Datasets:

Languages:
English
ArXiv:
License:
File size: 25,472 Bytes
dd486cd
 
 
 
 
19a4dbf
dd486cd
19a4dbf
9b0e986
dd486cd
 
 
fbc850a
dd486cd
 
 
 
 
 
46562bf
6c2a2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
cdb700c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c2a2c3
 
 
 
cdb700c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c2a2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f6ff01
 
 
6c2a2c3
 
dd486cd
 
46562bf
dd486cd
 
 
 
671842f
dd486cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56b9abd
dd486cd
 
 
493cb2a
 
 
dd486cd
493cb2a
dd486cd
 
 
46562bf
 
dd486cd
46562bf
 
dd486cd
 
 
 
 
 
 
fbc850a
dd486cd
 
 
46562bf
fbc850a
 
dd486cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56b9abd
dd486cd
 
56b9abd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46562bf
56b9abd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd486cd
 
 
56b9abd
 
 
 
 
 
 
 
 
 
dd486cd
 
 
 
 
 
 
 
 
 
 
46562bf
dd486cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56b9abd
 
 
 
 
 
dd486cd
 
56b9abd
 
 
 
 
 
 
dd486cd
 
56b9abd
 
 
 
 
 
 
dd486cd
56b9abd
 
 
6c2a2c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
---
annotations_creators:
- found
language_creators:
- found
language:
- en
license:
- cc-by-nc-sa-3.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- extended|other-Switchboard-1 Telephone Speech Corpus, Release 2
task_categories:
- text-classification
task_ids:
- multi-label-classification
pretty_name: The Switchboard Dialog Act Corpus (SwDA)
dataset_info:
  features:
  - name: swda_filename
    dtype: string
  - name: ptb_basename
    dtype: string
  - name: conversation_no
    dtype: int64
  - name: transcript_index
    dtype: int64
  - name: act_tag
    dtype:
      class_label:
        names:
          '0': b^m^r
          '1': qw^r^t
          '2': aa^h
          '3': br^m
          '4': fa^r
          '5': aa,ar
          '6': sd^e(^q)^r
          '7': ^2
          '8': sd;qy^d
          '9': oo
          '10': bk^m
          '11': aa^t
          '12': cc^t
          '13': qy^d^c
          '14': qo^t
          '15': ng^m
          '16': qw^h
          '17': qo^r
          '18': aa
          '19': qy^d^t
          '20': qrr^d
          '21': br^r
          '22': fx
          '23': sd,qy^g
          '24': ny^e
          '25': ^h^t
          '26': fc^m
          '27': qw(^q)
          '28': co
          '29': o^t
          '30': b^m^t
          '31': qr^d
          '32': qw^g
          '33': ad(^q)
          '34': qy(^q)
          '35': na^r
          '36': am^r
          '37': qr^t
          '38': ad^c
          '39': qw^c
          '40': bh^r
          '41': h^t
          '42': ft^m
          '43': ba^r
          '44': qw^d^t
          '45': '%'
          '46': t3
          '47': nn
          '48': bd
          '49': h^m
          '50': h^r
          '51': sd^r
          '52': qh^m
          '53': ^q^t
          '54': sv^2
          '55': ft
          '56': ar^m
          '57': qy^h
          '58': sd^e^m
          '59': qh^r
          '60': cc
          '61': fp^m
          '62': ad
          '63': qo
          '64': na^m^t
          '65': fo^c
          '66': qy
          '67': sv^e^r
          '68': aap
          '69': 'no'
          '70': aa^2
          '71': sv(^q)
          '72': sv^e
          '73': nd
          '74': '"'
          '75': bf^2
          '76': bk
          '77': fp
          '78': nn^r^t
          '79': fa^c
          '80': ny^t
          '81': ny^c^r
          '82': qw
          '83': qy^t
          '84': b
          '85': fo
          '86': qw^r
          '87': am
          '88': bf^t
          '89': ^2^t
          '90': b^2
          '91': x
          '92': fc
          '93': qr
          '94': no^t
          '95': bk^t
          '96': bd^r
          '97': bf
          '98': ^2^g
          '99': qh^c
          '100': ny^c
          '101': sd^e^r
          '102': br
          '103': fe
          '104': by
          '105': ^2^r
          '106': fc^r
          '107': b^m
          '108': sd,sv
          '109': fa^t
          '110': sv^m
          '111': qrr
          '112': ^h^r
          '113': na
          '114': fp^r
          '115': o
          '116': h,sd
          '117': t1^t
          '118': nn^r
          '119': cc^r
          '120': sv^c
          '121': co^t
          '122': qy^r
          '123': sv^r
          '124': qy^d^h
          '125': sd
          '126': nn^e
          '127': ny^r
          '128': b^t
          '129': ba^m
          '130': ar
          '131': bf^r
          '132': sv
          '133': bh^m
          '134': qy^g^t
          '135': qo^d^c
          '136': qo^d
          '137': nd^t
          '138': aa^r
          '139': sd^2
          '140': sv;sd
          '141': qy^c^r
          '142': qw^m
          '143': qy^g^r
          '144': no^r
          '145': qh(^q)
          '146': sd;sv
          '147': bf(^q)
          '148': +
          '149': qy^2
          '150': qw^d
          '151': qy^g
          '152': qh^g
          '153': nn^t
          '154': ad^r
          '155': oo^t
          '156': co^c
          '157': ng
          '158': ^q
          '159': qw^d^c
          '160': qrr^t
          '161': ^h
          '162': aap^r
          '163': bc^r
          '164': sd^m
          '165': bk^r
          '166': qy^g^c
          '167': qr(^q)
          '168': ng^t
          '169': arp
          '170': h
          '171': bh
          '172': sd^c
          '173': ^g
          '174': o^r
          '175': qy^c
          '176': sd^e
          '177': fw
          '178': ar^r
          '179': qy^m
          '180': bc
          '181': sv^t
          '182': aap^m
          '183': sd;no
          '184': ng^r
          '185': bf^g
          '186': sd^e^t
          '187': o^c
          '188': b^r
          '189': b^m^g
          '190': ba
          '191': t1
          '192': qy^d(^q)
          '193': nn^m
          '194': ny
          '195': ba,fe
          '196': aa^m
          '197': qh
          '198': na^m
          '199': oo(^q)
          '200': qw^t
          '201': na^t
          '202': qh^h
          '203': qy^d^m
          '204': ny^m
          '205': fa
          '206': qy^d
          '207': fc^t
          '208': sd(^q)
          '209': qy^d^r
          '210': bf^m
          '211': sd(^q)^t
          '212': ft^t
          '213': ^q^r
          '214': sd^t
          '215': sd(^q)^r
          '216': ad^t
  - name: damsl_act_tag
    dtype:
      class_label:
        names:
          '0': ad
          '1': qo
          '2': qy
          '3': arp_nd
          '4': sd
          '5': h
          '6': bh
          '7': 'no'
          '8': ^2
          '9': ^g
          '10': ar
          '11': aa
          '12': sv
          '13': bk
          '14': fp
          '15': qw
          '16': b
          '17': ba
          '18': t1
          '19': oo_co_cc
          '20': +
          '21': ny
          '22': qw^d
          '23': x
          '24': qh
          '25': fc
          '26': fo_o_fw_"_by_bc
          '27': aap_am
          '28': '%'
          '29': bf
          '30': t3
          '31': nn
          '32': bd
          '33': ng
          '34': ^q
          '35': br
          '36': qy^d
          '37': fa
          '38': ^h
          '39': b^m
          '40': ft
          '41': qrr
          '42': na
  - name: caller
    dtype: string
  - name: utterance_index
    dtype: int64
  - name: subutterance_index
    dtype: int64
  - name: text
    dtype: string
  - name: pos
    dtype: string
  - name: trees
    dtype: string
  - name: ptb_treenumbers
    dtype: string
  - name: talk_day
    dtype: string
  - name: length
    dtype: int64
  - name: topic_description
    dtype: string
  - name: prompt
    dtype: string
  - name: from_caller
    dtype: int64
  - name: from_caller_sex
    dtype: string
  - name: from_caller_education
    dtype: int64
  - name: from_caller_birth_year
    dtype: int64
  - name: from_caller_dialect_area
    dtype: string
  - name: to_caller
    dtype: int64
  - name: to_caller_sex
    dtype: string
  - name: to_caller_education
    dtype: int64
  - name: to_caller_birth_year
    dtype: int64
  - name: to_caller_dialect_area
    dtype: string
  splits:
  - name: train
    num_bytes: 128498512
    num_examples: 213543
  - name: validation
    num_bytes: 34749819
    num_examples: 56729
  - name: test
    num_bytes: 2560127
    num_examples: 4514
  download_size: 14456364
  dataset_size: 165808458
---

# Dataset Card for SwDA

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [The Switchboard Dialog Act Corpus](http://compprag.christopherpotts.net/swda.html)
- **Repository:** [NathanDuran/Switchboard-Corpus](https://github.com/cgpotts/swda)
- **Paper:** [The Switchboard Dialog Act Corpus](http://compprag.christopherpotts.net/swda.html)
= **Leaderboard: [Dialogue act classification](https://github.com/sebastianruder/NLP-progress/blob/master/english/dialogue.md#dialogue-act-classification)**
- **Point of Contact:** [Christopher Potts](https://web.stanford.edu/~cgpotts/)

### Dataset Summary

The Switchboard Dialog Act Corpus (SwDA) extends the Switchboard-1 Telephone Speech Corpus, Release 2 with
turn/utterance-level dialog-act tags. The tags summarize syntactic, semantic, and pragmatic information about the
associated turn. The SwDA project was undertaken at UC Boulder in the late 1990s.
The SwDA is not inherently linked to the Penn Treebank 3 parses of Switchboard, and it is far from straightforward to
align the two resources. In addition, the SwDA is not distributed with the Switchboard's tables of metadata about the
conversations and their participants.


### Supported Tasks and Leaderboards

| Model           | Accuracy  |  Paper / Source | Code |
| ------------- | :-----:| --- | --- |
| H-Seq2seq (Colombo et al., 2020) | 85.0 | [Guiding attention in Sequence-to-sequence models for Dialogue Act prediction](https://ojs.aaai.org/index.php/AAAI/article/view/6259/6115)
| SGNN (Ravi et al., 2018) | 83.1 | [Self-Governing Neural Networks for On-Device Short Text Classification](https://www.aclweb.org/anthology/D18-1105.pdf)
| CASA (Raheja et al., 2019) | 82.9 | [Dialogue Act Classification with Context-Aware Self-Attention](https://www.aclweb.org/anthology/N19-1373.pdf)
| DAH-CRF (Li et al., 2019) | 82.3 | [A Dual-Attention Hierarchical Recurrent Neural Network for Dialogue Act Classification](https://www.aclweb.org/anthology/K19-1036.pdf)
| ALDMN (Wan et al., 2018) | 81.5 | [Improved Dynamic Memory Network for Dialogue Act Classification with Adversarial Training](https://arxiv.org/pdf/1811.05021.pdf)
| CRF-ASN (Chen et al., 2018) | 81.3 | [Dialogue Act Recognition via CRF-Attentive Structured Network](https://arxiv.org/abs/1711.05568)
| Pretrained H-Transformer (Chapuis et al., 2020) |  79.3 | [Hierarchical Pre-training for Sequence Labelling in Spoken Dialog] (https://www.aclweb.org/anthology/2020.findings-emnlp.239)
| Bi-LSTM-CRF (Kumar et al., 2017) | 79.2 | [Dialogue Act Sequence Labeling using Hierarchical encoder with CRF](https://arxiv.org/abs/1709.04250) | [Link](https://github.com/YanWenqiang/HBLSTM-CRF) |
| RNN with 3 utterances in context (Bothe et al., 2018) | 77.34 | [A Context-based Approach for Dialogue Act Recognition using Simple Recurrent Neural Networks](https://arxiv.org/abs/1805.06280) | |

### Languages

The language supported is English.

## Dataset Structure

Utterance are tagged with the [SWBD-DAMSL](https://web.stanford.edu/~jurafsky/ws97/manual.august1.html) DA.

### Data Instances


An example from the dataset is:

`{'act_tag': 115, 'caller': 'A', 'conversation_no': 4325, 'damsl_act_tag': 26, 'from_caller': 1632, 'from_caller_birth_year': 1962, 'from_caller_dialect_area': 'WESTERN', 'from_caller_education': 2, 'from_caller_sex': 'FEMALE', 'length': 5, 'pos': 'Okay/UH ./.', 'prompt': 'FIND OUT WHAT CRITERIA THE OTHER CALLER WOULD USE IN SELECTING CHILD CARE SERVICES FOR A PRESCHOOLER.  IS IT EASY OR DIFFICULT TO FIND SUCH CARE?', 'ptb_basename': '4/sw4325', 'ptb_treenumbers': '1', 'subutterance_index': 1, 'swda_filename': 'sw00utt/sw_0001_4325.utt', 'talk_day': '03/23/1992', 'text': 'Okay.  /', 'to_caller': 1519, 'to_caller_birth_year': 1971, 'to_caller_dialect_area': 'SOUTH MIDLAND', 'to_caller_education': 1, 'to_caller_sex': 'FEMALE', 'topic_description': 'CHILD CARE', 'transcript_index': 0, 'trees': '(INTJ (UH Okay) (. .) (-DFL- E_S))', 'utterance_index': 1}`

### Data Fields

* `swda_filename`:            (str) The filename: directory/basename.
* `ptb_basename`:             (str) The Treebank filename: add ".pos" for POS and ".mrg" for trees
* `conversation_no`:          (int) The conversation Id, to key into the metadata database.
* `transcript_index`:         (int) The line number of this item in the transcript (counting only utt lines).
* `act_tag`:                  (list of str) The Dialog Act Tags (separated by ||| in the file). Check Dialog act annotations for more details.
* `damsl_act_tag`:            (list of str) The Dialog Act Tags of the 217 variation tags.
* `caller`:                   (str) A, B, @A, @B, @@A, @@B
* `utterance_index`:          (int) The encoded index of the utterance (the number in A.49, B.27, etc.)
* `subutterance_index`:       (int) Utterances can be broken across line. This gives the internal position.
* `text`:                     (str) The text of the utterance
* `pos`:                      (str) The POS tagged version of the utterance, from PtbBasename+.pos
* `trees`:                    (str) The tree(s) containing this utterance (separated by ||| in the file). Use `[Tree.fromstring(t) for t in row_value.split("|||")]` to convert to (list of nltk.tree.Tree).
* `ptb_treenumbers`:          (list of int) The tree numbers in the PtbBasename+.mrg
* `talk_day`:                 (str) Date of talk.
* `length`:                   (int) Length of talk in seconds.
* `topic_description`:        (str) Short description of topic that's being discussed.
* `prompt`:                   (str) Long decription/query/instruction.
* `from_caller`:              (int) The numerical Id of the from (A) caller.
* `from_caller_sex`:          (str) MALE, FEMALE.
* `from_caller_education`:    (int) Called education level 0, 1, 2, 3, 9.
* `from_caller_birth_year`:   (int) Caller birth year YYYY.
* `from_caller_dialect_area`: (str) MIXED, NEW ENGLAND, NORTH MIDLAND, NORTHERN, NYC, SOUTH MIDLAND, SOUTHERN, UNK, WESTERN.
* `to_caller`:                (int) The numerical Id of the to (B) caller.
* `to_caller_sex`:            (str) MALE, FEMALE.
* `to_caller_education`:      (int) Called education level 0, 1, 2, 3, 9.
* `to_caller_birth_year`:     (int) Caller birth year YYYY.
* `to_caller_dialect_area`:   (str) MIXED, NEW ENGLAND, NORTH MIDLAND, NORTHERN, NYC, SOUTH MIDLAND, SOUTHERN, UNK, WESTERN.


### Dialog act annotations


|         | name                              | act_tag            | example                                              | train_count     | full_count     |
|-----    |-------------------------------    |----------------    |--------------------------------------------------    |-------------    |------------    |
| 1       | Statement-non-opinion             | sd                 | Me, I'm in the legal department.                     | 72824           | 75145          |
| 2       | Acknowledge (Backchannel)         | b                  | Uh-huh.                                              | 37096           | 38298          |
| 3       | Statement-opinion                 | sv                 | I think it's great                                   | 25197           | 26428          |
| 4       | Agree/Accept                      | aa                 | That's exactly it.                                   | 10820           | 11133          |
| 5       | Abandoned or Turn-Exit            | %                  | So, -                                                | 10569           | 15550          |
| 6       | Appreciation                      | ba                 | I can imagine.                                       | 4633            | 4765           |
| 7       | Yes-No-Question                   | qy                 | Do you have to have any special training?            | 4624            | 4727           |
| 8       | Non-verbal                        | x                  | [Laughter], [Throat_clearing]                        | 3548            | 3630           |
| 9       | Yes answers                       | ny                 | Yes.                                                 | 2934            | 3034           |
| 10      | Conventional-closing              | fc                 | Well, it's been nice talking to you.                 | 2486            | 2582           |
| 11      | Uninterpretable                   | %                  | But, uh, yeah                                        | 2158            | 15550          |
| 12      | Wh-Question                       | qw                 | Well, how old are you?                               | 1911            | 1979           |
| 13      | No answers                        | nn                 | No.                                                  | 1340            | 1377           |
| 14      | Response Acknowledgement          | bk                 | Oh, okay.                                            | 1277            | 1306           |
| 15      | Hedge                             | h                  | I don't know if I'm making any sense or not.         | 1182            | 1226           |
| 16      | Declarative Yes-No-Question       | qy^d               | So you can afford to get a house?                    | 1174            | 1219           |
| 17      | Other                             | fo_o_fw_by_bc      | Well give me a break, you know.                      | 1074            | 883            |
| 18      | Backchannel in question form      | bh                 | Is that right?                                       | 1019            | 1053           |
| 19      | Quotation                         | ^q                 | You can't be pregnant and have cats                  | 934             | 983            |
| 20      | Summarize/reformulate             | bf                 | Oh, you mean you switched schools for the kids.      | 919             | 952            |
| 21      | Affirmative non-yes answers       | na                 | It is.                                               | 836             | 847            |
| 22      | Action-directive                  | ad                 | Why don't you go first                               | 719             | 746            |
| 23      | Collaborative Completion          | ^2                 | Who aren't contributing.                             | 699             | 723            |
| 24      | Repeat-phrase                     | b^m                | Oh, fajitas                                          | 660             | 688            |
| 25      | Open-Question                     | qo                 | How about you?                                       | 632             | 656            |
| 26      | Rhetorical-Questions              | qh                 | Who would steal a newspaper?                         | 557             | 575            |
| 27      | Hold before answer/agreement      | ^h                 | I'm drawing a blank.                                 | 540             | 556            |
| 28      | Reject                            | ar                 | Well, no                                             | 338             | 346            |
| 29      | Negative non-no answers           | ng                 | Uh, not a whole lot.                                 | 292             | 302            |
| 30      | Signal-non-understanding          | br                 | Excuse me?                                           | 288             | 298            |
| 31      | Other answers                     | no                 | I don't know                                         | 279             | 286            |
| 32      | Conventional-opening              | fp                 | How are you?                                         | 220             | 225            |
| 33      | Or-Clause                         | qrr                | or is it more of a company?                          | 207             | 209            |
| 34      | Dispreferred answers              | arp_nd             | Well, not so much that.                              | 205             | 207            |
| 35      | 3rd-party-talk                    | t3                 | My goodness, Diane, get down from there.             | 115             | 117            |
| 36      | Offers, Options, Commits          | oo_co_cc           | I'll have to check that out                          | 109             | 110            |
| 37      | Self-talk                         | t1                 | What's the word I'm looking for                      | 102             | 103            |
| 38      | Downplayer                        | bd                 | That's all right.                                    | 100             | 103            |
| 39      | Maybe/Accept-part                 | aap_am             | Something like that                                  | 98              | 105            |
| 40      | Tag-Question                      | ^g                 | Right?                                               | 93              | 92             |
| 41      | Declarative Wh-Question           | qw^d               | You are what kind of buff?                           | 80              | 80             |
| 42      | Apology                           | fa                 | I'm sorry.                                           | 76              | 79             |
| 43      | Thanking                          | ft                 | Hey thanks a lot                                     | 67              | 78             |

### Data Splits

I used info from the [Probabilistic-RNN-DA-Classifier](https://github.com/NathanDuran/Probabilistic-RNN-DA-Classifier) repo:
The same training and test splits as used by [Stolcke et al. (2000)](https://web.stanford.edu/~jurafsky/ws97).
The development set is a subset of the training set to speed up development and testing used in the paper [Probabilistic Word Association for Dialogue Act Classification with Recurrent Neural Networks](https://www.researchgate.net/publication/326640934_Probabilistic_Word_Association_for_Dialogue_Act_Classification_with_Recurrent_Neural_Networks_19th_International_Conference_EANN_2018_Bristol_UK_September_3-5_2018_Proceedings).

|Dataset    |# Transcripts  |# Utterances   |
|-----------|:-------------:|:-------------:|
|Training   |1115           |192,768        |
|Validation |21             |3,196          |
|Test       |19             |4,088          |


## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

The SwDA is not inherently linked to the Penn Treebank 3 parses of Switchboard, and it is far from straightforward to align the two resources Calhoun et al. 2010, §2.4. In addition, the SwDA is not distributed with the Switchboard's tables of metadata about the conversations and their participants.

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[Christopher Potts](https://web.stanford.edu/~cgpotts/), Stanford Linguistics.

### Licensing Information

This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.](http://creativecommons.org/licenses/by-nc-sa/3.0/)

### Citation Information

```
@techreport{Jurafsky-etal:1997,
    Address = {Boulder, CO},
    Author = {Jurafsky, Daniel and Shriberg, Elizabeth and Biasca, Debra},
    Institution = {University of Colorado, Boulder Institute of Cognitive Science},
    Number = {97-02},
    Title = {Switchboard {SWBD}-{DAMSL} Shallow-Discourse-Function Annotation Coders Manual, Draft 13},
    Year = {1997}}

@article{Shriberg-etal:1998,
    Author = {Shriberg, Elizabeth and Bates, Rebecca and Taylor, Paul and Stolcke, Andreas and Jurafsky, Daniel and Ries, Klaus and Coccaro, Noah and Martin, Rachel and Meteer, Marie and Van Ess-Dykema, Carol},
    Journal = {Language and Speech},
    Number = {3--4},
    Pages = {439--487},
    Title = {Can Prosody Aid the Automatic Classification of Dialog Acts in Conversational Speech?},
    Volume = {41},
    Year = {1998}}

@article{Stolcke-etal:2000,
    Author = {Stolcke, Andreas and Ries, Klaus and Coccaro, Noah and Shriberg, Elizabeth and Bates, Rebecca and Jurafsky, Daniel and Taylor, Paul and Martin, Rachel and Meteer, Marie and Van Ess-Dykema, Carol},
    Journal = {Computational Linguistics},
    Number = {3},
    Pages = {339--371},
    Title = {Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech},
    Volume = {26},
    Year = {2000}}
```

### Contributions

Thanks to [@gmihaila](https://github.com/gmihaila) for adding this dataset.