title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Learning to Perform Physics Experiments via Deep Reinforcement Learning
stat.ML cs.AI cs.CV cs.LG cs.NE physics.soc-ph
When encountering novel objects, humans are able to infer a wide range of physical properties such as mass, friction and deformability by interacting with them in a goal driven way. This process of active interaction is in the same spirit as a scientist performing experiments to discover hidden facts. Recent advances in artificial intelligence have yielded machines that can achieve superhuman performance in Go, Atari, natural language processing, and complex control problems; however, it is not clear that these systems can rival the scientific intuition of even a young child. In this work we introduce a basic set of tasks that require agents to estimate properties such as mass and cohesion of objects in an interactive simulated environment where they can manipulate the objects and observe the consequences. We found that state of art deep reinforcement learning methods can learn to perform the experiments necessary to discover such hidden properties. By systematically manipulating the problem difficulty and the cost incurred by the agent for performing experiments, we found that agents learn different strategies that balance the cost of gathering information against the cost of making mistakes in different situations.
Misha Denil, Pulkit Agrawal, Tejas D Kulkarni, Tom Erez, Peter Battaglia, Nando de Freitas
null
1611.01843
null
null
Challenges of Feature Selection for Big Data Analytics
cs.LG
We are surrounded by huge amounts of large-scale high dimensional data. It is desirable to reduce the dimensionality of data for many learning tasks due to the curse of dimensionality. Feature selection has shown its effectiveness in many applications by building simpler and more comprehensive model, improving learning performance, and preparing clean, understandable data. Recently, some unique characteristics of big data such as data velocity and data variety present challenges to the feature selection problem. In this paper, we envision these challenges of feature selection for big data analytics. In particular, we first give a brief introduction about feature selection and then detail the challenges of feature selection for structured, heterogeneous and streaming data as well as its scalability and stability issues. At last, to facilitate and promote the feature selection research, we present an open-source feature selection repository (scikit-feature), which consists of most of current popular feature selection algorithms.
Jundong Li, Huan Liu
null
1611.01875
null
null
An Information-Theoretic Framework for Fast and Robust Unsupervised Learning via Neural Population Infomax
cs.LG cs.AI cs.IT math.IT q-bio.NC stat.ML
A framework is presented for unsupervised learning of representations based on infomax principle for large-scale neural populations. We use an asymptotic approximation to the Shannon's mutual information for a large neural population to demonstrate that a good initial approximation to the global information-theoretic optimum can be obtained by a hierarchical infomax method. Starting from the initial solution, an efficient algorithm based on gradient descent of the final objective function is proposed to learn representations from the input datasets, and the method works for complete, overcomplete, and undercomplete bases. As confirmed by numerical experiments, our method is robust and highly efficient for extracting salient features from input datasets. Compared with the main existing methods, our algorithm has a distinct advantage in both the training speed and the robustness of unsupervised representation learning. Furthermore, the proposed method is easily extended to the supervised or unsupervised model for training deep structure networks.
Wentao Huang and Kechen Zhang
null
1611.01886
null
null
Joint Multimodal Learning with Deep Generative Models
stat.ML cs.LG
We investigate deep generative models that can exchange multiple modalities bi-directionally, e.g., generating images from corresponding texts and vice versa. Recently, some studies handle multiple modalities on deep generative models, such as variational autoencoders (VAEs). However, these models typically assume that modalities are forced to have a conditioned relation, i.e., we can only generate modalities in one direction. To achieve our objective, we should extract a joint representation that captures high-level concepts among all modalities and through which we can exchange them bi-directionally. As described herein, we propose a joint multimodal variational autoencoder (JMVAE), in which all modalities are independently conditioned on joint representation. In other words, it models a joint distribution of modalities. Furthermore, to be able to generate missing modalities from the remaining modalities properly, we develop an additional method, JMVAE-kl, that is trained by reducing the divergence between JMVAE's encoder and prepared networks of respective modalities. Our experiments show that our proposed method can obtain appropriate joint representation from multiple modalities and that it can generate and reconstruct them more properly than conventional VAEs. We further demonstrate that JMVAE can generate multiple modalities bi-directionally.
Masahiro Suzuki, Kotaro Nakayama, Yutaka Matsuo
null
1611.01891
null
null
Decision Tree Classification with Differential Privacy: A Survey
cs.DB cs.LG
Data mining information about people is becoming increasingly important in the data-driven society of the 21st century. Unfortunately, sometimes there are real-world considerations that conflict with the goals of data mining; sometimes the privacy of the people being data mined needs to be considered. This necessitates that the output of data mining algorithms be modified to preserve privacy while simultaneously not ruining the predictive power of the outputted model. Differential privacy is a strong, enforceable definition of privacy that can be used in data mining algorithms, guaranteeing that nothing will be learned about the people in the data that could not already be discovered without their participation. In this survey, we focus on one particular data mining algorithm -- decision trees -- and how differential privacy interacts with each of the components that constitute decision tree algorithms. We analyze both greedy and random decision trees, and the conflicts that arise when trying to balance privacy requirements with the accuracy of the model.
Sam Fletcher, Md Zahidul Islam
null
1611.01919
null
null
Averaged-DQN: Variance Reduction and Stabilization for Deep Reinforcement Learning
cs.AI cs.LG stat.ML
Instability and variability of Deep Reinforcement Learning (DRL) algorithms tend to adversely affect their performance. Averaged-DQN is a simple extension to the DQN algorithm, based on averaging previously learned Q-values estimates, which leads to a more stable training procedure and improved performance by reducing approximation error variance in the target values. To understand the effect of the algorithm, we examine the source of value function estimation errors and provide an analytical comparison within a simplified model. We further present experiments on the Arcade Learning Environment benchmark that demonstrate significantly improved stability and performance due to the proposed extension.
Oron Anschel, Nir Baram, Nahum Shimkin
null
1611.01929
null
null
DeepSense: A Unified Deep Learning Framework for Time-Series Mobile Sensing Data Processing
cs.LG cs.NE cs.NI
Mobile sensing applications usually require time-series inputs from sensors. Some applications, such as tracking, can use sensed acceleration and rate of rotation to calculate displacement based on physical system models. Other applications, such as activity recognition, extract manually designed features from sensor inputs for classification. Such applications face two challenges. On one hand, on-device sensor measurements are noisy. For many mobile applications, it is hard to find a distribution that exactly describes the noise in practice. Unfortunately, calculating target quantities based on physical system and noise models is only as accurate as the noise assumptions. Similarly, in classification applications, although manually designed features have proven to be effective, it is not always straightforward to find the most robust features to accommodate diverse sensor noise patterns and user behaviors. To this end, we propose DeepSense, a deep learning framework that directly addresses the aforementioned noise and feature customization challenges in a unified manner. DeepSense integrates convolutional and recurrent neural networks to exploit local interactions among similar mobile sensors, merge local interactions of different sensory modalities into global interactions, and extract temporal relationships to model signal dynamics. DeepSense thus provides a general signal estimation and classification framework that accommodates a wide range of applications. We demonstrate the effectiveness of DeepSense using three representative and challenging tasks: car tracking with motion sensors, heterogeneous human activity recognition, and user identification with biometric motion analysis. DeepSense significantly outperforms the state-of-the-art methods for all three tasks. In addition, DeepSense is feasible to implement on smartphones due to its moderate energy consumption and low latency
Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, Tarek Abdelzaher
null
1611.01942
null
null
Linear Convergence of SVRG in Statistical Estimation
stat.ML cs.LG
SVRG and its variants are among the state of art optimization algorithms for large scale machine learning problems. It is well known that SVRG converges linearly when the objective function is strongly convex. However this setup can be restrictive, and does not include several important formulations such as Lasso, group Lasso, logistic regression, and some non-convex models including corrected Lasso and SCAD. In this paper, we prove that, for a class of statistical M-estimators covering examples mentioned above, SVRG solves the formulation with {\em a linear convergence rate} without strong convexity or even convexity. Our analysis makes use of {\em restricted strong convexity}, under which we show that SVRG converges linearly to the fundamental statistical precision of the model, i.e., the difference between true unknown parameter $\theta^*$ and the optimal solution $\hat{\theta}$ of the model.
Chao Qu, Yan Li, Huan Xu
null
1611.01957
null
null
Log-time and Log-space Extreme Classification
cs.LG
We present LTLS, a technique for multiclass and multilabel prediction that can perform training and inference in logarithmic time and space. LTLS embeds large classification problems into simple structured prediction problems and relies on efficient dynamic programming algorithms for inference. We train LTLS with stochastic gradient descent on a number of multiclass and multilabel datasets and show that despite its small memory footprint it is often competitive with existing approaches.
Kalina Jasinska, Nikos Karampatziakis
null
1611.01964
null
null
Regularizing CNNs with Locally Constrained Decorrelations
cs.LG cs.NE
Regularization is key for deep learning since it allows training more complex models while keeping lower levels of overfitting. However, the most prevalent regularizations do not leverage all the capacity of the models since they rely on reducing the effective number of parameters. Feature decorrelation is an alternative for using the full capacity of the models but the overfitting reduction margins are too narrow given the overhead it introduces. In this paper, we show that regularizing negatively correlated features is an obstacle for effective decorrelation and present OrthoReg, a novel regularization technique that locally enforces feature orthogonality. As a result, imposing locality constraints in feature decorrelation removes interferences between negatively correlated feature weights, allowing the regularizer to reach higher decorrelation bounds, and reducing the overfitting more effectively. In particular, we show that the models regularized with OrthoReg have higher accuracy bounds even when batch normalization and dropout are present. Moreover, since our regularization is directly performed on the weights, it is especially suitable for fully convolutional neural networks, where the weight space is constant compared to the feature map space. As a result, we are able to reduce the overfitting of state-of-the-art CNNs on CIFAR-10, CIFAR-100, and SVHN.
Pau Rodr\'iguez, Jordi Gonz\`alez, Guillem Cucurull, Josep M. Gonfaus, Xavier Roca
null
1611.01967
null
null
One Class Splitting Criteria for Random Forests
stat.ML cs.LG
Random Forests (RFs) are strong machine learning tools for classification and regression. However, they remain supervised algorithms, and no extension of RFs to the one-class setting has been proposed, except for techniques based on second-class sampling. This work fills this gap by proposing a natural methodology to extend standard splitting criteria to the one-class setting, structurally generalizing RFs to one-class classification. An extensive benchmark of seven state-of-the-art anomaly detection algorithms is also presented. This empirically demonstrates the relevance of our approach.
Nicolas Goix (LTCI), Nicolas Drougard (ISAE), Romain Brault (LTCI), Ma\"el Chiapino (LTCI)
null
1611.01971
null
null
Fixed-point Factorized Networks
cs.CV cs.LG
In recent years, Deep Neural Networks (DNN) based methods have achieved remarkable performance in a wide range of tasks and have been among the most powerful and widely used techniques in computer vision. However, DNN-based methods are both computational-intensive and resource-consuming, which hinders the application of these methods on embedded systems like smart phones. To alleviate this problem, we introduce a novel Fixed-point Factorized Networks (FFN) for pretrained models to reduce the computational complexity as well as the storage requirement of networks. The resulting networks have only weights of -1, 0 and 1, which significantly eliminates the most resource-consuming multiply-accumulate operations (MACs). Extensive experiments on large-scale ImageNet classification task show the proposed FFN only requires one-thousandth of multiply operations with comparable accuracy.
Peisong Wang and Jian Cheng
null
1611.01972
null
null
Differentiable Functional Program Interpreters
cs.PL cs.LG
Programming by Example (PBE) is the task of inducing computer programs from input-output examples. It can be seen as a type of machine learning where the hypothesis space is the set of legal programs in some programming language. Recent work on differentiable interpreters relaxes the discrete space of programs into a continuous space so that search over programs can be performed using gradient-based optimization. While conceptually powerful, so far differentiable interpreter-based program synthesis has only been capable of solving very simple problems. In this work, we study modeling choices that arise when constructing a differentiable programming language and their impact on the success of synthesis. The main motivation for the modeling choices comes from functional programming: we study the effect of memory allocation schemes, immutable data, type systems, and built-in control-flow structures. Empirically we show that incorporating functional programming ideas into differentiable programming languages allows us to learn much more complex programs than is possible with existing differentiable languages.
John K. Feser, Marc Brockschmidt, Alexander L. Gaunt, Daniel Tarlow
null
1611.01988
null
null
DeepCoder: Learning to Write Programs
cs.LG
We develop a first line of attack for solving programming competition-style problems from input-output examples using deep learning. The approach is to train a neural network to predict properties of the program that generated the outputs from the inputs. We use the neural network's predictions to augment search techniques from the programming languages community, including enumerative search and an SMT-based solver. Empirically, we show that our approach leads to an order of magnitude speedup over the strong non-augmented baselines and a Recurrent Neural Network approach, and that we are able to solve problems of difficulty comparable to the simplest problems on programming competition websites.
Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, Daniel Tarlow
null
1611.01989
null
null
Multi-view Generative Adversarial Networks
cs.LG
Learning over multi-view data is a challenging problem with strong practical applications. Most related studies focus on the classification point of view and assume that all the views are available at any time. We consider an extension of this framework in two directions. First, based on the BiGAN model, the Multi-view BiGAN (MV-BiGAN) is able to perform density estimation from multi-view inputs. Second, it can deal with missing views and is able to update its prediction when additional views are provided. We illustrate these properties on a set of experiments over different datasets.
Micka\"el Chen and Ludovic Denoyer
10.1007/978-3-319-71246-8_11
1611.02019
null
null
Does Distributionally Robust Supervised Learning Give Robust Classifiers?
stat.ML cs.LG
Distributionally Robust Supervised Learning (DRSL) is necessary for building reliable machine learning systems. When machine learning is deployed in the real world, its performance can be significantly degraded because test data may follow a different distribution from training data. DRSL with f-divergences explicitly considers the worst-case distribution shift by minimizing the adversarially reweighted training loss. In this paper, we analyze this DRSL, focusing on the classification scenario. Since the DRSL is explicitly formulated for a distribution shift scenario, we naturally expect it to give a robust classifier that can aggressively handle shifted distributions. However, surprisingly, we prove that the DRSL just ends up giving a classifier that exactly fits the given training distribution, which is too pessimistic. This pessimism comes from two sources: the particular losses used in classification and the fact that the variety of distributions to which the DRSL tries to be robust is too wide. Motivated by our analysis, we propose simple DRSL that overcomes this pessimism and empirically demonstrate its effectiveness.
Weihua Hu, Gang Niu, Issei Sato, Masashi Sugiyama
null
1611.02041
null
null
Reinforcement Learning Approach for Parallelization in Filters Aggregation Based Feature Selection Algorithms
cs.LG cs.AI stat.ML
One of the classical problems in machine learning and data mining is feature selection. A feature selection algorithm is expected to be quick, and at the same time it should show high performance. MeLiF algorithm effectively solves this problem using ensembles of ranking filters. This article describes two different ways to improve MeLiF algorithm performance with parallelization. Experiments show that proposed schemes significantly improves algorithm performance and increase feature selection quality.
Ivan Smetannikov, Ilya Isaev, Andrey Filchenkov
null
1611.02047
null
null
Reinforcement-based Simultaneous Algorithm and its Hyperparameters Selection
cs.LG cs.AI stat.ML
Many algorithms for data analysis exist, especially for classification problems. To solve a data analysis problem, a proper algorithm should be chosen, and also its hyperparameters should be selected. In this paper, we present a new method for the simultaneous selection of an algorithm and its hyperparameters. In order to do so, we reduced this problem to the multi-armed bandit problem. We consider an algorithm as an arm and algorithm hyperparameters search during a fixed time as the corresponding arm play. We also suggest a problem-specific reward function. We performed the experiments on 10 real datasets and compare the suggested method with the existing one implemented in Auto-WEKA. The results show that our method is significantly better in most of the cases and never worse than the Auto-WEKA.
Valeria Efimova, Andrey Filchenkov, Anatoly Shalyto
null
1611.02053
null
null
Distributed Coordinate Descent for Generalized Linear Models with Regularization
stat.ML cs.DC cs.LG
Generalized linear model with $L_1$ and $L_2$ regularization is a widely used technique for solving classification, class probability estimation and regression problems. With the numbers of both features and examples growing rapidly in the fields like text mining and clickstream data analysis parallelization and the use of cluster architectures becomes important. We present a novel algorithm for fitting regularized generalized linear models in the distributed environment. The algorithm splits data between nodes by features, uses coordinate descent on each node and line search to merge results globally. Convergence proof is provided. A modifications of the algorithm addresses slow node problem. For an important particular case of logistic regression we empirically compare our program with several state-of-the art approaches that rely on different algorithmic and data spitting methods. Experiments demonstrate that our approach is scalable and superior when training on large and sparse datasets.
Ilya Trofimov, Alexander Genkin
null
1611.02101
null
null
Differentiable Programs with Neural Libraries
cs.LG
We develop a framework for combining differentiable programming languages with neural networks. Using this framework we create end-to-end trainable systems that learn to write interpretable algorithms with perceptual components. We explore the benefits of inductive biases for strong generalization and modularity that come from the program-like structure of our models. In particular, modularity allows us to learn a library of (neural) functions which grows and improves as more tasks are solved. Empirically, we show that this leads to lifelong learning systems that transfer knowledge to new tasks more effectively than baselines.
Alexander L. Gaunt, Marc Brockschmidt, Nate Kushman, Daniel Tarlow
null
1611.02109
null
null
Neural Networks Designing Neural Networks: Multi-Objective Hyper-Parameter Optimization
cs.NE cs.LG
Artificial neural networks have gone through a recent rise in popularity, achieving state-of-the-art results in various fields, including image classification, speech recognition, and automated control. Both the performance and computational complexity of such models are heavily dependant on the design of characteristic hyper-parameters (e.g., number of hidden layers, nodes per layer, or choice of activation functions), which have traditionally been optimized manually. With machine learning penetrating low-power mobile and embedded areas, the need to optimize not only for performance (accuracy), but also for implementation complexity, becomes paramount. In this work, we present a multi-objective design space exploration method that reduces the number of solution networks trained and evaluated through response surface modelling. Given spaces which can easily exceed 1020 solutions, manually designing a near-optimal architecture is unlikely as opportunities to reduce network complexity, while maintaining performance, may be overlooked. This problem is exacerbated by the fact that hyper-parameters which perform well on specific datasets may yield sub-par results on others, and must therefore be designed on a per-application basis. In our work, machine learning is leveraged by training an artificial neural network to predict the performance of future candidate networks. The method is evaluated on the MNIST and CIFAR-10 image datasets, optimizing for both recognition accuracy and computational complexity. Experimental results demonstrate that the proposed method can closely approximate the Pareto-optimal front, while only exploring a small fraction of the design space.
Sean C. Smithson and Guang Yang and Warren J. Gross and Brett H. Meyer
null
1611.0212
null
null
Unrolled Generative Adversarial Networks
cs.LG stat.ML
We introduce a method to stabilize Generative Adversarial Networks (GANs) by defining the generator objective with respect to an unrolled optimization of the discriminator. This allows training to be adjusted between using the optimal discriminator in the generator's objective, which is ideal but infeasible in practice, and using the current value of the discriminator, which is often unstable and leads to poor solutions. We show how this technique solves the common problem of mode collapse, stabilizes training of GANs with complex recurrent generators, and increases diversity and coverage of the data distribution by the generator.
Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein
null
1611.02163
null
null
Designing Neural Network Architectures using Reinforcement Learning
cs.LG
At present, designing convolutional neural network (CNN) architectures requires both human expertise and labor. New architectures are handcrafted by careful experimentation or modified from a handful of existing networks. We introduce MetaQNN, a meta-modeling algorithm based on reinforcement learning to automatically generate high-performing CNN architectures for a given learning task. The learning agent is trained to sequentially choose CNN layers using $Q$-learning with an $\epsilon$-greedy exploration strategy and experience replay. The agent explores a large but finite space of possible architectures and iteratively discovers designs with improved performance on the learning task. On image classification benchmarks, the agent-designed networks (consisting of only standard convolution, pooling, and fully-connected layers) beat existing networks designed with the same layer types and are competitive against the state-of-the-art methods that use more complex layer types. We also outperform existing meta-modeling approaches for network design on image classification tasks.
Bowen Baker, Otkrist Gupta, Nikhil Naik and Ramesh Raskar
null
1611.02167
null
null
Using Social Dynamics to Make Individual Predictions: Variational Inference with a Stochastic Kinetic Model
stat.ML cs.LG
Social dynamics is concerned primarily with interactions among individuals and the resulting group behaviors, modeling the temporal evolution of social systems via the interactions of individuals within these systems. In particular, the availability of large-scale data from social networks and sensor networks offers an unprecedented opportunity to predict state-changing events at the individual level. Examples of such events include disease transmission, opinion transition in elections, and rumor propagation. Unlike previous research focusing on the collective effects of social systems, this study makes efficient inferences at the individual level. In order to cope with dynamic interactions among a large number of individuals, we introduce the stochastic kinetic model to capture adaptive transition probabilities and propose an efficient variational inference algorithm the complexity of which grows linearly --- rather than exponentially --- with the number of individuals. To validate this method, we have performed epidemic-dynamics experiments on wireless sensor network data collected from more than ten thousand people over three years. The proposed algorithm was used to track disease transmission and predict the probability of infection for each individual. Our results demonstrate that this method is more efficient than sampling while nonetheless achieving high accuracy.
Zhen Xu, Wen Dong and Sargur Srihari
null
1611.02181
null
null
Trusting SVM for Piecewise Linear CNNs
cs.LG
We present a novel layerwise optimization algorithm for the learning objective of Piecewise-Linear Convolutional Neural Networks (PL-CNNs), a large class of convolutional neural networks. Specifically, PL-CNNs employ piecewise linear non-linearities such as the commonly used ReLU and max-pool, and an SVM classifier as the final layer. The key observation of our approach is that the problem corresponding to the parameter estimation of a layer can be formulated as a difference-of-convex (DC) program, which happens to be a latent structured SVM. We optimize the DC program using the concave-convex procedure, which requires us to iteratively solve a structured SVM problem. This allows to design an optimization algorithm with an optimal learning rate that does not require any tuning. Using the MNIST, CIFAR and ImageNet data sets, we show that our approach always improves over the state of the art variants of backpropagation and scales to large data and large network settings.
Leonard Berrada, Andrew Zisserman, M. Pawan Kumar
null
1611.02185
null
null
CoCoA: A General Framework for Communication-Efficient Distributed Optimization
cs.LG
The scale of modern datasets necessitates the development of efficient distributed optimization methods for machine learning. We present a general-purpose framework for distributed computing environments, CoCoA, that has an efficient communication scheme and is applicable to a wide variety of problems in machine learning and signal processing. We extend the framework to cover general non-strongly-convex regularizers, including L1-regularized problems like lasso, sparse logistic regression, and elastic net regularization, and show how earlier work can be derived as a special case. We provide convergence guarantees for the class of convex regularized loss minimization objectives, leveraging a novel approach in handling non-strongly-convex regularizers and non-smooth loss functions. The resulting framework has markedly improved performance over state-of-the-art methods, as we illustrate with an extensive set of experiments on real distributed datasets.
Virginia Smith, Simone Forte, Chenxin Ma, Martin Takac, Michael I. Jordan, Martin Jaggi
null
1611.02189
null
null
Playing SNES in the Retro Learning Environment
cs.LG cs.AI
Mastering a video game requires skill, tactics and strategy. While these attributes may be acquired naturally by human players, teaching them to a computer program is a far more challenging task. In recent years, extensive research was carried out in the field of reinforcement learning and numerous algorithms were introduced, aiming to learn how to perform human tasks such as playing video games. As a result, the Arcade Learning Environment (ALE) (Bellemare et al., 2013) has become a commonly used benchmark environment allowing algorithms to train on various Atari 2600 games. In many games the state-of-the-art algorithms outperform humans. In this paper we introduce a new learning environment, the Retro Learning Environment --- RLE, that can run games on the Super Nintendo Entertainment System (SNES), Sega Genesis and several other gaming consoles. The environment is expandable, allowing for more video games and consoles to be easily added to the environment, while maintaining the same interface as ALE. Moreover, RLE is compatible with Python and Torch. SNES games pose a significant challenge to current algorithms due to their higher level of complexity and versatility.
Nadav Bhonker, Shai Rozenberg and Itay Hubara
null
1611.02205
null
null
Minimax-optimal semi-supervised regression on unknown manifolds
stat.ML cs.LG
We consider semi-supervised regression when the predictor variables are drawn from an unknown manifold. A simple two step approach to this problem is to: (i) estimate the manifold geodesic distance between any pair of points using both the labeled and unlabeled instances; and (ii) apply a k nearest neighbor regressor based on these distance estimates. We prove that given sufficiently many unlabeled points, this simple method of geodesic kNN regression achieves the optimal finite-sample minimax bound on the mean squared error, as if the manifold were known. Furthermore, we show how this approach can be efficiently implemented, requiring only O(k N log N) operations to estimate the regression function at all N labeled and unlabeled points. We illustrate this approach on two datasets with a manifold structure: indoor localization using WiFi fingerprints and facial pose estimation. In both cases, geodesic kNN is more accurate and much faster than the popular Laplacian eigenvector regressor.
Amit Moscovich, Ariel Jaffe, Boaz Nadler
null
1611.02221
null
null
Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic
cs.LG
Model-free deep reinforcement learning (RL) methods have been successful in a wide variety of simulated domains. However, a major obstacle facing deep RL in the real world is their high sample complexity. Batch policy gradient methods offer stable learning, but at the cost of high variance, which often requires large batches. TD-style methods, such as off-policy actor-critic and Q-learning, are more sample-efficient but biased, and often require costly hyperparameter sweeps to stabilize. In this work, we aim to develop methods that combine the stability of policy gradients with the efficiency of off-policy RL. We present Q-Prop, a policy gradient method that uses a Taylor expansion of the off-policy critic as a control variate. Q-Prop is both sample efficient and stable, and effectively combines the benefits of on-policy and off-policy methods. We analyze the connection between Q-Prop and existing model-free algorithms, and use control variate theory to derive two variants of Q-Prop with conservative and aggressive adaptation. We show that conservative Q-Prop provides substantial gains in sample efficiency over trust region policy optimization (TRPO) with generalized advantage estimation (GAE), and improves stability over deep deterministic policy gradient (DDPG), the state-of-the-art on-policy and off-policy methods, on OpenAI Gym's MuJoCo continuous control environments.
Shixiang Gu and Timothy Lillicrap and Zoubin Ghahramani and Richard E. Turner and Sergey Levine
null
1611.02247
null
null
Hierarchical compositional feature learning
cs.LG cs.AI stat.ML
We introduce the hierarchical compositional network (HCN), a directed generative model able to discover and disentangle, without supervision, the building blocks of a set of binary images. The building blocks are binary features defined hierarchically as a composition of some of the features in the layer immediately below, arranged in a particular manner. At a high level, HCN is similar to a sigmoid belief network with pooling. Inference and learning in HCN are very challenging and existing variational approximations do not work satisfactorily. A main contribution of this work is to show that both can be addressed using max-product message passing (MPMP) with a particular schedule (no EM required). Also, using MPMP as an inference engine for HCN makes new tasks simple: adding supervision information, classifying images, or performing inpainting all correspond to clamping some variables of the model to their known values and running MPMP on the rest. When used for classification, fast inference with HCN has exactly the same functional form as a convolutional neural network (CNN) with linear activations and binary weights. However, HCN's features are qualitatively very different.
Miguel L\'azaro-Gredilla, Yi Liu, D. Scott Phoenix, Dileep George
null
1611.02252
null
null
Learning Time Series Detection Models from Temporally Imprecise Labels
stat.ML cs.LG
In this paper, we consider a new low-quality label learning problem: learning time series detection models from temporally imprecise labels. In this problem, the data consist of a set of input time series, and supervision is provided by a sequence of noisy time stamps corresponding to the occurrence of positive class events. Such temporally imprecise labels commonly occur in areas like mobile health research where human annotators are tasked with labeling the occurrence of very short duration events. We propose a general learning framework for this problem that can accommodate different base classifiers and noise models. We present results on real mobile health data showing that the proposed framework significantly outperforms a number of alternatives including assuming that the label time stamps are noise-free, transforming the problem into the multiple instance learning framework, and learning on labels that were manually re-aligned.
Roy J. Adams, Benjamin M. Marlin
null
1611.02258
null
null
Memory-augmented Attention Modelling for Videos
cs.CV cs.LG cs.NE
We present a method to improve video description generation by modeling higher-order interactions between video frames and described concepts. By storing past visual attention in the video associated to previously generated words, the system is able to decide what to look at and describe in light of what it has already looked at and described. This enables not only more effective local attention, but tractable consideration of the video sequence while generating each word. Evaluation on the challenging and popular MSVD and Charades datasets demonstrates that the proposed architecture outperforms previous video description approaches without requiring external temporal video features.
Rasool Fakoor, Abdel-rahman Mohamed, Margaret Mitchell, Sing Bing Kang, Pushmeet Kohli
null
1611.02261
null
null
Gaussian Attention Model and Its Application to Knowledge Base Embedding and Question Answering
stat.ML cs.AI cs.CL cs.LG
We propose the Gaussian attention model for content-based neural memory access. With the proposed attention model, a neural network has the additional degree of freedom to control the focus of its attention from a laser sharp attention to a broad attention. It is applicable whenever we can assume that the distance in the latent space reflects some notion of semantics. We use the proposed attention model as a scoring function for the embedding of a knowledge base into a continuous vector space and then train a model that performs question answering about the entities in the knowledge base. The proposed attention model can handle both the propagation of uncertainty when following a series of relations and also the conjunction of conditions in a natural way. On a dataset of soccer players who participated in the FIFA World Cup 2014, we demonstrate that our model can handle both path queries and conjunctive queries well.
Liwen Zhang and John Winn and Ryota Tomioka
null
1611.02266
null
null
Optimal Binary Autoencoding with Pairwise Correlations
cs.LG cs.AI stat.ML
We formulate learning of a binary autoencoder as a biconvex optimization problem which learns from the pairwise correlations between encoded and decoded bits. Among all possible algorithms that use this information, ours finds the autoencoder that reconstructs its inputs with worst-case optimal loss. The optimal decoder is a single layer of artificial neurons, emerging entirely from the minimax loss minimization, and with weights learned by convex optimization. All this is reflected in competitive experimental results, demonstrating that binary autoencoding can be done efficiently by conveying information in pairwise correlations in an optimal fashion.
Akshay Balsubramani
null
1611.02268
null
null
Learning Influence Functions from Incomplete Observations
cs.SI cs.LG stat.ML
We study the problem of learning influence functions under incomplete observations of node activations. Incomplete observations are a major concern as most (online and real-world) social networks are not fully observable. We establish both proper and improper PAC learnability of influence functions under randomly missing observations. Proper PAC learnability under the Discrete-Time Linear Threshold (DLT) and Discrete-Time Independent Cascade (DIC) models is established by reducing incomplete observations to complete observations in a modified graph. Our improper PAC learnability result applies for the DLT and DIC models as well as the Continuous-Time Independent Cascade (CIC) model. It is based on a parametrization in terms of reachability features, and also gives rise to an efficient and practical heuristic. Experiments on synthetic and real-world datasets demonstrate the ability of our method to compensate even for a fairly large fraction of missing observations.
Xinran He, Ke Xu, David Kempe and Yan Liu
null
1611.02305
null
null
Learning from Untrusted Data
cs.LG cs.AI cs.CC cs.CR math.ST stat.TH
The vast majority of theoretical results in machine learning and statistics assume that the available training data is a reasonably reliable reflection of the phenomena to be learned or estimated. Similarly, the majority of machine learning and statistical techniques used in practice are brittle to the presence of large amounts of biased or malicious data. In this work we consider two frameworks in which to study estimation, learning, and optimization in the presence of significant fractions of arbitrary data. The first framework, list-decodable learning, asks whether it is possible to return a list of answers, with the guarantee that at least one of them is accurate. For example, given a dataset of $n$ points for which an unknown subset of $\alpha n$ points are drawn from a distribution of interest, and no assumptions are made about the remaining $(1-\alpha)n$ points, is it possible to return a list of $\operatorname{poly}(1/\alpha)$ answers, one of which is correct? The second framework, which we term the semi-verified learning model, considers the extent to which a small dataset of trusted data (drawn from the distribution in question) can be leveraged to enable the accurate extraction of information from a much larger but untrusted dataset (of which only an $\alpha$-fraction is drawn from the distribution). We show strong positive results in both settings, and provide an algorithm for robust learning in a very general stochastic optimization setting. This general result has immediate implications for robust estimation in a number of settings, including for robustly estimating the mean of distributions with bounded second moments, robustly learning mixtures of such distributions, and robustly finding planted partitions in random graphs in which significant portions of the graph have been perturbed by an adversary.
Moses Charikar and Jacob Steinhardt and Gregory Valiant
null
1611.02315
null
null
Adversarial Ladder Networks
cs.NE cs.LG stat.ML
The use of unsupervised data in addition to supervised data in training discriminative neural networks has improved the performance of this clas- sification scheme. However, the best results were achieved with a training process that is divided in two parts: first an unsupervised pre-training step is done for initializing the weights of the network and after these weights are refined with the use of supervised data. On the other hand adversarial noise has improved the results of clas- sical supervised learning. Recently, a new neural network topology called Ladder Network, where the key idea is based in some properties of hierar- chichal latent variable models, has been proposed as a technique to train a neural network using supervised and unsupervised data at the same time with what is called semi-supervised learning. This technique has reached state of the art classification. In this work we add adversarial noise to the ladder network and get state of the art classification, with several important conclusions on how adversarial noise can help in addition with new possible lines of investi- gation. We also propose an alternative to add adversarial noise to unsu- pervised data.
Juan Maro\~nas Molano, Alberto Albiol Colomer, Roberto Paredes Palacios
null
1611.0232
null
null
Neural Taylor Approximations: Convergence and Exploration in Rectifier Networks
cs.LG cs.NE stat.ML
Modern convolutional networks, incorporating rectifiers and max-pooling, are neither smooth nor convex; standard guarantees therefore do not apply. Nevertheless, methods from convex optimization such as gradient descent and Adam are widely used as building blocks for deep learning algorithms. This paper provides the first convergence guarantee applicable to modern convnets, which furthermore matches a lower bound for convex nonsmooth functions. The key technical tool is the neural Taylor approximation -- a straightforward application of Taylor expansions to neural networks -- and the associated Taylor loss. Experiments on a range of optimizers, layers, and tasks provide evidence that the analysis accurately captures the dynamics of neural optimization. The second half of the paper applies the Taylor approximation to isolate the main difficulty in training rectifier nets -- that gradients are shattered -- and investigates the hypothesis that, by exploring the space of activation configurations more thoroughly, adaptive optimizers such as RMSProp and Adam are able to converge to better solutions.
David Balduzzi, Brian McWilliams, Tony Butler-Yeoman
null
1611.02345
null
null
NonSTOP: A NonSTationary Online Prediction Method for Time Series
stat.ML cs.LG
We present online prediction methods for time series that let us explicitly handle nonstationary artifacts (e.g. trend and seasonality) present in most real time series. Specifically, we show that applying appropriate transformations to such time series before prediction can lead to improved theoretical and empirical prediction performance. Moreover, since these transformations are usually unknown, we employ the learning with experts setting to develop a fully online method (NonSTOP-NonSTationary Online Prediction) for predicting nonstationary time series. This framework allows for seasonality and/or other trends in univariate time series and cointegration in multivariate time series. Our algorithms and regret analysis subsume recent related work while significantly expanding the applicability of such methods. For all the methods, we provide sub-linear regret bounds using relaxed assumptions. The theoretical guarantees do not fully capture the benefits of the transformations, thus we provide a data-dependent analysis of the follow-the-leader algorithm that provides insight into the success of using such transformations. We support all of our results with experiments on simulated and real data.
Christopher Xie, Avleen Bijral, Juan Lavista Ferres
null
1611.02365
null
null
Divide and Conquer Networks
cs.LG stat.ML
We consider the learning of algorithmic tasks by mere observation of input-output pairs. Rather than studying this as a black-box discrete regression problem with no assumption whatsoever on the input-output mapping, we concentrate on tasks that are amenable to the principle of divide and conquer, and study what are its implications in terms of learning. This principle creates a powerful inductive bias that we leverage with neural architectures that are defined recursively and dynamically, by learning two scale-invariant atomic operations: how to split a given input into smaller sets, and how to merge two partially solved tasks into a larger partial solution. Our model can be trained in weakly supervised environments, namely by just observing input-output pairs, and in even weaker environments, using a non-differentiable reward signal. Moreover, thanks to the dynamic aspect of our architecture, we can incorporate the computational complexity as a regularization term that can be optimized by backpropagation. We demonstrate the flexibility and efficiency of the Divide-and-Conquer Network on several combinatorial and geometric tasks: convex hull, clustering, knapsack and euclidean TSP. Thanks to the dynamic programming nature of our model, we show significant improvements in terms of generalization error and computational complexity.
Alex Nowak-Vila, David Folqu\'e and Joan Bruna
null
1611.02401
null
null
An Efficient Approach to Boosting Performance of Deep Spiking Network Training
cs.LG cs.NE
Nowadays deep learning is dominating the field of machine learning with state-of-the-art performance in various application areas. Recently, spiking neural networks (SNNs) have been attracting a great deal of attention, notably owning to their power efficiency, which can potentially allow us to implement a low-power deep learning engine suitable for real-time/mobile applications. However, implementing SNN-based deep learning remains challenging, especially gradient-based training of SNNs by error backpropagation. We cannot simply propagate errors through SNNs in conventional way because of the property of SNNs that process discrete data in the form of a series. Consequently, most of the previous studies employ a workaround technique, which first trains a conventional weighted-sum deep neural network and then maps the learning weights to the SNN under training, instead of training SNN parameters directly. In order to eliminate this workaround, recently proposed is a new class of SNN named deep spiking networks (DSNs), which can be trained directly (without a mapping from conventional deep networks) by error backpropagation with stochastic gradient descent. In this paper, we show that the initialization of the membrane potential on the backward path is an important step in DSN training, through diverse experiments performed under various conditions. Furthermore, we propose a simple and efficient method that can improve DSN training by controlling the initial membrane potential on the backward path. In our experiments, adopting the proposed approach allowed us to boost the performance of DSN training in terms of converging time and accuracy.
Seongsik Park, Sang-gil Lee, Hyunha Nam, Sungroh Yoon
null
1611.02416
null
null
Domain Adaptation with L2 constraints for classifying images from different endoscope systems
cs.CV cs.LG
This paper proposes a method for domain adaptation that extends the maximum margin domain transfer (MMDT) proposed by Hoffman et al., by introducing L2 distance constraints between samples of different domains; thus, our method is denoted as MMDTL2. Motivated by the differences between the images taken by narrow band imaging (NBI) endoscopic devices, we utilize different NBI devices as different domains and estimate the transformations between samples of different domains, i.e., image samples taken by different NBI endoscope systems. We first formulate the problem in the primal form, and then derive the dual form with much lesser computational costs as compared to the naive approach. From our experimental results using NBI image datasets from two different NBI endoscopic devices, we find that MMDTL2 is better than MMDT and also support vector machines without adaptation, especially when NBI image features are high-dimensional and the per-class training samples are greater than 20.
Toru Tamaki, Shoji Sonoyama, Takio Kurita, Tsubasa Hirakawa, Bisser Raytchev, Kazufumi Kaneda, Tetsushi Koide, Shigeto Yoshida, Hiroshi Mieno, Shinji Tanaka, Kazuaki Chayama
null
1611.02443
null
null
Cognitive Discriminative Mappings for Rapid Learning
cs.AI cs.LG cs.NE
Humans can learn concepts or recognize items from just a handful of examples, while machines require many more samples to perform the same task. In this paper, we build a computational model to investigate the possibility of this kind of rapid learning. The proposed method aims to improve the learning task of input from sensory memory by leveraging the information retrieved from long-term memory. We present a simple and intuitive technique called cognitive discriminative mappings (CDM) to explore the cognitive problem. First, CDM separates and clusters the data instances retrieved from long-term memory into distinct classes with a discrimination method in working memory when a sensory input triggers the algorithm. CDM then maps each sensory data instance to be as close as possible to the median point of the data group with the same class. The experimental results demonstrate that the CDM approach is effective for learning the discriminative features of supervised classifications with few training sensory input instances.
Wen-Chieh Fang and Yi-ting Chiang
null
1611.02512
null
null
PixelSNE: Visualizing Fast with Just Enough Precision via Pixel-Aligned Stochastic Neighbor Embedding
cs.LG
Embedding and visualizing large-scale high-dimensional data in a two-dimensional space is an important problem since such visualization can reveal deep insights out of complex data. Most of the existing embedding approaches, however, run on an excessively high precision, ignoring the fact that at the end, embedding outputs are converted into coarse-grained discrete pixel coordinates in a screen space. Motivated by such an observation and directly considering pixel coordinates in an embedding optimization process, we accelerate Barnes-Hut tree-based t-distributed stochastic neighbor embedding (BH-SNE), known as a state-of-the-art 2D embedding method, and propose a novel method called PixelSNE, a highly-efficient, screen resolution-driven 2D embedding method with a linear computational complexity in terms of the number of data items. Our experimental results show the significantly fast running time of PixelSNE by a large margin against BH-SNE, while maintaining the minimal degradation in the embedding quality. Finally, the source code of our method is publicly available at https://github.com/awesome-davian/PixelSNE
Minjeong Kim, Minsuk Choi, Sunwoong Lee, Jian Tang, Haesun Park, Jaegul Choo
null
1611.02568
null
null
Gradients of Counterfactuals
cs.LG cs.CV
Gradients have been used to quantify feature importance in machine learning models. Unfortunately, in nonlinear deep networks, not only individual neurons but also the whole network can saturate, and as a result an important input feature can have a tiny gradient. We study various networks, and observe that this phenomena is indeed widespread, across many inputs. We propose to examine interior gradients, which are gradients of counterfactual inputs constructed by scaling down the original input. We apply our method to the GoogleNet architecture for object recognition in images, as well as a ligand-based virtual screening network with categorical features and an LSTM based language model for the Penn Treebank dataset. We visualize how interior gradients better capture feature importance. Furthermore, interior gradients are applicable to a wide variety of deep networks, and have the attribution property that the feature importance scores sum to the the prediction score. Best of all, interior gradients can be computed just as easily as gradients. In contrast, previous methods are complex to implement, which hinders practical adoption.
Mukund Sundararajan, Ankur Taly, Qiqi Yan
null
1611.02639
null
null
Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders
cs.LG cs.NE stat.ML
We study a variant of the variational autoencoder model (VAE) with a Gaussian mixture as a prior distribution, with the goal of performing unsupervised clustering through deep generative models. We observe that the known problem of over-regularisation that has been shown to arise in regular VAEs also manifests itself in our model and leads to cluster degeneracy. We show that a heuristic called minimum information constraint that has been shown to mitigate this effect in VAEs can also be applied to improve unsupervised clustering performance with our model. Furthermore we analyse the effect of this heuristic and provide an intuition of the various processes with the help of visualizations. Finally, we demonstrate the performance of our model on synthetic data, MNIST and SVHN, showing that the obtained clusters are distinct, interpretable and result in achieving competitive performance on unsupervised clustering to the state-of-the-art results.
Nat Dilokthanakul, Pedro A.M. Mediano, Marta Garnelo, Matthew C.H. Lee, Hugh Salimbeni, Kai Arulkumaran, Murray Shanahan
null
1611.02648
null
null
Sentence Ordering and Coherence Modeling using Recurrent Neural Networks
cs.CL cs.AI cs.LG
Modeling the structure of coherent texts is a key NLP problem. The task of coherently organizing a given set of sentences has been commonly used to build and evaluate models that understand such structure. We propose an end-to-end unsupervised deep learning approach based on the set-to-sequence framework to address this problem. Our model strongly outperforms prior methods in the order discrimination task and a novel task of ordering abstracts from scientific articles. Furthermore, our work shows that useful text representations can be obtained by learning to order sentences. Visualizing the learned sentence representations shows that the model captures high-level logical structure in paragraphs. Our representations perform comparably to state-of-the-art pre-training methods on sentence similarity and paraphrase detection tasks.
Lajanugen Logeswaran, Honglak Lee, Dragomir Radev
null
1611.02654
null
null
Unsupervised Pretraining for Sequence to Sequence Learning
cs.CL cs.LG cs.NE
This work presents a general unsupervised learning method to improve the accuracy of sequence to sequence (seq2seq) models. In our method, the weights of the encoder and decoder of a seq2seq model are initialized with the pretrained weights of two language models and then fine-tuned with labeled data. We apply this method to challenging benchmarks in machine translation and abstractive summarization and find that it significantly improves the subsequent supervised models. Our main result is that pretraining improves the generalization of seq2seq models. We achieve state-of-the art results on the WMT English$\rightarrow$German task, surpassing a range of methods using both phrase-based machine translation and neural machine translation. Our method achieves a significant improvement of 1.3 BLEU from the previous best models on both WMT'14 and WMT'15 English$\rightarrow$German. We also conduct human evaluations on abstractive summarization and find that our method outperforms a purely supervised learning baseline in a statistically significant manner.
Prajit Ramachandran, Peter J. Liu, Quoc V. Le
null
1611.02683
null
null
Variational Lossy Autoencoder
cs.LG stat.ML
Representation learning seeks to expose certain aspects of observed data in a learned representation that's amenable to downstream tasks like classification. For instance, a good representation for 2D images might be one that describes only global structure and discards information about detailed texture. In this paper, we present a simple but principled method to learn such global representations by combining Variational Autoencoder (VAE) with neural autoregressive models such as RNN, MADE and PixelRNN/CNN. Our proposed VAE model allows us to have control over what the global latent code can learn and , by designing the architecture accordingly, we can force the global latent code to discard irrelevant information such as texture in 2D images, and hence the VAE only "autoencodes" data in a lossy fashion. In addition, by leveraging autoregressive models as both prior distribution $p(z)$ and decoding distribution $p(x|z)$, we can greatly improve generative modeling performance of VAEs, achieving new state-of-the-art results on MNIST, OMNIGLOT and Caltech-101 Silhouettes density estimation tasks.
Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya Sutskever, Pieter Abbeel
null
1611.02731
null
null
Recursive Regression with Neural Networks: Approximating the HJI PDE Solution
cs.LG math.DS
The majority of methods used to compute approximations to the Hamilton-Jacobi-Isaacs partial differential equation (HJI PDE) rely on the discretization of the state space to perform dynamic programming updates. This type of approach is known to suffer from the curse of dimensionality due to the exponential growth in grid points with the state dimension. In this work we present an approximate dynamic programming algorithm that computes an approximation of the solution of the HJI PDE by alternating between solving a regression problem and solving a minimax problem using a feedforward neural network as the function approximator. We find that this method requires less memory to run and to store the approximation than traditional gridding methods, and we test it on a few systems of two, three and six dimensions.
Vicen\c{c} Rubies-Royo, Claire Tomlin
null
1611.02739
null
null
Recursive Decomposition for Nonconvex Optimization
cs.AI cs.LG stat.ML
Continuous optimization is an important problem in many areas of AI, including vision, robotics, probabilistic inference, and machine learning. Unfortunately, most real-world optimization problems are nonconvex, causing standard convex techniques to find only local optima, even with extensions like random restarts and simulated annealing. We observe that, in many cases, the local modes of the objective function have combinatorial structure, and thus ideas from combinatorial optimization can be brought to bear. Based on this, we propose a problem-decomposition approach to nonconvex optimization. Similarly to DPLL-style SAT solvers and recursive conditioning in probabilistic inference, our algorithm, RDIS, recursively sets variables so as to simplify and decompose the objective function into approximately independent sub-functions, until the remaining functions are simple enough to be optimized by standard techniques like gradient descent. The variables to set are chosen by graph partitioning, ensuring decomposition whenever possible. We show analytically that RDIS can solve a broad class of nonconvex optimization problems exponentially faster than gradient descent with random restarts. Experimentally, RDIS outperforms standard techniques on problems like structure from motion and protein folding.
Abram L. Friesen and Pedro Domingos
null
1611.02755
null
null
Delving into Transferable Adversarial Examples and Black-box Attacks
cs.LG
An intriguing property of deep neural networks is the existence of adversarial examples, which can transfer among different architectures. These transferable adversarial examples may severely hinder deep neural network-based applications. Previous works mostly study the transferability using small scale datasets. In this work, we are the first to conduct an extensive study of the transferability over large models and a large scale dataset, and we are also the first to study the transferability of targeted adversarial examples with their target labels. We study both non-targeted and targeted adversarial examples, and show that while transferable non-targeted adversarial examples are easy to find, targeted adversarial examples generated using existing approaches almost never transfer with their target labels. Therefore, we propose novel ensemble-based approaches to generating transferable adversarial examples. Using such approaches, we observe a large proportion of targeted adversarial examples that are able to transfer with their target labels for the first time. We also present some geometric studies to help understanding the transferable adversarial examples. Finally, we show that the adversarial examples generated using ensemble-based approaches can successfully attack Clarifai.com, which is a black-box image classification system.
Yanpei Liu, Xinyun Chen, Chang Liu, Dawn Song
null
1611.0277
null
null
RL$^2$: Fast Reinforcement Learning via Slow Reinforcement Learning
cs.AI cs.LG cs.NE stat.ML
Deep reinforcement learning (deep RL) has been successful in learning sophisticated behaviors automatically; however, the learning process requires a huge number of trials. In contrast, animals can learn new tasks in just a few trials, benefiting from their prior knowledge about the world. This paper seeks to bridge this gap. Rather than designing a "fast" reinforcement learning algorithm, we propose to represent it as a recurrent neural network (RNN) and learn it from data. In our proposed method, RL$^2$, the algorithm is encoded in the weights of the RNN, which are learned slowly through a general-purpose ("slow") RL algorithm. The RNN receives all information a typical RL algorithm would receive, including observations, actions, rewards, and termination flags; and it retains its state across episodes in a given Markov Decision Process (MDP). The activations of the RNN store the state of the "fast" RL algorithm on the current (previously unseen) MDP. We evaluate RL$^2$ experimentally on both small-scale and large-scale problems. On the small-scale side, we train it to solve randomly generated multi-arm bandit problems and finite MDPs. After RL$^2$ is trained, its performance on new MDPs is close to human-designed algorithms with optimality guarantees. On the large-scale side, we test RL$^2$ on a vision-based navigation task and show that it scales up to high-dimensional problems.
Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, Pieter Abbeel
null
1611.02779
null
null
Sequence Tutor: Conservative Fine-Tuning of Sequence Generation Models with KL-control
cs.LG cs.AI
This paper proposes a general method for improving the structure and quality of sequences generated by a recurrent neural network (RNN), while maintaining information originally learned from data, as well as sample diversity. An RNN is first pre-trained on data using maximum likelihood estimation (MLE), and the probability distribution over the next token in the sequence learned by this model is treated as a prior policy. Another RNN is then trained using reinforcement learning (RL) to generate higher-quality outputs that account for domain-specific incentives while retaining proximity to the prior policy of the MLE RNN. To formalize this objective, we derive novel off-policy RL methods for RNNs from KL-control. The effectiveness of the approach is demonstrated on two applications; 1) generating novel musical melodies, and 2) computational molecular generation. For both problems, we show that the proposed method improves the desired properties and structure of the generated sequences, while maintaining information learned from data.
Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, Jos\'e Miguel Hern\'andez-Lobato, Richard E. Turner, Douglas Eck
null
1611.02796
null
null
Online Learning for Wireless Distributed Computing
cs.LG
There has been a growing interest for Wireless Distributed Computing (WDC), which leverages collaborative computing over multiple wireless devices. WDC enables complex applications that a single device cannot support individually. However, the problem of assigning tasks over multiple devices becomes challenging in the dynamic environments encountered in real-world settings, considering that the resource availability and channel conditions change over time in unpredictable ways due to mobility and other factors. In this paper, we formulate a task assignment problem as an online learning problem using an adversarial multi-armed bandit framework. We propose MABSTA, a novel online learning algorithm that learns the performance of unknown devices and channel qualities continually through exploratory probing and makes task assignment decisions by exploiting the gained knowledge. For maximal adaptability, MABSTA is designed to make no stochastic assumption about the environment. We analyze it mathematically and provide a worst-case performance guarantee for any dynamic environment. We also compare it with the optimal offline policy as well as other baselines via emulations on trace-data obtained from a wireless IoT testbed, and show that it offers competitive and robust performance in all cases. To the best of our knowledge, MABSTA is the first online algorithm in this domain of task assignment problems and provides provable performance guarantee.
Yi-Hsuan Kao, Kwame Wright, Bhaskar Krishnamachari, Fan Bai
null
1611.0283
null
null
Lie-Access Neural Turing Machines
cs.NE cs.LG
External neural memory structures have recently become a popular tool for algorithmic deep learning (Graves et al. 2014, Weston et al. 2014). These models generally utilize differentiable versions of traditional discrete memory-access structures (random access, stacks, tapes) to provide the storage necessary for computational tasks. In this work, we argue that these neural memory systems lack specific structure important for relative indexing, and propose an alternative model, Lie-access memory, that is explicitly designed for the neural setting. In this paradigm, memory is accessed using a continuous head in a key-space manifold. The head is moved via Lie group actions, such as shifts or rotations, generated by a controller, and memory access is performed by linear smoothing in key space. We argue that Lie groups provide a natural generalization of discrete memory structures, such as Turing machines, as they provide inverse and identity operators while maintaining differentiability. To experiment with this approach, we implement a simplified Lie-access neural Turing machine (LANTM) with different Lie groups. We find that this approach is able to perform well on a range of algorithmic tasks.
Greg Yang, Alexander M. Rush
null
1611.02854
null
null
Audio Visual Speech Recognition using Deep Recurrent Neural Networks
cs.CV cs.CL cs.LG
In this work, we propose a training algorithm for an audio-visual automatic speech recognition (AV-ASR) system using deep recurrent neural network (RNN).First, we train a deep RNN acoustic model with a Connectionist Temporal Classification (CTC) objective function. The frame labels obtained from the acoustic model are then used to perform a non-linear dimensionality reduction of the visual features using a deep bottleneck network. Audio and visual features are fused and used to train a fusion RNN. The use of bottleneck features for visual modality helps the model to converge properly during training. Our system is evaluated on GRID corpus. Our results show that presence of visual modality gives significant improvement in character error rate (CER) at various levels of noise even when the model is trained without noisy data. We also provide a comparison of two fusion methods: feature fusion and decision fusion.
Abhinav Thanda, Shankar M Venkatesan
null
1611.02879
null
null
Heter-LP: A heterogeneous label propagation algorithm and its application in drug repositioning
q-bio.QM cs.LG
Drug repositioning offers an effective solution to drug discovery, saving both time and resources by finding new indications for existing drugs. Typically, a drug takes effect via its protein targets in the cell. As a result, it is necessary for drug development studies to conduct an investigation into the interrelationships of drugs, protein targets, and diseases. Although previous studies have made a strong case for the effectiveness of integrative network-based methods for predicting these interrelationships, little progress has been achieved in this regard within drug repositioning research. Moreover, the interactions of new drugs and targets (lacking any known targets and drugs, respectively) cannot be accurately predicted by most established methods. In this paper, we propose a novel semi-supervised heterogeneous label propagation algorithm named Heter-LP, which applies both local as well as global network features for data integration. To predict drug-target, disease-target, and drug-disease associations, we use information about drugs, diseases, and targets as collected from multiple sources at different levels. Our algorithm integrates these various types of data into a heterogeneous network and implements a label propagation algorithm to find new interactions. Statistical analyses of 10-fold cross-validation results and experimental analysis support the effectiveness of the proposed algorithm.
Maryam Lotfi Shahreza, Nasser Ghadiri, Seyed Rasul Mossavi, Jaleh Varshosaz, James Green
10.1016/j.jbi.2017.03.006
1611.02945
null
null
A Unified Maximum Likelihood Approach for Optimal Distribution Property Estimation
cs.IT cs.DS cs.LG math.IT
The advent of data science has spurred interest in estimating properties of distributions over large alphabets. Fundamental symmetric properties such as support size, support coverage, entropy, and proximity to uniformity, received most attention, with each property estimated using a different technique and often intricate analysis tools. We prove that for all these properties, a single, simple, plug-in estimator---profile maximum likelihood (PML)---performs as well as the best specialized techniques. This raises the possibility that PML may optimally estimate many other symmetric properties.
Jayadev Acharya, Hirakendu Das, Alon Orlitsky, Ananda Theertha Suresh
null
1611.0296
null
null
Attributing Hacks
cs.LG cs.CR stat.AP
In this paper we describe an algorithm for estimating the provenance of hacks on websites. That is, given properties of sites and the temporal occurrence of attacks, we are able to attribute individual attacks to joint causes and vulnerabilities, as well as estimating the evolution of these vulnerabilities over time. Specifically, we use hazard regression with a time-varying additive hazard function parameterized in a generalized linear form. The activation coefficients on each feature are continuous-time functions over time. We formulate the problem of learning these functions as a constrained variational maximum likelihood estimation problem with total variation penalty and show that the optimal solution is a 0th order spline (a piecewise constant function) with a finite number of known knots. This allows the inference problem to be solved efficiently and at scale by solving a finite dimensional optimization problem. Extensive experiments on real data sets show that our method significantly outperforms Cox's proportional hazard model. We also conduct a case study and verify that the fitted functions are indeed recovering vulnerable features and real-life events such as the release of code to exploit these features in hacker blogs.
Ziqi Liu, Alexander J. Smola, Kyle Soska, Yu-Xiang Wang, Qinghua Zheng, Jun Zhou
null
1611.03021
null
null
Incremental Sequence Learning
cs.LG cs.NE
Deep learning research over the past years has shown that by increasing the scope or difficulty of the learning problem over time, increasingly complex learning problems can be addressed. We study incremental learning in the context of sequence learning, using generative RNNs in the form of multi-layer recurrent Mixture Density Networks. While the potential of incremental or curriculum learning to enhance learning is known, indiscriminate application of the principle does not necessarily lead to improvement, and it is essential therefore to know which forms of incremental or curriculum learning have a positive effect. This research contributes to that aim by comparing three instantiations of incremental or curriculum learning. We introduce Incremental Sequence Learning, a simple incremental approach to sequence learning. Incremental Sequence Learning starts out by using only the first few steps of each sequence as training data. Each time a performance criterion has been reached, the length of the parts of the sequences used for training is increased. We introduce and make available a novel sequence learning task and data set: predicting and classifying MNIST pen stroke sequences. We find that Incremental Sequence Learning greatly speeds up sequence learning and reaches the best test performance level of regular sequence learning 20 times faster, reduces the test error by 74%, and in general performs more robustly; it displays lower variance and achieves sustained progress after all three comparison methods have stopped improving. The other instantiations of curriculum learning do not result in any noticeable improvement. A trained sequence prediction model is also used in transfer learning to the task of sequence classification, where it is found that transfer learning realizes improved classification performance compared to methods that learn to classify from scratch.
Edwin D. de Jong
null
1611.03068
null
null
Fairness in Reinforcement Learning
cs.LG
We initiate the study of fairness in reinforcement learning, where the actions of a learning algorithm may affect its environment and future rewards. Our fairness constraint requires that an algorithm never prefers one action over another if the long-term (discounted) reward of choosing the latter action is higher. Our first result is negative: despite the fact that fairness is consistent with the optimal policy, any learning algorithm satisfying fairness must take time exponential in the number of states to achieve non-trivial approximation to the optimal policy. We then provide a provably fair polynomial time algorithm under an approximate notion of fairness, thus establishing an exponential gap between exact and approximate fairness
Shahin Jabbari, Matthew Joseph, Michael Kearns, Jamie Morgenstern, Aaron Roth
null
1611.03071
null
null
Energy-efficient Machine Learning in Silicon: A Communications-inspired Approach
cs.LG cs.AR
This position paper advocates a communications-inspired approach to the design of machine learning systems on energy-constrained embedded `always-on' platforms. The communications-inspired approach has two versions - 1) a deterministic version where existing low-power communication IC design methods are repurposed, and 2) a stochastic version referred to as Shannon-inspired statistical information processing employing information-based metrics, statistical error compensation (SEC), and retraining-based methods to implement ML systems on stochastic circuit/device fabrics operating at the limits of energy-efficiency. The communications-inspired approach has the potential to fully leverage the opportunities afforded by ML algorithms and applications in order to address the challenges inherent in their deployment on energy-constrained platforms.
Naresh R. Shanbhag
null
1611.03109
null
null
A Modular Theory of Feature Learning
cs.LG
Learning representations of data, and in particular learning features for a subsequent prediction task, has been a fruitful area of research delivering impressive empirical results in recent years. However, relatively little is understood about what makes a representation `good'. We propose the idea of a risk gap induced by representation learning for a given prediction context, which measures the difference in the risk of some learner using the learned features as compared to the original inputs. We describe a set of sufficient conditions for unsupervised representation learning to provide a benefit, as measured by this risk gap. These conditions decompose the problem of when representation learning works into its constituent parts, which can be separately evaluated using an unlabeled sample, suitable domain-specific assumptions about the joint distribution, and analysis of the feature learner and subsequent supervised learner. We provide two examples of such conditions in the context of specific properties of the unlabeled distribution, namely when the data lies close to a low-dimensional manifold and when it forms clusters. We compare our approach to a recently proposed analysis of semi-supervised learning.
Daniel McNamara, Cheng Soon Ong, Robert C. Williamson
null
1611.03125
null
null
Diverse Neural Network Learns True Target Functions
cs.LG stat.ML
Neural networks are a powerful class of functions that can be trained with simple gradient descent to achieve state-of-the-art performance on a variety of applications. Despite their practical success, there is a paucity of results that provide theoretical guarantees on why they are so effective. Lying in the center of the problem is the difficulty of analyzing the non-convex loss function with potentially numerous local minima and saddle points. Can neural networks corresponding to the stationary points of the loss function learn the true target function? If yes, what are the key factors contributing to such nice optimization properties? In this paper, we answer these questions by analyzing one-hidden-layer neural networks with ReLU activation, and show that despite the non-convexity, neural networks with diverse units have no spurious local minima. We bypass the non-convexity issue by directly analyzing the first order optimality condition, and show that the loss can be made arbitrarily small if the minimum singular value of the "extended feature matrix" is large enough. We make novel use of techniques from kernel methods and geometric discrepancy, and identify a new relation linking the smallest singular value to the spectrum of a kernel function associated with the activation function and to the diversity of the units. Our results also suggest a novel regularization function to promote unit diversity for potentially better generalization.
Bo Xie, Yingyu Liang, Le Song
null
1611.03131
null
null
Using Neural Networks to Compute Approximate and Guaranteed Feasible Hamilton-Jacobi-Bellman PDE Solutions
cs.LG
To sidestep the curse of dimensionality when computing solutions to Hamilton-Jacobi-Bellman partial differential equations (HJB PDE), we propose an algorithm that leverages a neural network to approximate the value function. We show that our final approximation of the value function generates near optimal controls which are guaranteed to successfully drive the system to a target state. Our framework is not dependent on state space discretization, leading to a significant reduction in computation time and space complexity in comparison with dynamic programming-based approaches. Using this grid-free approach also enables us to plan over longer time horizons with relatively little additional computation overhead. Unlike many previous neural network HJB PDE approximating formulations, our approximation is strictly conservative and hence any trajectories we generate will be strictly feasible. For demonstration, we specialize our new general framework to the Dubins car model and discuss how the framework can be applied to other models with higher-dimensional state spaces.
Frank Jiang, Glen Chou, Mo Chen, Claire J. Tomlin
null
1611.03158
null
null
SoK: Applying Machine Learning in Security - A Survey
cs.CR cs.LG
The idea of applying machine learning(ML) to solve problems in security domains is almost 3 decades old. As information and communications grow more ubiquitous and more data become available, many security risks arise as well as appetite to manage and mitigate such risks. Consequently, research on applying and designing ML algorithms and systems for security has grown fast, ranging from intrusion detection systems(IDS) and malware classification to security policy management(SPM) and information leak checking. In this paper, we systematically study the methods, algorithms, and system designs in academic publications from 2008-2015 that applied ML in security domains. 98 percent of the surveyed papers appeared in the 6 highest-ranked academic security conferences and 1 conference known for pioneering ML applications in security. We examine the generalized system designs, underlying assumptions, measurements, and use cases in active research. Our examinations lead to 1) a taxonomy on ML paradigms and security domains for future exploration and exploitation, and 2) an agenda detailing open and upcoming challenges. Based on our survey, we also suggest a point of view that treats security as a game theory problem instead of a batch-trained ML problem.
Heju Jiang, Jasvir Nagra, Parvez Ahammad
null
1611.03186
null
null
Low Data Drug Discovery with One-shot Learning
cs.LG stat.ML
Recent advances in machine learning have made significant contributions to drug discovery. Deep neural networks in particular have been demonstrated to provide significant boosts in predictive power when inferring the properties and activities of small-molecule compounds. However, the applicability of these techniques has been limited by the requirement for large amounts of training data. In this work, we demonstrate how one-shot learning can be used to significantly lower the amounts of data required to make meaningful predictions in drug discovery applications. We introduce a new architecture, the residual LSTM embedding, that, when combined with graph convolutional neural networks, significantly improves the ability to learn meaningful distance metrics over small-molecules. We open source all models introduced in this work as part of DeepChem, an open-source framework for deep-learning in drug discovery.
Han Altae-Tran, Bharath Ramsundar, Aneesh S. Pappu, and Vijay Pande
null
1611.03199
null
null
Ultimate tensorization: compressing convolutional and FC layers alike
cs.LG
Convolutional neural networks excel in image recognition tasks, but this comes at the cost of high computational and memory complexity. To tackle this problem, [1] developed a tensor factorization framework to compress fully-connected layers. In this paper, we focus on compressing convolutional layers. We show that while the direct application of the tensor framework [1] to the 4-dimensional kernel of convolution does compress the layer, we can do better. We reshape the convolutional kernel into a tensor of higher order and factorize it. We combine the proposed approach with the previous work to compress both convolutional and fully-connected layers of a network and achieve 80x network compression rate with 1.1% accuracy drop on the CIFAR-10 dataset.
Timur Garipov, Dmitry Podoprikhin, Alexander Novikov, Dmitry Vetrov
null
1611.03214
null
null
Learning to Play Guess Who? and Inventing a Grounded Language as a Consequence
cs.AI cs.CL cs.LG cs.MA
Acquiring your first language is an incredible feat and not easily duplicated. Learning to communicate using nothing but a few pictureless books, a corpus, would likely be impossible even for humans. Nevertheless, this is the dominating approach in most natural language processing today. As an alternative, we propose the use of situated interactions between agents as a driving force for communication, and the framework of Deep Recurrent Q-Networks for evolving a shared language grounded in the provided environment. We task the agents with interactive image search in the form of the game Guess Who?. The images from the game provide a non trivial environment for the agents to discuss and a natural grounding for the concepts they decide to encode in their communication. Our experiments show that the agents learn not only to encode physical concepts in their words, i.e. grounding, but also that the agents learn to hold a multi-step dialogue remembering the state of the dialogue from step to step.
Emilio Jorge, Mikael K{\aa}geb\"ack, Fredrik D. Johansson, Emil Gustavsson
null
1611.03218
null
null
Faster Kernel Ridge Regression Using Sketching and Preconditioning
cs.NA cs.DS cs.LG math.NA
Kernel Ridge Regression (KRR) is a simple yet powerful technique for non-parametric regression whose computation amounts to solving a linear system. This system is usually dense and highly ill-conditioned. In addition, the dimensions of the matrix are the same as the number of data points, so direct methods are unrealistic for large-scale datasets. In this paper, we propose a preconditioning technique for accelerating the solution of the aforementioned linear system. The preconditioner is based on random feature maps, such as random Fourier features, which have recently emerged as a powerful technique for speeding up and scaling the training of kernel-based methods, such as kernel ridge regression, by resorting to approximations. However, random feature maps only provide crude approximations to the kernel function, so delivering state-of-the-art results by directly solving the approximated system requires the number of random features to be very large. We show that random feature maps can be much more effective in forming preconditioners, since under certain conditions a not-too-large number of random features is sufficient to yield an effective preconditioner. We empirically evaluate our method and show it is highly effective for datasets of up to one million training examples.
Haim Avron and Kenneth L. Clarkson and David P. Woodruff
null
1611.0322
null
null
Sharper Bounds for Regularized Data Fitting
cs.DS cs.LG cs.NA math.NA
We study matrix sketching methods for regularized variants of linear regression, low rank approximation, and canonical correlation analysis. Our main focus is on sketching techniques which preserve the objective function value for regularized problems, which is an area that has remained largely unexplored. We study regularization both in a fairly broad setting, and in the specific context of the popular and widely used technique of ridge regularization; for the latter, as applied to each of these problems, we show algorithmic resource bounds in which the {\em statistical dimension} appears in places where in previous bounds the rank would appear. The statistical dimension is always smaller than the rank, and decreases as the amount of regularization increases. In particular, for the ridge low-rank approximation problem $\min_{Y,X} \lVert YX - A \rVert_F^2 + \lambda \lVert Y\rVert_F^2 + \lambda\lVert X \rVert_F^2$, where $Y\in\mathbb{R}^{n\times k}$ and $X\in\mathbb{R}^{k\times d}$, we give an approximation algorithm needing \[ O(\mathtt{nnz}(A)) + \tilde{O}((n+d)\varepsilon^{-1}k \min\{k, \varepsilon^{-1}\mathtt{sd}_\lambda(Y^*)\})+ \mathtt{poly}(\mathtt{sd}_\lambda(Y^*) \varepsilon^{-1}) \] time, where $s_{\lambda}(Y^*)\le k$ is the statistical dimension of $Y^*$, $Y^*$ is an optimal $Y$, $\varepsilon$ is an error parameter, and $\mathtt{nnz}(A)$ is the number of nonzero entries of $A$.This is faster than prior work, even when $\lambda=0$. We also study regularization in a much more general setting. For example, we obtain sketching-based algorithms for the low-rank approximation problem $\min_{X,Y} \lVert YX - A \rVert_F^2 + f(Y,X)$ where $f(\cdot,\cdot)$ is a regularizing function satisfying some very general conditions (chiefly, invariance under orthogonal transformations).
Haim Avron and Kenneth L. Clarkson and David P. Woodruff
null
1611.03225
null
null
Policy Search with High-Dimensional Context Variables
stat.ML cs.LG
Direct contextual policy search methods learn to improve policy parameters and simultaneously generalize these parameters to different context or task variables. However, learning from high-dimensional context variables, such as camera images, is still a prominent problem in many real-world tasks. A naive application of unsupervised dimensionality reduction methods to the context variables, such as principal component analysis, is insufficient as task-relevant input may be ignored. In this paper, we propose a contextual policy search method in the model-based relative entropy stochastic search framework with integrated dimensionality reduction. We learn a model of the reward that is locally quadratic in both the policy parameters and the context variables. Furthermore, we perform supervised linear dimensionality reduction on the context variables by nuclear norm regularization. The experimental results show that the proposed method outperforms naive dimensionality reduction via principal component analysis and a state-of-the-art contextual policy search method.
Voot Tangkaratt, Herke van Hoof, Simone Parisi, Gerhard Neumann, Jan Peters, Masashi Sugiyama
null
1611.03231
null
null
Disentangling factors of variation in deep representations using adversarial training
cs.LG stat.ML
We introduce a conditional generative model for learning to disentangle the hidden factors of variation within a set of labeled observations, and separate them into complementary codes. One code summarizes the specified factors of variation associated with the labels. The other summarizes the remaining unspecified variability. During training, the only available source of supervision comes from our ability to distinguish among different observations belonging to the same class. Examples of such observations include images of a set of labeled objects captured at different viewpoints, or recordings of set of speakers dictating multiple phrases. In both instances, the intra-class diversity is the source of the unspecified factors of variation: each object is observed at multiple viewpoints, and each speaker dictates multiple phrases. Learning to disentangle the specified factors from the unspecified ones becomes easier when strong supervision is possible. Suppose that during training, we have access to pairs of images, where each pair shows two different objects captured from the same viewpoint. This source of alignment allows us to solve our task using existing methods. However, labels for the unspecified factors are usually unavailable in realistic scenarios where data acquisition is not strictly controlled. We address the problem of disentanglement in this more general setting by combining deep convolutional autoencoders with a form of adversarial training. Both factors of variation are implicitly captured in the organization of the learned embedding space, and can be used for solving single-image analogies. Experimental results on synthetic and real datasets show that the proposed method is capable of generalizing to unseen classes and intra-class variabilities.
Michael Mathieu, Junbo Zhao, Pablo Sprechmann, Aditya Ramesh, Yann LeCun
null
1611.03383
null
null
Learning an Astronomical Catalog of the Visible Universe through Scalable Bayesian Inference
cs.DC astro-ph.IM cs.LG stat.AP stat.ML
Celeste is a procedure for inferring astronomical catalogs that attains state-of-the-art scientific results. To date, Celeste has been scaled to at most hundreds of megabytes of astronomical images: Bayesian posterior inference is notoriously demanding computationally. In this paper, we report on a scalable, parallel version of Celeste, suitable for learning catalogs from modern large-scale astronomical datasets. Our algorithmic innovations include a fast numerical optimization routine for Bayesian posterior inference and a statistically efficient scheme for decomposing astronomical optimization problems into subproblems. Our scalable implementation is written entirely in Julia, a new high-level dynamic programming language designed for scientific and numerical computing. We use Julia's high-level constructs for shared and distributed memory parallelism, and demonstrate effective load balancing and efficient scaling on up to 8192 Xeon cores on the NERSC Cori supercomputer.
Jeffrey Regier, Kiran Pamnany, Ryan Giordano, Rollin Thomas, David Schlegel, Jon McAuliffe and Prabhat
null
1611.03404
null
null
Binomial Checkpointing for Arbitrary Programs with No User Annotation
cs.PL cs.LG cs.MS
Heretofore, automatic checkpointing at procedure-call boundaries, to reduce the space complexity of reverse mode, has been provided by systems like Tapenade. However, binomial checkpointing, or treeverse, has only been provided in Automatic Differentiation (AD) systems in special cases, e.g., through user-provided pragmas on DO loops in Tapenade, or as the nested taping mechanism in adol-c for time integration processes, which requires that user code be refactored. We present a framework for applying binomial checkpointing to arbitrary code with no special annotation or refactoring required. This is accomplished by applying binomial checkpointing directly to a program trace. This trace is produced by a general-purpose checkpointing mechanism that is orthogonal to AD.
Jeffrey Mark Siskind and Barak A. Pearlmutter
null
1611.0341
null
null
DiffSharp: An AD Library for .NET Languages
cs.MS cs.LG
DiffSharp is an algorithmic differentiation or automatic differentiation (AD) library for the .NET ecosystem, which is targeted by the C# and F# languages, among others. The library has been designed with machine learning applications in mind, allowing very succinct implementations of models and optimization routines. DiffSharp is implemented in F# and exposes forward and reverse AD operators as general nestable higher-order functions, usable by any .NET language. It provides high-performance linear algebra primitives---scalars, vectors, and matrices, with a generalization to tensors underway---that are fully supported by all the AD operators, and which use a BLAS/LAPACK backend via the highly optimized OpenBLAS library. DiffSharp currently uses operator overloading, but we are developing a transformation-based version of the library using F#'s "code quotation" metaprogramming facility. Work on a CUDA-based GPU backend is also underway.
At{\i}l{\i}m G\"une\c{s} Baydin and Barak A. Pearlmutter and Jeffrey Mark Siskind
null
1611.03423
null
null
Multi-Task Multiple Kernel Relationship Learning
stat.ML cs.LG
This paper presents a novel multitask multiple kernel learning framework that efficiently learns the kernel weights leveraging the relationship across multiple tasks. The idea is to automatically infer this task relationship in the \textit{RKHS} space corresponding to the given base kernels. The problem is formulated as a regularization-based approach called \textit{Multi-Task Multiple Kernel Relationship Learning} (\textit{MK-MTRL}), which models the task relationship matrix from the weights learned from latent feature spaces of task-specific base kernels. Unlike in previous work, the proposed formulation allows one to incorporate prior knowledge for simultaneously learning several related tasks. We propose an alternating minimization algorithm to learn the model parameters, kernel weights and task relationship matrix. In order to tackle large-scale problems, we further propose a two-stage \textit{MK-MTRL} online learning algorithm and show that it significantly reduces the computational time, and also achieves performance comparable to that of the joint learning framework. Experimental results on benchmark datasets show that the proposed formulations outperform several state-of-the-art multitask learning methods.
Keerthiram Murugesan, Jaime Carbonell
null
1611.03427
null
null
Importance Sampling with Unequal Support
cs.LG cs.AI stat.ML
Importance sampling is often used in machine learning when training and testing data come from different distributions. In this paper we propose a new variant of importance sampling that can reduce the variance of importance sampling-based estimates by orders of magnitude when the supports of the training and testing distributions differ. After motivating and presenting our new importance sampling estimator, we provide a detailed theoretical analysis that characterizes both its bias and variance relative to the ordinary importance sampling estimator (in various settings, which include cases where ordinary importance sampling is biased, while our new estimator is not, and vice versa). We conclude with an example of how our new importance sampling estimator can be used to improve estimates of how well a new treatment policy for diabetes will work for an individual, using only data from when the individual used a previous treatment policy.
Philip S. Thomas and Emma Brunskill
null
1611.03451
null
null
Statistical Query Lower Bounds for Robust Estimation of High-dimensional Gaussians and Gaussian Mixtures
cs.LG cs.CC cs.DS cs.IT math.IT math.ST stat.TH
We describe a general technique that yields the first {\em Statistical Query lower bounds} for a range of fundamental high-dimensional learning problems involving Gaussian distributions. Our main results are for the problems of (1) learning Gaussian mixture models (GMMs), and (2) robust (agnostic) learning of a single unknown Gaussian distribution. For each of these problems, we show a {\em super-polynomial gap} between the (information-theoretic) sample complexity and the computational complexity of {\em any} Statistical Query algorithm for the problem. Our SQ lower bound for Problem (1) is qualitatively matched by known learning algorithms for GMMs. Our lower bound for Problem (2) implies that the accuracy of the robust learning algorithm in~\cite{DiakonikolasKKLMS16} is essentially best possible among all polynomial-time SQ algorithms. Our SQ lower bounds are attained via a unified moment-matching technique that is useful in other contexts and may be of broader interest. Our technique yields nearly-tight lower bounds for a number of related unsupervised estimation problems. Specifically, for the problems of (3) robust covariance estimation in spectral norm, and (4) robust sparse mean estimation, we establish a quadratic {\em statistical--computational tradeoff} for SQ algorithms, matching known upper bounds. Finally, our technique can be used to obtain tight sample complexity lower bounds for high-dimensional {\em testing} problems. Specifically, for the classical problem of robustly {\em testing} an unknown mean (known covariance) Gaussian, our technique implies an information-theoretic sample lower bound that scales {\em linearly} in the dimension. Our sample lower bound matches the sample complexity of the corresponding robust {\em learning} problem and separates the sample complexity of robust testing from standard (non-robust) testing.
Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart
null
1611.03473
null
null
Understanding deep learning requires rethinking generalization
cs.LG
Despite their massive size, successful deep artificial neural networks can exhibit a remarkably small difference between training and test performance. Conventional wisdom attributes small generalization error either to properties of the model family, or to the regularization techniques used during training. Through extensive systematic experiments, we show how these traditional approaches fail to explain why large neural networks generalize well in practice. Specifically, our experiments establish that state-of-the-art convolutional networks for image classification trained with stochastic gradient methods easily fit a random labeling of the training data. This phenomenon is qualitatively unaffected by explicit regularization, and occurs even if we replace the true images by completely unstructured random noise. We corroborate these experimental findings with a theoretical construction showing that simple depth two neural networks already have perfect finite sample expressivity as soon as the number of parameters exceeds the number of data points as it usually does in practice. We interpret our experimental findings by comparison with traditional models.
Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol Vinyals
null
1611.0353
null
null
The Sum-Product Theorem: A Foundation for Learning Tractable Models
cs.LG cs.AI
Inference in expressive probabilistic models is generally intractable, which makes them difficult to learn and limits their applicability. Sum-product networks are a class of deep models where, surprisingly, inference remains tractable even when an arbitrary number of hidden layers are present. In this paper, we generalize this result to a much broader set of learning problems: all those where inference consists of summing a function over a semiring. This includes satisfiability, constraint satisfaction, optimization, integration, and others. In any semiring, for summation to be tractable it suffices that the factors of every product have disjoint scopes. This unifies and extends many previous results in the literature. Enforcing this condition at learning time thus ensures that the learned models are tractable. We illustrate the power and generality of this approach by applying it to a new type of structured prediction problem: learning a nonconvex function that can be globally optimized in polynomial time. We show empirically that this greatly outperforms the standard approach of learning without regard to the cost of optimization.
Abram L. Friesen and Pedro Domingos
null
1611.03553
null
null
Simple and Efficient Parallelization for Probabilistic Temporal Tensor Factorization
stat.ML cs.LG
Probabilistic Temporal Tensor Factorization (PTTF) is an effective algorithm to model the temporal tensor data. It leverages a time constraint to capture the evolving properties of tensor data. Nowadays the exploding dataset demands a large scale PTTF analysis, and a parallel solution is critical to accommodate the trend. Whereas, the parallelization of PTTF still remains unexplored. In this paper, we propose a simple yet efficient Parallel Probabilistic Temporal Tensor Factorization, referred to as P$^2$T$^2$F, to provide a scalable PTTF solution. P$^2$T$^2$F is fundamentally disparate from existing parallel tensor factorizations by considering the probabilistic decomposition and the temporal effects of tensor data. It adopts a new tensor data split strategy to subdivide a large tensor into independent sub-tensors, the computation of which is inherently parallel. We train P$^2$T$^2$F with an efficient algorithm of stochastic Alternating Direction Method of Multipliers, and show that the convergence is guaranteed. Experiments on several real-word tensor datasets demonstrate that P$^2$T$^2$F is a highly effective and efficiently scalable algorithm dedicated for large scale probabilistic temporal tensor analysis.
Guangxi Li, Zenglin Xu, Linnan Wang, Jinmian Ye, Irwin King, Michael Lyu
null
1611.03578
null
null
Collision-based Testers are Optimal for Uniformity and Closeness
cs.DS cs.IT cs.LG math.IT math.ST stat.TH
We study the fundamental problems of (i) uniformity testing of a discrete distribution, and (ii) closeness testing between two discrete distributions with bounded $\ell_2$-norm. These problems have been extensively studied in distribution testing and sample-optimal estimators are known for them~\cite{Paninski:08, CDVV14, VV14, DKN:15}. In this work, we show that the original collision-based testers proposed for these problems ~\cite{GRdist:00, BFR+:00} are sample-optimal, up to constant factors. Previous analyses showed sample complexity upper bounds for these testers that are optimal as a function of the domain size $n$, but suboptimal by polynomial factors in the error parameter $\epsilon$. Our main contribution is a new tight analysis establishing that these collision-based testers are information-theoretically optimal, up to constant factors, both in the dependence on $n$ and in the dependence on $\epsilon$.
Ilias Diakonikolas, Themis Gouleakis, John Peebles, Eric Price
null
1611.03579
null
null
UTCNN: a Deep Learning Model of Stance Classificationon on Social Media Text
cs.CL cs.AI cs.LG
Most neural network models for document classification on social media focus on text infor-mation to the neglect of other information on these platforms. In this paper, we classify post stance on social media channels and develop UTCNN, a neural network model that incorporates user tastes, topic tastes, and user comments on posts. UTCNN not only works on social media texts, but also analyzes texts in forums and message boards. Experiments performed on Chinese Facebook data and English online debate forum data show that UTCNN achieves a 0.755 macro-average f-score for supportive, neutral, and unsupportive stance classes on Facebook data, which is significantly better than models in which either user, topic, or comment information is withheld. This model design greatly mitigates the lack of data for the minor class without the use of oversampling. In addition, UTCNN yields a 0.842 accuracy on English online debate forum data, which also significantly outperforms results from previous work as well as other deep learning models, showing that UTCNN performs well regardless of language or platform.
Wei-Fan Chen and Lun-Wei Ku
null
1611.03599
null
null
Greedy Step Averaging: A parameter-free stochastic optimization method
cs.LG
In this paper we present the greedy step averaging(GSA) method, a parameter-free stochastic optimization algorithm for a variety of machine learning problems. As a gradient-based optimization method, GSA makes use of the information from the minimizer of a single sample's loss function, and takes average strategy to calculate reasonable learning rate sequence. While most existing gradient-based algorithms introduce an increasing number of hyper parameters or try to make a trade-off between computational cost and convergence rate, GSA avoids the manual tuning of learning rate and brings in no more hyper parameters or extra cost. We perform exhaustive numerical experiments for logistic and softmax regression to compare our method with the other state of the art ones on 16 datasets. Results show that GSA is robust on various scenarios.
Xiatian Zhang, Fan Yao, Yongjun Tian
null
1611.03608
null
null
Learning to Navigate in Complex Environments
cs.AI cs.CV cs.LG cs.RO
Learning to navigate in complex environments with dynamic elements is an important milestone in developing AI agents. In this work we formulate the navigation question as a reinforcement learning problem and show that data efficiency and task performance can be dramatically improved by relying on additional auxiliary tasks leveraging multimodal sensory inputs. In particular we consider jointly learning the goal-driven reinforcement learning problem with auxiliary depth prediction and loop closure classification tasks. This approach can learn to navigate from raw sensory input in complicated 3D mazes, approaching human-level performance even under conditions where the goal location changes frequently. We provide detailed analysis of the agent behaviour, its ability to localise, and its network activity dynamics, showing that the agent implicitly learns key navigation abilities.
Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J. Ballard, Andrea Banino, Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, Dharshan Kumaran and Raia Hadsell
null
1611.03673
null
null
Hierarchical Object Detection with Deep Reinforcement Learning
cs.CV cs.LG
We present a method for performing hierarchical object detection in images guided by a deep reinforcement learning agent. The key idea is to focus on those parts of the image that contain richer information and zoom on them. We train an intelligent agent that, given an image window, is capable of deciding where to focus the attention among five different predefined region candidates (smaller windows). This procedure is iterated providing a hierarchical image analysis.We compare two different candidate proposal strategies to guide the object search: with and without overlap. Moreover, our work compares two different strategies to extract features from a convolutional neural network for each region proposal: a first one that computes new feature maps for each region proposal, and a second one that computes the feature maps for the whole image to later generate crops for each region proposal. Experiments indicate better results for the overlapping candidate proposal strategy and a loss of performance for the cropped image features due to the loss of spatial resolution. We argue that, while this loss seems unavoidable when working with large amounts of object candidates, the much more reduced amount of region proposals generated by our reinforcement learning agent allows considering to extract features for each location without sharing convolutional computation among regions.
Miriam Bellver, Xavier Giro-i-Nieto, Ferran Marques and Jordi Torres
null
1611.03718
null
null
Tricks from Deep Learning
cs.LG stat.ML
The deep learning community has devised a diverse set of methods to make gradient optimization, using large datasets, of large and highly complex models with deeply cascaded nonlinearities, practical. Taken as a whole, these methods constitute a breakthrough, allowing computational structures which are quite wide, very deep, and with an enormous number and variety of free parameters to be effectively optimized. The result now dominates much of practical machine learning, with applications in machine translation, computer vision, and speech recognition. Many of these methods, viewed through the lens of algorithmic differentiation (AD), can be seen as either addressing issues with the gradient itself, or finding ways of achieving increased efficiency using tricks that are AD-related, but not provided by current AD systems. The goal of this paper is to explain not just those methods of most relevance to AD, but also the technical constraints and mindset which led to their discovery. After explaining this context, we present a "laundry list" of methods developed by the deep learning community. Two of these are discussed in further mathematical detail: a way to dramatically reduce the size of the tape when performing reverse-mode AD on a (theoretically) time-reversible process like an ODE integrator; and a new mathematical insight that allows for the implementation of a stochastic Newton's method.
At{\i}l{\i}m G\"une\c{s} Baydin and Barak A. Pearlmutter and Jeffrey Mark Siskind
null
1611.03777
null
null
Towards the Science of Security and Privacy in Machine Learning
cs.CR cs.LG
Advances in machine learning (ML) in recent years have enabled a dizzying array of applications such as data analytics, autonomous systems, and security diagnostics. ML is now pervasive---new systems and models are being deployed in every domain imaginable, leading to rapid and widespread deployment of software based inference and decision making. There is growing recognition that ML exposes new vulnerabilities in software systems, yet the technical community's understanding of the nature and extent of these vulnerabilities remains limited. We systematize recent findings on ML security and privacy, focusing on attacks identified on these systems and defenses crafted to date. We articulate a comprehensive threat model for ML, and categorize attacks and defenses within an adversarial framework. Key insights resulting from works both in the ML and security communities are identified and the effectiveness of approaches are related to structural elements of ML algorithms and the data used to train them. We conclude by formally exploring the opposing relationship between model accuracy and resilience to adversarial manipulation. Through these explorations, we show that there are (possibly unavoidable) tensions between model complexity, accuracy, and resilience that must be calibrated for the environments in which they will be used.
Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, Michael Wellman
null
1611.03814
null
null
Recovery Guarantee of Non-negative Matrix Factorization via Alternating Updates
cs.LG cs.DS stat.ML
Non-negative matrix factorization is a popular tool for decomposing data into feature and weight matrices under non-negativity constraints. It enjoys practical success but is poorly understood theoretically. This paper proposes an algorithm that alternates between decoding the weights and updating the features, and shows that assuming a generative model of the data, it provably recovers the ground-truth under fairly mild conditions. In particular, its only essential requirement on features is linear independence. Furthermore, the algorithm uses ReLU to exploit the non-negativity for decoding the weights, and thus can tolerate adversarial noise that can potentially be as large as the signal, and can tolerate unbiased noise much larger than the signal. The analysis relies on a carefully designed coupling between two potential functions, which we believe is of independent interest.
Yuanzhi Li, Yingyu Liang, Andrej Risteski
null
1611.03819
null
null
Learning to Learn without Gradient Descent by Gradient Descent
stat.ML cs.LG
We learn recurrent neural network optimizers trained on simple synthetic functions by gradient descent. We show that these learned optimizers exhibit a remarkable degree of transfer in that they can be used to efficiently optimize a broad range of derivative-free black-box functions, including Gaussian process bandits, simple control objectives, global optimization benchmarks and hyper-parameter tuning tasks. Up to the training horizon, the learned optimizers learn to trade-off exploration and exploitation, and compare favourably with heavily engineered Bayesian optimization packages for hyper-parameter tuning.
Yutian Chen, Matthew W. Hoffman, Sergio Gomez Colmenarejo, Misha Denil, Timothy P. Lillicrap, Matt Botvinick, Nando de Freitas
null
1611.03824
null
null
A Connection between Generative Adversarial Networks, Inverse Reinforcement Learning, and Energy-Based Models
cs.LG cs.AI
Generative adversarial networks (GANs) are a recently proposed class of generative models in which a generator is trained to optimize a cost function that is being simultaneously learned by a discriminator. While the idea of learning cost functions is relatively new to the field of generative modeling, learning costs has long been studied in control and reinforcement learning (RL) domains, typically for imitation learning from demonstrations. In these fields, learning cost function underlying observed behavior is known as inverse reinforcement learning (IRL) or inverse optimal control. While at first the connection between cost learning in RL and cost learning in generative modeling may appear to be a superficial one, we show in this paper that certain IRL methods are in fact mathematically equivalent to GANs. In particular, we demonstrate an equivalence between a sample-based algorithm for maximum entropy IRL and a GAN in which the generator's density can be evaluated and is provided as an additional input to the discriminator. Interestingly, maximum entropy IRL is a special case of an energy-based model. We discuss the interpretation of GANs as an algorithm for training energy-based models, and relate this interpretation to other recent work that seeks to connect GANs and EBMs. By formally highlighting the connection between GANs, IRL, and EBMs, we hope that researchers in all three communities can better identify and apply transferable ideas from one domain to another, particularly for developing more stable and scalable algorithms: a major challenge in all three domains.
Chelsea Finn, Paul Christiano, Pieter Abbeel, Sergey Levine
null
1611.03852
null
null
Annealing Gaussian into ReLU: a New Sampling Strategy for Leaky-ReLU RBM
stat.ML cs.LG
Restricted Boltzmann Machine (RBM) is a bipartite graphical model that is used as the building block in energy-based deep generative models. Due to numerical stability and quantifiability of the likelihood, RBM is commonly used with Bernoulli units. Here, we consider an alternative member of exponential family RBM with leaky rectified linear units -- called leaky RBM. We first study the joint and marginal distributions of leaky RBM under different leakiness, which provides us important insights by connecting the leaky RBM model and truncated Gaussian distributions. The connection leads us to a simple yet efficient method for sampling from this model, where the basic idea is to anneal the leakiness rather than the energy; -- i.e., start from a fully Gaussian/Linear unit and gradually decrease the leakiness over iterations. This serves as an alternative to the annealing of the temperature parameter and enables numerical estimation of the likelihood that are more efficient and more accurate than the commonly used annealed importance sampling (AIS). We further demonstrate that the proposed sampling algorithm enjoys faster mixing property than contrastive divergence algorithm, which benefits the training without any additional computational cost.
Chun-Liang Li, Siamak Ravanbakhsh, Barnabas Poczos
null
1611.03879
null
null
Unsupervised Learning For Effective User Engagement on Social Media
cs.LG
In this paper, we investigate the effectiveness of unsupervised feature learning techniques in predicting user engagement on social media. Specifically, we compare two methods to predict the number of feedbacks (i.e., comments) that a blog post is likely to receive. We compare Principal Component Analysis (PCA) and sparse Autoencoder to a baseline method where the data are only centered and scaled, on each of two models: Linear Regression and Regression Tree. We find that unsupervised learning techniques significantly improve the prediction accuracy on both models. For the Linear Regression model, sparse Autoencoder achieves the best result, with an improvement in the root mean squared error (RMSE) on the test set of 42% over the baseline method. For the Regression Tree model, PCA achieves the best result, with an improvement in RMSE of 15% over the baseline.
Thai Pham and Camelia Simoiu
null
1611.03894
null
null
Low Latency Anomaly Detection and Bayesian Network Prediction of Anomaly Likelihood
cs.LG stat.ML
We develop a supervised machine learning model that detects anomalies in systems in real time. Our model processes unbounded streams of data into time series which then form the basis of a low-latency anomaly detection model. Moreover, we extend our preliminary goal of just anomaly detection to simultaneous anomaly prediction. We approach this very challenging problem by developing a Bayesian Network framework that captures the information about the parameters of the lagged regressors calibrated in the first part of our approach and use this structure to learn local conditional probability distributions.
Derek Farren and Thai Pham and Marco Alban-Hidalgo
null
1611.03898
null
null
Reinforcement Learning in Rich-Observation MDPs using Spectral Methods
cs.AI cs.LG stat.ML
Reinforcement learning (RL) in Markov decision processes (MDPs) with large state spaces is a challenging problem. The performance of standard RL algorithms degrades drastically with the dimensionality of state space. However, in practice, these large MDPs typically incorporate a latent or hidden low-dimensional structure. In this paper, we study the setting of rich-observation Markov decision processes (ROMDP), where there are a small number of hidden states which possess an injective mapping to the observation states. In other words, every observation state is generated through a single hidden state, and this mapping is unknown a priori. We introduce a spectral decomposition method that consistently learns this mapping, and more importantly, achieves it with low regret. The estimated mapping is integrated into an optimistic RL algorithm (UCRL), which operates on the estimated hidden space. We derive finite-time regret bounds for our algorithm with a weak dependence on the dimensionality of the observed space. In fact, our algorithm asymptotically achieves the same average regret as the oracle UCRL algorithm, which has the knowledge of the mapping from hidden to observed spaces. Thus, we derive an efficient spectral RL algorithm for ROMDPs.
Kamyar Azizzadenesheli, Alessandro Lazaric, Animashree Anandkumar
null
1611.03907
null
null
Personalized Donor-Recipient Matching for Organ Transplantation
cs.LG
Organ transplants can improve the life expectancy and quality of life for the recipient but carries the risk of serious post-operative complications, such as septic shock and organ rejection. The probability of a successful transplant depends in a very subtle fashion on compatibility between the donor and the recipient but current medical practice is short of domain knowledge regarding the complex nature of recipient-donor compatibility. Hence a data-driven approach for learning compatibility has the potential for significant improvements in match quality. This paper proposes a novel system (ConfidentMatch) that is trained using data from electronic health records. ConfidentMatch predicts the success of an organ transplant (in terms of the 3 year survival rates) on the basis of clinical and demographic traits of the donor and recipient. ConfidentMatch captures the heterogeneity of the donor and recipient traits by optimally dividing the feature space into clusters and constructing different optimal predictive models to each cluster. The system controls the complexity of the learned predictive model in a way that allows for assuring more granular and confident predictions for a larger number of potential recipient-donor pairs, thereby ensuring that predictions are "personalized" and tailored to individual characteristics to the finest possible granularity. Experiments conducted on the UNOS heart transplant dataset show the superiority of the prognostic value of ConfidentMatch to other competing benchmarks; ConfidentMatch can provide predictions of success with 95% confidence for 5,489 patients of a total population of 9,620 patients, which corresponds to 410 more patients than the most competitive benchmark algorithm (DeepBoost).
Jinsung Yoon, Ahmed M. Alaa, Martin Cadeiras, and Mihaela van der Schaar
null
1611.03934
null
null
Anomaly Detection in Bitcoin Network Using Unsupervised Learning Methods
cs.LG cs.CR
The problem of anomaly detection has been studied for a long time. In short, anomalies are abnormal or unlikely things. In financial networks, thieves and illegal activities are often anomalous in nature. Members of a network want to detect anomalies as soon as possible to prevent them from harming the network's community and integrity. Many Machine Learning techniques have been proposed to deal with this problem; some results appear to be quite promising but there is no obvious superior method. In this paper, we consider anomaly detection particular to the Bitcoin transaction network. Our goal is to detect which users and transactions are the most suspicious; in this case, anomalous behavior is a proxy for suspicious behavior. To this end, we use three unsupervised learning methods including k-means clustering, Mahalanobis distance, and Unsupervised Support Vector Machine (SVM) on two graphs generated by the Bitcoin transaction network: one graph has users as nodes, and the other has transactions as nodes.
Thai Pham and Steven Lee
null
1611.03941
null
null
An Introduction to MM Algorithms for Machine Learning and Statistical
stat.CO cs.LG stat.ML
MM (majorization--minimization) algorithms are an increasingly popular tool for solving optimization problems in machine learning and statistical estimation. This article introduces the MM algorithm framework in general and via three popular example applications: Gaussian mixture regressions, multinomial logistic regressions, and support vector machines. Specific algorithms for the three examples are derived and numerical demonstrations are presented. Theoretical and practical aspects of MM algorithm design are discussed.
Hien D. Nguyen
null
1611.03969
null
null