post_href
stringlengths 57
213
| python_solutions
stringlengths 71
22.3k
| slug
stringlengths 3
77
| post_title
stringlengths 1
100
| user
stringlengths 3
29
| upvotes
int64 -20
1.2k
| views
int64 0
60.9k
| problem_title
stringlengths 3
77
| number
int64 1
2.48k
| acceptance
float64 0.14
0.91
| difficulty
stringclasses 3
values | __index_level_0__
int64 0
34k
|
---|---|---|---|---|---|---|---|---|---|---|---|
https://leetcode.com/problems/guess-number-higher-or-lower-ii/discuss/2273592/Python3-oror-dp-binSearch-w-explanation-oror-TM%3A-96-47 | class Solution:
def getMoneyAmount(self, n):
# For an interval [l,r], we choose a num, which if incorrect still
# allows us to know whether the secret# is in either [l,num-1] or
# [num+1,r]. So, the worst-case (w-c) cost is
#
# num + max(w-c cost in [l,num-1], w-c cost in [num+1,r])
#
# We do this by recursion and binary search, starting with [1,n].
@lru_cache(None) # <-- we cache function results to avoid recomputing them
def dp(l = 1, r = n)-> int:
if r-l < 1: return 0 # <-- base case for the recursion; one number in [l,r]
ans = 1000 # <-- the answer for n = 200 is 952
for choice in range((l+r)//2,r):
ans = min(ans,choice+max(dp(l,choice-1),dp(choice+1,r)))
return ans
return dp() | guess-number-higher-or-lower-ii | Python3 || dp, binSearch w/ explanation || T/M: 96%/ 47% | warrenruud | 2 | 171 | guess number higher or lower ii | 375 | 0.465 | Medium | 6,400 |
https://leetcode.com/problems/guess-number-higher-or-lower-ii/discuss/2053913/Python-easy-to-read-and-understand-or-recusion-%2B-memoization | class Solution:
def solve(self, start, end):
if start >= end:
return 0
if (start, end) in self.d:
return self.d[(start, end)]
self.d[(start, end)] = float("inf")
for i in range(start, end+1):
cost1 = self.solve(start, i-1) + i
cost2 = self.solve(i+1, end) + i
cost = max(cost1, cost2)
self.d[(start, end)] = min(self.d[(start, end)], cost)
return self.d[(start, end)]
def getMoneyAmount(self, n: int) -> int:
self.d = {}
return self.solve(1, n) | guess-number-higher-or-lower-ii | Python easy to read and understand | recusion + memoization | sanial2001 | 1 | 233 | guess number higher or lower ii | 375 | 0.465 | Medium | 6,401 |
https://leetcode.com/problems/guess-number-higher-or-lower-ii/discuss/1416152/Python3-DP-solution-time-beats-70-space-beats-88 | class Solution:
def getMoneyAmount(self, n: int) -> int:
dp = [[0] * (n + 1) for _ in range(n + 1)]
for length in range(2, n + 1):
for left in range(1, n - length + 2):
right = left + length - 1
dp[left][right] = float('inf')
for k in range(left + 1, right):
dp[left][right] = min(dp[left][right], max(dp[left][k - 1], dp[k + 1][right]) + k)
if left + 1 = right:
dp[left][left + 1] = left
return dp[1][n]
#the idea of my solution is to find the best case in worst case. what does it mean?
#we know the big interval relys on small interval, so we will only study the smallest case
#if the interval is 0, dp[i][i] what is the value of this interval? it has to be 0, because you dont need to guess
#what if the interval is 2, impossible to have interval 1, interval is 2 the value should be the smaller number
#lets look at this example: [1,2] [2,3] you definatly gonna pick the cheap one, because after you pick one the answer
#will be the another.
#because all the even interval will rely on the dp of interval 2, so once the dp[i][i + 1] is solved, the whole problem is solved ! | guess-number-higher-or-lower-ii | Python3, DP solution, time beats 70%, space beats 88% | AustinLau | 1 | 333 | guess number higher or lower ii | 375 | 0.465 | Medium | 6,402 |
https://leetcode.com/problems/guess-number-higher-or-lower-ii/discuss/813676/Python3-top-down-dp | class Solution:
def getMoneyAmount(self, n: int) -> int:
@lru_cache(None)
def fn(lo, hi):
"""The cost of guessing a number where lo <= x <= hi."""
if lo >= hi: return 0 # no need to guess
ans = inf
for mid in range(lo, hi+1):
ans = min(ans, mid + max(fn(lo, mid-1), fn(mid+1, hi)))
return ans
return fn(1, n) | guess-number-higher-or-lower-ii | [Python3] top-down dp | ye15 | 1 | 202 | guess number higher or lower ii | 375 | 0.465 | Medium | 6,403 |
https://leetcode.com/problems/guess-number-higher-or-lower-ii/discuss/2842707/python-solution-Guess-Number-Higher-or-Lower-II | class Solution:
def getMoneyAmount(self, n: int) -> int:
dp = [[0 for i in range(n+2)] for j in range(n+2)]
for start in range(n,0,-1):
for end in range(start,n+1):
if start == end:
continue
else:
ans = float('inf')
for i in range(start,end+1):
ans = min(ans, i + max(dp[start][i-1],dp[i+1][end] ))
dp[start][end] = ans
return dp[1][n] | guess-number-higher-or-lower-ii | python solution Guess Number Higher or Lower II | sarthakchawande14 | 0 | 2 | guess number higher or lower ii | 375 | 0.465 | Medium | 6,404 |
https://leetcode.com/problems/guess-number-higher-or-lower-ii/discuss/1190265/python-or-dp | class Solution:
def getMoneyAmount(self, n: int) -> int:
new=[[0 for i in range(0,n+1)] for i in range(0,n+1)]
for gap in range(1,n+1):
for j in range(gap,n+1):
i=j-gap
if gap==1:
new[i][j]=min(i,j)
continue
if i==0 or j==0:
continue
mini=8765432
for k in range(i,j+1):
if k==i:
ans=i+new[i+1][j]
elif k==j:
ans=j+new[i][j-1]
else:
ans=k+max(new[k+1][j],new[i][k-1])
mini=min(ans,mini)
new[i][j]=mini
print(new)
return new[1][-1] | guess-number-higher-or-lower-ii | python | dp | heisenbarg | 0 | 228 | guess number higher or lower ii | 375 | 0.465 | Medium | 6,405 |
https://leetcode.com/problems/wiggle-subsequence/discuss/2230152/Beats-73.3-Simple-Python-Solution-Greedy | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
length = 0
curr = 0
for i in range(len(nums) - 1):
if curr == 0 and nums[i + 1] - nums[i] != 0:
length += 1
curr = nums[i + 1] - nums[i]
if curr < 0 and nums[i + 1] - nums[i] > 0:
length += 1
curr = nums[i + 1] - nums[i]
elif curr > 0 and nums[i + 1] - nums[i] < 0:
length += 1
curr = nums[i + 1] - nums[i]
else:
continue
return length + 1 | wiggle-subsequence | Beats 73.3% - Simple Python Solution - Greedy | 7yler | 3 | 183 | wiggle subsequence | 376 | 0.482 | Medium | 6,406 |
https://leetcode.com/problems/wiggle-subsequence/discuss/1406220/Python-3-oror-Dynamicprogramming-oror-recursion-%2B-memoization-oror-self-explanatory | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
memo={}
def recurse(index,state):
if index==len(nums):
return 0
if index in memo:
return memo[index]
ans=1
for i in range(index+1,len(nums)):
if state=='positive' and nums[i]-nums[index]<0:
ans=max(ans,1+recurse(i,'negative'))
elif state=='negative'and nums[i]-nums[index]>0:
ans=max(ans,1+recurse(i,'positive'))
memo[index]=ans
return memo[index]
res=float('-inf')
for i in range(1,len(nums)):
if nums[i]-nums[i-1]>0:
res=max(res,1+recurse(i,'positive'))
elif nums[i]-nums[i-1]<0:
res=max(res,1+recurse(i,'negative'))
if res==float('-inf'):
return 1
return res | wiggle-subsequence | Python 3 || Dynamicprogramming || recursion + memoization || self-explanatory | bug_buster | 3 | 305 | wiggle subsequence | 376 | 0.482 | Medium | 6,407 |
https://leetcode.com/problems/wiggle-subsequence/discuss/2231991/Python3-solution-using-DP-top-down-approach | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
dp = {}
result = [0]
def getSign(diff):
if diff < 0:
return "N"
if diff > 0:
return "P"
return "E"
def getResult(index,sign):
if index >= len(nums) - 1:
return 1
if index in dp:
return dp[index]
consider = 0
dontConsider = 0
x = getSign(nums[index] - nums[index+1])
if not sign and x!="E":
consider = 1 + getResult(index+1, x)
elif sign == "P" and x == "N":
consider = 1 + getResult(index+1, x)
elif sign == "N" and x == "P":
consider = 1 + getResult(index+1, x)
dontConsider = getResult(index+1,sign)
dp[index] = max(consider, dontConsider)
result[0] = max(result[0], dp[index])
return dp[index]
getResult(0,"")
if result[0] == 0 and len(dp)==0:
return len(nums)
return result[0] | wiggle-subsequence | 📌 Python3 solution using DP top down approach | Dark_wolf_jss | 2 | 26 | wiggle subsequence | 376 | 0.482 | Medium | 6,408 |
https://leetcode.com/problems/wiggle-subsequence/discuss/2715354/Stack-O(n)-Time-Solution | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
flag = 1
stack = [nums[0]]
i = 1
while i < len(nums) and nums[i] == nums[i-1]:
i += 1
if i < len(nums):
if nums[i-1] > nums[i]: flag = -1
stack.append(nums[i])
for num in nums[i+1:]:
if num == stack[-1]: continue
if flag == 1: # Increasing
if num > stack[-1]: stack.pop()
else: flag *= -1
else: # flag = -1 => Decreasing
if num < stack[-1]: stack.pop()
else: flag *= -1
stack.append(num)
return len(stack) | wiggle-subsequence | Stack O(n) Time Solution ✅ | samirpaul1 | 1 | 62 | wiggle subsequence | 376 | 0.482 | Medium | 6,409 |
https://leetcode.com/problems/wiggle-subsequence/discuss/2274937/Python-or-O(N)-or-Dynamic-Programming-or-Simple-and-easy-explanation | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
#create 2 lists to capture positive and negative wiggle sequences
pos = [1 for _ in range(len(nums))]
neg = [1 for _ in range(len(nums))]
for i in range(1,len(nums)):
# if the current number is > previous, we add 1 to the last occurence of negative sequence
# and store it as a positive sequence
if nums[i]>nums[i-1]:
pos[i] = neg[i-1]+1
neg[i] = neg[i-1]
# if the current number is < previous, we add 1 to the last occurence of positive sequence
# and store it as a negative sequence
elif nums[i]<nums[i-1]:
neg[i] = pos[i-1]+1
pos[i] = pos[i-1]
# else we just keep copy the previous sequence until a positive or negative sequence occurs
else:
neg[i] = neg[i-1]
pos[i] = pos[i-1]
#max wiggle subsequence can either come from positive sequence or negative sequence
return max(pos[-1],neg[-1]) | wiggle-subsequence | Python | O(N) | Dynamic Programming | Simple and easy explanation | vishyarjun1991 | 1 | 54 | wiggle subsequence | 376 | 0.482 | Medium | 6,410 |
https://leetcode.com/problems/wiggle-subsequence/discuss/2232131/very-easy-python-solution-(39-ms-faster-than-86.63) | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
inc = 1
dec = 1
for i in range(1, len(nums)):
if nums[i] > nums[i - 1]:
inc = dec + 1
elif nums[i] < nums[i-1]:
dec = inc + 1
return max(inc, dec) | wiggle-subsequence | very easy python solution (39 ms, faster than 86.63%) | hamza94 | 1 | 31 | wiggle subsequence | 376 | 0.482 | Medium | 6,411 |
https://leetcode.com/problems/wiggle-subsequence/discuss/2229719/WEEB-DOES-PYTHONC%2B%2B-DP-(2-METHODS) | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
dp = [0 for i in range(len(nums)-1)]
isPositive = False
for i in range(len(nums)-1):
if nums[i+1] - nums[i] > 0 and not isPositive:
isPositive = True
dp[i] = dp[i-1] + 1
elif nums[i+1] - nums[i] > 0 and isPositive:
dp[i] = dp[i-1]
elif nums[i+1] - nums[i] < 0 and not isPositive:
if dp[i-1] == 0:
dp[i] = dp[i-1] + 1
else:
dp[i] = dp[i-1]
elif nums[i+1] - nums[i] < 0 and isPositive:
isPositive = False
dp[i] = dp[i-1] + 1
else: # nums[i+1] - nums[i] == 0
dp[i] = dp[i-1]
return dp[-1] + 1 if len(nums)>1 else 1 | wiggle-subsequence | WEEB DOES PYTHON/C++ DP (2 METHODS) | Skywalker5423 | 1 | 75 | wiggle subsequence | 376 | 0.482 | Medium | 6,412 |
https://leetcode.com/problems/wiggle-subsequence/discuss/2229719/WEEB-DOES-PYTHONC%2B%2B-DP-(2-METHODS) | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
result = 0
isPositive = False
for i in range(len(nums)-1):
if nums[i+1] - nums[i] > 0 and not isPositive:
isPositive = True
result += 1
elif nums[i+1] - nums[i] < 0 and not isPositive:
if result == 0:
result += 1
elif nums[i+1] - nums[i] < 0 and isPositive:
isPositive = False
result += 1
return result + 1 | wiggle-subsequence | WEEB DOES PYTHON/C++ DP (2 METHODS) | Skywalker5423 | 1 | 75 | wiggle subsequence | 376 | 0.482 | Medium | 6,413 |
https://leetcode.com/problems/wiggle-subsequence/discuss/2738520/DP-oror-91.97-Faster-oror-Memoization-oror-Tabulation-oror-Space-Optimization | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
n = len(nums)
# SPACE OPTIMIZATION
next_row = [0 for j in range(2)]
curr_row = [0 for j in range(2)]
for index in range(n-2, -1, -1):
curr_row = [0 for j in range(2)]
for lastSign in range(2):
if lastSign == 1:
ans1 = 0
ans2 = 0
if nums[index]-nums[index+1] < 0:
ans1 = 1+next_row[0]
ans2 = next_row[lastSign]
curr_row[1] = max(ans1, ans2)
elif lastSign == 0:
ans1 = 0
ans2 = 0
if nums[index]-nums[index+1] > 0:
ans1 = 1+next_row[1]
ans2 = next_row[lastSign]
curr_row[0] = max(ans1, ans2)
next_row = curr_row
return 1+max(curr_row)
# TABULATION
dp = [[-1 for j in range(2)] for i in range(n)]
dp[n-1][0] = 0
dp[n-1][1] = 0
for index in range(n-2, -1, -1):
for lastSign in range(2):
if lastSign == 1:
ans1 = 0
ans2 = 0
if nums[index]-nums[index+1] < 0:
ans1 = 1+dp[index+1][0]
ans2 = dp[index+1][lastSign]
dp[index][1] = max(ans1, ans2)
elif lastSign == 0:
ans1 = 0
ans2 = 0
if nums[index]-nums[index+1] > 0:
ans1 = 1+dp[index+1][1]
ans2 = dp[index+1][lastSign]
dp[index][0] = max(ans1, ans2)
return 1+max(dp[0])
# MEMOIZATION
def helper(index, lastSign):
nonlocal n
if index+1 == n:
return 0
ans1 = 0
ans2 = 0
if lastSign == 'pos':
if dp[index][1] != -1:
return dp[index][1]
else:
if dp[index][0] != -1:
return dp[index][0]
if lastSign == 'pos':
ans1 = 0
ans2 = 0
if nums[index]-nums[index+1] < 0:
ans1 = 1+helper(index+1, 'neg')
ans2 = helper(index+1, lastSign)
dp[index][1] = max(ans1, ans2)
return max(ans1, ans2)
elif lastSign == 'neg':
ans1 = 0
ans2 = 0
if nums[index]-nums[index+1] > 0:
ans1 = 1+helper(index+1, 'pos')
ans2 = helper(index+1, lastSign)
dp[index][0] = max(ans1, ans2)
return max(ans1,ans2)
return 1 + max(helper(0, 'pos'), helper(0, 'neg')) | wiggle-subsequence | DP || 91.97% Faster || Memoization || Tabulation || Space Optimization | shreya_pattewar | 0 | 12 | wiggle subsequence | 376 | 0.482 | Medium | 6,414 |
https://leetcode.com/problems/wiggle-subsequence/discuss/2519979/Python-95-faster | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
dp = [nums[i+1]-nums[i] for i in range(len(nums)-1) if nums[i]!=nums[i+1]]
if not dp:
return 1
cur = 2 # base case
for i in range(len(dp)-1):
if dp[i]>0 and dp[i+1]<0 or dp[i]<0 and dp[i+1]>0:
cur+=1
return cur | wiggle-subsequence | Python 95 % faster | Abhi_009 | 0 | 97 | wiggle subsequence | 376 | 0.482 | Medium | 6,415 |
https://leetcode.com/problems/wiggle-subsequence/discuss/2328275/Python-Simple-Faster-than-89.45-O(n)-oror-Documented | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
diffs = []
# calculate differences excluind zeros
for i in range(1, len(nums)):
diff = nums[i-1]-nums[i]
if diff != 0:
diffs.append(diff)
# if diff is empty means, minimum 1 sub-sequence exist because 1 <= nums.length
if not diffs: return 1
# traverse the differcens, starting from 2nd element
count = 2
for i in range(1, len(diffs)):
if (diffs[i-1]>0 and diffs[i]<0) or (diffs[i]>0 and diffs[i-1]<0):
count += 1
# return the result
return count | wiggle-subsequence | [Python] Simple Faster than 89.45% - O(n) || Documented | Buntynara | 0 | 13 | wiggle subsequence | 376 | 0.482 | Medium | 6,416 |
https://leetcode.com/problems/wiggle-subsequence/discuss/2233543/Python-solution-or-Wiggle-Subsequence | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
if(len(nums) < 2):
return len(nums)
prevDiff = nums[1] - nums[0]
if prevDiff != 0: count = 2
else: count = 1
for i in range(2,len(nums)):
diff = nums[i] - nums[i-1]
if (prevDiff >= 0 and diff < 0) or (prevDiff <= 0 and diff > 0):
count += 1
prevDiff = diff
return count | wiggle-subsequence | Python solution | Wiggle Subsequence | nishanrahman1994 | 0 | 4 | wiggle subsequence | 376 | 0.482 | Medium | 6,417 |
https://leetcode.com/problems/wiggle-subsequence/discuss/2233539/Easy-to-understand-O-(N)-Python | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
longest_substring_ending_downwards = 1
longest_substring_ending_upwards = 1
for prev, curr in zip(nums, nums[1:]):
if prev > curr:
longest_substring_ending_downwards = longest_substring_ending_upwards + 1
elif prev < curr:
longest_substring_ending_upwards = longest_substring_ending_downwards + 1
return max(longest_substring_ending_downwards, longest_substring_ending_upwards) | wiggle-subsequence | Easy to understand O (N) Python | christianantonyquero | 0 | 35 | wiggle subsequence | 376 | 0.482 | Medium | 6,418 |
https://leetcode.com/problems/wiggle-subsequence/discuss/2233095/Simple-Python-Solution | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
if len(nums) ==1 or max(nums) == 0 :
return 1
uni_list=[]
for num in nums:
if num not in uni_list:
uni_list.append(num)
last = uni_list[1] - uni_list[0]
current = 0
li=[uni_list[0], uni_list[1]]
for i in range(1, len(nums)):
current = nums[i] - nums[i-1]
if current * last < 0:
li.append(nums[i])
last = current
return len(li) | wiggle-subsequence | Simple Python Solution | salsabilelgharably | 0 | 9 | wiggle subsequence | 376 | 0.482 | Medium | 6,419 |
https://leetcode.com/problems/wiggle-subsequence/discuss/2232363/Python-Recursive-%2B-Memoization-%2B-DP-%2B-Greedy | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
# Get the maximum length provided when starting difference was either negative or positive
return max(self.helper(nums, 0, False), self.helper(nums, 0, True))
def helper(self, nums, index, isPrevPositive):
# If at last element, only one element is left, return 1 as maxLength wiggle
if index >= len(nums) - 1:
return 1
output1 = float("-inf")
output2 = float("-inf")
# If previous difference was positive
if isPrevPositive:
# If previous was positive, wiggle is only possible if next element is less than
# current, so that difference can be negative
# if next element is less than current element,
# take that element, and increase the wiggle
if nums[index + 1] < nums[index]:
output1 = 1 + self.helper(nums, index + 1, False)
else:
# Don't take the element
output1 = self.helper(nums, index + 1, isPrevPositive)
# If previous difference was negative
else:
# Same as above, next element should be greater than current to make it wiggle
if nums[index + 1] > nums[index]:
output2 = 1 + self.helper(nums, index + 1, True)
# else leave the element
else:
output2 = self.helper(nums, index + 1, isPrevPositive)
# return the max length of wiggle from both cases
return max(output1, output2) | wiggle-subsequence | Python Recursive + Memoization + DP + Greedy | zippysphinx | 0 | 30 | wiggle subsequence | 376 | 0.482 | Medium | 6,420 |
https://leetcode.com/problems/wiggle-subsequence/discuss/2232363/Python-Recursive-%2B-Memoization-%2B-DP-%2B-Greedy | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
memo = [-1 for _ in range(len(nums) + 1)]
return max(self.helper(nums, 0, False, memo.copy()), self.helper(nums, 0, True, memo.copy()))
def helper(self, nums, index, isPrevPositive, memo):
if index >= len(nums) - 1:
return 1
if memo[index] != -1:
return memo[index]
output1 = float("-inf")
output2 = float("-inf")
if isPrevPositive:
if nums[index + 1] < nums[index]:
output1 = 1 + self.helper(nums, index + 1, False, memo)
else:
output1 = self.helper(nums, index + 1, isPrevPositive, memo)
else:
if nums[index + 1] > nums[index]:
output2 = 1 + self.helper(nums, index + 1, True, memo)
else:
output2 = self.helper(nums, index + 1, isPrevPositive, memo)
memo[index] = max(output1, output2)
return memo[index] | wiggle-subsequence | Python Recursive + Memoization + DP + Greedy | zippysphinx | 0 | 30 | wiggle subsequence | 376 | 0.482 | Medium | 6,421 |
https://leetcode.com/problems/wiggle-subsequence/discuss/2232363/Python-Recursive-%2B-Memoization-%2B-DP-%2B-Greedy | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
n = len(nums)
# For Single element, maxLength = 1
up = 1
down = 1
for i in range(1, len(nums)):
# Now, If this element is smaller than previous,
# means it is a down element, therefore
# Down will be incremented,
# SO we will make down = 1 + maxLength of "UP" upto that element
# because for this to be down and considered, previous should be "UP" element
if nums[i] < nums[i - 1]:
down = up + 1
# Same case for the element greater than previous element
elif nums[i] > nums[i - 1]:
up = down + 1
return max(up, down) | wiggle-subsequence | Python Recursive + Memoization + DP + Greedy | zippysphinx | 0 | 30 | wiggle subsequence | 376 | 0.482 | Medium | 6,422 |
https://leetcode.com/problems/wiggle-subsequence/discuss/2232363/Python-Recursive-%2B-Memoization-%2B-DP-%2B-Greedy | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
n = len(nums)
if n < 2:
return n
# calculate the first difference
prevDiff = nums[1] - nums[0]
# increase count, if first difference !- 0 else 1
count = 2 if prevDiff != 0 else 1
# Calculate other differences
for i in range(2, n):
diff = nums[i] - nums[i - 1]
# Only increase count when you have successfult combo
# if current difference is negative then previous must me positive
# if current difference is positive then previous must me negative
if (diff < 0 and prevDiff >= 0) or (diff > 0 and prevDiff <= 0):
count += 1
# Now, swap the current diff with prev difference
prevDiff = diff
return count | wiggle-subsequence | Python Recursive + Memoization + DP + Greedy | zippysphinx | 0 | 30 | wiggle subsequence | 376 | 0.482 | Medium | 6,423 |
https://leetcode.com/problems/wiggle-subsequence/discuss/2232076/Greedy-Approach-oror-Clean-Code | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
if len(nums) == 1:
return 1
increasing = 1
decreasing = 1
n = len(nums)
for i in range(1, n):
if nums[i] > nums[i - 1]:
increasing = decreasing + 1
elif nums[i] < nums[i - 1]:
decreasing = increasing + 1
return max(increasing, decreasing) | wiggle-subsequence | Greedy Approach || Clean Code | Vaibhav7860 | 0 | 11 | wiggle subsequence | 376 | 0.482 | Medium | 6,424 |
https://leetcode.com/problems/wiggle-subsequence/discuss/2231514/GolangGoPython-O(N)-Solution | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
idx = 1
while idx < len(nums) and nums[idx-1] == nums[idx]:
idx+=1
if idx == len(nums):
return 1
up = nums[idx-1] < nums[idx]
counter = 2
for i in range(1,len(nums)):
if (up and nums[i-1] > nums[i]) or (not up and nums[i-1] < nums[i]):
counter+=1
up = not up
return counter | wiggle-subsequence | Golang/Go/Python O(N) Solution | vtalantsev | 0 | 6 | wiggle subsequence | 376 | 0.482 | Medium | 6,425 |
https://leetcode.com/problems/wiggle-subsequence/discuss/2231248/Python3-O(n)-Iterative-Greedy | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
if len(nums) == 0:
return 0
elif len(nums) == 1:
return 1
l_neg = 1 # Maximum length of wiggle starting with negative diff
c_neg = nums[0] # Current number for wiggle starting with negative diff
b_neg = True # True = looking for numbers smaller than c_neg. False = looking for numbers larger than c_neg
l_pos = 1 # Maximum length of wiggle starting with positive diff
c_pos = nums[0] # Current number for wiggle starting with positive diff
b_pos = True # True = looking for numbers greater than c_pos. False = looking for numbers smaller than c_pos
for i in range(1, len(nums)):
if nums[i] > c_pos:
if b_pos == True:
c_pos = nums[i]
l_pos += 1
b_pos = False
else:
c_pos = nums[i] # Take larger number, since it will be more likely to find smaller numbers later
elif nums[i] < c_pos:
if b_pos == False:
c_pos = nums[i]
l_pos += 1
b_pos = True
else:
c_pos = nums[i] # Take smaller number, since it will be more likely to find larger numbers later
if nums[i] < c_neg:
if b_neg == True:
c_neg = nums[i]
l_neg += 1
b_neg = False
else:
c_neg = nums[i] # Take smaller number, since it will be more likely to find larger numbers later
elif nums[i] > c_neg:
if b_neg == False:
c_neg = nums[i]
l_neg += 1
b_neg = True
else:
c_neg = nums[i] # Take larger number, since it will be more likely to find smaller numbers later
return max(l_neg, l_pos) | wiggle-subsequence | [Python3] O(n) Iterative Greedy | betaRobin | 0 | 5 | wiggle subsequence | 376 | 0.482 | Medium | 6,426 |
https://leetcode.com/problems/wiggle-subsequence/discuss/2231068/Python3-Solution-with-using-dp | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
up, down = 0, 0
for i in range(len(nums) - 1):
if nums[i] < nums[i + 1]:
up = down + 1
elif nums[i] > nums[i + 1]:
down = up + 1
return max(up, down) + 1 | wiggle-subsequence | [Python3] Solution with using dp | maosipov11 | 0 | 7 | wiggle subsequence | 376 | 0.482 | Medium | 6,427 |
https://leetcode.com/problems/wiggle-subsequence/discuss/2230722/376.-Wiggle-Subsequence | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
ans=[]
if len(nums)<2 or len(set(nums))<2:
return len(set(nums))
def isalt(nums):
dp=[1 for j in range(len(nums)+1)]
for i in range(0,len(nums)):
for j in range(0,i):
if nums[i]>0 and nums[j]<0:
dp[i]=max(dp[i],dp[j]+1)
elif nums[i]<0 and nums[j]>0:
dp[i]=max(dp[i],dp[j]+1)
return max(dp)+1
for i in range(len(nums)-1):
ans.append(nums[i+1]-nums[i])
return isalt(ans) | wiggle-subsequence | 376. Wiggle Subsequence | Revanth_Yanduru | 0 | 7 | wiggle subsequence | 376 | 0.482 | Medium | 6,428 |
https://leetcode.com/problems/wiggle-subsequence/discuss/2230053/Python-Simple-Python-Solution | class Solution:
def wiggleMaxLength(self, nums):
l, h = 1, 1
for i in range(1, len(nums)):
if nums[i-1] < nums[i]:
h = l + 1
elif nums[i-1] > nums[i]:
l = h + 1
return max(l,h) | wiggle-subsequence | [ Python ]✔✔ Simple Python Solution ✔✔✔ | vaibhav0077 | 0 | 20 | wiggle subsequence | 376 | 0.482 | Medium | 6,429 |
https://leetcode.com/problems/wiggle-subsequence/discuss/2229635/DP-python3 | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
if len(nums) < 2:
return len(nums)
down = 1
up = 1
for i in range(1, len(nums)):
if nums[i] > nums[i-1]:
up = down +1
elif nums[i] < nums[i-1]:
down = up + 1
return max(down, up)
``` | wiggle-subsequence | DP python3 | hilda8519 | 0 | 9 | wiggle subsequence | 376 | 0.482 | Medium | 6,430 |
https://leetcode.com/problems/wiggle-subsequence/discuss/1618199/Python3-Greedy-Solution-oror-TIME-O(N)-SPACE-O(1) | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
n = len(nums)
if n <= 1:
return n
count = 1
i = 1
while i < n and nums[i] == nums[i-1]:
i+=1
if i == n:
return count
prevDiff = nums[i]-nums[i-1]
while i < n:
if nums[i] == nums[i-1]:
i+=1
continue
else:
currDiff = nums[i] - nums[i-1]
if currDiff * prevDiff < 0:
count +=1
prevDiff = currDiff
i+=1
continue
return count+1 | wiggle-subsequence | Python3 Greedy Solution || TIME O(N), SPACE O(1) | henriducard | 0 | 61 | wiggle subsequence | 376 | 0.482 | Medium | 6,431 |
https://leetcode.com/problems/wiggle-subsequence/discuss/1585932/100-efficient-Simple-Code-(Python3)%3A-O(n) | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
n=len(nums)
ar=[]
ar.append(nums[0])
for i in range(1,n):
if i==1 or len(ar)==1:
if nums[i] > ar[0] or nums[i] < ar[0]:
ar.append(nums[i])
else:
pass
else:
if(nums[i]>ar[-1] ):
if (ar[-1]>=ar[-2]):
ar[-1]=nums[i]
else:
ar.append(nums[i])
else:
if(nums[i]==ar[-1]):
continue
if (ar[-1]<=ar[-2]):
ar[-1]=nums[i]
else:
ar.append(nums[i])
return len(ar) | wiggle-subsequence | 100% efficient Simple Code (Python3): O(n) | martian_rock | 0 | 112 | wiggle subsequence | 376 | 0.482 | Medium | 6,432 |
https://leetcode.com/problems/wiggle-subsequence/discuss/1364112/Simple-Easy-Python-solution-with-diagram-Explaination-or-O(n)-time-and-O(1)-space | class Solution:
def isValley(self, li, i, n):
if i-1>=0 and i+1 < n:
return li[i-1] > li[i] <= li[i+1]
elif i-1>=0:
return li[i-1] > li[i]
elif i+1 <n:
return li[i] <= li[i+1]
return True
def isPeak(self, li, i, n):
if i-1>=0 and i+1 < n:
return li[i-1] < li[i] >= li[i+1]
elif i-1>=0:
return li[i-1] < li[i]
elif i+1 <n:
return li[i] >= li[i+1]
return True
def wiggleMaxLength(self, nums: List[int]) -> int:
n = len(nums)
li = [nums[0]]
for i in range(1, n):
if nums[i] != li[-1]:
li.append(nums[i])
n = len(li)
cnt = 1
for i in range(1, n):
if self.isValley(li, i, n) or self.isPeak(li, i, n):
cnt+=1
return cnt | wiggle-subsequence | Simple Easy Python solution with diagram Explaination | O(n) time and O(1) space | sathwickreddy | 0 | 60 | wiggle subsequence | 376 | 0.482 | Medium | 6,433 |
https://leetcode.com/problems/wiggle-subsequence/discuss/1116147/Python-Simple-solution.-No-dp | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
total = 1
prev = None
for n1, n2 in zip(nums, nums[1:]):
if n1 == n2: continue
cur = n1 < n2
total += (prev != cur)
prev = cur
return total | wiggle-subsequence | [Python] Simple solution. No dp | JummyEgg | 0 | 34 | wiggle subsequence | 376 | 0.482 | Medium | 6,434 |
https://leetcode.com/problems/wiggle-subsequence/discuss/817530/Python3-count-extrema | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
ans = 1
prev = 0
for i in range(1, len(nums)):
diff = nums[i] - nums[i-1]
if diff:
if prev*diff <= 0: ans += 1
prev = diff
return ans | wiggle-subsequence | [Python3] count extrema | ye15 | 0 | 55 | wiggle subsequence | 376 | 0.482 | Medium | 6,435 |
https://leetcode.com/problems/wiggle-subsequence/discuss/514071/Python3-simple-solution-faster-than-99.62 | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
if len(nums)<2: return len(nums)
diffs=[]
for i in range(1,len(nums)):
if nums[i] - nums[i-1] !=0:
diffs.append(nums[i]-nums[i-1])
if not diffs: return 1
count=2
for i in range(1,len(diffs)):
if (diffs[i]*diffs[i-1])<0: count+=1
return count | wiggle-subsequence | Python3 simple solution faster than 99.62% | jb07 | 0 | 61 | wiggle subsequence | 376 | 0.482 | Medium | 6,436 |
https://leetcode.com/problems/wiggle-subsequence/discuss/1019353/Python-Dynamic-Programming-Approach | class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
if not nums:
return 0
less = [1]*len(nums)
more = [1]*len(nums)
res_l = 1
res_m = 1
for i in range(1,len(nums)):
for j in range(i):
if nums[i] > nums[j] and more[i] < less[j]+1:
more[i] = less[j]+1
res_m = more[i]
elif nums[i] < nums[j] and less[i] < more[j]+1:
less[i] = more[j]+1
res_l = less[i]
return max(res_l,res_m) | wiggle-subsequence | Python Dynamic Programming Approach | tgoel219 | -1 | 90 | wiggle subsequence | 376 | 0.482 | Medium | 6,437 |
https://leetcode.com/problems/combination-sum-iv/discuss/1272869/Python-3-Faster-than-96-(Super-Simple!) | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
waysToAdd = [0 for x in range(target+1)]
waysToAdd[0] = 1
for i in range(min(nums), target+1):
waysToAdd[i] = sum(waysToAdd[i-num] for num in nums if i-num >= 0)
return waysToAdd[-1] | combination-sum-iv | [Python 3] Faster than 96% (Super Simple!) | jodoko | 3 | 323 | combination sum iv | 377 | 0.521 | Medium | 6,438 |
https://leetcode.com/problems/combination-sum-iv/discuss/2383087/Python3-or-DP-or-Top-Down | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
dp = defaultdict(int)
return self.rec(nums, target, dp)
def rec(self, nums, target, dp):
if target == 0:
return 1
if target < 0:
return 0
if target in dp:
return dp[target]
for num in nums:
dp[target] += self.rec(nums, target-num, dp)
return dp[target] | combination-sum-iv | Python3 | DP | Top Down | khaydaraliev99 | 1 | 65 | combination sum iv | 377 | 0.521 | Medium | 6,439 |
https://leetcode.com/problems/combination-sum-iv/discuss/2382243/Two-solutions-using-dp-and-caching-in-Python | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
'''
Here we are doing bottom up DP and the base case would be =>
when target is zero how many way can we achieve that: 1 way
'''
dp = { 0 : 1 } # base case
for total in range(1,target+1):
dp[total] = 0
for n in nums:
dp[total] += dp.get(total-n,0)
return dp[target]
# /////// Solution 1 ///////
def combinations(self, nums, target, combination, lookup):
if target == 0:
return 1
if target < 0:
return 0
if target not in lookup:
ans = 0
for num in nums:
ans += self.combinations(nums, target-num, combination+[num], lookup)
lookup[target] = ans
return lookup[target]
def combinationSum4(self, nums: List[int], target: int) -> int:
nums.sort()
return self.combinations(nums, target, [], {}) | combination-sum-iv | Two solutions using dp and caching in Python | __Asrar | 1 | 23 | combination sum iv | 377 | 0.521 | Medium | 6,440 |
https://leetcode.com/problems/combination-sum-iv/discuss/2295228/Python-90-faster | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
dp = {}
def solve(nums, target, asf):
if asf in dp:
return dp[asf]
if asf<0:
return 0
if asf == 0:
return 1
ans = 0
for i in nums:
ans += solve(nums, target, asf-i)
dp[asf] = ans
return ans
return solve(nums,target,target) | combination-sum-iv | Python 90% faster | Abhi_009 | 1 | 101 | combination sum iv | 377 | 0.521 | Medium | 6,441 |
https://leetcode.com/problems/combination-sum-iv/discuss/738256/Python3-dp-(top-down-and-bottom-up) | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
@cache
def fn(n):
"""Return number of combinations adding up to n."""
if n <= 0: return int(n == 0)
return sum(fn(n - x) for x in nums)
return fn(target) | combination-sum-iv | [Python3] dp (top-down & bottom-up) | ye15 | 1 | 241 | combination sum iv | 377 | 0.521 | Medium | 6,442 |
https://leetcode.com/problems/combination-sum-iv/discuss/738256/Python3-dp-(top-down-and-bottom-up) | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
dp = [0]*(target + 1)
dp[0] = 1
for i in range(target):
if dp[i]:
for x in nums:
if i+x <= target: dp[i+x] += dp[i]
return dp[-1] | combination-sum-iv | [Python3] dp (top-down & bottom-up) | ye15 | 1 | 241 | combination sum iv | 377 | 0.521 | Medium | 6,443 |
https://leetcode.com/problems/combination-sum-iv/discuss/2656605/Simple-1D-Bottom-up-DP | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
dp = [0] * (target+1)
dp[-1] = 1 # base case
for amt in range(target, -1, -1):
for n in nums:
if amt + n <= target:
dp[amt] += dp[amt+n]
return dp[0] | combination-sum-iv | Simple 1D Bottom-up DP | jonathanbrophy47 | 0 | 8 | combination sum iv | 377 | 0.521 | Medium | 6,444 |
https://leetcode.com/problems/combination-sum-iv/discuss/2438049/Bottom-Up-Python-Faster-than-80 | class Solution(object):
def combinationSum4(self, nums, target):
dp=[1]+[0]*target
# print(dp)
for i in range(1,target+1):
for j in range(len(nums)):
if i-nums[j]>=0:
dp[i]+=dp[i-nums[j]]
return dp[target] | combination-sum-iv | Bottom Up Python Faster than 80% | Prithiviraj1927 | 0 | 54 | combination sum iv | 377 | 0.521 | Medium | 6,445 |
https://leetcode.com/problems/combination-sum-iv/discuss/2438019/Memoization-Top-Down-Approach-Python-Faster-than-90 | # class Solution:
class Solution(object):
def combinationSum4(self, nums, target):
dp=[-1]*target
def rec(j):
# print(j,dp)
if j>target:
return 0
if j==target:
return 1
if dp[j]!=-1:
return dp[j]
# dp[j]=0
su=0
for i in range(len(nums)):
su+=rec(nums[i]+j)
dp[j]=su
# print(dp)
return dp[j]
# dp[j]=su
# print(dp)
return rec(0) | combination-sum-iv | Memoization - Top Down Approach Python - Faster than 90% | Prithiviraj1927 | 0 | 45 | combination sum iv | 377 | 0.521 | Medium | 6,446 |
https://leetcode.com/problems/combination-sum-iv/discuss/2385119/Python-DP | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
dp = [0] * (target + 1)
dp[0] = 1
for t in range(min(nums), target + 1):
for n in nums:
if n <= t:
dp[t] += dp[t-n]
return dp[-1] | combination-sum-iv | Python, DP | blue_sky5 | 0 | 18 | combination sum iv | 377 | 0.521 | Medium | 6,447 |
https://leetcode.com/problems/combination-sum-iv/discuss/2384416/Easy-python-solution-or-Combination-Sum-IV | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
dp = { 0 : 1}
for total in range(1,target + 1):
dp[total] = 0
for n in nums:
dp[total] += dp.get(total - n, 0)
return dp[target] | combination-sum-iv | Easy python solution | Combination Sum IV | nishanrahman1994 | 0 | 16 | combination sum iv | 377 | 0.521 | Medium | 6,448 |
https://leetcode.com/problems/combination-sum-iv/discuss/2384320/Python-Dynamic-Programming-oror-Easy-to-understand | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
dp = {0 : 1}
for i in range(1, target+1):
dp[i] = 0
for j in nums:
dp[i] += dp.get(i - j, 0)
return dp[target] | combination-sum-iv | Python - Dynamic Programming || Easy to understand | dayaniravi123 | 0 | 6 | combination sum iv | 377 | 0.521 | Medium | 6,449 |
https://leetcode.com/problems/combination-sum-iv/discuss/2384142/Python-Simple-Faster-Solution-using-DP-oror-Documented | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
dp = [0]*(target+1) # dp array target+1 values
dp[0] = 1 # bottom value is 1
# start from 1 to target
for targetSum in range(1, target+1):
# try with all numbers one by one
for num in nums:
if targetSum-num >= 0: # if positive
dp[targetSum] += dp[targetSum-num] # count for given subproblem
# return the final solution
return dp[target] | combination-sum-iv | [Python] Simple Faster Solution using DP || Documented | Buntynara | 0 | 8 | combination sum iv | 377 | 0.521 | Medium | 6,450 |
https://leetcode.com/problems/combination-sum-iv/discuss/2382305/Recursive-solution-faster-than-80 | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
total = 0
@cache
def getCombinations(n):
t = 0
for i in nums:
s = n + i
if s == target:
t += 1
elif s < target:
t += getCombinations(s)
return t
for i in nums:
if i == target:
total += 1
total += getCombinations(i)
return total | combination-sum-iv | Recursive solution, faster than 80% | pradyumna04 | 0 | 19 | combination sum iv | 377 | 0.521 | Medium | 6,451 |
https://leetcode.com/problems/combination-sum-iv/discuss/2382213/Python3-Solution-with-using-dp | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
dp = [0] * (target + 1)
dp[0] = 1
for i in range(1, target + 1):
for num in nums:
if num <= i:
dp[i] += dp[i - num]
return dp[-1] | combination-sum-iv | [Python3] Solution with using dp | maosipov11 | 0 | 5 | combination sum iv | 377 | 0.521 | Medium | 6,452 |
https://leetcode.com/problems/combination-sum-iv/discuss/2381754/GolangPython-DP-solution | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
dp = [0 for _ in range(target+1)]
dp[0] = 1
for i in range(len(dp)):
for item in nums:
if i-item >= 0:
dp[i] += dp[i-item]
return dp[-1] | combination-sum-iv | Golang/Python DP solution | vtalantsev | 0 | 16 | combination sum iv | 377 | 0.521 | Medium | 6,453 |
https://leetcode.com/problems/combination-sum-iv/discuss/2381279/Basic-Memorization-Solution-or-Python | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
dp = [-1 for _ in range((target+1))]
def helper(cur):
if cur == target:
return 1
if dp[cur] != -1:
return dp[cur]
dp[cur] = 0
for num in nums:
if num + cur <= target:
dp[cur] += helper(cur + num)
return dp[cur]
return helper(0) | combination-sum-iv | Basic Memorization Solution | Python | DigantaC | 0 | 19 | combination sum iv | 377 | 0.521 | Medium | 6,454 |
https://leetcode.com/problems/combination-sum-iv/discuss/2381039/Python-or-Dynamic-Programming-or-Easy-or-Watch-once-or | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
#python dp function
def dp(s,memo):
if s==0:
#if s become zero then increment count by one
return 1
elif s<0:
#if not than return zero
#this step is imp
return 0
elif s in memo:
return memo[s]
else:
count = 0
for i in nums:
#sp step reduce target/s to zero
count+=dp(s-i,memo)
memo[s] = count
return count
memo = {}
return dp(target,memo) | combination-sum-iv | Python | Dynamic Programming | Easy | Watch once | | Brillianttyagi | 0 | 36 | combination sum iv | 377 | 0.521 | Medium | 6,455 |
https://leetcode.com/problems/combination-sum-iv/discuss/2380972/python-dp | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
dp = [1]
nums.sort()
for i in range(target):
t = i+1
temp = 0
for n in nums:
if n<=t:
temp += dp[t-n]
else:
break
dp.append(temp)
return dp[-1] | combination-sum-iv | python dp | li87o | 0 | 29 | combination sum iv | 377 | 0.521 | Medium | 6,456 |
https://leetcode.com/problems/combination-sum-iv/discuss/2380832/Python-recursive-solution-with-memoization | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
@lru_cache(None)
def calculate(target):
if target == 0: return 1
if target < 0: return 0
return sum(calculate(target - n) for n in nums)
return calculate(target) | combination-sum-iv | Python recursive solution with memoization | 996-YYDS | 0 | 28 | combination sum iv | 377 | 0.521 | Medium | 6,457 |
https://leetcode.com/problems/combination-sum-iv/discuss/2380730/Python-5-lines | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
@lru_cache(None)
def backtrack(remain):
if remain == 0: return 1
return sum(backtrack(remain - n) for n in nums if remain - n >= 0)
return backtrack(target) | combination-sum-iv | Python 5 lines | SmittyWerbenjagermanjensen | 0 | 55 | combination sum iv | 377 | 0.521 | Medium | 6,458 |
https://leetcode.com/problems/combination-sum-iv/discuss/2343065/Python-3-solution-99.4-time.-Tabulation-with-optimization | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
perms = [0] * (target + 1)
perms[0] = 1
nums = set(nums) # putting nums in a set so they can be removed in O(1) time
for i in range(len(perms)):
if perms[i]:
to_remove = set() # this is used to remove all nums that are too big from this iteration on
for num in nums:
try: # the slower alternative here is: if i + num <= target
perms[i + num] += perms[i]
except: # in the slower alternative this would be an else
to_remove.add(num)
nums.difference_update(to_remove)
return perms[-1] | combination-sum-iv | Python 3 solution, 99.4% time. Tabulation with optimization | billbobsled | 0 | 23 | combination sum iv | 377 | 0.521 | Medium | 6,459 |
https://leetcode.com/problems/combination-sum-iv/discuss/2080513/Python-or-Bottom-Up-DP-Simple-Approach | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
'''
Here we are doing bottom up DP and the base case would be =>
when target is zero how many way can we achieve that: 1 way
'''
dp = { 0 : 1 } # base case
for total in range(1,target+1):
dp[total] = 0
for n in nums:
dp[total] += dp.get(total-n,0)
return dp[target] | combination-sum-iv | Python | Bottom-Up DP Simple Approach | __Asrar | 0 | 56 | combination sum iv | 377 | 0.521 | Medium | 6,460 |
https://leetcode.com/problems/combination-sum-iv/discuss/1850437/Python-Backtracking-DP-solution-explained | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
dp = {}
return self.dfs(nums, target, dp)
# backtracking with dp
def dfs(self, nums, target, dp):
# BASE CASES
# your path lead you to
# the target being zero or
# the required path
if target == 0:
return 1
# at any point if your target becomes <0
# it means the current path is not feasible
# backtrack, return 0
elif target < 0:
return 0
elif target in dp:
return dp[target]
# for every num, recursively
# calculate the num(ways) to reach
# target
out = 0
for i in range(len(nums)):
# when you consider the current num[i]
# the target also reduces by num[i]
# so pass the updated target for recursion
#
# store all the ways possible for given
# target in out to cache it later on
out += self.dfs(nums, target-nums[i], dp)
dp[target] = out
return out | combination-sum-iv | [Python] Backtracking DP solution explained | buccatini | 0 | 195 | combination sum iv | 377 | 0.521 | Medium | 6,461 |
https://leetcode.com/problems/combination-sum-iv/discuss/1554964/Python3-Solution | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
dp = [0] * (target+1)
dp[0] = 1
for i in range(1,target+1):
for j in nums:
if i-j >= 0:
dp[i] += dp[i-j]
return dp[target] | combination-sum-iv | Python3 Solution | satyam2001 | 0 | 125 | combination sum iv | 377 | 0.521 | Medium | 6,462 |
https://leetcode.com/problems/combination-sum-iv/discuss/1501249/Python-DP-Tabulation-Easy-to-understand | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
dp = [ 0 for _ in range(target+1) ]
dp[0] = 1
for i in range(target):
for num in nums:
if i + num < target + 1: dp[i+num] += dp[i]
return dp[-1]
``` | combination-sum-iv | Python DP Tabulation Easy to understand | vharigovind9 | 0 | 110 | combination sum iv | 377 | 0.521 | Medium | 6,463 |
https://leetcode.com/problems/combination-sum-iv/discuss/1261949/Why-is-this-program-not-working-can-anyone-explain | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
@functools.lru_cache(maxsize = None)
ans = 0
def backtrack(target):
nonlocal ans
if target == 0:
ans += 1
return
for idx in range(len(nums)):
val = nums[idx]
if target - val >= 0:
# target = possible_target
backtrack(target - val)
pass
backtrack(target)
return ans | combination-sum-iv | Why is this program not working can anyone explain | newborncoder | 0 | 62 | combination sum iv | 377 | 0.521 | Medium | 6,464 |
https://leetcode.com/problems/combination-sum-iv/discuss/1166519/Python-oror-Simple-Explanation-oror-93-Faster-oror-DP | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
dp=[0]*(target+1)
dp[0]=1
for i in range(1,target+1):
for num in nums:
if num<=i:
dp[i]+=dp[i-num]
return dp[-1] | combination-sum-iv | Python || Simple Explanation || 93% Faster || DP | abhi9Rai | 0 | 127 | combination sum iv | 377 | 0.521 | Medium | 6,465 |
https://leetcode.com/problems/combination-sum-iv/discuss/1020406/Solution%3A-Combinations-Sum-4 | class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
nums.sort()
dp = [0 for i in range(target+1)]
dp[0] = 1
for comb_sum in range(target+1):
for num in nums:
if comb_sum - num >= 0:
dp[comb_sum] = dp[comb_sum] + dp[comb_sum-num]
return dp[target] | combination-sum-iv | Solution: Combinations Sum 4 | UttasargaSingh | 0 | 214 | combination sum iv | 377 | 0.521 | Medium | 6,466 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2233868/Simple-yet-best-Interview-Code-or-Python-Code-beats-90 | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
m = len(matrix)
n = len(matrix[0])
def count(m):
c = 0 # count of element less than equals to 'm'
i = n-1
j = 0
while i >= 0 and j < n:
if matrix[i][j] > m:
i -= 1
else:
c += i+1
j += 1
return c
low = matrix[0][0]
high = matrix[n-1][n-1]
while low <= high:
m = (low+high)//2
cnt = count(m)
if cnt < k:
low = m + 1
else:
cnt1 = count(m-1)
if cnt1 < k:
return m
high = m-1
return 0 | kth-smallest-element-in-a-sorted-matrix | ✅ Simple yet best Interview Code | Python Code beats 90% | reinkarnation | 5 | 532 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,467 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/1324393/Python-Merging-Arrays-Sorted-Manner | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
def merge_two(a, b):
(m, n) = (len(a), len(b))
i = j = 0
d = []
while i < m and j < n:
if a[i] <= b[j]:
d.append(a[i])
i += 1
else:
d.append(b[j])
j += 1
while i < m:
d.append(a[i])
i += 1
while j < n:
d.append(b[j])
j += 1
return d
n=len(matrix)
if n==1:
return matrix[0][k-1]
ans = list(merge(matrix[0],matrix[1]))
for i in range(2,n):
ans=list(merge(ans,matrix[i]))
return ans[k-1] | kth-smallest-element-in-a-sorted-matrix | Python Merging Arrays Sorted Manner | sethhritik | 4 | 335 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,468 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2368698/faster-than-98.81-using-python3(5-lines) | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
temp_arr=[]
for i in matrix:
temp_arr.extend(i)
temp_arr.sort()
return temp_arr[k-1] | kth-smallest-element-in-a-sorted-matrix | faster than 98.81% using python3(5 lines) | V_Bhavani_Prasad | 3 | 102 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,469 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2368333/Python-or-Priority-queue | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
r = []
for i in range(len(matrix)):
for j in range(len(matrix[i])):
heappush(r, -matrix[i][j])
while len(r) > k:
print(heappop(r))
return -heappop(r) | kth-smallest-element-in-a-sorted-matrix | Python | Priority queue | pivovar3al | 1 | 65 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,470 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2367438/python3-or-easy-or-4-lines-of-code | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
arr = []
for i in range(min(len(matrix),k)): arr.extend(matrix[i])
arr.sort()
return arr[k-1] | kth-smallest-element-in-a-sorted-matrix | python3 | easy | 4 lines of code | H-R-S | 1 | 93 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,471 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2293877/180ms-Faster-than-97-Solutions-oror-EASY-Python-Solution | '''class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
lst=[]
for l in matrix:
for i in l:
lst.append(i)
lst.sort()
return lst[k-1]''' | kth-smallest-element-in-a-sorted-matrix | 180ms Faster than 97% Solutions || EASY Python Solution | keertika27 | 1 | 115 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,472 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/1886129/Python3oror-Binary-Search-oror-Similar-to-Matrix-median | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
rows, cols = len(matrix), len(matrix[0])
total = rows * cols
low, high = float('inf'), float('-inf')
for r in range(rows):
low = min(matrix[r][0],low)
for c in range(cols):
high = max(matrix[c][-1],high)
while low <= high:
mid = (low+high) // 2
cnt = 0
for r in range(rows):
cnt += self.lesserEqual(matrix[r],mid)
if cnt <= k-1:
low = mid + 1
else:
high = mid - 1
return low
def lesserEqual(self,arr,target):
low, high = 0, len(arr) - 1
while low <= high:
mid = (low+high) // 2
if arr[mid] <= target:
low = mid + 1
else:
high = mid - 1
return low | kth-smallest-element-in-a-sorted-matrix | Python3|| Binary Search || Similar to Matrix median | s_m_d_29 | 1 | 278 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,473 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/1321854/Easy-and-simple-solution-in-python | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
flatten_list = sum(matrix, [])
flatten_list.sort()
return flatten_list[k-1] | kth-smallest-element-in-a-sorted-matrix | Easy & simple solution in python | maitysourab | 1 | 270 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,474 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/811809/Python3-summarizing-a-few-approaches | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
return sorted(x for row in matrix for x in row)[k-1] | kth-smallest-element-in-a-sorted-matrix | [Python3] summarizing a few approaches | ye15 | 1 | 161 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,475 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/811809/Python3-summarizing-a-few-approaches | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
n = len(matrix)
hp = [(matrix[i][0], i, 0) for i in range(n)] # heap
heapify(hp)
for _ in range(k):
v, i, j = heappop(hp)
if j+1 < n: heappush(hp, (matrix[i][j+1], i, j+1))
return v | kth-smallest-element-in-a-sorted-matrix | [Python3] summarizing a few approaches | ye15 | 1 | 161 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,476 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/811809/Python3-summarizing-a-few-approaches | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
n = len(matrix)
def fn(x):
"""Return number of elements <= x"""
ans = 0
i, j = 0, n-1
while i < n and 0 <= j:
if matrix[i][j] <= x:
ans += j+1
i += 1
else: j -= 1
return ans
# "first true" binary serach
# seach for first number whose f(x) >= k
lo, hi = matrix[0][0], matrix[-1][-1]
while lo < hi:
mid = lo + hi >> 1
if fn(mid) < k: lo = mid + 1
else: hi = mid
return lo | kth-smallest-element-in-a-sorted-matrix | [Python3] summarizing a few approaches | ye15 | 1 | 161 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,477 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/670054/Python-easy-and-one-liner-solution | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
return sorted(list(itertools.chain.from_iterable(matrix)))[k-1] | kth-smallest-element-in-a-sorted-matrix | Python easy and one liner solution | rajesh_26 | 1 | 276 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,478 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2814591/Python3-Min-Heap | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
ROWS, COLS = len(matrix), len(matrix[0])
h = [(matrix[0][0], (0, 0))]
visit = set({(0, 0)})
while k > 0:
num, (r, c) = heapq.heappop(h)
for dr, dc in [[0, 1], [1, 0]]:
i, j = r+dr, c+dc
if i < ROWS and j < COLS and (i, j) not in visit:
visit.add((i, j))
heapq.heappush(h, (matrix[i][j], (i, j)))
k -= 1
return matrix[r][c] | kth-smallest-element-in-a-sorted-matrix | [Python3] Min Heap | jonathanbrophy47 | 0 | 3 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,479 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2806317/Python-or-O(n*n)-or-easy-peasy | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
l = []
n = len(matrix)
for i in range(n):
for j in matrix[i]:
l.append(j)
l.sort()
return l[k-1] | kth-smallest-element-in-a-sorted-matrix | Python | O(n*n) | easy peasy | bhuvneshwar906 | 0 | 5 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,480 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2790843/Beats-77-or-Came-up-with-this-during-Amazon-Interview | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
count = 0
m, n = len(matrix), len(matrix[0])
heap = [(matrix[0][0], (0,0))]
dirs = [(1,0), (0,1), (1,1)]
visited = set()
while heap:
cur, (i,j) = heapq.heappop(heap)
count += 1
if count == k:
return cur
for dir_ in dirs:
ix, jx = dir_
i_new, j_new = i+ix, j+jx
if i_new < m and j_new < n:
if (i_new, j_new) not in visited:
visited.add((i_new, j_new))
heapq.heappush(heap, (matrix[i_new][j_new], (i_new, j_new))) | kth-smallest-element-in-a-sorted-matrix | Beats 77% | Came up with this during Amazon Interview | mihir_verma | 0 | 4 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,481 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2666677/Simple-Python-9080-O(n)-%2B-O(k-log-n) | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
if k == 1: return matrix[0][0]
n = len(matrix)
minheap = [None] * n
for row in range(n):
minheap[row] = ((matrix[row][0], row, 0)) # tuple of (value, row, col)
# heapify(minheap) | optional if cols weren't sorted
for i in range(k-1):
val, row, col = heappop(minheap)
if col+1 < n:
heapq.heappush(minheap, (matrix[row][col+1], row, col+1))
return minheap[0][0] | kth-smallest-element-in-a-sorted-matrix | Simple Python [90%/80%] - O(n) + O(k log n) | LongQ | 0 | 11 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,482 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2513120/PYHTHON3-Solution-using-Heapify-oror-Faster-than-90.11-of-Python3-online-submissions | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
rank = []
for element in matrix:
rank.extend(element)
heapq.heapify(rank)
while k > 0:
final = heapq.heappop(rank)
k -= 1
return final | kth-smallest-element-in-a-sorted-matrix | [PYHTHON3] Solution using Heapify || Faster than 90.11% of Python3 online submissions | WhiteBeardPirate | 0 | 60 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,483 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2407853/Python-Clean-Brute-Force | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
return sorted([num for lst in matrix for num in lst])[k-1] | kth-smallest-element-in-a-sorted-matrix | Python Clean Brute Force | tq326 | 0 | 44 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,484 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2394035/Kth-Smallest-Element-in-a-Sorted-Matrix-Python-1-Line-Solution | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
return sorted(list(sum(matrix, [])))[k-1] | kth-smallest-element-in-a-sorted-matrix | Kth Smallest Element in a Sorted Matrix Python 1 Line Solution | klu_2100031497 | 0 | 81 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,485 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2393717/Python-O(N-*-log(max-min))-solution-no-extra-log-N-factor | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
lo, hi = matrix[0][0], matrix[-1][-1] # min, max
def findIndex(matrix, val):
'''
Returns Position where val can be inserted in O(m + n).
All nums to right of result position will be >= val
'''
addAt = 0
m, n = 1, len(matrix[0])
while m < len(matrix) + 1 and n > 0:
if matrix[m - 1][n - 1] >= val: n -= 1
else:
addAt += n
m += 1
addAt += 1
return addAt
while lo < hi:
mid = (lo + hi)//2
if findIndex(matrix, mid) > k: hi = mid
else: lo = mid + 1
if findIndex(matrix, lo) <= k: return lo
return lo - 1 | kth-smallest-element-in-a-sorted-matrix | Python O(N * log(max-min)) solution no extra log N factor | shubhparekh | 0 | 131 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,486 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2385185/Super-easy-python-oneliner | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
return sorted(list(sum(matrix, [])))[k-1] | kth-smallest-element-in-a-sorted-matrix | Super easy python oneliner | pro6igy | 0 | 30 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,487 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2371664/Python-heap.-Two-variants. | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
n = len(matrix)
heap = [(matrix[0][0], 0, 0)]
matrix[0][0] = None
while k > 1:
_, r, c = heapq.heappop(heap)
if r < n - 1 and matrix[r+1][c] is not None:
heapq.heappush(heap, (matrix[r+1][c], r+1, c))
matrix[r+1][c] = None
if c < n - 1 and matrix[r][c+1] is not None:
heapq.heappush(heap, (matrix[r][c+1], r, c+1))
matrix[r][c+1] = None
k -=1
return heap[0][0] | kth-smallest-element-in-a-sorted-matrix | Python, heap. Two variants. | blue_sky5 | 0 | 14 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,488 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2371664/Python-heap.-Two-variants. | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
n = len(matrix)
h = [(matrix[r][0], r, 0) for r in range(min(n, k))]
heapq.heapify(h)
while k > 1:
_, r, c = heapq.heappop(h)
if c < n - 1:
heapq.heappush(h, (matrix[r][c+1], r, c + 1))
k -= 1
return h[0][0] | kth-smallest-element-in-a-sorted-matrix | Python, heap. Two variants. | blue_sky5 | 0 | 14 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,489 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2371571/Only-1-Line-for-Code-KP's-solution | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
return sorted(sum([i for i in matrix], []))[k - 1] | kth-smallest-element-in-a-sorted-matrix | Only 1 Line for Code, KP's solution | krishpatel13 | 0 | 12 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,490 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2371038/Python-Easy-Solution-Top-90 | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
ans = []
for i in matrix:
ans.extend(i)
return sorted(ans)[k-1] | kth-smallest-element-in-a-sorted-matrix | Python Easy Solution Top 90% | drblessing | 0 | 27 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,491 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2371038/Python-Easy-Solution-Top-90 | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
ans = []
# Trim useless numbers
N = len(matrix)
if N > k:
matrix = matrix[:k]
for i in matrix:
ans.extend(i)
return sorted(ans)[k-1] | kth-smallest-element-in-a-sorted-matrix | Python Easy Solution Top 90% | drblessing | 0 | 27 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,492 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2370475/Python3-Solution-with-using-heap | class Solution:
def kthSmallest(self, matrix, k):
m, n = len(matrix), len(matrix[0])
heap = []
for i in range(len(matrix)):
for j in range(len(matrix[i])):
heappush(heap, -matrix[i][j])
if len(heap) > k:
heappop(heap)
return -heappop(heap) | kth-smallest-element-in-a-sorted-matrix | [Python3] Solution with using heap | maosipov11 | 0 | 13 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,493 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2370475/Python3-Solution-with-using-heap | class Solution:
def kthSmallest(self, matrix, k):
heap = []
for r in range(len(matrix)):
heapq.heappush(heap, (matrix[r][0], 0, r))
while k:
elem, c, r = heapq.heappop(heap)
if c < len(matrix[r]) - 1:
heapq.heappush(heap, (matrix[r][c + 1], c + 1, r))
k -= 1
return elem | kth-smallest-element-in-a-sorted-matrix | [Python3] Solution with using heap | maosipov11 | 0 | 13 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,494 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2368821/One-line-code-in-Python-very-easy-to-understand | class Solution(object):
def kthSmallest(self, matrix, k):
"""
:type matrix: List[List[int]]
:type k: int
:rtype: int
"""
return sorted(sum(matrix, []))[k-1] | kth-smallest-element-in-a-sorted-matrix | One line code in Python very easy to understand | hsaikrishna1999 | 0 | 18 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,495 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2368782/Python-Binary-Search-Solution-bisect_right-(upper_bound)-oror-Documented | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
# count elements that are less than val
def count_elements_less_than(val):
count = 0
for row in matrix:
# upper bound of val in the row
count += bisect_right(row, val)
return count
# binary search pointers: low and high
low, high = matrix[0][0], matrix[-1][-1]
# Repeat until the pointers satisfy: low < high
while low < high:
mid = (low + high) // 2 # middle point - pivot
if count_elements_less_than(mid) < k:
low = mid + 1; # shrink from left side
else:
high = mid # shrink from right side
return low | kth-smallest-element-in-a-sorted-matrix | [Python] Binary Search Solution - bisect_right (upper_bound) || Documented | Buntynara | 0 | 9 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,496 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2368517/Python-oror-SImple-Soultion-oror-easy-understanding | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
temp_matrix = []
for i in matrix:
temp_matrix.extend(i)
return sorted(temp_matrix)[k-1] | kth-smallest-element-in-a-sorted-matrix | Python || SImple Soultion || easy understanding | noobj097 | 0 | 7 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,497 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2368498/Lazy-Solution-Lazy-Language..-You-know-what-%3A) | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
return sorted([x for r in matrix for x in r])[k-1] | kth-smallest-element-in-a-sorted-matrix | Lazy Solution, Lazy Language.. You know what?? :) | yours-truly-rshi | 0 | 16 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,498 |
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/2368417/Simpler-and-Faster-execution-in-python3 | class Solution:
def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
blank = []
for i in matrix:
blank.extend(i)
blank.sort()
if(len(blank)!=0):
return blank[k-1]
return | kth-smallest-element-in-a-sorted-matrix | Simpler and Faster execution in python3 | ujs_lc_99 | 0 | 9 | kth smallest element in a sorted matrix | 378 | 0.616 | Medium | 6,499 |
Subsets and Splits