charlesxu0124 commited on
Commit
72e03f5
·
verified ·
1 Parent(s): a645418

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -0
README.md ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ language:
4
+ - en
5
+ pretty_name: FMB
6
+ ---
7
+ # Functional Manipulation Benchmark
8
+
9
+ This robot learning dataset is a part of the paper "FMB: a Functional Manipulation Benchmark for Generalizable Robotic Learning". It includes 22,550 expert
10
+ demonstration trajectories across different skills required to solve the Single-Object and Multi-Object Manipulation Tasks presented in the paper.
11
+
12
+
13
+ Link to Paper: https://arxiv.org/abs/2401.08553
14
+
15
+
16
+
17
+ ## Dataset Structure
18
+ Each zip file contains a folder of trajectories. Each trajectory is saved as a .npy file. Each .npy file contains a dictionary with the following key-value pairs:
19
+
20
+ - `obs/side_1`: a (N, 256, 256, 3) numpy array of RGB images from the side camera 1 saved in BGR format
21
+ - `obs/side_2`: a (N, 256, 256, 3) numpy array of RGB images from the side camera 2 saved in BGR format
22
+ - `obs/wrist_1`: a (N, 256, 256, 3) numpy array of RGB images from the wrist camera 1 saved in BGR format
23
+ - `obs/wrist_2`: a (N, 256, 256, 3) numpy array of RGB images from the wrist camera 2 saved in BGR format
24
+ - `obs/side_1_depth`: a (N, 256, 256) numpy array of depth images from the side camera 1
25
+ - `obs/side_2_depth`: a (N, 256, 256) numpy array of depth images from the side camera 2
26
+ - `obs/wrist_1_depth`: a (N, 256, 256) numpy array of depth images from the wrist camera 1
27
+ - `obs/wrist_2_depth`: a (N, 256, 256) numpy array of depth images from the wrist camera 2
28
+ - `obs/tcp_pose`: a (N, 7) numpy array of the end effector pose in the robot's base frame (XYZ, Quaternion)
29
+ - `obs/tcp_vel`: a (N, 6) numpy array of the end effector velocity in the robot's base frame (XYZ, RPY)
30
+ - `obs/tcp_force`: a (N, 3) numpy array of the end-effector force in the robot's end-effector frame (XYZ)
31
+ - `obs/tcp_torque`: a (N, 3) numpy array of the end-effector torque in the robot's end-effector frame (RPY)
32
+ - `obs/q`: a (N, 7) numpy array of the joint positions
33
+ - `obs/dq`: a (N, 7) numpy array of the joint velocities
34
+ - `obs/jacobian`: a (N, 6, 7) numpy array of the robot jacobian
35
+ - `obs/gripper_pose`: a (N, ) numpy array indicating the binary state of the gripper (0=open, 1=closed)
36
+ - `action`: a (N, 7) numpy array of the commanded cartesian action (XYZ, RPY, gripper)
37
+ - `primitive`: a (N, ) numpy array of strings indicating the primitive associated with the current timestep
38
+ - `object_id` (Multi-Object only): a (N, ) numpy array of integers indicating the ID of the object being manipulated in the current trajectory
39
+ - `object_info` (Single-Object only): a dictionary containing information of the object being manipulated in the current trajectory with the following keys-value pairs:
40
+ - `length`: length of the object (S=Short, L=Long)
41
+ - `size`: cross-sectional size of the object (S=Small, M=Medium, L=Large)
42
+ - `shape`: shape ID of the object according to reference sheet
43
+ - `color`: color ID of the object according to reference sheet
44
+ - `angle`: initial pose of the object indicating how it should be grasped and reoriented (horizontal, vertical)
45
+ - `distractor`: indicator for whether there are distractor objects (y=yes, n=no)
46
+ ## File Naming
47
+ The Single-Object Dataset trajectory files are named as follows:
48
+
49
+ (insert_only_){shape}_{size}_{length}_{color}_{angle}_{distractor}_{trajectory_id}.npy
50
+
51
+ The Multi-Object Dataset trajectory files are named as follows:
52
+
53
+ trajectory_{object_id}_{trajectory_id}.npy
54
+