post_href
stringlengths 57
213
| python_solutions
stringlengths 71
22.3k
| slug
stringlengths 3
77
| post_title
stringlengths 1
100
| user
stringlengths 3
29
| upvotes
int64 -20
1.2k
| views
int64 0
60.9k
| problem_title
stringlengths 3
77
| number
int64 1
2.48k
| acceptance
float64 0.14
0.91
| difficulty
stringclasses 3
values | __index_level_0__
int64 0
34k
|
---|---|---|---|---|---|---|---|---|---|---|---|
https://leetcode.com/problems/binary-search-tree-iterator/discuss/1948996/Lazy-Solution-using-Heapor-Python-or-Fast-and-light | class BSTIterator:
def __init__(self, root: Optional[TreeNode]):
self.heap = []
heapq.heapify(self.heap)
def dp(i,node):
if not node:return
heapq.heappush(self.heap, node.val)
dp(i-1, node.left)
dp(i+1, node.right)
dp(0,root)
def next(self) -> int:
return heapq.heappop(self.heap)
def hasNext(self) -> bool:
return self.heap!=[] | binary-search-tree-iterator | Lazy Solution using Heap| Python | Fast & light | quesneljoseph | 0 | 22 | binary search tree iterator | 173 | 0.692 | Medium | 2,900 |
https://leetcode.com/problems/binary-search-tree-iterator/discuss/1821219/My-Basic-Solution-in-Python3-(dfs-list) | class BSTIterator:
def __init__(self, root: Optional[TreeNode]):
# accumulate data in self.all
def dfs(root):
if root.left :
dfs(root.left)
self.all.append(root.val)
if root.right :
dfs(root.right)
return
self.all = []
dfs(root)
self.N = len(self.all)
self.iter = 0
def next(self) -> int:
v = self.all[self.iter]
self.iter = self.iter + 1
return v
def hasNext(self) -> bool:
return self.iter < self.N | binary-search-tree-iterator | My Basic Solution in Python3 (dfs, list) | 3upt | 0 | 24 | binary search tree iterator | 173 | 0.692 | Medium | 2,901 |
https://leetcode.com/problems/binary-search-tree-iterator/discuss/1675122/Python3-or-Inorder-Traversal-or-O(N)-(68-ms-faster-than-92.79) | class BSTIterator:
def __init__(self, root: Optional[TreeNode]):
self.lst = []
self.inorderTraversal(root)
self.n = len(self.lst)
self.index = 0
def next(self) -> int:
self.n -= 1
val = self.lst[self.index]
self.index += 1
return val
def hasNext(self) -> bool:
return self.n > 0
def inorderTraversal(self, root):
if not root:
return
self.inorderTraversal(root.left)
self.lst.append(root.val)
self.inorderTraversal(root.right) | binary-search-tree-iterator | Python3 | Inorder Traversal | O(N) (68 ms, faster than 92.79%) | afsbfscfsdfs | 0 | 31 | binary search tree iterator | 173 | 0.692 | Medium | 2,902 |
https://leetcode.com/problems/binary-search-tree-iterator/discuss/1391370/Follow-up-solution-O(H)-space | class BSTIterator:
def __init__(self, root: TreeNode):
def reorg(root):
nonlocal last, first
if root:
reorg(root.left)
if last:
last.right = root
root.left = last
else:
first = root
last = root
reorg(root.right)
first, last = None, None
reorg(root)
self.cur = root = TreeNode(-float('inf'))
self.cur.right = first
def next(self) -> int:
self.cur = self.cur.right
return self.cur.val
def hasNext(self) -> bool:
if self.cur and self.cur.right:
return True
return False | binary-search-tree-iterator | Follow up solution, O(H) space | sann2011 | 0 | 71 | binary search tree iterator | 173 | 0.692 | Medium | 2,903 |
https://leetcode.com/problems/binary-search-tree-iterator/discuss/1344273/Python-Logical-Solution-using-Stack-(Iterative-Inorder-Traversal) | class BSTIterator:
def __init__(self, root: TreeNode):
self.stack = []
self.populateStack(root)
def populateStack(self, root: TreeNode):
while root:
self.stack.append(root)
root = root.left
def next(self) -> int:
if not self.stack:
return None
nextNode = self.stack.pop()
if nextNode.right:
self.populateStack(nextNode.right)
return nextNode.val
def hasNext(self) -> bool:
if not self.stack:
return False
return True | binary-search-tree-iterator | [Python] Logical Solution using Stack (Iterative Inorder Traversal) | shubh_027 | 0 | 85 | binary search tree iterator | 173 | 0.692 | Medium | 2,904 |
https://leetcode.com/problems/binary-search-tree-iterator/discuss/965648/Python-Solution-with-generator-why-re-inventing-the-wheel | class BSTIterator:
def __init__(self, root: TreeNode):
self.last = None
self.gen = self.generate(root)
self.over = False
def generate(self, node):
if node:
yield from self.generate(node.left)
yield node.val
yield from self.generate(node.right)
def next(self) -> int:
if self.last is not None:
ret, self.last = self.last, None
return ret
else:
return next(self.gen)
def hasNext(self) -> bool:
if self.last is not None:
return True
elif self.over:
return False
else:
try:
self.last = next(self.gen)
return True
except:
self.over = True
return False | binary-search-tree-iterator | [Python] Solution with generator, why re-inventing the wheel? | modusV | 0 | 15 | binary search tree iterator | 173 | 0.692 | Medium | 2,905 |
https://leetcode.com/problems/binary-search-tree-iterator/discuss/936294/python3-solution-using-stack | class BSTIterator:
def __init__(self, root: TreeNode):
self.vals = []
stack = [root]
while stack:
node = stack.pop()
if node:
self.vals.append(node.val)
stack.append(node.left)
stack.append(node.right)
self.vals.sort(reverse=True)
def next(self) -> int:
"""
@return the next smallest number
"""
return self.vals.pop()
def hasNext(self) -> bool:
"""
@return whether we have a next smallest number
"""
if len(self.vals) > 0: return True
else: return False | binary-search-tree-iterator | python3 solution using stack | Gushen88 | 0 | 30 | binary search tree iterator | 173 | 0.692 | Medium | 2,906 |
https://leetcode.com/problems/binary-search-tree-iterator/discuss/887720/easy-dfs-plus-pointer-solution-python-3 | class BSTIterator:
def __init__(self, root: TreeNode):
self.l = []
def dfs(a, l):
if not a:
return
dfs(a.left, l)
l.append(a.val)
dfs(a.right, l)
dfs(root, self.l)
self.iterator = -1
def next(self) -> int:
"""
@return the next smallest number
"""
self.iterator += 1
if self.iterator <= len(self.l) -1:
return self.l[self.iterator]
def hasNext(self) -> bool:
"""
@return whether we have a next smallest number
"""
if self.iterator + 1 <= len(self.l) -1:
return True
return False | binary-search-tree-iterator | easy dfs plus pointer solution python 3 | dhruvsoni108 | 0 | 34 | binary search tree iterator | 173 | 0.692 | Medium | 2,907 |
https://leetcode.com/problems/binary-search-tree-iterator/discuss/729193/Python3-stack | class BSTIterator:
def __init__(self, root: TreeNode):
self.stack = []
self.node = root
def next(self) -> int:
while self.node:
self.stack.append(self.node)
self.node = self.node.left
self.node = node = self.stack.pop()
self.node = self.node.right
return node.val
def hasNext(self) -> bool:
return self.stack or self.node | binary-search-tree-iterator | [Python3] stack | ye15 | 0 | 62 | binary search tree iterator | 173 | 0.692 | Medium | 2,908 |
https://leetcode.com/problems/binary-search-tree-iterator/discuss/729193/Python3-stack | class BSTIterator:
def __init__(self, root: Optional[TreeNode]):
self.stack = []
while root:
self.stack.append(root)
root = root.left
def next(self) -> int:
node = self.stack.pop()
ans = node.val
node = node.right
while node:
self.stack.append(node)
node = node.left
return ans
def hasNext(self) -> bool:
return self.stack | binary-search-tree-iterator | [Python3] stack | ye15 | 0 | 62 | binary search tree iterator | 173 | 0.692 | Medium | 2,909 |
https://leetcode.com/problems/binary-search-tree-iterator/discuss/1397753/Python3-Solution-Faster-than-76-of-the-solutions | class BSTIterator:
def __init__(self, root: Optional[TreeNode]):
self.nodes = []
self.inorder(root)
def inorder(self, root):
if root is None:
return
self.inorder(root.left)
self.nodes.append(root.val)
self.inorder(root.right)
def next(self) -> int:
return self.nodes.pop(0)
def hasNext(self) -> bool:
return len(self.nodes) > 0
# Your BSTIterator object will be instantiated and called as such:
# obj = BSTIterator(root)
# param_1 = obj.next()
# param_2 = obj.hasNext() | binary-search-tree-iterator | Python3 Solution - Faster than 76% of the solutions | harshitgupta323 | -1 | 32 | binary search tree iterator | 173 | 0.692 | Medium | 2,910 |
https://leetcode.com/problems/dungeon-game/discuss/699433/Python3-dp | class Solution:
def calculateMinimumHP(self, dungeon: List[List[int]]) -> int:
m, n = len(dungeon), len(dungeon[0])
@cache
def fn(i, j):
"""Return min health at (i,j)."""
if i == m or j == n: return inf
if i == m-1 and j == n-1: return max(1, 1 - dungeon[i][j])
return max(1, min(fn(i+1, j), fn(i, j+1)) - dungeon[i][j])
return fn(0, 0) | dungeon-game | [Python3] dp | ye15 | 1 | 45 | dungeon game | 174 | 0.373 | Hard | 2,911 |
https://leetcode.com/problems/dungeon-game/discuss/699433/Python3-dp | class Solution:
def calculateMinimumHP(self, dungeon: List[List[int]]) -> int:
m, n = len(dungeon), len(dungeon[0])
ans = [inf]*(n-1) + [1, inf]
for i in reversed(range(m)):
for j in reversed(range(n)):
ans[j] = max(1, min(ans[j], ans[j+1]) - dungeon[i][j])
return ans[0] | dungeon-game | [Python3] dp | ye15 | 1 | 45 | dungeon game | 174 | 0.373 | Hard | 2,912 |
https://leetcode.com/problems/dungeon-game/discuss/504400/Python3-simple-DP-solution | class Solution:
def calculateMinimumHP(self, dungeon: List[List[int]]) -> int:
if not dungeon or not dungeon[0]: return 0
m,n=len(dungeon),len(dungeon[0])
dp=[]
for row in dungeon:
dp.append([0]*len(row))
for i in range(m-1,-1,-1):
for j in range(n-1,-1,-1):
if i==m-1 and j==n-1:
dp[i][j]=max(1,1-dungeon[i][j])
elif i==m-1:
dp[i][j]=max(1,dp[i][j+1]-dungeon[i][j])
elif j==n-1:
dp[i][j]=max(1,dp[i+1][j]-dungeon[i][j])
else:
dp[i][j]=max(1,min(dp[i][j+1],dp[i+1][j])-dungeon[i][j])
return dp[0][0] | dungeon-game | Python3 simple DP solution | jb07 | 1 | 138 | dungeon game | 174 | 0.373 | Hard | 2,913 |
https://leetcode.com/problems/dungeon-game/discuss/2843483/Dynamic-programming-no-extra-storage | class Solution:
def calculateMinimumHP(self, dungeon: List[List[int]]) -> int:
m=len(dungeon)
n=len(dungeon[0])
#dynammic programming: dp[i][j] contains minimal health required to make it from position i,j to bottom right corner
#only moving down or right, hence
# if we gain=dungeon[i][j]>0 then dp[i][j]=max(1,(min(dp[i+1][j],dp[i][j+1])-gain))
# if we damage=dungeon[i][j]<0 then dp[i][j]=-damage+min(dp[i+1][j],dp[i][j+1])
# if nothing empty=dungeon[i][j]=0 then dp[i][j]=min(dp[i+1][j],dp[i][j+1])
#no need to allocate extra storage, use dungeon to store dp values
dungeon[-1][-1]=1 if dungeon[-1][-1]>=0 else 1-dungeon[-1][-1]
for i in range(m-2,-1,-1):
curr=dungeon[i][-1]
if curr>0:
dungeon[i][-1]=max(1,dungeon[i+1][-1]-curr)
elif curr==0:
dungeon[i][-1]=dungeon[i+1][-1]
else:
dungeon[i][-1]=-curr+dungeon[i+1][-1]
for j in range(n-2,-1,-1):
curr=dungeon[-1][j]
if curr>0:
dungeon[-1][j]=max(1,dungeon[-1][j+1]-curr)
elif curr==0:
dungeon[-1][j]=dungeon[-1][j+1]
else:
dungeon[-1][j]=-curr+dungeon[-1][j+1]
for i in range(m-2,-1,-1):
for j in range(n-2,-1,-1):
curr=dungeon[i][j]
if curr>0:
dungeon[i][j]=max(1,(min(dungeon[i+1][j],dungeon[i][j+1])-curr))
elif curr==0:
dungeon[i][j]=min(dungeon[i+1][j],dungeon[i][j+1])
else:
dungeon[i][j]=-curr+min(dungeon[i+1][j],dungeon[i][j+1])
return dungeon[0][0] | dungeon-game | Dynamic programming, no extra storage | henrikm | 0 | 3 | dungeon game | 174 | 0.373 | Hard | 2,914 |
https://leetcode.com/problems/dungeon-game/discuss/2775639/Pythonor-DP-solution | class Solution:
def dp(self, i, j):
if j == (self.n - 1) and i == (self.m - 1):
return max(1, 1 - self.grid[i][j])
if j == self.n or i == self.m :
return 99999
if self.ans[i][j] != -99999:
return self.ans[i][j]
anss = min(self.dp(i+1, j), self.dp(i, j+1)) - self.grid[i][j]
if anss > 0 :
self.ans[i][j] = anss
else:
self.ans[i][j] = 1
return self.ans[i][j]
def calculateMinimumHP(self, dungeon: List[List[int]]) -> int:
self.m = len(dungeon)
self.n = len(dungeon[0])
self.grid = dungeon
self.ans = [[-99999 for _ in range(self.n)] for _ in range(self.m)]
return self.dp(0,0) | dungeon-game | Python| DP solution | lucy_sea | 0 | 2 | dungeon game | 174 | 0.373 | Hard | 2,915 |
https://leetcode.com/problems/dungeon-game/discuss/2774061/Python-bottom-up-solution | class Solution:
def calculateMinimumHP(self, dungeon: List[List[int]]) -> int:
row, col = len(dungeon), len(dungeon[0])
r, c = row-1, col-1
dp = dungeon
dp[r][c] = max(1, 1-dp[r][c])
for i in range(r-1, -1, -1): # rightmost
dp[i][c] = max(1, dp[i+1][c]-dp[i][c])
for j in range(c-1, -1, -1): # bottom
dp[r][j] = max(1, dp[r][j+1]-dp[r][j])
for i in range(r-1, -1, -1):
for j in range(c-1, -1, -1):
dp[i][j] = max(1, min(dp[i][j+1], dp[i+1][j])-dp[i][j])
return dp[0][0] | dungeon-game | Python bottom-up solution | gcheng81 | 0 | 1 | dungeon game | 174 | 0.373 | Hard | 2,916 |
https://leetcode.com/problems/dungeon-game/discuss/2771597/Python-Dynamic-Solution | class Solution:
def calculateMinimumHP(self, dungeon: List[List[int]]) -> int:
m = len(dungeon)
n = len(dungeon[0])
memo = [[-1 for _ in range(n)] for _ in range(m)]
def dp(i, j):
if i == m-1 and j == n-1:
return 1 if dungeon[i][j] >=0 else -dungeon[i][j] + 1
if i == m or j == n:
return float('inf')
if memo[i][j] != -1:
return memo[i][j]
res = min(dp(i, j+1), dp(i+1, j)) - dungeon[i][j]
memo[i][j] = 1 if res <= 0 else res
return memo[i][j]
return dp(0,0) | dungeon-game | Python Dynamic Solution | Rui_Liu_Rachel | 0 | 3 | dungeon game | 174 | 0.373 | Hard | 2,917 |
https://leetcode.com/problems/dungeon-game/discuss/2682766/calculateMinimumHP | class Solution:
def calculateMinimumHP(self, dungeon: List[List[int]]) -> int:
"""
到这从后往前找,如果是minhp低于1重制1
对于2d dp,
设立一个padding
"""
row = len(dungeon)
col = len(dungeon[0])
dp = [[float("inf")] * (col + 1) for _ in range(row+1)]
dp[row-1][col] = 1
dp[row][col-1] = 1
for i in range(row-1, -1, -1):
for j in range(col-1, -1, -1):
minHP = min(dp[i+1][j], dp[i][j+1]) - dungeon[i][j]
if minHP < 1:
dp[i][j] = 1
else:
dp[i][j] = minHP
return dp[0][0] | dungeon-game | calculateMinimumHP | langtianyuyu | 0 | 5 | dungeon game | 174 | 0.373 | Hard | 2,918 |
https://leetcode.com/problems/dungeon-game/discuss/2073579/Python3-DP-Solution-Explained | class Solution:
def calculateMinimumHP(self, dungeon: List[List[int]]) -> int:
m = len(dungeon)
n = len(dungeon[0])
memo = [[float('inf')] * n for _ in range(m)]
princess = dungeon[m - 1][n - 1]
memo[m - 1][n - 1] = 1 if princess >= 0 else -princess + 1
def valid(i, j):
if i < 0 or j < 0 or i >= m or j >= n:
return False
return True
for i in range(m - 1, -1, -1):
for j in range(n - 1, -1, -1):
if i == m - 1 and j == n - 1:
continue
health1 = float('inf') if not valid(i + 1, j) else memo[i + 1][j]
health2 = float('inf') if not valid(i, j + 1) else memo[i][j + 1]
tmp = min(health1, health2) - dungeon[i][j]
memo[i][j] = tmp if tmp > 0 else 1
return memo[0][0] | dungeon-game | Python3 DP Solution Explained | TongHeartYes | 0 | 56 | dungeon game | 174 | 0.373 | Hard | 2,919 |
https://leetcode.com/problems/dungeon-game/discuss/1940964/python-3-oror-recursive-dp | class Solution:
def calculateMinimumHP(self, dungeon: List[List[int]]) -> int:
m, n = len(dungeon), len(dungeon[0])
@lru_cache(None)
def helper(i, j):
if i == m - 1 and j == n - 1:
return dungeon[i][j]
res = max(min(0, helper(i + 1, j)) if i < m - 1 else -math.inf,
min(0, helper(i, j + 1)) if j < n - 1 else -math.inf)
return res + dungeon[i][j]
return max(1, -helper(0, 0) + 1) | dungeon-game | python 3 || recursive dp | dereky4 | 0 | 105 | dungeon game | 174 | 0.373 | Hard | 2,920 |
https://leetcode.com/problems/dungeon-game/discuss/1898705/Python3-DP-with-memo-(w-comments) | class Solution:
def calculateMinimumHP(self, dungeon: List[List[int]]) -> int:
height = len(dungeon) # height of grid
width = len(dungeon[0]) # width of grid
memo = [[-1]*width for i in range(height)] # use memo to store min hp to get (i, j) to avoid recalculations in subproblems
def dp(grid, i, j):
m = len(grid) # height of grid
n = len(grid[0]) # width of grid
if (i == m-1 and j == n-1):
return 1 if grid[i][j] >= 0 else -grid[i][j] + 1
if (i == m or j == n):
return sys.maxsize
if memo[i][j] != -1:
return memo[i][j]
# resolve subproblem - finding the min hp to get to (i+1, j) and (i, j+1) and decrement current hp boost at (i, j) to find the min hp to get to (i, j)
res = min(dp(grid, i+1, j), dp(grid, i, j+1)) - grid[i][j]
memo[i][j] = 1 if res <= 0 else res
return memo[i][j]
return dp(dungeon, 0, 0) | dungeon-game | [Python3] DP with memo (w/ comments) | leqinancy | 0 | 17 | dungeon game | 174 | 0.373 | Hard | 2,921 |
https://leetcode.com/problems/dungeon-game/discuss/1823147/Python-or-DP-table | class Solution:
def calculateMinimumHP(self, dungeon: List[List[int]]) -> int:
width = len(dungeon[0])
height = len(dungeon)
dp = [[float('inf')] * width for _ in range(height)]
def get_min_health(currCell, nextRow, nextCol):
# base case
if nextRow >= width or nextCol >= height:
return float('inf')
nextCell = dp[nextRow][nextCol]
return max(1, nextCell - currCell)
for row in reversed(range(height)):
for col in reversed(range(width)):
currCell = dungeon[row][col]
right_health = get_min_health(currCell, row, col+1)
down_health = get_min_health(currCell, row+1, col)
next_health = min(right_health, down_health)
if next_health != float('inf'):
min_health = next_health
else:
min_health = 1 if currCell >= 0 else (1-currCell)
dp[row][col] = min_health
return dp[0][0] | dungeon-game | Python | DP table | Fayeyf | 0 | 33 | dungeon game | 174 | 0.373 | Hard | 2,922 |
https://leetcode.com/problems/dungeon-game/discuss/1717086/174-Dungeon-Game-via-DP | class Solution:
def calculateMinimumHP(self, dungeon):
m, n = len(dungeon), len(dungeon[0])
memo = {}
return self.dp(dungeon, m, n, 0, 0, memo)
def dp(self, dungeon, m, n, i, j, memo):
if i == m - 1 and j == n -1:
return 1 if dungeon[i][j] >= 0 else -dungeon[i][j] + 1
if i == m or j == n:
return inf
if (i, j) not in memo:
temp = min(self.dp(dungeon, m, n, i + 1, j, memo),
self.dp(dungeon, m, n, i, j + 1, memo)) - dungeon[i][j]
memo[(i, j)] = 1 if temp <= 0 else temp
return memo[(i, j)] | dungeon-game | 174 Dungeon Game via DP | zwang198 | 0 | 49 | dungeon game | 174 | 0.373 | Hard | 2,923 |
https://leetcode.com/problems/dungeon-game/discuss/1497953/python-dp-solution | class Solution:
def calculateMinimumHP(self, dungeon: List[List[int]]) -> int:
if not dungeon:
return 1
dp = [[10000000] * (len(dungeon[0]) + 1) for i in range(len(dungeon)+1)]
dp[-2][-1],dp[-1][-1],dp[-1][-2] = 1,1,1
for i in range(len(dungeon)-1,-1,-1):
for j in range(len(dungeon[0])-1,-1,-1):
# in case dungeon[i][j] is positive and health become negative
dp[i][j] = max(1,min(dp[i+1][j],dp[i][j+1]) - dungeon[i][j])
return dp[0][0] | dungeon-game | python dp solution | yingziqing123 | 0 | 68 | dungeon game | 174 | 0.373 | Hard | 2,924 |
https://leetcode.com/problems/dungeon-game/discuss/1352877/DPor-TABULATIONor-Python-3or-Faster-than-97-Submission-or-Easy-to-understand | class Solution:
def calculateMinimumHP(self, li: List[List[int]]) -> int:
"""
Bottom Up Approach (Faster than 97% Submissions)
Array:
-2 -3 3
-5 -10 1
10 30 -5
Working:
2
5
0 0 6
4+1 2
6+0 11 5
0. 0 6
3+4 5 2
6 11 5
0 0 6
7 5 2
6 11 5
0 0. 6
"""
n,m = len(li), len(li[0])
dp = [[None for i in range(m)] for i in range(n)]
if li[-1][-1] >= 0:
dp[-1][-1] = 0
else:
dp[-1][-1] = abs(li[-1][-1]) + 1
#Populate last Column Values
j = m-1
for i in range(n-2,-1, -1):
reqHealth = dp[i+1][j]
if li[i][j] >= 0:
cHealth = li[i][j]
print(cHealth, reqHealth)
if cHealth >= reqHealth:
dp[i][j] = 0
else:
dp[i][j] = reqHealth - cHealth
else:
mandatoryHealthToSurvive = abs(li[i][j])+1
cHealth = 1
if cHealth >= reqHealth:
dp[i][j] = mandatoryHealthToSurvive
else:
dp[i][j] = mandatoryHealthToSurvive + reqHealth - cHealth
#Populate last Row Value
i = n-1
for j in range(m-2,-1,-1):
reqHealth = dp[i][j+1]
if li[i][j] >= 0:
cHealth = li[i][j]
if cHealth >= reqHealth:
dp[i][j] = 0
else:
dp[i][j] = reqHealth - cHealth
else:
mandatoryHealthToSurvive = abs(li[i][j])+1
cHealth = 1
if cHealth >= reqHealth:
dp[i][j] = mandatoryHealthToSurvive
else:
dp[i][j] = mandatoryHealthToSurvive + reqHealth - cHealth
#Dp
for i in range(n-2, -1, -1):
for j in range(m-2, -1, -1):
reqHealth = min(dp[i+1][j], dp[i][j+1])
if li[i][j] >= 0:
cHealth = li[i][j]
if cHealth >= reqHealth:
dp[i][j] = 0
else:
dp[i][j] = reqHealth - cHealth
else:
mandatoryHealthToSurvive = abs(li[i][j])+1
cHealth = 1
if cHealth >= reqHealth:
dp[i][j] = mandatoryHealthToSurvive
else:
dp[i][j] = mandatoryHealthToSurvive + reqHealth - cHealth
for i in dp:
print(i)
return max(1, dp[0][0]) | dungeon-game | DP| TABULATION| Python 3| Faster than 97% Submission | Easy to understand | sathwickreddy | 0 | 213 | dungeon game | 174 | 0.373 | Hard | 2,925 |
https://leetcode.com/problems/dungeon-game/discuss/1283967/Python-or-DP-Bottom-Up-Approach-or-Inplace-Intuition-beats-99 | class Solution:
def calculateMinimumHP(self, dungeon: List[List[int]]) -> int:
'''
Runtime: O(N+M)
Space: O(1)
'''
r = len(dungeon)
c = len(dungeon[0])
#Base case, calculating the last row,last column value
if dungeon[-1][-1] > 0:
dungeon[-1][-1] = 1
else:
dungeon[-1][-1] = abs(dungeon[-1][-1]) + 1
# Filling last column values
for i in range(r-2,-1,-1):
cell = dungeon[i][c-1]
if cell > 0:
dungeon[i][c-1] = max(dungeon[i+1][c-1] - cell, 1)
else:
dungeon[i][c-1] = dungeon[i+1][c-1] + abs(cell)
#Filling last row values
for j in range(c-2,-1,-1):
cell = dungeon[r-1][j]
if cell > 0:
dungeon[r-1][j] = max(dungeon[r-1][j+1] - cell, 1)
else:
dungeon[r-1][j] = dungeon[r-1][j+1] + abs(cell)
#General Case
for i in range(r-2,-1,-1):
for j in range(c-2,-1,-1):
cell = dungeon[i][j]
if cell > 0:
dungeon[i][j] = max(min(dungeon[i+1][j], dungeon[i][j+1]) - cell, 1)
else:
dungeon[i][j] = min(dungeon[i+1][j], dungeon[i][j+1]) + abs(cell)
return dungeon[0][0] | dungeon-game | Python | DP Bottom-Up Approach | Inplace Intuition beats 99% | dee7 | 0 | 145 | dungeon game | 174 | 0.373 | Hard | 2,926 |
https://leetcode.com/problems/dungeon-game/discuss/1408941/Python-7-line-easy-to-understand-solution-with-DP | class Solution:
def calculateMinimumHP(self, dungeon: List[List[int]]) -> int:
dp = [[0 for i in range(len(dungeon[0]))] for i in range(len(dungeon))]
for i in reversed(range(len(dungeon))):
for j in reversed(range(len(dungeon[0]))):
if i==len(dungeon)-1 and j==len(dungeon[0])-1: dp[i][j] = min(dungeon[i][j], 0); continue
val = max(dp[i][j+1] if j<len(dungeon[0])-1 else float("-inf"), dp[i+1][j] if i<len(dungeon)-1 else float("-inf"))
dp[i][j] = 0 if dungeon[i][j] + val>0 else dungeon[i][j] + val
return max(-dp[0][0], -dungeon[0][0], 0) + 1 | dungeon-game | Python 7 line easy to understand solution with DP | abrarjahin | -1 | 356 | dungeon game | 174 | 0.373 | Hard | 2,927 |
https://leetcode.com/problems/largest-number/discuss/1391073/python-easy-custom-sort-solution!!!!!!! | class Solution:
def largestNumber(self, nums: List[int]) -> str:
nums = sorted(nums,key=lambda x:x / (10 ** len(str(x)) - 1 ), reverse=True)
str_nums = [str(num) for num in nums]
res = ''.join(str_nums)
res = str(int(res))
return res | largest-number | python easy custom sort solution!!!!!!! | user0665m | 9 | 900 | largest number | 179 | 0.341 | Medium | 2,928 |
https://leetcode.com/problems/largest-number/discuss/1863613/2-Python-Solutions-oror-60-Faster-oror-Memory-less-than-80 | class Solution:
def largestNumber(self, nums: List[int]) -> str:
nums=list(map(str, nums)) ; cmp=lambda x,y:((x+y)>(y+x))-((x+y)<(y+x))
nums=sorted(nums,key=cmp_to_key(cmp))
return str(int(''.join(nums[::-1]))) | largest-number | 2 Python Solutions || 60% Faster || Memory less than 80% | Taha-C | 2 | 377 | largest number | 179 | 0.341 | Medium | 2,929 |
https://leetcode.com/problems/largest-number/discuss/1863613/2-Python-Solutions-oror-60-Faster-oror-Memory-less-than-80 | class Solution:
def largestNumber(self, nums: List[int]) -> str:
return str(int(''.join(sorted(map(str,nums), key=lambda s:s*9)[::-1]))) | largest-number | 2 Python Solutions || 60% Faster || Memory less than 80% | Taha-C | 2 | 377 | largest number | 179 | 0.341 | Medium | 2,930 |
https://leetcode.com/problems/largest-number/discuss/2359665/Python-Merge-sort-easy-understand | class Solution:
def largestNumber(self, nums: List[int]) -> str:
nums = [str(i) for i in nums]
nums = self.mergesort(nums)
return str(int("".join(nums)))
def compare(self, n1, n2):
return n1 + n2 > n2 + n1
def mergesort(self, nums):
length = len(nums)
if length > 1:
middle = length //2
left_list = self.mergesort(nums[:middle])
right_list = self.mergesort(nums[middle:])
nums = self.merge(left_list,right_list)
return nums
def merge(self,list1,list2):
result = []
l1 = deque(list1)
l2 = deque(list2)
while l1 and l2:
if self.compare(l1[0],l2[0]):
result.append(l1[0])
l1.popleft()
else:
result.append(l2[0])
l2.popleft()
result.extend(l1 or l2)
return result | largest-number | Python Merge sort, easy understand | prejudice23 | 1 | 188 | largest number | 179 | 0.341 | Medium | 2,931 |
https://leetcode.com/problems/largest-number/discuss/2174897/python-easy-to-read-and-understand | class Solution:
def largestNumber(self, nums: List[int]) -> str:
for i, num in enumerate(nums):
nums[i] = str(num)
def compare(n1, n2):
if n1+n2 > n2+n1:
return -1
else:
return 1
nums = sorted(nums, key=cmp_to_key(compare))
return str(int(str(''.join(nums)))) | largest-number | python easy to read and understand | sanial2001 | 1 | 263 | largest number | 179 | 0.341 | Medium | 2,932 |
https://leetcode.com/problems/largest-number/discuss/729300/Python3-custom-comparator | class Solution:
def largestNumber(self, nums: List[int]) -> str:
return "".join(sorted(map(str, nums), key=cmp_to_key(lambda x, y: int(x+y) - int(y+x)), reverse=True)).lstrip("0") or "0" | largest-number | [Python3] custom comparator | ye15 | 1 | 160 | largest number | 179 | 0.341 | Medium | 2,933 |
https://leetcode.com/problems/largest-number/discuss/729300/Python3-custom-comparator | class Solution:
def largestNumber(self, nums: List[int]) -> str:
def fn():
"""Convert cmp to key function"""
class cmp:
def __init__(self, obj):
self.obj = obj
def __lt__(self, other):
return self.obj + other.obj < other.obj + self.obj
def __eq__(self, other):
return self.obj == other.obj
return cmp
return "".join(sorted(map(str, nums), key=fn(), reverse=True)).lstrip("0") or "0" | largest-number | [Python3] custom comparator | ye15 | 1 | 160 | largest number | 179 | 0.341 | Medium | 2,934 |
https://leetcode.com/problems/largest-number/discuss/729300/Python3-custom-comparator | class Solution:
def largestNumber(self, nums: List[int]) -> str:
def cmp(x, y):
"""Compure two strings and return an integer based on outcome"""
if x + y > y + x: return 1
elif x + y == y + x: return 0
else: return -1
return "".join(sorted(map(str, nums), key=cmp_to_key(cmp), reverse=True)).lstrip("0") or "0" | largest-number | [Python3] custom comparator | ye15 | 1 | 160 | largest number | 179 | 0.341 | Medium | 2,935 |
https://leetcode.com/problems/largest-number/discuss/2848207/Python-or-Greedy-O(nlogn)-solution | class Solution:
def largestNumber(self, nums: List[int]) -> str:
if len(nums) == 1:
return str(nums[0])
count = 0
for i in range(len(nums)):
if nums[i] == 0:
count += 1
nums[i] = str(nums[i])
if count == len(nums):
return '0'
for i in range(len(nums)):
for j in range(i + 1, len(nums)):
if int(nums[j] + nums[i]) > int(nums[i] + nums[j]):
nums[i], nums[j] = nums[j], nums[i]
return ''.join(nums) | largest-number | Python | Greedy O(nlogn) solution | KevinJM17 | 0 | 2 | largest number | 179 | 0.341 | Medium | 2,936 |
https://leetcode.com/problems/largest-number/discuss/2847641/Python-oror-Bubble-Sort | class Solution:
def largestNumber(self, nums):
n = len(nums)
nums = [str(i) for i in nums]
for i in range(n):
for j in range(i+1,n):
if nums[i] + nums[j] < nums[j] + nums[i]:
nums[i], nums[j] = nums[j], nums[i]
if nums[0] == '0': return '0'
return ''.join(nums) | largest-number | Python || Bubble Sort | morpheusdurden | 0 | 2 | largest number | 179 | 0.341 | Medium | 2,937 |
https://leetcode.com/problems/largest-number/discuss/2782404/Python3-Mergesort | class Solution:
def largestNumber(self, nums: List[int]) -> str:
def mergesort(arr):
def merge_lists(a1, a2):
res = []
l, r = 0, 0
while l < len(a1) and r < len(a2):
if a1[l]+a2[r] >= a2[r]+a1[l]:
res.append(a1[l])
l += 1
else:
res.append(a2[r])
r += 1
if l < len(a1):
res += a1[l:]
if r < len(a2):
res += a2[r:]
return res
if len(arr) == 1:
return arr
mid = len(arr)//2
l1, l2 = mergesort(arr[:mid]), mergesort(arr[mid:])
return merge_lists(l1, l2)
if not nums:
return '0'
res = mergesort([str(x) for x in nums])
return '0' if res[0] == '0' else ''.join(res) | largest-number | [Python3] Mergesort | jonathanbrophy47 | 0 | 7 | largest number | 179 | 0.341 | Medium | 2,938 |
https://leetcode.com/problems/largest-number/discuss/2717363/Sort-Solution-Python-and-Golang | class Solution:
def largestNumber(self, nums: List[int]) -> str:
# Convert List[int] to List[str]
nums = [str(num) for num in nums]
# Bubble Sort: O(N * N)
len_nums = len(nums)
for i in range(len_nums):
for j in range(len_nums - 1 - i):
if int(nums[j] + nums[j + 1]) < int(nums[j + 1] + nums[j]):
nums[j], nums[j + 1] = nums[j + 1], nums[j]
# If all zero
if nums[0] == '0':
return '0'
return ''.join(nums) | largest-number | Sort Solution [Python and Golang] | namashin | 0 | 33 | largest number | 179 | 0.341 | Medium | 2,939 |
https://leetcode.com/problems/largest-number/discuss/2561547/Python-Merge-Sort-or-Easy-understandable | class Solution:
def largestNumber(self, nums: List[int]) -> str:
def mergeSort(arr, l, r):
if l < r:
m = l + (r-l)//2
mergeSort(arr, l, m)
mergeSort(arr, m+1, r)
merge(arr, l, m, r)
def merge(arr, l, m, r):
ans = []
i = l
j = m+1
while i <= m and j <= r:
if int(arr[i]+arr[j]) > int(arr[j]+arr[i]):
ans.append(arr[i])
i += 1
else:
ans.append(arr[j])
j += 1
while i <= m:
ans.append(arr[i])
i+=1
while j <= r:
ans.append(arr[j])
j+=1
for i in range(len(ans)):
arr[l+i] = ans[i]
arr = [str(num) for num in nums]
mergeSort(arr, 0, len(arr)-1)
return "0" if arr and arr[0] == "0" else "".join(arr) | largest-number | Python Merge Sort | Easy understandable | ckayfok | 0 | 234 | largest number | 179 | 0.341 | Medium | 2,940 |
https://leetcode.com/problems/largest-number/discuss/2536749/Python3-solution-without-using-.sort() | class Solution:
def largestNumber(self, nums: List[int]) -> str:
if not any(map(bool, nums)):
return '0'
#this line is for the case[0,0] this will return only 0 not 00
nums=list(map(str,nums))
if len(nums)<2:
return "".join(nums)
def compare(x,y):
return (int(nums[x]+nums[y])) > (int(nums[y]+nums[x]))
#this function will only return when (int(nums[x]+nums[y])) > (int(nums[y]+nums[x])) is True
for x in range(len(nums)-1):
y=x+1
while x<len(nums) and y<len(nums):
if not compare(x,y):
nums[x],nums[y]=nums[y],nums[x]
y+=1
return "".join(nums) | largest-number | Python3 solution without using .sort() | pranjalmishra334 | 0 | 172 | largest number | 179 | 0.341 | Medium | 2,941 |
https://leetcode.com/problems/largest-number/discuss/2459222/Python-orEasy-to-understand | class Solution:
def largestNumber(self, nums: List[int]) -> str:
nums=list(map(str,nums))
nums=sorted(nums)
nums=nums[::-1]
res=[str(nums[0])]
for n in nums[1:]:
if res[-1]+str(n)<str(n)+res[-1]:
j=len(res)-1
while j>0 and str(n)+res[j-1]>res[j-1]+str(n):
j-=1
res.insert(j,str(n))
else:
res.append(str(n))
ans="".join(res)
if int(ans)==0:
return '0'
return "".join(res) | largest-number | Python |Easy to understand | user2559cj | 0 | 259 | largest number | 179 | 0.341 | Medium | 2,942 |
https://leetcode.com/problems/largest-number/discuss/2303053/python3-'EASY'-with-comments | class Solution:
def largestNumber(self, nums: list[int]) -> str:
nums = sorted([str(x) for x in nums],reverse=True) # sorting in reverse lexicographical order
for i in range(len(nums)): # normal bubble sort but the comparison is done on the basis of concatenated string
flag = False
for j in range(len(nums)-i-1):
if len(nums[j]) == len(nums[j+1]):
continue
if int(nums[j]+nums[j+1]) < int(nums[j+1]+nums[j]):
nums[j],nums[j+1]=nums[j+1],nums[j]
flag = True
if not flag:
break
ans = str(int("".join(nums))) # to strip out all the extra zeroes on the left
return ans | largest-number | python3 'EASY' with comments | ComicCoder023 | 0 | 252 | largest number | 179 | 0.341 | Medium | 2,943 |
https://leetcode.com/problems/largest-number/discuss/2270821/Python-Easiest-Solution | class Solution:
def largestNumber(self, nums: List[int]) -> str:
nums = map(str,nums)
def comp(a,b):
if a+b>b+a:
# this means a need to go first
return -1
else:
return 1
nums = sorted(nums, key = cmp_to_key(comp))
return str(int(''.join(nums))) | largest-number | Python Easiest Solution | Abhi_009 | 0 | 282 | largest number | 179 | 0.341 | Medium | 2,944 |
https://leetcode.com/problems/largest-number/discuss/2107736/Python-simple-solution | class Solution:
def largestNumber(self, nums: List[int]) -> str:
nums = [str(n) for n in nums]
fill = max(len(n) for n in nums)*2
return "".join(sorted(nums,
key=lambda n: (n*fill)[:fill],
reverse=True)).lstrip("0") or "0" | largest-number | Python simple solution | Takahiro_Yokoyama | 0 | 105 | largest number | 179 | 0.341 | Medium | 2,945 |
https://leetcode.com/problems/largest-number/discuss/2031516/Python3-or-Easy-solution-or-sorting-and-O(n)-implementation-or-faster-than-85 | class Solution:
def largestNumber(self, nums: List[int]) -> str:
if(len(nums)==1):
return str(nums[0])
nums = sorted([str(i) for i in nums])
rev = [nums[0]]
for i in range(1,len(nums)):
n = len(rev)
x = int(rev[n-1]+nums[i])
y = int(nums[i]+rev[n-1])
if(x>y):
rev.insert(n-1,nums[i])
elif(x<y):
rev.append(nums[i])
else:
rev[n-1] = rev[n-1]+nums[i]
return str(int(''.join(rev[::-1]))) | largest-number | Python3 | Easy solution | sorting and O(n) implementation | faster than 85% | user9273M | 0 | 156 | largest number | 179 | 0.341 | Medium | 2,946 |
https://leetcode.com/problems/largest-number/discuss/2000036/Adobe-oror-Merge-Sort-%2B-String-Compare-oror-O(nlogn) | class Solution:
def largestNumber(self, nums: List[int]) -> str:
def merge(left,right):
i = j = 0
ans = []
while i<len(left) and j<len(right):
mLeft = left[i]+right[j]
mRight = right[j]+left[i]
if mLeft > mRight:
ans.append(left[i])
i += 1
else:
ans.append(right[j])
j += 1
ans += left[i:]
ans += right[j:]
return ans
def mergeSort(arr):
if len(arr)<=1:
return arr
mid = len(arr)//2
left = mergeSort(arr[:mid])
right = mergeSort(arr[mid:])
return merge(left,right)
for i in range(len(nums)):
nums[i] = str(nums[i])
res = mergeSort(nums)
return str(int("".join(res))) | largest-number | Adobe || Merge Sort + String Compare || O(nlogn) | gamitejpratapsingh998 | 0 | 208 | largest number | 179 | 0.341 | Medium | 2,947 |
https://leetcode.com/problems/largest-number/discuss/676960/Super-easy-Python-solution | class Solution:
def compare(self,n1,n2):
if str(n1)+str(n2)>str(n2)+str(n1):
return True
else:
return False
def largestNumber(self, nums: List[int]) -> str:
if len(list(set(nums)))==1 and nums[0]==0:
return "0"
for i in range(len(nums)):
for j in range(i+1,len(nums)):
if not self.compare(nums[i],nums[j]):
nums[i],nums[j]=nums[j],nums[i]
return ''.join(map(str,nums)) | largest-number | Super easy Python solution | Ayu-99 | 0 | 221 | largest number | 179 | 0.341 | Medium | 2,948 |
https://leetcode.com/problems/repeated-dna-sequences/discuss/2223482/Simple-Python-Solution-oror-O(n)-Time-oror-O(n)-Space-oror-Sliding-Window | class Solution:
def findRepeatedDnaSequences(self, s: str) -> List[str]:
res, d = [], {}
for i in range(len(s)):
if s[i:i+10] not in d: d[s[i:i+10]] = 0
elif s[i:i+10] not in res: res.append(s[i:i+10])
return res
# An Upvote will be encouraging | repeated-dna-sequences | Simple Python Solution || O(n) Time || O(n) Space || Sliding Window | rajkumarerrakutti | 2 | 121 | repeated dna sequences | 187 | 0.463 | Medium | 2,949 |
https://leetcode.com/problems/repeated-dna-sequences/discuss/2015325/python-3-oror-simple-hash-map-solution | class Solution:
def findRepeatedDnaSequences(self, s: str) -> List[str]:
seen = {}
res = []
for i in range(len(s) - 9):
sequence = s[i:i+10]
if sequence in seen:
if not seen[sequence]:
seen[sequence] = True
res.append(sequence)
else:
seen[sequence] = False
return res | repeated-dna-sequences | python 3 || simple hash map solution | dereky4 | 2 | 144 | repeated dna sequences | 187 | 0.463 | Medium | 2,950 |
https://leetcode.com/problems/repeated-dna-sequences/discuss/1615529/Python-99.12-faster-than-other-codes-oror-using-hash | class Solution:
def findRepeatedDnaSequences(self, s: str) -> List[str]:
dna= {}
m=[]
for i in range(len(s) -9):
x=s[i:i+10]
if x in dna:
dna[x]=dna[x]+1
m.append(x)
else:
dna[x]= 1
return(list(set(m))) | repeated-dna-sequences | Python 99.12% faster than other codes || using hash | vineetkrgupta | 2 | 236 | repeated dna sequences | 187 | 0.463 | Medium | 2,951 |
https://leetcode.com/problems/repeated-dna-sequences/discuss/2224576/Python-simple-top-90-solution | class Solution:
def findRepeatedDnaSequences(self, s: str) -> List[str]:
tmp = set()
ans = set()
for i in range(0, len(s)-9):
string = s[i:i+10]
if string in tmp:
ans.add(string)
else:
tmp.add(string)
return ans | repeated-dna-sequences | Python simple top 90% solution | StikS32 | 1 | 39 | repeated dna sequences | 187 | 0.463 | Medium | 2,952 |
https://leetcode.com/problems/repeated-dna-sequences/discuss/712431/Python3-8-line-rolling-hash | class Solution:
def findRepeatedDnaSequences(self, s: str) -> List[str]:
ans, seen = set(), set()
for i in range(len(s)-9):
ss = s[i:i+10]
if ss in seen: ans.add(ss)
seen.add(ss)
return ans | repeated-dna-sequences | [Python3] 8-line rolling hash | ye15 | 1 | 131 | repeated dna sequences | 187 | 0.463 | Medium | 2,953 |
https://leetcode.com/problems/repeated-dna-sequences/discuss/712431/Python3-8-line-rolling-hash | class Solution:
def findRepeatedDnaSequences(self, s: str) -> List[str]:
freq = defaultdict(int)
for i in range(len(s)-9): freq[s[i:i+10]] += 1
return [k for k, v in freq.items() if v > 1] | repeated-dna-sequences | [Python3] 8-line rolling hash | ye15 | 1 | 131 | repeated dna sequences | 187 | 0.463 | Medium | 2,954 |
https://leetcode.com/problems/repeated-dna-sequences/discuss/712431/Python3-8-line-rolling-hash | class Solution:
def findRepeatedDnaSequences(self, s: str) -> List[str]:
mp = dict(zip("ACGT", range(4)))
ans, seen = set(), set()
hs = 0 # rolling hash
for i, x in enumerate(s):
hs = 4*hs + mp[x]
if i >= 10: hs -= mp[s[i-10]]*4**10
if i >= 9:
if hs in seen: ans.add(s[i-9:i+1])
seen.add(hs)
return ans | repeated-dna-sequences | [Python3] 8-line rolling hash | ye15 | 1 | 131 | repeated dna sequences | 187 | 0.463 | Medium | 2,955 |
https://leetcode.com/problems/repeated-dna-sequences/discuss/2817689/Python-6-Line-Dict-Solution | class Solution:
def findRepeatedDnaSequences(self, s: str) -> List[str]:
seq = {}
for i in range(len(s) - 9):
if s[i:i + 10] not in seq:
seq[s[i:i + 10]] = 0
seq[s[i:i + 10]] += 1
return [key for key, value in seq.items() if value > 1] | repeated-dna-sequences | Python, 6-Line Dict Solution | cello-ben | 0 | 5 | repeated dna sequences | 187 | 0.463 | Medium | 2,956 |
https://leetcode.com/problems/repeated-dna-sequences/discuss/2793014/Python-solution-(31-case-passed-but-1-case-cheated) | class Solution:
def findRepeatedDnaSequences(self, s: str) -> List[str]:
sample = []
result = []
length = len(s)-10
if s[0:5]=="GATGG":
return []
else:
for i in range(0,length+1):
c = s[i:i+10]
if c in sample and c not in result:
result.append(c)
else:
sample.append(c)
print(sample)
print(result)
return result | repeated-dna-sequences | Python solution (31 case passed but 1 case cheated) | VINAY_KUMAR_V_C | 0 | 1 | repeated dna sequences | 187 | 0.463 | Medium | 2,957 |
https://leetcode.com/problems/repeated-dna-sequences/discuss/2712537/Python-code-%3A-(runtime%3A-89ms-faster-than-86.62) | class Solution:
def findRepeatedDnaSequences(self, s: str) -> List[str]:
temp=dict()
x=len(s)
ans=[]
for i in range(x-9):
if s[i:i+10] in temp:
temp[s[i:i+10]]+=1
else:
temp[s[i:i+10]]=1
for ele in temp:
if temp[ele]>1:
ans.append(ele)
return ans | repeated-dna-sequences | Python code : (runtime: 89ms faster than 86.62%) | asiffarhan2701 | 0 | 9 | repeated dna sequences | 187 | 0.463 | Medium | 2,958 |
https://leetcode.com/problems/repeated-dna-sequences/discuss/2652456/Python-easy-to-understand | class Solution:
def findRepeatedDnaSequences(self, s: str) -> List[str]:
res, memory = set(), defaultdict(int)
if len(s) >= 10:
for i in range(len(s) - 9):
subseq = s[i: i + 10]
if subseq in memory:
res.add(subseq)
memory[subseq] += 1
return res | repeated-dna-sequences | Python - easy to understand | phantran197 | 0 | 2 | repeated dna sequences | 187 | 0.463 | Medium | 2,959 |
https://leetcode.com/problems/repeated-dna-sequences/discuss/2633310/Linear-string-hashing-solution-in-Python | class Solution:
def findRepeatedDnaSequences(self, s: str) -> List[str]:
nums = [-1] * len(s)
# map AGCT to 0123 numeric values for hashing
for i in range(len(s)):
if s[i] == 'A': nums[i] = 0
elif s[i] == 'G': nums[i] = 1
elif s[i] == 'C': nums[i] = 2
elif s[i] == 'T': nums[i] = 3
seen = set()
res = set()
digitPos = 10
digitBase = 4
hiDigit = pow(digitBase, digitPos - 1)
left, right = 0, 0
windowHash = 0
while (right < len(s)):
# expand right boundary by 1
windowHash = windowHash * digitBase + nums[right]
right += 1
if (right - left >= digitPos):
if (windowHash in seen):
res.add(s[left:right])
else:
seen.add(windowHash)
# shrink left boundary by 1
windowHash = windowHash - nums[left] * hiDigit
left += 1
return res | repeated-dna-sequences | Linear string hashing solution in Python | leqinancy | 0 | 13 | repeated dna sequences | 187 | 0.463 | Medium | 2,960 |
https://leetcode.com/problems/repeated-dna-sequences/discuss/2555196/Python-fast-and-simple-solution-using-set | class Solution:
def findRepeatedDnaSequences(self, s: str) -> list[str]:
ans, seen = set(), set()
for i in range(len(s) - 9):
cur = s[i:i + 10]
seen.add(cur) if cur not in seen else ans.add(cur)
return list(ans) | repeated-dna-sequences | Python fast and simple solution using set | Mark_computer | 0 | 29 | repeated dna sequences | 187 | 0.463 | Medium | 2,961 |
https://leetcode.com/problems/repeated-dna-sequences/discuss/2428719/Solution-using-HashMap-oror-Java-oror-Python3-oror-C%2B%2B | class Solution:
def findRepeatedDnaSequences(self, s: str) -> List[str]:
mapp = {}
res = []
if len(s) < 11:
return res
for i in range(len(s)-9):
temp = s[i:i+10]
if temp in mapp:
a = mapp[temp]
if a==1:
res.append(temp)
mapp[temp] = a+1
else:
mapp[temp] = 1
return res | repeated-dna-sequences | Solution using HashMap || Java || Python3 || C++ | savan07 | 0 | 46 | repeated dna sequences | 187 | 0.463 | Medium | 2,962 |
https://leetcode.com/problems/repeated-dna-sequences/discuss/2426913/simple-python-solution-easy-understanding | class Solution:
def findRepeatedDnaSequences(self, s: str) -> List[str]:
dna_dict = {}
ans = []
for i in range(len(s) - 9):
dna = s[i:i+10]
if dna not in dna_dict:
dna_dict[dna] = 1
else:
dna_dict[dna] += 1
for dna in dna_dict:
if dna_dict[dna] > 1:
ans.append(dna)
return ans | repeated-dna-sequences | simple python solution, easy understanding | Polaris_zihan2 | 0 | 10 | repeated dna sequences | 187 | 0.463 | Medium | 2,963 |
https://leetcode.com/problems/repeated-dna-sequences/discuss/2305925/Python-Simple | class Solution:
def findRepeatedDnaSequences(self, s: str) -> List[str]:
res = set()
visited = set()
for i in range(len(s)-10+1):
if s[i:i+10] not in visited:
visited.add(s[i:i+10])
else:
print(s[i:i+10])
res.add(s[i:i+10])
return res | repeated-dna-sequences | Python Simple | Abhi_009 | 0 | 45 | repeated dna sequences | 187 | 0.463 | Medium | 2,964 |
https://leetcode.com/problems/repeated-dna-sequences/discuss/2249303/pythonDamn-easy-solution | class Solution:
def findRepeatedDnaSequences(self, s: str) -> List[str]:
if len(s)<10:
return []
res=[]
visited=set([s[:10]])
curr=s[:10]
for i in range(10,len(s)):
curr=curr[1:]+s[i]
if curr in visited:
res.append(curr)
else:
visited.add(curr)
return list(set(res)) | repeated-dna-sequences | [python]Damn easy solution | pbhuvaneshwar | 0 | 27 | repeated dna sequences | 187 | 0.463 | Medium | 2,965 |
https://leetcode.com/problems/repeated-dna-sequences/discuss/1955175/Easy-to-understand-Python-3-solution-using-hash-enumerate | class Solution:
def findRepeatedDnaSequences(self, s: str) -> List[str]:
d={}
for i,j in enumerate(s):
if s[i:(10+i)] in d:
d[(s[i:(10+i)])]+=1
else:
d[(s[i:(10+i)])]=1
return [k for k,v in d.items() if (v) >= 2] | repeated-dna-sequences | Easy to understand Python 3 solution using hash enumerate | mansari2 | 0 | 55 | repeated dna sequences | 187 | 0.463 | Medium | 2,966 |
https://leetcode.com/problems/repeated-dna-sequences/discuss/1565027/Python-Two-Easy-Solutions-or-Using-HashSet-and-HashMap | class Solution:
def findRepeatedDnaSequences(self, s: str) -> List[str]:
# 1st Solution
res = {}
for i in range(len(s)-9):
if s[i:i+10] not in res:
res[s[i:i+10]] = 0
res[s[i:i+10]] += 1
return [key for key, value in res.items() if value > 1]
# 2nd Solution
seen = set()
rep = set()
for i in range(len(s)-9):
if s[i:i+10] in seen:
rep.add(s[i:i+10])
else:
seen.add(s[i:i+10])
return rep | repeated-dna-sequences | Python Two Easy Solutions | Using HashSet and HashMap | leet_satyam | 0 | 100 | repeated dna sequences | 187 | 0.463 | Medium | 2,967 |
https://leetcode.com/problems/repeated-dna-sequences/discuss/505218/Python3-simple-solution-using-a-while()-loop | class Solution:
def findRepeatedDnaSequences(self, s: str) -> List[str]:
if len(s)<10: return []
ht=collections.defaultdict(int)
res=set()
while len(s)>=10:
ht[s[:10]]+=1
if ht[s[:10]]>1: res.add(s[:10])
s=s[1:]
return list(res) | repeated-dna-sequences | Python3 simple solution using a while() loop | jb07 | 0 | 123 | repeated dna sequences | 187 | 0.463 | Medium | 2,968 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/2555699/LeetCode-The-Hard-Way-7-Lines-or-Line-By-Line-Explanation | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
# no transaction, no profit
if k == 0: return 0
# dp[k][0] = min cost you need to spend at most k transactions
# dp[k][1] = max profit you can achieve at most k transactions
dp = [[1000, 0] for _ in range(k + 1)]
for price in prices:
for i in range(1, k + 1):
# price - dp[i - 1][1] is how much you need to spend
# i.e use the profit you earned from previous transaction to buy the stock
# we want to minimize it
dp[i][0] = min(dp[i][0], price - dp[i - 1][1])
# price - dp[i][0] is how much you can achieve from previous min cost
# we want to maximize it
dp[i][1] = max(dp[i][1], price - dp[i][0])
# return max profit at most k transactions
# or you can write `return dp[-1][1]`
return dp[k][1] | best-time-to-buy-and-sell-stock-iv | 🔥 [LeetCode The Hard Way] 🔥 7 Lines | Line By Line Explanation | wingkwong | 62 | 3,600 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,969 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/702612/Python3-dp | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
if k >= len(prices)//2: return sum(max(0, prices[i] - prices[i-1]) for i in range(1, len(prices)))
buy, sell = [inf]*k, [0]*k
for x in prices:
for i in range(k):
if i: buy[i] = min(buy[i], x - sell[i-1])
else: buy[i] = min(buy[i], x)
sell[i] = max(sell[i], x - buy[i])
return sell[-1] if k and prices else 0 | best-time-to-buy-and-sell-stock-iv | [Python3] dp | ye15 | 10 | 373 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,970 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/702612/Python3-dp | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
if k >= len(prices)//2: return sum(max(0, prices[i] - prices[i-1]) for i in range(1, len(prices)))
ans = [0]*len(prices)
for _ in range(k):
most = 0
for i in range(1, len(prices)):
most = max(ans[i], most + prices[i] - prices[i-1])
ans[i] = max(ans[i-1], most)
return ans[-1] | best-time-to-buy-and-sell-stock-iv | [Python3] dp | ye15 | 10 | 373 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,971 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/2559797/Python3-Runtime%3A-81-ms-faster-than-95.84-or-Memory%3A-13.8-MB-less-than-98.29 | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
buy = [-inf]*(k+1)
sell = [0] *(k+1)
for price in prices:
for i in range(1,k+1):
buy[i] = max(buy[i],sell[i-1]-price)
sell[i] = max(sell[i],buy[i]+price)
return sell[-1] | best-time-to-buy-and-sell-stock-iv | [Python3] Runtime: 81 ms, faster than 95.84% | Memory: 13.8 MB, less than 98.29% | anubhabishere | 4 | 162 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,972 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/2438308/Python-or-O(N*K)-or-Faster-than-90-or-Memory-less-than-96 | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
if k == 0:
return 0
dp_cost = [float('inf')] * k
dp_profit = [0] * k
for price in prices:
for i in range(k):
if i == 0:
dp_cost[i] = min(dp_cost[i], price)
dp_profit[i] = max(dp_profit[i], price-dp_cost[i])
else:
dp_cost[i] = min(dp_cost[i], price - dp_profit[i-1])
dp_profit[i] = max(dp_profit[i], price - dp_cost[i])
return dp_profit[-1] | best-time-to-buy-and-sell-stock-iv | Python | O(N*K) | Faster than 90% | Memory less than 96% | pivovar3al | 2 | 137 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,973 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/2128071/Python-or-Easy-DP-or | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
n = len(prices)
dp = [[[0 for i in range(k+1)] for i in range(2)] for i in range(n+1)]
ind = n-1
while(ind >= 0):
for buy in range(2):
for cap in range(1,k+1):
if(buy):
profit = max(-prices[ind]+ dp[ind+1][0][cap] , 0 + dp[ind+1][1][cap])
else:
profit = max(prices[ind] + dp[ind+1][1][cap-1], 0 + dp[ind+1][0][cap])
dp[ind][buy][cap] = profit
ind -= 1
return dp[0][1][k] | best-time-to-buy-and-sell-stock-iv | Python | Easy DP | | LittleMonster23 | 2 | 135 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,974 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/2128071/Python-or-Easy-DP-or | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
n = len(prices)
after = [[0 for i in range(k+1)] for i in range(2)]
curr = [[0 for i in range(k+1)] for i in range(2)]
ind = n-1
while(ind >= 0):
for buy in range(2):
for cap in range(1,k+1):
if(buy):
profit = max(-prices[ind]+ after[0][cap] , 0 + after[1][cap])
else:
profit = max(prices[ind] + after[1][cap-1], 0 + after[0][cap])
curr[buy][cap] = profit
ind -= 1
after = [x for x in curr]
return after[1][k] | best-time-to-buy-and-sell-stock-iv | Python | Easy DP | | LittleMonster23 | 2 | 135 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,975 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/1765873/Java-Python3-Simple-DP-Solution-(Top-Down-and-Bottom-Up) | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
@lru_cache(None)
def dp(i: int, trxn_remaining: int, holding: bool) -> int:
# base case
if i == len(prices) or trxn_remaining == 0:
return 0
do_nothing = dp(i+1, trxn_remaining, holding)
do_something = 0
if holding:
# sell
do_something = prices[i] + dp(i+1, trxn_remaining-1, False)
else:
# buy
do_something = -prices[i] + dp(i+1, trxn_remaining, True)
return max(do_nothing, do_something)
return dp(0, k, False) | best-time-to-buy-and-sell-stock-iv | ✅ [Java / Python3] Simple DP Solution (Top-Down & Bottom-Up) | JawadNoor | 2 | 70 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,976 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/1765873/Java-Python3-Simple-DP-Solution-(Top-Down-and-Bottom-Up) | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
n = len(prices)
dp = [[[0]*2 for _ in range(k+1)]for _ in range(n+1)]
for i in range(n-1, -1, -1):
for trxn_remaining in range(1, k+1):
for holding in range(2):
do_nothing = dp[i+1][trxn_remaining][holding]
if holding:
# sell stock
do_something = prices[i] + dp[i+1][trxn_remaining-1][0]
else:
# buy stock
do_something = -prices[i] + dp[i+1][trxn_remaining][1]
# recurrence relation
dp[i][trxn_remaining][holding] = max(
do_nothing, do_something)
return dp[0][k][0] | best-time-to-buy-and-sell-stock-iv | ✅ [Java / Python3] Simple DP Solution (Top-Down & Bottom-Up) | JawadNoor | 2 | 70 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,977 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/1795021/Python-One-pass-Simulation-Solution-O(n*k)-time-O(k)-space-faster-than-98.53 | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
cost = [float('inf')] * (k + 1)
profit = [0] * (k + 1)
for price in prices:
for i in range(1, k + 1):
cost[i] = min(cost[i], price - profit[i - 1])
profit[i] = max(profit[i], price - cost[i])
return profit[k] | best-time-to-buy-and-sell-stock-iv | Python One-pass Simulation Solution, O(n*k) time, O(k) space, faster than 98.53% | celestez | 1 | 127 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,978 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/1182336/Best-Python3-solution-using-LinkedList-and-extremums-of-ascending-intervals | class Node:
def __init__(self, v, l=None, r=None):
self.v = v
self.l = l
self.r = r
self.score = v[1] - v[0]
class LinkedList:
def __init__(self, arr=[]):
self.head = None
self.tail = None
self.count = 0
for val in arr:
self.append(val)
def append(self, val):
if not self.head:
self.head = self.tail = Node(val)
else:
self.tail.r = Node(val, l=self.tail)
self.tail = self.tail.r
self.count += 1
def merge(self):
worst = self.head if self.head.score < self.head.r.score else self.head.r
best = self.head
bs = (self.head.r.v[1] - self.head.v[0]) - (self.head.score + self.head.r.score)
node = self.head.r
while node.r:
if worst.score > node.r.score:
worst = node.r
cur = (node.r.v[1] - node.v[0]) - (node.score + node.r.score)
if cur > bs:
best = node
bs = cur
node = node.r
# we can merge two intervals into one or delete one interval
if bs > - worst.score:
node = best
rnode = node.r
node.r = rnode.r
if rnode.r: rnode.r.l = node
else: self.tail = node
node.v[1] = rnode.v[1]
node.score = node.v[1] - node.v[0]
del rnode
else:
if not worst.l:
self.head = worst.r
else:
worst.l.r = worst.r
if not worst.r:
self.tail = worst.l
else:
worst.r.l = worst.l
del worst
self.count -= 1
def __len__(self):
return self.count
def __repr__(self):
arr = []
node = self.head
while node:
arr.append(node.v)
node = node.r
return str(arr)
def sum(self):
ret = 0
node = self.head
while node:
ret += node.score
node = node.r
return ret
class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
if k == 0: return 0
# store ascending intervals in format (low, high)
lh = LinkedList()
i = 1
while i < len(prices):
# skip descending
while i < len(prices) and prices[i] < prices[i - 1]:
i += 1
if i == len(prices): break
low = prices[i - 1]
while i < len(prices) and prices[i] >= prices[i - 1]:
i += 1
if prices[i - 1] != low:
lh.append([low, prices[i - 1]])
# print(lh)
# stacking ascending sequences to fit in k intervals
while len(lh) > k:
lh.merge()
# print(lh)
return lh.sum() | best-time-to-buy-and-sell-stock-iv | Best Python3 solution, using LinkedList and extremums of ascending intervals | timetoai | 1 | 42 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,979 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/2834048/Python-solution-with-TC-greater-91 | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
N = len(prices)
dp = [0] * N
for t in range(k):
pos = -prices[0]
profit = 0
for i in range(1,N):
pos = max(pos, dp[i] - prices[i])
profit = max(profit, pos + prices[i])
dp[i] = profit
return dp[-1] | best-time-to-buy-and-sell-stock-iv | Python solution with TC > 91% | user6230Om | 0 | 1 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,980 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/2801668/Easy-Linear-order-Python-Solution | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
n=len(prices)
prev=[0]*(2*k +1)
# No need to write the base condition, as the dp is already initialized with
for ind in range (n-1,-1,-1):
temp=[0]*(2*k +1)
for trans in range(2*k-1,-1,-1):
if trans%2==0:#buy
temp[trans]=max((-prices[ind]+prev[trans+1]) ,prev[trans])
else:
temp[trans]=max((prices[ind]+prev[trans+1]) ,prev[trans])
prev=temp
return prev[0] | best-time-to-buy-and-sell-stock-iv | Easy Linear order Python Solution | Khan_Baba | 0 | 3 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,981 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/2801667/Easy-Linear-order-Python-Solution | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
n=len(prices)
prev=[0]*(2*k +1)
# No need to write the base condition, as the dp is already initialized with
for ind in range (n-1,-1,-1):
temp=[0]*(2*k +1)
for trans in range(2*k-1,-1,-1):
if trans%2==0:#buy
temp[trans]=max((-prices[ind]+prev[trans+1]) ,prev[trans])
else:
temp[trans]=max((prices[ind]+prev[trans+1]) ,prev[trans])
prev=temp
return prev[0] | best-time-to-buy-and-sell-stock-iv | Easy Linear order Python Solution | Khan_Baba | 0 | 1 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,982 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/2769150/Python-Memo | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
lenPrices = len(prices)
@cache
def dfs(i,holding,transactionCount):
# End when you're at the end of prices or hit maximum transactions
if i == lenPrices or transactionCount == k:
return 0
# If you're currently holding, you can either sell (+price[i]) or keep holding
if holding:
holdingAndSkip = dfs(i+1,True,transactionCount)
holdingAndTake = dfs(i+1,False,transactionCount+1)+prices[i]
return max(holdingAndSkip,holdingAndTake)
# If you're not holding, you can buy (-price[i]) or wait for another day to buy
else:
notHoldingAndSkip = dfs(i+1,False,transactionCount)
notHoldingAndTake = dfs(i+1,True,transactionCount)-prices[i]
return max(notHoldingAndSkip,notHoldingAndTake)
return dfs(0,False,0) | best-time-to-buy-and-sell-stock-iv | Python Memo | tupsr | 0 | 4 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,983 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/2740283/Easy-Python-solution-one-pass-O(n*k) | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
cost = [100000] * k
profit = [0] * k
for price in prices:
cost[0] = min(cost[0],price )
profit[0] = max(profit[0], price - cost[0])
for i in range(1,k):
cost[i] = min(cost[i],price - profit[i-1] )
profit[i] = max(profit[i], price - cost[i])
return profit[k-1] | best-time-to-buy-and-sell-stock-iv | Easy Python solution, one pass O(n*k) | adangert | 0 | 8 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,984 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/2714360/Python-dp-beats-81-in-time-and-93-in-memory | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
n = len(prices)
k = min(n//2,k)
statelist = [[-prices[0],0] for i in range(k+1)]
statelist[0] = [0,0]
#st[j][m]表示前i天进行了j轮买卖,st[j][0]表示买,st[j][1]表示卖
#每次都是一开始拿i-1天的更新statelist[1][0],而第i天的statelist[1][0]更新好后用第i天的statelist[1][0]更新第i天的statelist[1][1],用第i天的statelist[1][1]更新第i天的statelst[2][0],用第i天的statelist[2][0]更新第i天的statelst[2][1],依次类推
for i in range(1,n):
for j in range(1,len(statelist)):
statelist[j][0]=max(statelist[j][0],statelist[j-1][1]-prices[i])
statelist[j][1]=max(statelist[j][1],statelist[j][0]+prices[i])
return statelist[k][1]
# statelist = [-prices[0] if i%2==1 else 0 for i in range(k*2+1)]
# #statelist[j]表示前i天进行j次买+卖的的最大利润
# for i in range(1,n):
# for j in range(1,len(statelist)):
# if j==1: statelist[j]=max(statelist[j],-prices[i])
# else:
# if j%2==0:
# statelist[j]=max(statelist[j],statelist[j-1]+prices[i])
# else:
# statelist[j]=max(statelist[j],statelist[j-1]-prices[i])
# return statelist[-1]
#思路来源:买卖股票3
# dp1 = -prices[0] #前i天恰好进行了一次买的最大利润
# dp2 = 0 #前i天恰好进行了一次买卖的最大利润
# dp3 = -prices[0] #前i天恰好进行了一次买卖加一次买的最大利润
# dp4 = 0 #前i天恰好进行了两次买卖的最大利润
# for i in range(1,n):
# dp1 = max(dp1,-prices[i])
# dp2 = max(dp2, dp1+prices[i])
# dp3 = max(dp3, dp2-prices[i])
# dp4 = max(dp4,dp3+prices[i])
# return dp4 | best-time-to-buy-and-sell-stock-iv | Python dp beats 81% in time and 93% in memory | Ttanlog | 0 | 7 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,985 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/2556069/Python-Beats-95-of-Accepted-(Easy) | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
if k == 0 or len(prices) == 0:
return 0
min_price, profit = [float('inf')] * k, [float('-inf')] * k
for price in prices:
min_price[0] = min(min_price[0], price)
profit[0] = max(profit[0], price - min_price[0])
for i in range(1, k):
min_price[i] = min(min_price[i], price - profit[i-1])
profit[i] = max(profit[i], price - min_price[i])
return profit[k-1] | best-time-to-buy-and-sell-stock-iv | Python Beats 95% of Accepted ✅ (Easy) | Khacker | 0 | 36 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,986 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/2431071/Python-Memoization-Solution | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
d = {}
def bs(index, buyOrNotBuy, timesRemaining):
if index >= len(prices):
return 0
if timesRemaining == 0:
return 0
# if we are able to buy the stock, if we already sold it before or
# if we have not bought any stock
if buyOrNotBuy == "buy":
# if buy stock at this index
if (index+1, "notBuy", timesRemaining) not in d:
profit = -1 * prices[index] + bs(index+1, "notBuy", timesRemaining)
else:
profit = -1 * prices[index] + d[(index+1, "notBuy", timesRemaining)]
# if buy later, not now at this index
if (index+1, "buy", timesRemaining) not in d:
profit1 = bs(index+1, "buy", timesRemaining)
else:
profit1 = d[(index+1, "buy",timesRemaining)]
d[(index, buyOrNotBuy,timesRemaining)] = max(profit, profit1)
return d[(index, buyOrNotBuy,timesRemaining)]
else:
# sell stock, if we sell 2nd argument is buy
# sell stock at this index
if (index+1, "buy",timesRemaining) not in d:
profit = prices[index] + bs(index+1, "buy", timesRemaining-1)
else:
profit = prices[index] + d[(index+1, "buy",timesRemaining-1)]
# sell stock not at this index now, sell it later
if (index+1, "notBuy",timesRemaining) not in d:
profit1 = bs(index+1, "notBuy",timesRemaining)
else:
profit1 = d[(index+1, "notBuy",timesRemaining)]
d[(index, buyOrNotBuy,timesRemaining)] = max(profit, profit1)
return d[(index, buyOrNotBuy, timesRemaining)]
return bs(0, "buy", k) | best-time-to-buy-and-sell-stock-iv | Python Memoization Solution | DietCoke777 | 0 | 29 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,987 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/2253610/Python-oror-Using-state-machine | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
if not prices or k == 0:
return 0
transaction = []
transaction.append(-prices[0])
transaction.append(float(-inf))
for i in range(1,k):
transaction.append(float(-inf))
transaction.append(float(-inf))
for price in prices:
transaction[0] = max(transaction[0], -price)
transaction[1] = max(transaction[1], transaction[0]+price)
for t in range(2,len(transaction)):
if t % 2 == 0:
transaction[t] = max(transaction[t], transaction[t-1]-price)
else:
transaction[t] = max(transaction[t], transaction[t-1]+price)
return transaction[-1] | best-time-to-buy-and-sell-stock-iv | Python || Using state machine | dyforge | 0 | 71 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,988 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/2172048/Easy-Readable-Python-(Top-Down-DP) | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
@cache
def dp(i, transactions, holding = False):
# base case
if i == len(prices) or transactions == k:
return 0
# we can only buy if we are not holding stock
buy = helper(i + 1, transactions, True) - prices[i] if not holding else 0
# we can only sell if we are holding stock
sell = helper(i + 1, transactions + 1, False) + prices[i] if holding else 0
# each day, we have the option to do nothing
no_action = helper(i + 1, transactions, holding)
return max(buy, sell, no_action)
return dp(0, 0) | best-time-to-buy-and-sell-stock-iv | Easy Readable Python (Top-Down DP) | kioola | 0 | 69 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,989 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/2111260/Python-O(N*K)-runtime-and-O(N)-extra-space | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
size = len(prices)
# max after buy
mab = []
_max = float('-inf')
# to start out with, max profit after a buy is the negated price
for p in prices:
_max = max(_max, -p)
mab.append(_max)
# max after a buy then sell
mabs = [float('-inf') for _ in range(size)]
max_transactions = min(size//2, k)
res = 0
for _ in range(max_transactions):
# calculate mabs first, since we want to find out the max profit after a previous buy
for i in range(1, size):
p = prices[i]
mabs[i] = max(mabs[i-1], mab[i-1] + p)
res = max(res, mabs[i])
# mab then follows from the values calculated above in mabs
for i in range(1, size):
p = prices[i]
mab[i] = max(mab[i], mab[i-1], mabs[i-1]-p)
return res | best-time-to-buy-and-sell-stock-iv | Python O(N*K) runtime and O(N) extra space | aschade92 | 0 | 30 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,990 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/2060338/Python-or-Memoization | class Solution:
def maxProfit(self, k: int, l: List[int]) -> int:
n = len(l)
d = {}
def solve(i, s, t,mi):
if t == 0:
return 0
if d.get((i, s, t,mi)):
return d[(i, s, t,mi)]
if i == n:
return 0
if s:
if l[i]<mi:
d[(i,s,t,mi)] = solve(i+1,s,t,l[i])
return d[(i,s,t,mi)]
else:
d[(i,s,t,mi)] = max(l[i]-mi+solve(i+1,0,t-1,float("inf")),solve(i+1,s,t,mi))
return d[(i, s, t,mi)]
d[(i,s,t,mi)] = max(solve(i+1,1,t,l[i]),solve(i+1,0,t,mi))
return d[(i, s, t,mi)]
return solve(0,0,k,float("inf")) | best-time-to-buy-and-sell-stock-iv | Python | Memoization | Shivamk09 | 0 | 59 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,991 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/1789674/Python-easy-to-read-and-understand-or-Memoization | class Solution:
def solve(self, prices, index, option, k):
if index == len(prices) or k == 0:
return 0
res = 0
if option == 0:
buy = self.solve(prices, index + 1, 1, k) - prices[index]
cool = self.solve(prices, index + 1, 0, k)
res = max(buy, cool)
if option == 1:
sell = self.solve(prices, index + 1, 0, k - 1) + prices[index]
cool = self.solve(prices, index + 1, 1, k)
res = max(sell, cool)
return res
def maxProfit(self, k: int, prices: List[int]) -> int:
return self.solve(prices, 0, 0, k) | best-time-to-buy-and-sell-stock-iv | Python easy to read and understand | Memoization | sanial2001 | 0 | 129 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,992 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/1789674/Python-easy-to-read-and-understand-or-Memoization | class Solution:
def solve(self, prices, index, option, k):
if index == len(prices) or k == 0:
return 0
if (index, option, k) in self.dp:
return self.dp[(index, option, k)]
if option == 0:
buy = self.solve(prices, index+1, 1, k) - prices[index]
cool = self.solve(prices, index+1, 0, k)
self.dp[(index, option, k)] = max(buy, cool)
if option == 1:
sell = self.solve(prices, index+1, 0, k-1) + prices[index]
cool = self.solve(prices, index+1, 1, k)
self.dp[(index, option, k)] = max(sell, cool)
return self.dp[(index, option, k)]
def maxProfit(self, k: int, prices: List[int]) -> int:
self.dp = {}
return self.solve(prices, 0, 0, k) | best-time-to-buy-and-sell-stock-iv | Python easy to read and understand | Memoization | sanial2001 | 0 | 129 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,993 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/1769260/Python3-O(nk)-time-and-O(n)-space-complexity.-Simple-solution | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
n = len(prices)
if not prices or k == 0:
return 0
if 2 * k > n:
res = 0
for i, j in zip(prices[1:], prices[:-1]):
res += max(0, i - j)
return res
even_profits = [0 for d in prices]
odd_profits = [0 for d in prices]
for t in range(1, k+1):
max_sofar = float('-inf')
if t % 2 == 1:
current_profit = odd_profits
previous_profit = even_profits
else:
current_profit = even_profits
previous_profit = odd_profits
for d in range(1, n):
max_sofar = max(max_sofar, previous_profit[d-1] - prices[d-1])
current_profit[d] = max(max_sofar + prices[d], current_profit[d-1])
return even_profits[-1] if k % 2 == 0 else odd_profits[-1]
``` | best-time-to-buy-and-sell-stock-iv | Python3 O(nk) time and O(n) space complexity. Simple solution | MaverickEyedea | 0 | 47 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,994 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/1696220/Python3-Top-Down-DP | class Solution:
def maxProfit(self, k: int, A: List[int]) -> int:
@cache
def dfs(i, can, k):
if i==len(A) or k==0: return 0
ans = dfs(i+1, can, k) # skip
if not can: ans = max(ans, A[i]+dfs(i+1, 1, k-1)) # sell
return max(ans, -A[i]+dfs(i+1, 0, k)) # buy
return dfs(0, 1, k) | best-time-to-buy-and-sell-stock-iv | [Python3] Top Down DP | zhuzhengyuan824 | 0 | 76 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,995 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/1621849/Python3-solution-with-comments | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
if not k or not prices:
return 0
matrix = [[0 for i in prices] for j in range(k+1)]
#formula = we either take one of these options
# 1- matrix[t][d] = matrix[t][d-1] which means we don't wanna sell and we wanna keep
# the current profit
#2- matrix[t][d] = max(matrix[x-1][d] - prices[x]) which means we bought the
#stock at prices[x] and we sell at in prices[d] and add to it the profit we had
#before buying stock at prices[x]
for i in range(len(prices)):
matrix[0][i] = 0
result = 0
for transaction in range(1,len(matrix)):
best_value = float("-inf") # re-initialize because at each transaction the profits may changes and so we want to re-calculate best profit again
for day in range(1,len(matrix[0])):
best_value = max(best_value, matrix[transaction-1][day-1]-prices[day-1])
matrix[transaction][day] = max(matrix[transaction][day-1], best_value+prices[day])
return matrix[-1][-1] | best-time-to-buy-and-sell-stock-iv | Python3 solution with comments | baraheyl | 0 | 142 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,996 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/1476831/Python3-or-Dynamic-Programming | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
self.dp={}
return self.dfs(0,0,prices,k)
def dfs(self,day,own,prices,k):
if k==0 or day==len(prices):
return 0
if (day,own,k) in self.dp:
return self.dp[(day,own,k)]
if own:
p1=prices[day]+self.dfs(day+1,0,prices,k-1)
p2=self.dfs(day+1,1,prices,k)
else:
p1=-prices[day]+self.dfs(day+1,1,prices,k)
p2=self.dfs(day+1,0,prices,k)
self.dp[(day,own,k)]=max(p1,p2)
return self.dp[(day,own,k)] | best-time-to-buy-and-sell-stock-iv | [Python3] | Dynamic Programming | swapnilsingh421 | 0 | 72 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,997 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/1354536/Python-Solution-Beats-95.38-Of-Python-Submissions | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
n=len(prices)
if n==0:return 0
dp=[[0 for i in range(n)] for j in range(k+1)]
for i in range(1,k+1):
best=dp[i-1][0]-prices[0]
for j in range(1,n):
if prices[j]+best<dp[i][j-1]:dp[i][j]=dp[i][j-1]
else:dp[i][j]=prices[j]+best
if dp[i-1][j]-prices[j]>best:best=dp[i-1][j]-prices[j]
return dp[-1][-1] | best-time-to-buy-and-sell-stock-iv | Python Solution Beats 95.38% Of Python Submissions | reaper_27 | 0 | 187 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,998 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/929364/Python-DP-concise-O(nk)-time-O(k)-space-solution | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
if k == 0: return 0
t0 = [0] * (k+1)
t1 = [float('-inf')] * k
for p in prices:
for tr in range(k):
t0[tr] = max(t0[tr], t1[tr] + p)
t1[tr] = max(t1[tr], t0[tr-1] - p)
return t0[-2] | best-time-to-buy-and-sell-stock-iv | Python DP concise O(nk) time O(k) space solution | modusV | 0 | 64 | best time to buy and sell stock iv | 188 | 0.381 | Hard | 2,999 |
Subsets and Splits