.cache[key] = Node(key, value)
self.insert(self.cache[key])
if len(self.cache) > self.cap:
del self.cache[self.head.next.key]
self.remove(self.head.next)
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value) | lru-cache | Python simple solution with DoubleLinkedList | ljxowen | 0 | 57 | lru cache | 146 | 0.405 | Medium | 2,165 |
https://leetcode.com/problems/lru-cache/discuss/2611952/Python-EasyUnderstanding-Solution | class Node:
def __init__(self,key=0,value=0):
self.key,self.value = key,value
self.prev = self.next = None
class LRUCache:
def __init__(self, capacity: int):
self.capacity = capacity
self.cache = {}
self.left,self.right = Node(),Node()
self.right.prev = self.left
self.left.next = self.right
self.left.next = self.right
self.right.prev = self.left
def insert(self,node):
node.next = self.right
node.prev = self.right.prev
self.right.prev.next = node
self.right.prev = node
def remove(self,node):
node.prev.next = node.next
node.next.prev = node.prev
def get(self, key: int) -> int:
if key not in self.cache:
return -1
else:
self.remove(self.cache[key])
self.insert(self.cache[key])
return self.cache[key].value
def put(self, key: int, value: int) -> None:
if key not in self.cache:
self.cache[key] = Node(key,value)
else:
self.remove(self.cache[key])
self.cache[key] = Node(key,value)
# insert
self.insert(self.cache[key])
if len(self.cache) > self.capacity:
toremove = self.left.next
self.remove(toremove)
del self.cache[toremove.key]
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value) | lru-cache | Python EasyUnderstanding Solution | al5861 | 0 | 59 | lru cache | 146 | 0.405 | Medium | 2,166 |
https://leetcode.com/problems/lru-cache/discuss/2601550/Extremely-Simple-Python-solution-with-Explanation | class LRUCache:
# Easy peasy timer based solution
def __init__(self, capacity: int):
# Cache for value storage of a key
# lru for lru priority storage of the key
# Can a priority queue minheap also work? I think it will i just need to figure out how!
self.cache = {}
self.lru = {}
self.size = capacity
self.cc = 0 # timer
def get(self, key: int) -> int:
# If key is there return its value and also update the lru for it
if key in self.cache:
self.lru[key] = self.cc
self.cc += 1
return self.cache[key]
else: return -1
def put(self, key: int, value: int) -> None:
# Key already exists
if key in self.cache:
self.cache[key] = value
self.lru[key] = self.cc
return
# Size is still left to accomodate new keys no need to remove anything
if self.size:
self.cache[key] = value
self.lru[key] = self.cc
self.size -= 1
# find out lru key and evict it to accomodate the new one
else:
mini = min(self.lru, key=self.lru.get)
del self.cache[mini]
del self.lru[mini]
self.cache[key] = value
self.lru[key] = self.cc
self.cc += 1 | lru-cache | Extremely Simple Python solution with Explanation | shiv-codes | 0 | 89 | lru cache | 146 | 0.405 | Medium | 2,167 |
https://leetcode.com/problems/lru-cache/discuss/2516850/146.-My-PythonandJAVA-Solution-with-comments | class Node:
def __init__(self, key, val):
self.key = key
self.val = val
self.prev = None
self.next = None
class LRUCache:
def __init__(self, capacity: int):
self.capacity = capacity
self.cache = dict()
# elem in dict are pair [key, node]
#note that head and tail node are not included in the cache. they just indicate where the cache starts and ends
self.head = Node(0,0)
self.tail = Node(0,0)
self.head.next = self.tail
self.tail.prev = self.head
def get(self, key: int) -> int:
if key not in self.cache:
return -1
node = self.cache[key]
self.remove_node(node)
self.add_node(node)
return node.val
def put(self, key: int, value: int) -> None:
if key in self.cache:
self.remove_node(self.cache[key])
node = Node(key,value)
self.cache[key] = node
self.add_node(node)
# the beginning node, which is, head.next, would be the LRU to pop out
if len(self.cache)>self.capacity:
lru_node = self.head.next
key = lru_node.key
# note: remove the node not only from the chain, but also from the dict
self.remove_node(lru_node)
del self.cache[key]
return
def remove_node(self, node):
# remove node: locate the node's previous node and next node, connect these two, which would skip the target node
p = node.prev
n = node.next
p.next = n
n.prev = p
return
def add_node(self,node):
# add node into the chain, we define it as adding to the node before tail, so we have to locate the original end node before tail, and add the new node between this end node and self.tail
prev_end = self.tail.prev
prev_end.next = node
node.next = self.tail
self.tail.prev = node
node.prev = prev_end
return | lru-cache | 146. My Python&JAVA Solution with comments | JunyiLin | 0 | 23 | lru cache | 146 | 0.405 | Medium | 2,168 |
https://leetcode.com/problems/lru-cache/discuss/2516850/146.-My-PythonandJAVA-Solution-with-comments | class LRUCache:
def __init__(self, capacity: int):
self.capacity = capacity
self.cache = collections.OrderedDict()
# we use collecitons toolbox
# orderedDict is a dictionary that will remember the order that each (key,value) pair that comes in
# we also have function to remove item in this dict, from either the beginning or the end of the dict
# we define the end as the most_recently used position, and the beginning as the least recently used position. Like a queue, FIFO.
def get(self, key: int) -> int:
if key not in self.cache:
return -1
val = self.cache[key] # if we succeefully access this item, it means we have used it once, so we have to move it to the most_recently_used position, which is the end
self.cache.move_to_end(key, last= True) # last = True means it moves the key-value pair to the end. IF last = False, it moves the the beginning.
return val
def put(self, key: int, value: int) -> None:
if key in self.cache:
# if this key is already in cache, we just need to move it to the most_recently used position, and the update it
self.cache.move_to_end(key, last=True)
# if we do not have this key in cache before, that's fine, we just add it into cache, it automatically goes into the end.
self.cache[key] = value
if len(self.cache)> self.capacity:
# if after adding this new key, we run out of capacity, we will pop out the LRU elem, which is in the beginning.
# last = False means we pop the beginning.
self.cache.popitem(last=False) | lru-cache | 146. My Python&JAVA Solution with comments | JunyiLin | 0 | 23 | lru cache | 146 | 0.405 | Medium | 2,169 |
https://leetcode.com/problems/lru-cache/discuss/2491820/Python-runtime-42.97-memory-11.54 | class LinkedList:
def __init__(self, val):
self.val = val
self.next = None
self.prev = None
class LRUCache:
def __init__(self, capacity: int):
self.capacity = capacity
self.d = {}
self.head = None
self.end = None
def get(self, key: int) -> int:
if key in self.d and self.d[key].val != -1:
self.updateUsed(key)
return self.d[key].val
else:
return -1
def put(self, key: int, value: int) -> None:
if key in self.d and self.d[key].val != -1:
self.updateUsed(key)
self.d[key].val = value
else:
self.d[key] = LinkedList(value)
if not self.head:
self.head = self.d[key]
self.end = self.d[key]
else:
self.head.prev = self.d[key]
self.d[key].next = self.head
self.head = self.d[key]
if len(self.d.keys()) > self.capacity:
delete = self.end
if self.end.prev != None:
self.end.prev.next = None
self.end = self.end.prev
delete.val = -1
def updateUsed(self, key):
if not self.d[key].prev: # already at head
return
if not self.d[key].next: # already at end
self.d[key].prev.next = None
self.end = self.d[key].prev
if self.d[key].prev and self.d[key].next:
self.d[key].prev.next = self.d[key].next
self.d[key].next.prev = self.d[key].prev
self.d[key].prev = None
self.d[key].next = self.head
self.head.prev = self.d[key]
self.head = self.d[key] | lru-cache | Python, runtime 42.97%, memory 11.54% | tsai00150 | 0 | 59 | lru cache | 146 | 0.405 | Medium | 2,170 |
https://leetcode.com/problems/lru-cache/discuss/2491820/Python-runtime-42.97-memory-11.54 | class LinkedList:
def __init__(self, key, val):
self.key = key
self.val = val
self.next = None
self.prev = None
class LRUCache:
def __init__(self, capacity: int):
self.capacity = capacity
self.d = {}
self.head = None
self.head = LinkedList(0,0)
self.tail = LinkedList(0,0)
self.head.next = self.tail
self.tail.prev = self.head
def get(self, key: int) -> int:
if key in self.d:
self.updateUsed(key)
return self.d[key].val
else:
return -1
def put(self, key: int, value: int) -> None:
if key in self.d:
self.updateUsed(key)
self.d[key].val = value
else: # input new node
self.d[key] = LinkedList(key, value)
target_node = self.d[key]
self.head.next.prev = target_node
target_node.next = self.head.next
self.head.next = target_node
target_node.prev = self.head
if len(self.d.keys()) > self.capacity:
delete = self.tail.prev
delete.prev.next = self.tail
self.tail.prev = delete.prev
del self.d[delete.key]
def updateUsed(self, key):
target_node = self.d[key]
target_node.prev.next = target_node.next
target_node.next.prev = target_node.prev
self.head.next.prev = target_node
target_node.next = self.head.next
self.head.next = target_node
target_node.prev = self.head | lru-cache | Python, runtime 42.97%, memory 11.54% | tsai00150 | 0 | 59 | lru cache | 146 | 0.405 | Medium | 2,171 |
https://leetcode.com/problems/lru-cache/discuss/2437043/Python-Hashtable | class Node:
def __init__(self, key: int , val: int):
self.key, self.val = key, val
self.prev = self.next = None
class LRUCache:
def __init__(self, capacity: int):
self.cap = capacity
self.cache = {} # key : node
# init double linked list
self.head, self.tail = Node(0, 0), Node(0,0)
self.head.next = self.tail
self.tail.prev = self.head
def remove(self, node):
left = node.prev
right = node.next
left.next = right
right.prev = left
def insert(self, node):
left = self.tail.prev
left.next = node
node.prev = left
node.next = self.tail
self.tail.prev = node
def get(self, key: int) -> int:
if key in self.cache:
node = self.cache[key]
self.remove(node)
self.insert(node)
return node.val
return -1
def put(self, key: int, value: int) -> None:
if key in self.cache:
node = self.cache[key]
node.val = value
self.remove(node)
self.insert(node)
else:
node = Node(key, value)
if self.cap == len(self.cache):
firstNode = self.head.next
del self.cache[firstNode.key]
self.remove(firstNode)
self.insert(node)
self.cache[key] = node | lru-cache | Python Hashtable | cccandj | 0 | 70 | lru cache | 146 | 0.405 | Medium | 2,172 |
https://leetcode.com/problems/lru-cache/discuss/2431064/Python-Easy-to-Understand-oror-O(1)-Time-Complexity | class Node:
def __init__(self,key, value):
self.key, self.value = key, value
self.next, self.prev = None, None
class LRUCache:
def __init__(self, capacity: int):
self.cap = capacity
self.cache = {}
self.left = self.right = Node(0, 0)
self.left.next, self.right.prev = self.right, self.left
def remove(self, node):
prev, nxt = node.prev, node.next
prev.next, nxt.prev = nxt, prev
def insert(self, node):
prev, nxt = self.right.prev, self.right
prev.next = nxt.prev = node
node.next, node.prev = nxt, prev
def get(self, key: int) -> int:
if key in self.cache:
self.remove(self.cache[key])
self.insert(self.cache[key])
return self.cache[key].value
return -1
def put(self, key: int, value: int) -> None:
if key in self.cache:
self.remove(self.cache[key])
self.cache[key] = Node(key, value)
self.insert(self.cache[key])
if len(self.cache) > self.cap:
lru = self.left.next
self.remove(lru)
del self.cache[lru.key]
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value) | lru-cache | Python - Easy to Understand || O(1) Time Complexity | dayaniravi123 | 0 | 75 | lru cache | 146 | 0.405 | Medium | 2,173 |
https://leetcode.com/problems/lru-cache/discuss/2238187/Python3-oror-List-oror-Simple-and-Easy-Approach-oror-Explained | class LRUCache:
def __init__(self, capacity: int):
self.lru = {}
self.capacity = capacity
def get(self, key: int) -> int:
# check if key exists in lru
if key not in self.lru:
return -1
# repriotize the cache with the input key, which means bring this key to the top
self.priotize(key)
# return value for the input key
return self.lru[key]
def priotize(self, key):
# collect the value of the key in the variable
val = self.lru[key]
# delete key from cache
del self.lru[key]
# push your key back to the top of the stack
self.lru[key] = val
def evict(self):
# check if the length of the lru is getting higher than its capacity
# and delete the least used key
if len(self.lru) > self.capacity:
del self.lru[list(self.lru)[0]]
def put(self, key: int, value: int) -> None:
# add key and value to the stack, prioritize and evict, if there is a need to evict.
self.lru[key] = value
self.priotize(key)
self.evict() | lru-cache | Python3 || List || Simple and Easy Approach || Explained | mrusmanshahid | 0 | 82 | lru cache | 146 | 0.405 | Medium | 2,174 |
https://leetcode.com/problems/lru-cache/discuss/2133141/Clear-Linked-Hashmap-solution-in-Python | class ListNode:
def __init__(self, key, val):
self.key = key
self.val = val
self.next = None
self.prev = None
class LRUCache:
def __init__(self, capacity: int):
self.capacity = capacity
# a hashmap stores key to ListNode(key, value) pair
self.map = dict()
# dummy nodes to mitigate edge cases
self.head = ListNode(0, 0)
self.tail = ListNode(0, 0)
# init the doubly linked list with [head<->tail]
self.head.next = self.tail
self.tail.prev = self.head
def get(self, key: int) -> int:
if (key in self.map):
curr = self.map.get(key)
self.removeX(curr)
self.addX(curr)
return curr.val
return -1
def put(self, key: int, value: int) -> None:
if (key in self.map):
self.removeX(self.map[key])
self.map[key] = ListNode(key, value)
self.addX(self.map[key])
if (len(self.map) > self.capacity):
# remove the first(LRU) element in the list
n = self.head.next
self.removeX(n)
self.map.pop(n.key, None)
def addX(self, head):
# set the current head pointer's prev to tail's prev pointer
head.prev = self.tail.prev
# set the current head pointer's next to tail pointer
head.next = self.tail
# set the tail pointer's old prev's next to the current head pointer
self.tail.prev.next = head
# set the tail pointer's old prev pointer to the new prev(head) pointer
self.tail.prev = head
def removeX(self, head):
# set the old prev's next pointer to current head's next pointer
head.prev.next = head.next
# set old next's prev pointer to current head's prev pointer
head.next.prev = head.prev | lru-cache | Clear Linked Hashmap solution in Python | leqinancy | 0 | 30 | lru cache | 146 | 0.405 | Medium | 2,175 |
https://leetcode.com/problems/insertion-sort-list/discuss/1176552/Python3-188ms-Solution-(explanation-with-visualization) | class Solution:
def insertionSortList(self, head: ListNode) -> ListNode:
# No need to sort for empty list or list of size 1
if not head or not head.next:
return head
# Use dummy_head will help us to handle insertion before head easily
dummy_head = ListNode(val=-5000, next=head)
last_sorted = head # last node of the sorted part
cur = head.next # cur is always the next node of last_sorted
while cur:
if cur.val >= last_sorted.val:
last_sorted = last_sorted.next
else:
# Search for the position to insert
prev = dummy_head
while prev.next.val <= cur.val:
prev = prev.next
# Insert
last_sorted.next = cur.next
cur.next = prev.next
prev.next = cur
cur = last_sorted.next
return dummy_head.next | insertion-sort-list | [Python3] 188ms Solution (explanation with visualization) | EckoTan0804 | 28 | 834 | insertion sort list | 147 | 0.503 | Medium | 2,176 |
https://leetcode.com/problems/insertion-sort-list/discuss/1629375/Python3-INSERTION-SORT-Explained | class Solution:
def insertionSortList(self, head: Optional[ListNode]) -> Optional[ListNode]:
sort = ListNode() #dummy node
cur = head
while cur:
sortCur = sort
while sortCur.next and cur.val >= sortCur.next.val:
sortCur = sortCur.next
tmp, sortCur.next = sortCur.next, cur
cur = cur.next
sortCur.next.next = tmp
return sort.next | insertion-sort-list | βοΈ [Python3] INSERTION SORT, Explained | artod | 7 | 1,700 | insertion sort list | 147 | 0.503 | Medium | 2,177 |
https://leetcode.com/problems/insertion-sort-list/discuss/920840/Python-Solution-Explained-(video-%2B-code) | class Solution:
def insertionSortList(self, head: ListNode) -> ListNode:
dummy_head = ListNode()
curr = head
while curr:
prev_pointer = dummy_head
next_pointer = dummy_head.next
while next_pointer:
if curr.val < next_pointer.val:
break
prev_pointer = prev_pointer.next
next_pointer = next_pointer.next
temp = curr.next
curr.next = next_pointer
prev_pointer.next = curr
curr = temp
return dummy_head.next | insertion-sort-list | Python Solution Explained (video + code) | spec_he123 | 5 | 295 | insertion sort list | 147 | 0.503 | Medium | 2,178 |
https://leetcode.com/problems/insertion-sort-list/discuss/2474623/Python-Easiest-Insertion-sort | class Solution:
def insertionSortList(self, head: Optional[ListNode]) -> Optional[ListNode]:
dummy = ListNode(0,head)
prev, curr = head,head.next
# we can't go back so keep a previous pointer
while curr:
if curr.val >= prev.val:
prev = curr
curr = curr.next
continue
temp = dummy
while curr.val > temp.next.val:
temp = temp.next
prev.next = curr.next
curr.next = temp.next
temp.next = curr
curr = prev.next
return dummy.next | insertion-sort-list | Python Easiest Insertion sort | Abhi_009 | 1 | 103 | insertion sort list | 147 | 0.503 | Medium | 2,179 |
https://leetcode.com/problems/insertion-sort-list/discuss/1630153/Python3-O(1)-space-solution-with-comments | class Solution:
def insertionSortList(self, head: ListNode) -> ListNode:
dummy = ListNode(0, next=head)
cur = head
while cur.next:
# beginning of the list
begin = dummy
#traverse every element from begin of the list while not found element large or equal cur.next.val
while cur.next.val > begin.next.val:
begin = begin.next
# transferring an element. If all the elements are smaller, then we change the element to ourselves
tmp = cur.next
cur.next = cur.next.next
tmp.next = begin.next
begin.next = tmp
# if you did not move during the permutation, then move the pointer
if cur.next == tmp:
cur = cur.next
return dummy.next | insertion-sort-list | [Python3] O(1) space solution with comments | maosipov11 | 1 | 79 | insertion sort list | 147 | 0.503 | Medium | 2,180 |
https://leetcode.com/problems/insertion-sort-list/discuss/2813143/python-fast-sol.-faster-then-98.95 | class Solution:
def insertionSortList(self, head: Optional[ListNode]) -> Optional[ListNode]:
nums = []
cur = ans = head
while head:
nums.append(head.val)
head = head.next
nums = sorted(nums)
count = 0
while cur:
cur.val = nums[count]
count+=1
cur = cur.next
return ans | insertion-sort-list | python fast sol. faster then 98.95 % | pranjalmishra334 | 0 | 6 | insertion sort list | 147 | 0.503 | Medium | 2,181 |
https://leetcode.com/problems/insertion-sort-list/discuss/2801894/Python-solution | class Solution:
def insertionSortList(self, head: Optional[ListNode]) -> Optional[ListNode]:
dummy = ListNode(float('inf'))
dummy.next = None
lists = [dummy]
while head:
for i in range(len(lists)):
if head.val < lists[i].val:
lists.insert(i, head)
break
head = head.next
for i in range(len(lists) - 1):
lists[i].next = lists[i+1] if i != len(lists) - 2 else None
return lists[0] | insertion-sort-list | Python solution | maomao1010 | 0 | 1 | insertion sort list | 147 | 0.503 | Medium | 2,182 |
https://leetcode.com/problems/insertion-sort-list/discuss/2605607/Mixture-of-bubble-and-insertion-sort-Python | class Solution:
# Mixture of bubble and insertion sort
def insertionSortList(self, head: ListNode) -> ListNode:
dummy = ListNode(0, head)
prev, curr = head, head.next
while curr:
if prev.val <= curr.val:
prev, curr = prev.next, curr.next
continue
temp = dummy
while temp.next and temp.next.val < curr.val:
temp = temp.next
prev.next = prev.next.next
curr.next = temp.next
temp.next = curr
curr = prev.next
return dummy.next | insertion-sort-list | Mixture of bubble and insertion sort Python | shiv-codes | 0 | 22 | insertion sort list | 147 | 0.503 | Medium | 2,183 |
https://leetcode.com/problems/insertion-sort-list/discuss/2518977/Python-Clearly-commented-insertion-sort-Sentinel-Node | class Solution:
def insertionSortList(self, head: Optional[ListNode]) -> Optional[ListNode]:
# keep the start of the list -> sentinel node
# this really helps us to keep the code concise
sentinel = ListNode(val=-50001, next=head)
# we need to iterate through the list and check whether we are smaller then
# the previous node
# once this happens we need to do the following steps:
# 1) cut out the node (set previous node.next to current.next)
# 2) find the position to put the node
# 2a) We need to start from the beginning and as soon we are smaller or equal
# to the next node
# 2b) we insert by setting current.next to us and us.next to current.next
# 3) We need to got back to the node we were and continue
previous = sentinel
current = head
while current:
# check whether we are smaller than previous node
if current.val < previous.val:
# delete the current node from the list (1)
previous.next = current.next
# go through the list until we encounter a node (2a)
# that is bigger than us
start = sentinel
while start.next.val < current.val:
start = start.next
# insert our node in the list again (2b)
current.next = start.next
start.next = current
# return to the previous node (3)
current = previous
# everything is fine and we can go on
previous = current
current = current.next
return sentinel.next | insertion-sort-list | [Python] - Clearly commented insertion sort - Sentinel Node | Lucew | 0 | 69 | insertion sort list | 147 | 0.503 | Medium | 2,184 |
https://leetcode.com/problems/insertion-sort-list/discuss/1996065/python-3-oror-simple-iterative-solution-oror-O(n2)O(1) | class Solution:
def insertionSortList(self, head: Optional[ListNode]) -> Optional[ListNode]:
dummy = ListNode(0, head)
prevI, i = dummy, head
while i:
prevJ, j = dummy, dummy.next
while j.val < i.val:
prevJ, j = j, j.next
if i is j:
prevI, i = i, i.next
else:
prevI.next = i.next
i.next = j
prevJ.next = i
i = prevI.next
return dummy.next | insertion-sort-list | python 3 || simple iterative solution || O(n^2)/O(1) | dereky4 | 0 | 168 | insertion sort list | 147 | 0.503 | Medium | 2,185 |
https://leetcode.com/problems/insertion-sort-list/discuss/1963960/Naive-approach-with-99.10-efficiency | class Solution:
def insertionSortList(self, head: Optional[ListNode]) -> Optional[ListNode]:
temp=head
l=[]
while temp:
l.append(temp.val)
temp=temp.next
l.sort()
d=ListNode(-1)
res=d
for i in l:
res.next=ListNode(i)
res=res.next
return d.next | insertion-sort-list | Naive approach with 99.10% efficiency | captain_sathvik | 0 | 78 | insertion sort list | 147 | 0.503 | Medium | 2,186 |
https://leetcode.com/problems/insertion-sort-list/discuss/1630404/Python3-Easy-to-follow-up-solution | class Solution:
def insertionSortList(self, head: Optional[ListNode]) -> Optional[ListNode]:
last_sorted = head
it = last_sorted.next
temp = ListNode(val=-1, next=last_sorted)
while it is not None:
if last_sorted.val <= it.val:
last_sorted = it
it = it.next
else:
nxt = it.next
prev = temp
while prev.next and prev.next.val <= it.val:
prev = prev.next
it.next = prev.next
prev.next = it
last_sorted.next = nxt
it = last_sorted
return temp.next | insertion-sort-list | [Python3] Easy to follow up solution | varian97 | 0 | 29 | insertion sort list | 147 | 0.503 | Medium | 2,187 |
https://leetcode.com/problems/insertion-sort-list/discuss/1629650/Python3-Insertion-Sort-or-Inplace-or-O(1)-memory-or-98.51-Memory-Usage-or-O(n2)-Time-complexity | class Solution:
def insertionSortList(self, head: Optional[ListNode]) -> Optional[ListNode]:
temp=head
#Iterate over list
while(temp):
#store next value of current node
n=temp.next
# To avoid circular loop
if(temp==head):
prev=temp
temp=n
continue
#Find correct position for current node
temprep=head
while(temprep and temprep.val<temp.val):
prevrep=temprep
temprep=temprep.next
#Find previous of current node(node to be replaced)
while(prev.next!=temp):
prev=prev.next
#Two cases:
#1 - If current node to be replaced is start of list
if(temprep==head):
prev.next=temp.next
temp.next=temprep
head=temp
#2 - If node to be replaced is in between
else:
prevrep.next=temp
temp.next=temprep
if(temprep.next==temp):
temprep.next=n
else:
prev.next=n
#Iterate over list
temp=n
return head | insertion-sort-list | [Python3] Insertion Sort | Inplace | O(1) memory | 98.51% Memory Usage | O(n^2) Time complexity | Cdeo05 | 0 | 79 | insertion sort list | 147 | 0.503 | Medium | 2,188 |
https://leetcode.com/problems/insertion-sort-list/discuss/1072564/python-3-solution-O(N*N) | class Solution:
def insertionSortList(self, head: ListNode) -> ListNode:
if head==None:
return head
h=head
prev=head
head=head.next
while(head):
node=h
while(node!=head):
if node.val>head.val and node==h:
prev.next=head.next
head.next=node
h=head
head=prev.next
break
elif node.val>head.val:
prev.next=head.next
head.next=node
previous.next=head
head=prev.next
break
previous=node
node=node.next
if node==head:
prev=head
head=head.next
return h | insertion-sort-list | python 3 solution O(N*N) | AchalGupta | 0 | 119 | insertion sort list | 147 | 0.503 | Medium | 2,189 |
https://leetcode.com/problems/insertion-sort-list/discuss/921121/Python3-solution | class Solution:
def insertionSortList(self, head: ListNode) -> ListNode:
if not head: return head
e = head # end of sorted portion
n = e.next # next node to sort
while n: # if next node exists
s = head
p = None
while s != n: #scan from head to thru e (n is e.next)
if s.val <= n.val: p, s = s, s.next
else:
if p: p.next, n.next, e.next = n, s, n.next
else: head, n.next, e.next = n, s, n.next
break
if s==n: e = e.next # if didn't break
n = e.next
return head | insertion-sort-list | Python3 solution | dalechoi | 0 | 208 | insertion sort list | 147 | 0.503 | Medium | 2,190 |
https://leetcode.com/problems/insertion-sort-list/discuss/920733/insertionSortList-or-python3-intuitive-two-pointer | class Solution:
def insertionSortList(self, head: ListNode) -> ListNode:
if not head: return None
hi, hp = head.next, head
while hi:
lo, lp = head, None
while lo:
if lo == hi:
hp, hi = hi, hi.next
break
if lo.val >= hi.val:
hp.next = hi.next
if lp:
lp.next = hi
else:
head = hi
hi.next, hi = lo, hp.next
break
lp, lo = lo, lo.next
return head | insertion-sort-list | insertionSortList | python3 intuitive two pointer | hangyu1130 | 0 | 62 | insertion sort list | 147 | 0.503 | Medium | 2,191 |
https://leetcode.com/problems/insertion-sort-list/discuss/715153/Python3-O(N2)-algo | class Solution:
def insertionSortList(self, head: ListNode) -> ListNode:
node, prev = head, None # ...<-###<-prev, node->###->...
while node:
if not prev or prev.val <= node.val:
node.next, node, prev = prev, node.next, node #set new head of reversed list & move prev/node
else:
temp = prev
while temp.next and temp.next.val > node.val: #locate where to insert node
temp = temp.next
node.next, node, temp.next = temp.next, node.next, node #insert node after temp
#reverse linked list
node, prev = prev, None
while node:
node.next, node, prev = prev, node.next, node
return prev | insertion-sort-list | [Python3] O(N^2) algo | ye15 | 0 | 60 | insertion sort list | 147 | 0.503 | Medium | 2,192 |
https://leetcode.com/problems/insertion-sort-list/discuss/715153/Python3-O(N2)-algo | class Solution:
def insertionSortList(self, head: ListNode) -> ListNode:
#collect values
nums = []
node = head
while node:
nums.append(node.val)
node = node.next
#sort
nums.sort()
#reconstruct linked list
dummy = node = ListNode()
for x in nums:
node.next = ListNode(x)
node = node.next
return dummy.next | insertion-sort-list | [Python3] O(N^2) algo | ye15 | 0 | 60 | insertion sort list | 147 | 0.503 | Medium | 2,193 |
https://leetcode.com/problems/insertion-sort-list/discuss/715153/Python3-O(N2)-algo | class Solution:
def insertionSortList(self, head: ListNode) -> ListNode:
dummy = node = ListNode(next=head) # dummy head
while (temp := node.next):
prev = dummy
while prev.next.val < temp.val: prev = prev.next
if prev.next != temp:
node.next = node.next.next # remove temp out of linked list
temp.next = prev.next
prev.next = temp
else: node = node.next
return dummy.next | insertion-sort-list | [Python3] O(N^2) algo | ye15 | 0 | 60 | insertion sort list | 147 | 0.503 | Medium | 2,194 |
https://leetcode.com/problems/insertion-sort-list/discuss/715153/Python3-O(N2)-algo | class Solution:
def insertionSortList(self, head: ListNode) -> ListNode:
dummy = node = ListNode(val=-inf, next=head)
while node.next:
if node.val <= node.next.val: node = node.next
else:
temp = node.next
prev = dummy
while prev.next and prev.next.val <= temp.val: prev = prev.next
node.next = node.next.next
temp.next = prev.next
prev.next = temp
return dummy.next | insertion-sort-list | [Python3] O(N^2) algo | ye15 | 0 | 60 | insertion sort list | 147 | 0.503 | Medium | 2,195 |
https://leetcode.com/problems/insertion-sort-list/discuss/1176570/Python3-44ms-(beats-98.25)-by-using-Python-sorted()-function | class Solution:
def insertionSortList(self, head: ListNode) -> ListNode:
# No need to sort for empty list or list of size 1
if not head or not head.next:
return head
nodes = []
cur = head
while head:
nodes.append(head)
head = head.next
# Sort nodes by their values ascendingly
nodes = sorted(nodes, key=lambda node: node.val)
# Re-organize list
cur = head = nodes[0]
for node in nodes[1:]:
cur.next = node
cur = cur.next
cur.next = None
return head | insertion-sort-list | [Python3] 44ms (beats 98.25%) by using Python sorted() function | EckoTan0804 | -5 | 227 | insertion sort list | 147 | 0.503 | Medium | 2,196 |
https://leetcode.com/problems/sort-list/discuss/1796085/Sort-List-or-Python-O(nlogn)-Solution-or-95-Faster | class Solution:
def sortList(self, head: Optional[ListNode]) -> Optional[ListNode]:
if not head or not head.next:
return head
# Split the list into two halfs
left = head
right = self.getMid(head)
tmp = right.next
right.next = None
right = tmp
left = self.sortList(left)
right = self.sortList(right)
return self.merge(left, right)
def getMid(self, head):
slow = head
fast = head.next
while fast and fast.next:
slow = slow.next
fast = fast.next.next
return slow
# Merge the list
def merge(self, list1, list2):
newHead = tail = ListNode()
while list1 and list2:
if list1.val > list2.val:
tail.next = list2
list2 = list2.next
else:
tail.next = list1
list1 = list1.next
tail = tail.next
if list1:
tail.next = list1
if list2:
tail.next = list2
return newHead.next | sort-list | βοΈ Sort List | Python O(nlogn) Solution | 95% Faster | pniraj657 | 25 | 1,900 | sort list | 148 | 0.543 | Medium | 2,197 |
https://leetcode.com/problems/sort-list/discuss/1795826/Python-Simple-Python-Solution-With-Two-Approach | class Solution:
def sortList(self, head: Optional[ListNode]) -> Optional[ListNode]:
new_node=head
result = new_node
array = []
while head != None:
array.append(head.val)
head=head.next
array = sorted(array)
for num in array:
new_node.val = num
new_node = new_node.next
return result | sort-list | [ Python ] ββ Simple Python Solution With Two Approach π₯β | ASHOK_KUMAR_MEGHVANSHI | 8 | 315 | sort list | 148 | 0.543 | Medium | 2,198 |
https://leetcode.com/problems/sort-list/discuss/1795136/Python3-Clean%2BSimple-or-FastandSlow-or-Mergesort | class Solution:
def split(self, head):
prev = None
slow = fast = head
while fast and fast.next:
prev = slow
slow = slow.next
fast = fast.next.next
if prev: prev.next = None
return slow
def merge(self, l1, l2):
dummy = tail = ListNode()
while l1 or l2:
v1 = l1.val if l1 else inf
v2 = l2.val if l2 else inf
if v1 <= v2:
tail.next = l1
l1 = l1.next
else:
tail.next = l2
l2 = l2.next
tail = tail.next
return dummy.next
def sortList(self, head: Optional[ListNode]) -> Optional[ListNode]:
if not head or not head.next: return head
head2 = self.split(head)
head1 = self.sortList(head)
head2 = self.sortList(head2)
return self.merge(head1, head2) | sort-list | [Python3] Clean+Simple | Fast&Slow | Mergesort | PatrickOweijane | 5 | 720 | sort list | 148 | 0.543 | Medium | 2,199 |
Subsets and Splits