File size: 6,461 Bytes
1ea004e
 
 
 
 
 
 
 
 
c4620a6
1ea004e
 
 
 
c4620a6
1ea004e
 
 
a25e8fb
ceaeac5
9378b14
 
e17d6e3
898401c
399dc57
 
 
898401c
 
 
 
 
 
 
 
 
 
8893fce
 
898401c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76cab25
898401c
8893fce
 
898401c
 
8893fce
 
898401c
 
 
 
8893fce
898401c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76cab25
 
 
 
 
 
 
 
3784582
76cab25
3784582
76cab25
 
3784582
 
 
 
 
 
 
 
 
76cab25
3784582
76cab25
 
3784582
 
 
 
 
 
76cab25
 
 
 
399dc57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76cab25
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
---
pretty_name: LibriTTS Corpus with Forced Alignments
annotations_creators:
- crowdsourced
language: en
tags:
- speech
- audio
- automatic-speech-recognition
- text-to-speech
license:
- cc-by-4.0
task_categories:
- automatic-speech-recognition
- text-to-speech
extra_gated_prompt: "When using this dataset to download LibriTTS, you agree to the terms on https://www.openslr.org"
---

> There is also an identical dataset for the new libritts-r dataset at [cdminix/libritts-r-aligned](https://huggingface.co/datasets/cdminix/libritts-r-aligned)

# Dataset Card for LibriTTS with Forced Alignments (and Measures)

UPDATE: The preprocessed alignments are now in this repository, so montreal forced aligner does not have to run locally.

## Requirements
- ``pip install alignments phones`` **(required)**
- ``pip install speech-collator`` (optional)

## Example Item

```json
{
    'id': '100_122655_000073_000002.wav',
    'speaker': '100',
    'text': 'the day after, diana and mary quitted it for distant b.',
    'start': 0.0,
    'end': 3.6500000953674316, 
    'phones': ['[SILENCE]', 'ð', 'ʌ', '[SILENCE]', 'd', 'eɪ', '[SILENCE]', 'æ', 'f', 't', 'ɜ˞', '[COMMA]', 'd', 'aɪ', 'æ', 'n', 'ʌ', '[SILENCE]', 'æ', 'n', 'd', '[SILENCE]', 'm', 'ɛ', 'ɹ', 'i', '[SILENCE]', 'k', 'w', 'ɪ', 't', 'ɪ', 'd', '[SILENCE]', 'ɪ', 't', '[SILENCE]', 'f', 'ɜ˞', '[SILENCE]', 'd', 'ɪ', 's', 't', 'ʌ', 'n', 't', '[SILENCE]', 'b', 'i', '[FULL STOP]'], 
    'phone_durations': [5, 2, 4, 0, 5, 13, 0, 16, 7, 5, 20, 2, 6, 9, 15, 4, 2, 0, 11, 3, 5, 0, 3, 8, 9, 8, 0, 13, 3, 5, 3, 6, 4, 0, 8, 5, 0, 9, 5, 0, 7, 5, 6, 7, 4, 5, 10, 0, 3, 35, 9],
    'audio': '/dev/shm/metts/train-clean-360-alignments/100/100_122655_000073_000002.wav'
}
```

The phones are IPA phones, and the phone durations are in frames (assuming a hop length of 256, sample rate of 22050 and window length of 1024). These attributes can be changed using the ``hop_length``, ``sample_rate`` and ``window_length`` arguments to ``LibriTTSAlign``.

## Data Collator

This dataset comes with a data collator which can be used to create batches of data for training.
It can be installed using ``pip install speech-collator`` ([MiniXC/speech-collator](https://www.github.com/MiniXC/speech-collator)) and can be used as follows:

```python
import json
from datasets import load_dataset
from speech_collator import SpeechCollator
from torch.utils.data import DataLoader

dataset = load_dataset('cdminix/libritts-aligned', split="train")

speaker2ixd = json.load(open("speaker2idx.json"))
phone2ixd = json.load(open("phone2idx.json"))

collator = SpeechCollator(
    speaker2ixd=speaker2idx,
    phone2ixd=phone2idx ,
)
dataloader = DataLoader(dataset, collate_fn=collator.collate_fn, batch_size=8)
```

You can either download the ``speaker2idx.json`` and ``phone2idx.json`` files from [here](https://huggingface.co/datasets/cdminix/libritts-aligned/tree/main/data) or create them yourself using the following code:

```python
import json
from datasets import load_dataset
from speech_collator import SpeechCollator, create_speaker2idx, create_phone2idx

dataset = load_dataset("cdminix/libritts-aligned", split="train")

# Create speaker2idx and phone2idx
speaker2idx = create_speaker2idx(dataset, unk_idx=0)
phone2idx = create_phone2idx(dataset, unk_idx=0)

# save to json
with open("speaker2idx.json", "w") as f:
    json.dump(speaker2idx, f)
with open("phone2idx.json", "w") as f:
    json.dump(phone2idx, f)
```

### Measures

When using ``speech-collator`` you can also use the ``measures`` argument to specify which measures to use. The following example extracts Pitch and Energy on the fly.

```python
import json
from torch.utils.data import DataLoader
from datasets import load_dataset
from speech_collator import SpeechCollator, create_speaker2idx, create_phone2idx
from speech_collator.measures import PitchMeasure, EnergyMeasure

dataset = load_dataset("cdminix/libritts-aligned", split="train")

speaker2idx = json.load(open("data/speaker2idx.json"))
phone2idx = json.load(open("data/phone2idx.json"))

# Create SpeechCollator
speech_collator = SpeechCollator(
    speaker2idx=speaker2idx,
    phone2idx=phone2idx,
    measures=[PitchMeasure(), EnergyMeasure()],
    return_keys=["measures"]
)

# Create DataLoader
dataloader = DataLoader(
    dataset,
    batch_size=8,
    collate_fn=speech_collator.collate_fn,
)
```

COMING SOON: Detailed documentation on how to use the measures at [MiniXC/speech-collator](https://www.github.com/MiniXC/speech-collator).

## Splits

This dataset has the following splits:
- ``train``: All the training data, except one sample per speaker which is used for validation.
- ``dev``: The validation data, one sample per speaker.
- ``train.clean.100``: Training set derived from the original materials of the train-clean-100 subset of LibriSpeech.
- ``train.clean.360``: Training set derived from the original materials of the train-clean-360 subset of LibriSpeech.
- ``train.other.500``: Training set derived from the original materials of the train-other-500 subset of LibriSpeech.
- ``dev.clean``: Validation set derived from the original materials of the dev-clean subset of LibriSpeech.
- ``dev.other``: Validation set derived from the original materials of the dev-other subset of LibriSpeech.
- ``test.clean``: Test set derived from the original materials of the test-clean subset of LibriSpeech.
- ``test.other``: Test set derived from the original materials of the test-other subset of LibriSpeech.

## Environment Variables

There are a few environment variable which can be set.

- ``LIBRITTS_VERBOSE``: If set, will print out more information about the dataset creation process.
- ``LIBRITTS_MAX_WORKERS``: The number of workers to use when creating the alignments. Defaults to ``cpu_count()``.
- ``LIBRITTS_PATH``: The path to download LibriTTS to. Defaults to the value of ``HF_DATASETS_CACHE``.

# Citation

When using LibriTTS please cite the following papers:
- [LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech](https://arxiv.org/abs/1904.02882)
- [Montreal Forced Aligner: Trainable text-speech alignment using Kaldi](https://www.researchgate.net/publication/319185277_Montreal_Forced_Aligner_Trainable_Text-Speech_Alignment_Using_Kaldi)

When using the Measures please cite the following paper (ours):
- [Evaluating and reducing the distance between synthetic and real speech distributions](https://arxiv.org/abs/2211.16049)