post_href
stringlengths 57
213
| python_solutions
stringlengths 71
22.3k
| slug
stringlengths 3
77
| post_title
stringlengths 1
100
| user
stringlengths 3
29
| upvotes
int64 -20
1.2k
| views
int64 0
60.9k
| problem_title
stringlengths 3
77
| number
int64 1
2.48k
| acceptance
float64 0.14
0.91
| difficulty
stringclasses 3
values | __index_level_0__
int64 0
34k
|
---|---|---|---|---|---|---|---|---|---|---|---|
https://leetcode.com/problems/bulls-and-cows/discuss/515433/Python-The-only-solution-that-sense-to-me | class Solution:
def getHint(self, secret: str, guess: str) -> str:
A, B, d, n = 0, 0, {}, len(secret)
# Create a dictionary to hold all the counts of each digit
for l in secret:
if l in d: d[l] += 1
else: d[l] = 1
# First loop is going to count the Bulls, so same digits sharing the same position
# Also if True decrement the count for respective number
for i in range(n):
if secret[i] == guess[i]:
A += 1
d[secret[i]] -= 1
# Secoud loop is going to count the cows, numbers that are not same is the dictionary
# with counts greater than zero
# Also decrement the respective number if True
for i in range(n):
if guess[i] != secret[i] and guess[i] in d and d[guess[i]] > 0:
B += 1
d[guess[i]] -= 1
return str(A) + 'A' + str(B) + 'B' | bulls-and-cows | Python - The only solution that sense to me | nuclearoreo | 0 | 188 | bulls and cows | 299 | 0.487 | Medium | 5,300 |
https://leetcode.com/problems/bulls-and-cows/discuss/422867/Python3-three-lines-(beating-99.94) | class Solution:
def getHint(self, secret: str, guess: str) -> str:
bulls = sum(s == g for s, g in zip(secret, guess))
cows = sum((Counter(secret) & Counter(guess)).values()) - bulls
return f"{bulls}A{cows}B" | bulls-and-cows | Python3 three lines (beating 99.94%) | ye15 | 0 | 126 | bulls and cows | 299 | 0.487 | Medium | 5,301 |
https://leetcode.com/problems/bulls-and-cows/discuss/422867/Python3-three-lines-(beating-99.94) | class Solution:
def getHint(self, secret: str, guess: str) -> str:
bulls = 0
fqs, fqg = {}, {} #frequency table
for s, g in zip(secret, guess):
if s == g: bulls += 1
fqs[s] = 1 + fqs.get(s, 0)
fqg[g] = 1 + fqg.get(g, 0)
cows = sum(min(v, fqg.get(k, 0)) for k, v in fqs.items()) - bulls
return f"{bulls}A{cows}B" | bulls-and-cows | Python3 three lines (beating 99.94%) | ye15 | 0 | 126 | bulls and cows | 299 | 0.487 | Medium | 5,302 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2395570/Python3-oror-7-lines-binSearch-cheating-wexplanation-oror-TM%3A-9482 | class Solution: # Suppose, for example:
# nums = [1,8,4,5,3,7],
# for which the longest strictly increasing subsequence is arr = [1,4,5,7],
# giving len(arr) = 4 as the answer
#
# Here's the plan:
# 1) Initiate arr = [num[0]], which in this example means arr = [1]
#
# 2) Iterate through nums. 2a) If n in nums is greater than arr[-1], append n to arr. 2b) If
# not, determine the furthest position in arr at which n could be placed so that arr
# remains strictly increasing, and overwrite the element at that position in arr with n.
# 3) Once completed, return the length of arr.
# Here's the iteration for the example:
# nums = [ _1_, 8,4,5,3,7] arr = [1] (initial step)
# nums = [1, _8_, 4,5,3,7] arr = [1, 8] (8 > 1, so append 8)
# nums = [1,8, _4_, 5,3,7] arr = [1, 4] (4 < 8, so overwrite 8)
# nums = [1_8,4, _5_, 3,7] arr = [1, 4, 5] (5 > 4, so append 5)
# nums = [1_8,4,5, _3_, 7] arr = [1, 3, 5] (3 < 5, so overwrite 4)
# nums = [1_8,4,5,3, _7_ ] arr = [1, 3, 5, 7] (7 > 5, so append 7)
# Notice that arr is not the sequence given above as the correct seq. The ordering for [1,3,5,7]
# breaks the "no changing the order" rule. Cheating? Maybe... However len(arr) = 4 is the
# correct answer. Overwriting 4 with 3 did not alter the sequence's length.
def lengthOfLIS(self, nums: list[int]) -> int:
arr = [nums.pop(0)] # <-- 1) initial step
for n in nums: # <-- 2) iterate through nums
if n > arr[-1]: # <-- 2a)
arr.append(n)
else: # <-- 2b)
arr[bisect_left(arr, n)] = n
return len(arr) # <-- 3) return the length of arr | longest-increasing-subsequence | Python3 || 7 lines, binSearch, cheating, w/explanation || T/M: 94%/82% | warrenruud | 45 | 4,100 | longest increasing subsequence | 300 | 0.516 | Medium | 5,303 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/1720297/Python-%2B-3-Approaches-%2B-Complexity | # Pure Dynamic Proramming Solution
# Time : O(n*(n+1)/2) - O(n^2)
# Space: O(n)
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
n = len(nums)
dp = [0]*n
for i in range(n):
maX = 0
for j in range(i+1):
if nums[j] < nums[i]:
if dp[j] > maX:
maX = dp[j]
dp[i] = maX+1
return max(dp)
# Dynamic Programming with Binary Search
# Time: O(nlogn), logn for searching the position for the element's and there are n steps.
# Space: O(n)
from bisect import bisect_left
class Solution:
def lengthOfLIS(self, nums):
dp = []
for elem in nums:
idx = bisect_left(dp, elem)
if idx == len(dp):
dp.append(elem)
else:
dp[idx] = elem
return len(dp)
# Dynamic Programming with Binary Search
# Time: O(nlogn), logn for searching the position for the element's and there are n steps.
# Space: O(1)
from bisect import bisect_left
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
n = len(nums)
for i in range(n):
# Here we pass three arg's, which means find the position of nums[i] in the nums array within index i.
idx = bisect_left(nums, nums[i], hi=i)
if idx != i:
nums[idx], nums[i] = nums[i], float(inf)
return nums.index(float(inf)) if float(inf) in nums else n | longest-increasing-subsequence | [Python] + 3 Approaches + Complexity ✔ | leet_satyam | 5 | 539 | longest increasing subsequence | 300 | 0.516 | Medium | 5,304 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/433618/Python-3-O(n-log-n)-Faster-than-99.16-Memory-usage-less-than-100 | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
if not nums: return 0
dp = [sys.maxsize] * len(nums)
for x in nums:
dp[bisect.bisect_left(dp, x)] = x
return bisect.bisect(dp, max(nums)) | longest-increasing-subsequence | Python 3 - O(n log n) - Faster than 99.16%, Memory usage less than 100% | mmbhatk | 3 | 736 | longest increasing subsequence | 300 | 0.516 | Medium | 5,305 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2215081/Python-or-2-Approaches-or | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
lis = [nums[0]]
for num in nums[1:]:
if lis and num > lis[-1]:
lis.append(num)
else:
index = bisect_left(lis, num)
lis[index] = num
return len(lis) | longest-increasing-subsequence | Python | 2 Approaches | | LittleMonster23 | 2 | 217 | longest increasing subsequence | 300 | 0.516 | Medium | 5,306 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2215081/Python-or-2-Approaches-or | class Solution:
def lengthOfLIS(self, arr: List[int]) -> int:
N = len(arr)
dp = [1]*N
for i in range(1, N):
for j in range(i-1, -1, -1):
if (1 + dp[j] > dp[i]) and arr[j] < arr[i]:
dp[i] = 1 + dp[j]
return max(dp) | longest-increasing-subsequence | Python | 2 Approaches | | LittleMonster23 | 2 | 217 | longest increasing subsequence | 300 | 0.516 | Medium | 5,307 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/1764943/Java-Python3-Simple-DP-Solution-(Top-Down-and-Bottom-Up) | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
@lru_cache(None)
def dp(i: int) -> int:
# base case
if i == 0:
return 1
# recurrence relation
res = 1
for j in range(i):
if nums[i] > nums[j]:
res = max(res, 1+dp(j))
return res
return max(dp(i) for i in range(len(nums))) | longest-increasing-subsequence | ✅ [Java / Python3] Simple DP Solution (Top-Down & Bottom-Up) | JawadNoor | 2 | 291 | longest increasing subsequence | 300 | 0.516 | Medium | 5,308 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/1764943/Java-Python3-Simple-DP-Solution-(Top-Down-and-Bottom-Up) | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
dp = [1]*len(nums)
res = 1
for i in range(len(nums)):
for j in range(i):
if nums[i] > nums[j]:
dp[i] = max(dp[i], 1+dp[j])
res = max(res, dp[i])
return res | longest-increasing-subsequence | ✅ [Java / Python3] Simple DP Solution (Top-Down & Bottom-Up) | JawadNoor | 2 | 291 | longest increasing subsequence | 300 | 0.516 | Medium | 5,309 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/1327441/python-dp-solution | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
dp = [1] * len(nums)
for i in range(1,len(nums)):
for j in range(i-1,-1,-1):
if nums[j] < nums[i]:
dp[i] = max(dp[i],dp[j]+1)
return max(dp) | longest-increasing-subsequence | python dp solution | yingziqing123 | 2 | 248 | longest increasing subsequence | 300 | 0.516 | Medium | 5,310 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2396249/Python-or-93-faster-or-Two-easy-solution-using-DP-and-Binary-search | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
# ///// O(n^2) ////////
dp = [1] * len(nums)
for i in range(len(nums)-1,-1,-1):
for j in range(i+1,len(nums)):
if nums[i] < nums[j]:
dp[i] = max(dp[i],1+dp[j])
return max(dp)
# /////// O(nlogn) //////
lst = [nums[0]]
for i in range(1, len(nums)):
cur = nums[i]
if lst[-1] < cur:
lst.append(cur)
continue
left = 0
right = len(lst)-1
while left < right:
mid = left + (right-left)//2
if cur <= lst[mid]:
right = mid
else:
left = mid+1
lst[right] = cur
return len(lst) | longest-increasing-subsequence | Python | 93% faster | Two easy solution using DP and Binary-search | __Asrar | 1 | 90 | longest increasing subsequence | 300 | 0.516 | Medium | 5,311 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2280317/Python-95-Faster-O(nlongn) | class Solution:
def lengthOfLIS(self, nums):
# using binary search
N = len(nums)
dp = ['None']*N
dp[0] = nums[0]
j = 0
for i in range(1,N):
if nums[i]>dp[j]:
dp[j+1] = nums[i]
j+=1
else:
# finding the correct index
# binary search
# upper bound = j
# lower bound = 0
l = 0
u = j
index = None
while l<=u:
mid = (l+u)//2
if dp[mid]>=nums[i]:
index = mid
u = mid-1
elif nums[i]>dp[mid]:
l=mid+1
dp[index] = nums[i]
count = 0
for i in dp:
if i == 'None':
break
else:
count+=1
return count | longest-increasing-subsequence | Python 95% Faster O(nlongn) | Abhi_009 | 1 | 233 | longest increasing subsequence | 300 | 0.516 | Medium | 5,312 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2028947/Pythonor-Efficient-Solutionor-Fast | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
LIS = [1] * len(nums)
for i in range(len(nums) - 1, -1, -1):
for j in range(i + 1, len(nums)):
if nums[i] < nums[j]:
LIS[i] = max(LIS[i], 1 + LIS[j])
return max(LIS) | longest-increasing-subsequence | Python| Efficient Solution| Fast | shikha_pandey | 1 | 230 | longest increasing subsequence | 300 | 0.516 | Medium | 5,313 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/1894481/LC-21Days-ChallengeDay19 | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
if len(nums) == 1:
return 1
dp = [1] * len(nums)
for i in range(1, len(nums)):
for j in range(0, i):
if nums[j] < nums[i]:
dp[i] = max(dp[i], dp[j] + 1)
return max(dp) | longest-increasing-subsequence | [LC 21Days Challenge]Day19 | hertz2059 | 1 | 18 | longest increasing subsequence | 300 | 0.516 | Medium | 5,314 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/1676791/Python-maintain-a-increase-stack-and-binary-search.-Time%3A-O(nlogn)-Space%3A-O(n) | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
# Use a stack to store the increasing number
# use a binary search to check where the new element should be and replace it
# if the num's location is larger then the last index, then append
# finally cacluate the len of stack
# Time: O(nlogn) Space: O(n)
def binary_search(nums,target):
l = 0
r = len(nums)
while l < r:
mid = l +(r-l)//2
if nums[mid] == target:
return mid
elif nums[mid] < target:
l = mid + 1
else:
r = mid
return l
stack = []
for n in nums:
i = binary_search(stack,n)
if i == len(stack):
stack.append(n)
else:
stack[i] = n
return len(stack) | longest-increasing-subsequence | [Python] maintain a increase stack and binary search. Time: O(nlogn) Space: O(n) | JackYeh17 | 1 | 285 | longest increasing subsequence | 300 | 0.516 | Medium | 5,315 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/557510/Python-Dynamic-programming-solution | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
if len(nums)==0:
return 0
lis=[1]*len(nums)
for i in range(1,len(nums)):
for j in range(0,i):
if nums[i]>nums[j]:
if lis[i]<=lis[j]:
lis[i]=lis[j]+1
return max(lis) | longest-increasing-subsequence | Python Dynamic programming solution | JoyRafatAshraf | 1 | 458 | longest increasing subsequence | 300 | 0.516 | Medium | 5,316 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/404995/Easy-Python-DP-with-explanations | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
size = len(nums)
if size == 0:
return 0
subs = [0]*(size)
subs[0] = 1
for i in range(1, size):
maximum = 0
for j in range(0, i):
if nums[j] < nums[i] and maximum < subs[j]:
maximum = subs[j]
subs[i] = maximum + 1
return max(subs) | longest-increasing-subsequence | Easy Python DP with explanations | sengoku | 1 | 1,200 | longest increasing subsequence | 300 | 0.516 | Medium | 5,317 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2847301/Python3-and-Java-Dynamic-Programming.-O(n2)-time-complexity | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
dp = [1] * len(nums)
for i in range(len(nums)):
for j in range(i):
if nums[j] < nums[i]:
dp[i] = max(dp[i], dp[j]+1)
return max(dp) | longest-increasing-subsequence | [Python3 & Java] Dynamic Programming. O(n^2) time complexity | Cceline00 | 0 | 1 | longest increasing subsequence | 300 | 0.516 | Medium | 5,318 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2821442/Short-Optimal-time-Solition-The-Best | class Solution:
def lengthOfLIS(self, nums: list[int]) -> int:
maxkeys = sorted(set(nums))
maxvals = [0] * len(maxkeys)
segments = SegmentTree(maxvals, operation=max_operation)
for n in nums:
index = bisect.bisect_left(maxkeys, n)
lead = segments.query(0, index - 1) + 1 if index != 0 else 1
segments.update(index, lead)
return segments.query(0, len(maxkeys) - 1) | longest-increasing-subsequence | Short Optimal-time Solition, The Best | Triquetra | 0 | 4 | longest increasing subsequence | 300 | 0.516 | Medium | 5,319 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2804893/Python-or-Easy-to-follow-or-Faster-than-98.71-or-70-ms-or-Dynamic-Programming-or-Memoization | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
memo = [2**31]
for n in reversed(nums):
for j in range(len(memo) - 1, -1, -1):
if n > memo[j]:
continue
elif n == memo[j]:
break
elif j == len(memo) - 1:
memo.append(n)
else:
memo[j + 1] = n
break
return len(memo) - 1 | longest-increasing-subsequence | Python | Easy to follow | Faster than 98.71% | 70 ms | Dynamic Programming | Memoization | thomwebb | 0 | 18 | longest increasing subsequence | 300 | 0.516 | Medium | 5,320 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2779283/Python-O(n2)-DP | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
n = len(nums)
dp = [1] * n
for i in range(n):
for j in range(i):
if nums[i] > nums[j] and dp[i] < dp[j] + 1:
dp[i] = dp[j] + 1
return max(dp) | longest-increasing-subsequence | Python, O(n^2), DP | haniyeka | 0 | 7 | longest increasing subsequence | 300 | 0.516 | Medium | 5,321 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2774202/Python-3-or-O(n2)-or-O(n)-or-Dynamic-Programming | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
n=len(nums)
lis=[1]*n
for i in range(1,n):
for j in range(i):
if nums[j]<nums[i] and lis[i]<=lis[j]:
lis[i]=lis[j]+1
return max(lis) | longest-increasing-subsequence | Python 3 | O(n^2) | O(n) | Dynamic Programming | saa_73 | 0 | 5 | longest increasing subsequence | 300 | 0.516 | Medium | 5,322 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2766978/python-solution | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
dp = [1]*len(nums)
for i in range(1, len(nums)):
for j in range(i):
if nums[i]>nums[j]:
dp[i] = max(dp[i], dp[j]+1)
return max(dp) | longest-increasing-subsequence | python solution | gcheng81 | 0 | 7 | longest increasing subsequence | 300 | 0.516 | Medium | 5,323 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2762482/Python3 | class Solution:
def lengthOfLIS(self, nums) -> int:
# tables = [1]
# maxs = 1
# for i in range(1,len(nums)):
# tables.append(1)
# for j in range(0,i):
# if nums[j] < nums[i]:
# tables[i] = max(tables[i], tables[j]+1)
# if tables[i] > maxs:
# maxs = tables[i]
# return maxs
smallests = []
for i in nums:
if smallests == None:
smallests.append(i)
continue
left = 0
right = len(smallests)-1
while left <= right:
mid = int((left+right)/2)
if smallests[mid] > i:
right = mid-1
elif smallests[mid] < i:
left = mid + 1
else:
right = mid-1
if left == len(smallests):
smallests.append(0)
smallests[left] = i
return len(smallests) | longest-increasing-subsequence | Python3 | lucy_sea | 0 | 6 | longest increasing subsequence | 300 | 0.516 | Medium | 5,324 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2761311/Python-Dynamic-Programming-Solution | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
n = len(nums)
# dp[i] - the longest increasing string that ends with nums[i]
dp = [1 for _ in range(n)]
for i in range(n):
for j in range(i):
if nums[i] > nums[j]:
dp[i] = max(dp[j]+1, dp[i])
res = max(dp)
return res | longest-increasing-subsequence | Python Dynamic Programming Solution | Rui_Liu_Rachel | 0 | 4 | longest increasing subsequence | 300 | 0.516 | Medium | 5,325 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2737604/LIS | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
if not nums: return 0
nlen = len(nums)
temp = []
temp.append(nums[0])
for n in range(1,nlen):
#print(f'arr:{temp}')
if nums[n] in temp:continue
position = bisect_right(temp,nums[n])
tlen = len(temp)
if position > tlen-1:
temp.append(nums[n])
else:
temp[position] = nums[n]
#print(f'num:{nums[n]},position:{position}')
return(len(temp)) | longest-increasing-subsequence | LIS | tkrishnakumar30 | 0 | 4 | longest increasing subsequence | 300 | 0.516 | Medium | 5,326 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2737528/Python3-Simple-1D-DP | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
dp = [1] * len(nums)
for i in range(len(nums)):
for j in range(i):
if nums[i] > nums[j]: # cur num > previous num
dp[i] = max(dp[i], dp[j]+1) # add prev sum
return max(dp) | longest-increasing-subsequence | Python3 Simple 1D DP | jonathanbrophy47 | 0 | 10 | longest increasing subsequence | 300 | 0.516 | Medium | 5,327 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2735804/Length-of-Longest-Increasing-Subsequence-(NlogN)-faster-than-96 | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
d=[float('inf')]*(len(nums)+1)
d.insert(0,-float('inf'))
ans=0
for i in nums:
k=bisect_left(d,i)
if d[k-1]<i<d[k]:
d[k]=i
ans=max(ans,k)
return ans | longest-increasing-subsequence | Length of Longest Increasing Subsequence (NlogN) faster than 96% | ravinuthalavamsikrishna | 0 | 10 | longest increasing subsequence | 300 | 0.516 | Medium | 5,328 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2723528/Python-%2B-detailed-Explanation | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
n = len(nums)
# dp[i] definition:
# the length of longest increasing subsequence in nums[0:i]
dp = [1 for x in range(n)]
for i in range(n):
for j in range(i):
if nums[i] > nums[j]:
dp[i] = max(dp[i], dp[j]+1)
return max(dp) | longest-increasing-subsequence | Python + detailed Explanation | Michael_Songru | 0 | 20 | longest increasing subsequence | 300 | 0.516 | Medium | 5,329 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2695488/lengthOfLIS | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
dp = [1] * (len(nums))
for i in range(len(nums)):
for j in range(i):
if nums[j] < nums[i]:
dp[i] = max(dp[i], dp[j]+1)
return max(dp)
# res = [-1]
# def backtracking(index,subset):
# if index == len(nums):
# for i in range(len(subset)-1):
# if subset[i] >= subset[i+1]:
# return
# res[0] = max(res[0],len(subset))
# return
# for i in range(index, len(nums)):
# subset.append(nums[i])
# backtracking(i+1, subset)
# subset.pop()
# backtracking(i+1, subset)
# backtracking(0, [])
# return res[0] | longest-increasing-subsequence | lengthOfLIS | langtianyuyu | 0 | 2 | longest increasing subsequence | 300 | 0.516 | Medium | 5,330 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2686220/Binary-Search-Solution-Python-O(N-LOGN) | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
n = len(nums)
temp = []
temp.append(nums[0])
for i in range(1, n):
if nums[i] > temp[-1]:
temp.append(nums[i])
else:
ind = bisect.bisect_left(temp, nums[i])
temp[ind] = nums[i]
return len(temp) | longest-increasing-subsequence | Binary Search Solution - Python - O(N LOGN) | kritikaparmar | 0 | 11 | longest increasing subsequence | 300 | 0.516 | Medium | 5,331 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2578299/Python-Easy-DP | class Solution:
def lengthOfLIS(self, n: List[int]) -> int:
lis = [1] * len(n)
for i in range(len(n)-1, -1, -1):
for j in range(i+1, len(n)):
if n[i] < n[j]:
lis[i] = max(lis[i], lis[j] + 1)
return max(lis) | longest-increasing-subsequence | Python Easy [DP] ✅ | Khacker | 0 | 145 | longest increasing subsequence | 300 | 0.516 | Medium | 5,332 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2567510/Python-O(nlogn) | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
def lowerBound(arr, num):
lo, hi = 0, len(arr) - 1
while lo <= hi:
mid = lo + (hi - lo) // 2
if num > arr[mid]: lo = mid + 1
else: hi = mid - 1
return lo
ans = [nums[0]]
for num in nums:
if num > ans[-1]:
ans.append(num)
else:
lb = lowerBound(ans, num)
ans[lb] = num
return len(ans) | longest-increasing-subsequence | ✅ Python O(nlogn) | dhananjay79 | 0 | 101 | longest increasing subsequence | 300 | 0.516 | Medium | 5,333 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2549269/Python-DP-Solution | class Solution:
def lengthOfLIS(self, nums):
n=len(nums)
dp=[1]*n
# dp[-1]=1
for i in range(n-2,-1,-1):
for j in range(i+1,n):
if nums[i]<nums[j]:
dp[i]=max(dp[j]+1,dp[i])
# else:
# dp[i]=max(dp[i],1)
# print(dp)
return max(dp) | longest-increasing-subsequence | Python - DP Solution | Prithiviraj1927 | 0 | 126 | longest increasing subsequence | 300 | 0.516 | Medium | 5,334 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2549206/Python-or-DFS-(Depth-First-Search) | class Solution:
def lengthOfLIS(self, nums):
n=len(nums)
@cache
def dfs(i):
# print(i)
if i==n-1:
return 1
a=1
# b=-1
for j in range(i+1,n):
if i!=j and nums[j]>nums[i]:
# a+=dfs(j)
a=max(a,1+dfs(j))
# print(a)
return a
g=1
for j in range(n):
g=max(dfs(j),g)
# print(dfs(j))
return g | longest-increasing-subsequence | Python | DFS (Depth First Search) | Prithiviraj1927 | 0 | 101 | longest increasing subsequence | 300 | 0.516 | Medium | 5,335 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2548958/Python-or-Recursion-(TLE) | class Solution:
def lengthOfLIS(self, nums):
n=len(nums)
def rec(i,l,prev):
# print(i,l,prev)
if i==n:
return l
# p=False
# if l>0 and nums[i]>prev:
# p=True
if nums[i]>prev:
return max(rec(i+1,l+1,nums[i]),rec(i+1,l,prev))
else:
return rec(i+1,l,prev) | longest-increasing-subsequence | Python | Recursion (TLE) | Prithiviraj1927 | 0 | 39 | longest increasing subsequence | 300 | 0.516 | Medium | 5,336 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2539562/Pyhton3-DP-solution | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
dp=[1]*len(nums)
maxx=1
for i in range(1,len(nums)):
for j in range(i):
if nums[i]>nums[j]:
dp[i]=max(dp[i],dp[j]+1)
if dp[i]>maxx:
maxx=dp[i]
return maxx | longest-increasing-subsequence | Pyhton3 DP solution | pranjalmishra334 | 0 | 153 | longest increasing subsequence | 300 | 0.516 | Medium | 5,337 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2530444/Dynamic-programming-Time-complexity%3A-O(n)-Space-complexity-O(n)-Python3 | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
dp=[1]*len(nums) #Storing the max length that includes this number using the previous numbers
for i in range(1, len(nums)):
for j in range(0,i):
if nums[j]<nums[i]:
dp[i]=max(dp[i],1+dp[j])
#iterating through dp at the end and returning the max
return max(dp) | longest-increasing-subsequence | Dynamic programming Time complexity: O(n²) Space complexity O(n) Python3 | Simon-Huang-1 | 0 | 49 | longest increasing subsequence | 300 | 0.516 | Medium | 5,338 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2436403/python3-greedy-binary-search-O(NlogN) | class Solution:
def lengthOfLIS(self, n: List[int]) -> int:
res = 0
N = len(n)
q = [int(-2e4)] * (N + 1)
for i in range(N):
l, r = 0, res
while l < r:
mid = l + r + 1 >> 1
if q[mid] < n[i]:
l = mid
else:
r = mid - 1
q[r + 1] = n[i]
res = max(res, r + 1)
return res | longest-increasing-subsequence | python3 greedy binary search O(NlogN) | jdai1234 | 0 | 84 | longest increasing subsequence | 300 | 0.516 | Medium | 5,339 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2399474/python-solution%3A-200-ms | class Solution:
def lengthOfLIS(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
res = []
for num in nums:
found = False
for i, v in enumerate(res):
# now check if we have any greater than number in the list already added,
# if yes, then change that number to this new number
if num <= v:
res[i] = num
found = True
break
if not found:
# Add to the list
res.append(num)
return len(res)
s = Solution()
nums = [10,9,2,5,3,7,101,18]
l = s.lengthOfLIS(nums)
print(l) | longest-increasing-subsequence | python solution: 200 ms | user2354hl | 0 | 13 | longest increasing subsequence | 300 | 0.516 | Medium | 5,340 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2398977/Python-Accurate-Solution-oror-Documented | class Solution:
# O(n^2)
def lengthOfLIS(self, nums: List[int]) -> int:
n = len(nums) # number of elements
dp = [1] * n # every number itself is LIS of 1
for i in range(n-1, -1, -1): # backward loop
for j in range(i+1, n): # forward loop from i to end
if nums[i] < nums[j]: # element can be included in LIS
dp[i] = max(dp[i], dp[j] + 1) # save max count to dp
return max(dp) # return max value | longest-increasing-subsequence | [Python] Accurate Solution || Documented | Buntynara | 0 | 11 | longest increasing subsequence | 300 | 0.516 | Medium | 5,341 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2398867/Python-Simple-Python-Solution | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
result = [1]
for i in range(1, len(nums)):
current_length = 1
for j in range(i):
if nums[i] > nums[j]:
current_length = max(current_length, 1 + result[j])
result.insert(i, current_length)
return max(result) | longest-increasing-subsequence | [ Python ] ✅✅ Simple Python Solution 🥳✌👍 | ASHOK_KUMAR_MEGHVANSHI | 0 | 195 | longest increasing subsequence | 300 | 0.516 | Medium | 5,342 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2398106/Sweet-and-Simple-or-Python3 | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
LIS = [1] * len(nums)
for i in range(len(nums)-1, -1, -1):
for j in range(i+1, len(nums)):
if nums[i] < nums[j]:
LIS[i] = max(LIS[i],1+LIS[j])
return max(LIS) | longest-increasing-subsequence | Sweet and Simple | Python3 | 25ajeet | 0 | 54 | longest increasing subsequence | 300 | 0.516 | Medium | 5,343 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2396901/Binary-Search-python3-solution-or-O(nlogn)-time | class Solution:
# O(nlogn) time,
# O(n) space,
# Approach: binary search,
def lengthOfLIS(self, nums: List[int]) -> int:
n = len(nums)
psedo_LIS = [nums[0]]
def binarySearch(lo, hi, target):
while True:
mid = (lo+hi)//2
num = psedo_LIS[mid]
if num == target:
return mid
elif num < target:
if psedo_LIS[mid+1] >= target:
return mid+1
lo = mid
else:
if mid == 0 or psedo_LIS[mid-1] < target:
return mid
hi = mid-1
for i in range(1, n):
num = nums[i]
if num > psedo_LIS[-1]:
psedo_LIS.append(num)
elif num < psedo_LIS[-1]:
index = binarySearch(0, len(psedo_LIS)-1, num)
psedo_LIS[index] = num
return len(psedo_LIS) | longest-increasing-subsequence | Binary Search python3 solution | O(nlogn) time | destifo | 0 | 11 | longest increasing subsequence | 300 | 0.516 | Medium | 5,344 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2396282/GolangPython-2-solutions | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
max_len = 1
dp = [1 for _ in range(len(nums))]
for i in range(1,len(nums)):
item = nums[i]
for j in range(i):
prev_item = nums[j]
if item > prev_item:
if dp[i] < dp[j]+1:
dp[i] = dp[j]+1
if dp[i] > max_len:
max_len = dp[i]
return max_len | longest-increasing-subsequence | Golang/Python 2 solutions | vtalantsev | 0 | 25 | longest increasing subsequence | 300 | 0.516 | Medium | 5,345 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2396282/GolangPython-2-solutions | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
subseq = []
for item in nums:
idx = bisect_left(subseq, item)
if idx == len(subseq):
subseq.append(item)
else:
subseq[idx] = item
return len(subseq) | longest-increasing-subsequence | Golang/Python 2 solutions | vtalantsev | 0 | 25 | longest increasing subsequence | 300 | 0.516 | Medium | 5,346 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2395836/Python-DP-and-Binary-Search-Solutions | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
n = len(nums)
lis = [1]*n
maxLis = 1
for i in range(n):
for j in range(i):
if nums[i]>nums[j] and lis[i] < lis[j]+1:
lis[i] = lis[j]+1
maxLis = max(maxLis,lis[i])
return maxLis | longest-increasing-subsequence | Python DP and Binary Search Solutions | manojkumarmanusai | 0 | 74 | longest increasing subsequence | 300 | 0.516 | Medium | 5,347 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2395836/Python-DP-and-Binary-Search-Solutions | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
dummy = []
count = 0
for n in nums:
li = bisect.bisect_left(dummy,n) #This performs Binary search
if li == len(dummy):
dummy.append(n)
count+=1
else:
dummy[li] = n
return count | longest-increasing-subsequence | Python DP and Binary Search Solutions | manojkumarmanusai | 0 | 74 | longest increasing subsequence | 300 | 0.516 | Medium | 5,348 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2337136/Python3-easy-5-Line-Solution | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
LIS = [1] * len(nums)
for i in range(len(nums) - 1, - 1, -1):
for j in range(i + 1, len(nums)):
if nums[i] < nums[j]:
LIS[i] = max(LIS[i], 1 + LIS[j])
return max(LIS) | longest-increasing-subsequence | Python3 easy 5 Line Solution | soumyadexter7 | 0 | 76 | longest increasing subsequence | 300 | 0.516 | Medium | 5,349 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2310841/DP-oror-Python3-oror-reverse-order | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
# initialize to 1 at all positions
res =[1]*len(nums)
# for every j
# compare with every number behind it
for i in reversed(range(len(nums)-1)):
for j in range(i+1, len(nums)):
if nums[i] < nums[j]:
res[i] = max(res[i], res[j]+1)
return max(res) | longest-increasing-subsequence | DP || Python3 || reverse order | xmmm0 | 0 | 42 | longest increasing subsequence | 300 | 0.516 | Medium | 5,350 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2310051/Simple-clean-DP-solution-in-Python | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
# Init a dp array to store the current length of LIS ending with current index
dp = [1]*len(nums)
for i in range(len(nums)):
for j in range(0, i):
# for each i, for each j < i and nums[j] < nums[i], find the max length of dp[i] and dp[j]+1(max LIS ending with j + current element i)
if nums[j] < nums[i]:
dp[i] = max(dp[i], dp[j]+1)
res = 0
# Go through the whole dp array again to find the longest LIS
for i in range(len(dp)):
res = max(res, dp[i])
return res | longest-increasing-subsequence | Simple clean DP solution in Python | leqinancy | 0 | 28 | longest increasing subsequence | 300 | 0.516 | Medium | 5,351 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2283593/Faster-than-94.11-of-Python3-online-submissions-for-Longest-Increasing-Subsequence. | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
length = len(nums)
dp = [None] * length
dp[0] = nums[0]
size = 0
for i in range(length):
if nums[i] > dp[size]:
dp[size+1] = nums[i]
size += 1
else:
l = 0
r = size
index = None
while l <= r:
mid = (l+r) // 2
if dp[mid] >= nums[i]:
index = mid
r = mid - 1
else:
l = mid + 1
dp[index] = nums[i]
return size + 1 | longest-increasing-subsequence | Faster than 94.11% of Python3 online submissions for Longest Increasing Subsequence. | sagarhasan273 | 0 | 189 | longest increasing subsequence | 300 | 0.516 | Medium | 5,352 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2267540/Python-DP-with-full-working-explanation | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int: # Time: O(n*n) and Space: O(n)
LIS = [1] * len(nums) # in LIS we will store the longest increasing subsequence from that index to the last index
for i in range(len(nums) - 1, -1, -1): # staring from the last index, cause LIS[last] = 1 is the base case
for j in range(i + 1, len(nums)): # staring from the last+1 index, will run for nums-1 times
if nums[i] < nums[j]: # if i < i+1 satisfies the LIS condition
LIS[i] = max(LIS[i], 1 + LIS[j]) # then choose the max from i or 1(where 1 indicates i index) + i+1
return max(LIS) | longest-increasing-subsequence | Python DP with full working explanation | DanishKhanbx | 0 | 155 | longest increasing subsequence | 300 | 0.516 | Medium | 5,353 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2226355/Python-solution-using-DP-or-Longest-Increasing-Subsequence | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
length = len(nums)
LIS = [1] * length
for i in range(length - 1, -1, -1):
for j in range(i+1, length):
if nums[i] < nums[j]:
LIS[i] = max(LIS[i], 1 + LIS[j])
return max(LIS) | longest-increasing-subsequence | Python solution using DP | Longest Increasing Subsequence | nishanrahman1994 | 0 | 78 | longest increasing subsequence | 300 | 0.516 | Medium | 5,354 |
https://leetcode.com/problems/longest-increasing-subsequence/discuss/2204721/Python-easy-to-read-and-understand-or-binary-search | class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
lis = [nums[0]]
for num in nums[1:]:
if lis and num > lis[-1]:
lis.append(num)
else:
index = bisect_left(lis, num)
lis[index] = num
return len(lis) | longest-increasing-subsequence | Python easy to read and understand | binary-search | sanial2001 | 0 | 70 | longest increasing subsequence | 300 | 0.516 | Medium | 5,355 |
https://leetcode.com/problems/remove-invalid-parentheses/discuss/1555755/Easy-to-understand-Python-solution | class Solution:
def removeInvalidParentheses(self, s: str) -> List[str]:
def valid(s):
l,r=0,0
for c in s:
if c=='(':
l+=1
elif c==')':
if l<=0:
r+=1
else:
l-=1
return not l and not r
res=[]
seen=set()
level={s}
while True:
newLevel=set()
for word in level:
if valid(word):
res.append(word)
if res: return res
for word in level:
for i in range(len(word)):
if word[i] in '()':
newWord=word[:i]+word[i+1:]
if newWord not in seen:
seen.add(newWord)
newLevel.add(newWord)
level=newLevel
return [""] | remove-invalid-parentheses | Easy to understand Python 🐍 solution | InjySarhan | 3 | 375 | remove invalid parentheses | 301 | 0.471 | Hard | 5,356 |
https://leetcode.com/problems/remove-invalid-parentheses/discuss/1454039/Easy-to-understand-BFS-Python-solution | class Solution:
def removeInvalidParentheses(self, s: str) -> List[str]:
def is_valid(expr):
count = 0
for ch in expr:
if ch in '()':
if ch == '(':
count += 1
elif ch == ')':
count -= 1
if count < 0:
return False
return count == 0
queue = collections.deque()
queue.append(s)
seen = set()
seen.add(s)
stay_at_this_level = False
output = []
while queue:
expression = queue.popleft()
if is_valid(expression):
output.append(expression)
stay_at_this_level = True
elif not stay_at_this_level:
# populate queue with candidiates at the next level i.e. one less ( or )
for i in range(len(expression)):
if expression[i] in '()':
candidate = expression[:i] + expression[i+1:]
if candidate not in seen:
queue.append(candidate)
seen.add(candidate)
return output if output else [''] | remove-invalid-parentheses | Easy to understand BFS Python solution | PK_Leo | 2 | 202 | remove invalid parentheses | 301 | 0.471 | Hard | 5,357 |
https://leetcode.com/problems/remove-invalid-parentheses/discuss/1249118/Python-DFS-Solution-with-comments | class Solution:
def removeInvalidParentheses(self, s: str) -> List[str]:
#Calculate the number of unmatched left and right
redundant_open=0
redundat_close=0
for i in s:
if i=="(":
redundant_open+=1
elif i==")":
if redundant_open>0:
redundant_open-=1
else:
# If we don't have a matching left, then this is a misplaced right, record it.
redundat_close+=1
ans=set()
def dfs(index,left,right,ope,close,valid):
# If we reached the end of the string, just check if the resulting expression is
# valid or not and also if we have removed the total number of left and right
# parentheses that we should have removed.
if index==len(s):
if left==right and ope==0 and close==0:
ans.add(valid)
return
if s[index]=='(':
if ope>0:
dfs(index+1,left,right,ope-1,close,valid)
dfs(index+1,left+1,right,ope,close,valid+"(")
elif s[index]==')':
if close>0:
dfs(index+1,left,right,ope,close-1,valid)
if right<left:
dfs(index+1,left,right+1,ope,close,valid+")")
else:
dfs(index+1,left,right,ope,close,valid+s[index])
dfs(0,0,0,redundant_open,redundat_close,"")
return list(ans) | remove-invalid-parentheses | Python DFS Solution with comments | jaipoo | 2 | 369 | remove invalid parentheses | 301 | 0.471 | Hard | 5,358 |
https://leetcode.com/problems/remove-invalid-parentheses/discuss/2807979/backtracking-approach | class Solution:
def removeInvalidParentheses(self, s: str) -> List[str]:
# (((((((((((
# O(2^n), O(n)
# backtracking approach
self.longest_string = -1
self.res = set()
self.dfs(s, 0, [], 0, 0)
return self.res
def dfs(self, string, cur_idx, cur_res, l_count, r_count):
if cur_idx >= len(string):
if l_count == r_count:
if len(cur_res) > self.longest_string:
self.longest_string = len(cur_res)
self.res = set()
self.res.add("".join(cur_res))
elif len(cur_res) == self.longest_string:
self.res.add("".join(cur_res))
else:
cur_char = string[cur_idx]
if cur_char == "(":
cur_res.append(cur_char)
# taking cur_char
self.dfs(string, cur_idx + 1, cur_res, l_count + 1, r_count)
# not taking cur_char
cur_res.pop()
self.dfs(string, cur_idx + 1, cur_res, l_count, r_count)
elif cur_char == ")":
self.dfs(string, cur_idx + 1, cur_res, l_count, r_count)
# checking of l_count should be greater than r_count
if l_count > r_count:
cur_res.append(cur_char)
# taking )
self.dfs(string, cur_idx + 1, cur_res, l_count, r_count + 1)
# not taking )
cur_res.pop()
else: # this is for any character except "(" and ")"
cur_res.append(cur_char)
self.dfs(string, cur_idx + 1, cur_res, l_count, r_count)
cur_res.pop() | remove-invalid-parentheses | backtracking approach | sahilkumar158 | 1 | 44 | remove invalid parentheses | 301 | 0.471 | Hard | 5,359 |
https://leetcode.com/problems/remove-invalid-parentheses/discuss/2833563/DFS-Easy-to-Understand-Solution | class Solution:
def removeInvalidParentheses(self, s: str) -> List[str]:
self.minDel = len(s) # 最小刪除數量,預設為字串長度(即可刪除的最大值)
self.visited = set() # 已拜訪字串的集合(用來跳過重複搜索的字串),也是不引發 TLE 的關鍵優化
self.ans = set() # 最終答案集合
self.dfs(s, 0)
# 若 ans 不為空則將其轉為 list 輸出,若為空則回傳 [""]
return list(self.ans) if self.ans else [""]
def dfs(self, S, count):
# 放棄遞迴條件:字串為空、當前刪除數量 > 全域最小刪除數量、此字串已拜訪過(不需要重複拜訪)
if (not S) or (count > self.minDel) or (S in self.visited):
return
self.visited.add(S) # 將此字串加入已拜訪集合
# 若此字串為合法字串,進行處理並結束此次遞迴
if self.isValid(S):
if count < self.minDel : # 若當前刪除數量 < 全域最小刪除數量
self.minDel = count # 則更新全域最小刪除數量
self.ans = {S} # 並重置 ans 集合
elif count == self.minDel: # 若當前刪除數量 == 全域最小刪除數量
self.ans.add(S) # 則將新的字串加入 ans 集合
return
for i in range(len(S)):
if S[i] in "()": # 若此字元為括號,則將其刪除,並進入下一層遞迴搜尋
self.dfs(S[:i] + S[i+1:], count+1)
def isValid(self, S):
stack = list()
for c in S:
if c == "(":
stack.append(0)
elif c == ")":
if stack: # 若有 ( 則消除
stack.pop()
else: # 若無 ( 代表字串不合法
return False
return stack == [] # 若堆疊為空代表為合法字串,反之不合法 | remove-invalid-parentheses | DFS Easy to Understand Solution | child70370636 | 0 | 3 | remove invalid parentheses | 301 | 0.471 | Hard | 5,360 |
https://leetcode.com/problems/remove-invalid-parentheses/discuss/2733520/Python3-BFS-Solution | class Solution:
def removeInvalidParentheses(self, s: str) -> List[str]:
curStack = set([s])
output = set()
nextStack = set()
if self.valid(s):
return [s]
while curStack:
for node in curStack:
for i in range(len(node)):
cur = node[:i] + node[i + 1:]
if self.valid(cur):
output.add(cur)
else:
nextStack.add(cur)
curStack = nextStack
nextStack = set()
if len(output) > 0:
break
return list(output)
def valid(self, s):
leftOpen = 0
for i in range(len(s)):
if s[i] == ')':
if leftOpen > 0:
leftOpen -= 1
else:
return False
elif s[i] == '(':
leftOpen += 1
return leftOpen == 0 | remove-invalid-parentheses | Python3 BFS Solution | EricX91 | 0 | 13 | remove invalid parentheses | 301 | 0.471 | Hard | 5,361 |
https://leetcode.com/problems/remove-invalid-parentheses/discuss/2026565/Python-recursive-BFS-solution | class Solution:
def removeInvalidParentheses(self, s: str) -> List[str]:
size = [0]
output = set()
right_left = s.count(")")
dfs(s, output, size, right_left)
return output
def dfs(s, output, size, right_left, idx=0, left=0, right=0, out=[]):
if right > left:
return
if left-right > right_left:
return
if idx == len(s):
if len(out) < size[-1]:
return
if left == right:
if len(out) > size[-1]:
output.clear()
size[-1] = len(out)
output.add("".join(out))
return
item = s[idx]
if item == ")":
right_left -= 1
dfs(s, output, size, right_left, idx+1, left, right, out)
if item == "(":
left += 1
elif item == ")":
right += 1
out.append(item)
dfs(s, output, size, right_left, idx+1, left, right, out)
out.pop() | remove-invalid-parentheses | Python recursive BFS solution | vtalantsev | 0 | 123 | remove invalid parentheses | 301 | 0.471 | Hard | 5,362 |
https://leetcode.com/problems/remove-invalid-parentheses/discuss/1545980/Python-backtracking-solution | class Solution:
def removeInvalidParentheses(self, s: str) -> List[str]:
self.ans = []
self.minMoves = float('inf')
@lru_cache(None)
def rec(s, count):
if not s or count > self.minMoves:
return
elif self.isValid(s):
if count == self.minMoves:
self.ans.append(s)
else:
self.minMoves = count
self.ans = [s]
for i in range(len(s)):
if s[i] in '()':
rec(s[:i] + s[i+1:], count+1)
rec(s, 0)
return self.ans or ['']
def isValid(self, s):
l, r = 0, 0
for i in range(len(s)):
if s[i] == '(': l += 1
elif s[i] == ')': r += 1
if r > l: return False
return r == l | remove-invalid-parentheses | Python backtracking solution | SmittyWerbenjagermanjensen | 0 | 270 | remove invalid parentheses | 301 | 0.471 | Hard | 5,363 |
https://leetcode.com/problems/additive-number/discuss/2764371/Python-solution-with-complete-explanation-and-code | class Solution:
def isAdditiveNumber(self, s: str) -> bool:
n = len(s)
for i in range(1, n): # Choose the length of first number
# If length of 1st number is > 1 and starts with 0 -- skip
if i != 1 and s[0] == '0':
continue
for j in range(1, n): # Choose the length of second number
# If length of 2nd number is > 1 and starts with 0 -- skip
if j != 1 and s[i] == '0':
continue
# If the total length of 1st and 2nd number >= n -- skip
if i + j >= n:
break
# Just use the brute force approach
a = int(s[0: i])
b = int(s[i: i+j])
d = i+j
while d < n:
c = a + b
t = str(c)
if s[d: d + len(t)] != t:
break
d += len(t)
a = b
b = c
if d == n:
return True
return False | additive-number | Python solution with complete explanation and code | smit5300 | 0 | 11 | additive number | 306 | 0.309 | Medium | 5,364 |
https://leetcode.com/problems/additive-number/discuss/1863442/Python-Simple-Backtrack-with-Explanation | class Solution:
def isAdditiveNumber(self, num: str):
return self.backtrack(num)
def backtrack(self, num: str):
path = []
def backtrack(cur_str, cut_size) -> bool:
''' retval means: found '''
# not additive
if cut_size >= 3 and path[-1] != path[-2] + path[-3]: return False
# end
if cur_str == '': return cut_size >= 3
# backtrack
for cur_idx in range(1, len(cur_str) + 1):
cut_str, remain = cur_str[:cur_idx], cur_str[cur_idx:]
# check start 0
if cut_str.startswith('0') and cut_str != '0': break
path.append(int(cut_str))
if backtrack(remain, cut_size + 1): return True
path.pop() # recover
return False
return backtrack(num, 0) | additive-number | Python Simple Backtrack with Explanation | steve-jokes | 0 | 249 | additive number | 306 | 0.309 | Medium | 5,365 |
https://leetcode.com/problems/additive-number/discuss/1761917/Python-3-Recursive-DP | class Solution:
def isAdditiveNumber(self, num: str) -> bool:
#1 1 1=> 0 1 2 3
#1 1 2=> 0 1 2 4
#1 2 3=> 0 1 3 6
@cache
def check(i,j,k,l):
if any([i>len(num),j>len(num),k>len(num),l>len(num)]):
return False
if any([num[i]=="0" and j-i!=1,num[j]=="0" and k-j!=1,num[k]=="0" and l-k!=1]):
return False
num1=int(num[i:j])
num2=int(num[j:k])
num3=int(num[k:l])
if l==len(num):
return num1+num2==num3
o1=max(j-i,k-j)
return num1+num2==num3 and (check(j,k,l,l+o1) or check(j,k,l,l+o1+1))
maxPos=len(num)//2
for i in range(1,maxPos+1,1):
for j in range(1,maxPos+1,1):
o1=max(i,j)
if check(0,i,i+j,i+j+o1) or check(0,i,i+j,i+j+o1+1):
return True
return False | additive-number | Python 3 Recursive DP | ryanzxc34 | 0 | 92 | additive number | 306 | 0.309 | Medium | 5,366 |
https://leetcode.com/problems/additive-number/discuss/1482525/Python-3-or-Iterative-Simulation-or-Explanation | class Solution:
def isAdditiveNumber(self, num: str) -> bool:
n = len(num)
def to_the_end(a, b, i):
nonlocal n, num
c, c_str = a+b, str(a+b) # sort of do-while loop
c_l = len(c_str)
while i+c_l <= n and num[i:i+c_l] == c_str:
a, b = b, c
c, c_str = a+b, str(a+b)
i, c_l = i+c_l, len(c_str)
return i == n # when index reach to the end
for i in range(1, n): # try out all first value possibilities
if i > 1 and num[0] == '0': break # leading zero non-zero number, like '02'
first = int(num[:i])
for j in range(i+1, n): # try out all second value possibilities
if j > i+1 and num[i] == '0': break # leading zero non-zero number, like '02'
second = int(num[i:j])
if to_the_end(first, second, j): # given first & second str, see if it can reach to the end
return True
return False | additive-number | Python 3 | Iterative Simulation | Explanation | idontknoooo | 0 | 276 | additive number | 306 | 0.309 | Medium | 5,367 |
https://leetcode.com/problems/additive-number/discuss/776765/Python3-enumerate-all-possible-starters | class Solution:
def isAdditiveNumber(self, num: str) -> bool:
n = len(num)
for i in range(1, n//2+1):
x = num[:i]
if x.startswith("0") and len(x) > 1: break #no leading zero
for j in range(i+1, min(n-i, (n+i)//2)+1): #i <= n-j and j-i <= n-j
yy = num[i:j]
if yy.startswith("0") and len(yy) > 1: break #no leading zero
ii, xx = i, x
while num.startswith(yy, ii):
ii += len(yy)
xx, yy = yy, str(int(xx) + int(yy))
if ii == len(num): return True
return False | additive-number | [Python3] enumerate all possible starters | ye15 | 0 | 97 | additive number | 306 | 0.309 | Medium | 5,368 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/2132119/Python-or-Easy-DP-or | class Solution:
def maxProfit(self, prices: List[int]) -> int:
n = len(prices)
dp = [[0 for i in range(2)] for i in range(n+2)]
dp[n][0] = dp[n][1] = 0
ind = n-1
while(ind>=0):
for buy in range(2):
if(buy):
profit = max(-prices[ind] + dp[ind+1][0], 0 + dp[ind+1][1])
else:
profit = max(prices[ind] + dp[ind+2][1], 0 + dp[ind+1][0])
dp[ind][buy] = profit
ind -= 1
return dp[0][1] | best-time-to-buy-and-sell-stock-with-cooldown | Python | Easy DP | | LittleMonster23 | 4 | 166 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,369 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/2132119/Python-or-Easy-DP-or | class Solution:
def maxProfit(self, prices: List[int]) -> int:
n = len(prices)
dp = [[0 for i in range(2)] for i in range(n+2)]
dp[n][0] = dp[n][1] = 0
ind = n-1
while(ind>=0):
dp[ind][1] = max(-prices[ind] + dp[ind+1][0], 0 + dp[ind+1][1])
dp[ind][0] = max(prices[ind] + dp[ind+2][1], 0 + dp[ind+1][0])
ind -= 1
return dp[0][1] | best-time-to-buy-and-sell-stock-with-cooldown | Python | Easy DP | | LittleMonster23 | 4 | 166 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,370 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/2480511/Python-easy-Solution-or-Best-Approch | class Solution:
def f(self,ind,buy,n,price,dp):
if ind>=n:
return 0
if dp[ind][buy]!=-1:
return dp[ind][buy]
if (buy==1):
dp[ind][buy]=max(-price[ind]+self.f(ind+1,0,n,price,dp),0+self.f(ind+1,1,n,price,dp))
else: #if ind=n-1 so ind+2 will go out of bound base case is if ind>=n: return 0
dp[ind][buy]=max(price[ind]+self.f(ind+2,1,n,price,dp),0+self.f(ind+1,0,n,price,dp))
return dp[ind][buy]
def maxProfit(self, prices: List[int]) -> int:
n=len(prices)
dp=[[-1 for i in range(2)]for j in range(n)]
return self.f(0,1,n,prices,dp) | best-time-to-buy-and-sell-stock-with-cooldown | Python easy Solution | Best Approch ✅ | adarshg04 | 3 | 142 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,371 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/762801/Python3-dp | class Solution:
def maxProfit(self, prices: List[int]) -> int:
buy, sell = inf, 0
for x in prices:
buy = min(buy, x)
sell = max(sell, x - buy)
return sell | best-time-to-buy-and-sell-stock-with-cooldown | [Python3] dp | ye15 | 3 | 144 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,372 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/762801/Python3-dp | class Solution:
def maxProfit(self, prices: List[int]) -> int:
buy, sell = inf, 0
for x in prices:
buy = min(buy, x - sell)
sell = max(sell, x - buy)
return sell | best-time-to-buy-and-sell-stock-with-cooldown | [Python3] dp | ye15 | 3 | 144 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,373 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/762801/Python3-dp | class Solution:
def maxProfit(self, prices: List[int]) -> int:
buy, sell = [inf]*2, [0]*2
for x in prices:
for i in range(2):
if i: buy[i] = min(buy[i], x - sell[i-1])
else: buy[i] = min(buy[i], x)
sell[i] = max(sell[i], x - buy[i])
return sell[1] | best-time-to-buy-and-sell-stock-with-cooldown | [Python3] dp | ye15 | 3 | 144 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,374 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/762801/Python3-dp | class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
if k >= len(prices)//2: return sum(max(0, prices[i] - prices[i-1]) for i in range(1, len(prices)))
buy, sell = [inf]*k, [0]*k
for x in prices:
for i in range(k):
if i: buy[i] = min(buy[i], x - sell[i-1])
else: buy[i] = min(buy[i], x)
sell[i] = max(sell[i], x - buy[i])
return sell[-1] if k and prices else 0 | best-time-to-buy-and-sell-stock-with-cooldown | [Python3] dp | ye15 | 3 | 144 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,375 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/762801/Python3-dp | class Solution:
def maxProfit(self, prices: List[int]) -> int:
buy, cooldown, sell = inf, 0, 0
for x in prices:
buy = min(buy, x - cooldown)
cooldown = sell
sell = max(sell, x - buy)
return sell | best-time-to-buy-and-sell-stock-with-cooldown | [Python3] dp | ye15 | 3 | 144 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,376 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/762801/Python3-dp | class Solution:
def maxProfit(self, prices: List[int], fee: int) -> int:
buy, sell = inf, 0
for x in prices:
buy = min(buy, x - sell)
sell = max(sell, x - buy - fee)
return sell | best-time-to-buy-and-sell-stock-with-cooldown | [Python3] dp | ye15 | 3 | 144 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,377 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/1592876/Python-oror-Easy-Solution-oror-Beat~93-oror-O(n)-and-without-extra-space | class Solution:
def maxProfit(self, lst: List[int]) -> int:
old_buy, old_sell, old_cool = -lst[0], 0, 0
for i in range(1, len(lst)):
new_buy, new_sell, new_cool = 0, 0, 0
if (old_cool - lst[i]) > old_buy:
new_buy = (old_cool - lst[i])
else:
new_buy = old_buy
if (lst[i] + old_buy) > old_sell:
new_sell = (lst[i] + old_buy)
else:
new_sell = old_sell
if old_cool < old_sell:
new_cool = old_sell
else:
new_cool = old_cool
old_buy, old_sell, old_cool = new_buy, new_sell, new_cool
return old_sell | best-time-to-buy-and-sell-stock-with-cooldown | Python || Easy Solution || Beat~93% || O(n) and without extra space | naveenrathore | 2 | 179 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,378 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/1522708/Python-3-Bottom-up-DP-%2B-memoization-O(n)-time-and-space-code-%2B-comments | class Solution:
def maxProfit(self, prices: List[int]) -> int:
# Bottom-up dynamic programming with memoization (caching)
@lru_cache(None)
def dp(day: int, can_buy: True) -> int:
# Base case
if day >= len(prices):
return 0
if can_buy:
# We don't own any stocks. Two options:
# 1. Don't buy any stocks and go to the next day (wait for a better opportunity)
# 2. Buy stocks and go to the next day (with hope to have the best profit)
return max(dp(day + 1, True), dp(day + 1, False) - prices[day])
else:
# We own stocks. Two options:
# 1. Don't sell any stocks and go to the next day (maybe there is a better selling price)
# 2. Sell the stocks and go to the day after tomorrow (cooldown tomorrow)
return max(dp(day + 1, False), dp(day + 2, True) + prices[day])
# Start with no stocks
return dp(0, True) | best-time-to-buy-and-sell-stock-with-cooldown | [Python 3] Bottom-up DP + memoization, O(n) time and space, code + comments | corcoja | 2 | 221 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,379 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/1765962/Java-Python3-Simple-DP-Solution-(Top-Down-and-Bottom-Up) | class Solution:
def maxProfit(self, prices: List[int]) -> int:
@lru_cache(None)
def dp(i: int, holding: int):
# base case
if i >= len(prices):
return 0
do_nothing = dp(i+1, holding)
if holding:
# sell stock
do_something = prices[i] + dp(i+2, 0)
else:
# buy stock
do_something = -prices[i] + dp(i+1, 1)
return max(do_nothing, do_something)
return dp(0, 0) | best-time-to-buy-and-sell-stock-with-cooldown | ✅ [Java / Python3] Simple DP Solution (Top-Down & Bottom-Up) | JawadNoor | 1 | 90 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,380 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/1765962/Java-Python3-Simple-DP-Solution-(Top-Down-and-Bottom-Up) | class Solution:
def maxProfit(self, prices: List[int]) -> int:
n = len(prices)
dp = [[0]*2 for _ in range(n+1)]
for i in range(n-1, -1, -1):
for holding in range(2):
do_nothing = dp[i+1][holding]
if holding:
# sell stock
do_something = prices[i] + \
dp[i+2][0] if i < n-1 else prices[i]
else:
# buy stock
do_something = -prices[i] + dp[i+1][1]
dp[i][holding] = max(do_nothing, do_something)
return dp[0][0] | best-time-to-buy-and-sell-stock-with-cooldown | ✅ [Java / Python3] Simple DP Solution (Top-Down & Bottom-Up) | JawadNoor | 1 | 90 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,381 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/1735826/Python-%2B-Easy-Solution | class Solution:
def maxProfit(self, prices: List[int]) -> int:
obsp = -prices[0] # Old Bought State Profit
ossp = 0 # Old Sell State Profit
ocsp = 0 # Old Cooldown State Profit
for i in range(1, len(prices)):
nbsp = 0 # New Bought State Profit
nssp = 0 # New Sell State Profit
ncsp = 0 # New Cooldown State Profit
# Time to Buy...
if ocsp-prices[i] > obsp:
nbsp = ocsp-prices[i]
else:
nbsp = obsp
# Time to Sell...
if obsp+prices[i] > ossp:
nssp = obsp+prices[i]
else:
nssp = ossp
# Time to Cooldown...
if ossp > ocsp:
ncsp = ossp
else:
ncsp = ocsp
obsp = nbsp
ossp = nssp
ocsp = ncsp
return ossp | best-time-to-buy-and-sell-stock-with-cooldown | [Python] + Easy Solution ✔ | leet_satyam | 1 | 158 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,382 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/1475998/Python3-or-Recursion%2BMemoization | class Solution:
def maxProfit(self, prices: List[int]) -> int:
self.dp=[[-1 for i in range(2)] for j in range(5001)]
return self.dfs(0,0,prices)
def dfs(self,day,own,prices):
if day>=len(prices):
return 0
if self.dp[day][own]!=-1:
return self.dp[day][own]
if own:
p1=prices[day]+self.dfs(day+2,0,prices)
p2=self.dfs(day+1,1,prices)
else:
p1=-prices[day]+self.dfs(day+1,1,prices)
p2=self.dfs(day+1,0,prices)
self.dp[day][own]=max(p1,p2)
return self.dp[day][own] | best-time-to-buy-and-sell-stock-with-cooldown | [Python3] | Recursion+Memoization | swapnilsingh421 | 1 | 93 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,383 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/764797/Python-solution-with-full-explanation-(theory-%2B-code) | class Solution:
def maxProfit(self, prices: List[int]) -> int:
cd = 0
sell = 0
buy = float('-inf')
for price in prices:
old_cd = cd
old_sell = sell
old_buy = buy
cd = max(old_cd, old_sell)
sell = old_buy + price
buy = max(old_buy, old_cd - price)
return max(sell, cd) | best-time-to-buy-and-sell-stock-with-cooldown | Python solution with full explanation (theory + code) | spec_he123 | 1 | 94 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,384 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/2817359/Python-(Simple-DP) | class Solution:
def maxProfit(self, prices):
@lru_cache(None)
def dp(idx,canBuy):
if idx >= len(prices):
return 0
max_val = dp(idx+1,canBuy)
if canBuy:
max_val = max(max_val,dp(idx+1,False)-prices[idx])
else:
max_val = max(max_val,dp(idx+2,True)+prices[idx])
return max_val
return dp(0,True) | best-time-to-buy-and-sell-stock-with-cooldown | Python (Simple DP) | rnotappl | 0 | 5 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,385 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/2790752/Solution-with-TC-O(n)-and-SC-O(1)-Runtime-95-Faster | class Solution:
def maxProfit(self, prices: List[int]) -> int:
max_sell = 0
max_buy = 0
prev_buy = 0
for i in range(len(prices)-1,-1,-1):
buf_max_sell = max(max_sell,prev_buy+prices[i])
buf_max_buy = max(max_buy,max_sell-prices[i])
max_sell,max_buy,prev_buy = buf_max_sell,buf_max_buy,max_buy
return max_buy | best-time-to-buy-and-sell-stock-with-cooldown | Solution with TC O(n) and SC O(1) Runtime 95 % Faster | googlers | 0 | 8 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,386 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/2779396/Python-Dynamic-Programming-(Top-to-bottom-approach) | class Solution:
def maxProfit(self, prices: List[int]) -> int:
@cache
def dp(i, holding, cooldown):
if i == len(prices):
return 0
res = dp(i + 1, holding, False)
if cooldown:
return dp(i + 1, holding, False)
if holding:
res = max(res, prices[i] + dp(i + 1, False, True))
else:
res = max(res, -prices[i] + dp(i + 1, True, False))
return res
return dp(0, False, False) | best-time-to-buy-and-sell-stock-with-cooldown | Python Dynamic Programming (Top to bottom approach) | alexdomoryonok | 0 | 6 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,387 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/2748108/Python3-or-Top-Down-2-D-DP-(Using-Boolean-Flag-State-and-Day-Index-for-Two-State-Parameters)-Approach | class Solution:
#Time-Complexity: O(N), since we have 2*N distinct states and 2*N time to intiailize the dp memo!
#Space-Complexity: O(N), max stack depth of recursion is N,length of input array prices! Also, memo
#takes up 2*N space!
def maxProfit(self, prices: List[int]) -> int:
#Approach: At every ith day we are on, we want to keep track of whether
#we are making decision to buy or sell! However, if we sold stock, we should
#skip a day to force cooldown!
#I will utilize top-down dp approach with memoization!
#Here, I will use two state parameters: day index and boolean flag indicating
#buy/sell!
n = len(prices)
#Dp: I will initialize n arrays, each to store the max profit
#we can get from ith day, depending on whether we can buy or sell!
dp = [[-1 for _ in range(2)] for _ in range(n)]
#define helper function to handle top-down dp!
def helper(day, canBuy):
nonlocal n, dp
#base case: if the day index is out of bounds value, then we return!
if(day >= n):
return 0
cur_day_price = prices[day]
#another base case: if we already solved for current day and mode of
#decision, then return answer!
if(dp[day][canBuy] != -1):
return dp[day][canBuy]
#Otherwise, go ahead and solve recursively!
#Remember, for current day, we can either buy or not buy!
if(canBuy):
#recurse for two choices: either buy now or have cooldown!
#If we buy now, we consider the rec. call upon day+1th day when we make decision to sell from the day!
#However, we need to take account the edge cost of transitioning from our current state to the
#rec. call state!
buynow = helper(day+1, 0) - cur_day_price
#Otherwise, there is no transition regarding profit and we can make same decision btw same set of two
#choices again!
cooldown1 = helper(day+1, 1)
#Make sure to record answer for current state!
dp[day][canBuy] = max(buynow, cooldown1)
else:
#we have two choices again: sell now or cooldown!
sellnow = helper(day+2, 1) + cur_day_price
cooldown2 = helper(day+1, 0)
#Record answer for current state in dp cache here as well!
dp[day][canBuy] = max(sellnow, cooldown2)
return dp[day][canBuy]
#start up the top-down dp recursion and once it terminates, it will return the answer of max profit
#when initially making decision to buy or cooldown from day 0!
return helper(0, 1) | best-time-to-buy-and-sell-stock-with-cooldown | Python3 | Top-Down 2-D DP (Using Boolean Flag State and Day Index for Two State Parameters) Approach | JOON1234 | 0 | 5 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,388 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/2577675/Naive-recursive-knapsack-python3-solution | class Solution:
def maxProfit(self, prices: List[int]) -> int:
n = len(prices)
@functools.cache
def visit(i: int = 0, own: bool = False) -> int:
if i >= n:
return 0
if not own:
return max(-prices[i] + visit(i + 1, True), visit(i + 1, False))
else:
return max(prices[i] + visit(i + 2, False), visit(i + 1, True))
return visit() | best-time-to-buy-and-sell-stock-with-cooldown | Naive recursive knapsack python3 solution | jshin47 | 0 | 35 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,389 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/2492544/Interesting-Problem-or-Easy-Solution-or-memo | class Solution:
def maxProfit(self, prices: List[int]) -> int:
memo = {}
def dp(i,state):
if i>=len(prices):
return 0
elif (i,state) in memo:
return memo[(i,state)]
else:
if state:
buy = dp(i+1,not state)-prices[i]
cooldown = dp(i+1,state)
memo[(i,state)] = max(buy,cooldown)
return memo[(i,state)]
else:
sell = sp(i+2,not state)+prices[i]
cooldown = dp(i+1,state)
memo[(i,state)] = max(sell,cooldown)
return memo[(i,state)]
return dp(0,True) | best-time-to-buy-and-sell-stock-with-cooldown | Interesting Problem | Easy Solution | memo | Brillianttyagi | 0 | 47 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,390 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/2431173/Python-DP-Solution | class Solution:
def maxProfit(self, prices: List[int]) -> int:
d = {}
def bs(index, buyOrNotBuy):
if index >= len(prices):
return 0
# if we are able to buy the stock, if we already sold it before or
# if we have not bought any stock
if buyOrNotBuy == "buy":
# if buy stock at this index
if (index+1, "notBuy") not in d:
profit = -1 * prices[index] + bs(index+1, "notBuy")
else:
profit = -1 * prices[index] + d[(index+1, "notBuy")]
# if buy later, not now at this index
if (index+1, "buy") not in d:
profit1 = bs(index+1, "buy")
else:
profit1 = d[(index+1, "buy")]
d[(index, buyOrNotBuy)] = max(profit, profit1)
return d[(index, buyOrNotBuy)]
else:
# sell stock, if we sell 2nd argument is buy
# sell stock at this index
if (index+2, "buy") not in d:
profit = prices[index] + bs(index+2, "buy")
else:
profit = prices[index] + d[(index+2, "buy")]
# sell stock not at this index now, sell it later
if (index+1, "notBuy") not in d:
profit1 = bs(index+1, "notBuy")
else:
profit1 = d[(index+1, "notBuy")]
d[(index, buyOrNotBuy)] = max(profit, profit1)
return d[(index, buyOrNotBuy)]
return bs(0, "buy") | best-time-to-buy-and-sell-stock-with-cooldown | Python DP Solution | DietCoke777 | 0 | 27 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,391 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/2344910/python3-easy-fast | class Solution:
def maxProfit(self, prices: List[int]) -> int:
dp = {}
def dfs(i, buying):
if i >= len(prices):
return 0
if (i, buying) in dp:
return dp[(i, buying)]
if buying:
buy = dfs(i + 1, not buying) - prices[i]
cooldown = dfs(i + 1, buying)
dp[(i, buying)] = max(buy, cooldown)
else:
sell = dfs(i + 2, not buying) + prices[i]
cooldown = dfs(i + 1, buying)
dp[(i, buying)] = max(sell, cooldown)
return dp[(i, buying)]
return dfs(0, True) | best-time-to-buy-and-sell-stock-with-cooldown | python3 easy fast | soumyadexter7 | 0 | 103 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,392 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/2318031/Python3-Solution-with-using-state-machine-%2B-dp | class Solution:
def maxProfit(self, prices: List[int]) -> int:
held, sold, reset = float('-inf'), float('-inf'), 0
for price in prices:
held = max(held, reset - price)
prev_sold = sold
sold = max(sold, held + price)
reset = max(reset, prev_sold)
return max(reset, sold) | best-time-to-buy-and-sell-stock-with-cooldown | [Python3] Solution with using state machine + dp | maosipov11 | 0 | 32 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,393 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/1704299/36ms-Two-different-kinds-of-DP%3A-BuySellHold-and-Mathematics | class Solution:
def maxProfit(self, prices):
return self.dp_opt_v2(prices)
def dp(self, prices):
# edge
if len(prices) == 1: return 0
if len(prices) == 2: return max(0, prices[1] - prices[0])
if len(prices) == 3: return max(0, prices[1] - prices[0], prices[2] - prices[0], prices[2] - prices[1])
# state
st_fn = [0] * len(prices)
st_gn = [0] * len(prices)
# init
st_fn[0] = 0
st_fn[1] = max(0, prices[1] - prices[0])
st_fn[2] = max(0, prices[1] - prices[0], prices[2] - prices[0], prices[2] - prices[1])
st_gn[0] = float('-inf')
st_gn[1] = max(st_gn[0], -prices[0])
st_gn[2] = max(st_gn[1], -prices[1])
# state transimit equation
for n in range(3, len(prices)):
st_gn[n] = max(st_gn[n - 1], st_fn[n - 3] - prices[n - 1])
st_fn[n] = max(st_fn[n - 1], prices[n] + st_gn[n])
# ans
return st_fn[-1]
def dp_opt_v1(self, prices):
"""
spacial opt, n round only care about previous 3 round
"""
# edge
if len(prices) == 1: return 0
if len(prices) == 2: return max(0, prices[1] - prices[0])
if len(prices) == 3: return max(0, prices[1] - prices[0], prices[2] - prices[0], prices[2] - prices[1])
# state & init
st_fn_0 = 0
st_fn_1 = max(0, prices[1] - prices[0])
st_fn_2 = max(0, prices[1] - prices[0], prices[2] - prices[0], prices[2] - prices[1])
st_gn_0 = float('-inf')
st_gn_1 = max(st_gn_0, -prices[0])
st_gn_2 = max(st_gn_1, -prices[1])
# state transimit equation
for n in range(3, len(prices)):
st_gn_0, st_gn_1, st_gn_2 = st_gn_1, st_gn_2, max(st_gn_2, st_fn_0 - prices[n - 1])
st_fn_0, st_fn_1, st_fn_2 = st_fn_1, st_fn_2, max(st_fn_2, prices[n] + st_gn_2)
# ans
return st_fn_2
def dp_opt_v2(self, prices):
"""
take advantage of python list
spacial opt, n round only care about previous 3 round
"""
# edge
pass # use index -1 -2
# state & init
st_fn_0 = 0
st_fn_1 = 0
st_fn_2 = 0
st_gn_2 = float('-inf')
# state transimit equation
prices += [float('inf'), float('inf')]
for n in range(len(prices)):
st_gn_2 = max(st_gn_2, st_fn_0 - prices[n - 1])
st_fn_0, st_fn_1, st_fn_2 = st_fn_1, st_fn_2, max(st_fn_2, prices[n] + st_gn_2)
# ans
return st_fn_0 | best-time-to-buy-and-sell-stock-with-cooldown | 36ms, Two different kinds of DP: Buy/Sell/Hold and Mathematics | steve-jokes | 0 | 75 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,394 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/619314/Python3-very-short-and-simple-DP-O(N)-time-O(1)-space | class Solution:
def maxProfit(self, prices: List[int]) -> int:
bought, sold, just_sold = -1e18, 0, -1e18
for n in prices:
bought, sold, just_sold = max((bought, sold - n)), max((sold, just_sold)), bought + n
return max(sold, just_sold) | best-time-to-buy-and-sell-stock-with-cooldown | Python3, very short and simple DP, O(N) time, O(1) space | sugi98765 | 0 | 143 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,395 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/487086/Python3-short-solution | class Solution:
def maxProfit(self, prices: List[int]) -> int:
if len(prices)<= 1: return 0
temp = [[0],[-prices[0]],[-float("inf")]]
for i in range(1,len(prices)):
p0,p1,p2=temp[0][-1],temp[1][-1],temp[2][-1]
temp[0].append(max(p0,p2))
temp[1].append(max(p1,p0-prices[i]))
temp[2].append(p1+prices[i])
return max(temp[0][-1],temp[2][-1]) | best-time-to-buy-and-sell-stock-with-cooldown | Python3 short solution | jb07 | 0 | 233 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,396 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/1782391/Python-easy-to-read-and-understand-or-Step-by-step | class Solution:
def solve(self, prices, index, opt):
if index >= len(prices):
return 0
res = 0
if opt == 0:
buy = self.solve(prices, index+1, 1) - prices[index]
cool = self.solve(prices, index+1, 0)
res = max(buy, cool)
else:
sell = self.solve(prices, index+2, 0) + prices[index]
cool = self.solve(prices, index+1, 1)
res = max(sell, cool)
return res
def maxProfit(self, prices: List[int]) -> int:
return self.solve(prices, 0, 0) | best-time-to-buy-and-sell-stock-with-cooldown | Python easy to read and understand | Step by step | sanial2001 | -1 | 103 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,397 |
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/discuss/1782391/Python-easy-to-read-and-understand-or-Step-by-step | class Solution:
def solve(self, prices, index, opt):
if index >= len(prices):
return 0
if (index, opt) in self.dp:
return self.dp[(index, opt)]
if opt == 0:
buy = self.solve(prices, index+1, 1) - prices[index]
cool = self.solve(prices, index+1, 0)
self.dp[(index, opt)] = max(buy, cool)
else:
sell = self.solve(prices, index+2, 0) + prices[index]
cool = self.solve(prices, index+1, 1)
self.dp[(index, opt)] = max(sell, cool)
return self.dp[(index, opt)]
def maxProfit(self, prices: List[int]) -> int:
self.dp = {}
return self.solve(prices, 0, 0) | best-time-to-buy-and-sell-stock-with-cooldown | Python easy to read and understand | Step by step | sanial2001 | -1 | 103 | best time to buy and sell stock with cooldown | 309 | 0.546 | Medium | 5,398 |
https://leetcode.com/problems/minimum-height-trees/discuss/1753794/Python-easy-to-read-and-understand-or-reverse-topological-sort | class Solution:
def findMinHeightTrees(self, n: int, edges: List[List[int]]) -> List[int]:
if n == 1:
return [0]
graph = {i:[] for i in range(n)}
for u, v in edges:
graph[u].append(v)
graph[v].append(u)
leaves = []
for node in graph:
if len(graph[node]) == 1:
leaves.append(node)
while len(graph) > 2:
new_leaves = []
for leaf in leaves:
nei = graph[leaf].pop()
del graph[leaf]
graph[nei].remove(leaf)
if len(graph[nei]) == 1:
new_leaves.append(nei)
leaves = new_leaves
return leaves | minimum-height-trees | Python easy to read and understand | reverse topological sort | sanial2001 | 7 | 336 | minimum height trees | 310 | 0.385 | Medium | 5,399 |
Subsets and Splits