File size: 13,026 Bytes
1ea004e a2a5bf1 1ea004e 81c31e0 1ea004e 898401c 81c31e0 1d975f5 40c9827 898401c 81c31e0 1ea004e 898401c 1ea004e 81c31e0 1ea004e 898401c 1ea004e 898401c 1ea004e 898401c 1ea004e 81c31e0 1ea004e 81c31e0 1ea004e 81c31e0 1ea004e 898401c 1ea004e 898401c 1ea004e 81c31e0 1ea004e 898401c 1ea004e 81c31e0 1ea004e 81c31e0 1ea004e 81c31e0 1ea004e 81c31e0 1ea004e 93891ff 81c31e0 1ea004e 81c31e0 1ea004e 1d975f5 1ea004e 93891ff 1ea004e 1d975f5 1ea004e 81c31e0 1ea004e 81c31e0 1ea004e 40c9827 1ea004e 81c31e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
"""LibriTTS dataset with forced alignments."""
import os
from pathlib import Path
import hashlib
import pickle
import datasets
import pandas as pd
import numpy as np
from alignments.datasets.librispeech import LibrittsDataset
from tqdm.contrib.concurrent import process_map
from tqdm.auto import tqdm
from multiprocessing import cpu_count
import multiprocessing as mp
from phones.convert import Converter
import torchaudio
import torchaudio.transforms as AT
logger = datasets.logging.get_logger(__name__)
_PHONESET = "arpabet"
_VERBOSE = os.environ.get("LIBRITTS_VERBOSE", True)
_MAX_WORKERS = os.environ.get("LIBRITTS_MAX_WORKERS", cpu_count())
_MAX_WORKERS = int(_MAX_WORKERS)
_NO_MP = _MAX_WORKERS <= 1
_MAX_PHONES = os.environ.get("LIBRITTS_MAX_PHONES", 512)
_PATH = os.environ.get("LIBRITTS_PATH", os.environ.get("HF_DATASETS_CACHE", None))
_DOWNLOAD_SPLITS = os.environ.get(
"LIBRITTS_DOWNLOAD_SPLITS",
"train-clean-100,train-clean-360,train-other-500,dev-clean,dev-other,test-clean,test-other",
).split(",")
if _PATH is not None and not os.path.exists(_PATH):
os.makedirs(_PATH)
_VERSION = "1.0.1"
_CITATION = """\
@article{zen2019libritts,
title={LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech},
author={Zen, Heiga and Dang, Viet and Clark, Rob and Zhang, Yu and Weiss, Ron J and Jia, Ye and Chen, Zhifeng and Wu, Yonghui},
journal={Interspeech},
year={2019}
}
@article{https://doi.org/10.48550/arxiv.2211.16049,
author = {Minixhofer, Christoph and Klejch, Ondřej and Bell, Peter},
title = {Evaluating and reducing the distance between synthetic and real speech distributions},
year = {2022}
}
"""
_DESCRIPTION = """\
Dataset used for loading TTS spectrograms and waveform audio with alignments and a number of configurable "measures", which are extracted from the raw audio.
"""
_URL = "https://www.openslr.org/resources/60/"
_URLS = {
"dev-clean": _URL + "dev-clean.tar.gz",
"dev-other": _URL + "dev-other.tar.gz",
"test-clean": _URL + "test-clean.tar.gz",
"test-other": _URL + "test-other.tar.gz",
"train-clean-100": _URL + "train-clean-100.tar.gz",
"train-clean-360": _URL + "train-clean-360.tar.gz",
"train-other-500": _URL + "train-other-500.tar.gz",
}
_URLS = {k: v for k, v in _URLS.items() if k in _DOWNLOAD_SPLITS}
class LibriTTSAlignConfig(datasets.BuilderConfig):
"""BuilderConfig for LibriTTSAlign."""
def __init__(self, sampling_rate=22050, hop_length=256, win_length=1024, **kwargs):
"""BuilderConfig for LibriTTSAlign.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(LibriTTSAlignConfig, self).__init__(**kwargs)
self.sampling_rate = sampling_rate
self.hop_length = hop_length
self.win_length = win_length
if _PATH is None:
raise ValueError(
"Please set the environment variable LIBRITTS_PATH to point to the LibriTTS dataset directory."
)
elif _PATH == os.environ.get("HF_DATASETS_CACHE", None):
logger.warning(
"Please set the environment variable LIBRITTS_PATH to point to the LibriTTS dataset directory. Using HF_DATASETS_CACHE as a fallback."
)
class LibriTTSAlign(datasets.GeneratorBasedBuilder):
"""LibriTTSAlign dataset."""
BUILDER_CONFIGS = [
LibriTTSAlignConfig(
name="libritts",
version=datasets.Version(_VERSION, ""),
),
]
def _info(self):
features = {
"id": datasets.Value("string"),
"speaker": datasets.Value("string"),
"text": datasets.Value("string"),
"start": datasets.Value("float32"),
"end": datasets.Value("float32"),
# phone features
"phones": datasets.Sequence(datasets.Value("string")),
"phone_durations": datasets.Sequence(datasets.Value("int32")),
# audio feature
"audio": datasets.Value("string"),
}
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(features),
supervised_keys=None,
homepage="https://github.com/MiniXC/MeasureCollator",
citation=_CITATION,
task_templates=None,
)
def _split_generators(self, dl_manager):
ds_dict = {}
for name, url in _URLS.items():
ds_dict[name] = self._create_alignments_ds(name, url)
splits = [
datasets.SplitGenerator(
name=key.replace("-", "."), gen_kwargs={"ds": self._create_data(value)}
)
for key, value in ds_dict.items()
]
# dataframe with all data
data_train, data_dev, data_test, data_all = None, None, None, None
if (
"train-clean-100" in _URLS
and "train-clean-360" in _URLS
and "train-other-500" in _URLS
):
data_train = self._create_data(
[
ds_dict["train-clean-100"],
ds_dict["train-clean-360"],
ds_dict["train-other-500"],
]
)
if "dev-clean" in _URLS and "dev-other" in _URLS:
data_dev = self._create_data([ds_dict["dev-clean"], ds_dict["dev-other"]])
if "test-clean" in _URLS and "test-other" in _URLS:
data_test = self._create_data(
[ds_dict["test-clean"], ds_dict["test-other"]]
)
if (
"train-clean-100" in _URLS
and "train-clean-360" in _URLS
and "train-other-500" in _URLS
and "dev-clean" in _URLS
and "dev-other" in _URLS
and "test-clean" in _URLS
and "test-other" in _URLS
):
data_all = pd.concat([data_train, data_dev, data_test])
if data_all is not None:
splits.append(
datasets.SplitGenerator(
name="train.all",
gen_kwargs={
"ds": data_all,
},
)
)
if data_dev is not None:
splits.append(
datasets.SplitGenerator(
name="dev.all",
gen_kwargs={
"ds": data_dev,
},
)
)
if data_test is not None:
splits.append(
datasets.SplitGenerator(
name="test.all",
gen_kwargs={
"ds": data_test,
},
)
)
if data_dev is not None and data_all is not None:
# move last row for each speaker from data_all to dev dataframe
data_dev = data_all.copy()
data_dev = data_dev.sort_values(by=["speaker", "audio"])
data_dev = data_dev.groupby("speaker").tail(1)
data_dev = data_dev.reset_index()
# remove last row for each speaker from data_all
data_all = data_all[~data_all["audio"].isin(data_dev["audio"])]
splits += [
datasets.SplitGenerator(
name="train",
gen_kwargs={
"ds": data_all,
},
),
datasets.SplitGenerator(
name="dev",
gen_kwargs={
"ds": data_dev,
},
),
]
self.alignments_ds = None
self.data = None
return splits
def _create_alignments_ds(self, name, url):
self.empty_textgrids = 0
ds_hash = hashlib.md5(
os.path.join(_PATH, f"{name}-alignments").encode()
).hexdigest()
pkl_path = os.path.join(_PATH, f"{ds_hash}.pkl")
if os.path.exists(pkl_path):
ds = pickle.load(open(pkl_path, "rb"))
else:
tgt_dir = os.path.join(_PATH, f"{name}-alignments")
src_dir = os.path.join(_PATH, f"{name}-data")
if os.path.exists(tgt_dir):
src_dir = None
url = None
if os.path.exists(src_dir):
url = None
ds = LibrittsDataset(
target_directory=tgt_dir,
source_directory=src_dir,
source_url=url,
textgrid_url=f"https://huggingface.co/datasets/cdminix/libritts-aligned/resolve/main/data/{name.replace('-', '_')}.tar.gz",
verbose=_VERBOSE,
tmp_directory=os.path.join(_PATH, f"{name}-tmp"),
chunk_size=100,
n_workers=_MAX_WORKERS,
)
pickle.dump(ds, open(pkl_path, "wb"))
return ds, ds_hash
def _create_data(self, data):
entries = []
self.phone_cache = {}
self.phone_converter = Converter()
if not isinstance(data, list):
data = [data]
hashes = [ds_hash for ds, ds_hash in data]
ds = [ds for ds, ds_hash in data]
self.ds = ds
del data
for i, ds in enumerate(ds):
if os.path.exists(os.path.join(_PATH, f"{hashes[i]}-entries.pkl")):
add_entries = pickle.load(
open(os.path.join(_PATH, f"{hashes[i]}-entries.pkl"), "rb")
)
else:
if _NO_MP:
_entries = [self._create_entry(x) for x in tqdm(zip([i] * len(ds), np.arange(len(ds))), desc=f"processing dataset {hashes[i]}")]
else:
_entries = process_map(
self._create_entry,
zip([i] * len(ds), np.arange(len(ds))),
chunksize=100,
max_workers=_MAX_WORKERS,
desc=f"processing dataset {hashes[i]}",
tqdm_class=tqdm,
)
add_entries = [
entry
for entry in _entries
if entry is not None
]
pickle.dump(
add_entries,
open(os.path.join(_PATH, f"{hashes[i]}-entries.pkl"), "wb"),
)
entries += add_entries
if self.empty_textgrids > 0:
logger.warning(f"Found {self.empty_textgrids} empty textgrids")
return pd.DataFrame(
entries,
columns=[
"phones",
"duration",
"start",
"end",
"audio",
"speaker",
"text",
"basename",
],
)
del self.ds, self.phone_cache, self.phone_converter
def _create_entry(self, dsi_idx):
dsi, idx = dsi_idx
item = self.ds[dsi][idx]
start, end = item["phones"][0][0], item["phones"][-1][1]
phones = []
durations = []
for i, p in enumerate(item["phones"]):
s, e, phone = p
phone.replace("ˌ", "")
r_phone = phone.replace("0", "").replace("1", "")
if len(r_phone) > 0:
phone = r_phone
if "[" not in phone:
o_phone = phone
if o_phone not in self.phone_cache:
phone = self.phone_converter(phone, _PHONESET, lang=None)[0]
self.phone_cache[o_phone] = phone
phone = self.phone_cache[o_phone]
phones.append(phone)
durations.append(
int(
np.round(e * self.config.sampling_rate / self.config.hop_length)
- np.round(s * self.config.sampling_rate / self.config.hop_length)
)
)
if start >= end:
self.empty_textgrids += 1
return None
return (
phones,
durations,
start,
end,
item["wav"],
str(item["speaker"]).split("/")[-1],
item["transcript"],
Path(item["wav"]).name,
)
def _generate_examples(self, ds):
j = 0
for i, row in ds.iterrows():
# 10kB is the minimum size of a wav file for our purposes
if Path(row["audio"]).stat().st_size >= 10_000:
if len(row["phones"]) < _MAX_PHONES:
result = {
"id": row["basename"],
"speaker": row["speaker"],
"text": row["text"],
"start": row["start"],
"end": row["end"],
"phones": row["phones"],
"phone_durations": row["duration"],
"audio": str(row["audio"]),
}
yield j, result
j += 1
|