post_href
stringlengths 57
213
| python_solutions
stringlengths 71
22.3k
| slug
stringlengths 3
77
| post_title
stringlengths 1
100
| user
stringlengths 3
29
| upvotes
int64 -20
1.2k
| views
int64 0
60.9k
| problem_title
stringlengths 3
77
| number
int64 1
2.48k
| acceptance
float64 0.14
0.91
| difficulty
stringclasses 3
values | __index_level_0__
int64 0
34k
|
---|---|---|---|---|---|---|---|---|---|---|---|
https://leetcode.com/problems/top-k-frequent-elements/discuss/1193491/python-hashmap-solution | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
m={}
ans=[]
m=Counter(nums)
s=sorted(m,key=m.get)
for i in range(k,0,-1):
ans.append(s.pop())
return ans | top-k-frequent-elements | python hashmap solution | mech2tech | 1 | 194 | top k frequent elements | 347 | 0.648 | Medium | 6,100 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/741192/Python3-A-few-approaches-O(NlogN)orO(NlogK)orO(N) | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
freq = dict() #frequency table
for x in nums: freq[x] = 1 + freq.get(x, 0)
return sorted(freq, key=freq.get)[-k:] | top-k-frequent-elements | [Python3] A few approaches O(NlogN)|O(NlogK)|O(N) | ye15 | 1 | 93 | top k frequent elements | 347 | 0.648 | Medium | 6,101 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/741192/Python3-A-few-approaches-O(NlogN)orO(NlogK)orO(N) | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
freq = dict() #frequency table
for x in nums: freq[x] = 1 + freq.get(x, 0)
h = []
for x, v in freq.items():
heappush(h, (v, x))
if len(h) > k: heappop(h)
return [x for _, x in h] | top-k-frequent-elements | [Python3] A few approaches O(NlogN)|O(NlogK)|O(N) | ye15 | 1 | 93 | top k frequent elements | 347 | 0.648 | Medium | 6,102 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/741192/Python3-A-few-approaches-O(NlogN)orO(NlogK)orO(N) | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
freq = Counter(nums) #frequency table
return nlargest(k, freq, key=freq.get) | top-k-frequent-elements | [Python3] A few approaches O(NlogN)|O(NlogK)|O(N) | ye15 | 1 | 93 | top k frequent elements | 347 | 0.648 | Medium | 6,103 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/741192/Python3-A-few-approaches-O(NlogN)orO(NlogK)orO(N) | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
freq = Counter(nums)
vals = list(freq.values())
def partition(lo, hi):
"""Return parition of vals[lo:hi]."""
i, j = lo+1, hi-1
while i <= j:
if vals[i] < vals[lo]: i += 1
elif vals[j] > vals[lo]: j -= 1
else:
vals[i], vals[j] = vals[j], vals[i]
i += 1
j -= 1
vals[lo], vals[j] = vals[j], vals[lo]
return j
shuffle(vals)
lo, hi = 0, len(vals)
while lo < hi:
mid = partition(lo, hi)
if mid + k < len(vals): lo = mid + 1
elif mid + k == len(vals): break
else: hi = mid
return [k for k, v in freq.items() if v >= vals[mid]] | top-k-frequent-elements | [Python3] A few approaches O(NlogN)|O(NlogK)|O(N) | ye15 | 1 | 93 | top k frequent elements | 347 | 0.648 | Medium | 6,104 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/741192/Python3-A-few-approaches-O(NlogN)orO(NlogK)orO(N) | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
bucket = [[] for _ in nums]
for num, freq in Counter(nums).items():
bucket[-freq].append(num)
return list(islice(chain(*bucket), k)) | top-k-frequent-elements | [Python3] A few approaches O(NlogN)|O(NlogK)|O(N) | ye15 | 1 | 93 | top k frequent elements | 347 | 0.648 | Medium | 6,105 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/741192/Python3-A-few-approaches-O(NlogN)orO(NlogK)orO(N) | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
freq = Counter(nums)
bucket = [[] for _ in nums]
for x, v in freq.items(): bucket[-v].append(x)
ans = []
for x in bucket:
ans.extend(x)
if len(ans) >= k: break
return ans | top-k-frequent-elements | [Python3] A few approaches O(NlogN)|O(NlogK)|O(N) | ye15 | 1 | 93 | top k frequent elements | 347 | 0.648 | Medium | 6,106 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/740666/Python-Heap-Simple | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
numCntr = collections.Counter(nums)
# 1-liner
# return heapq.nlargest(k, numCntr.keys(), key = numCntr.get)
hp = []
for ky,val in numCntr.items():
heapq.heappush(hp,(val,ky))
if len(hp) > k:
heapq.heappop(hp)
return [heapq.heappop(hp)[1] for _ in range(len(hp))] | top-k-frequent-elements | Python Heap Simple | akrishna06 | 1 | 212 | top k frequent elements | 347 | 0.648 | Medium | 6,107 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/2848584/one-line-python3-solution | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
return [i[0] for i in Counter(nums).most_common(k)] | top-k-frequent-elements | one line python3 solution | Cosmodude | 0 | 1 | top k frequent elements | 347 | 0.648 | Medium | 6,108 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/2842346/Python-3 | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
sort_nums_dict = dict(sorted(Counter(nums).items(), key=lambda item: item[1], reverse=True))
most_freq = []
for key in sort_nums_dict.keys():
most_freq.append(key)
if len(most_freq) == k:
break
return most_freq | top-k-frequent-elements | Python 3 | Geniuss87 | 0 | 1 | top k frequent elements | 347 | 0.648 | Medium | 6,109 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/2840572/Python-solution-or-98-faster | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
counter = Counter(nums)
heap = []
ans = []
for key in counter:
heapq.heappush(heap, (-counter[key], key))
for i in range(k):
ans.append(heapq.heappop(heap)[1])
return ans | top-k-frequent-elements | Python solution | 98% faster | maomao1010 | 0 | 5 | top k frequent elements | 347 | 0.648 | Medium | 6,110 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/2840427/Top-K-frequents-python-O(n) | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
if len(nums) == k:
return nums
counter = collections.Counter(nums) # create a hashmap of counter
frecTable = [None]*len(nums)
for num, frec in counter.items():
if frecTable[frec-1]:
frecTable[frec-1] += [num]
else:
frecTable[frec-1] = [num]
result = []
for _nums in reversed(frecTable):
if len(result) < k and _nums:
result.extend(_nums)
elif len(result) == k:
break
return result | top-k-frequent-elements | Top K frequents - python - O(n) | DavidCastillo | 0 | 2 | top k frequent elements | 347 | 0.648 | Medium | 6,111 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/2837076/Python3-easy-to-understand | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
d = Counter(nums)
res = []
for K, V in sorted(d.items(), key = lambda x: -x[1]):
res.append(K)
k -= 1
if k == 0: return res | top-k-frequent-elements | Python3 - easy to understand | mediocre-coder | 0 | 3 | top k frequent elements | 347 | 0.648 | Medium | 6,112 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/2835401/Python3-Bucket-Sort | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
# Create bucket to collect number for each frequency
# Length of nums is the maximum of possisble frequency
# The frequency is the "index" of bucket
# For example: 5 same numbers, 100, in nums. [100, 100, 100, 100, 100]
# len(nums) is 5, bucket[5] = [100] refers to frequency 5 has number 100.
bucket = [[] for _ in range(len(nums)+1)]
freq = {}
# You can use collections.Counter
for num in nums:
freq[num] = freq.get(num, 0) + 1
# (key, val) = (num, freq)
# Put number in associated "frequency" bucket
for key, val in freq.items():
bucket[val].append(key)
res = []
pos = len(bucket) - 1
while len(res) < k and pos >= 0:
res.extend(bucket[pos]) # Use extend since bucket[pos] is a list
pos -= 1 # Go backwards, i.e. start from the largest frequency
return res | top-k-frequent-elements | Python3 Bucket Sort | geom1try | 0 | 3 | top k frequent elements | 347 | 0.648 | Medium | 6,113 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/2834749/3-Solutions-Python-explained | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
count = Counter(nums)
count = {k: v for k, v in sorted(count.items(), key=lambda item: item[1],reverse=True)}
return list(count.keys())[:k] | top-k-frequent-elements | 3 Solutions Python explained | parthjain9925 | 0 | 4 | top k frequent elements | 347 | 0.648 | Medium | 6,114 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/2834749/3-Solutions-Python-explained | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
count = Counter(nums)
maxheap = [[-freq,val] for val,freq in count.items()]
heapq.heapify(maxheap)
ans=[]
for i in range(k):
_,num = heapq.heappop(maxheap)
ans.append(num)
return ans | top-k-frequent-elements | 3 Solutions Python explained | parthjain9925 | 0 | 4 | top k frequent elements | 347 | 0.648 | Medium | 6,115 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/2834749/3-Solutions-Python-explained | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
count = Counter(nums)
c = [[] for i in range(len(nums)+1)]
for key,val in count.items():
c[val].append(key)
ans=[]
for i in range(len(c)-1,0,-1):
for j in c[i]:
ans.append(j)
if len(ans)==k:
return ans | top-k-frequent-elements | 3 Solutions Python explained | parthjain9925 | 0 | 4 | top k frequent elements | 347 | 0.648 | Medium | 6,116 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/2832971/Python-or-O(2n)-time-complexity-or-Improvisation-on-neetcode's-solution | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
frequency = [set()]
count = {}
for el in nums:
frequency.append(set())
prev_cnt = count.get(el, 0)
cnt = prev_cnt + 1
frequency[prev_cnt].discard(el)
frequency[cnt].add(el)
count[el] = cnt
ord_vals = []
for item in frequency[::-1]:
for el in item:
ord_vals.append(el)
if len(ord_vals) == k:
return ord_vals | top-k-frequent-elements | Python | O(2n) time complexity | Improvisation on neetcode's solution | gowt7 | 0 | 2 | top k frequent elements | 347 | 0.648 | Medium | 6,117 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/2830934/Easy-to-understand-priority-queue-full-implementation-without-shortcuts | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
# create a map of value: key pairs which later will be added to the priority queue
# O(n) space
counter = collections.Counter(nums)
objs = [(v, k) for k, v in counter.items()]
# initialize heap
heap = []
# added k elements to the queue in O(k) time and O(k) space
for _ in range(k):
heapq.heappush(heap, objs.pop())
# added N - k elements to the queue in O(nlog(k)) time
for _ in range(len(objs)):
heapq.heappushpop(heap, objs.pop())
# extract keys in O(k) time
ans = [k for v, k in heap]
return ans | top-k-frequent-elements | Easy to understand - priority queue - full implementation without shortcuts | user9015KF | 0 | 2 | top k frequent elements | 347 | 0.648 | Medium | 6,118 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/2828273/O(N)-Complexity | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
d={}
f=[[] for i in range(len(nums) + 1)]
for num in nums:
d[num]=1+d.get(num,0)
for n,c in d.items():
f[c].append(n)
res = []
for i in range(len(f) - 1, 0, -1):
print(f[i])
for n in f[i]:
print(res)
res.append(n)
if len(res) == k:
return res | top-k-frequent-elements | O(N) Complexity | nermeen_wageh | 0 | 2 | top k frequent elements | 347 | 0.648 | Medium | 6,119 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/2813532/Python-Hashmap-Easy-Solution | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
a = Counter(nums)
a = dict(sorted(a.items(), key = lambda x:x[1], reverse = True))
r = []
for i, value in a.items():
r.append(i)
return r[:k] | top-k-frequent-elements | Python Hashmap Easy Solution | bishlajatin | 0 | 8 | top k frequent elements | 347 | 0.648 | Medium | 6,120 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/2812301/Beats-99.48-Documented-Python-Solution | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
# Items turns each dict pair into tuples ex. (1, 3)
# Using the lambda func x: x[1] sorts based on the second item in the tuple ie. the count
# Reverse sorts in descending order
res = dict(sorted(Counter(nums).items(), key=lambda x:x[1], reverse=True)).keys()
return list(res)[:k] | top-k-frequent-elements | Beats 99.48% Documented Python Solution | Danryanh7 | 0 | 1 | top k frequent elements | 347 | 0.648 | Medium | 6,121 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/2806950/Python-BruteForce-or-Dict-or-Faster-than-70 | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
c_d = {}
for num in nums:
if num in c_d:
c_d[num] += 1
else:
c_d[num] = 1
d = dict(sorted(c_d.items(), key=lambda item: item[1], reverse = True))
return list(d.keys())[:k] | top-k-frequent-elements | Python BruteForce | Dict | Faster than 70% | prameshbajra | 0 | 12 | top k frequent elements | 347 | 0.648 | Medium | 6,122 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/2801562/Easy-python3-solution-using-dictionary-and-sorting | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
myDict = dict()
for num in nums:
if not num in myDict:
myDict[num] = 1
else:
myDict[num] += 1
myDict = sorted(myDict.items(), key=lambda item: item[1])
myDict = myDict[::-1]
result = []
for i in range(k):
result.append(myDict[i][0])
return result | top-k-frequent-elements | Easy python3 solution, using dictionary and sorting | gorge_t88 | 0 | 6 | top k frequent elements | 347 | 0.648 | Medium | 6,123 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/2801173/Python-2-line-solution | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
nums_counter = Counter(nums)
return sorted(nums_counter, key=lambda x:-nums_counter[x])[:k] | top-k-frequent-elements | Python 2 line solution | remenraj | 0 | 4 | top k frequent elements | 347 | 0.648 | Medium | 6,124 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/2800640/Easy-peasy-3-line-solution | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
t = Counter(nums)
m = t.most_common(k)
return([x for(x,v) in m]) | top-k-frequent-elements | Easy peasy 3 line solution | _debanjan_10 | 0 | 4 | top k frequent elements | 347 | 0.648 | Medium | 6,125 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/2778569/Python%3A-Heap-sort-%2B-Hashmap-oror-Time-Complexity-O(nlogn) | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
d={}
for i in nums:
if i in d.keys():
d[i]+=1
else:
d[i]=1
ans=[]
m=[]
for i,j in d.items():
heapq.heappush(m,[-j,i])
i=0
while i<k:
a=heapq.heappop(m)
ans.append(a[1])
i+=1
return ans | top-k-frequent-elements | Python: Heap sort + Hashmap || Time Complexity= O(nlogn) | utsa_gupta | 0 | 6 | top k frequent elements | 347 | 0.648 | Medium | 6,126 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/2776590/sol-using-hashmap | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
hashMap = {}
for i in nums:
if (i in hashMap):
hashMap[i] +=1
else: hashMap[i] = 1
print(hashMap)
s = sorted(hashMap.items(), key= lambda x:x[1], reverse = True)[:k]
return [i[0] for i in s ] | top-k-frequent-elements | sol using hashmap | bharatdikshit | 0 | 1 | top k frequent elements | 347 | 0.648 | Medium | 6,127 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/2756378/Easy-Python-solution-using-dictionary | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
dic={}
for i in nums:
if i in dic:
dic[i]+=1
else:
dic[i]=1
ret = []
for i in range(k):
t = max(dic,key=dic.get)
ret.append(t)
dic.pop(t,None)
return ret | top-k-frequent-elements | Easy Python solution using dictionary | parthdixit | 0 | 17 | top k frequent elements | 347 | 0.648 | Medium | 6,128 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/2747294/Efficient-Python-Dictionary-Sets-Memory-Usage-Beats-98.8 | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
length = len(nums) # total number of values in the array
frequency_dict = dict() # dictionary with keys of numbers and values of how often they showed up
for position in range(length):
if nums[position] not in frequency_dict: # if the number has not been seen yet
frequency_dict[nums[position]] = 1 # now it has been seen once
else: # number has already been seen and is in frequency_dict
frequency_dict[nums[position]] += 1 # not it has been seen one more time
list_of_frequencies = sorted(frequency_dict.values()) # sort the frequencies (ascending)
most_common_first = list_of_frequencies[::-1] # reverse this list of frequencies (descending)
# now there is a list, named most_common_first, that starts with the most common
# frequencies at which numbers occurred in the array nums
most_common_values = set() # set of the k most common values in nums
for frequency in range(k): # this iterates through k times, 0,1,...,k-1
# now we want to know the k most frequent elements, which can be returned in any order (use a set)
for integer, how_often in frequency_dict.items(): # iterate through dictionary
# in this dictionary, integers are keys and how_often is how often they occurred (value)
# most_common_first stores the frequencies - starting with the frequencies of numbers occurring most often
if how_often == most_common_first[frequency]: # if it occurred at one of the k most common frequencies
most_common_values.add(integer)
if k == len(most_common_values): # error checking, useful for troubleshooting
return most_common_values
``` | top-k-frequent-elements | Efficient Python Dictionary Sets - Memory Usage Beats 98.8% | vixeyfox | 0 | 10 | top k frequent elements | 347 | 0.648 | Medium | 6,129 |
https://leetcode.com/problems/top-k-frequent-elements/discuss/2729811/Python-Solution-using-QuickSelect-O(n)-average-time-O(n2)-worst-case | class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
nTof = {}
for i in nums:
if nTof.get(i) is None:
nTof[i] = 1
else:
nTof[i] += 1
unique = list(nTof.keys())
def partition(unique, l, r):
pivot, p = nTof[unique[r]], r
i = l
while i < p:
if nTof[unique[i]] > pivot:
unique[i], unique[p-1] = unique[p-1], unique[i]
unique[p], unique[p-1] = unique[p-1], unique[p]
i -= 1
p -= 1
i += 1
return p
def quickSelect(unique, l, r, k):
p = partition(unique, l, r)
if p > k:
quickSelect(unique, l, p-1, k)
if p < k:
quickSelect(unique, p+1, r, k)
return unique[k:]
return quickSelect(unique, 0, len(unique)-1, len(unique)-k) | top-k-frequent-elements | Python Solution using QuickSelect -- O(n) average time, O(n^2) worst case | gabrnavarro | 0 | 4 | top k frequent elements | 347 | 0.648 | Medium | 6,130 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2270388/PYTHON-3-SIMPLE-or-EASY-TO-UNDERSTAND | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
a = []
for i in nums1:
if i not in a and i in nums2:
a.append(i)
return a | intersection-of-two-arrays | [PYTHON 3] SIMPLE | EASY TO UNDERSTAND | omkarxpatel | 5 | 135 | intersection of two arrays | 349 | 0.704 | Easy | 6,131 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/961733/Python-Simple-Solution | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
return list(set(nums1) & set(nums2)) | intersection-of-two-arrays | Python Simple Solution | lokeshsenthilkumar | 5 | 666 | intersection of two arrays | 349 | 0.704 | Easy | 6,132 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2677813/Python-Solution-oror-Hashtable | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
d = {}
if len(nums1) > len(nums2):
nums1,nums2=nums2,nums1
for i in nums1:
d[i] = 0
for i in nums2:
if i not in d:
continue
else:
d[i] = d[i]+1
res = []
for k,v in d.items():
if v > 0:
res.append(k)
return res | intersection-of-two-arrays | Python Solution || Hashtable | Graviel77 | 2 | 522 | intersection of two arrays | 349 | 0.704 | Easy | 6,133 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/1721717/Python-Simplest-Solution-with-explanation-oror-Beg-to-Adv-oror-Two-pointer | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
res = [] # list 1, for saving same elem of num1 and num2.
fres = [] # list 2, for converting set to list.
for i in range(len(nums1)): # read elem from nums1
for j in range(len(nums2)): # read elem from nums2
if nums1[i] == nums2[j]: # identical elements of both list.
res.append(nums1[i]) # appending identical elements in list 1.
fres = set(res) # using set to remove duplicate elements & typecasting it back to list.
return fres | intersection-of-two-arrays | Python Simplest Solution with explanation || Beg to Adv || Two pointer | rlakshay14 | 2 | 147 | intersection of two arrays | 349 | 0.704 | Easy | 6,134 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/1378750/Sets-intersection-98-speed | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
return list(set(nums1) & set(nums2)) | intersection-of-two-arrays | Sets intersection, 98% speed | EvgenySH | 2 | 295 | intersection of two arrays | 349 | 0.704 | Easy | 6,135 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2770326/Intuitive-Python-Solution-Hashmap | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
hashmap = {}
res = set()
for i in range(len(nums1)):
hashmap[nums1[i]] = i
for n in nums2:
if n in hashmap:
res.add(n)
return res
Time and Space complexity: O(m + n) = O(max(m, n)) | intersection-of-two-arrays | Intuitive Python Solution, Hashmap | tragob | 1 | 107 | intersection of two arrays | 349 | 0.704 | Easy | 6,136 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2644107/Python-O(N) | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
ans=[]
n=len(nums1)
for i in nums1:
if i in nums2:
ans.append(i)
return list(set(ans)) | intersection-of-two-arrays | Python [O(N)] | Sneh713 | 1 | 202 | intersection of two arrays | 349 | 0.704 | Easy | 6,137 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2354614/Solution | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
nums1,nums2 = set(nums1), set(nums2)
return (nums1.intersection(nums2)) | intersection-of-two-arrays | Solution | fiqbal997 | 1 | 27 | intersection of two arrays | 349 | 0.704 | Easy | 6,138 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/1975746/Python-One-liner-Set-Intersection-Operation | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
return list(set(nums1)&set(nums2)) | intersection-of-two-arrays | [Python] One-liner Set Intersection Operation | zayne-siew | 1 | 60 | intersection of two arrays | 349 | 0.704 | Easy | 6,139 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/1855402/Python-Simple-and-Elegant!-Multiple-Solutions! | class Solution(object):
def intersection(self, nums1, nums2):
ans, d = [], {}
for n in nums1:
if n not in d:
d[n] = 1
for n in nums2:
if n in d and d[n] == 1:
d[n] = 2
for k in d:
if d[k] == 2:
ans.append(k)
return ans | intersection-of-two-arrays | Python - Simple and Elegant! Multiple Solutions! | domthedeveloper | 1 | 103 | intersection of two arrays | 349 | 0.704 | Easy | 6,140 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/1855402/Python-Simple-and-Elegant!-Multiple-Solutions! | class Solution(object):
def intersection(self, nums1, nums2):
ans = []
for n in set(nums1):
if n in set(nums2):
ans.append(n)
return ans | intersection-of-two-arrays | Python - Simple and Elegant! Multiple Solutions! | domthedeveloper | 1 | 103 | intersection of two arrays | 349 | 0.704 | Easy | 6,141 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/1855402/Python-Simple-and-Elegant!-Multiple-Solutions! | class Solution(object):
def intersection(self, nums1, nums2):
return [n for n in set(nums1) if n in set(nums2)] | intersection-of-two-arrays | Python - Simple and Elegant! Multiple Solutions! | domthedeveloper | 1 | 103 | intersection of two arrays | 349 | 0.704 | Easy | 6,142 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/1855402/Python-Simple-and-Elegant!-Multiple-Solutions! | class Solution(object):
def intersection(self, nums1, nums2):
return set(nums1) & set(nums2) | intersection-of-two-arrays | Python - Simple and Elegant! Multiple Solutions! | domthedeveloper | 1 | 103 | intersection of two arrays | 349 | 0.704 | Easy | 6,143 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/1855402/Python-Simple-and-Elegant!-Multiple-Solutions! | class Solution(object):
def intersection(self, nums1, nums2):
return set(nums1).intersection(set(nums2)) | intersection-of-two-arrays | Python - Simple and Elegant! Multiple Solutions! | domthedeveloper | 1 | 103 | intersection of two arrays | 349 | 0.704 | Easy | 6,144 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/1356955/Easy-python-solution | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
i=0
s=set()
while i<len(nums1):
if nums1[i] in nums2:
s.add(nums1[i])
i+=1
out=list(s)
return out | intersection-of-two-arrays | Easy python solution | Qyum | 1 | 55 | intersection of two arrays | 349 | 0.704 | Easy | 6,145 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/1087462/One-line-solution%3A-Python3-(98.19-faster) | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
return (set(nums1) & set(nums2)) | intersection-of-two-arrays | One line solution: Python3 (98.19% faster) | iamvatsalpatel | 1 | 124 | intersection of two arrays | 349 | 0.704 | Easy | 6,146 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/400034/Python-2-pointers | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
nums1.sort()
nums2.sort()
pointer1, pointer2, out = 0, 0, set()
while pointer1 < len(nums1) and pointer2 < len(nums2):
if nums1[pointer1] == nums2[pointer2]:
out.add(nums1[pointer1])
pointer1 += 1
pointer2 += 1
elif nums1[pointer1] > nums2[pointer2]:
pointer2 += 1
else:
pointer1 += 1
return list(out) | intersection-of-two-arrays | Python 2 pointers | aj_to_rescue | 1 | 101 | intersection of two arrays | 349 | 0.704 | Easy | 6,147 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/343333/Solution-in-Python-3-(beats-~100)-(one-line) | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
return set(nums1) & set(nums2)
- Junaid Mansuri | intersection-of-two-arrays | Solution in Python 3 (beats ~100%) (one line) | junaidmansuri | 1 | 405 | intersection of two arrays | 349 | 0.704 | Easy | 6,148 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2846096/python3 | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
d = {} # store frequency of nums in nums1
# store freq
for n in nums1:
if n not in d:
d[n] = True
ans = [] # answer
# see if nums in nums2 are also in nums1
for n in nums2:
# if in nums1 and not already added
if (n in d) and d[n]:
# add and set to false (so no duplicates)
ans.append(n)
d[n] = False
return ans | intersection-of-two-arrays | python3 | wduf | 0 | 2 | intersection of two arrays | 349 | 0.704 | Easy | 6,149 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2846096/python3 | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
# return intersection between unique nums from nums1 and nums2
return list(set(nums1) & set(nums2)) | intersection-of-two-arrays | python3 | wduf | 0 | 2 | intersection of two arrays | 349 | 0.704 | Easy | 6,150 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2839985/Pythonor-Easiest-Solution-in-4-linesor | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
x=set(nums1)
y=set(nums2)
z=x.intersection(y)
return list(z) | intersection-of-two-arrays | Python| Easiest Solution in 4 lines| | Vasu0514 | 0 | 3 | intersection of two arrays | 349 | 0.704 | Easy | 6,151 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2838825/python-one-liner-solution | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
return list(set(nums1)&set(nums2)) | intersection-of-two-arrays | python one-liner solution | sahityasetu1996 | 0 | 3 | intersection of two arrays | 349 | 0.704 | Easy | 6,152 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2836886/Python-Easy-Solution-Beats-89.93-Using-Sets | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
# Make sets of the values in nums1 and nums2
set1 = set(nums1)
set2 = set(nums2)
# Get the intersection of them
intersection = set1 & set2
# Return the answer as an array (list)
answer = list(intersection)
return answer | intersection-of-two-arrays | Python Easy Solution Beats 89.93% Using Sets | vixeyfox | 0 | 2 | intersection of two arrays | 349 | 0.704 | Easy | 6,153 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2830878/Using-for-loop | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
a =[]
for i in nums1:
if i in nums2 and i not in a:
a.append(i)
return a | intersection-of-two-arrays | ๊Using for loop | Es-ppx | 0 | 5 | intersection of two arrays | 349 | 0.704 | Easy | 6,154 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2826368/Fast-and-Easy-Python-Solution | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
lists = [nums1, nums2]
smallest = min(lists, key=len)
lists.remove(smallest)
checked = set()
values = []
for num in smallest:
if num not in checked:
if num in lists[0]:
values += [num]
checked.add(num)
return values | intersection-of-two-arrays | Fast and Easy Python Solution | PranavBhatt | 0 | 4 | intersection of two arrays | 349 | 0.704 | Easy | 6,155 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2825055/Python-one-liner | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
return list(set(nums1).intersection(set(nums2))) | intersection-of-two-arrays | Python one liner | WhyYouCryingMama | 0 | 4 | intersection of two arrays | 349 | 0.704 | Easy | 6,156 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2817178/python-dictionary(hash-map)-O(n)-beats-80 | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
result = []
hashmap = {}
for i in set(nums1):
hashmap[i]=1
for i in set(nums2):
if hashmap.get(i) is not None:
result.append(i)
return result | intersection-of-two-arrays | python dictionary(hash map) O(n) beats 80% | sudharsan1000m | 0 | 3 | intersection of two arrays | 349 | 0.704 | Easy | 6,157 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2817119/2-liner-code-in-python | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
uniqa_list = []
for x in nums2:
if x in nums1 and x not in uniqa_list:
uniqa_list.append(x)
return uniqa_list | intersection-of-two-arrays | 2 liner code in python | user8539if | 0 | 1 | intersection of two arrays | 349 | 0.704 | Easy | 6,158 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2809036/Easy-One-line-code | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
return set(nums1) & set(nums2) | intersection-of-two-arrays | Easy One line code | umeshsakinala | 0 | 2 | intersection of two arrays | 349 | 0.704 | Easy | 6,159 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2790320/One-Line-Python-Solution | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
# return set cast of the larger list intersection with smaller list
return set(nums1).intersection(nums2) if (len(nums1) >= len(nums2)) else set(nums2).intersection(nums1) | intersection-of-two-arrays | One Line Python Solution | laichbr | 0 | 4 | intersection of two arrays | 349 | 0.704 | Easy | 6,160 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2787861/Python-oror-Beats-78.56 | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
nums = []
for i in nums1:
if i in nums2:
if i not in nums:
nums.append(i)
return (nums) | intersection-of-two-arrays | Python || Beats 78.56% | fatin_istiaq | 0 | 3 | intersection of two arrays | 349 | 0.704 | Easy | 6,161 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2785084/Python-Easy-Python-solution | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
if(len(nums1)>len(nums2)):
mx = nums1
mn = nums2
else:
mx = nums2
mn = nums1
return list(set(mn).intersection(mx)) | intersection-of-two-arrays | [Python] Easy Python solution | thesaderror | 0 | 3 | intersection of two arrays | 349 | 0.704 | Easy | 6,162 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2780070/Python-solution-with-dictionary | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
ans = dict() #you can use a set()
answer = set()
for i in nums1:
if i in ans:
ans[i] += 1
else:
ans[i] = 0
for j in nums2:
if j in ans:
answer.add(j)
else:
continue
return answer | intersection-of-two-arrays | Python solution with dictionary | Siddhi_Dhonsale | 0 | 2 | intersection of two arrays | 349 | 0.704 | Easy | 6,163 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2779014/One-liner-Python-Solution | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
return list(set(nums1).intersection(set(nums2))) | intersection-of-two-arrays | One liner Python Solution | gpersonnat | 0 | 1 | intersection of two arrays | 349 | 0.704 | Easy | 6,164 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2778292/python-easy-solution | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
nums2 =list(set(nums2));
nums1 = list(set(nums1));
res = nums1 + nums2 ;
z , y=[],[];
for x in res:
if x not in z :
z.append(x);
else:
y.append(x);
return y | intersection-of-two-arrays | python easy solution | seifsoliman | 0 | 1 | intersection of two arrays | 349 | 0.704 | Easy | 6,165 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2758941/Python-Easy-Solution | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
res=[]
for num in nums1:
if num in nums2:
res.append(num)
return set(res) | intersection-of-two-arrays | Python Easy Solution | Aayushman19 | 0 | 2 | intersection of two arrays | 349 | 0.704 | Easy | 6,166 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2746387/Python3-solution-short-concise-one-line | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
return list(set(i for i in nums1 if i in set(i for i in nums2))) | intersection-of-two-arrays | Python3 solution; short, concise, one line | FaridehGhani | 0 | 4 | intersection of two arrays | 349 | 0.704 | Easy | 6,167 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2682097/python-easy | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
return list(set(nums1).intersection(set(nums2))) | intersection-of-two-arrays | python easy | changvijay54 | 0 | 4 | intersection of two arrays | 349 | 0.704 | Easy | 6,168 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2657348/Python3-(O(n%2Bm))-Faster-than-92-and-less-memory-usage-less-90 | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
hmap={}
ans=[]
m=len(nums2)
n=len(nums1)
if n>m:
for i in range(m):
hmap[nums2[i]]=1
for x in nums1:
if x in hmap and hmap[x]!=0:
hmap[x]=0
ans.append(x)
else:
for j in range(n):
hmap[nums1[j]]=1
for y in nums2:
if y in hmap and hmap[y]!=0:
hmap[y]=0
ans.append(y)
return ans | intersection-of-two-arrays | Python3 (O(n+m))- Faster than 92% and less memory usage < 90% | Mufeed-Amir | 0 | 29 | intersection of two arrays | 349 | 0.704 | Easy | 6,169 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2627482/Simple-Dictionary-solution-73.44-faster-TC-O(N) | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
dict_num = {}
for i in nums1:
if not i in dict_num:
dict_num[i] = 1
else:
dict_num[i] += 1
ans = []
for i in nums2:
if i in dict_num:
ans.append(i)
del dict_num[i]
return ans | intersection-of-two-arrays | Simple Dictionary solution ,73.44 % faster, TC O(N) | nik_praj | 0 | 15 | intersection of two arrays | 349 | 0.704 | Easy | 6,170 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2598289/Faster-than-91.30 | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
dic1 = set()
dic2 = set()
result = []
for i in range(len(nums1)):
dic1.add(nums1[i])
for i in range(len(nums2)):
dic2.add(nums2[i])
for val in dic1:
if val in dic2:
result.append(val)
return result | intersection-of-two-arrays | Faster than 91.30% | happinessss57 | 0 | 20 | intersection of two arrays | 349 | 0.704 | Easy | 6,171 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2593625/Python3-Solution-with-using-single-hashset | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
s = set(nums1)
res = []
for num in nums2:
if num in s:
res.append(num)
s.remove(num)
return res | intersection-of-two-arrays | [Python3] Solution with using single hashset | maosipov11 | 0 | 27 | intersection of two arrays | 349 | 0.704 | Easy | 6,172 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2568983/python-solution-95.25-faster-using-sets-and-intersection-function-only-one-line-code! | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
return list(set(nums1).intersection(set(nums2))) | intersection-of-two-arrays | python solution 95.25% faster using sets and intersection function, only one line code! | samanehghafouri | 0 | 28 | intersection of two arrays | 349 | 0.704 | Easy | 6,173 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2561818/Python-3-most-easy-one-liner-solution-(86-faster) | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
return set(nums1).intersection(set(nums2)) | intersection-of-two-arrays | Python 3 most easy one liner solution (86% faster) | khushie45 | 0 | 80 | intersection of two arrays | 349 | 0.704 | Easy | 6,174 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2546650/Simplest-Python-solution-possible | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
return set(nums1) & set(nums2) | intersection-of-two-arrays | Simplest Python solution possible | betaal | 0 | 31 | intersection of two arrays | 349 | 0.704 | Easy | 6,175 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2530784/Python-Fast-and-Simple-(-1-Liner-) | class Solution:
def intersection(self, n1: List[int], n2: List[int]) -> List[int]:
return set(n1).intersection(set(n2)) | intersection-of-two-arrays | Python Fast and Simple ( 1 Liner ) | SouravSingh49 | 0 | 60 | intersection of two arrays | 349 | 0.704 | Easy | 6,176 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2524573/Python-one-liner | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
return [i for i in set(nums1) if i in nums2] | intersection-of-two-arrays | Python one-liner | Mark_computer | 0 | 18 | intersection of two arrays | 349 | 0.704 | Easy | 6,177 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2524329/Simple-Python-defaultdict-solution | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
result = []
d = defaultdict(bool) # default is False
for n in nums1:
d[n] = True
for n in nums2:
if d[n]:
result.append(n)
d[n] = False
return result | intersection-of-two-arrays | Simple Python defaultdict solution | manualmsdos | 0 | 14 | intersection of two arrays | 349 | 0.704 | Easy | 6,178 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2484781/Python-(Simple-Solution-and-Beginner-Friendly) | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
arr = nums2 if len(nums1) > len(nums2) else nums1
arr2 = nums1 if len(nums1) > len(nums2) else nums2
output = set()
for i in arr:
if i in arr2 and i not in output:
output.add(i)
return output | intersection-of-two-arrays | Python (Simple Solution and Beginner-Friendly) | vishvavariya | 0 | 41 | intersection of two arrays | 349 | 0.704 | Easy | 6,179 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2424110/Simple-Approach-or-Beginners-or-one-line-or-Fast | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
return set(nums1).intersection(set(nums2)) | intersection-of-two-arrays | ✔ Simple Approach | Beginners | one-line | Fast | ayushigupta2409 | 0 | 59 | intersection of two arrays | 349 | 0.704 | Easy | 6,180 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2382217/Python-Two-pointers | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
result = set()
for i in range(len(nums1)):
for j in range(len(nums2)):
if nums1[i] == nums2[j]:
result.add(nums2[j])
return result | intersection-of-two-arrays | Python [Two pointers] | Yauhenish | 0 | 26 | intersection of two arrays | 349 | 0.704 | Easy | 6,181 |
https://leetcode.com/problems/intersection-of-two-arrays/discuss/2351335/Python-One-Liner-Faster-Solution-using-set().intersection() | class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
return list(set(nums1).intersection(set(nums2))) | intersection-of-two-arrays | [Python] One Liner Faster Solution using set().intersection() | Buntynara | 0 | 10 | intersection of two arrays | 349 | 0.704 | Easy | 6,182 |
https://leetcode.com/problems/intersection-of-two-arrays-ii/discuss/1231807/easy-or-two-pointer-method-or-python | class Solution:
def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]:
nums1.sort()
nums2.sort()
one=0
two=0
ans=[]
while one < len(nums1) and two < len(nums2):
if nums1[one] < nums2[two]:
one+=1
elif nums2[two] < nums1[one]:
two+=1
else:
ans.append(nums1[one])
one+=1
two+=1
return ans | intersection-of-two-arrays-ii | easy | two pointer method | python | chikushen99 | 23 | 1,300 | intersection of two arrays ii | 350 | 0.556 | Easy | 6,183 |
https://leetcode.com/problems/intersection-of-two-arrays-ii/discuss/1785178/Python-Simple-Python-Solution-By-Counting-Element-in-Both-List | class Solution:
def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]:
result = []
for i in nums1:
if i in nums2 and i not in result:
result = result + [i]*min(nums1.count(i),nums2.count(i))
return result | intersection-of-two-arrays-ii | [ Python ] ✔✔ Simple Python Solution By Counting Element in Both List 🔥✌ | ASHOK_KUMAR_MEGHVANSHI | 11 | 508 | intersection of two arrays ii | 350 | 0.556 | Easy | 6,184 |
https://leetcode.com/problems/intersection-of-two-arrays-ii/discuss/1495437/Python-or-Explained-or-Easy-to-Understand | class Solution:
def intersect(self, nums1: list[int], nums2: list[int]) -> list[int]:
counter1, counter2 = Counter(nums1), Counter(nums2)
counter = counter1 & counter2
return list(counter.elements()) | intersection-of-two-arrays-ii | ✅ Python | Explained | Easy to Understand | IamUday | 7 | 627 | intersection of two arrays ii | 350 | 0.556 | Easy | 6,185 |
https://leetcode.com/problems/intersection-of-two-arrays-ii/discuss/2036264/Python-Beats-98-Multiple-Solutions-One-linerTwo-liners-Simple-Clean-use-Dictionary | class Solution:
def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]:
dict1, dict2 = Counter(nums1), Counter(nums2)
res = []
for key in dict1:
if key in dict1 and key in dict2:
res += [key] * min(dict1[key], dict2[key])
return res | intersection-of-two-arrays-ii | [Python] Beats 98% Multiple Solutions One-liner/Two-liners Simple Clean use Dictionary | ziaiz-zythoniz | 4 | 166 | intersection of two arrays ii | 350 | 0.556 | Easy | 6,186 |
https://leetcode.com/problems/intersection-of-two-arrays-ii/discuss/2036264/Python-Beats-98-Multiple-Solutions-One-linerTwo-liners-Simple-Clean-use-Dictionary | class Solution:
def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]:
d1, d2 = Counter(nums1), Counter(nums2)
return [num for num in d1 & d2 for count in range(min(d1[num], d2[num]))] | intersection-of-two-arrays-ii | [Python] Beats 98% Multiple Solutions One-liner/Two-liners Simple Clean use Dictionary | ziaiz-zythoniz | 4 | 166 | intersection of two arrays ii | 350 | 0.556 | Easy | 6,187 |
https://leetcode.com/problems/intersection-of-two-arrays-ii/discuss/2036264/Python-Beats-98-Multiple-Solutions-One-linerTwo-liners-Simple-Clean-use-Dictionary | class Solution:
def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]:
return [num for num in Counter(nums1) & Counter(nums2) for count in range(min(Counter(nums2)[num], Counter(nums2)[num]))] | intersection-of-two-arrays-ii | [Python] Beats 98% Multiple Solutions One-liner/Two-liners Simple Clean use Dictionary | ziaiz-zythoniz | 4 | 166 | intersection of two arrays ii | 350 | 0.556 | Easy | 6,188 |
https://leetcode.com/problems/intersection-of-two-arrays-ii/discuss/2036264/Python-Beats-98-Multiple-Solutions-One-linerTwo-liners-Simple-Clean-use-Dictionary | class Solution:
def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]:
dict1, dict2 = Counter(nums1), Counter(nums2)
return list((dict1 & dict2).elements()) | intersection-of-two-arrays-ii | [Python] Beats 98% Multiple Solutions One-liner/Two-liners Simple Clean use Dictionary | ziaiz-zythoniz | 4 | 166 | intersection of two arrays ii | 350 | 0.556 | Easy | 6,189 |
https://leetcode.com/problems/intersection-of-two-arrays-ii/discuss/1975754/Python-One-liner-Counter-Intersection-Operation | class Solution:
def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]:
return list((Counter(nums1)&Counter(nums2)).elements()) | intersection-of-two-arrays-ii | [Python] One-liner Counter Intersection Operation | zayne-siew | 4 | 163 | intersection of two arrays ii | 350 | 0.556 | Easy | 6,190 |
https://leetcode.com/problems/intersection-of-two-arrays-ii/discuss/1579388/Python-sol-O(n%2Bm)-using-one-dictionary | class Solution:
def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]:
res = []
dic = {}
for i in nums1:
if i in dic:
dic[i] += 1
else:
dic[i] = 1
for j in nums2:
if j in dic and dic[j] != 0:
res.append(j)
dic[j] -= 1
return res | intersection-of-two-arrays-ii | Python sol O(n+m) , using one dictionary | elayan | 4 | 305 | intersection of two arrays ii | 350 | 0.556 | Easy | 6,191 |
https://leetcode.com/problems/intersection-of-two-arrays-ii/discuss/2595333/SIMPLE-PYTHON3-SOLUTION-faster-using-collections | class Solution:
def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]:
c1 = collections.Counter(nums1)
c2 = collections.Counter(nums2)
res = []
for key in c1:
if key in c2:
res+= [key]*(min(c1[key],c2[key]))
return res | intersection-of-two-arrays-ii | ✅✔ SIMPLE PYTHON3 SOLUTION ✅✔faster using collections | rajukommula | 3 | 221 | intersection of two arrays ii | 350 | 0.556 | Easy | 6,192 |
https://leetcode.com/problems/intersection-of-two-arrays-ii/discuss/2505772/Easy-Python3-code | class Solution:
def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]:
ans=[]
for i in nums1:
if i in nums2:
ans.append(i)
nums2.remove(i)
return ans | intersection-of-two-arrays-ii | Easy Python3 code | khushie45 | 3 | 165 | intersection of two arrays ii | 350 | 0.556 | Easy | 6,193 |
https://leetcode.com/problems/intersection-of-two-arrays-ii/discuss/1249869/Pythonic-Solution-O(n2) | class Solution:
def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]:
output=[]
for i in set(nums1):
x=min(nums1.count(i),nums2.count(i))
if x:
output=output+[i]*x
return output | intersection-of-two-arrays-ii | Pythonic Solution O(n^2) | _jorjis | 3 | 316 | intersection of two arrays ii | 350 | 0.556 | Easy | 6,194 |
https://leetcode.com/problems/intersection-of-two-arrays-ii/discuss/1149292/Python-3-Solution-using-hashtables-beats-94-in-runtime-(sometimes-lol) | class Solution:
def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]:
d1 = dict()
d2 = dict()
intersection = list()
# Count the occurrences of each element in nums1 and nums2.
for i in nums1:
d1[i] = d1.get(i,0) + 1
for i in nums2:
d2[i] = d2.get(i,0) + 1
smaller_dict = None
# Determine which dictionary has less unique elements.
if len(d1) == len(d2) or len(d1) < len(d2):
smaller_dict = d1
else:
smaller_dict = d2
# Iterate through the smaller dictionary and if the element exists in
# in both dictionaries determine which has less copies
# and add that many copies to array being returned.
for key, val in smaller_dict.items():
if key in d1 and key in d2:
copies = min(d1[key], d2[key])
while copies != 0:
intersection.append(key)
copies -= 1
return intersection | intersection-of-two-arrays-ii | Python 3 Solution using hashtables beats 94% in runtime (sometimes lol) | CaffeineEnthusiast | 2 | 228 | intersection of two arrays ii | 350 | 0.556 | Easy | 6,195 |
https://leetcode.com/problems/intersection-of-two-arrays-ii/discuss/304855/Python3-Beat-100-concise-version | class Solution:
def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]:
from collections import Counter
if not nums1 or not nums2:
return []
a=Counter(nums1)
b=Counter(nums2)
res=a&b
return list(res.elements()) | intersection-of-two-arrays-ii | Python3 Beat 100% concise version | JasperZhou | 2 | 251 | intersection of two arrays ii | 350 | 0.556 | Easy | 6,196 |
https://leetcode.com/problems/intersection-of-two-arrays-ii/discuss/2424760/easy-approach-or-python | class Solution:
def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]:
ans=[]
for i in nums1:
if i in nums2:
ans.append(i)
nums2.remove(i)
return ans | intersection-of-two-arrays-ii | easy approach | python | ayushigupta2409 | 1 | 166 | intersection of two arrays ii | 350 | 0.556 | Easy | 6,197 |
https://leetcode.com/problems/intersection-of-two-arrays-ii/discuss/2294216/89-memory-efficient-solution-or-Python3-or-Easy-understanding | class Solution:
def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]:
a = []
k=len(nums1)
for i in range(k):
if(nums1[i] in nums2):
a.append(nums1[i])
ind = nums2.index(nums1[i])
nums2[ind]= '_'
return a | intersection-of-two-arrays-ii | 89% memory efficient solution | Python3 | Easy understanding | AngelaInfantaJerome | 1 | 181 | intersection of two arrays ii | 350 | 0.556 | Easy | 6,198 |
https://leetcode.com/problems/intersection-of-two-arrays-ii/discuss/2127122/two-pointer-and-hashmap | class Solution:
def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]:
res = []
nums1, nums2 = sorted(nums1), sorted(nums2)
i = j = 0
while i < len(nums1) and j < len(nums2):
if nums1[i] == nums2[j]:
res.append(nums1[i])
i += 1
j += 1
elif nums1[i] < nums2[j]:
i += 1
else:
j += 1
return res | intersection-of-two-arrays-ii | two pointer & hashmap | andrewnerdimo | 1 | 234 | intersection of two arrays ii | 350 | 0.556 | Easy | 6,199 |
Subsets and Splits