Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-label-classification
Languages:
English
Size:
100K<n<1M
ArXiv:
License:
File size: 24,535 Bytes
dd486cd 56b9abd dd486cd 56b9abd dd486cd 56b9abd dd486cd 56b9abd dd486cd 56b9abd dd486cd 56b9abd dd486cd 56b9abd dd486cd 56b9abd dd486cd 56b9abd dd486cd 56b9abd dd486cd 56b9abd dd486cd 56b9abd 9d193a9 dd486cd 56b9abd dd486cd 56b9abd dd486cd 56b9abd dd486cd 56b9abd dd486cd 56b9abd dd486cd 56b9abd dd486cd 56b9abd 9d193a9 56b9abd dd486cd 56b9abd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Switchboard Dialog Act Corpus
The Switchboard Dialog Act Corpus (SwDA) extends the Switchboard-1 Telephone Speech Corpus, Release 2,
with turn/utterance-level dialog-act tags. The tags summarize syntactic, semantic, and pragmatic information
about the associated turn. The SwDA project was undertaken at UC Boulder in the late 1990s.
This script is a modified version of the original swda.py from https://github.com/cgpotts/swda/blob/master/swda.py from
the original corpus repo. Modifications are made to accommodate the HuggingFace Dataset project format.
"""
import csv
import datetime
import glob
import os
import re
import datasets
# Citation as described here: https://github.com/cgpotts/swda#citation.
_CITATION = """\
@techreport{Jurafsky-etal:1997,
Address = {Boulder, CO},
Author = {Jurafsky, Daniel and Shriberg, Elizabeth and Biasca, Debra},
Institution = {University of Colorado, Boulder Institute of Cognitive Science},
Number = {97-02},
Title = {Switchboard {SWBD}-{DAMSL} Shallow-Discourse-Function Annotation Coders Manual, Draft 13},
Year = {1997}}
@article{Shriberg-etal:1998,
Author = {Shriberg, Elizabeth and Bates, Rebecca and Taylor, Paul and Stolcke, Andreas and Jurafsky, Daniel and Ries, Klaus and Coccaro, Noah and Martin, Rachel and Meteer, Marie and Van Ess-Dykema, Carol},
Journal = {Language and Speech},
Number = {3--4},
Pages = {439--487},
Title = {Can Prosody Aid the Automatic Classification of Dialog Acts in Conversational Speech?},
Volume = {41},
Year = {1998}}
@article{Stolcke-etal:2000,
Author = {Stolcke, Andreas and Ries, Klaus and Coccaro, Noah and Shriberg, Elizabeth and Bates, Rebecca and Jurafsky, Daniel and Taylor, Paul and Martin, Rachel and Meteer, Marie and Van Ess-Dykema, Carol},
Journal = {Computational Linguistics},
Number = {3},
Pages = {339--371},
Title = {Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech},
Volume = {26},
Year = {2000}}
"""
# Description of dataset gathered from: https://github.com/cgpotts/swda#overview.
_DESCRIPTION = """\
The Switchboard Dialog Act Corpus (SwDA) extends the Switchboard-1 Telephone Speech Corpus, Release 2 with
turn/utterance-level dialog-act tags. The tags summarize syntactic, semantic, and pragmatic information about the
associated turn. The SwDA project was undertaken at UC Boulder in the late 1990s.
The SwDA is not inherently linked to the Penn Treebank 3 parses of Switchboard, and it is far from straightforward to
align the two resources. In addition, the SwDA is not distributed with the Switchboard's tables of metadata about the
conversations and their participants.
"""
# Homepage gathered from: https://github.com/cgpotts/swda#overview.
_HOMEPAGE = "http://compprag.christopherpotts.net/swda.html"
# More details about the license: https://creativecommons.org/licenses/by-nc-sa/3.0/.
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License"
# Dataset main url.
_URL = "https://github.com/cgpotts/swda/raw/master/swda.zip"
# Dialogue act tags - long version 217 dialogue acts labels.
_ACT_TAGS = [
"b^m^r",
"qw^r^t",
"aa^h",
"br^m",
"fa^r",
"aa,ar",
"sd^e(^q)^r",
"^2",
"sd;qy^d",
"oo",
"bk^m",
"aa^t",
"cc^t",
"qy^d^c",
"qo^t",
"ng^m",
"qw^h",
"qo^r",
"aa",
"qy^d^t",
"qrr^d",
"br^r",
"fx",
"sd,qy^g",
"ny^e",
"^h^t",
"fc^m",
"qw(^q)",
"co",
"o^t",
"b^m^t",
"qr^d",
"qw^g",
"ad(^q)",
"qy(^q)",
"na^r",
"am^r",
"qr^t",
"ad^c",
"qw^c",
"bh^r",
"h^t",
"ft^m",
"ba^r",
"qw^d^t",
"%",
"t3",
"nn",
"bd",
"h^m",
"h^r",
"sd^r",
"qh^m",
"^q^t",
"sv^2",
"ft",
"ar^m",
"qy^h",
"sd^e^m",
"qh^r",
"cc",
"fp^m",
"ad",
"qo",
"na^m^t",
"fo^c",
"qy",
"sv^e^r",
"aap",
"no",
"aa^2",
"sv(^q)",
"sv^e",
"nd",
'"',
"bf^2",
"bk",
"fp",
"nn^r^t",
"fa^c",
"ny^t",
"ny^c^r",
"qw",
"qy^t",
"b",
"fo",
"qw^r",
"am",
"bf^t",
"^2^t",
"b^2",
"x",
"fc",
"qr",
"no^t",
"bk^t",
"bd^r",
"bf",
"^2^g",
"qh^c",
"ny^c",
"sd^e^r",
"br",
"fe",
"by",
"^2^r",
"fc^r",
"b^m",
"sd,sv",
"fa^t",
"sv^m",
"qrr",
"^h^r",
"na",
"fp^r",
"o",
"h,sd",
"t1^t",
"nn^r",
"cc^r",
"sv^c",
"co^t",
"qy^r",
"sv^r",
"qy^d^h",
"sd",
"nn^e",
"ny^r",
"b^t",
"ba^m",
"ar",
"bf^r",
"sv",
"bh^m",
"qy^g^t",
"qo^d^c",
"qo^d",
"nd^t",
"aa^r",
"sd^2",
"sv;sd",
"qy^c^r",
"qw^m",
"qy^g^r",
"no^r",
"qh(^q)",
"sd;sv",
"bf(^q)",
"+",
"qy^2",
"qw^d",
"qy^g",
"qh^g",
"nn^t",
"ad^r",
"oo^t",
"co^c",
"ng",
"^q",
"qw^d^c",
"qrr^t",
"^h",
"aap^r",
"bc^r",
"sd^m",
"bk^r",
"qy^g^c",
"qr(^q)",
"ng^t",
"arp",
"h",
"bh",
"sd^c",
"^g",
"o^r",
"qy^c",
"sd^e",
"fw",
"ar^r",
"qy^m",
"bc",
"sv^t",
"aap^m",
"sd;no",
"ng^r",
"bf^g",
"sd^e^t",
"o^c",
"b^r",
"b^m^g",
"ba",
"t1",
"qy^d(^q)",
"nn^m",
"ny",
"ba,fe",
"aa^m",
"qh",
"na^m",
"oo(^q)",
"qw^t",
"na^t",
"qh^h",
"qy^d^m",
"ny^m",
"fa",
"qy^d",
"fc^t",
"sd(^q)",
"qy^d^r",
"bf^m",
"sd(^q)^t",
"ft^t",
"^q^r",
"sd^t",
"sd(^q)^r",
"ad^t",
]
# Damsl dialogue act tags version - short version 43 dialogue acts labels.
_DAMSL_ACT_TAGS = [
"ad",
"qo",
"qy",
"arp_nd",
"sd",
"h",
"bh",
"no",
"^2",
"^g",
"ar",
"aa",
"sv",
"bk",
"fp",
"qw",
"b",
"ba",
"t1",
"oo_co_cc",
"+",
"ny",
"qw^d",
"x",
"qh",
"fc",
'fo_o_fw_"_by_bc',
"aap_am",
"%",
"bf",
"t3",
"nn",
"bd",
"ng",
"^q",
"br",
"qy^d",
"fa",
"^h",
"b^m",
"ft",
"qrr",
"na",
]
class Swda(datasets.GeneratorBasedBuilder):
"""
This is the HuggingFace Dataset class for swda.
Switchboard Dialog Act Corpus Hugging Face Dataset class.
The Switchboard Dialog Act Corpus (SwDA) extends the Switchboard-1 Telephone Speech Corpus, Release 2,
with turn/utterance-level dialog-act tags. The tags summarize syntactic, semantic, and pragmatic information
about the associated turn. The SwDA project was undertaken at UC Boulder in the late 1990s.
"""
# Urls for each split train-dev-test.
_URLS = {
"train": "https://github.com/NathanDuran/Probabilistic-RNN-DA-Classifier/raw/master/data/train_split.txt",
"dev": "https://github.com/NathanDuran/Probabilistic-RNN-DA-Classifier/raw/master/data/dev_split.txt",
"test": "https://github.com/NathanDuran/Probabilistic-RNN-DA-Classifier/raw/master/data/test_split.txt",
}
def _info(self):
"""
Specify the datasets.DatasetInfo object which contains information and typings for the dataset.
"""
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types.
features=datasets.Features(
{
"swda_filename": datasets.Value("string"),
"ptb_basename": datasets.Value("string"),
"conversation_no": datasets.Value("int64"),
"transcript_index": datasets.Value("int64"),
"act_tag": datasets.ClassLabel(num_classes=217, names=_ACT_TAGS),
"damsl_act_tag": datasets.ClassLabel(num_classes=43, names=_DAMSL_ACT_TAGS),
"caller": datasets.Value("string"),
"utterance_index": datasets.Value("int64"),
"subutterance_index": datasets.Value("int64"),
"text": datasets.Value("string"),
"pos": datasets.Value("string"),
"trees": datasets.Value("string"),
"ptb_treenumbers": datasets.Value("string"),
"talk_day": datasets.Value("string"),
"length": datasets.Value("int64"),
"topic_description": datasets.Value("string"),
"prompt": datasets.Value("string"),
"from_caller": datasets.Value("int64"),
"from_caller_sex": datasets.Value("string"),
"from_caller_education": datasets.Value("int64"),
"from_caller_birth_year": datasets.Value("int64"),
"from_caller_dialect_area": datasets.Value("string"),
"to_caller": datasets.Value("int64"),
"to_caller_sex": datasets.Value("string"),
"to_caller_education": datasets.Value("int64"),
"to_caller_birth_year": datasets.Value("int64"),
"to_caller_dialect_area": datasets.Value("string"),
}
),
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""
Returns SplitGenerators.
This method is tasked with downloading/extracting the data and defining the splits.
Args:
dl_manager (:obj:`datasets.utils.download_manager.DownloadManager`):
Download manager to download and extract data files from urls.
Returns:
:obj:`list[str]`:
List of paths to data.
"""
# Download extract and return path of data file.
dl_dir = dl_manager.download_and_extract(_URL)
# Use swda/ folder.
data_dir = os.path.join(dl_dir, "swda")
# Handle partitions files: download extract and return paths of split files.
downloaded_files = dl_manager.download(self._URLS)
return [
# Return whole data path and train splits file downloaded path.
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"data_dir": data_dir, "split_file": downloaded_files["train"]}
),
# Return whole data path and dev splits file downloaded path.
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"data_dir": data_dir, "split_file": downloaded_files["dev"]},
),
# Return whole data path and train splits file downloaded path.
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"data_dir": data_dir, "split_file": downloaded_files["test"]}
),
]
def _generate_examples(self, data_dir, split_file):
"""
Yields examples.
This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
It is in charge of opening the given file and yielding (key, example) tuples from the dataset
The key is not important, it's more here for legacy reason (legacy from tfds).
Args:
data_dir (:obj:`str`):
Path where is downloaded dataset.
split_file (:obj:`str`):
Path of split file used for train-dev-test.
Returns:
:obj:`list[str]`:
List of paths to data.
"""
# Read in the split file.
with open(file=split_file, mode="r", encoding="utf-8") as f:
split_file = f.read().splitlines()
# Read in corpus data using split files.
corpus = CorpusReader(src_dirname=data_dir, split_file=split_file)
# Generate examples.
for i_trans, trans in enumerate(corpus.iter_transcripts()):
for i_utt, utt in enumerate(trans.utterances):
id_ = str(i_trans) + ":" + str(i_utt)
yield id_, {feature: utt[feature] for feature in self.info.features.keys()}
class CorpusReader:
"""Class for reading in the corpus and iterating through its values."""
def __init__(self, src_dirname, split_file=None):
"""
Reads in the data from `src_dirname` (should be the root of the
corpus). Assumes that the metadata file `swda-metadata.csv` is
in the main directory of the corpus, using that file to build
the `Metadata` object used throughout.
Args:
src_dirname (:obj:`str`):
Path where swda folder with all data.
split_file (:obj:`list[str`, `optional`):
List of file names used in a split (train, dev or test). This argument is optional and it will have a None value attributed inside the function.
"""
self.src_dirname = src_dirname
metadata_filename = os.path.join(src_dirname, "swda-metadata.csv")
self.metadata = Metadata(metadata_filename)
self.split_file = split_file
def iter_transcripts(
self,
):
"""
Iterate through the transcripts.
Returns:
:obj:`Transcript`:
Transcript instance.
"""
# All files names.
filenames = glob.glob(os.path.join(self.src_dirname, "sw*", "*.csv"))
# If no split files are mentioned just use all files.
self.split_file = filenames if self.split_file is None else self.split_file
# Filter out desired file names
filenames = [
file for file in filenames if os.path.basename(file).split("_")[-1].split(".")[0] in self.split_file
]
for filename in sorted(filenames):
# Yield the Transcript instance:
yield Transcript(filename, self.metadata)
def iter_utterances(
self,
):
"""
Iterate through the utterances.
Returns:
:obj:`Transcript.utterances`:
Utterance instance object.
"""
for trans in self.iter_transcripts():
for utt in trans.utterances:
# Yield the Utterance instance:
yield utt
class Metadata:
"""
Basically an internal method for organizing the tables of metadata
from the original Switchboard transcripts and linking them with
the dialog acts.
"""
def __init__(self, metadata_filename):
"""
Turns the CSV file into a dictionary mapping Switchboard
conversation_no integers values to dictionaries of values. All
the keys correspond to the column names in the original
tables.
Args:
metadata_filename (:obj:`str`):
The CSV file swda-metadata.csv (should be in the main
folder of the swda directory).
"""
self.metadata_filename = metadata_filename
self.metadata = {}
self.get_metadata()
def get_metadata(self):
"""
Build the dictionary self.metadata mapping conversation_no to
dictionaries of values (str, int, or datatime, as
appropriate).
"""
csvreader = csv.reader(open(self.metadata_filename))
header = next(csvreader)
for row in csvreader:
d = dict(list(zip(header, row)))
# Add integer number features to metadata.
for key in (
"conversation_no",
"length",
"from_caller",
"to_caller",
"from_caller_education",
"to_caller_education",
):
d[key] = int(d[key])
talk_day = d["talk_day"]
talk_year = int("19" + talk_day[:2])
talk_month = int(talk_day[2:4])
talk_day = int(talk_day[4:])
# Make sure to convert date time to string to match PyArrow data formats.
d["talk_day"] = datetime.datetime(year=talk_year, month=talk_month, day=talk_day).strftime("%m/%d/%Y")
d["from_caller_birth_year"] = int(d["from_caller_birth_year"])
d["to_caller_birth_year"] = int(d["to_caller_birth_year"])
self.metadata[d["conversation_no"]] = d
def __getitem__(self, val):
"""
Val should be a key in self.metadata; returns the
corresponding value.
Args:
val (:obj:`str`):
Key in self.metadata.
Returns:
:obj::
Corresponding value.
"""
return self.metadata[val]
class Utterance:
"""
The central object of interest. The attributes correspond to the
values of the class variable header:
"""
# Metadata header file.
header = [
"swda_filename",
"ptb_basename",
"conversation_no",
"transcript_index",
"act_tag",
"caller",
"utterance_index",
"subutterance_index",
"text",
"pos",
"trees",
"ptb_treenumbers",
]
def __init__(self, row, transcript_metadata):
"""
Args:
row (:obj:`list`):
A row from one of the corpus CSV files.
transcript_metadata (:obj:`dict`):
A Metadata value based on the current `conversation_no`.
"""
# Utterance data:
for i in range(len(Utterance.header)):
att_name = Utterance.header[i]
row_value = None
if i < len(row):
row_value = row[i].strip()
# Special handling of non-string values.
if att_name == "trees":
if row_value:
# Origianl code returned list of nltk.tree and used `[Tree.fromstring(t) for t in row_value.split("|||")]`.
# Since we're returning str we don't need to make any mondifications to row_value.
row_value = row_value
else:
row_value = "" # []
elif att_name == "ptb_treenumbers":
if row_value:
row_value = row_value # list(map(int, row_value.split("|||")))
else:
row_value = "" # []
elif att_name == "act_tag":
# I thought these conjoined tags were meant to be split.
# The docs suggest that they are single tags, thought,
# so skip this conditional and let it be treated as a str.
# row_value = re.split(r"\s*[,;]\s*", row_value)
# `` Transcription errors (typos, obvious mistranscriptions) are
# marked with a "*" after the discourse tag.''
# These are removed for this version.
row_value = row_value.replace("*", "")
elif att_name in ("conversation_no", "transcript_index", "utterance_index", "subutterance_index"):
row_value = int(row_value)
# Add attribute.
setattr(self, att_name, row_value)
# Make sure conversation number matches.
assert self.conversation_no == transcript_metadata["conversation_no"]
# Add rest of missing metadata
[setattr(self, key, value) for key, value in transcript_metadata.items()]
# Add damsl tags.
setattr(self, "damsl_act_tag", self.damsl_act_tag())
def __getitem__(self, feature):
"""
Return utterance features as dictionary. It allows us to call an utterance object as a dictionary.
It contains same keys as attributes.
Args:
feature (:obj:`str`):
Feature value of utterance that is part of attributes.
Returns:
:obj:
Value of feature from utterance. Value type can vary.
"""
return vars(self)[feature]
def damsl_act_tag(
self,
):
"""
Seeks to duplicate the tag simplification described at the
Coders' Manual: http://www.stanford.edu/~jurafsky/ws97/manual.august1.html
"""
d_tags = []
tags = re.split(r"\s*[,;]\s*", self.act_tag)
for tag in tags:
if tag in ("qy^d", "qw^d", "b^m"):
pass
elif tag == "nn^e":
tag = "ng"
elif tag == "ny^e":
tag = "na"
else:
tag = re.sub(r"(.)\^.*", r"\1", tag)
tag = re.sub(r"[\(\)@*]", "", tag)
if tag in ("qr", "qy"):
tag = "qy"
elif tag in ("fe", "ba"):
tag = "ba"
elif tag in ("oo", "co", "cc"):
tag = "oo_co_cc"
elif tag in ("fx", "sv"):
tag = "sv"
elif tag in ("aap", "am"):
tag = "aap_am"
elif tag in ("arp", "nd"):
tag = "arp_nd"
elif tag in ("fo", "o", "fw", '"', "by", "bc"):
tag = 'fo_o_fw_"_by_bc'
d_tags.append(tag)
# Dan J says (p.c.) that it makes sense to take the first;
# there are only a handful of examples with 2 tags here.
return d_tags[0]
class Transcript:
"""
Transcript instances are basically just containers for lists of
utterances and transcript-level metadata, accessible via
attributes.
"""
def __init__(self, swda_filename, metadata):
"""
Sets up all the attribute values:
Args:
swda_filename (:obj:`str`):
The filename for this transcript.
metadata (:obj:`str` or `Metadata`):
If a string, then assumed to be the metadata filename, and
the metadata is created from that filename. If a `Metadata`
object, then used as the needed metadata directly.
"""
self.swda_filename = swda_filename
# If the supplied value is a filename:
if isinstance(metadata, str) or isinstance(metadata, str):
self.metadata = Metadata(metadata)
else: # Where the supplied value is already a Metadata object.
self.metadata = metadata
# Get the file rows:
rows = list(csv.reader(open(self.swda_filename, "rt")))
# Ge the header and remove it from the rows:
self.header = rows[0]
rows.pop(0)
# Extract the conversation_no to get the meta-data. Use the
# header for this in case the column ordering is ever changed:
row0dict = dict(list(zip(self.header, rows[1])))
self.conversation_no = int(row0dict["conversation_no"])
# The ptd filename in the right format for the current OS:
self.ptd_basename = os.sep.join(row0dict["ptb_basename"].split("/"))
# The dictionary of metadata for this transcript:
transcript_metadata = self.metadata[self.conversation_no]
for key, val in transcript_metadata.items():
setattr(self, key, transcript_metadata[key])
# Create the utterance list:
self.utterances = [Utterance(x, transcript_metadata) for x in rows]
# Coder's Manual: ``We also removed any line with a "@"
# (since @ marked slash-units with bad segmentation).''
self.utterances = [u for u in self.utterances if not re.search(r"[@]", u.act_tag)]
|