File size: 5,683 Bytes
52aecd8 3e94f52 eedf581 3e94f52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
"""LibriTTS dataset with phone alignments, prosody and mel spectrograms."""
import os
from pathlib import Path
import hashlib
import pickle
import datasets
import pandas as pd
import numpy as np
from tqdm.contrib.concurrent import process_map
from tqdm.auto import tqdm
from multiprocessing import cpu_count
from PIL import Image
logger = datasets.logging.get_logger(__name__)
_VERSION = "0.0.1"
_CITATION = """\
@inproceedings{48008,
title = {LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech},
author = {Heiga Zen and Rob Clark and Ron J. Weiss and Viet Dang and Ye Jia and Yonghui Wu and Yu Zhang and Zhifeng Chen},
year = {2019},
URL = {https://arxiv.org/abs/1904.02882},
booktitle = {Interspeech}
}
"""
_DESCRIPTION = """\
Dataset containing Mel Spectrograms, Prosody and Phone Alignments for the LibriTTS dataset.
"""
_URLS = {
"dev.clean": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/dev_clean.tar.gz",
"dev.other": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/dev_other.tar.gz",
"test.clean": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/test_clean.tar.gz",
"test.other": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/test_other.tar.gz",
"train.clean.100": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/train_clean_100.tar.gz",
"train.clean.360": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/train_clean_360.tar.gz",
"train.other.500": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/train_other_500.tar.gz",
}
class LibriTTSConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
"""
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(LibriTTSConfig, self).__init__(**kwargs)
class LibriTTS(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
LibriTTSConfig(
name="libritts",
version=datasets.Version(_VERSION, ""),
),
]
def _info(self):
features = {
"id": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"chapter_id": datasets.Value("string"),
"phones": datasets.Value("string"),
"mel": datasets.Value("string"),
"prosody": datasets.Value("string"),
"speaker_utterance": datasets.Value("string"),
"mean_speaker_utterance": datasets.Value("string"),
"mean_speaker": datasets.Value("string"),
"text": datasets.Value("string"),
}
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(features),
supervised_keys=None,
homepage="https://huggingface.co/datasets/cdminix/libritts-phones-and-mel",
citation=_CITATION,
task_templates=None,
)
def _split_generators(self, dl_manager):
splits = [
datasets.SplitGenerator(
name=key,
gen_kwargs={"data_path": dl_manager.download_and_extract(value)},
)
for key, value in _URLS.items()
]
return splits
def _df_from_path(self, path):
mel_path = Path(path)
prosody_path = Path(str(mel_path).replace("_mel.png", "_prosody.png"))
phones_path = Path(str(mel_path).replace("_mel.png", "_phones.npy"))
overall_speaker_path = Path(str(mel_path).replace("_mel.png", "_speaker.npy"))
temporal_speaker_path = Path(str(mel_path).replace("_mel.png", "_speaker.png"))
mean_speaker_path = mel_path.parent.parent / "mean_speaker.npy"
text = Path(str(mel_path).replace("_mel.png", "_text.txt")).read_text().lower()
speaker_id = mel_path.parent.parent.name
chapter_id = mel_path.parent.name
_id = str(mel_path).replace("_mel.png", "")
return {
"id": _id,
"speaker_id": speaker_id,
"chapter_id": chapter_id,
"phones": phones_path,
"mel": mel_path,
"prosody": prosody_path,
"speaker_utterance": temporal_speaker_path,
"mean_speaker_utterance": overall_speaker_path,
"mean_speaker": mean_speaker_path,
"text": text,
}
def _df_from_paths_mp(self, paths):
return pd.DataFrame(
process_map(
self._df_from_path,
paths,
desc="Reading files",
max_workers=cpu_count(),
chunksize=100,
)
)
def _create_mean_speaker(self, df):
# Create mean speaker for each speaker
for _, speaker_df in df.groupby("speaker_id"):
if not Path(speaker_df["mean_speaker"].iloc[0]).exists():
mean_speaker = np.mean(
np.array(
[np.load(path) for path in speaker_df["mean_speaker_utterance"]]
),
axis=0,
)
np.save(speaker_df["mean_speaker"].iloc[0], mean_speaker)
def _generate_examples(self, data_path):
"""Generate examples."""
logger.info("⏳ Generating examples from = %s", data_path)
paths = sorted(list(Path(data_path).rglob("*_mel.png")))
df = self._df_from_paths_mp(paths)
self._create_mean_speaker(df)
for i, row in tqdm(df.iterrows(), desc="Generating examples"):
yield row["id"], row.to_dict()
|